\qquad

Continuous Exponential Growth and Decay

Date \qquad Period

Solve each continous exponential growth/decay problem. You may use the provided graph to plot points or sketch the exponential function.

1) A savings account balance is compounded continuously. If the interest rate is 3% per year and the current balance is $\$ 1,854.00$, what will the balance be 5 years from now?

2) For a period of time, an island's population grows exponentially. If the population doubles every 17 years and the current population is 1,725 , what will the population be 10 years from now?

3) Radioactive isotope Berkelium- 247 decays exponentially. If the continuous decay rate is 50% per thousand years and the current mass is 804.90 grams, what will the mass be 7 thousand years from now?

4) A savings account balance is compounded continuously. If the balance was $\$ 1,183.638$ years ago and the current balance is $\$ 1,389.00$, what will the balance be 5 years from now?

Solve each continous exponential growth/decay problem.

5) For a period of time, E. coli bacteria in a culture grows exponentially. If the continuous growth rate is 1% per minute and the current population is 165.0 million, what will the population be 6 minutes from now?
6) Atmospheric pressure decreases approximately exponentially as elevation increases. If the continuous rate of decrease is determined to be 12% per kilometer and the pressure at sea level is 751.0 mmHg , what is the pressure at 8.3 kilometers above sea level?
7) For a period of time, an island's population grows exponentially. If the population was 1,128 6 years ago and the current population is 1,351 , what will the population be 7 years from now?
\qquad

Continuous Exponential Growth and Decay

Date \qquad Period

Solve each continous exponential growth/decay problem. You may use the provided graph to plot points or sketch the exponential function.

1) A savings account balance is compounded continuously. If the interest rate is 3% per year and the current balance is $\$ 1,854.00$, what will the balance be 5 years from now?

$1854 e^{0.03 \cdot 5} \approx \$ 2,154.04$
2) For a period of time, an island's population grows exponentially. If the population doubles every 17 years and the current population is 1,725 , what will the population be 10 years from now?

$$
1725 \cdot 2^{\frac{10}{17}} \approx 2,593
$$

2) Radioactive isotope Berkelium-247 decays exponentially. If the continuous decay rate is 50% per thousand years and the current mass is 804.90 grams, what will the mass be 7 thousand years from now?

$804.9 e^{-0.5 \cdot 7} \approx 24.31 \mathrm{grams}$
3) A savings account balance is compounded continuously. If the balance was $\$ 1,183.638$ years ago and the current balance is $\$ 1,389.00$, what will the balance be 5 years from now?

$1389 \cdot\left(\frac{1389}{1183.63}\right)^{\frac{5}{8}} \approx \$ 1,535.08$

Solve each continous exponential growth/decay problem.

5) For a period of time, E. coli bacteria in a culture grows exponentially. If the continuous growth rate is 1% per minute and the current population is 165.0 million, what will the population be 6 minutes from now?

$$
165 e^{0.01 \cdot 6} \approx 175.2 \text { million }
$$

6) Atmospheric pressure decreases approximately exponentially as elevation increases. If the continuous rate of decrease is determined to be 12% per kilometer and the pressure at sea level is 751.0 mmHg , what is the pressure at 8.3 kilometers above sea level?

$$
751 e^{-0.12 \cdot 8.3} \approx 277.4 \mathrm{mmHg}
$$

8) For a period of time, an island's population grows exponentially. If the population was 1,128 6 years ago and the current population is 1,351 , what will the population be 7 years from now?

$$
1351 \cdot\left(\frac{1351}{1128}\right)^{\frac{7}{6}} \approx 1,667
$$

