\qquad

Graphs of Polynomial Functions

Date \qquad Period \qquad
For each function: (1) determine the real zeros and state the multiplicity of any repeated zeros, (2) list the x-intercepts where the graph crosses the x-axis and those where it does not cross the x-axis, and (3) sketch the graph.

1) $f(x)=-x^{3}$

2) $f(x)=x^{4}+x^{3}-4 x^{2}-4 x$

3) $f(x)=2 x^{3}-3 x^{2}$

4) $f(x)=x^{4}+x^{3}$

5) $f(x)=-x^{3}+6 x^{2}-12 x+8$

6) $f(x)=x^{3}-2 x^{2}$

Describe the end behavior of each function.
7) $f(x)=-x^{5}+2 x^{3}-x+1$
8) $f(x)=2 x^{2}-4 x-3$
9) $f(x)=x^{4}-2 x^{2}-x+1$
10) $f(x)=-x^{3}-9 x^{2}-24 x-20$
11) $f(x)=-x^{5}+3 x^{3}+1$

Critical thinking questions:

13) Write a polynomial function f with the following properties:
(a) Zeros at 1, 2, and 3
(b) $f(x) \leq 0$ for all values of x
(c) Degree greater than 1
14) Write a polynomial function g with degree greater than one that passes through the points $(0,1),(1,1)$, and $(2,1)$.
\qquad

Graphs of Polynomial Functions

Date \qquad Period \qquad
For each function: (1) determine the real zeros and state the multiplicity of any repeated zeros, (2) list the x-intercepts where the graph crosses the x-axis and those where it does not cross the x-axis, and (3) sketch the graph.

1) $f(x)=-x^{3}$

2) $f(x)=x^{4}+x^{3}-4 x^{2}-4 x$

3) $f(x)=2 x^{3}-3 x^{2}$

4) $f(x)=x^{4}+x^{3}$

5) $f(x)=-x^{3}+6 x^{2}-12 x+8$

6) $f(x)=x^{3}-2 x^{2}$

Real zeros: $\{0$ mult. 2, 2$\}$
x-int, crosses: 2
x-int, doesn't cross: 0

Describe the end behavior of each function.

7) $f(x)=-x^{5}+2 x^{3}-x+1$
$\lim _{x \rightarrow-\infty} f(x)=\infty$
$\lim _{x \rightarrow \infty} f(x)=-\infty$
8) $f(x)=x^{4}-2 x^{2}-x+1$
$\lim _{x \rightarrow-\infty} f(x)=\infty$
$\lim _{x \rightarrow \infty} f(x)=\infty$
9) $f(x)=-x^{5}+3 x^{3}+1$
$\lim _{x \rightarrow-\infty} f(x)=\infty$
$\lim _{x \rightarrow \infty} f(x)=-\infty$

Critical thinking questions:

13) Write a polynomial function f with the following properties:
(a) Zeros at 1, 2, and 3
(b) $f(x) \leq 0$ for all values of x
(c) Degree greater than 1
$f(x)=-(x-1)^{2} \cdot(x-2)^{2} \cdot(x-3)^{2}$
14) Write a polynomial function g with degree greater than one that passes through the points $(0,1),(1,1)$, and $(2,1)$.
$g(x)=x(x-1)(x-2)+1$
