\qquad

Mutually Exclusive Events

Date \qquad Period \qquad

Determine if the scenario involves mutually exclusive events.

1) A spinner has an equal chance of landing on each of its eight numbered regions. After spinning, it lands in region three or six.
2) A magazine contains twelve pages. You open to a random page. The page number is eight or ten.

Find the probability.

5) A magazine contains fourteen pages. You open to a random page. The page number is three or seven.
6) You roll a fair six-sided die. The die shows an even number or a number greater than three.
7) A bag contains six yellow jerseys numbered one to six. The bag also contains four purple jerseys numbered one to four. You randomly pick a jersey. It is purple or has a number greater than five.
8) A box of chocolates contains six milk chocolates and four dark chocolates. Two of the milk chocolates and three of the dark chocolates have peanuts inside. You randomly select and eat a chocolate. It is a milk chocolate or has no peanuts inside.
9) A basket contains three apples, three peaches, and four pears. You randomly select a piece of fruit. It is an apple or a peach.
10) A box contains three red playing cards numbered one to three. The box also contains five black playing cards numbered one to five. You randomly pick a playing card. It is black or has an odd number.

Determine if events A and B are mutually exclusive.
9) $P(A)=\frac{3}{10} P(B)=\frac{1}{2} P(A$ or $B)=\frac{4}{5}$
10) $P(A)=\frac{7}{20} P(B)=\frac{11}{20} P(A$ or $B)=\frac{283}{400}$
11) $P(A)=\frac{7}{20} P(B)=\frac{3}{10} P(A$ and $B)=\frac{21}{400}$
12) $P(A)=0.2 \quad P(B)=0.35 \quad P(A$ and $B)=0$
13) $P(A)=\frac{3}{5} P(B)=\frac{1}{2} P(A \mid B)=\frac{33}{50}$
14) $P(A)=\frac{7}{20} P(B)=\frac{11}{20} P(A \mid B)=0$

Events A and B are mutually exclusive. Find the missing probability.
15) $P(A)=\frac{1}{4} P(B)=\frac{13}{20} P(A$ or $B)=$?
16) $P(A)=\frac{2}{5} P(B)=\frac{1}{4} P(A$ and $B)=$?

Find the missing probability.
17) $P(A)=\frac{7}{20} P(B)=\frac{7}{20} P(A$ or $B)=\frac{49}{80} P(A$ and $B)=?$
18) $P(A)=\frac{11}{20} P(A$ or $B)=\frac{283}{400} P(A$ and $B)=\frac{77}{400} P(\operatorname{not} B)=$?
\qquad

Mutually Exclusive Events

Date \qquad Period \qquad

Determine if the scenario involves mutually exclusive events.

1) A spinner has an equal chance of landing on each of its eight numbered regions. After spinning, it lands in region three or six.

Mutually exclusive
3) A magazine contains twelve pages. You open to a random page. The page number is eight or ten.

Mutually exclusive
2) A bag contains six yellow jerseys numbered one to six. The bag also contains four purple jerseys numbered one to four. You randomly pick a jersey. It is purple or has a number greater than five.

Mutually exclusive
4) A box of chocolates contains six milk chocolates and four dark chocolates. Two of the milk chocolates and three of the dark chocolates have peanuts inside. You randomly select and eat a chocoate. It is a milk chocolate or has no peanuts inside.

Not mutually exclusive

6) A basket contains three apples, three peaches, and four pears. You randomly select a piece of fruit. It is an apple or a peach.

$$
\frac{3}{5}=0.6
$$

8) A box contains three red playing cards numbered one to three. The box also contains five black playing cards numbered one to five. You randomly pick a playing card. It is black or has an odd number.

$$
\frac{7}{8}=0.875
$$

9) $P(A)=\frac{3}{10} P(B)=\frac{1}{2} P(A$ or $B)=\frac{4}{5}$

Mutually exclusive
10) $P(A)=\frac{7}{20} P(B)=\frac{11}{20} P(A$ or $B)=\frac{283}{400}$

Not mutually exclusive
11) $P(A)=\frac{7}{20} P(B)=\frac{3}{10} P(A$ and $B)=\frac{21}{400}$
12) $P(A)=0.2 \quad P(B)=0.35 \quad P(A$ and $B)=0$ Mutually exclusive
Not mutually exclusive
13) $P(A)=\frac{3}{5} P(B)=\frac{1}{2} P(A \mid B)=\frac{33}{50}$

Not mutually exclusive
14) $P(A)=\frac{7}{20} P(B)=\frac{11}{20} P(A \mid B)=0$

Mutually exclusive

Events A and B are mutually exclusive. Find the missing probability.
15) $P(A)=\frac{1}{4} P(B)=\frac{13}{20} P(A$ or $B)=$?
$\frac{9}{10}$
16) $P(A)=\frac{2}{5} P(B)=\frac{1}{4} P(A$ and $B)=$?

0

Find the missing probability.
17) $P(A)=\frac{7}{20} P(B)=\frac{7}{20} P(A$ or $B)=\frac{49}{80} P(A$ and $B)=?$
$\frac{7}{80}$
18) $P(A)=\frac{11}{20} P(A$ or $B)=\frac{283}{400} P(A$ and $B)=\frac{77}{400} P(\operatorname{not} B)=$?
$\frac{13}{20}$

