
Continuity

Determine if each function is continuous at the given x-values. If not continuous, classify each discontinuity.

1)
$$f(x) = \frac{x}{x^2 + 3x}$$
; at $x = -3$ and $x = 0$

2)
$$f(x) = \begin{cases} -2, & x \le 3 \\ x - 5, & x > 3 \end{cases}$$
; at $x = 3$

3)
$$f(x) = \frac{x+1}{x^2+2x+2}$$
; at $x = -3$

4)
$$f(x) = \frac{x+2}{x^2-4}$$
; at $x = -2$ and $x = 2$

5)
$$f(x) = \frac{x^2}{x+1}$$
; at $x = -1$

6)
$$f(x) = \begin{cases} -2x, & x < 3 \\ -x^2 + 8x - 16, & x \ge 3 \end{cases}$$
; at $x = 3$

Determine if each function is continuous. If the function is not continuous, find the x-axis location of and classify each discontinuity.

7)
$$f(x) = -\frac{x}{2x^2 + 2x + 1}$$

8)
$$f(x) = \frac{x}{x^2 + 6x + 9}$$

9)
$$f(x) = \frac{x^2 + 4x + 3}{x + 3}$$

10) $f(x) = \frac{x}{x^2 - 4x}$

11)
$$f(x) = \begin{cases} x+4, & x \le -2 \\ -2x-11, & x > -2 \end{cases}$$

12)
$$f(x) = \frac{x+7}{x^2+3x}$$

Find the intervals on which each function is continuous.

13)
$$f(x) = \begin{cases} x, & x \neq 4 \\ 2, & x = 4 \end{cases}$$

14)
$$f(x) = \begin{cases} -2, & x < 3 \\ -2x + 6, & x \ge 3 \end{cases}$$

15)
$$f(x) = \frac{x-1}{x^2 - 4x + 3}$$

16)
$$f(x) = \frac{x^2}{2} + 4x + 10$$

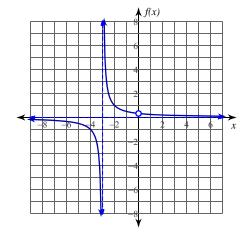
17)
$$f(x) = -x^2 - 4x + 2$$

18)
$$f(x) = -\frac{x-2}{x^2-3x+2}$$

19)
$$f(x) = -\frac{x-1}{x^2-x}$$

20)
$$f(x) = \frac{x}{x^2 - 6x + 9}$$

Critical thinking questions:


- 21) Write a function that has an infinite discontinuity at x = 100.
- 22) Write a function that is continuous over $(-\infty, 0)$, (0, 1), and $(1, \infty)$ and discontinuous everywhere else.

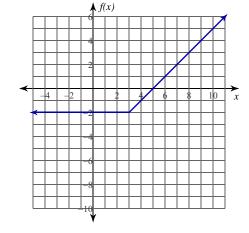
Continuity

Date Period

Determine if each function is continuous at the given x-values. If not continuous, classify each discontinuity.

1)
$$f(x) = \frac{x}{x^2 + 3x}$$
; at $x = -3$ and $x = 0$

Removable discontinuity at x = 0Infinite discontinuity at x = -3


3)
$$f(x) = \frac{x+1}{x^2+2x+2}$$
; at $x = -3$

Continuous at x = -3

5)
$$f(x) = \frac{x^2}{x+1}$$
; at $x = -1$

Infinite discontinuity at x = -1

2)
$$f(x) = \begin{cases} -2, & x \le 3 \\ x - 5, & x > 3 \end{cases}$$
; at $x = 3$

Continuous at x = 3

4)
$$f(x) = \frac{x+2}{x^2-4}$$
; at $x = -2$ and $x = 2$

Removable discontinuity at x = -2Infinite discontinuity at x = 2

6)
$$f(x) = \begin{cases} -2x, & x < 3 \\ -x^2 + 8x - 16, & x \ge 3 \end{cases}$$
; at $x = 3$

Jump discontinuity at x = 3

Determine if each function is continuous. If the function is not continuous, find the x-axis location of and classify each discontinuity.

7)
$$f(x) = -\frac{x}{2x^2 + 2x + 1}$$

Continuous

8)
$$f(x) = \frac{x}{x^2 + 6x + 9}$$

Infinite discontinuity at x = -3

9)
$$f(x) = \frac{x^2 + 4x + 3}{x + 3}$$

Removable discontinuity at x = -3

10)
$$f(x) = \frac{x}{x^2 - 4x}$$

Removable discontinuity at x = 0Infinite discontinuity at x = 4

11)
$$f(x) = \begin{cases} x+4, & x \le -2 \\ -2x-11, & x > -2 \end{cases}$$

Jump discontinuity at x = -2

12)
$$f(x) = \frac{x+7}{x^2+3x}$$

Infinite discontinuities at x = -3, x = 0

Find the intervals on which each function is continuous.

13)
$$f(x) = \begin{cases} x, & x \neq 4 \\ 2, & x = 4 \end{cases}$$

$$(-\infty, 4), (4, \infty)$$

14)
$$f(x) = \begin{cases} -2, & x < 3 \\ -2x + 6, & x \ge 3 \end{cases}$$

 $(-\infty, 3), [3, \infty)$

15)
$$f(x) = \frac{x-1}{x^2 - 4x + 3}$$

 $(-\infty, 1), (1, 3), (3, \infty)$

16)
$$f(x) = \frac{x^2}{2} + 4x + 10$$

17)
$$f(x) = -x^2 - 4x + 2$$

 $(-\infty, \infty)$

18)
$$f(x) = -\frac{x-2}{x^2 - 3x + 2}$$

 $(-\infty, 1), (1, 2), (2, \infty)$

19)
$$f(x) = -\frac{x-1}{x^2 - x}$$

 $(-\infty, 0), (0, 1), (1, \infty)$

20)
$$f(x) = \frac{x}{x^2 - 6x + 9}$$

 $(-\infty, 3), (3, \infty)$

Critical thinking questions:

21) Write a function that has an infinite discontinuity at x = 100.

$$f(x) = \frac{1}{x - 100}$$

22) Write a function that is continuous over $(-\infty, 0)$, (0, 1), and $(1, \infty)$ and discontinuous everywhere else.

$$f(x) = \frac{x-1}{x^2 - x}$$

-2-