

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

www.myprogramminglab.com

This page intentionally left blank

(continued on next page)

VideoNote

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Designing a Program with Pseudocode, p. 20
Designing the Account Balance Program, p. 24
Predicting the Output of Problem 30, p. 25
Solving the Candy Bar Sales Problem, p. 26

Chapter 2 Using cout to Display Output, p. 32
Assignment Statements, p. 60
Arithmetic Operators, p. 61
Solving the Restaurant Bill Problem, p. 73

Chapter 3 Using cin to Read Input, p. 77
Evaluating Mathematical Expressions, p. 84
Combined Assignment Operators, p. 105
Solving the Stadium Seating Problem, p. 149

Chapter 4 Using an if Statement, p. 160
Using an if/else Statement, p. 169
Using an if/else if Statement, p. 174
Using Logical Operators, p. 187
Solving the Time Calculator Problem, p. 236

Chapter 5 The while Loop, p. 244
The for Loop, p. 266
Nested Loops, p. 277
Solving the Ocean Levels Problem, p. 318

Chapter 6 Defining and Calling Functions, p. 324
Using Function Arguments, p. 334
Value-Returning Functions, p. 344
Solving the Markup Problem, p. 399

Chapter 7 Creating a Class, p. 412
Creating and Using Class Objects, p. 414
Creating and Using Structures, p. 454
Solving the Car Class Problem, p. 498

Chapter 8 Accessing Array Elements, p. 505
Passing an Array to a Function, p. 535
Two-Dimensional Arrays, p. 545
Solving the Chips and Salsa Problem, p. 586

Chapter 9 Performing a Binary Search, p. 598
Sorting a Set of Data, p. 605
Solving the Lottery Winners Problem, p. 634

(continued)
VideoNote

 LOCATION OF VIDEONOTES IN THE TEXT

Chapter 10 Pointer Variables, p. 639
Dynamically Allocating an Array, p. 663
Solving the Days in Current Month Problem, p. 693

Chapter 11 Operator Overloading, p. 722
Aggregation and Composition, p. 752
Overriding Base Class Functions, p. 773
Solving the Number of Days Worked Problem, p. 786

Chapter 12 Converting Strings to Numbers, p. 806
Writing a C-String Handling Function, p. 811
Solving the Case Manipulator Problem, p. 834

Chapter 13 The get Family of Member Functions, p. 853
Rewinding a File, p. 857
Solving the File Encryption Filter Problem, p. 895

Chapter 14 Recursive Binary Search, p. 911
QuickSort, p. 913
Solving the Recursive Multiplication Problem, p. 931

Chapter 15 Polymorphism, p. 939
Composition versus Inheritance, p. 950
Solving the Sequence Sum Problem, p. 968

Chapter 16 Throwing and Handling Exceptions, p. 972
Writing a Function Template, p. 984
Iterators, p. 1002
Solving the Arithmetic Exceptions Problem, p. 1018

Chapter 17 Adding an Element to a Linked List, p. 1029
Removing an Element from a Linked List, p. 1036
Solving the Member Insertion by Position Problem, p. 1067

Chapter 18 Storing Objects in an STL Stack, p. 1081
Storing Objects in an STL Queue, p. 1095
Solving the File Reverser Problem, p. 1107

Chapter 19 Inserting an Element into a Binary Tree, p. 1116
Removing an Element from a Binary Tree, p. 1120
Solving the Tree Size Problem, p. 1136

Starting Out withEighth
Edition

C++
Early Objects

Tony Gaddis
Judy Walters

Godfrey Muganda

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
appropriate page within text.

Credits: Figure 1-1a: Microsoft Powerpoint and Microsoft Word, Microsoft Corporation. 2010.
Reference: The most commonly used method for encoding characters is ASCII...(cont.)The American Standard Code for
Information Interchange. American National Standards Institute. 2012.
Reference: “QuickSort is a recursive sorting algorithm that was invented in 1960 by C. A. R. Hoare.” Hoare, C.A.R.
“QuickSort”. Oxford University Press. 1960.

Copyright © 2012 by Microsoft Corporation. Used with permission from Microsoft.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics are
provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and
conditions with regard to this information, including all warranties and conditions of merchantability, whether express,
implied or statutory, fitness for a particular purpose, title and non-infringement. in no event shall Microsoft and/or its
respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss
of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services. The documents and related graphics contained herein
could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein.
Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s)
described herein at any time. Partial screen shots may be viewed in full within the software version specified.

The programs and applications presented in this book have been included for their instructional value. They have been tested
with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

Copyright © 2014, 2008. Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street, Suite 900, Boston,
Massachusetts 02116. All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
 Starting out with C++ : early objects / Tony Gaddis, Judy Walters, Godfrey
Muganda.—Eighth edition.
 pages cm
 ISBN-13: 978-0-13-336092-9
 ISBN-10: 0-13-336092-X
 1. C++ (Computer program language) I. Walters, Judy. II. Muganda, Godfrey. III. Title.
 QA76.73.C153G33 2014
 005.13’3—dc23 2012045400

10 9 8 7 6 5 4 3 2 1

 ISBN 10: 0-13-336092-X
ISBN 13: 978-0-13-336092-9

Editorial Director, ECS: Marcia Horton
Executive Editor: Matt Goldstein
Editorial Assistant: Jenah Blitz-Stoehr
Director of Marketing: Christy Lesko
Marketing Manager: Yezan Alayan
Senior Senior Marketing Coordinator: Kathryn

Ferranti
Director of Production: Erin Gregg
Senior Managing Editor: Scott Disanno
Production Project Manager: Kayla Smith-Tarbox
Manufacturing Buyer: Lisa McDowell
Art Director: Anthony Gemmellaro

Cover Designer: Joyce Wells
Manager, Rights and Permissions: Michael Joyce
Text Permission Coordinator: Jackie Bates, GEX inc.
Cover Image: Svetlana Kuznetsova / Shutterstock
Media Project Manager: Renata Butera
Full-Service Project Management: Mohinder Singh/

Aptara®, Inc.
Composition: Aptara®, Inc.
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: Sabon

vii

Contents

Preface xiii

CHAPTER 1 Introduction to Computers and Programming 1

1.1 Why Program? 1
1.2 Computer Systems: Hardware and Software 3
1.3 Programs and Programming Languages 7
1.4 What Is a Program Made of? 13
1.5 Input, Processing, and Output 17
1.6 The Programming Process 18
1.7 Tying It All Together: Hi! It’s Me 23

CHAPTER 2 Introduction to C++ 27

2.1 The Parts of a C++ Program 27
2.2 The cout Object 31
2.3 The #include Directive 36
2.4 Standard and Prestandard C++ 37
2.5 Variables, Literals, and the Assignment Statement 38
2.6 Identifiers 42
2.7 Integer Data Types 43
2.8 Floating-Point Data Types 49
2.9 The char Data Type 52
2.10 The C++ string Class 56
2.11 The bool Data Type 58
2.12 Determining the Size of a Data Type 59
2.13 More on Variable Assignments and Initialization 59
2.14 Scope 61
2.15 Arithmetic Operators 61
2.16 Comments 65
2.17 Programming Style 67
2.18 Tying It All Together: Smile! 69

viii Contents

CHAPTER 3 Expressions and Interactivity 77

3.1 The cin Object 77
3.2 Mathematical Expressions 84
3.3 Data Type Conversion and Type Casting 91
3.4 Overflow and Underflow 98
3.5 Named Constants 99
3.6 Multiple and Combined Assignment 104
3.7 Formatting Output 108
3.8 Working with Characters and Strings 118
3.9 Using C-Strings 125
3.10 More Mathematical Library Functions 131
3.11 Focus on Debugging: Hand Tracing a Program 136
3.12 Green Fields Landscaping Case Study—Part 1 138
3.13 Tying It All Together: Word Game 140

CHAPTER 4 Making Decisions 155

4.1 Relational Operators 155
4.2 The if Statement 160
4.3 The if/else Statement 169
4.4 The if/else if Statement 174
4.5 Menu-Driven Programs 181
4.6 Nested if Statements 183
4.7 Logical Operators 187
4.8 Validating User Input 196
4.9 More About Blocks and Scope 197
4.10 More About Characters and Strings 200
4.11 The Conditional Operator 207
4.12 The switch Statement 210
4.13 Enumerated Data Types 219
4.14 Focus on Testing and Debugging: Validating Output Results 222
4.15 Green Fields Landscaping Case Study—Part 2 225
4.16 Tying It All Together: Fortune Teller 229

CHAPTER 5 Looping 243

5.1 Introduction to Loops: The while Loop 243
5.2 Using the while Loop for Input Validation 250
5.3 The Increment and Decrement Operators 252
5.4 Counters 258
5.5 The do-while Loop 260
5.6 The for Loop 266
5.7 Keeping a Running Total 272
5.8 Sentinels 274
5.9 Focus on Software Engineering: Deciding Which Loop to Use 276
5.10 Nested Loops 277
5.11 Breaking Out of a Loop 280
5.12 Using Files for Data Storage 284
5.13 Focus on Testing and Debugging: Creating Good Test Data 302
5.14 Central Mountain Credit Union Case Study 305
5.15 Tying It All Together: What a Colorful World 309

Contents ix

CHAPTER 6 Functions 323

6.1 Modular Programming 323
6.2 Defining and Calling Functions 324
6.3 Function Prototypes 332
6.4 Sending Data into a Function 334
6.5 Passing Data by Value 339
6.6 The return Statement 343
6.7 Returning a Value from a Function 344
6.8 Returning a Boolean Value 350
6.9 Using Functions in a Menu-Driven Program 352
6.10 Local and Global Variables 355
6.11 Static Local Variables 363
6.12 Default Arguments 365
6.13 Using Reference Variables as Parameters 369
6.14 Overloading Functions 377
6.15 The exit() Function 382
6.16 Stubs and Drivers 384
6.17 Little Lotto Case Study 387
6.18 Tying It All Together: Glowing Jack-o-lantern 392

CHAPTER 7 Introduction to Classes and Objects 407

7.1 Abstract Data Types 407
7.2 Object-Oriented Programming 409
7.3 Introduction to Classes 411
7.4 Creating and Using Objects 414
7.5 Defining Member Functions 416
7.6 Constructors 423
7.7 Destructors 429
7.8 Private Member Functions 432
7.9 Passing Objects to Functions 435
7.10 Object Composition 442
7.11 Focus on Software Engineering: Separating Class Specification,

Implementation, and Client Code 446
7.12 Structures 453
7.13 Home Software Company OOP Case Study 467
7.14 Introduction to Object-Oriented Analysis and Design 474
7.15 Screen Control 484
7.16 Tying It All Together: Yoyo Animation 489

CHAPTER 8 Arrays 503

8.1 Arrays Hold Multiple Values 503
8.2 Accessing Array Elements 505
8.3 Inputting and Displaying Array Contents 507
8.4 Array Initialization 514
8.5 Processing Array Contents 520
8.6 Using Parallel Arrays 531
8.7 The typedef Statement 535
8.8 Arrays as Function Arguments 535
8.9 Two-Dimensional Arrays 545
8.10 Arrays with Three or More Dimensions 553

x Contents

8.11 Vectors 556
8.12 Arrays of Objects 568
8.13 National Commerce Bank Case Study 578
8.14 Tying It All Together: Rock, Paper, Scissors 580

CHAPTER 9 Searching, Sorting, and Algorithm Analysis 595

9.1 Introduction to Search Algorithms 595
9.2 Searching an Array of Objects 602
9.3 Introduction to Sorting Algorithms 605
9.4 Sorting an Array of Objects 614
9.5 Sorting and Searching Vectors 617
9.6 Introduction to Analysis of Algorithms 619
9.7 Case Studies 627
9.8 Tying It All Together: Secret Messages 628

CHAPTER 10 Pointers 637

10.1 Pointers and the Address Operator 637
10.2 Pointer Variables 639
10.3 The Relationship Between Arrays and Pointers 643
10.4 Pointer Arithmetic 647
10.5 Initializing Pointers 648
10.6 Comparing Pointers 650
10.7 Pointers as Function Parameters 653
10.8 Pointers to Constants and Constant Pointers 657
10.9 Focus on Software Engineering: Dynamic Memory Allocation 661
10.10 Focus on Software Engineering: Returning Pointers from Functions 666
10.11 Pointers to Class Objects and Structures 670
10.12 Focus on Software Engineering: Selecting Members of Objects 676
10.13 United Cause Relief Agency Case Study 678
10.14 Tying It All Together: Pardon Me, Do You Have the Time? 686

CHAPTER 11 More About Classes and Object-Oriented Programming 695

11.1 The this Pointer and Constant Member Functions 695
11.2 Static Members 700
11.3 Friends of Classes 707
11.4 Memberwise Assignment 712
11.5 Copy Constructors 713
11.6 Operator Overloading 722
11.7 Type Conversion Operators 746
11.8 Convert Constructors 749
11.9 Aggregation and Composition 752
11.10 Inheritance 758
11.11 Protected Members and Class Access 763
11.12 Constructors, Destructors, and Inheritance 768
11.13 Overriding Base Class Functions 773
11.14 Tying It All Together: Putting Data on the World Wide Web 775

Contents xi

CHAPTER 12 More on C-Strings and the string Class 789

12.1 C-Strings 789
12.2 Library Functions for Working with C-Strings 794
12.3 Conversions Between Numbers and Strings 805
12.4 Writing Your Own C-String Handling Functions 811
12.5 More About the C++ string Class 816
12.6 Creating Your Own String Class 820
12.7 Advanced Software Enterprises Case Study 827
12.8 Tying It All Together: Program Execution Environments 828

CHAPTER 13 Advanced File and I/O Operations 837

13.1 Input and Output Streams 837
13.2 More Detailed Error Testing 845
13.3 Member Functions for Reading and Writing Files 848
13.4 Binary Files 861
13.5 Creating Records with Structures 865
13.6 Random-Access Files 870
13.7 Opening a File for Both Input and Output 876
13.8 Online Friendship Connections Case Study: Object Serialization 881
13.9 Tying It All Together: File Merging and Color-Coded HTML 887

CHAPTER 14 Recursion 899

14.1 Introduction to Recursion 899
14.2 The Recursive Factorial Function 906
14.3 The Recursive gcd Function 908
14.4 Solving Recursively Defined Problems 909
14.5 A Recursive Binary Search Function 911
14.6 Focus on Problem Solving and Program Design: The QuickSort Algorithm 913
14.7 The Towers of Hanoi 917
14.8 Focus on Problem Solving: Exhaustive and Enumeration Algorithms 920
14.9 Focus on Software Engineering: Recursion versus Iteration 924
14.10 Tying It All Together: Infix and Prefix Expressions 925

CHAPTER 15 Polymorphism and Virtual Functions 933

15.1 Type Compatibility in Inheritance Hierarchies 933
15.2 Polymorphism and Virtual Member Functions 939
15.3 Abstract Base Classes and Pure Virtual Functions 944
15.4 Focus on Object-Oriented Programming: Composition versus Inheritance 950
15.5 Secure Encryption Systems, Inc., Case Study 955
15.6 Tying It All Together: Let’s Move It 959

CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL) 971

16.1 Exceptions 971
16.2 Function Templates 983
16.3 Class Templates 991
16.4 Class Templates and Inheritance 996
16.5 Introduction to the Standard Template Library 1000
16.6 Tying It All Together: Word Transformers Game 1013

xii Contents

CHAPTER 17 Linked Lists 1021

17.1 Introduction to the Linked List ADT 1021
17.2 Linked List Operations 1027
17.3 A Linked List Template 1039
17.4 Recursive Linked List Operations 1043
17.5 Variations of the Linked List 1052
17.6 The STL list Container 1052
17.7 Reliable Software Systems, Inc., Case Study 1054
17.8 Tying It All Together: More on Graphics and Animation 1058

CHAPTER 18 Stacks and Queues 1069

18.1 Introduction to the Stack ADT 1069
18.2 Dynamic Stacks 1077
18.3 The STL stack Container 1080
18.4 Introduction to the Queue ADT 1082
18.5 Dynamic Queues 1090
18.6 The STL deque and queue Containers 1094
18.7 Focus on Problem Solving and Program Design: Eliminating Recursion 1096
18.8 Tying It All Together: Converting Postfix Expressions to Infix 1101

CHAPTER 19 Binary Trees 1109

19.1 Definition and Applications of Binary Trees 1109
19.2 Binary Search Tree Operations 1113
19.3 Template Considerations for Binary Search Trees 1129
19.4 Tying It All Together: Genealogy Trees 1129

Appendix A: The ASCII Character Set 1139

Appendix B: Operator Precedence and Associativity 1143

Appendix C: Answers to Checkpoints 1145

Appendix D: Answers to Odd-Numbered Review Questions 1185

Index 1207

Additional Appendices

The following appendices are located on the book’s companion web site.

Appendix E: A Brief Introduction to Object-Oriented Programming

Appendix F: Using UML in Class Design

Appendix G: Multi-Source File Programs

Appendix H: Multiple and Virtual Inheritance

Appendix I: Header File and Library Function Reference

Appendix J: Namespaces

Appendix K: C++ Casts and Run-Time Type Identification

Appendix L: Passing Command Line Arguments

Appendix M: Binary Numbers and Bitwise Operations

Appendix N: Introduction to Flowcharting

xiii

Preface

Welcome to Starting Out with C++: Early Objects, 8th Edition. This book is intended for use
in a two-term or three-term C++ programming sequence, or an accelerated one-term course.
Students new to programming, as well those with prior course work in other languages, will
find this text beneficial. The fundamentals of programming are covered for the novice, while
the details, pitfalls, and nuances of the C++ language are explored in-depth for both the
beginner and more experienced student. The book is written with clear, easy-to-understand
language and it covers all the necessary topics for an introductory programming course. This
text is rich in example programs that are concise, practical, and real world oriented, ensuring
that the student not only learns how to implement the features and constructs of C++, but
why and when to use them.

What’s New in the Eighth Edition
This book’s pedagogy and clear writing style remain the same as in the previous edition.
However, many improvements have been made to make it even more student-friendly
and to keep it state of the art for introductory programming using the C++ programming
language.

• Updated Material
Material has been updated throughout the book to reflect changes in technology,
operating systems, and software development environments, as well as to improve
clarity and incorporate best practices in object-oriented programming.

• New Material
New material has been added on a number of topics including expanded coverage on
using files. Chapter 5 now brings together, adds to, and better organizes the material
on files formerly found in Chapters 3, 4, and 5.

• Reorganized Chapters
Several chapters have been reorganized to improve student learning. Chapter 2,
Introduction to C++, now covers integer and floating-point data types before introducing
characters and strings. Chapter 5, Looping, now discusses how looping structures are
used before introducing the mechanics of creating them. Chapter 7, Introduction to
Classes and Objects, now revisits a class students already know and have been using, the
string class, before introducing how to create and use their own classes and objects.

xiv Preface

• Greater Focus on Object-Oriented Programming
Many examples throughout the text have been rewritten to incorporate appropriate
use of classes and objects.

• Improved Sample Programs
Sample programs have been revised where appropriate to incorporate current best
programming practices. For example, throughout the book functions receiving
objects or arrays whose values should not be changed now use the const keyword to
protect them.

• Improved Diagrams
Many diagrams have been improved and new diagrams added to better illustrate
important concepts.

• New Programming Challenges
New Programming Challenges have been added in many chapters, including a
number of Challenges that ask students to develop object-oriented solutions and to
create solutions that reuse, modify, and build on previously written code.

• Answers in the Book
Answers to all the Checkpoint questions throughout the book and to the odd-
numbered review questions at the end of every chapter are now conveniently located
at the back of the book in Appendices C and D.

Organization of the Text
This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, flexibility is provided. The following
dependency diagram (Figure P-1) suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. The
instructor may choose to skip this chapter if the class has already mastered those topics.
Chapters 2 through 6 cover basic C++ syntax, data types, expressions, selection structures,
repetition structures, and functions. Each of these chapters builds on the previous chapter
and should be covered in the order presented.

Chapter 7 introduces object-oriented programming. It can be covered any time after Chapter 6,
but before Chapter 11. Instructors who prefer to introduce arrays before classes can cover
Chapter 8 before Chapter 7. In this case it is only necessary to postpone Section 8.12
(Arrays of Objects) until Chapter 7 has been covered.

As Figure P-1 illustrates, in the second half of the book Chapters 11, 12, 13, and 14
can be covered in any order. Chapters 11, 15, and 16, however, should be done in
sequence. Instructors who wish to introduce data structures at an earlier point in the
course, without having first covered advanced C++ and OOP features, can cover
Chapter 17 (Linked Lists), followed by Chapters 18 and 19 (Stacks & Queues and
Binary Trees), any time after Chapter 14 (Recursion). In this case it is necessary to
simply omit the sections in Chapters 17–19 that deal with templates and the Standard
Template Library.

Preface xv

Figure P-1

Chapter 1
Introduction

Chapters 2–6
Basic

Language
Elements

Chapter 10
Pointers

Chapter 7
OOP Introduction

Chapter 8
Arrays

Chapter 11
More OOP

Chapter 12
Advanced

Strings

Chapter 13
Advanced Files

and I/O

Chapter 14
Recursion

Chapter 17
Linked Lists

Chapter 15
Adv. OOP

Chapter 16
Exceptions,
Templates,
and STL

Chapter 18
Stacks and

Queues

Chapter 19
Binary Trees

Chapter 9
Searching, Sorting,

and Algorithm Analysis

xvi Preface

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the
fundamentals of hardware, software, operating systems, programming, problem solving,
and software engineering. The components of programs, such as key words, variables,
operators, and punctuation are covered. The tools of the trade, such as hierarchy charts
and pseudocode, are also presented. The Tying It All Together section shows students
how to use the cout statement to create a personalized output message. Programming
Challenges at the end of the chapter help students see how the same basic input,
processing, and output structure can be used to create multiple programs.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing the basic parts of a C++ program,
data types, the use of variables and literals, assignment statements, simple arithmetic
operations, program output, and comments. The C++ string class is presented and string
objects are used from this point on in the book as the primary method of handling strings.
Programming style conventions are introduced, and good programming style is modeled here,
as it is throughout the text. An optional section explains the difference between ANSI
standard and prestandard C++ programs. The Tying It All Together section lets the student
play with simple text-based graphics.

Chapter 3: Expressions and Interactivity

In this chapter the student learns to write programs that input and handle numeric,
character, and string data. The use of arithmetic operators and the creation of
mathematical expressions are covered, with emphasis on operator precedence. Debugging
is introduced, with a section on hand tracing a program. Sections are also included on
using random numbers, on simple output formatting, on data type conversion and type
casting, and on using library functions that work with numbers. For those who wish to
cover them, there is also a section on C-strings. The Tying It All Together section shows
students how to create a simple interactive word game.

Chapter 4: Making Decisions

Here the student learns about relational expressions and how to control the flow of a
program with if, if/else, and if/else if statements. Logical operators, the conditional
operator, and the switch statement are also covered. Applications of these constructs,
such as menu-driven programs, are illustrated. This chapter also continues the theme of
debugging with a section on validating output results. The Tying It All Together section
uses random numbers and branching statements to create a fortune telling game.

Chapter 5: Looping

This chapter introduces, C++’s repetitive control mechanisms. The while loop, do-while
loop, and for loop are presented, along with a variety of methods to control them. These
include using counters, user input, end sentinels, and end-of-file testing. Applications
utilizing loops, such as keeping a running total and performing data validation, are also
covered. An extensive new section on working with files has been added, and the emphasis
on testing and debugging continues, with a section on creating good test data. The
chapter’s Tying It All Together section introduces students to Windows commands to
create colorful output and uses a loop to create a multi-colored display.

Preface xvii

Chapter 6: Functions

In this chapter the student learns how and why to modularize programs, using both void and
value-returning functions. Parameter passing is covered, with emphasis on when arguments
should be passed by value versus when they need to be passed by reference. Scope of variables
is covered and sections are provided on local versus global variables and on static local
variables. Overloaded functions are also introduced and demonstrated. The Tying It All
Together section includes a modular, menu-driven program that emphasizes the versatility of
functions, illustrating how their behavior can be controlled by the arguments sent to them.

Chapter 7: Introduction to Classes and Objects

In this chapter the text begins to focus on the object-oriented paradigm. Students have used
provided C++ classes since the beginning of the text, but now they learn how to define their
own classes and to create and use objects of these classes. Careful attention is paid to
illustrating which functions belong in a class versus which functions belong in a client
program that uses the class. Good object-oriented practices are discussed and modeled, such
as protecting member data through carefully constructed accessor and mutator functions and
hiding class implementation details from client programs. Once students are comfortable
working with classes and objects, the chapter provides a brief introduction to the topic of
object-oriented analysis and design. The chapter also introduces structures and uses them
in the Tying It All Together section, where students learn to use screen control techniques to
create an animation that simulates the motion of a yoyo.

Chapter 8: Arrays

In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided, including functions to compute
the sum, average, highest and lowest values in an array. Students also learn to create tables
using two-dimensional arrays, and to analyze the array data by row or by column.
Programming techniques using parallel arrays are also demonstrated, and the student is
shown how to use a data file as an input source to populate an array. STL vectors are
introduced and compared to arrays. A section on arrays of objects and structures is located
at the end of the chapter, so it can be covered now or saved for later if the instructor wishes
to cover this chapter before Chapter 7. The Tying It All Together section uses arrays to
create a game of Rock, Paper, Scissors between a human player and the computer.

Chapter 9: Searching, Sorting, and Algorithm Analysis

Here the student learns the basics of searching for information stored in arrays and of sorting
arrays, including arrays of objects. The chapter covers the Linear Search, Binary Search,
Bubble Sort, and Selection Sort algorithms and has an optional section on sorting and
searching STL vectors. A brief introduction to algorithm analysis is included, and students
are shown how to determine which of two algorithms is more efficient. This chapter’s
Tying It All Together section uses both a table lookup and a searching algorithm to encode
and decode secret messages.

Chapter 10: Pointers

This chapter explains how to use pointers. Topics include pointer arithmetic, initialization of
pointers, comparison of pointers, pointers and arrays, pointers and functions, dynamic memory
allocation, and more. The Tying It All Together section demonstrates the use of pointers to
access library data structures and functions that return calendar and wall clock time.

xviii Preface

Chapter 11: More About Classes and Object-Oriented Programming

This chapter continues the study of classes and object-oriented programming. It covers
object aggregation and composition, as well as inheritance, and illustrates the difference
between is-a and has-a relations. Constant member functions, static members, friends,
memberwise assignment, copy constructors, object type conversion operators, convert
constructors, and operator overloading are also included. The Tying It All Together
section brings together the concepts of inheritance and convert constructors to build a
program that formats the contents of an array to form an HTML table for display on a
Web site.

Chapter 12: More on C-Strings and the string Class

This chapter covers standard library functions for working with characters and C-strings,
covering topics such as passing C-strings to functions and using the C++ sstream classes to
convert between numeric and string forms of numbers. Additional material about the C++
string class and its member functions and operators is presented, with a program
illustrating how to write your own string class. The Tying It All Together section shows
students how to access string-based program environments to obtain information about the
computer and the network on which the program is running.

Chapter 13: Advanced File and I/O Operations

This chapter introduces more advanced topics for working with sequential access text
files and introduces random access and binary files. Various modes for opening files are
discussed, as well as the many methods for reading and writing their contents. The Tying It
All Together program applies many of the techniques covered in the chapter to merge two
text files into an HTML document for display on the Web, with different colors used to
illustrate which file each piece of data came from.

Chapter 14: Recursion

In this chapter recursion is defined and demonstrated. A visual trace of recursive calls is
provided, and recursive applications are discussed. Many recursive algorithms are
presented, including recursive functions for computing factorials, finding a greatest
common denominator (GCD), performing a binary search, sorting using QuickSort, and
solving the famous Towers of Hanoi problem. For students who need more challenge, there
is a section on exhaustive and enumeration algorithms. The Tying It All Together section
uses recursion to evaluate prefix expressions.

Chapter 15: Polymorphism and Virtual Functions

The study of classes and object-oriented programming continues in this chapter with the
introduction of more advanced concepts such as polymorphism and virtual functions.
Information is also presented on abstract base classes, pure virtual functions, type
compatibility within an inheritance hierarchy, and virtual inheritance. The Tying It All
Together section illustrates the use of inheritance and polymorphism to display and
animate graphical images.

Preface xix

Chapter 16: Exceptions, Templates, and the Standard Template Library (STL)

Here the student learns to develop enhanced error trapping techniques using exceptions.
Discussion then turns to using function and class templates to create generic code. Finally,
the student is introduced to the containers, iterators, and algorithms offered by the
Standard Template Library (STL). The Tying It All Together section uses various
containers in the Standard Template Library to create an educational children’s game.

Chapter 17: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed, and the student learns how to create and destroy a list, as well as to
write functions to insert, append, and delete nodes, to traverse the list, and to search for a
specific node. A linked list class template is also demonstrated. The Tying It All Together
section brings together many of the most important concepts of OOP by using objects,
inheritance, and polymorphism in conjunction with the STL list class to animate a
collection of images.

Chapter 18: Stacks and Queues

In this chapter the student learns to create and use static and dynamic stacks and queues.
The operations of stacks and queues are defined, and templates for each ADT are
demonstrated. The static array-based stack uses exception-handling to handle stack
overflow and underflow, providing a realistic and natural example of defining, throwing,
and catching exceptions. The Tying It All Together section discusses strategies for
evaluating postfix expressions and uses a stack to convert a postfix expression to infix.

Chapter 19: Binary Trees

This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert, delete, and replace elements, search for a particular
element, and destroy a tree. The Tying It All Together section introduces a tree structure
versatile enough to create genealogy trees.

xx Preface

Appendices in the Book

Appendix A: The ASCII Character Set A list of the ASCII and extended ASCII characters
and their codes.

Appendix B: Operator Precedence and Associativity A list of the C++ operators with
their precedence and associativity.

Appendix C: Answers to Checkpoints A tool students can use to assess their understanding
by comparing their answers to the Checkpoint exercises found throughout the book. The
answers to all Checkpoint exercises are included.

Appendix D: Answers to Odd-Numbered Review Questions Another tool students can use
to gauge their understanding and progress.

Additional Appendices on the Book’s Companion Website

Appendix E: A Brief Introduction to Object-Oriented Programming An introduction to
the concepts and terminology of object-oriented programming.

Appendix F: Using UML in Class Design A brief introduction to the Unified Modeling
Language (UML) class diagrams with examples of their use.

Appendix G: Multi-Source File Programs A tutorial on how to create, compile, and
link programs with multiple source files. Includes the use of function header files, class
specification files, and class implementation files.

Appendix H: Multiple and Virtual Inheritance A self-contained discussion of the C++
concepts of multiple and virtual inheritance for anyone already familiar with single inheritance.

Appendix I: Header File and Library Function Reference A reference for the C++ library
functions and header files used in the book.

Appendix J: Namespaces An explanation of namespaces and their purpose, with examples
provided on how to define a namespace and access its members.

Appendix K: C++ Casts and Run-Time Type Identification An introduction to different
ways of doing type casting in C++ and to run-time type identification.

Appendix L: Passing Command Line Arguments An introduction to writing C++ programs
that accept command-line arguments. This appendix will be useful to students working in a
command-line environment, such as UNIX or Linux.

Appendix M: Binary Numbers and Bitwise Operations A guide to the binary number
system and the C++ bitwise operators, as well as a tutorial on the internal storage of integers.

Appendix N: Introduction to Flowcharting A tutorial that introduces flowcharting and
its symbols. It includes handling sequence, selection, case, repetition, and calls to other
modules. Sample flowcharts for several of the book’s example programs are presented.

Preface xxi

Features of the Text
Concept Statements Each major section of the text starts with a concept statement. This

statement summarizes the key idea of the section.

Example Programs The text has over 350 complete example programs, each designed to
highlight the topic currently being studied. In most cases, these are
practical, real-world examples. Source code for these programs is
provided so that students can run the programs themselves.

Program Output After each example program there is a sample of its screen output.
This immediately shows the student how the program should
function.

Tying It All Together This special section, found at the end of every chapter, shows the
student how to do something clever and fun with the material
covered in that chapter.

VideoNotes A series of online videos, developed specifically for this book, are
available for viewing at http://www.pearsonhighered.com/
gaddis/. VideoNote icons appear throughout the text, alerting the
student to videos about specific topics.

Checkpoints Checkpoints are questions placed throughout each chapter as a self-
test study aid. Answers for all Checkpoint questions are provided in
Appendix C at the back of the book so students can check how well
they have learned a new topic.

Notes Notes appear at appropriate places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Warnings Warnings caution the student about certain C++ features, programming
techniques, or practices that can lead to malfunctioning programs or
lost data.

Case Studies Case studies that simulate real-world applications appear in many
chapters throughout the text, with complete code provided for each
one. Additional case studies are provided on the book’s companion
website. These case studies are designed to highlight the major
topics of the chapter in which they appear.

Review Questions Each chapter presents a thorough and diverse set of review questions,
and Exercises such as fill-in-the-blank and short answer, that check the student’s

mastery of the basic material presented in the chapter. These are
followed by exercises requiring problem solving and analysis, such
as the Algorithm Workbench, Predict the Output, and Find the Errors
sections. Each chapter ends with a Soft Skills exercise that focuses on
communication and group process skills. Answers to the odd-
numbered review questions and review exercises are provided in
Appendix D at the back of the book.

Programming Challenges Each chapter offers a pool of programming exercises designed to
solidify the student’s knowledge of the topics currently being
studied. In most cases the assignments present real-world problems
to be solved.

VideoNote

http://www.pearsonhighered.com/gaddis/
http://www.pearsonhighered.com/gaddis/

xxii Preface

Group Projects There are several group programming projects throughout the text,
intended to be constructed by a team of students. One student
might build the program’s user interface, while another student
writes the mathematical code, and another designs and implements
a class the program uses. This process is similar to the way many
professional programs are written and encourages teamwork within
the classroom.

C++ Quick For easy access, a quick reference guide to the C++ language is printed
Reference Guide on the inside back cover.

Supplements

Student Resources

The following items are available on the Gaddis Series resource page at
www.pearsonhighered.com/gaddis:

• Complete source code for every program included in the book
• Additional case studies, complete with source code
• Serendipity Booksellers ongoing software development project
• A full set of appendices (including several tutorials) that accompany the book
• Access to the book’s companion VideoNotes
• Links to download numerous programming environments and IDEs, including

MinGW C++ Compiler and wxDev-C++ IDE

Instructor Resources

The following supplements are available to qualified instructors only.

• Answers to all Review Questions in the text
• Solutions for all Programming Challenges in the text
• PowerPoint presentation slides for every chapter
• A computerized test bank
• A collection of lab materials
• Source code files

Visit the Pearson Education Instructor Resource Center (http://www.pearsonhighered.com/irc)
for information on how to access them.

Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of
programming. Through practice exercises and immediate, personalized feedback,
MyProgrammingLab improves the programming competence of beginning students who
often struggle with the basic concepts and paradigms of popular high-level programming
languages. A self-study and homework tool, a MyProgrammingLab course consists of
hundreds of small practice exercises organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable them to figure out what went wrong. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores
the code input by students for review.

www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/irc

Preface xxiii

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab in
your course, visit MyProgrammingLab.com.

Integrated Development Environment (IDE) Resource Kits

Instructors who adopt this text for their students can also order an accompanying kit that
contains the following popular C++ development environments:

• Microsoft® Visual Studio 2010 Express Edition
• Dev C++
• NetBeans
• Eclipse
• CodeLite

The kit also provides access to a website containing written and video tutorials for getting
started in each IDE. For ordering information, please contact your Pearson Education
Representative or visit www.pearsonhighered.com/cs.

www.pearsonhighered.com/cs

xxiv Preface

Acknowledgments
There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and
expertise.

Reviewers of the Eighth Edition or Its Previous Versions

Ahmad Abuhejleh
University of Wisconsin, River Falls

David Akins
El Camino College

Steve Allan
Utah State University

Ijaz A. Awan
Savannah State University

John Bierbauer
North Central College

Don Biggerstaff
Fayetteville Technical Community College

Paul Bladek
Spokane Falls Community College

Chuck Boehm
Dean Foods, Inc.

Bill Brown
Pikes Peak Community College

Richard Cacace
Pensacola Junior College

Randy Campbell
Morningside College

Stephen P. Carl
Wright State University

Wayne Caruolo
Red Rocks Community College

Thomas Cheatham
Middle Tennessee State University

James Chegwidden
Tarrant County College

John Cigas
Rockhurst University

John Cross
Indiana University of Pennsylvania

Fred M. D’Angelo
Pima Community College

Joseph DeLibero
Arizona State University

Dennis Fairclough
Utah Valley State College

Larry Farrer
Guilford Technical Community College

Richard Flint
North Central College

Sheila Foster
California State University Long Beach

David E. Fox
American River College

Cindy Fry
Baylor University

Peter Gacs
Boston University

Cristi Gale
Sterling College

James Gifford
University of Wisconsin, Stevens Point

Leon Gleiberman
Touro College

Simon Gray
Ashland University—Ohio

Margaret E. Guertin
Tufts University

Jamshid Haghighi
Guilford Technical Community College

Ranette H. Halverson
Midwestern State University,
Wichita Falls, TX

Dennis Heckman
Portland Community College

Ric Heishman
Northern Virginia Community College

Patricia Hines
Brookdale Community College

Mike Holland
Northern Virginia Community College

Lister Wayne Horn
Pensacola Junior College

Richard Hull
Lenoir-Rhyne College

Norman Jacobson
University of California, Irvine

Preface xxv

Eric Jiang
San Diego State University

Yinping Jiao
South Texas College

Neven Jurkovic
Palo Alto College

David Kaeli
Northeastern University

Chris Kardaras
North Central College

Eugene Katzen
Montgomery College—Rockville

Willard Keeling
Blue Ridge Community College

A. J. Krygeris
Houston Community College

Ray Larson
Inver Hills Community College

Stephen Leach
Florida State University

Parkay Louie
Houston Community College

Zhu-qu Lu
University of Maine, Presque Isle

Tucjer Maney
George Mason University

Bill Martin
Central Piedmont Community College

Svetlana Marzelli
Atlantic Cape Community College

Debbie Mathews
J. Sargeant Reynolds

Ron McCarty
Penn State Erie, The Behrend College

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College

M. Dee Medley
Augusta State University

Cathi Chambley-Miller
Aiken Technical College

Sandeep Mitra
SUNY Brockport

Frank Paiano
Southwestern Community College

Theresa Park
Texas State Technical College

Mark Parker
Shoreline Community College

Robert Plantz
Sonoma State University

Tino Posillico
SUNY Farmingdale

Mahmoud K. Quweider
University of Texas at Brownsville

M. Padmaja Rao
Francis Marion University

Timothy Reeves
San Juan College

Ronald Robison
Arkansas Tech University

Caroline St. Clair
North Central College

Dolly Samson
Weber State University

Kate Sanders
Rhode Island College

Lalchand Shimpi
Saint Augustine’s College

Sung Shin
South Dakota State University

Barbara A. Smith
University of Dayton

Garth Sorenson
Snow College

Donald Southwell
Delta College

Daniel Spiegel
Kutztown University

Ray Springston
University of Texas at Arlington

Kirk Stephens
Southwestern Community College

Cherie Stevens
South Florida Community College

Joe Struss
Des Moines Area Community College

Hong Sung
University of Central Oklahoma

Sam Y. Sung
South Texas College

Mark Swanson
Red Wing Technical College

Martha Tillman
College of San Mateo

xxvi Preface

Delores Tull
Itawamba Community College

Rober Tureman
Paul D. Camp Community College

Jane Turk
LaSalle University

Sylvia Unwin
Bellevue Community College

Stewart Venit
California State University, Los Angeles

David Walter
Virginia State University

Doug White
University of Northern Colorado

Chris Wild
Old Dominion University

Catherine Wyman
DeVry Institute of Technology, Phoenix

Sherali Zeadally
University of the District of Columbia

Chaim Ziegler
Brooklyn College

The authors would like to thank their students at Haywood Community College and
North Central College for inspiring them to write student-friendly books. They would also
like to thank their families for their tremendous support throughout this project, as well as
North Central College for providing Prof. Walters and Muganda with the sabbatical term
during which they worked on this book. An especially big thanks goes to our terrific
editorial, production, and marketing team at Addison-Wesley. In particular we want to
thank our editor Matt Goldstein and our production project manager Kayla Smith-Tarbox,
who have been instrumental in guiding the production of this book. We also want to thank
our project manager, Mohinder Singh, who helped everything run smoothly, and our
meticulous and knowledgable copyeditor, Linthoingambi Khaidem, who dedicated many
hours to making this book the best book it could be. You are great people to work with!

About the Authors
Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks. He is
a highly acclaimed instructor with twenty years of experience teaching computer science
courses at Haywood Community College. Tony was previously selected as the North
Carolina Community College “Teacher of the Year” and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With . . . series includes introductory books covering C++, JavaTM,
Microsoft® Visual Basic®, Microsoft® C#, Python, Programming Logic and Design, and
Alice, all published by Pearson/Addison-Wesley.

Judy Walters is an Associate Professor of Computer Science at North Central College in
Naperville, Illinois, where she teaches courses in both Computer Science and Interactive
Media Studies. She is also very involved with International Programs at her college and has
spent two semesters teaching in Costa Rica, where she hopes to retire some day.

Godfrey Muganda is an Associate Professor of Computer Science at North Central College.
He teaches a wide variety of courses at both the undergraduate and graduate levels, including
courses in Algorithms, Computer Organization, Web Applications, and Web Services. His
primary research interests are in the area of Fuzzy Sets and Systems.

1

C
H

A
P

T
E

R

1 Introduction to Computers
and Programming

1.1 Why Program?

CONCEPT: Computers can do many different jobs because they are programmable.

Think about some of the different ways that people use computers. In school, students use
computers for tasks such as writing papers, searching for articles, sending e-mail, and
participating in online classes. At work, people use computers to analyze data, make
presentations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people use
computers for tasks such as paying bills, shopping online, social networking, and playing
games. And don’t forget that smart phones, iPods®, car navigation systems, and many other
devices are computers as well. The uses of computers are almost limitless in our everyday
lives.

Computers can do such a wide variety of things because they can be programmed. This means
that computers are not designed to do just one job, but to do any job that their programs tell
them to do. A program is a set of instructions that a computer follows to perform a task. For
example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two commonly
used programs.

TOPICS

1.1 Why Program?
1.2 Computer Systems: Hardware and

Software
1.3 Programs and Programming Languages

1.4 What Is a Program Made of?
1.5 Input, Processing, and Output
1.6 The Programming Process
1.7 Tying It All Together: Hi! It’s Me

2 Chapter 1 Introduction to Computers and Programming

Programs are commonly referred to as software. Software is essential to a computer
because without software, a computer can do nothing. All of the software that we use to
make our computers useful is created by individuals known as programmers or software
developers. A programmer, or software developer, is a person with the training and skills
necessary to design, create, and test computer programs. Computer programming is an
exciting and rewarding career. Today you will find programmers working in business,
medicine, government, law enforcement, agriculture, academics, entertainment, and
almost every other field.

Computer programming is both an art and a science. It is an art because every aspect of a
program should be designed with care and judgment. Listed below are a few of the things
that must be designed for any real-world computer program:

• The logical flow of the instructions
• The mathematical procedures
• The appearance of the screens
• The way information is presented to the user
• The program’s “user-friendliness”
• Manuals and other forms of written documentation

There is also a scientific, or engineering side to programming. Because programs rarely
work right the first time they are written, a lot of experimentation, correction, and
redesigning is required. This demands patience and persistence of the programmer. Writing
software demands discipline as well. Programmers must learn special languages like C++
because computers do not understand English or other human languages. Languages such
as C++ have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software
like designing a car. Both cars and programs should be functional, efficient, powerful, easy
to use, and pleasing to look at.

Figure 1-1 A Word Processing Program and a Presentation Program

Computer Systems: Hardware and Software 3

1.2 Computer Systems: Hardware and Software

CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the
instruments in a symphony orchestra, each device plays its own part. A typical computer
system consists of the following major components:

1. The central processing unit (CPU)
2. Main memory (random-access memory, or RAM)
3. Secondary storage devices
4. Input devices
5. Output devices

The organization of a computer system is depicted in Figure 1-2.

Figure 1-2

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

4 Chapter 1 Introduction to Computers and Programming

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is
the part of a computer that actually runs programs. The CPU is the most important
component in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices that weighed tons. They were made of
electrical and mechanical components such as vacuum tubes and switches. Today, CPUs
are small chips known as microprocessors that can be held in the palm of your hand. In
addition to being much smaller than the old electromechanical CPUs in early computers,
today’s microprocessors are also much more powerful.

The CPU’s job is to fetch instructions, follow the instructions, and produce some result.
Internally, the central processing unit consists of two parts: the control unit and the arithmetic
and logic unit (ALU). The control unit coordinates all of the computer’s operations. It is
responsible for determining where to get the next instruction and regulating the other major
components of the computer with control signals. The arithmetic and logic unit, as its name
suggests, is designed to perform mathematical operations. The organization of the CPU is
shown in Figure 1-3.

A program is a sequence of instructions stored in the computer’s memory. When a
computer is running a program, the CPU is engaged in a process known formally as the
fetch/decode/execute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch The CPU’s control unit fetches, from main memory, the next instruction in the
sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes
the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer (such as
the ALU, a disk drive, or some other device). The signal causes the component
to perform an operation.

These steps are repeated as long as there are instructions to perform.

Figure 1-3

Central processing unit
(CPU)

Instruction
input

Arithmetic and
logic unit

(ALU)

Control unit

Result
output

Computer Systems: Hardware and Software 5

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in this
memory. RAM is usually a volatile type of memory that is used only for temporary storage
while a program is running. When the computer is turned off, the contents of RAM are
erased. Inside your computer, RAM is stored in small chips.

A computer’s memory is divided into tiny storage cells known as bytes. One byte is enough
memory to store just a single letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren't actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position and a negative charge as a switch in the off position.

Each byte is assigned a unique number known as an address. The addresses are ordered from
lowest to highest. A byte is identified by its address, in much the same way a post office box
is identified by an address, so that the data stored there can be located. Figure 1-4 shows a
group of memory cells with their addresses. The number 149 is stored in the cell with the
address 16, and the number 72 is stored at address 23.

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time—even when
there is no power to the computer. Frequently used programs are stored in secondary memory
and loaded into main memory as needed. Important information, such as word processing
documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

Figure 1-4

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29

149

72

6 Chapter 1 Introduction to Computers and Programming

In addition to external disk drives, many types of devices have been created for copying
data and for moving it to other computers. For many years floppy disk drives were
popular. A floppy disk drive records data onto a small, flexible (“floppy”) disk, which can
be removed from the drive. The use of floppy disk drives has declined dramatically in
recent years, in favor of superior devices such as USB flash drives. USB flash drives are
small devices that plug into the computer’s USB (universal serial bus) port and appear to
the system as a disk drive. These drives, which use flash memory to store data, are
inexpensive, reliable, and small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also
popular for data storage. Data is not recorded magnetically on an optical disc, but rather is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good media for creating
backup copies of data.

Input Devices

Input is any information the computer collects from the outside world. The device that
collects the information and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk drives,
CD/DVD drives, and USB flash drives can also be considered input devices because programs
and information are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales report,
a list of names, or a graphic image. The information is sent to an output device, which formats
and presents it. Common output devices are computer screens, printers, and speakers. Output
sent to a computer screen is sometimes called soft copy, while output sent to a printer is called
hard copy. Disk drives, USB flash drives, and CD/DVD recorders can also be considered output
devices because the CPU sends information to them so it can be saved.

Software
If a computer is to function, software is needed. Everything that a computer does, from the time
you turn the power switch on until you shut the system down, is under the control of software.
There are two general categories of software: system software and application software. Most
computer programs clearly fit into one of these two categories. Let’s take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally referred
to as system software. System software typically includes the following types of programs:

• Operating Systems
An operating system is the most fundamental set of programs on a computer. The
operating system controls the internal operations of the computer’s hardware, manages
all the devices connected to the computer, allows data to be saved to and retrieved from
storage devices, and allows other programs to run on the computer.

• Utility Programs
A utility program performs a specialized task that enhances the computer’s operation
or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

Programs and Programming Languages 7

• Software Development Tools
The software tools that programmers use to create, modify, and test software are
referred to as software development tools. Compilers and integrated development
environments, which we discuss later in this chapter, are examples of programs that
fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application software,
or application programs. These are the programs that people normally spend most of their
time running on their computers. Figure 1-1, at the beginning of this chapter, shows screens
from two commonly used applications Microsoft Word, a word processing program, and
Microsoft PowerPoint, a presentation program. Some other examples of application software
are spreadsheet programs, e-mail programs, Web browsers, and game programs.

Checkpoint

1.1 Why is the computer used by so many different people, in so many different professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What fundamental set of programs controls the internal operations of the computer’s
hardware?

1.9 What do you call a program that performs a specialized task, such as a virus scanner, a
file-compression program, or a data-backup program?

1.10 Word processing programs, spreadsheet programs, e-mail programs, Web browsers, and
game programs belong to what category of software?

1.3 Programs and Programming Languages

CONCEPT: A program is a set of instructions a computer follows in order to perform a
task. A programming language is a special language used to write computer
programs.

What Is a Program?
Computers are designed to follow instructions. A computer program is a set of instructions
that tells the computer how to solve a problem or perform a task. For example, suppose we
want the computer to calculate someone’s gross pay. Here is a list of things the computer
might do:

1. Display a message on the screen asking “How many hours did you work?”
2. Wait for the user to enter the number of hours worked. Once the user enters a

number, store it in memory.
3. Display a message on the screen asking “How much do you get paid per hour?”

8 Chapter 1 Introduction to Computers and Programming

4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it
in memory.

5. Multiply the number of hours by the amount paid per hour, and store the result in memory.
6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps for performing a task or solving a problem. Notice these steps are ordered sequentially.
Step 1 should be performed before step 2, and so forth. It is important that these instructions
be performed in their proper sequence.

Although a person might easily understand the instructions in the pay-calculating algorithm,
it is not ready to be executed on a computer. A computer’s CPU can only process instructions
that are written in machine language. A machine language program consists of a sequence of
binary numbers (numbers consisting of only 1s and 0s), which the CPU interprets as
commands. Here is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine language.
If you wrote a machine language program for computer A and then wanted to run it on a
computer B that has a different type of CPU, you would have to rewrite the program in
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the task
of programming. A program can be written in a programming language such as C++, which
is much easier to understand than machine language. Programmers save their programs in
text files, and then use special software to convert their programs to machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

NOTE: The line numbers shown in Program 1-1 are not part of the program. This
book shows line numbers in all program listings to help point out specific parts of the
program.

Program 1-1

1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12

(program continues)

Programs and Programming Languages 9

The “Program Output with Example Input Shown in Bold” shows what the program will
display on the screen when it is running. In the example, the user enters 10 for the number of
hours worked and 15 for the hourly pay. The program displays the earnings, which are $150.

Programming Languages
In a broad sense, there are two categories of programming languages: low-level and high-
level. A low-level language is close to the level of the computer, which means it resembles
the numeric machine language of the computer more than the natural language of humans.
The easiest languages for people to learn are high-level languages. They are called “high-
level” because they are closer to the level of human-readability than computer-readability.
Figure 1-5 illustrates the concept of language levels.

13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
How many hours did you work? 10 [Enter]
How much do you get paid per hour? 15 [Enter]
You have earned $150

Figure 1-5

Program 1-1 (continued)

Low level (machine language)
10100010 11101011

cout << "Enter the number ";
cout << "of hours worked: ";
cin >> hours;cout << "Enter the hourly ";
cout << "pay rate: ";cin >> payRate;

High level (Easily read by humans)

10 Chapter 1 Introduction to Computers and Programming

Many high-level languages have been created. Table 1-1 lists a few of the well-known ones.

C++ is a widely used language because, in addition to the high-level features necessary for
writing applications such as payroll systems and inventory programs, it also has many
low-level features. C++ is based on the C language, which was invented for purposes such
as writing operating systems and compilers. Because C++ evolved from C, it carries all of
C’s low-level capabilities with it.

C++ is also popular because of its portability. This means that a C++ program can be written
on one type of computer and then run on many other types of systems. This usually requires
that the program is recompiled on each type of system, but the program itself may need little or
no change.

Table 1-1 Well-Known High-Level Programming Languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming
language originally designed to be simple enough for beginners to learn.

C A structured, general-purpose language developed at Bell Laboratories. C offers
both high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented features not found in C. Also
invented at Bell Laboratories.

C# Pronounced “C sharp.” A language invented by Microsoft for developing
applications based on the Microsoft .NET platform.

COBOL Common Business-Oriented Language. A language designed for business
applications.

FORTRAN Formula Translator. A language designed for programming complex
mathematical algorithms.

Java An object-oriented language invented at Sun Microsystems. Java may be used to
develop programs that run over the Internet in a Web browser.

JavaScript A language used to write small programs that run in Web pages. Despite its name,
JavaScript is not related to Java.

Pascal A structured, general-purpose language designed primarily for teaching
programming.

Python A general purpose language created in the early 1990s. It has become popular for
both business and academic applications.

Ruby A general purpose language created in the 1990s. It is becoming increasingly
popular for programs that run on Web servers.

Visual Basic A Microsoft programming language and software development environment that
allows programmers to quickly create Windows-based applications.

Programs and Programming Languages 11

Source Code, Object Code, and Executable Code
When a C++ program is written, it must be typed into the computer and saved to a file.
A text editor, which is similar to a word processing program, is used for this task. The
statements written by the programmer are called source code, and the file they are saved in
is called the source file.

After the source code is saved to a file, the process of translating it to machine language
can begin. During the first phase of this process, a program called the preprocessor reads
the source code. The preprocessor searches for special lines that begin with the # symbol.
These lines contain commands, or directives, that cause the preprocessor to amend
or process the source code in some way. During the next phase the compiler steps through
the preprocessed source code, translating each source code instruction into the appropriate
machine language instruction. This process will uncover any syntax errors that may be in
the program. Syntax errors are illegal uses of key words, operators, punctuation, and other
language elements. If the program is free of syntax errors, the compiler stores the
translated machine language instructions, which are called object code, in an object file.

Although an object file contains machine language instructions, it is not a complete
program. Here is why. C++ is conveniently equipped with a library of prewritten code
for performing common operations or sometimes-difficult tasks. For example, the library
contains hardware-specific code for displaying messages on the screen and reading input
from the keyboard. It also provides routines for mathematical functions, such as
calculating the square root of a number. This collection of code, called the run-time
library, is extensive. Programs almost always use some part of it. When the compiler
generates an object file, however, it does not include machine code for any run-time
library routines the programmer might have used. During the last phase of the
translation process, another program called the linker combines the object file with the
necessary library routines. Once the linker has finished with this step, an executable file
is created. The executable file contains machine language instructions, or executable
code, and is ready to run on the computer.

Figure 1-6 illustrates the process of translating a C++ source file into an executable file.
The entire process of invoking the preprocessor, compiler, and linker can be initiated with a
single action. For example, on a Linux system, the following command causes the C++
program named hello.cpp to be preprocessed, compiled, and linked. The executable code
is stored in a file named hello.

g++ -o hello hello.cpp

NOTE: Programs written for specific graphical environments often require
significant changes when moved to a different type of system. Examples of such
graphical environments are Windows, the X-Window System, and the Mac OS
operating system.

12 Chapter 1 Introduction to Computers and Programming

Many development systems, particularly those on personal computers, have integrated
development environments (IDEs). These environments consist of a text editor, compiler,
debugger, and other utilities integrated into a package with a single set of menus.
Preprocessing, compiling, linking, and even executing a program is done with a single click
of a button, or by selecting a single item from a menu. Figure 1-7 shows a screen from the
Microsoft Visual Studio IDE.

Figure 1-6

Source code
hello.cpp

Preprocessor

Modified
source code

Compiler

Object code
hello.obj

Executable code
hello.exe

Linker

Source code is entered
with a text editor by
the programmer.

// hello.cpp

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello World\n";

 return 0;

}

What Is a Program Made of? 13

Checkpoint

1.11 What is an algorithm?

1.12 Why were computer programming languages invented?

1.13 What is the difference between a high-level language and a low-level language?

1.14 What does portability mean?

1.15 Explain the operations carried out by the preprocessor, compiler, and linker.

1.16 Explain what is stored in a source file, an object file, and an executable file.

1.17 What is an integrated development environment?

1.4 What Is a Program Made of?

CONCEPT: There are certain elements that are common to all programming languages.

Language Elements
All programming languages have a few things in common. Table 1-2 lists the common elements
found in almost every language.

Figure 1-7

14 Chapter 1 Introduction to Computers and Programming

Let’s look at some specific parts of Program 1-1 (the pay-calculating program) to see examples
of each element listed in the table above. For convenience, Program 1-1 is listed again.

Key Words (reserved words)

Three of C++’s key words appear on lines 3 and 5: using, namespace, and int. The word
double, which appears on line 7, is also a C++ key word. These words, which are always
written in lowercase, each have a special meaning in C++ and can only be used for their
intended purposes. As you will see, the programmer is allowed to make up his or her own

Table 1-2 Programming Language Elements

Language Element Description

Key Words Words that have a special meaning. Key words may only be used for their
intended purpose. Key words are also known as reserved words.

Programmer-Defined
Identifiers

Words or names defined by the programmer. They are symbolic names
that refer to variables or programming routines.

Operators Operators perform operations on one or more operands. An operand is
usually a piece of data, like a number.

Punctuation Punctuation characters that mark the beginning or ending of a statement,
or separate items in a list.

Syntax Rules that must be followed when constructing a program. Syntax dictates
how key words and operators may be used, and where punctuation
symbols must appear.

Program 1-1

1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

What Is a Program Made of? 15

names for certain things in a program. Key words, however, are reserved and cannot be
used for anything other than their designated purposes. Part of learning a programming
language is learning what the key words are, what they mean, and how to use them.

Programmer-Defined Identifiers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and 21
are programmer-defined identifiers. They are not part of the C++ language but rather are
names made up by the programmer. In this particular program, these are the names of
variables. As you will learn later in this chapter, variables are the names of memory
locations that may hold data.

Operators

On line 18 the following statement appears:

pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data,
known as operands. The * operator multiplies its two operands, which in this example are
the variables hours and rate. The = symbol is called the assignment operator. It takes the
value of the expression on the right and stores it in the variable whose name appears on the
left. In this example, the = operator stores in the pay variable the result of the hours
variable multiplied by the rate variable. In other words, the statement says, “Make the
pay variable equal to hours times rate” or “pay is assigned the value of hours times
rate.”

Punctuation

Notice that many lines end with a semicolon. A semicolon in C++ is similar to a period in
English. It marks the end of a complete sentence (or statement, as it is called in
programming). Semicolons do not appear at the end of every line in a C++ program,
however. There are rules that govern where semicolons are required and where they are not.
Part of learning C++ is learning where to place semicolons and other punctuation symbols.

Lines and Statements
Often, the contents of a program are thought of in terms of lines and statements. A line is
just that—a single line as it appears in the body of a program. Program 1-1 is shown with
each of its lines numbered. Most of the lines contain something meaningful; however, some
of the lines are empty. The blank lines are only there to make the program more readable.

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

NOTE: The #include <iostream> statement in line 2 is a preprocessor directive.

NOTE: In C++, key words are written in all lowercase.

16 Chapter 1 Introduction to Computers and Programming

It causes the computer to display the message “How many hours did you work?” on the
screen. Statements can be a combination of key words, operators, and programmer-defined
symbols. Statements usually occupy only one line in a program, but sometimes they are
spread out over more than one line.

Variables
A variable is a named storage location in the computer’s memory for holding a piece of data.
The data stored in variables may change while the program is running (hence the name
“variable”). Notice that in Program 1-1 the words hours, rate, and pay appear in several
places. All three of these are the names of variables. The hours variable is used to store the
number of hours the user worked. The rate variable stores the user’s hourly pay rate. The
pay variable holds the result of hours multiplied by rate, which is the user’s gross pay.

Variables are symbolic names that represent locations in the computer’s random-access
memory (RAM). When information is stored in a variable, it is actually stored in RAM.
Assume a program has a variable named length. Figure 1-8 illustrates the way the variable
name represents a memory location.

In Figure 1-8 the variable length is holding the value 72. The number 72 is actually stored
in RAM at address 23, but the name length symbolically represents this storage location.
You can think of a variable as a box that holds information. In Figure 1-8, the number 72 is
stored in the box named length. Only one item may be stored in the box at any given time.
If the program stores another value in this box, it will take the place of the number 72.

Variable Definitions
In programming, there are two general types of data: numbers, such as 3, and characters,
such as the letter ‘A’. Numbers are used to perform mathematical operations, and characters
are used to print information on the screen or on paper.

NOTE: Notice the variables in Program 1-1 have names that reflect their purpose. In
fact, it would be easy to guess what the variables were used for just by reading their
names. This is discussed further in Chapter 2.

Figure 1-8

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29
72

length

Input, Processing, and Output 17

Numeric data can be categorized even further. For instance, the following are all whole
numbers, or integers:

5
7
-129
32154

The following are real, or floating-point, numbers:

3.14159
6.7
1.0002

When creating a variable in a C++ program, you must know what type of data the program
will be storing in it. Look at line 7 of Program 1-1:

double hours, rate, pay;

The word double in the statement indicates that the variables hours, rate, and pay will be used
to hold double precision floating-point numbers. This statement is called a variable definition. In
C++, all variables must be defined before they can be used because the variable definition is what
causes the variables to be created in memory. If you review the listing of Program 1-1, you will
see that the variable definitions come before any other statements using those variables.

1.5 Input, Processing, and Output

CONCEPT: The three primary activities of a program are input, processing, and output.

Computer programs typically perform a three-step process of gathering input, performing
some process on the information gathered, and then producing output. Input is information
a program collects from the outside world. It can be sent to the program by the user, who is
entering data at the keyboard or using the mouse. It can also be read from disk files or
hardware devices connected to the computer. Program 1-1 allows the user to enter two items
of information: the number of hours worked and the hourly pay rate. Lines 11 and 15 use
the cin (pronounced “see in”) object to perform these input operations:

cin >> hours;
cin >> rate;

Once information is gathered from the outside world, a program usually processes it in
some manner. In Program 1-1, the hours worked and hourly pay rate are multiplied in
line 18 to produce the value assigned to the variable pay:

pay = hours * rate;

Output is information that a program sends to the outside world. It can be words or
graphics displayed on a screen, a report sent to the printer, data stored in a file, or
information sent to any device connected to the computer.

18 Chapter 1 Introduction to Computers and Programming

Lines 10, 14, and 21 in Program 1-1 all use the cout (pronounced “see out”) object to display
messages on the computer’s screen.

cout << "How many hours did you work? ";
cout << "How much do you get paid per hour? ";
cout << "You have earned $" << pay << endl;

You will learn more about objects later in the book and about the cin and cout objects in
Chapters 2 and 3.

Checkpoint

1.18 Describe the difference between a key word and a programmer-defined symbol.

1.19 Describe the difference between operators and punctuation symbols.

1.20 Describe the difference between a program line and a statement.

1.21 Why are variables called “variable”?

1.22 What happens to a variable’s current contents when a new value is stored there?

1.23 What must take place in a program before a variable is used?

1.24 What are the three primary activities of a program?

1.6 The Programming Process

CONCEPT: The programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Designing and Creating a Program
Now that you have been introduced to what a program is, it’s time to consider the process
of creating a program. Quite often, when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the steps listed in Figure 1-9 may help. These are the
steps recommended for the process of writing a program.

Figure 1-9

 1. Define what the program is to do.

 2. Visualize the program running on the computer.

 3. Use design tools to create a model of the program.

 4. Check the model for logical errors.

 5. Write the program source code.

 6. Compile the source code.

 7. Correct any errors found during compilation.

 8. Link the program to create an executable file.

 9. Run the program using test data for input.

 10. Correct any errors found while running the program.
Repeat steps 4 through 10 as many times as necessary.

 11. Validate the results of the program.

The Programming Process 19

The steps listed in Figure 1-9 emphasize the importance of planning. Just as there are good
ways and bad ways to paint a house, there are good ways and bad ways to create a program.
A good program always begins with planning.

With the pay-calculating program as our example, let’s look at each step in more detail.

1. Define what the program is to do.
This step requires that you clearly identify the purpose of the program, the information
that is to be input, the processing that is to take place, and the desired output. Here are the
requirements for the example program:

Purpose To calculate the user’s gross pay.

Input Number of hours worked, hourly pay rate.

Processing Multiply number of hours worked by hourly pay rate. The result is the
user’s gross pay.

Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer.
Before you create a program on the computer, you should first create it in your mind.
Step 2 is the visualization of the program. Try to imagine what the computer screen looks
like while the program is running. If it helps, draw pictures of the screen, with sample
input and output, at various points in the program. For instance, here is the screen
produced by the pay-calculating program:

In this step, you must put yourself in the shoes of the user. What messages should the
program display? What questions should it ask? By addressing these issues, you will have
already determined most of the program’s output.

3. Use design tools to create a model of the program.
While planning a program, the programmer uses one or more design tools to create a
model of the program. Three common design tools are hierarchy charts, flowcharts, and
pseudocode. A hierarchy chart is a diagram that graphically depicts the structure of a
program. It has boxes that represent each step in the program. The boxes are connected in
a way that illustrates their relationship to one another. Figure 1-10 shows a hierarchy chart
for the pay-calculating program.

A hierarchy chart begins with the overall task and then refines it into smaller subtasks.
Each of the subtasks is then refined into even smaller sets of subtasks, until each is small
enough to be easily performed. For instance, in Figure 1-10, the overall task “Calculate
Gross Pay” is listed in the top-level box. That task is broken into three subtasks. The first
subtask, “Get Payroll Data from User,” is broken further into two subtasks. This process
of “divide and conquer” is known as top-down design.

 How many hours did you work? 10
 How much do you get paid per hour? 15
 You earned $ 150

20 Chapter 1 Introduction to Computers and Programming

A flowchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program must perform and the order in which the
operations are to occur. For more information see Appendix N, Introduction to
Flowcharting.

Pseudocode is a cross between human language and a programming language.
Although the computer can’t understand pseudocode, programmers often find it
helpful to write an algorithm using it. This is because pseudocode is similar to natural
language, yet close enough to programming language that it can be easily converted
later into program source code. By writing the algorithm in pseudocode first, the
programmer can focus on just the logical steps the program must perform, without
having to worry yet about syntax or about details such as how output will be
displayed.

Pseudocode can be written at a high level or at a detailed level. Many programmers use
both forms. High level pseudocode simply lists the steps a program must perform. Here is
high level pseudocode for the pay-calculating program.

Get payroll data
Calculate gross pay
Display gross pay

High level pseudocode can be expanded to produce detailed pseudocode. Here is the
detailed pseudocode for the same program. Notice that it even names variables and tells
what mathematical operations to perform.

Ask the user to input the number of hours worked
Input hours
Ask the user to input the hourly pay rate
Input rate
Set pay equal to hours times rate
Display pay

Figure 1-10

Calculate
gross pay

Display
pay

Get payroll data
from user

Set pay to
hours worked
times pay rate

Read number of
hours worked

Read hourly
pay rate

VideoNote

Designing a
Program with
Pseudocode

The Programming Process 21

4. Check the model for logical errors.
Logical errors, also called logic errors, are mistakes that cause a program to produce erroneous
results. Examples of logical errors would be using the wrong variable’s value in a computation
or performing order-dependent actions in the wrong order. Once a model of the program has
been created, it should be checked for logical errors. The programmer should trace through the
charts or pseudocode, checking the logic of each step. If an error is found, the model can be
corrected before the actual program source code is written. In general, the earlier an error is
detected in the programming process, the easier it is to correct.

5. Write the program source code.
Once a model of the program (hierarchy chart, flowchart, or pseudocode) has been
created, checked, and corrected, the programmer is ready to write the source code, using
an actual computer programming language, such as C++. Many programmers write the
code directly on the computer, typing it into a text editor. Some programmers, however,
prefer to write the program on paper first, then enter it into the computer. Once the
program has been entered, the source code is saved to a file.

6. Compile the source code.
Next the saved source code is ready to be compiled. The compiler will translate the source
code to machine language.

7. Correct any errors found during compilation.
If the compiler reports any errors, they must be corrected and the code recompiled. This
step is repeated until the program is free of compile-time errors.

8. Link the program to create an executable file.
Once the source code compiles with no errors, it can be linked with the libraries specified
by the program #include statements to create an executable file. If an error occurs during
the linking process, it is likely that the program has failed to include a needed library file.
The needed file must be included and the program relinked.

9. Run the program using test data for input.
Once an executable file is generated, the program is ready to be tested for run-time and logic
errors. A run-time error occurs when the running program asks the computer to do
something that is impossible, such as divide by zero. Normally a run-time error causes the
program to abort. If the program runs, but fails to produce correct results, it likely contains
one or more logic errors. To help identify such errors, it is important that the program be
executed with carefully selected sample data that allows the correct output to be predicted.

10. Correct any errors found while running the program.
When run-time or logic errors occur in a program, they must be corrected. You must identify
the step where the error occurred and determine the cause.

Desk-checking is a process that can help locate these types of errors. The term desk-checking
means the programmer starts reading the program, or a portion of the program, and steps
through each statement. A sheet of paper is often used in this process to jot down the current
contents of all variables and sketch what the screen looks like after each output operation.
When a variable’s contents change, or information is displayed on the screen, this is noted. By
stepping through each statement in this manner, many errors can be located and corrected.

22 Chapter 1 Introduction to Computers and Programming

If the error is a result of incorrect logic (such as an improperly stated math formula), you
must correct the statement or statements involved in the logic. If the error is due to an
incomplete understanding of the program requirements, then you must restate the
program’s purpose and modify all affected charts, pseudocode, and source code. The
program must then be saved, recompiled, relinked, and retested. This means steps 4
though 10 must be repeated until the program reliably produces satisfactory results.

11. Validate the results of the program.
When you believe you have corrected all errors, enter test data to verify that the program
solves the original problem.

What Is Software Engineering?
The field of software engineering encompasses the complete process of crafting computer
software. It includes designing, writing, testing, debugging, documenting, modifying, and
maintaining complex software development projects. Like traditional engineers, software
engineers use a number of tools in their craft. Here are a few examples:

• Program specifications
• Charts and diagrams of screen output
• Hierarchy charts
• Pseudocode
• Examples of expected input and desired output
• Special software designed for testing programs

Most commercial software applications are very large. In many instances one or more
teams of programmers, not a single individual, develop them. It is important that the
program requirements be thoroughly analyzed and divided into subtasks that are handled
by individual teams or individuals within a team.

In step 3 of the programming process, you were introduced to the hierarchy chart as a tool
for top-down design. When the subtasks identified in a top-down design are long or
complex, they can be developed as modules, or separate components, of a program. If
the program is very large or complex, a team of software engineers can be assigned to
work on the individual modules. As the project develops, the modules are coordinated to
become a single software application.

Checkpoint

1.25 What four items should you identify when defining what a program is to do?

1.26 What does it mean to “visualize a program running”? What is the value of doing this?

1.27 What is a hierarchy chart?

1.28 What is pseudocode?

1.29 What is the difference between high level pseudocode and detailed pseudocode?

1.30 Describe what a compiler does with a program’s source code.

1.31 What is a logic error?

1.32 What is a run-time error?

1.33 Describe the process of desk-checking.

Review Questions and Exercises 23

1.7 Tying It All Together: Hi! It’s Me

Most programs, as you have learned, have three primary activities: input, processing, and
output. But it is possible to write a program that has only output. Program 1-2, shown
below, displays the message:

Hi! It's me.
I'm learning to program!

Program 1-2 can be found in the Chapter 1 folder on the book’s companion website. Open
the program in whatever C++ development environment your class is using. Then compile
it and run it. Your instructor will show you how to do this.

Once you have run it, change the word me on line 7 to your name to personalize the
message. Then recompile and rerun the program.

In the next chapter you will learn what the \' and \n do.

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. Computers can do many different jobs because they can be __________.

2. The job of the __________ is to fetch instructions, carry out the operations commanded
by the instructions, and produce some outcome or resultant information.

3. Internally, the CPU consists of the __________ and the __________.

4. A(n) __________ is an example of a secondary storage device.

5. The two general categories of software are __________ and __________.

6. A program is a set of __________.

7. Since computers can’t be programmed in natural human language, algorithms must be
written in a(n) __________ language.

8. __________ is the only language computers really process.

9. __________ languages are close to the level of humans in terms of readability.

Program 1-2

1 //This program prints a message with your name in it.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Hi! It\'s me.\n";
8 cout << "I\'m learning to program!\n";
9 return 0;
10 }

24 Chapter 1 Introduction to Computers and Programming

10. __________ languages are close to the level of the computer.

11. A program’s ability to run on several different types of computer systems is called
__________.

12. Words that have special meaning in a programming language are called __________
words.

13. Words or names defined by the programmer are called __________.

14. __________ are characters or symbols that perform operations on one or more operands.

15. __________ characters or symbols mark the beginning or ending of programming
statements, or separate items in a list.

16. The rules that must be followed when constructing a program are called __________.

17. A(n) __________ is a named storage location.

18. A variable must be __________ before it can be used in a program.

19. The three primary activities of a program are __________, __________, and __________.

20. __________ is information a program gathers from the outside world.

21. __________ is information a program sends to the outside world.

22. A(n) __________ is a diagram that graphically illustrates the structure of a program.

23. Both main memory and secondary storage are types of memory. Describe the difference
between the two.

24. What is the difference between system software and application software?

25. What is the difference between a syntax error and a logical error?

Algorithm Workbench

26. Available Credit

Design a hierarchy chart for a program that calculates a customer’s available credit.
The program should carry out the following steps:

1. Display the message “Enter the customer’s maximum credit.”

2. Wait for the user to enter the customer’s maximum credit.

3. Display the message “Enter the amount of credit used by the customer.”

4. Wait for the user to enter the customer’s credit used.

5. Subtract the used credit from the maximum credit to get the customer’s available credit.

6. Display a message that shows the customer’s available credit.

27. Account Balance

Write high-level and detailed pseudocode for a program that calculates the current
balance in a bank account. The program must ask the user for

• The starting balance
• The total dollar amount of deposits made
• The total dollar amount of withdrawals made

Once the program calculates the current balance, it should be displayed on the screen.

VideoNote

Designing the
Account
Balance
Program

Review Questions and Exercises 25

28. Sales Tax

Write high-level and detailed pseudocode for a program that calculates the total of a
retail sale. The program should ask the user for

• The retail price of the item being purchased
• The sales tax rate

Once these items have been entered, the program should calculate and display

• The sales tax for the purchase
• The total of the sale

Predict the Output

Questions 29–32 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

29. The variable sum starts with the value 0.
Add 10 to sum.
Add 15 to sum.
Add 20 to sum.
Display the value of sum on the screen.

30. The variable x starts with the value 0.
The variable y starts with the value 5.
Add 1 to x.
Add 1 to y.
Add x and y, and store the result in y.
Display the value in y on the screen.

31. The variable j starts with the value 10.
The variable k starts with the value 2.
The variable l starts with the value 4.
Store the value of j times k in j.
Store the value of k times l in l.
Add j and l, and store the result in k.
Display the value in k on the screen.

32. The variable a starts with the value 1.
The variable b starts with the value 10.
The variable c starts with the value 100.
The variable x starts with the value 0.
Store the value of c times 3 in x.
Add the value of b times 6 to the value already in x.
Add the value of a times 5 to the value already in x.
Display the value in x on the screen.

Predicting the
Output of
Problem 30

VideoNote

26 Chapter 1 Introduction to Computers and Programming

Find the Error

33. The following pseudocode algorithm has an error. It is supposed to use values input for a
rectangular room’s length and width to calculate and display its area. Find the error.

area = width × length.
Display "What is the room's width?".
Input width.
Display "What is the room's length?".
Input length.
Display area.

Soft Skills

Before a programmer can design a program he or she must have some basic knowledge
about the domain, or area, the program will deal with and must understand exactly what it
is that the client wants the program to do. Otherwise the final program may not work
correctly or may not meet the client’s needs.

34. Suppose one of your friends, who paints the insides of houses, has asked you to develop a
program that determines and displays how much paint is needed to paint a room if the
length and width of the room is input. What information are you lacking that you need to
write this program? Write at least three questions that you would need to ask your friend
before starting the project.

Programming Challenges

1. Candy Bar Sales

Using Program 1-1 as an example, write a program that calculates how much a student
organization earns during its fund raising candy sale. The program should prompt the user
to enter the number of candy bars sold and the amount the organization earns for each bar
sold. It should then calculate and display the total amount earned.

2. Baseball Costs

Using Program 1-1 as an example, write a program that calculates how much a little league
baseball team spent last year to purchase new baseballs. The program should prompt the
user to enter the number of baseballs purchased and the cost of each baseball. It should
then calculate and display the total amount spent to purchase the baseballs.

VideoNote

Solving the
Candy Bar Sales
Problem

27

C
H

A
P

T
E

R

2 Introduction to C++

2.1 The Parts of a C++ Program

CONCEPT: C++ programs have parts and components that serve specific purposes.

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs
are not always in the same place. Nevertheless, the parts are there and your first step in
learning C++ is to learn what they are. We will begin by looking at Program 2-1.

TOPICS

2.1 The Parts of a C++ Program
2.2 The cout Object
2.3 The #include Directive
2.4 Standard and Prestandard C++
2.5 Variables, Literals, and the

Assignment Statement
2.6 Identifiers
2.7 Integer Data Types
2.8 Floating-Point Data Types
2.9 The char Data Type

2.10 The C++ string Class
2.11 The bool Data Type
2.12 Determining the Size of a Data Type
2.13 More on Variable Assignments and

Initialization
2.14 Scope
2.15 Arithmetic Operators
2.16 Comments
2.17 Programming Style
2.18 Tying It All Together: Smile!

Program 2-1

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is great fun!";
8 return 0;
9 }

Program Output
Programming is great fun!

28 Chapter 2 Introduction to C++

Let’s examine the program line by line. Here’s the first line:

// A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the
double-slash to the end of the line. That means you can type anything you want on that
line, and the compiler will never complain! Although comments are not required, they are
very important to programmers. Most programs are much more complicated than the
example in Program 2-1, and comments help explain what’s going on.

Line 2 looks like this:

#include <iostream>

When a line begins with a # it indicates it is a preprocessor directive. The preprocessor
reads your program before it is compiled and only executes those lines beginning with a
symbol. Think of the preprocessor as a program that “sets up” your source code for
the compiler.

The #include directive causes the preprocessor to include the contents of another file
in the program. The word inside the brackets, iostream, is the name of the file that is
to be included. The iostream file contains code that allows a C++ program to display
output on the screen and read input from the keyboard. Because the cout statement
(on line 7) prints output to the computer screen, we need to include this file. Its
contents will be placed in the program at the point the #include statement appears.
The iostream file is called a header file, so it should be included at the head, or top, of
the program.

Line 3 reads

using namespace std;

Programs usually contain various types of items with unique names. In this chapter you
will learn to create variables. In Chapter 6 you will learn to create functions. In Chapter 7
you will learn to create objects. Variables, functions, and objects are examples of
program entities that must have names. C++ uses namespaces to organize the names of
program entities. The statement using namespace std; declares that the program will be
accessing entities whose names are part of the namespace called std. (Yes, even
namespaces have names.) The program needs access to the std namespace because every
name created by the iostream file is part of that namespace. In order for a program to
use the entities in iostream, it must have access to the std namespace. More information
on namespaces can be found in Appendix J, which is available on the book's companion
Web site.

The Parts of a C++ Program 29

Line 5 reads

int main()

This marks the beginning of a function. A function can be thought of as a group of one or
more programming statements that has a name. The name of this function is main, and the
set of parentheses that follows the name indicates that it is a function. The word int stands
for “integer.” It indicates that the function sends an integer value back to the operating
system when it is finished executing.

Although most C++ programs have more than one function, every C++ program must
have a function called main. It is the starting point of the program. If you’re ever
reading someone else’s program and want to find where it starts, just look for the
function called main.

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of
the function main. All the statements that make up a function are enclosed in a set of
braces. If you look at the third line down from the opening brace you’ll see the closing
brace. Everything between the two braces is the contents of the function main.

After the opening brace you see the following statement in line 7:

cout << "Programming is great fun!";

This line displays a message on the screen. You will read more about cout and the <<
operator later in this chapter. The message “Programming is great fun!” is printed without
the quotation marks. In programming terms, the group of characters inside the quotation
marks is called a string literal, a string constant, or simply a string.

NOTE: C++ is a case-sensitive language. That means it regards uppercase letters as
being entirely different characters than their lowercase counterparts. In C++, the name
of the function main must be written in all lowercase letters. C++ doesn’t see “main” the
same as “Main” or “MAIN.”

WARNING! Make sure you have a closing brace for every opening brace in your
program.

NOTE: This is the only line in the program that causes anything to be printed on the
screen. The other lines, like #include <iostream> and int main(), are necessary for
the framework of your program, but they do not cause any screen output. Remember, a
program is a set of instructions for the computer. If something is to be displayed on the
screen, you must use a programming statement for that purpose.

30 Chapter 2 Introduction to C++

Notice that line 7 ends with a semicolon. Just as a period marks the end of a sentence, a
semicolon is required to mark the end of a complete statement in C++. But many C++ lines,
such as comments, preprocessor directives, and the beginning of functions, are not complete
statements. These do not end with semicolons. Here are some examples of when to use, and
not use, semicolons.

// Semicolon examples // This is a comment
include <iostream> // This is a preprocessor directive
int main() // This begins a function
cout << "Hello"; // This is a complete statement

As you spend more time working with C++ you will get a feel for where you should
and should not use semicolons. For now don’t worry about it. Just concentrate on
learning the parts of a program.

Line 8 reads

return 0;

This sends the integer value 0 back to the operating system when the program finishes
running. The value 0 usually indicates that a program executed successfully.

The last line of the program, line 9, contains the closing brace:

}

This brace marks the end of the main function. Because main is the only function in this
program, it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 2-1 provides
a short summary of how they were used.

Table 2-1 Special Characters

Character Name Description

// Double slash Marks the beginning of a comment.

Pound sign Marks the beginning of a preprocessor directive.

< > Opening and closing
brackets

Encloses a filename when used with the #include
directive.

() Opening and closing
parentheses

Used in naming a function, as in int main().

{ } Opening and closing
braces

Encloses a group of statements, such as the contents of a
function.

" " Opening and closing
quotation marks

Encloses a string of characters, such as a message that is to
be printed on the screen.

; Semicolon Marks the end of a complete programming statement.

The cout Object 31

Checkpoint

2.1 The following C++ program will not compile because the lines have been mixed up.

int main()
}
// A crazy mixed up program
#include <iostream>
return 0;
cout << "In 1492 Columbus sailed the ocean blue.";
{
using namespace std;

When the lines are properly arranged the program should display the following
on the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.2 On paper, write a program that will display your name on the screen. Use
Program 2-1 as your guide. Place a comment with today’s date at the top of the
program. Test your program by entering, compiling, and running it.

2.2 The cout Object

CONCEPT: cout is used to display information on the computer’s screen.

In this section you will learn to write programs that produce output on the screen. The
simplest type of screen output that a program can display is console output, which is
merely plain text. The word console is an old computer term. It comes from the days when
a computer operator interacted with the system by typing on a terminal. The terminal,
which consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows or Mac OS,
console output is usually displayed in a window such as the one shown in Figure 2-1. C++
provides an object named cout that is used to produce console output. (You can think of
the word cout as meaning console output.)

Figure 2-1 A Console Window

32 Chapter 2 Introduction to C++

Using cout to
Display Output

cout is classified as a stream object, which means it works with streams of data. To print a
message on the screen, you send a stream of characters to cout. Let’s look at line 7 from
Progam 2-1:

cout << "Programming is great fun!";

The << operator is used to send the string “Programming is great fun!” to cout. When the <<
symbol is used this way, it is called the stream-insertion operator. The item immediately to
the right of the operator is inserted into the output stream that is sent to cout to be displayed
on the screen.

Program 2-2 shows another way to write the same program.

As you can see, the stream-insertion operator can be used to send more than one item to
cout. The output of this program is identical to Program 2-1. Program 2-3 shows yet
another way to accomplish the same thing.

NOTE: The stream insertion operator is always written as two less-than signs with no
space between them. Because you are using it to send a stream of data to the cout object,
you can think of the stream insertion operator as an arrow that must point toward cout,
as shown here.

cout << "Hello";
cout ← "Hello";

Program 2-2

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is " << "great fun!";
8 return 0;
9 }

Program Output
Programming is great fun!

Program 2-3

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is ";
8 cout << "great fun!";
9 return 0;
10 }

Program Output
Programming is great fun!

VideoNote

The cout Object 33

An important concept to understand about Program 2-3 is that although the output is broken
into two programming statements, this program will still display the message on a single line.
Unless you specify otherwise, the information you send to cout is displayed in a continuous
stream. Sometimes this can produce less-than-desirable results. Program 2-4 illustrates this.

The layout of the actual output looks nothing like the arrangement of the strings in
the source code. First, notice there is no space displayed between the words “sellers” and
“during,” or between “June:” and “Computer.” cout displays messages exactly as they are
sent. If spaces are to be displayed, they must appear in the strings.

Second, even though the output is broken into five lines in the source code, it comes out as
one long line of output. Because the output is too long to fit on one line of the screen, it
wraps around to a second line when displayed. The reason the output comes out as one
long line is that cout does not start a new line unless told to do so. There are two ways to
instruct cout to start a new line. The first is to send cout a stream manipulator called
endl (pronounced “end-line” or “end-L”). Program 2-5 does this.

Program 2-4

1 // An unruly printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers";
8 cout << "during the month of June:";
9 cout << "Computer games";
10 cout << "Coffee";
11 cout << "Aspirin";
12 return 0;
13 }

Program Output
The following items were top sellersduring the month of June:Computer
gamesCoffeeAspirin

Program 2-5

1 // A well-adjusted printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers" << endl;
8 cout << "during the month of June:" << endl;
9 cout << "Computer games" << endl;
10 cout << "Coffee" << endl;
11 cout << "Aspirin" << endl;
12 return 0;
13 }

(program continues)

34 Chapter 2 Introduction to C++

Every time cout encounters an endl stream manipulator it advances the output to the
beginning of the next line for subsequent printing. The manipulator can be inserted
anywhere in the stream of characters sent to cout, as long as it is outside the double
quotes. Notice that an endl is also used at the end of the last line of output.

Another way to cause subsequent output to begin on a new line is to insert a \n inside a
string that is being output. Program 2-6 does this.

\n is an example of an escape sequence. Escape sequences are written as a backslash character
(\) followed by a control character and are used to control the way output is displayed. There
are many escape sequences in C++. The newline escape sequence (\n) is just one of them.

When cout encounters \n in a string, it doesn’t print it on the screen. Instead it interprets
it as a special command to advance the output cursor to the next line. You have probably
noticed that inserting the escape sequence requires less typing than inserting endl. That’s
why some programmers prefer it.

Program Output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

NOTE: The last character in endl is the lowercase letter L, not the number one.

Program 2-6

1 // Another well-adjusted printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers\n";
8 cout << "during the month of June:\n";
9 cout << "Computer games\nCoffee";
10 cout << "\nAspirin\n";
11 return 0;
12 }

Program Output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

Program 2-5 (continued)

The cout Object 35

Escape sequences give you the ability to exercise greater control over the way information
is output by your program. Table 2-2 lists a few of them.

A common mistake made by beginning C++ students is to use a forward slash (/) instead of
a back slash (\) when trying to write an escape sequence. This will not work. For example,
look at the following line of code.

cout << "Four score/nAnd seven/nYears ago./n"; // Error!

Because the programmer accidentally wrote /n instead of \n, cout will simply display the
/n characters on the screen, rather than starting a new line of output. This code will create
the following output:

Four score/nAnd seven/nYears ago./n

Another common mistake is to forget to put the \n inside quotation marks. For example,
the following code will not compile.

cout << "Good" << \n; // Error!
cout << "Morning" << \n; // This code will not compile.

We can correct the code by placing the \n sequences inside the string literals, as shown here:

cout << "Good\n"; // This will work.
cout << "Morning\n";

It is important not to confuse the backslash (\) with the forward slash (/). An escape
sequence must start with a backslash, be placed inside quotation marks, and have no
spaces between the backslash and the control character.

When you type an escape sequence in a string, you type two characters (a backslash followed
by another character). However, an escape sequence is stored in memory as a single character.
For example, consider the following string literal:

"One\nTwo\nThree\n"

Table 2-2 Common Escape Sequences

Escape
Sequence Name Description

\n Newline Causes the cursor to go to the next line for subsequent printing.

\t Horizontal tab Causes the cursor to skip over to the next tab stop.

\a Alarm Causes the computer to beep.

\b Backspace Causes the cursor to back up, or move left one position.

\r Return Causes the cursor to go to the beginning of the current line, not the
next line.

\\ Backslash Causes a backslash to be printed.

\' Single quote Causes a single quotation mark to be printed.

\" Double quote Causes a double quotation mark to be printed.

36 Chapter 2 Introduction to C++

The diagram in Figure 2-2 breaks this string into its individual characters. Notice how each
\n escape sequence is considered just one character.

2.3 The #include Directive

CONCEPT: The #include directive causes the contents of another file to be inserted
into the program.

Now is a good time to expand our discussion of the #include directive. The following line
has appeared near the top of every example program.

#include <iostream>

As previously mentioned, the iostream header file must be included in any program that
uses the cout object. This is because cout is not part of the “core” of the C++ language.
Specifically, it is part of the input-output stream library. The iostream header file contains
information describing iostream objects. Without it, the compiler will not know how to
properly compile a program that uses cout.

Preprocessor directives are not C++ statements. They are commands to the preprocessor,
which runs prior to the compiler (hence the name “preprocessor”). The preprocessor’s job
is to set programs up in a way that makes life easier for the programmer.

For example, any program that uses the cout object must contain the extensive setup
information found in the iostream file. The programmer could type all this information
into the program, but it would be very time consuming. An alternative would be to use an
editor to “cut and paste” it into the program, but that would still be inefficient. The
solution is to let the preprocessor insert the contents of iostream automatically.

An #include directive must contain the name of the file you wish to include in the
program. The preprocessor inserts the entire contents of this file into the program at the
point it encounters the #include directive. The compiler doesn’t actually see the #include
directive. Instead it sees the code that was inserted by the preprocessor, just as if the
programmer had typed it there.

The code contained in header files is C++ code. Typically it describes complex objects like
cout. Later you will learn to create your own header files.

Figure 2-2

WARNING! Do not use semicolons at the end of preprocessor directives. Because
preprocessor directives are not C++ statements, they do not require them. In fact, in
many cases an error will result if a preprocessor directive is terminated with a
semicolon.

O n e \n T w o \n T h r e e \n

Standard and Prestandard C++ 37

Checkpoint

2.3 The following cout statement contains errors.

cout << "red /n" << "blue \ n" << "yellow" \n << "green";

Correct it so that it will display a list of colors, with one item per line.
2.4 What output will the following lines of code display on the screen?

cout << "The works of Wolfgang\ninclude the following";
cout << "\nThe Turkish March" << endl;
cout << "and Symphony No. 40 ";
cout << "in G minor." << endl;

2.5 On paper, write a program that will display your name on the first line, your street
address on the second line, your city, state, and ZIP code on the third line, and your
telephone number on the fourth line. Test your program by entering, compiling,
and running it.

2.4 Standard and Prestandard C++

CONCEPT: C++ programs written before the language became standardized may appear
slightly different from programs written today.

C++ is now a standardized programming language, but it hasn’t always been. The language
has evolved over the years, and as a result, there is a “newer style” and an “older style” of
writing C++ code. The newer style is the way programs are written with standard C++,
while the older style is the way programs were typically written using prestandard C++.
Although the differences between the older and newer styles are subtle, it is important that
you recognize them. When you go to work as a computer science professional, it is likely
that you will see programs written in the older style. Here are some of the most noticeable
differences between prestandard and standard C++.

Older Style Header Files
In older style C++, all header files end with the “.h” extension. For example, in a prestandard
C++ program the statement that includes the iostream header file is written as

#include <iostream.h>

Absence of using namespace std;
Another difference between the newer and older styles is that older style programs typically do
not use the using namespace std; statement. In fact, some older compilers do not support
namespaces at all and will produce an error message if a program has that statement.

No return 0;
Still another difference is that older style C++ programs do not end the main function with
a return 0; statement. Therefore the line that begins the main function says void main()
or void main(void) instead of int main() to indicate that the function does not return
anything back to the operating system when the program finishes executing.

38 Chapter 2 Introduction to C++

An Older Style Program
To illustrate these differences, look at the following program. It is a modification of
Program 2-1, written in the older style.

// A simple C++ program
#include <iostream.h>

void main(void)
{

cout << "Programming is great fun!";
}

Some standard C++ compilers do not support programs written in the older style, and
prestandard compilers normally do not support programs written in the newer style.

2.5 Variables, Literals, and the Assignment Statement

CONCEPT: Variables represent storage locations in the computer’s memory. Literals are
constant values that can be assigned to variables.

The concept of a variable in computer programming is somewhat different from the concept
of a variable in mathematics. In programming, as you learned in Chapter 1, a variable is a
named storage location for holding data. Variables allow you to store and work with data in
the computer’s memory. They provide an “interface” to RAM. Part of the job of
programming is to determine how many variables a program will need and what type of
information each will hold. Program 2-7 is an example of a C++ program with a variable.

Program 2-7

1 // This program has a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number;
8
9 number = 5;
10 cout << "The value of number is " << "number" << endl;
11 cout << "The value of number is " << number << endl;
12
13 number = 7;
14 cout << "Now the value of number is " << number << endl;
15
16 return 0;
17 }

Program Output
The value of number is number
The value of number is 5
Now the value of number is 7

Variables, Literals, and the Assignment Statement 39

Let’s look more closely at this program. Start by looking at line 7.

int number;

This is called a variable definition. It tells the compiler the variable’s name and the type of data
it will hold. Notice that the definition gives the data type first, then the name of the variable,
and ends with a semicolon. This variable’s name is number. The word int stands for integer, so
number may only be used to hold integer numbers.

Now look at line 9.

number = 5;

This is called an assignment statement and the = sign is called the assignment operator.
This operator copies the value on its right (5) into the variable named on its left (number).
This line does not print anything on the computer’s screen. It runs silently behind the
scenes, storing a value in RAM. After this line executes, number will be set to 5.

Now look at lines 10 and 11. Notice that in line 10 the word number has double quotation
marks around it and in line 11, it does not.

cout << "The value of number is " << "number" << endl;
cout << "The value of number is " << number << endl;

Now compare these two lines with the output they produce. When double quotation
marks are placed around the word number it becomes a string literal and is no longer a
variable name. So in the first cout statement the word "number" is inserted into the output
stream, producing the following output.

The value of number is number

In the second cout statement there are no quotation marks around the word number, so it is
the variable name number that is inserted into the output stream. When you send a variable
name to cout it prints the variable’s contents, so the following line is displayed.

The value of number is 5

Recall from Chapter 1 that variables are called variables because their values can change.
The assignment statement on line 13 replaces the previous value stored in number with a 7.

number = 7;

Therefore the final cout statement on line 14

cout << "Now the value of number is " << number << endl;

causes the following output to print.

Now the value of number is 7

NOTE: You must have a definition for every variable you use in a program. In C++, a
variable definition can appear at any point in the program as long as it occurs before
the variable is ever used. Later in this chapter, and throughout the book, you will
learn the best places to define variables.

NOTE: The item on the left-hand side of an assignment statement must be a variable.
It would be incorrect to say 5 = number;

40 Chapter 2 Introduction to C++

Sometimes a Number Isn’t a Number
As shown in Program 2-7, placing quotation marks around a variable name makes it a string
literal. When string literals are sent to cout, they are printed exactly as they appear inside the
quotation marks. You’ve probably noticed by now that the endl stream manipulator is
written with no quotation marks around it. If we put the following line in a program, it
would print out the word endl, rather than cause subsequent output to begin on a new line.

cout << "endl"; // Wrong!

In fact, placing double quotation marks around anything that is not intended to be a string
will create an error of some type. For example, in Program 2-7 the number 5 was assigned
to the variable number. It would have been incorrect to write the assignment this way:

number = "5"; // Wrong!

In this line, 5 is no longer an integer. It is a string. Because number was defined to be an
integer variable, you can only store integers in it. The integer 5 and the string “5” are not
the same thing.

The fact that numbers can be represented as strings frequently confuses people who are
new to programming. Just remember that strings are intended for humans to read. They
are to be printed on computer screens or paper. Numbers, however, are intended primarily
for mathematical operations. You cannot perform math on strings, and you cannot display
numbers on the screen without first converting them to strings. Fortunately, cout handles
this conversion automatically when you send a number to it.

Literals
A variable is called a “variable” because its value may be changed. A literal, on the other
hand, is a value that cannot change during the program’s execution. For this reason, literals
are also called constants. Many programmers refer to them as literals when they hold strings
or characters and as constants when they hold numbers, such as integers. Program 2-8
contains integer constants, string literals, and a variable.

Program 2-8

1 // This program uses integer constants, string literals, and a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int apples;
8
9 apples = 20;
10 cout << "On Sunday we sold " << apples << " bushels of apples. \n";
11
12 apples = 15;
13 cout << "On Monday we sold " << apples << " bushels of apples. \n";
14 return 0;
15 }

Variables, Literals, and the Assignment Statement 41

Of course, the variable is apples. Table 2-3 lists the literals found in the program.

What are literals used for? As you can see from Program 2-8, they are commonly used to
store known values in variables and to display messages on the screen.

Checkpoint

2.6 Which of the following are legal C++ assignment statements?

a. a = 7;
b. 7 = a;
c. 7 = 7;

2.7 List all the variables and literals that appear below.

int main()
{

int little;
int big;
little = 2;
big = 2000;
cout << "The little number is " << little << endl;
cout << "The big number is " << big << endl;
return 0;

}

2.8 When the above main function runs, what will display on the screen?
2.9 When the following main function runs, what will display on the screen?

int main()
{

int number;

number = 712;
cout << "The value is " << "number" << endl;
return 0;

}

Program Output
On Sunday we sold 20 bushels of apples.
On Monday we sold 15 bushels of apples.

Table 2-3 Program 2-8 Literals

Integer Constants String Literals

20 "On Sunday we sold"

15 "On Monday we sold"

0 "bushels of apples. \n"

Program 2-8 (continued)

42 Chapter 2 Introduction to C++

2.6 Identifiers

CONCEPT: A variable name should indicate what the variable is used for.

An identifier is a programmer-defined name that represents some element of a program.
Variable names are examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
“core” of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note that they are all lowercase.

You should always choose names for your variables that indicate what the variables are
used for. You may be tempted to give variables names like this:

int x;

However, the rather nondescript name, x, gives no clue as to the variable’s purpose. Here is
a better example.

int itemsOrdered;

The name itemsOrdered gives anyone reading the program an idea of the variable’s use.
This way of coding helps produce self-documenting programs, which means you can get an
understanding of what the program is doing just by reading its code. Because real-world
programs usually have thousands of lines, it is important that they be as self-documenting
as possible.

You probably have noticed the mixture of uppercase and lowercase letters in the variable
name itemsOrdered. Although all of C++’s key words must be written in lowercase, you
may use uppercase letters in variable names.

The reason the O in itemsOrdered is capitalized is to improve readability. Normally
“items ordered” is two words. However, you cannot have spaces in a variable name, so the

Table 2-4 C++ Key Words

and continue goto public try
and_eq default if register typedef
asm delete inline reinterpret_cast typeid
auto do int return typename
bitand double long short union
bitor dynamic_cast mutable signed unsigned
bool else namespace sizeof using
break enum new static virtual
case explicit not static_cast void
catch export not_eq struct volatile
char extern operator switch wchar_t
class false or template while
compl float or_eq this xor
const for private throw xor_eq
const_cast friend protected true

Integer Data Types 43

two words must be combined into one. When “items” and “ordered” are stuck together
you get a variable definition like this:

int itemsordered;

Capitalization of the first letter of the second word and any succeeding words makes
variable names like itemsOrdered easier to read and is the convention we use for
naming variables in this book. However, this style of coding is not required. You are free
to use all lowercase letters, all uppercase letters, or any combination of both. In fact,
some programmers use the underscore character to separate words in a variable name, as
in the following.

int items_ordered;

Legal Identifiers
Regardless of which style you adopt, be consistent and make your variable names as
sensible as possible. Here are some specific rules that must be followed with all C++
identifiers.

• The first character must be one of the letters a through z, A through Z, or an
underscore character (_).

• After the first character you may use the letters a through z or A through Z, the digits
0 through 9, or underscores.

• Uppercase and lowercase characters are distinct. This means ItemsOrdered is not
the same as itemsordered.

Table 2-5 lists variable names and indicates whether each is legal or illegal in C++.

2.7 Integer Data Types

CONCEPT: There are many different types of data. Variables are classified according to
their data type, which determines the kind of information that may be
stored in them. Integer variables can only hold whole numbers.

Computer programs collect pieces of data from the real world and manipulate them in
various ways. There are many different types of data. In the realm of numeric information,
for example, there are whole numbers and fractional numbers. There are negative numbers
and positive numbers. Then there is textual information. Names and addresses, for instance,

Table 2-5 Some C++ Variable Names

Variable Name Legal or Illegal

dayOfWeek Legal.

3dGraph Illegal. Variable names cannot begin with a digit.

_employee_num Legal.

June1997 Legal.

Mixture#3 Illegal. Variable names may only use letters, digits, and underscores.

44 Chapter 2 Introduction to C++

are stored as groups of characters. When you write a program you must determine what
types of information it will be likely to encounter.

If you are writing a program to calculate the number of miles to a distant star, you’ll
need variables that can hold very large numbers. If you are designing software to record
microscopic dimensions, you’ll need to store very small and precise numbers.
Additionally, if you are writing a program that must perform thousands of intensive
calculations, you’ll want data stored in variables that can be processed quickly. The data
type of a variable determines all of these factors.

Although C++ offers many data types, in the very broadest sense there are only two:
numeric and character. Numeric data types are broken into two additional categories:
integer and floating-point, as shown in Figure 2-3.

Integers are whole numbers like −2, 19, and 24. Floating-point numbers have a decimal
point like −2.35, 19.0, and 0.024. Additionally, the integer and floating-point data types
are broken into even more classifications.

Your primary considerations for selecting the best data type for a numeric variable are
the following:

• whether the variable needs to hold integers or floating-point values,
• the largest and smallest numbers that the variable needs to be able to store,
• whether the variable needs to hold signed (both positive and negative) or only

unsigned (just zero and positive) numbers, and
• the number of decimal places of precision needed for values stored in the variable.

Let’s begin by looking at integer data types. C++ has six different data types for storing
integers. On most computers each of these has either two or four bytes of memory. The
number of bytes a data type can hold is called its size. Typically, the larger the size a
data type is, the greater the range of values it can hold.

Recall from Chapter 1 that a byte is made up of 8 bits. So a data type that stores data
in two bytes of memory can hold 16 bits of information. This means it can store 216

bit patterns, which is 65,536 different combinations of zeros and ones. A data type
that uses 4 bytes of memory has 32 bits, so it can hold 232 different bit patterns,
which is 4,294,967,296 different combinations. What these different combinations
are used for depends on the data type. For example, the unsigned short data type,
which is for storing non-negative integers such as ages or weights, uses its 16 bits to
represent the values 0 through +65,535. The short data type, on the other hand,
stores both positive and negative numbers, so it uses its 16 bits to represent the values
from −32,768 to +32,767. Figure 2-4 shows how numbers are stored in an unsigned
short variable.

Figure 2-3 Basic C++ Data Types

C�� Data Types

numeric character

integer floating-point

Integer Data Types 45

Table 2-6 shows all six C++ integer data types with their typical sizes and ranges.
Depending on your operating system, the sizes and ranges may be different.

Here are some examples of integer variable definitions. Notice that an unsigned int variable
can also be defined using only the word unsigned, as shown below.

short count;
unsigned short age;
int speed;
unsigned int days; // These two definitions
unsigned days; // are equivalent.
long deficit;
unsigned long insects;

Notice also that in Table 2-6 the int and long data types have the same sizes and ranges,
and the unsigned int data type has the same size and range as the unsigned long data
type. This is not always true because the size of integers is dependent on the type of system
you are using. Here are the only guarantees:

• Integers are at least as big as short integers.
• Long integers are at least as big as integers.
• Unsigned short integers are the same size as short integers.
• Unsigned integers are the same size as integers.
• Unsigned long integers are the same size as long integers.

Later in this chapter you will learn to use the sizeof operator to determine how large all
the data types are on your computer.

Figure 2-4 Unsigned Short Data Type Storage

Example value = binary 25

Smallest value that can be stored = binary 0

Largest value that can be stored = binary 65,535

Table 2-6 Integer Data Types, Sizes, and Ranges

Data Type Size Range

short 2 bytes –32,768 to +32,767

unsigned short 2 bytes 0 to +65,535

int 4 bytes –2,147,483,648 to +2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

long 4 bytes –2,147,483,648 to +2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

46 Chapter 2 Introduction to C++

Program 2-9 uses integer, unsigned integer, and long integer variables.

Notice in Program 2-9 that the variable days is assigned 190000 rather than 190,000.
There are no commas in the number. This is because C++ does not allow commas inside
numeric constants.

In most programs you will need many variables. If a program uses more than one variable
of the same data type, for example the two integers length and width, they can be defined
separately, like this

int length;
int width;

or, alternatively, both variable definitions can be placed in a single statement, like this

int length, width;

Many instructors, however, prefer that each variable be placed on its own line:

int length,
width;

Whether you place multiple variables on the same line or each variable on its own line,
when you define several variables of the same type in a single statement, simply separate

Program 2-9

1 // This program has variables of several of the integer types.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int checking;
8 unsigned int miles;
9 long days;
10
11 checking = -20;
12 miles = 4276;
13 days = 190000;
14
15 cout << "We have made a long journey of " << miles << " miles.";
16 cout << "\nOur checking account balance is " << checking;
17 cout << "\nAbout " << days << " days ago Columbus ";
18 cout << "stood on this spot.\n";
19 return 0;
20 }

Program Output
We have made a long journey of 4276 miles.
Our checking account balance is -20
About 190000 days ago Columbus stood on this spot.

Integer Data Types 47

their names with commas. A semicolon is used at the end of the entire definition.
Program 2-10 illustrates this. This program also shows how it is possible to give an initial
value to a variable at the time it is defined.

Integer and Long Integer Constants
Look at the following statement from Program 2-10:

int floors = 15,
 rooms = 300,
 suites = 30;

This statement contains three integer literals, or constants. In C++, integer constants are
normally stored in memory just as an int.

One of the pleasing characteristics of the C++ language is that it allows you to control
almost every aspect of your program. If you need to change the way something is
stored in memory, the tools are provided to do that. For example, what if you are in a
situation where you have an integer constant, but you need it to be stored in memory
as a long integer? (Rest assured, this is a situation that does arise.) C++ allows you to
force an integer constant to be stored as a long integer by placing the letter L at the end
of the number. Here is an example:

32L

On a computer that uses 2-byte integers and 4-byte long integers, this constant will use
4 bytes. This is called a long integer literal, or long integer constant.

Program 2-10

1 // This program defines three variables in the same statement.
2 // They are given initial values at the time they are defined.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int floors = 15,
9 rooms = 300,
10 suites = 30;
11
12 cout << "The Grande Hotel has " << floors << " floors\n";
13 cout << "with " << rooms << " rooms and " << suites;
14 cout << " suites.\n";
15 return 0;
16 }

Program Output
The Grande Hotel has 15 floors
with 300 rooms and 30 suites.

48 Chapter 2 Introduction to C++

Hexadecimal and Octal Constants (enrichment)
Programmers commonly express values in numbering systems other than decimal (or base 10).
Hexadecimal (base 16) and octal (base 8) are popular because they make certain programming
tasks more convenient than decimal numbers do.

By default, C++ assumes that all integer constants are expressed in decimal. You express
hexadecimal numbers by placing 0x in front of them. (This is zero-x, not oh-x.) Here is
how the hexadecimal number F4 would be expressed in C++:

0xF4

Octal numbers must be preceded by a 0 (zero, not oh). For example, the octal 31 would
be written

031

Checkpoint

2.10 Which of the following are illegal C++ variable names, and why?

x
99bottles
july97
theSalesFigureForFiscalYear98
r&d
grade_report

2.11 Is the variable name Sales the same as sales? Why or why not?
2.12 Refer to the data types listed in Table 2-6 for these questions.

A) If a variable needs to hold numbers in the range 32 to 6,000, what data type would
be best?

B) If a variable needs to hold numbers in the range –40,000 to +40,000, what data
type would be best?

C) Which of the following integer constants use more memory, 20 or 20L?
2.13 Which integer data types can only hold non-negative values?
2.14 How would you combine the following variable definition and assignment statement

into a single statement?

int apples;
apples = 20;

NOTE: Although C++ allows you to use either an uppercase or lowercase L, the
lowercase l looks too much like the number 1, so you should always use the
uppercase L.

NOTE: You will not be writing programs for some time that require this type of
manipulation. However, good programmers develop the skills for reading other people’s
source code. You may find yourself reading programs that use items like long integer,
hexadecimal, or octal constants.

Floating-Point Data Types 49

2.15 How would you combine the following variable definitions into a single statement?

int xCoord = 2;
int yCoord = -4;
int zCoord = 6;

2.8 Floating-Point Data Types

CONCEPT: Floating-point data types are used to define variables that can hold real
numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers.

Internally, floating-point numbers are stored in a manner similar to scientific notation.
Take the number 47,281.97. In scientific notation this number is 4.728197 × 104. (104 is
equal to 10,000, and 4.728197 × 10,000 is 47,281.97.) The first part of the number,
4.728197, is called the mantissa. The mantissa is multiplied by a power of 10.

Computers typically use E notation to represent floating-point values. In E notation, the
number 47,281.97 would be 4.728197E4. The part of the number before the E is the
mantissa, and the part after the E is the power of 10. When a floating-point number is stored
in memory, it is stored as the mantissa and the power of 10.

Table 2-7 shows other numbers represented in scientific and E notation.

In C++ there are three data types that can represent floating-point numbers. They are

float
double
long double

The float data type is considered single precision. The double data type is usually twice
as big as float, so it is considered double precision. As you’ve probably guessed, the long
double is intended to be larger than the double. The exact sizes of these data types is
dependent on the computer you are using. The only guarantees are

• A double is at least as big as a float.
• A long double is at least as big as a double.

Table 2-8 shows the sizes and ranges of floating-point data types usually found on PCs.

Table 2-7 Floating-Point Representations

Decimal Notation Scientific Notation E Notation

247.91 2.4791 × 102 2.4791E2

0.00072 7.2 × 10–4 7.2E–4

2,900,000 2.9 × 106 2.9E6

50 Chapter 2 Introduction to C++

You will notice there are no unsigned floating-point data types. On all machines, variables
of the float, double, and long double data type can store both positive and negative
numbers. Program 2-11 uses floating-point data types.

Floating-Point Constants
Floating-point literals, commonly referred to as floating-point constants, may be
expressed in a variety of ways. As shown in Program 2-11, E notation is one method.
When you are writing numbers that are extremely large or extremely small, this will
probably be the easiest way. E notation numbers may be expressed with an uppercase E or a
lowercase e. Notice in the source code the constants were written as 1.496E8 and 1.989E30,
but the program printed them as 1.496e+008 and 1.989e+030. The uppercase E and
lowercase e are equivalent. The plus sign in front of the exponent is also optional.

You can also express floating-point constants in decimal notation. The constant 1.496E8
could have been written as

149600000.0

Table 2-8 Floating-Point Data Types on PCs

Data Type Key Word Size Range
Significant
Digits

Single precision float 4 bytes Numbers between ±3.4E-38 and
±3.4E38

7

Double precision double 8 bytes Numbers between ±1.7E-308 and
±1.7E308

16

Long double precision long double 8 bytes* Numbers between ±1.7E-308 and
±1.7E308

16

*Some compilers use more than 8 bytes for long doubles. These allow greater ranges.

Program 2-11

1 // This program uses two floating-point data types, float and double.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 float distance = 1.496E8; // in kilometers
8 double mass = 1.989E30; // in kilograms
9
10 cout << "The Sun is " << distance << " kilometers away.\n";
11 cout << "The Sun\'s mass is " << mass << " kilograms.\n";
12 return 0;
13 }

Program Output
The Sun is 1.496e+008 kilometers away.
The Sun's mass is 1.989e+030 kilograms.

Floating-Point Data Types 51

Obviously the E notation is more convenient for lengthy numbers; but for numbers like
47.39, decimal notation is preferable to 4.739E1.

All of the following floating-point constants are equivalent:

1.496E8
1.496e8
1.496E+8
1.496e+8
149600000.0

Floating-point constants are normally stored in memory as doubles. Just in case you need
to force a constant to be stored as a float, you can append the letter F or f to the end of
it. For example, the following constants would be stored as float numbers:

1.2F
45.907f

If you want to force a value to be stored as a long double, append an L to it, as
shown here:

1034.56L

The compiler won’t confuse this with a long integer because of the decimal point. A
lowercase letter l can also be used to define a floating-point constant to be a long double,
but an uppercase L is preferable, as the lowercase letter l is easily confused with the digit 1.

Assigning Floating-Point Values to Integer Variables
When a floating-point value is assigned to an integer variable, the fractional part of the
value (the part after the decimal point) is discarded. This occurs because an integer
variable cannot hold any value containing decimals. For example, look at the
following code.

int number;
number = 7.8; // Assigns 7 to number

This code attempts to assign the floating-point value 7.8 to the integer variable number.
Because this is not possible, the value 7 is assigned to number, and the fractional part is
discarded. When part of a value is discarded in this manner, the value is said to be
truncated.

NOTE: Because floating-point constants are normally stored in memory as doubles,
some compilers issue a warning message when you assign a floating-point constant to a
float variable. For example, if num is a float, the following statement might cause the
compiler to generate a warning message:

num = 14.725;

You can suppress the error message by appending the f suffix to the floating-point
constant, as shown here:

num = 14.725f;

52 Chapter 2 Introduction to C++

Assigning a floating-point variable to an integer variable has the same effect. For example,
look at the following code.

int intVar;

double doubleVar = 7.8;

intVar = doubleVar; // Assigns 7 to intVar

 // doubleVar remains 7.8

Checkpoint

2.16 How would the following number in scientific notation be represented in E notation?

6.31 × 1017

2.17 What will the following code display?

int number;
number = 3.625:
cout << number;

2.18 Write a program that defines an integer variable named age and a double variable
named weight. Store your age and weight as constants (i.e., literals) in the variables.
The program should display these values on the screen in a manner similar to the
following:

Program Output
My age is 26 and my weight is 168.5 pounds.

(Feel free to lie to the computer about your age and weight. It will never know!)

2.9 The char Data Type

CONCEPT: A variable of the char data type holds only a single character.

You learned earlier in this chapter that there are two basic kinds of data types, numeric
and character. The previous two sections examined numeric data types. Now let’s take a
look at character data types.

The simplest character data type is the char data type. It can hold only a single character
and, on most systems, uses just one byte of memory. Here is an example. Notice that the
character literal holding the value being assigned to the variable is enclosed in single
quotes.

char letter = ‘A’;

 Program 2-12 uses a char variable and several character literals.

WARNING! Floating-point variables can hold a much larger range of values than
integer variables can. If a floating-point value is stored in an integer variable, and the
whole part of the value (the part before the decimal point) is too large for the integer
variable, an invalid value will be stored in the integer variable.

The char Data Type 53

Interestingly, characters are closely related to integers because internally they are stored as
integers. Each printable character, as well as many nonprintable characters, is assigned a
unique number. The most commonly used method for encoding characters is ASCII, which
stands for the American Standard Code for Information Interchange. When a character is
stored in memory, it is actually its numeric code that is stored. When the computer is
instructed to print the value on the screen, it displays the character that corresponds to the
numeric code. Appendix A shows the entire ASCII character set so you can see which
integer value is used to represent each character. Notice that the number 65 is the code for
capital A, 66 is the code for capital B, and so on.

Program 2-13 illustrates this relationship between characters and how they are stored.

Program 2-12

1 // This program uses a char variable and several character literals.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;
8
9 letter = 'A';
10 cout << letter << endl;
11
12 letter = 'B';
13 cout << letter << endl;
14 return 0;
15 }

Program Output
A
B

Program 2-13

1 // This program demonstrates that characters are actually
2 // stored internally by their ASCII integer value.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char letter;
9
10 letter = 65; // 65 is the ASCII code for the character A
11 cout << letter << endl;
12
13 letter = 66; // 66 is the ASCII code for the character B
14 cout << letter << endl;
15 return 0;
16 }

(program continues)

54 Chapter 2 Introduction to C++

Figure 2-5 further illustrates that when you think of characters, such as A, B, and C, being
stored in memory, it is really the numbers 65, 66, and 67 that are stored.

Character and String Literals
Character literals and char variables can only hold a single character. If you want to store
more than one character in a literal or variable, you need to use a more complex character
data type, a string. String literals and variables can hold a whole series of characters. In the
next section we will examine string variables in more detail. For now, let’s look at string
literals and compare them to character literals.

In the following example, ‘H’ is a character literal and “Hello” is a string literal. Notice
that while a character literal is enclosed in single quotation marks, a string literal is
enclosed in double quotation marks.

cout << 'H' << endl; // This displays a character literal.
cout << "Hello" << endl; // This displays a string literal.

Because a string literal can be virtually any length, there must be some way for the
program to know how long it is. In C++ this is done by appending an extra byte to its end
and storing the number 0 in it. This is called the null terminator or null character and
marks the end of the string.

Don’t confuse the null terminator with the character '0'. If you look at Appendix A you
will see that the character '0' has ASCII code 48, whereas the null terminator has ASCII
code 0. If you want to print the character 0 on the screen, you use ASCII code 48. If you
want to mark the end of a string, you use ASCII code 0.

Let’s look at an example of how a string literal is stored in memory. Figure 2-6 depicts the
way the string "Sebastian" would be stored.

Program Output
A
B

Figure 2-5

Program 2-13 (continued)

'A'

65

'B'

66

'C'

67

is stored in memory as

The char Data Type 55

First, notice that the characters in the string are stored in consecutive memory locations.
Second, notice that the quotation marks are not stored with the string. They simply mark the
beginning and end of the string in your source code. Finally, notice the very last byte of the
string. It contains the null terminator, which is represented by the \0 character. The addition
of this last byte means that although the string "Sebastian" is 9 characters long, it occupies
10 bytes of memory.

The null terminator is another example of something that sits quietly in the background. It
doesn’t print on the screen when you display a string, but nevertheless, it is there silently
doing its job.

Now let’s compare the way character and string literals are stored. Suppose you have the
literals 'A' and "A" in a program. Figure 2-7 depicts their internal storage.

As you can see, 'A' is a 1-byte element and "A" is a 2-byte element. Since characters are
really stored as ASCII codes, Figure 2-8 shows what is actually being stored in memory.

Because a char variable can only hold a single character, it can be assigned the character 'A',
but not the string "A".

char letterOne = 'A'; // This will work.
char letterTwo = "A"; // This will NOT work!

You have learned that some strings look like a single character but really aren’t. It is also
possible to have a character that looks like a string. An example is the newline character, \n.
Although it is represented by two characters, a slash and an n, it is internally represented as
one character. In fact, all escape sequences, internally, are just 1 byte.

Figure 2-6

NOTE: C++ automatically places the null terminator at the end of string literals.

Figure 2-7

Figure 2-8

S

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

e b a s t i a n \0

A \0

A'A' is stored as

"A" is stored as

65 0

65'A' is stored as

"A" is stored as

56 Chapter 2 Introduction to C++

Program 2-14 shows the use of \n as a character literal, enclosed in single quotation
marks. If you refer to the ASCII chart in Appendix A, you will see that ASCII code 10 is
the linefeed character. This is the code C++ uses for the newline character.

Let’s review some important points regarding characters and strings:

• Printable characters are internally represented by numeric codes. Most computers use
ASCII codes for this purpose.

• Characters normally occupy a single byte of memory.
• Strings are consecutive sequences of characters that occupy consecutive bytes of memory.
• String literals have a null terminator at the end. This marks the end of the string.
• Character literals are enclosed in single quotation marks.
• String literals are enclosed in double quotation marks.
• Escape sequences such as '\n' are stored internally as a single character.

2.10 The C++ string Class

CONCEPT: Standard C++ provides a special data type for storing and working with strings.

Because a char variable can store only one character in its memory location, another data
type is needed for a variable able to hold an entire string. While C++ does not have a built-
in data type able to do this, Standard C++ provides something called the string class that
allows the programmer to create a string type variable.

Using the string Class
The first step in using the string class is to #include the string header file. This is
accomplished with the following preprocessor directive:

#include <string>

Program 2-14

1 // This program uses character literals.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;
8
9 letter = 'A';
10 cout << letter << '\n';
11
12 letter = 'B';
13 cout << letter << '\n';
14 return 0;
15 }

Program Output
A
B

The C++ string Class 57

The next step is to define a string type variable, called a string object. Defining a
string object is similar to defining a variable of a primitive type. For example, the
following statement defines a string object named movieTitle.

string movieTitle;

You can assign a string literal to movieTitle with the assignment operator, like this.

movieTitle = "Wheels of Fury";

And you can use cout to display the value of the movieTitle object, as shown here.

cout << "My favorite movie is " << movieTitle << endl;

Program 2-15 is a complete program that demonstrates the preceding statements.

As you can see, working with string objects is similar to working with variables of
other types. Throughout this text we will continue to discuss string class features and
capabilities.

Checkpoint

2.19 What are the ASCII codes for the following characters? (Refer to Appendix A)

C
F
W

2.20 Which of the following is a character literal?

'B'
"B"

Program 2-15

1 // This program demonstrates the string class.
2 #include <iostream>
3 #include <string> // Required for the string class.
4 using namespace std;
5
6 int main()
7 {
8 string movieTitle;
9
10 movieTitle = "Wheels of Fury";
11 cout << "My favorite movie is " << movieTitle << endl;
12 return 0;
13 }

Program Output
My favorite movie is Wheels of Fury

58 Chapter 2 Introduction to C++

2.21 Assuming the char data type uses 1 byte of memory, how many bytes do each of
the following literals use?

'Q'
"Q"
"Sales"
'\n'

2.22 What is wrong with the following program statement?

char letter = "Z";

2.23 What header file must you include in order to use string objects?
2.24 Write a program that stores your name, address, and phone number in three separate

string objects. Then display their contents on the screen.

2.11 The bool Data Type

CONCEPT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in
honor of English mathematician George Boole (1815–1864).

The bool data type allows you to create variables that hold true or false values.
Program 2-16 demonstrates the definition and use of a bool variable. Although it appears
that it is storing the words true and false, it is actually an integer variable that stores 0 for
false and 1 for true, as you can see from the program output.

Program 2-16

1 // This program uses Boolean variables.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 bool boolValue;
8
9 boolValue = true;
10 cout << boolValue << endl;
11
12 boolValue = false;
13 cout << boolValue << endl;
14 return 0;
15 }

Program Output
1
0

More on Variable Assignments and Initialization 59

2.12 Determining the Size of a Data Type

CONCEPT: The sizeof operator may be used to determine the size of a data type on
any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chapter,
one of the problems of portability is the lack of common sizes of data types on all machines.
If you are not sure what the sizes of data types are on your computer, C++ provides a way to
find out.

A special operator called sizeof will report the number of bytes of memory used by any data
type or variable. Program 2-17 illustrates its use. The first line that uses the operator is line 9.

cout << "The size of an integer is " << sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the
operator. The operator “returns” the number of bytes used by that item. This operator can
be used anywhere you can use an unsigned integer, including in mathematical operations.

2.13 More on Variable Assignments and Initialization

CONCEPT: An assignment operation assigns, or copies, a value into a variable. When a
value is assigned to a variable as part of the variable’s definition, it is called
an initialization.

Program 2-17

1 // This program displays the size of various data types.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 long double apple;
8
9 cout << "The size of an integer is " << sizeof(int);
10 cout << " bytes.\n";
11 cout << "The size of a long integer is " << sizeof(long);
12 cout << " bytes.\n";
13 cout << "An apple can be eaten in " << sizeof(apple);
14 cout << " bytes!\n";
15 return 0;
16 }

Program Output
The size of an integer is 4 bytes.
The size of a long integer is 4 bytes.
An apple can be eaten in 8 bytes!

60 Chapter 2 Introduction to C++

Assignment
Statements

As you have already seen in several examples, a value is stored in a variable with an assignment
statement. For example, the following statement copies the value 12 into the variable unitsSold.

unitsSold = 12;

The = symbol, as you recall, is called the assignment operator. Operators perform operations
on data. The data that operators work with are called operands. The assignment operator
has two operands. In the previous statement, the operands are unitsSold and 12.

It is important to remember that in an assignment statement, C++ requires the name of the
variable receiving the assignment to appear on the left side of the operator. The following
statement is incorrect.

12 = unitsSold; // Incorrect!

In C++ terminology, the operand on the left side of the = symbol must be an lvalue. An lvalue
is something that identifies a place in memory whose contents may be changed, so a new
value can be stored there. Most of the time the lvalue will be a variable name. It is called an
lvalue because it is a value that may appear on the left-hand side of an assignment operator.

The operand on the right side of the = symbol must be an rvalue. An rvalue is any expression
that has a value. This could be a single number, like 12, or the result of a calculation, such as
4 + 8. The assignment statement evaluates the expression on the right-hand side to get the
value of the rvalue and then puts it in the memory location identified by the lvalue. Both of
the following statements assign the value 12 to the unitsSold variable.

unitsSold = 12;
unitsSold = 4 + 8;

You have also seen that it is possible to assign values to variables when they are defined. This is
called initialization. When multiple variables are defined in the same statement, it is possible to
initialize some of them without having to initialize all of them. Program 2-18 illustrates this.

Program 2-18

1 // This program shows variable initialization.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 int main()
7 {
8 string month = "February"; // month is initialized to "February"
9 int year, // year is not initialized
10 days = 28; // days is initialized to 28
11
12 year = 2007; // Now year is assigned a value
13
14 cout << "In " << year << " " << month
15 << " had " << days << " days.\n";
16
17 return 0;
18 }

Program Output
In 2007 February had 28 days.

VideoNote

Arithmetic Operators 61

Arithmetic
Operators

2.14 Scope

CONCEPT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where it may
be used. The rules that define a variable’s scope are complex, and we will just introduce the
concept here. Later in the book we will cover this topic in more depth.

The first rule of scope is that a variable cannot be used in any part of the program before it
is defined. Program 2-19 illustrates this.

The program will not work because line 7 attempts to send the contents of the variable
value to cout before the variable is defined. The compiler reads a program from top to
bottom. If it encounters a statement that uses a variable before the variable is defined, an
error will result. To correct the program, the variable definition must be put before any
statement that uses it.

2.15 Arithmetic Operators

CONCEPT: There are many operators for manipulating numeric values and performing
arithmetic operations.

C++ provides many operators for manipulating data. Generally, there are three types of
operators: unary, binary, and ternary. These terms reflect the number of operands an operator
requires.

Unary operators only require a single operand. For example, consider the following
expression: −5

Of course, we understand this represents the value negative five. The constant 5 is preceded
by the minus sign. The minus sign, when used this way, is called the negation operator.
Since it only requires one operand, it is a unary operator.

Binary operators work with two operands. Ternary operators, as you may have guessed, require
three operands. C++ only has one ternary operator, which will be discussed in Chapter 4.

Program 2-19

1 // This program can't find its variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << value; // ERROR! value has not been defined yet!
8
9 int value = 100;
10 return 0;
11 }

VideoNote

62 Chapter 2 Introduction to C++

Arithmetic operations occur frequently in programming. Table 2-9 shows the common
arithmetic operators in C++. All are binary operators.

Here is an example of how each of these operators works.

The addition operator returns the sum of its two operands.

total = 4 + 8; // total is assigned the value 12

The subtraction operator returns the value of its right operand subtracted from its left
operand.

candyBars = 8 - 3; // candyBars is assigned the value 5

The multiplication operator returns the product of its two operands.

points = 3 * 7; // points is assigned the value 21

The division operator returns the quotient of its left operand divided by its right
operand.

double points = 5.0 / 2; // points is assigned the value 2.5

However, the division operator works differently depending on whether its operands are
integer or floating-point numbers. When either operand is a floating-point number, it
performs the “normal” type of division you are familiar with, as shown above. On the other
hand, when both operands are integers, the result of the division will also be an integer. If
the result has a fractional part, it will be thrown away. This type of division is known as
integer division.

Here is an example of integer division.

double fullBoxes = 26 / 8; // fullBoxes is assigned 3.0, not 3.25

The result of the integer divide is 3 because 8 goes into 26 three whole times with a
remainder of 2. The remainder is discarded. When the 3 is assigned to the floating-point
variable fullBoxes, it is changed into the floating-point value 3.0. The fractional part of
the division is discarded even though the result is being assigned to a floating-point variable
because the division takes place before the assignment.

If you want the division operator to perform regular division, you must make sure at least
one of the operands is a floating-point number.

The modulus operator computes the remainder of doing an integer divide.

leftOver = 26 % 8; // leftOver is assigned the value 2

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Example

 + Addition total = cost + tax;

 – Subtraction cost = total - tax;

 * Multiplication tax = cost * rate;

 / Division salePrice = original / 2;

 % Modulus remainder = value % 3;

Arithmetic Operators 63

Figure 2-9 illustrates the use of the integer divide and modulus operations.

In Chapter 3 you will learn how to use these operators in more complex mathematical
formulas. For now we will concentrate on their basic usage. Here is a program that does
that. It uses two arithmetic operators, the addition operator and the multiplication
operator.

Suppose we need to write a program that calculates and displays an employee’s total wages
for the week. The regular hours for the work week are 40, and any hours worked over 40
are considered overtime. The employee earns $18.25 per hour for regular hours and
$27.38 per hour for overtime hours. The employee has worked 50 hours this week. The
following pseudocode algorithm shows the program’s logic.

Regular wages = base pay rate × regular hours
Overtime wages = overtime pay rate × overtime hours
Total wages = regular wages + overtime wages
Display the total wages

Program 2-20 shows the C++ code for the program.

Figure 2-9 Integer Divide and Modulus Operations

Program 2-20

1 // This program calculates hourly wages, including overtime.
2 // It uses two arithmetic operators, the addition operator
3 // and the multiplication operator.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 double basePayRate = 18.25, // Base pay rate
10 overtimePayRate = 27.38, // Overtime pay rate
11 regularHours = 40.0, // Regular hours worked}
12 overtimeHours = 10, // Overtime hours worked
13 regularWages, // Computed regular wages
14 overtimeWages, // Computed overtime wages
15 totalWages; // Computed total wages
16
17 // Calculate regular wages
18 regularWages = basePayRate * regularHours;
19
20 // Calculate overtime wages
21 overtimeWages = overtimePayRate * overtimeHours;
22

(program continues)

26

3 R 2
26 % 8
26 / 8

8

64 Chapter 2 Introduction to C++

Notice that the output displays the wages as $1003.8, with just one digit after the
decimal point. In Chapter 3 you will learn to format output so you can control how it
displays.

Here is a program that illustrates two additional arithmetic operators. It uses integer
division and the modulus operator to convert seconds into minutes and seconds.

23 // Calculate total wages
24 totalWages = regularWages + overtimeWages;
25
26 // Display total wages
27 cout << "Wages for this week are $" << totalWages << endl;
28 return 0;
29 }

Program Output
Wages for this week are $1003.8

Program 2-21

1 // This program converts seconds to minutes and seconds.
2 // It uses integer division and the modulus operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int totalSeconds = 125, // Number of seconds to be converted
9 minutes, // Number of minutes in totalSeconds
10 seconds; // Number of seconds remaining
11
12 // Calculate the number of minutes
13 minutes = totalSeconds / 60;
14
15 // Calculate the remaining seconds
16 seconds = totalSeconds % 60;
17
18 // Display the results
19 cout << totalSeconds << " seconds is equivalent to ";
20 cout << minutes << " minutes and " << seconds << " seconds. \n";
21
22 return 0;
23 }

Program Output
125 seconds is equivalent to 2 minutes and 5 seconds.

Program 2-20 (continued)

Comments 65

Checkpoint

2.25 Is the following assignment statement valid or invalid? If it is invalid, why?

72 = amount;

2.26 What is wrong with the following program? How would you correct it?

#include <iostream>
using namespace std;
int main()
{

critter = 62.7;
double critter;
cout << critter << endl;
return 0;

}

2.27 What will be assigned to x in each of the following statements?

x = 8 + 3;
x = 8 - 3;
x = 8 * 3;
x = 8 % 3;

2.28 Is the following an example of integer division or floating-point division? What
value will be displayed?

cout << 16 / 3;

2.16 Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a
program.

It may surprise you that one of the most important parts of a program has absolutely no
impact on the way it runs. We are speaking, of course, of the comments. Comments are
part of the program, but the compiler ignores them. They are intended for people who may
be reading the source code.

Some programmers resist putting more than just a few comments in their source code.
After all, it may seem like enough work to type the parts of the program that actually do
something. It is crucial, however, that you develop the habit of thoroughly annotating your
code with descriptive comments. It might take extra time now, but it will almost certainly
save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of C++
code. Once you have written the code and satisfactorily debugged it, you happily put it away
and move on to the next project. Ten months later you are asked to make a modification to
the program (or worse, track down and fix an elusive bug). You pull out the massive pile of
paper that contains your source code and stare at thousands of statements only to discover
they now make no sense at all. You find variables with names like z2, and you can’t
remember what they are for. If only you had left some notes to yourself explaining all the

66 Chapter 2 Introduction to C++

program’s nuances and oddities. But it’s too late now. All that’s left to do is decide what will
take less time: figuring out the old program or completely rewriting it!

This scenario might sound extreme, but it’s one you don’t want to happen to you. Real-world
programs are big and complex. Thoroughly documented programs will make your life easier,
not to mention the work of other programmers who may have to read your code in the
future. In addition to telling what the program does and describing the purpose of variables,
comments can also be used to explain complex procedures in your code and to provide
information such as who wrote the program and when it was written or last modified.

Single Line Comments
You have already seen one way to place comments in a C++ program. As illustrated in
programs throughout this chapter, you simply place two forward slashes (//) where you want
the comment to begin. The compiler ignores everything from that point to the end of the line.
This is called a single line comment.

Multi-Line Comments
The second type of comment in C++ is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by a
forward slash). Everything between these markers is ignored. Program 2-22 illustrates the
use of both a multi-line comment and single line comments. The multi-line comment starts
on line 1 with the /* symbol, and ends on line 6 with the */ symbol.

Notice that unlike a comment started with //, a multi-line comment can span several lines.
This makes it more convenient to write large blocks of comments because you do not have to
mark every line. On the other hand, the multi-line comment is inconvenient for writing single
line comments because you must type both a beginning and ending comment symbol.

Program 2-22

1 /*
2 PROGRAM: Payroll.cpp
3 Written by Herbert Dorfmann
4 This program calculates company payroll
5 Last modified: 8/20/2012
6 */
7 #include <iostream>
8 using namespace std;
9
10 int main()
11 {
12 int employeeID; // Employee ID number
13 double payRate; // Employees hourly pay rate
14 double hours; // Hours employee worked this week

 (The remainder of this program is left out.)

NOTE: Many programmers use a combination of single line comments and multi-line
comments, as illustrated in the previous sample program. Convenience usually dictates
which style to use.

Programming Style 67

When using multi-line comments:

• Be careful not to reverse the beginning symbol with the ending symbol.
• Be sure not to forget the ending symbol.

Both of these mistakes can be difficult to track down and will prevent the program from
compiling correctly.

2.17 Programming Style

CONCEPT: Programming style refers to the way a programmer uses identifiers, spaces,
tabs, blank lines, and punctuation characters to visually arrange a program’s
source code. These are some, but not all, of the elements of programming
style.

In Chapter 1 you learned that syntax rules govern the way a language may be used. The
syntax rules of C++ dictate how and where to place key words, semicolons, commas,
braces, and other components of the language. The compiler’s job is to check for syntax
errors and, if there are none, to generate object code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler is not influenced by whether each statement is on a separate line, or whether
spaces separate operators from operands. Humans, on the other hand, find it difficult to
read programs that aren’t written in a visually pleasing manner. Consider Program 2-23
for example.

Although the program is syntactically correct (it doesn’t violate any rules of C++), it is
difficult to read. The same program is shown in Program 2-24, written in a clearer style.

Program 2-23

1 #include <iostream>
2 using namespace std;int main(){double shares=220.0;double
3 avgPrice=14.67;cout
4 <<"There were "<<shares<<" shares sold at $"<<avgPrice<<
5 " per share.\n";return 0;}

Program Output
There were 220 shares sold at $14.67 per share.

Program 2-24

1 // This program is visually arranged to make it readable.
2 #include <iostream>
3 using namespace std;
4

(program continues)

68 Chapter 2 Introduction to C++

Programming style refers to the way source code is visually arranged. Ideally, it is a
consistent method of putting spaces and indentions in a program so visual cues are created.
These cues quickly tell a programmer important information about a program.

For example, notice in Program 2-24 that the opening and closing braces of the main
function align and inside the braces each line is indented. It is a common C++ style to indent
all the lines inside a set of braces. You will also notice the blank line between the variable
definitions and the cout statements. This is intended to visually separate the definitions from
the executable statements.

Another aspect of programming style is how to handle statements that are too long to
fit on one line. Because C++ is a free-flowing language, it is usually possible to spread
a statement over several lines. For example, here is a cout statement that uses four
lines:

cout << "The Fahrenheit temperature is "
 << fahrenheit
 << " and the Celsius temperature is "
 << celsius << endl;

This statement works just as if it were typed on one line. You have already seen variable
definitions treated similarly:

int fahrenheit,
 celsius,
 kelvin;

Other issues related to programming style will be presented throughout the book.

5 int main()
6 {
7 double shares = 220.0;
8 double avgPrice = 14.67;
9
10 cout << "There were " << shares << " shares sold at $";
11 cout << avgPrice << " per share.\n";
12 return 0;
13 }

Program Output
There were 220 shares sold at $14.67 per share.

NOTE: Although you are free to develop your own style, you should adhere to
common programming practices. By doing so, you will write programs that
visually make sense to other programmers and that minimize the likelihood of
errors.

Program 2-24 (continued)

Review Questions and Exercises 69

2.18 Tying It All Together: Smile!

With just the little bit of C++ covered so far, you can print pictures using cout statements.
Here is the code to make a simple smiley face. Try it!

Now try revising Program 2-25 to make faces like these.

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. Every complete statement ends with a __________.

2. To use cout statements you must include the __________ file in your program.

3. Every C++ program must have a function named __________.

4. Preprocessor directives begin with a __________.

5. A group of statements, such as the body of a function, must be enclosed in
__________.

6. 72, 'A', and "Hello World" are all examples of __________.

Program 2-25

1 // This program prints a simple smiley face.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "\n\n";
8 cout << " ^ ^ \n";
9 cout << " * \n";
10 cout << " ___/ \n";
11 return 0;
12 }

*
\ /

^ ^

o
()

o o

:
\UUU/

^ ^
v v

70 Chapter 2 Introduction to C++

7. 978.65 × 1012 would be written in E notation as __________.

8. The character literal 'A' requires __________ byte(s) of memory, whereas the string
literal "A" requires __________ byte(s).

9. Which of the following are not valid assignment statements?

A) total = 9;
B) 72 = amount;
C) yourAge = myAge;

10. If the variable letter has been defined as a char variable, which of the following are
not valid assignment statements?

A) letter = w;
B) letter = 'w';
C) letter = "w";

11. Which of the following are not valid cout statements?

A) cout << "Hello" << endl;
B) cout << "Hello" << \n;
C) cout << Hello;

12. Which of the following are not valid cout statements?

A) cout << "Hello world";
B) cout << Hello world;
C) cout << "Hello" << " world";

13. Assume x = 4, y = 7, and z = 2. What value will be stored in integer variable
result by each of the following statements?

A) result = x + y;
B) result = y * 2;
C) result = y / z;

14. Assume x = 2.5, y = 7.0, and z = 3. What value will be stored in integer variable
result by each of the following statements?

A) result = x + y;
B) result = y * 2;
C) result = y / z;

15. Write a C++ statement that defines the double variables temp, weight, and height
all in the same statement.

16. Write a C++ statement that defines the int variables months, days, and years all in
the same statement, with months initialized to 2 and years initialized to 3.

17. Write assignment statements that perform the following operations with int variable
i, double variables d1 and d2, and char variable c.

A) Add 2 to d1 and store the result in d2.
B) Multiply d2 times 4 and store the result in d1.
C) Store the character 'K' in c.
D) Store the ASCII code for the character 'K' in i.
E) Subtract 1 from i and store the result back in i.

Review Questions and Exercises 71

18. Write assignment statements that perform the following operations with int variable
i, double variables d1 and d2, and char variable c.

A) Subtract 8.5 from d2 and store the result in d1.
B) Divide d1 by 3.14 and store the result in d2.
C) Store the ASCII code for the character 'F' in c.
D) Add 1 to i and store the new value back in i.
E) Add d1 to the current value of d2 and store the result back in d2 as its new value.

19. Modify the following program segment so it prints two blank lines between each line
of text.

cout << "Two mandolins like creatures in the";
cout << "dark";
cout << "Creating the agony of ecstasy.";
cout << " - George Barker";

20. Rewrite the follow statement to use the newline escape character, instead of an endl,
each time subsequent output is to be displayed on a new line.

cout << "L" << endl
 << "E" << endl
 << "A" << endl
 << "F" << endl;

Algorithm Workbench

21. Create detailed pseudocode for a program that calculates how many days are left
until Christmas, when given as an input how many weeks are left until Christmas.
Use variables named weeks and days.

22. Create detailed pseudocode for a program that determines how many full 12-egg
cartons of eggs a farmer can pack when given as an input the number of eggs he has
collected on a given day. Use variables named eggs and cartons.

23. Create detailed pseudocode for a program that determines distance traveled when
given inputs of speed and time. Use variables named speed, time, and distance.

24. Create detailed pseudocode for a program that determines miles per gallon a vehicle
gets when given inputs of miles traveled and gallons of gas used. Use variables named
miles, gallons, and milesPerGallon.

Predict the Output

25. What will the following programs print on the screen?

A) #include <iostream>
using namespace std;
int main()
{

int freeze = 32, boil = 212;
freeze = 0;
boil = 100;
cout << freeze << endl << boil << endl;
return 0;

}

72 Chapter 2 Introduction to C++

B) #include <iostream>
using namespace std;
int main()
{

int x = 0, y = 2;
x = y * 4;
cout << x << endl << y << endl;
return 0;

}

C) #include <iostream>
using namespace std;
int main()
{

cout << "I am the incredible";
cout << "computing\nmachine";
cout << "\nand I will\namaze\n";
cout << "you.\n";
return 0;

}

26. A) #include <iostream>
using namespace std;

int main()
{

cout << "Be careful!\n";
cout << "This might/n be a trick ";
cout << "question.\n";
return 0;

}

B) #include <iostream>
using namespace std;

int main()
{

int a, x = 23;

a = x % 2;
cout << x << endl << a << endl;

 return 0;
}

Find the Error

27. The following program contains syntax errors. Locate as many as you can.

/ What's wrong with this program? /
#include iostream
using namespace std;

int main();
}

int a, b, c \\ Three integers
a = 3
b = 4
c = a + b
Cout < "The value of c is %d" < C;
return 0;

{

Review Questions and Exercises 73

Soft Skills

Programmers need good communication skills as well as good analytical and problem-
solving skills. Good communication can minimize misunderstandings that easily arise
when expectations of different individuals involved in a project are not clearly enough
articulated before the project begins. A detailed set of project specifications can clarify the
scope of a project, what interaction will occur between the user and the program, and
exactly what the program will and will not do.

28. Pair up with another student in the class. One of you is the client and the other is the
software developer. Briefly discuss a simple program the client wants the programmer
to create. Here are some possible ideas.

• the paint problem described in the Chapter 1 Soft Skills exercise
• a program that can halve the quantities of ingredients for a recipe
• a program that determines how long it will take to drive from point A to point B

Once you have decided on a program, you should independently, with no further
communication, each write down detailed specifications. The client writes down exactly what
he wants the program to do and the developer writes down her understanding of exactly what
the program will do. When you are done, compare what you have written. Rarely will the two
agree.

Now discuss the discrepancies and see if you can come to a clear understanding of exactly
what the program must do. Together create a program specification sufficiently detailed
that both of you believe it leaves no room for misunderstanding.

Programming Challenges

1. Sum of Two Numbers
Write a program that stores the integers 62 and 99 in variables and stores the sum of these
two in a variable named total. Display the total on the screen.

2. Sales Prediction
The East Coast sales division of a company generates 62 percent of total sales. Based on that
percentage, write a program that will predict how much the East Coast division will generate
if the company has $4.6 million in sales this year. Display the result on the screen.

3. Sales Tax
Write a program that computes the total sales tax on a $52 purchase. Assume the state sales
tax is 4 percent and the county sales tax is 2 percent. Display the purchase price, state tax,
county tax, and total tax amounts on the screen.

4. Restaurant Bill
Write a program that computes the tax and tip on a restaurant bill for a patron with a
$44.50 meal charge. The tax should be 6.75 percent of the meal cost. The tip should be 15
percent of the total after adding the tax. Display the meal cost, tax amount, tip amount, and
total bill on the screen.

VideoNote

Solving the
Restaurant
Bill Problem

74 Chapter 2 Introduction to C++

5. Cyborg Data Type Sizes
You have been given a job as a programmer on a Cyborg supercomputer. In order to
accomplish some calculations, you need to know how many bytes the following data types
use: char, int, float, and double. You do not have any manuals, so you can’t look up this
information. Write a C++ program that will determine the amount of memory used by each
of these types and display the information on the screen.

6. Miles per Gallon
A car holds 16 gallons of gasoline and can travel 350 miles before refueling. Write a program
that calculates the number of miles per gallon the car gets. Display the result on the screen.

7. Distance per Tank of Gas
A car with a 20 gallon gas tank averages 21.5 miles per gallon when driven in town and
26.8 miles per gallon when driven on the highway. Write a program that calculates and
displays the distance the car can travel on one tank of gas when driven in town and when
driven on the highway.

8. Land Calculation
In the United States, land is often measured in square feet. In many other countries it is
measured in square meters. One acre of land is equivalent to 43,560 square feet. A square
meter is equivalent to 10.7639 square feet. Write a program that computes and displays the
number of square feet and the number of square meters in acre of land.

Hint: Because a square meter is larger than a square foot, there will be fewer square meters in
 acre than there are square feet.

9. Circuit Board Price
An electronics company sells circuit boards at a 40 percent profit. Write a program that
calculates the selling price of a circuit board that costs them $12.67 to produce. Display the
result on the screen.

10. Personal Information
Write a program that displays the following information, each on a separate line:

Your name
Your address, with city, state, and zip code
Your telephone number
Your college major

Use only a single cout statement to display all of this information.

11. Triangle Pattern
Write a program that displays the following pattern on the screen:

*

1
4

1
4

Review Questions and Exercises 75

12. Diamond Pattern
Write a program that displays the following pattern on the screen:

*

*

13. Pay Period Gross Pay
A particular employee earns $32,500 annually. Write a program that determines and displays
what the amount of his gross pay will be for each pay period if he is paid twice a month (24
pay checks per year) and if he is paid bi-weekly (26 checks per year).

14. Basketball Player Height
The star player of a high school basketball team is 73 inches tall. Write a program to compute
and display the height in feet / inches form.

Hint: Try using the modulus and integer divide operations.

15. Stock Loss
Kathryn bought 600 shares of stock at a price of $21.77 per share. A year later she sold
them for just $16.44 per share. Write a program that calculates and displays the following:

• The total amount paid for the stock.
• The total amount received from selling the stock.
• The total amount of money she lost.

16. Energy Drink Consumption
A soft drink company recently surveyed 12,467 of its customers and found that
approximately 14 percent of those surveyed purchase one or more energy drinks per
week. Of those customers who purchase energy drinks, approximately 64 percent of them
prefer citrus flavored energy drinks. Write a program that displays the following:

• The approximate number of customers in the survey who purchase one or more
energy drinks per week.

• The approximate number of customers in the survey who prefer citrus flavored
energy drinks.

17. Past Ocean Levels
The Earth’s ocean levels have risen an average of 1.8 millimeters per year over the past
century. Write a program that computes and displays the number of centimeters and
number of inches the oceans rose during this time. One millimeter is equivalent to 0.1
centimeters. One centimeter is equivalent to 0.3937 inches.

18. Future Ocean Levels
During the past decade ocean levels have been rising faster than in the past, an average of
approximately 3.1 millimeters per year. Write a program that computes how much ocean
levels are expected to rise during the next 20 years if they continue rising at this rate.
Display the answer in both centimeters and inches.

This page intentionally left blank

77

C
H

A
P

T
E

R

3 Expressions and
Interactivity

3.1 The cin Object

CONCEPT: cin can be used to read data typed at the keyboard.

So far you have written programs with built-in information. You have initialized the
variables with the necessary starting values without letting the user enter his or her own
data. These types of programs are limited to performing their task with only a single set
of starting information. If you decide to change the initial value of any variable, the
program must be modified and recompiled.

In reality, most programs ask for values that will be assigned to variables. This means
the program does not have to be modified if the user wants to run it several times with
different sets of information. For example, a program that calculates the area of a circle
might ask the user to enter the circle’s radius. When the circle area has been computed
and printed, the program could be run again and a different radius could be entered.

Just as C++ provides the cout object to produce console output, it provides an object
named cin that is used to read console input. (You can think of the word cin as meaning
console input.) Program 3-1 shows cin being used to read values input by the user. Notice
that in line 2 there is a #include statement to include the iostream file. This file must be
included in any program that uses cin.

TOPICS

3.1 The cin Object
3.2 Mathematical Expressions
3.3 Data Type Conversion and Type Casting
3.4 Overflow and Underflow
3.5 Named Constants
3.6 Multiple and Combined Assignment
3.7 Formatting Output
3.8 Working with Characters and Strings

3.9 Using C-Strings
3.10 More Mathematical Library Functions
3.11 Focus on Debugging: Hand Tracing

a Program
3.12 Green Fields Landscaping Case

Study—Part 1
3.13 Tying It All Together: Word Game

VideoNote

Using cin to
Read Input

78 Chapter 3 Expressions and Interactivity

Instead of calculating the area of one rectangle, this program can be used to compute
the area of any rectangle. The values that are stored in the length and width variables
are entered by the user when the program is running. Look at lines 12 and 13.

cout << "What is the length of the rectangle? ";
cin >> length;

In line 12 cout is used to display the question “What is the length of the rectangle?” This is
called a prompt. It lets the user know that an input is expected and prompts them as to what
must be entered. When cin will be used to get input from the user, it should always be
preceded by a prompt.

Line 13 uses cin to read a value from the keyboard. The >> symbol is the stream
extraction operator, which extracts characters from the input stream so they can be
used in the program. More specifically, the stream extraction operator gets characters
from the stream object on its left and stores them in the variable whose name appears
on its right. In this example line, the characters read in by cin are taken from the cin
object and stored in the length variable.

Gathering input from the user is normally a two-step process:

1. Use cout to display a prompt on the screen.
2. Use cin to read a value from the keyboard.

Program 3-1

1 // This program calculates and displays the area of a rectangle.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int length, width, area;
8
9 cout << "This program calculates the area of a rectangle.\n";
10
11 // Have the user input the rectangle's length and width
12 cout << "What is the length of the rectangle? ";
13 cin >> length;
14 cout << "What is the width of the rectangle? ";
15 cin >> width;
16
17 // Compute and display the area
18 area = length * width;
19 cout << "The area of the rectangle is " << area << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
What is the length of the rectangle? 10[Enter]
What is the width of the rectangle? 20[Enter]
The area of the rectangle is 200.

The cin Object 79

The prompt should ask the user a question, or tell the user to enter a specific value. For
example, the code we just examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

This tells the user to enter the rectangle’s length. After the prompt displays, the program
uses cin to read a value from the keyboard and store it in the length variable.

Notice that the << and >> operators appear to point in the direction that data is
flowing. It may help to think of them as arrows. In a statement that uses cout, the <<
operator always points toward cout, as shown here. This indicates that data is flowing
from a variable or a literal to the cout object.

cout << "What is the length of the rectangle? ";
cout ← "What is the length of the rectangle? ";

In a statement that uses cin, the >> operator always points toward the variable
receiving the value. This indicates that data is flowing from the cin object to a variable.

cin >> length;
cin → length;

The cin object causes a program to wait until data is typed at the keyboard and the
[Enter] key is pressed. No other lines will be executed until cin gets its input.

When the user enters characters from the keyboard, they are temporarily placed in an area of
memory called the input buffer, or keyboard buffer. When cin reads them, it automatically
converts them to the data type of the variable where the input data will be stored. For
example, if the user types 10, it is read as the characters ‘1’ and ‘0’, but cin is smart enough
to know this will have to be converted to the int value 10 before it is stored in length. If the
user enters a floating-point number like 10.7, however, there is a problem. cin knows such a
value cannot be stored in an integer variable, so it stops reading when it gets to the decimal
point, leaving the decimal point and the rest of the digits in the input buffer. This can cause a
problem when the next value is read in. Program 3-2 illustrates this problem.

Program 3-2

1 // This program illustrates what can happen when a
2 // floating-point number is entered for an integer variable.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int intNumber;
9 double floatNumber;
10
11 cout << "Input a number. ";
12 cin >> intNumber;
13 cout << "Input a second number.\n";
14 cin >> floatNumber;
15 cout << "You entered: " << intNumber
16 << " and " << floatNumber << endl;

(program continues)

80 Chapter 3 Expressions and Interactivity

Let’s look more closely at what occurred in Program 3-2. When prompted for the first
number, the user entered 12.3 from the keyboard. However, because cin was reading a value
into intNumber, an integer variable, it stopped reading when it got to the decimal point, and
a 12 was stored in intNumber. When the second cin statement needed a value to read into
floatNumber, it found that it already had a value in the input buffer, the .3 left over from the
user’s first input. Instead of waiting for the user to enter a second number, the .3 was read in
and stored in floatNumber.

Later you will learn how to prevent something like this from happening, but for now
this illustrates the need to provide the user with clear prompts. If the user had been
specifically prompted to enter an integer for the first number, there would have been less
chance of a problem occurring.

Entering Multiple Values
You can use cin to input multiple values at once. Program 3-3 is a modified version of
Program 3-1 that does this.

17
18 return 0;
19 }

Program Output with Example Input Shown in Bold
Input a number. 12.3[Enter]
Input a second number.
You entered: 12 and 0.3

NOTE: Remember to include the iostream file in any program that uses cout or cin.

Program 3-3

1 // This program calculates and displays the area of a rectangle.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int length, width, area;
8
9 cout << "This program calculates the area of a rectangle.\n";
10
11 // Have the user input the rectangle's length and width
12 cout << "Enter the length and width of the rectangle ";
13 cout << "separated by a space.\n";
14 cin >> length >> width;
15

(program continues)

Program 3-2 (continued)

The cin Object 81

Line 14 waits for the user to enter two values. The first is assigned to length and the second
to width.

cin >> length >> width;

In the example output, the user entered 10 and 20, so 10 is stored in length and 20 is
stored in width.

Notice the user separates the numbers by spaces as they are entered. This is how cin
knows where each number begins and ends. It doesn’t matter how many spaces are
entered between the individual numbers. For example, the user could have entered

10 20

You can also read multiple values of different data types with a single cin statement.
This is shown in Program 3-4.

16 // Compute and display the area
17 area = length * width;
18 cout << "The area of the rectangle is " << area << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
Enter the length and width of the rectangle separated by a space.
10 20[Enter]
The area of the rectangle is 200

NOTE: The [Enter] key must be pressed after the last number is entered.

Program 3-4

1 // This program demonstrates how cin can read multiple values
2 // of different data types.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int whole;
9 double fractional;
10 char letter;
11
12 cout << "Enter an integer, a double, and a character: ";
13 cin >> whole >> fractional >> letter;
14
15 cout << "whole: " << whole << endl;
16 cout << "fractional: " << fractional << endl;
17 cout << "letter: " << letter << endl;
18 return 0;
19 }

(program continues)

Program 3-3 (continued)

82 Chapter 3 Expressions and Interactivity

As you can see in the example output, and in Figure 3-1, the values are stored in the
order entered in their respective variables.

But what if the user had entered the values in the wrong order, as shown in the
following sample run?

Program 3-4 Output with Different Example Input Shown in Bold
Enter an integer, a double, and a character: 5.7 4 b[Enter]
whole: 5
fractional: 0.7
letter: 4

Because the data was not entered in the specified order, there is a complete mix-up of
what value is stored for each variable. Figure 3-2 illustrates what happens.

The cin statement on line 13 reads 5 for int variable whole, .7 for double variable
fractional, and 4 for char variable letter. The character b is left in the input buffer.
For a program to function correctly it is important that the user enter data values in the
order the program expects to receive them, and not enter a floating-point number when
an integer is expected.

Program Output with Example Input Shown in Bold
Enter an integer, a double, and a character: 4 5.7 b[Enter]
whole: 4
fractional: 5.7
letter: b

Figure 3-1

Figure 3-2

Program 3-4 (continued)

cin begins
reading here.

4 5 . 7 b [Enter]

Keyboard buffer

This is stored
in whole.

This is stored
in letter.

This is stored
in fractional.

cin begins
reading here.

5 . 7 4 b [Enter]

Keyboard buffer

This is
stored in
whole.

This is
stored in
fractional.

This is
stored in

letter.

This is left
in the input

buffer.

The cin Object 83

Checkpoint

3.1 What header file must be included in programs using cin?

3.2 What is the >> symbol called?

3.3 Where does cin read its input from?

3.4 True or False: cin requires the user to press the [Enter] key after entering data.

3.5 Assume value is an integer variable. If the user enters 3.14 in response to the following
programming statement, what will be stored in value?

cin >> value;

3.6 A program has the following variable definitions.

long miles;
int feet;
double inches;

Write a single cin statement that reads a value into each of these variables.

3.7 The following program will run, but the user will have difficulty understanding
what to do. How would you improve the program?

// This program multiplies two numbers and displays the result.
#include <iostream>
using namespace std;

int main()
{

double first, second, product;
cin >> first >> second;
product = first * second;
cout << product;
return 0;

}

3.8 Complete the following program skeleton so it asks for the user’s weight (in
pounds) and displays the equivalent weight in kilograms.

#include <iostream>
using namespace std;

int main()
{

double pounds, kilograms;

// Write a prompt to tell the user to enter his or her weight
// in pounds.
// Write code here that reads in the user's weight in pounds.
// The following line does the conversion.

kilograms = pounds / 2.2;

// Write code here that displays the user's weight in kilograms.

return 0;
}

84 Chapter 3 Expressions and Interactivity

Evaluating
Mathematical
Expressions

3.2 Mathematical Expressions

CONCEPT: C++ allows you to construct complex mathematical expressions using multiple
operators and grouping symbols.

In Chapter 2 you were introduced to the basic mathematical operators, which are used to build
mathematical expressions. An expression is a programming statement that has a value. Usually,
an expression consists of an operator and its operands. Look at the following statement:

sum = 21 + 3;

Since 21 � 3 has a value, it is an expression. Its value, 24, is stored in the variable sum.
Expressions do not have to be in the form of mathematical operations. In the following
statement, 3 is an expression.

number = 3;

Here are some programming statements where the variable result is being assigned the
value of an expression. They are called assignment statements.

result = x;
result = 4;
result = 15 / 3;
result = 22 * number;
result = sizeof(int);
result = a + b + c;

In each of these statements, a number, variable name, or mathematical expression appears on
the right side of the = symbol. A value is obtained from each of these and stored in the variable
result. These are all examples of a variable being assigned the value of an expression.

Although some instructors prefer that you not perform mathematical operations within
a cout statement, it is possible to do so. Program 3-5 illustrates how to do this.

Program 3-5

1 // This program displays the decimal value of a fraction.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double numerator, denominator;
8
9 cout << "This program shows the decimal value of a fraction.\n";
10
11 // Have the user enter the numerator and denominator
12 cout << "Enter the numerator: ";
13 cin >> numerator;
14 cout << "Enter the denominator: ";
15 cin >> denominator;

(program continues)

VideoNote

Mathematical Expressions 85

The cout object can display the value of any legal expression in C++. In Program 3-5
the value of the expression numerator / denominator is displayed.

Operator Precedence
It is possible to build mathematical expressions with several operators. The following
statement assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;

Some expressions are not that straightforward, however. Consider the following
statement:

outcome = 12 + 6 / 3;

What value will be stored in outcome? It could be assigned either 6 or 14, depending on
whether the addition operation or the division operation takes place first. The answer is
14 because the division operator has higher precedence than the addition operator. This
is exactly the same as the operator precedence found in algebra.

Mathematical expressions are evaluated from left to right. However, when there are two
operators and one has higher precedence than the other, it is done first. Multiplication
and division have higher precedence than addition and subtraction, so the example
statement works like this:

• First, 6 is divided by 3, yielding a result of 2.
• Then, 12 is added to 2, yielding a result of 14.
• Finally, 14 is stored in the outcome variable.

16
17 // Compute and display the decimal value
18 cout << "The decimal value is "<< (numerator / denominator) << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
This program shows the decimal value of a fraction.
Enter the numerator: 3[Enter]
Enter the denominator: 16[Enter]
The decimal value is 0.1875

NOTE: The Program 3-5 example input shows the user entering 3 and 16. Because
these values are assigned to double variables, they are stored as 3.0 and 16.0.

NOTE: When sending an expression that includes an operator to cout, it is always a
good idea to put parentheses around the expression. Some operators will yield
unexpected results otherwise.

Program 3-5 (continued)

86 Chapter 3 Expressions and Interactivity

These steps could be diagrammed in the following way:

outcome = 12 + 6 / 3

outcome = 12 + 2

outcome = 14

Table 3-1 shows the precedence of the arithmetic operators. The operators at the top of
the table have higher precedence than the ones below them.

The multiplication, division, and modulus operators have the same precedence. This is
also true of the addition and subtraction operators. Table 3-2 shows some expressions
with their values.

Associativity
Associativity is the order in which an operator works with its operands. Associativity is
either left to right or right to left. The associativity of the division operator is left to right, so
it divides the operand on its left by the operand on its right. Table 3-3 shows the arithmetic
operators and their associativity.

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

() Expressions within parentheses are evaluated first

- unary Negation of a value, e.g., −6

* / % binary Multiplication, division, and modulus
+ - binary Addition and subtraction

Table 3-2 Some Expressions

Expression Value

5 + 2 * 4 13

10 / 2 - 3 2

8 + 12 * 2 - 4 28

4 + 17 % 2 - 1 4

6 - 3 * 2 + 7 - 1 6

Table 3-3 Associativity of Arithmetic Operators

Operator Associativity

(unary negation) - Right to left

* / % Left to right

+ - Left to right

Mathematical Expressions 87

Grouping with Parentheses
Parts of a mathematical expression may be grouped with parentheses to force some operations
to be performed before others. When a pair of parentheses is encountered, the expression inside
the parentheses is evaluated before any expressions outside of it. Thus, in the following
statement, a plus b is evaluated first. Then its sum is divided by 4.

average = (a + b) / 4;

Without the parentheses b would be divided by 4 before adding a to the result because
the division operator has a higher precedence than the addition operator. Table 3-4
shows more expressions and their values.

Converting Algebraic Expressions to Programming
Statements
In algebra it is not always necessary to use an operator for multiplication. C++, however,
requires an operator for any mathematical operation. Table 3-5 shows some algebraic
expressions that perform multiplication and the equivalent C++ expressions.

When converting some algebraic expressions to C++, you may have to insert parentheses
that do not appear in the algebraic expression. For example, look at the following
expression:

To convert this to a C++ statement, a + b will have to be enclosed in parentheses:

x = (a + b) / c;

Table 3-6 shows more algebraic expressions and their C++ equivalents.

Table 3-4 More Arithmetic Expressions

Expression Value

(5 + 2) * 4 28

10 / (5 - 3) 5

8 + 12 * (6 - 2) 56

(4 + 17) % 2 - 1 0

(6 - 3) * (2 + 7) / 3 9

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression Operation C++ Equivalent

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

x a b�
c

--------------�

88 Chapter 3 Expressions and Interactivity

No Exponents Please!
Unlike many programming languages, C++ does not have an exponent operator. Raising a
number to a power requires the use of a library function. The C++ library isn’t a place where
you check out books, but a collection of specialized functions. Think of a library function as
a “routine” that performs a specific operation. One of the library functions is called pow, and
its purpose is to raise a number to a power. Here is an example of how it’s used:

area = pow(4.0, 2);

This statement contains a call to the pow function. The numbers inside the parentheses are
arguments. Arguments are information being sent to the function. The pow function always
raises the first argument to the power of the second argument. In this example, 4.0 is raised
to the power of 2. The result is returned from the function and used in the statement where
the function call appears. The pow function expects floating-point arguments. On some C++
compilers integer arguments will also work, but since many compilers require that at least
the first argument be a double, that is the convention we use in this book. The value
returned from the function is always a double number. In this case, 16.0 is returned from
pow and assigned to the variable area. This is illustrated in Figure 3-3.

The statement area = pow(4.0, 2) is equivalent to the following algebraic statement:

area = 42

Here is another example of a statement using the pow function. It assigns 3 times 63 to x:

x = 3 * pow(6.0, 3);

And the following statement displays the value of 5 raised to the power of 4:

cout << pow(5.0, 4);

It might be helpful to think of pow as a “black box” that accepts two numbers and then
sends a third number out. The number that comes out has the value of the first number
raised to the power of the second number, as illustrated in Figure 3-4.

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression C++ Expression

y = x / 2 * 3;

z = 3 * b * c + 4;

a = (3 * x + 2) / (4 * a - 1)

Figure 3-3

y 3x
2
---�

z 3bc 4��

a 3x 2�
4a 1�
------------------�

area = pow(4.0, 2);
 16.0

arguments

return value

Mathematical Expressions 89

There are some guidelines that should be followed when the pow function is used. First,
the program must include the cmath header file. Second, at least the first of the two
arguments you pass to the function, if not both, should be a double. Third, because the
pow function returns a double value, any variable that value is assigned to should also
be a double. For example, in the following statement the variable area should be
defined as a double:

area = pow(4.0, 2);

Program 3-6 solves a simple algebraic problem. It asks the user to enter the radius of a
circle and then calculates the area of the circle. The formula is

Area = πr2

which is expressed in the program as

area = 3.14159 * pow(radius, 2);

Figure 3-4

Program 3-6

1 // This program calculates the area of a circle. The formula for the
2 // area of a circle is PI times the radius squared. PI is 3.14159.
3 #include <iostream>
4 #include <cmath> // Needed for the pow function
5 using namespace std;
6
7 int main()
8 {
9 double area, radius;
10
11 cout << "This program calculates the area of a circle.\n";
12
13 // Get the radius
14 cout << "What is the radius of the circle? ";
15 cin >> radius;
16
17 // Compute and display the area
18 area = 3.14159 * pow(radius, 2);
19 cout << "The area is " << area << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
What is the radius of the circle? 10[Enter]
The area is 314.159

pow function
Argument 1 x

Argument 2 y
xy

90 Chapter 3 Expressions and Interactivity

Checkpoint

3.9 In each of the following cases, tell which operator has higher precedence or whether
they have the same precedence.

A) + and *

B) * and /

C) / and %

3.10 Complete the following table by writing the value of each expression in the Value
column.

———————————–––––——————————

Expression Value

———————————–––––——————————
6 + 3 * 5
12 / 2 – 4
9 + 14 * 2 – 6
5 + 19 % 3 – 1
(6 + 2) * 3
14 / (11 – 4)
9 + 12 * (8 – 3)
(6 + 17) % 2 – 1
(9 – 3) * (6 + 9) / 3

3.11 Write C++ expressions for the following algebraic expressions:

3.12 Study the following program code and then complete the table following it.

double value1, value2, value3;
cout << "Enter a number: ";
cin >> value1;
value2 = 2 * pow(value1, 2);
value3 = 3 + value2 / 2 - 1;
cout << value3;

NOTE: Program 3-6 is presented as a demonstration of the pow function. In reality,
there is no reason to use this function in such a simple operation. Line 18 could just as
easily be written

area = 3.14159 * radius * radius;

The pow function is useful, however, in operations that involve larger exponents.

y 6x�

a 2b 4c��

y x3�

g x 2�

z2
--------------�

y x2

z2
-----�

Data Type Conversion and Type Casting 91

 ———

The Program Will Display What Number
If the User Enters . . . (Stored in value3)?

 ———

2

5

4.3

6
———

3.13 Complete the following program skeleton so it displays the volume of a cylindrical
fuel tank. The formula for the volume of a cylinder is

Volume = πr2h

where
π is 3.14159
r is the radius of the tank
h is the height of the tank

#include <iostream>
#include <cmath>

int main()
{

double volume, radius, height;
cout << "This program will tell you the volume of\n";
cout << "a cylinder-shaped fuel tank.\n";
cout << "How tall is the tank? ";
cin >> height;
cout << "What is the radius of the tank? ";
cin >> radius;

// You must complete the program.
return 0;

}

3.3 Data Type Conversion and Type Casting

CONCEPT: Sometimes it is necessary to convert a value from one data type to another.
C++ provides ways to do this.

If a floating-point value is assigned to an int variable, what value will the variable
receive? If an int is multiplied by a float, what data type will the result be? What if a
double is divided by an unsigned int? Is there any way of predicting what will happen
in these instances? The answer is yes. When an operator’s operands are of different data
types, C++ automatically converts them to the same data type. When it does this it
follows a set of rules, and understanding these rules will help you prevent subtle errors
from creeping into your programs.

92 Chapter 3 Expressions and Interactivity

Just like officers in the military, data types are ranked. One data type outranks another if it
can hold a larger number. For example, a float outranks an int and a double outranks a
float. Table 3-7 lists the data types in order of their rank, from highest to lowest.

One exception to the ranking in Table 3-7 is when an int and a long are the same size. In
that case, an unsigned int outranks long because it can hold a higher value.

When C++ is working with an operator, it strives to convert the operands to the same
type. This implicit, or automatic, conversion is known as type coercion. When a value is
converted to a higher data type, it is said to be promoted. To demote a value means to
convert it to a lower data type. Let’s look at the specific rules that govern the evaluation
of mathematical expressions.

Rule 1: char, short, and unsigned short values are automatically promoted to int values.

You will notice that char, short, and unsigned short do not appear in Table 3-7. That’s
because anytime values of these data types are used in a mathematical expression, they are
automatically promoted to an int.*

Rule 2: When an operator works with two values of different data types, the lower-
ranking value is promoted to the type of the higher-ranking value.

In the following expression, assume that years is an int variable and interestRate is
a double variable:

years * interestRate

Before the multiplication takes place, the value in years will be promoted to a double.

Rule 3: When the final value of an expression is assigned to a variable, it will be
converted to the data type of that variable.

In the following statement, assume that area is a long int variable, while length and
width are both int variables:

area = length * width;

Because the values stored in length and width are the same data type, neither one will be
converted to any other data type. The result of the multiplication, however, will be promoted
to long so it can be stored in area.

Table 3-7 Data Type Ranking

long double
double
float
unsigned long
long
unsigned int
int

* The only exception to this rule is when an unsigned short holds a value larger than can be held by an int.
This can happen on systems where a short is the same size as an int. In this case, the unsigned short is
promoted to unsigned int.

Data Type Conversion and Type Casting 93

But what if the variable receiving the value is of a lower data type than the value it is
receiving? In this case the value will be demoted to the type of the variable. If the
variable’s data type does not have enough storage space to hold the value, part of the
value will be lost, and the variable could receive an inaccurate result. As mentioned in
Chapter 2, if the variable receiving the value is an integer and the value being assigned to
it is a floating-point number, the floating-point value will be truncated when it is
converted to an int and stored in the variable. This means everything after the decimal
point will be discarded. Here is an example:

int x;
double y = 3.75;
x = y; // x is assigned 3 and y remains 3.75

It is important to understand, however, that when the data type of a variable’s value is
changed, it does not affect the variable itself. For example, look at the following code
segment.

int quantity1 = 6;
double quantity2 = 3.7;
double total;

total = quantity1 + quantity2;

Before C++ performs the above addition, it moves a copy of quantity1’s value into its
workspace and converts it to a double. So 6.0 and 3.7 are added, and the resulting
value, 9.7, is stored in total. However, the variable quantity1 remains an int, and the
value stored there in memory is untouched. It is still the integer 6.

Type Casting
Sometimes programmers want to change the data type of a value explicitly themselves.
This can be done by using a type cast expression. A type cast expression lets you
manually promote or demote a value. Its general format is

static_cast<DataType>(Value)

where Value is a variable or literal value that you wish to convert and DataType is the
data type you wish to convert it to. Here is an example of code that uses a type cast
expression:

double number = 3.7;
int val;
val = static_cast<int>(number);

This code defines two variables: number, a double, and val, an int. The type cast
expression in the third statement returns a copy of the value in number, converted to an
int. When a double or float is converted to an int the fractional part is truncated, so
this statement stores 3 in val. The value of number, 3.7, is not changed.

Type cast expressions are useful in situations where C++ will not perform the desired
conversion automatically. Program 3-7 shows an example where a type cast expression is
used to prevent integer division from taking place. The statement that uses the type cast
expression is

booksPerMonth = static_cast<double>(books) / months;

94 Chapter 3 Expressions and Interactivity

The variable books is an integer, but a copy of its value is converted to a double before it
is used in the division operation. Without the type cast expression in line 18, integer
division would have been performed, resulting in an incorrect answer.

It is important to note that if we had written line 18 as shown in the following
statement, integer division would still have occurred.

booksPerMonth = static_cast<double>(books / months);

Because operations inside parentheses are done before other operations, the division
operator would perform integer division on its two integer operands, and the result of
the expression books / months would be 4. The 4 would then be converted to the
double value 4.0, and this would be the value assigned to booksPerMonth.

Program 3-8 shows another use of a type cast.

Program 3-7

1 // This program uses a type cast to avoid an integer division.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int books,
8 months;
9 double booksPerMonth;
10
11 // Get user inputs
12 cout << "How many books do you plan to read? ";
13 cin >> books;
14 cout << "How many months will it take you to read them? ";
15 cin >> months;
16
17 // Compute and display books read per month
18 booksPerMonth = static_cast<double>(books) / months;
19 cout << "That is " << booksPerMonth << " books per month.\n";
20 return 0;
21 }

Program Output with Example Input Shown in Bold
How many books do you plan to read? 30[Enter]
How many months will it take you to read them? 7[Enter]
That is 4.28571 books per month.

WARNING! To prevent the integer division from taking place, one of the operands
should be converted to a double prior to the division operation. This forces C++ to
automatically convert the value of the other operand to a double.

Data Type Conversion and Type Casting 95

Let’s take a closer look at this program. In line 7 the int variable number is initialized
with the value 65. In line 10, number is sent to cout, causing 65 to be displayed. In line
14, a type cast expression is used to convert the value in number to the char data type
before sending it to cout. Recall from Chapter 2 that characters are stored in memory
as integer ASCII codes. Because the number 65 is the ASCII code for the letter ‘A’, the
statement on line 14 causes the letter ‘A’ to be displayed.

C-style and Prestandard C++ Type Cast Expressions
C++ also supports two older methods of creating type cast expressions: the C-style form and
the prestandard C++ form. The C-style cast places the data type to be converted to, enclosed in
parentheses, in front of the operand whose value is to be converted. Here are three examples.

cout << (int) 2.6; // Displays integer 2

intVal = (int)number; // Assigns intVal the value of
// number, converted to an int

booksPerMonth = // Converts a copy of the value
 (double)books / months; // stored in books to a double

// before performing the division
// operation

Program 3-8

1 // This program prints a character from its ASCII code.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number = 65;
8
9 // Display the value of the number variable
10 cout << number << endl;
11
12 // Use a type cast to display the value of number
13 // converted to the char data type
14 cout << static_cast<char>(number) << endl;
15 return 0;
16 }

Program Output
65
A

NOTE: C++ provides several different type cast expressions. A static_cast is the
most commonly used type cast expression, so it is the one we will primarily use in this
book. Additional information on type casts is contained in Appendix K.

96 Chapter 3 Expressions and Interactivity

Because the typecast operator appears in parentheses preceding the operand, this form
of type cast notation is called prefix notation.

The prestandard C++ form of the type cast expression also places the data type to be
converted to before the operand whose value is to be converted, but it places the
parentheses around the operand, rather than around the data type. Here are the same
three examples as they would be written using the prestandard C++ form of type
casting.

cout << int(2.6);
intVal = int(number);
booksPerMonth = double(books) / months;

This type cast notation is called functional notation.

The static_cast expression is recommended by the ANSI standard for this type of
data type conversion and is now considered preferable to either the C-style or the
prestandard C++ form of type casting. However, you will probably see code in the
workplace that uses these older styles. Program 3-9 illustrates how Program 3-7 would
be written using a prestandard C++ type cast.

The output is identical to that produced by Program 3-7.

Program 3-9

1 // This program illustrates the prestandard C++ form of type casting.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int books,
8 months;
9 double booksPerMonth;
10
11 // Get user inputs
12 cout << "How many books do you plan to read? ";
13 cin >> books;
14 cout << "How many months will it take you to read them? ";
15 cin >> months;
16
17 // Compute and display books read per month
18 booksPerMonth = double(books) / months;
19 cout << "That is " << booksPerMonth << " books per month.\n";
20 return 0;
21 }

Data Type Conversion and Type Casting 97

Checkpoint

3.14 Assume the following variable definitions:

int a = 5, b = 12;
double x = 3.4, z = 9.1;

What are the values of the following expressions?

A) b / a

B) x * a

C) static_cast<double>(b / a)

D) static_cast<double>(b) / a

E) b / static_cast<double>(a)

F) static_cast<double>(b) / static_cast<double>(a)

G) b / static_cast<int>(x)

H) static_cast<int>(x) * static_cast<int>(z)

I) static_cast<int>(x * z)

J) static_cast<double>(static_cast<int>(x) * static_cast<int>(z))

3.15 What will the following program code display if a capital B is entered when the cin
statement asks the user to input a letter?

char letter;

cout << "The ASCII values of uppercase letters are "
<< static_cast<int>('A') << " - "
<< static_cast<int>('Z') << endl;

cout << "The ASCII values of lowercase letters are "
<< static_cast<int>('a') << " - "
<< static_cast<int>('z') << endl << endl;

cout << "Enter a letter and I will tell you its ASCII code: ";
cin >> letter;
cout << "The ASCII code for " << letter << " is "

<< static_cast<int>(letter) << endl;

3.16 What will the following program code display?

int integer1 = 19,
integer2 = 2;

double doubleVal;

doubleVal = integer1 / integer2;
cout << doubleVal << endl;
doubleVal = static_cast<double>(integer1) / integer2;
cout << doubleVal << endl;
doubleVal = static_cast<double>(integer1 / integer2);
cout << doubleVal << endl;

98 Chapter 3 Expressions and Interactivity

3.4 Overflow and Underflow

CONCEPT: When a value cannot fit in the number of bits provided by a variable’s data
type, overflow or underflow occurs.

Just as a bucket will overflow if you try to put more water in it than it can hold, a
variable will experience a similar problem if you try to store a value in it that requires
more bits than it has available. Let’s look at an example. Suppose a short int that uses
2 bytes of memory has the following value stored in it.

This is the binary representation of 32,767, the largest value that will fit in this data type.
Without going into the details of how negative numbers are stored, it is helpful to
understand that for integer data types that store both positive and negative numbers, a
number with a 0 in the high order (i.e., leftmost) bit is interpreted as a positive number,
and a number with a 1 in the high order bit is interpreted as a negative number. If 1 is
added to the value stored above, the variable will now be holding the following bit pattern.

But this is not 32,768. Instead, it is interpreted as a negative number, which was not
what was intended. A binary 1 has “flowed” into the high bit position. This is called
overflow.

Likewise, when an integer variable is holding the value at the far end of its data type’s
negative range and 1 is subtracted from it, the 1 in its high order bit will become a 0, and
the resulting number will be interpreted as a positive number. This is another example of
overflow.

In addition to overflow, floating-point values can also experience underflow. This occurs
when a value is too close to zero, so small that more digits of precision are needed to
express it than can be stored in the variable holding it. Program 3-10 illustrates both
overflow and underflow.

Program 3-10

1 // This program demonstrates overflow and underflow.
2 #include <iostream>
3 using namespace std;
4

(program continues)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Named Constants 99

Although some systems display an error message when an overflow or underflow
occurs, most do not. The variable simply holds an incorrect value now and the program
keeps running. Therefore, it is important to select a data type for each variable that has
enough bits to hold the values you will store in it.

3.5 Named Constants

CONCEPT: Literals may be given names that symbolically represent them in a program.

In Chapter 2 you learned that values which will not change when a program runs can
be stored as literals. However, sometimes this is not ideal. For example, assume the
following statement appears in a banking program that calculates data pertaining to
loans:

amount = balance * 0.069;

5 int main()
6 {
7 // Set intVar to the maximum value a short int can hold
8 short intVar = 32767;
9
10 // Set floatVar to a number too small to fit in a float
11 float floatVar = 3.0E-47;
12
13 // Display intVar
14 cout << "Original value of intVar " << intVar << endl;
15
16 // Add 1 to intVar to make it overflow
17 intVar = intVar + 1;
18 cout << "intVar after overflow " << intVar << endl;
19
20 // Subtract 1 from intVar to make it overflow again
21 intVar = intVar - 1;
22 cout << "intVar after 2nd overflow " << intVar << endl;
23
24 // Display floatVar
25 cout << "Value of very tiny floatVar " << floatVar;
26 return 0}
27 }

Program Output
Original value of intVar 32767
intVar after overflow -32768
intVar after 2nd overflow 32767
Value of very tiny floatVar 0

Program 3-10 (continued)

100 Chapter 3 Expressions and Interactivity

In such a program, two potential problems arise. First, it is not clear to anyone other than
the original programmer what 0.069 is. It appears to be an interest rate, but in some
situations there are fees associated with loan payments. How can the purpose of this
statement be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the
program and must be changed periodically. Assuming the number is an interest rate, what
if the rate changes from 6.9 percent to 7.2 percent? The programmer will have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant,
also called a constant variable, is like a variable, but its content is read-only and
cannot be changed while the program is running. Here is a definition of a named
constant:

const double INTEREST_RATE = 0.069;

It looks just like a regular variable definition except that the word const appears before
the data type name. The key word const is a qualifier that tells the compiler to make
the variable read-only. This ensures that its value will remain constant throughout the
program’s execution. If any statement in the program attempts to change its value, an
error results when the program is compiled. A named constant can have any legal C++
identifier name, but many programmers use all uppercase letters in the name, as we
have done here, to distinguish it from a regular variable.

When a named constant is defined it must be initialized with a value. It cannot be
defined and then later assigned a value with an assignment statement.

const double INTEREST_RATE; // illegal
INTEREST_RATE = 0.069; // illegal

An added advantage of using named constants is that they make programs more self-
documenting. Once the named constant INTEREST_RATE has been correctly defined, the
program statement

newAmount = balance * 0.069;

can be changed to read

newAmount = balance * INTEREST_RATE;

A new programmer can read the second statement and better understand what is
happening. It is evident that balance is being multiplied by the interest rate. Another
advantage to this approach is that widespread changes can easily be made to the
program. Let’s say the interest rate appears in a dozen different statements throughout
the program. If the rate changes, the initialization value in the definition of the named
constant is the only value that needs to be modified. If the rate increases to 7.2 percent,
the definition is simply changed to the following:

const double INTEREST_RATE = 0.072;

The program is then ready to be recompiled. Every statement that uses INTEREST_RATE
will use the new value.

Named Constants 101

Named constants can also help prevent typographical errors in a program’s code. For
example, suppose you use the number 3.14159 as the value of PI in a program that
performs various geometric calculations. Each time you type the number 3.14159 in the
program’s code, there is a chance that you will make a mistake with one or more of the
digits. To help prevent a mistake such as this, you can define a named constant for PI,
initialized with the correct value, and then use that constant in all of the formulas that
require its value.

Program 3-11, which calculates the area of a circle, uses a named constant. It is defined
on line 9 and used on line 19.

The #define Directive
The older C-style method of creating named constants is with the #define preprocessor
directive. Although it is preferable to use the const modifier, there are programs still in use
that contain the #define directive. In addition, the #define directive has other uses, so it
is important to understand it. Program 3-12 shows how the preprocessor can be used to
create a named constant.

Program 3-11

1 // This program calculates the area of a circle. The formula for the
2 // area of a circle is PI times the radius squared. PI is 3.14159.
3 #include <iostream>
4 #include <cmath> // Needed for the pow function
5 using namespace std;
6
7 int main()
8 {
9 const double PI = 3.14159; // PI is a named constant
10 double area, radius;
11
12 cout << "This program calculates the area of a circle.\n";
13
14 // Get the radius
15 cout << "What is the radius of the circle? ";
16 cin >> radius;
17
18 // Compute and display the area
19 area = PI * pow(radius, 2);
20 cout << "The area is " << area << endl;
21 return 0;
22 }

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
What is the radius of the circle? 10.0[Enter]
The area is 314.159

102 Chapter 3 Expressions and Interactivity

If the user enters 10.0, or 10, for the radius, the output will be the same as that
produced by Program 3-11.

Remember, the preprocessor scans your program before it is compiled. It looks for
directives, which are lines that begin with the # symbol. Preprocessor directives cause
your source code to be modified prior to being compiled. Line 7 of Program 3-12
contains the following #define directive:

#define PI 3.14159

The word PI is a named constant, and 3.14159 is its value. Anytime PI is used in the program,
it will be replaced by the value 3.14159. The code on line 20 that reads

area = PI * pow(radius, 2);

will be sent to the compiler as

area = 3.14159 * pow(radius, 2);

If there had been a line that read

cout << PI << endl;

it would be compiled as

cout << 3.14159 << endl;

It is important to realize the difference between constant variables created with the key
word const and constants created with the #define directive. Constant variables are

Program 3-12

1 // This program calculates the area of a circle. The formula for the
2 // area of a circle is PI times the radius squared. PI is 3.14159.
3 #include <iostream>
4 #include <cmath> // Needed for the pow function
5 using namespace std;
6
7 #define PI 3.14159 // PI is "defined" to be 3.14159
8
9 int main()
10 {
11 double area, radius;
12
13 cout << "This program calculates the area of a circle.\n";
14
15 // Get the radius
16 cout << "What is the radius of the circle? ";
17 cin >> radius;
18
19 // Compute and display the area
20 area = PI * pow(radius, 2);
21 cout << "The area is " << area << endl;
22 return 0;
23 }

Named Constants 103

defined like regular variables. They have a data type and a specific storage location in
memory. In fact, they are like regular variables in every way except that you cannot
change their value while the program is running. Constants created with the #define
directive, however, are not variables at all. They are text substitutions. Each occurrence
of the named constant in your source code is removed and the value of the constant is
written in its place when it is sent to the compiler.

Be careful not to put a semicolon at the end of a #define directive. If you used a
semicolon it would actually become part of the value of the constant. If the #define
directive in line 7 of Program 3-12 had read like this,

#define PI 3.14159;

the mathematical statement

area = PI * pow(radius, 2);

would have been modified to read

area = 3.14159; * pow(radius, 2);

Because of the semicolon, the preprocessor would have created a syntax error in the statement,
and the compiler would have given an error message when trying to process this statement.

Checkpoint

3.17 Write statements using the const qualifier to create named constants for the following
literal values:

Constant Value Description
2.71828 Euler’s number (known in mathematics as e)
5.256E5 Number of minutes in a year
32.2 The gravitational acceleration constant (in feet per second2)
9.8 The gravitational acceleration constant (in meters per second2)
1609 Number of meters in a mile

3.18 Write #define directives for the literal values listed in question 3.17.

3.19 Assuming the user enters 6 in response to the question, what will the following
program display on the screen?

#include <iostream>
using namespace std;

#define GREETING1 "This program calculates the number "
#define GREETING2 "of candy pieces sold."
#define QUESTION "How many jars of candy have you sold? "
#define RESULTS "The number of pieces sold: "
#define YOUR_COMMISSION "Candy pieces you get for commission: "
#define COMMISSION_RATE .20

NOTE: #define directives are intended for the preprocessor, and C++ statements are
intended for the compiler. The preprocessor does not look for semicolons to terminate
directives.

104 Chapter 3 Expressions and Interactivity

int main()
{

const int PIECES_PER_JAR = 1860;
int jars, pieces;
double commission;

cout << GREETING1;
cout << GREETING2 << endl;
cout << QUESTION;
cin >> jars;

pieces = jars * PIECES_PER_JAR;
cout << RESULTS << pieces << endl;
commission = pieces * COMMISSION_RATE;
cout << YOUR_COMMISSION << commission << endl;
return 0;

}

3.20 Complete the following program code segment so it properly converts a speed
entered in miles per hour to feet per second. One mile per hour is 1.467 feet per
second.

// Define a named constant called CONVERSION, whose value is 1.467.
double milesPerHour, feetPerSecond;

cout << "This program converts miles per hour to\n";
cout << "feet per second.\n";
cout << "Enter a speed in MPH: ";
cin >> milesPerHour;
// Insert a mathematical statement here to
// calculate feet per second and assign the result
// to the feetPerSecond variable.
cout << "That is " << feetPerSecond << " feet per second.\n";

3.6 Multiple and Combined Assignment

CONCEPT: Multiple assignment means to assign the same value to several variables with
one statement.

C++ allows you to assign a value to multiple variables at once. If a program has several
variables, such as a, b, c, and d, and each variable needs to be assigned the same value,
such as 12, the following statement may be written:

a = b = c = d = 12;

The value 12 will be assigned to each variable listed in the statement. This works
because the assignment operations are carried out from right to left. First 12 is assigned
to d. Then d’s value, now a 12, is assigned to c. Then c’s value is assigned to b, and
finally b’s value is assigned to a.

Here is another example. After this statement executes, both store1 and store2 will
hold the same value as begInv.

store1 = store2 = begInv;

Multiple and Combined Assignment 105

Combined Assignment Operators
Quite often programs have assignment statements of the following form:

number = number + 1;

The expression on the right side of the assignment operator gives the value of number plus 1.
The result is then assigned to number, replacing the value previously stored there. Effectively,
this statement adds 1 to number. In a similar fashion, the following statement subtracts 5
from number.

number = number - 5;

If you have never seen this type of statement before, it might cause some initial
confusion because the same variable name appears on both sides of the assignment
operator. Table 3-8 shows other examples of statements written this way.

Because these types of operations are so common in programming, C++ offers a special
set of operators designed specifically for these jobs. Table 3-9 shows the combined
assignment operators, also known as compound operators or arithmetic assignment
operators.

As you can see, the combined assignment operators do not require the programmer to
type the variable name twice. Also, they give a clear indication of what is happening in
the statement.

Table 3-8 Assignment Statements that Change a Variable’s Value (Assume x = 6)

Statement What It Does
Value of x
After the Statement

x = x + 4; Adds 4 to x 10

x = x - 3; Subtracts 3 from x 3

x = x * 10; Multiplies x by 10 60

x = x / 2; Divides x by 2 3

x = x % 4 Makes x the remainder of x / 4 2

Table 3-9 Combined Assignment Operators

Operator Example Usage Equivalent To

+= x += 5; x = x + 5;

-= y -= 2; y = y - 2;

*= z *= 10; z = z * 10;

/= a /= b; a = a / b;

%= c %= 3; c = c % 3;

VideoNote

Combined
Assignment
Operators

106 Chapter 3 Expressions and Interactivity

Program 3-13 uses both a multiple assignment statement and a combined assignment
operator.

Program 3-13

1 // This program tracks the inventory of two widget stores.
2 // It illustrates the use of multiple and combined assignment.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int begInv, // Beginning inventory for both stores
9 sold, // Number of widgets sold
10 store1, // Store 1's inventory
11 store2; // Store 2's inventory
12
13 // Get the beginning inventory for the two stores
14 cout << "One week ago, 2 new widget stores opened\n";
15 cout << "at the same time with the same beginning\n";
16 cout << "inventory. What was the beginning inventory? ";
17 cin >> begInv;
18
19 // Set each store's inventory
20 store1 = store2 = begInv;
21
22 // Get the number of widgets sold at each store
23 cout << "How many widgets has store 1 sold? ";
24 cin >> sold;
25 store1 -= sold; // Adjust store 1's inventory
26
27 cout << "How many widgets has store 2 sold? ";
28 cin >> sold;
29 store2 -= sold; // Adjust store 2's inventory
30
31 // Display each store's current inventory
32 cout << "\nThe current inventory of each store:\n";
33 cout << "Store 1: " << store1 << endl;
34 cout << "Store 2: " << store2 << endl;
35 return 0;
36 }

Program Output with Example Input Shown in Bold
One week ago, 2 new widget stores opened
at the same time with the same beginning
inventory. What was the beginning inventory? 100[Enter]
How many widgets has store 1 sold? 25[Enter]
How many widgets has store 2 sold? 15[Enter]

The current inventory of each store:
Store 1: 75
Store 2: 85

Multiple and Combined Assignment 107

More elaborate statements may be expressed with the combined assignment operators.
Here is an example:

result *= a + 5;

In this statement, result is multiplied by the sum of a + 5. Notice that the precedence
of the combined assignment operators is lower than that of the regular arithmetic
operators. The above statement is equivalent to

result = result * (a + 5);

which is different from

result = result * a + 5;

Table 3-10 shows additional examples using combined assignment operators.

Checkpoint

3.21 Write a multiple assignment statement that assigns 0 to the variables total,
subtotal, tax, and shipping.

3.22 Write statements using combined assignment operators to perform the following:

A) Add 6 to x.

B) Subtract 4 from amount.

C) Multiply y by 4.

D) Divide total by 27.

E) Store in x the remainder of x divided by 7.

F) Add y * 5 to x.

G) Subtract discount times 4 from total.

H) Multiply increase by salesRep times 5.

I) Divide profit by shares minus 1000.

3.23 What will the following program segment display?

int unus, duo, tres;

unus = duo = tres = 5;
unus += 4;
duo *= 2;
tres -= 4;
unus /= 3;
duo += tres;
cout << unus << endl << duo << endl << tres << endl;

Table 3-10 Examples Using Combined Assignment Operators and Arithmetic Operators

Example Usage Equivalent To

x += b + 5; x = x + (b + 5);

y -= a * 2; y = y - (a * 2);

z *= 10 - c; z = z * (10 - c);

a /= b + c; a = a / (b + c);

c %= d - 3; c = c % (d - 3);

108 Chapter 3 Expressions and Interactivity

3.7 Formatting Output

CONCEPT: cout provides ways to format data as it is being displayed. This affects the
way data appears on the screen.

The same data can be printed or displayed in several different ways. For example, all of
the following numbers have the same value, although they look different:

720
720.0
720.00000000
7.2e+2
+720.0

The way a value is printed is called its formatting. The cout object has a standard way
of formatting variables of each data type. Sometimes, however, you need more control
over the way data is displayed. Consider Program 3-14, for example, which displays
three rows of numbers with spaces between each one.

Program 3-14

1 // This program displays three rows of numbers.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int num1 = 2897, num2 = 5, num3 = 837,
8 num4 = 34, num5 = 7, num6 = 1623,
9 num7 = 390, num8 = 3456, num9 = 12;
10
11 // Display the first row of numbers
12 cout << num1 << " " << num2 << " " << num3 << endl;
13
14 // Display the second row of numbers
15 cout << num4 << " " << num5 << " " << num6 << endl;
16
17 // Display the third row of numbers
18 cout << num7 << " " << num8 << " " << num9 << endl;
19
20 return 0;
21 }

Program Output
2897 5 837
34 7 1623
390 3456 12

Formatting Output 109

Unfortunately, the numbers do not line up in columns. This is because some of the
numbers, such as 5 and 7, occupy one position on the screen, while others occupy
two or three positions. cout uses just the number of spaces needed to print each
number.

To remedy this, cout offers a way of specifying the minimum number of spaces to use
for each number. A stream manipulator, setw, can be used to establish print fields of a
specified width. Here is an example of how it is used:

value = 23;
cout << setw(5) << value;

The number inside the parentheses after the word setw specifies the field width for the
value immediately following it. The field width is the minimum number of character
positions, or spaces, on the screen to print the value in. In our example, the number 23
will be displayed in a field of five spaces.

To further clarify how this works, look at the following statements:

value = 23;
cout << "(" << setw(5) << value << ")";

This will produce the following output:

(23)

Notice that the number occupies the last two positions in the field. Since the number did
not use the entire field, cout filled the extra three positions with blank spaces. Because
the number appears on the right side of the field with blank spaces “padding” it in
front, it is said to be right-justified.

Program 3-15 shows how the numbers in Program 3-14 can be printed in columns that
line up perfectly by using setw. In addition, because the program uses setw(6), and the
largest number has four digits, the numbers will be separated without having to print a
string literal containing blanks between the numbers.

Program 3-15

1 // This program uses setw to display three rows of numbers so they align.
2 #include <iostream>
3 #include <iomanip> // Header file needed to use setw
4 using namespace std;
5
6 int main()
7 {
8 int num1 = 2897, num2 = 5, num3 = 837,
9 num4 = 34, num5 = 7, num6 = 1623,
10 num7 = 390, num8 = 3456, num9 = 12;

(program continues)

110 Chapter 3 Expressions and Interactivity

Notice that a setw manipulator is used with each value. This is because setw only
establishes a field width for the value immediately following it. After that value is
printed, cout goes back to its default method of printing.

You might wonder what will happen if the number is too large to fit in the field, as in
the following statement:

value = 18397;
cout << setw(2) << value;

In cases like this, cout will print the entire number because setw only specifies the minimum
number of positions in the print field. Any number requiring a larger field than the specified
minimum will cause cout to override the setw value.

You may specify the field width for any type of data. Program 3-16 shows setw being
used with an integer, a floating-point number, and a string object.

11
12 // Display the first row of numbers
13 cout << setw(6) << num1 << setw(6) << num2 << setw(6) << num3 << endl;
14
15 // Display the second row of numbers
16 cout << setw(6) << num4 << setw(6) << num5 << setw(6) << num6 << endl;
17
18 // Display the third row of numbers
19 cout << setw(6) << num7 << setw(6) << num8 << setw(6) << num9 << endl;
20
21 return 0;
22 }

Program Output
 2897 5 837
 34 7 1623
 390 3456 12

NOTE: A new header file, iomanip, is named in the #include directive on line 3 of
Program 3-15. This file must be included in any program that uses setw.

Program 3-16

1 // This program demonstrates the setw manipulator
2 // being used with variables of various data types.
3 #include <iostream>
4 #include <iomanip> // Header file needed to use setw
5 #include <string> // Header file needed to use string objects
6 using namespace std;
7

(program continues)

Program 3-15 (continued)

Formatting Output 111

Program 3-16 illustrates a number of important points:

• The field width of a floating-point number includes a position for the decimal point.
• The field width of a string includes all characters in the string, including spaces.
• The value printed in the field is right-justified by default. This means it is aligned

with the right side of the print field, and any blanks that must be used to pad it are
inserted in front of the value.

The setprecision Manipulator
Floating-point values may be rounded to a number of significant digits, or precision, which
is the total number of digits that appear before and after the decimal point. You can
control the number of significant digits with which floating-point values are displayed by
using the setprecision manipulator. Program 3-17 shows the results of a division
operation displayed with different numbers of significant digits.

8 int main()
9 {
10 int intValue = 3928;
11 double doubleValue = 91.5;
12 string stringValue = "Jill Q. Jones";
13
14 cout << "(" << setw(5) << intValue << ")" << endl;
15 cout << "(" << setw(8) << doubleValue << ")" << endl;
16 cout << "(" << setw(16) << stringValue << ")" << endl;
17 return 0;
18 }

Program Output
(3928)
(91.5)
(Jill Q. Jones)

Program 3-17

1 // This program demonstrates how the setprecision manipulator
2 // affects the way a floating-point value is displayed.
3 #include <iostream>
4 #include <iomanip> // Header file needed to use setprecision
5 using namespace std;
6
7 int main()
8 {
9 double, number1 = 132.364, number2 = 26.91;
10 double quotient = number1 / number2;
11
12 cout << quotient << endl;
13 cout << setprecision(5) << quotient << endl;

(program continues)

Program 3-16 (continued)

112 Chapter 3 Expressions and Interactivity

The first value in Program 3-17 is displayed in line 12 without the setprecision
manipulator. (By default, the system displays floating-point values with six significant
digits.) The subsequent cout statements print the same value, but rounded to five, four,
three, two, and one significant digits. Notice that, unlike setw, setprecision does not
count the decimal point. When we used setprecision(5), for example, the output
contained five significant digits, which required six positions to print 4.9188.

If the value of a number is expressed in fewer digits of precision than specified by
setprecision, the manipulator will have no effect. In the following statements, the
value of dollars only has four digits of precision, so the number printed by both
cout statements is 24.51.

double dollars = 24.51;
cout << dollars << endl; // displays 24.51
cout << setprecision(5) << dollars << endl; // displays 24.51

Table 3-11 shows how setprecision affects the way various values are displayed. Notice
that when fewer digits are to be displayed than the number holds, setprecision rounds,
rather than truncates, the number. Notice also that trailing zeros are omitted. Therefore,
for example, 21.40 displays as 21.4 even though setprecision(5) is specified.

14 cout << setprecision(4) << quotient << endl;
15 cout << setprecision(3) << quotient << endl;
16 cout << setprecision(2) << quotient << endl;
17 cout << setprecision(1) << quotient << endl;
18 return 0;
19 }

Program Output
4.91877
4.9188
4.919
4.92
4.9
5

NOTE: With prestandard compilers, your output may be different from that shown in
Program 3-17.

Table 3-11 The setprecision Manipulator

Number Manipulator Value Displayed

28.92786 setprecision(3) 28.9

21.40 setprecision(5) 21.4

109.50 setprecision(4) 109.5

34.78596 setprecision(2) 35

Program 3-17 (continued)

Formatting Output 113

Unlike field width, the precision setting remains in effect until it is changed to some
other value. As with all formatting manipulators, you must include the header file
iomanip to use setprecision.

Program 3-18 shows how the setw and setprecision manipulators may be combined
to control the way floating-point numbers are displayed.

Program 3-18

1 // This program asks for sales figures for three days.
2 // The total sales are calculated and displayed in a table.
3 #include <iostream>
4 #include <iomanip> // Header file needed to use stream manipulators
5 using namespace std;
6
7 int main()
8 {
9 double day1, day2, day3, total;
10
11 // Get the sales for each day
12 cout << "Enter the sales for day 1: ";
13 cin >> day1;
14 cout << "Enter the sales for day 2: ";
15 cin >> day2;
16 cout << "Enter the sales for day 3: ";
17 cin >> day3;
18
19 // Calculate total sales
20 total = day1 + day2 + day3;
21
22 // Display the sales figures
23 cout << "\nSales Figures\n";
24 cout << "-------------\n";
25 cout << setprecision(5);
26 cout << "Day 1: " << setw(8) << day1 << endl;
27 cout << "Day 2: " << setw(8) << day2 << endl;
28 cout << "Day 3: " << setw(8) << day3 << endl;
29 cout << "Total: " << setw(8) << total << endl;
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter the sales for day 1: 321.57[Enter]
Enter the sales for day 2: 269.60[Enter]
Enter the sales for day 3: 307.00[Enter]

Sales Figures

Day 1: 321.57
Day 2: 269.6
Day 3: 307
Total: 898.17

114 Chapter 3 Expressions and Interactivity

The output created by Program 3-18, as we directed, allows a maximum of five significant
digits to be displayed and is printed right justified in a field width of eight characters.
However, the result is clearly not what is desired. In just a moment, we’ll look at another
manipulator that provides additional control over the format of the output.

The fixed Manipulator
If a number is too large to print using the number of digits specified with setprecision,
many systems print it in scientific notation. For example, here is the output of Program 3-18
with larger numbers being input.

Enter the sales for day 1: 145678.99[Enter]
Enter the sales for day 2: 205614.85[Enter]
Enter the sales for day 3: 198645.22[Enter]

Sales Figures

Day 1: 1.4568e+005
Day 2: 2.0561e+005
Day 3: 1.9865e+005
Total: 5.4994e+005

To prevent this, you can use another stream manipulator, fixed, which indicates that
floating-point output should be printed in fixed-point, or decimal, notation.

cout << fixed;

What is perhaps most important about the fixed manipulator, however, is that when it
is used in conjunction with the setprecision manipulator setprecision behaves in a
new way. It specifies the number of digits to be displayed after the decimal point of a
floating-point number, rather than the total number of digits to be displayed. This is
usually what we want. For example, if we rewrite line 25 of Program 3-18 as

cout << fixed << setprecision(2);

and rerun the program using the same sample data, we get the following results:

Enter the sales for day 1: 321.57[Enter]
Enter the sales for day 2: 269.60[Enter]
Enter the sales for day 3: 307.00[Enter]

Sales Figures

Day 1: 321.57
Day 2: 269.60
Day 3: 307.00
Total: 898.17

By using fixed and setprecision together, we get the desired output. Notice in this case,
however, we set the precision to 2, the number of decimal places we wish to see, not to 5.

The showpoint Manipulator
By default, floating-point numbers are displayed without trailing zeroes, and floating-point
numbers with no fractional part are displayed without a decimal point. For example, this code

double x = 456.0;
cout << x << endl;

will just display 456, and nothing more.

Formatting Output 115

Another useful manipulator, showpoint, allows these defaults to be overridden. When
showpoint is used, it indicates that a decimal point and decimal digits should be printed
for a floating-point number, even if the value being displayed has no decimal digits. Here is
the same code with the addition of the showpoint manipulator.

double x = 456.0;
cout << showpoint << x << endl;

It displays the following output:

456.000

Three zeros are shown because six significant digits are displayed if we do not specify how
many decimal digits we want. We can use the fixed, showpoint, and setprecision
manipulators together, as shown below, for even more control over how the output looks.

double x = 456.0;
cout << fixed << showpoint << setprecision(2) << x << endl;

This version of the code produces the following output:

456.00

Program 3-19 further illustrates the use of these manipulators. As with setprecision,
the fixed and showpoint manipulators remain in effect until the programmer explicitly
changes them.

Program 3-19

1 // This program illustrates the how the showpoint, setprecision, and
2 // fixed manipulators operate both individually and when used together.
3 #include <iostream>
4 #include <iomanip> // Header file needed to use stream manipulators
5 using namespace std;
6
7 int main()
8 {
9 double x = 6.0;
10
11 cout << x << endl;
12 cout << showpoint << x << endl;
13 cout << setprecision(2) << x << endl;
14 cout << fixed << x << endl;
15
16 return 0;
17 }

Program Output
6
6.00000
6.0
6.00

116 Chapter 3 Expressions and Interactivity

When x is printed the first time, in line 11, none of the manipulators have been set yet.
Therefore, since the value being displayed requires no decimal digits, only the number 6 is
displayed. When x is printed the second time, in line 12, the showpoint manipulator has
been set, so a decimal point followed by zeroes is displayed. However, since the
setprecision manipulator has not yet been set, we have no control over how many
zeroes are to be printed, and 6.00000 is displayed. When x is printed the third time, in line
13, the setprecision manipulator has been set. However, because the fixed manipulator
has not yet been set, setprecision(2) indicates that two significant digits should be
shown, and 6.0 is displayed, Finally, when x is printed the final time, in line 14, the fixed
and setprecision manipulators have both been set, specifying that exactly two decimal
digits are to be printed, so 6.00 is displayed.

Actually, when the fixed and setprecision manipulators are both used, it is not necessary
to use the showpoint manipulator. For example,

cout << fixed << setprecision(2);

will automatically display a decimal point before the two decimal digits. However,
many programmers prefer to use it anyway as shown here:

cout << fixed << showpoint << setprecision(2);

The left and right Manipulators
Normally, as you have seen, output is right-justified. This means if the field it prints in is larger
than the value being displayed, it is printed on the far right of the field, with leading blanks.
There are times when you may wish to force a value to print on the left side of its field, padded
by blanks on the right. To do this you can use the left manipulator. It remains in effect until
you use a right manipulator to set it back. These manipulators can be used with any type of
value, even a string. Program 3-20 illustrates the left and right manipulators. It also
illustrates that the fixed, showpoint, and setprecision manipulators have no effect on
integers, only on floating-point numbers.

Program 3-20

1 // This program illustrates the use of the left and right manipulators.
2 #include <iostream>
3 #include <iomanip> // Header file needed to use stream manipulators
4 #include <string> // Header file needed to use string objects
5 using namespace std;
6
7 int main()
8 {
9 string month1 = "January",
10 month2 = "February",
11 month3 = "March";
12
13 int days1 = 31,
14 days2 = 28,
15 days3 = 31;
16
17 double high1 = 22.6,
18 high2 = 37.4,
19 high3 = 53.9;

(program continues)

Formatting Output 117

Chapter 13 introduces additional stream manipulators and output formatting methods.
However, the manipulators we have covered in this chapter are normally sufficient to
produce the output you desire. Table 3-12 summarizes these six manipulators.

Checkpoint

3.24 Write cout statements with stream manipulators that perform the following:

A) Display the number 34.789 in a field of nine spaces with two decimal places of
precision.

B) Display the number 7.0 in a field of five spaces with three decimal places of
precision. The decimal point and any trailing zeroes should be displayed.

C) Display the number 5.789e+12 in fixed-point notation.

D) Display the number 67 left-justified in a field of seven spaces.

20
21 cout << fixed << showpoint << setprecision(1);
22 cout << "Month Days High\n";
23
24 cout << left << setw(12) << month1
25 << right << setw(4) << days1 << setw(9) << high1 << endl;
26 cout << left << setw(12) << month2
27 << right << setw(4) << days2 << setw(9) << high2 << endl;
28 cout << left << setw(12) << month3
29 << right << setw(4) << days3 << setw(9) << high3 << endl;
30
31 return 0;
32 }
33

Program Output
Month Days High
January 31 22.6
February 28 37.4
March 31 53.9

Table 3-12 Output Stream Manipulators

Stream Manipulator Description

setw(n) Sets a minimum print field width of size n for the next value output.

fixed Displays floating-point numbers in fixed point (i.e., decimal) form.

showpoint Causes a decimal point and trailing zeroes to be displayed for floating-
point numbers, even if there is no fractional part.

setprecision(n) Sets the precision of floating-point numbers.

left Causes subsequent output to be left-justified.

right Causes subsequent output to be right-justified.

Program 3-20 (continued)

118 Chapter 3 Expressions and Interactivity

3.25 The following program skeleton asks for an angle in degrees and converts it to radians.
The formatting of the final output is left to you.

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

const double PI = 3.14159;
double degrees, radians;

cout << "Enter an angle in degrees and I will convert it\n";
cout << "to radians for you: ";
cin >> degrees;
radians = degrees * PI / 180;

// Display the value in radians left-justified, in fixed-point
// notation, with four decimal places of precision, in a field
// seven spaces wide.
return 0;

}

3.8 Working with Characters and Strings

CONCEPT: Special functions exist for working with characters and strings.

In Chapter 2 you were introduced to characters and to string objects. Let’s review a few
of their characteristics. A char variable can hold only one character, whereas a variable
defined as a string can hold a whole set of characters. The following variable definitions
and initializations illustrate this.

char letter1 = 'A',
 letter2 = 'B';
string name1 = "Mark Twain",
 name2 = "Samuel Clemens";

As with numeric data types, characters and strings can be assigned values.

letter2 = letter1; // Now letter2's value is 'A'
name2 = name1; // Now name2's value is "Mark Twain"

Like numeric data types, they can be displayed with the cout statement. The following
line of code outputs a character variable, a string literal, and a string object.

cout << letter1 << ". " << name1 << endl;

The output produced is

A. Mark Twain

However, inputting characters and strings is a little trickier than reading in numeric values.

Working with Characters and Strings 119

Inputting a String
Although it is possible to use cin with the >> operator to input strings, it can cause
problems you need to be aware of. When cin reads data it passes over and ignores any
leading whitespace characters (spaces, tabs, or line breaks). However, once it comes to the
first nonblank character and starts reading, it stops reading when it gets to the next
whitespace character. If we use the following statement

cin >> name1;

we can input “Mark” or “Twain”, but not “Mark Twain” because cin cannot input
strings that contain embedded spaces.

Program 3-21 illustrates this problem.

Notice that the user was never given the opportunity to enter the city. In the first input
statement, when cin came to the space between John and Doe, it stopped reading,
storing just John as the value of name. In the second input statement, cin used the
leftover characters it found in the keyboard buffer and stored Doe as the value of city.

To solve this problem, you can use a C++ function called getline. This function reads in an
entire line, including leading and embedded spaces, and stores it in a string object. The
getline function looks like the following, where cin is the input stream we are reading
from and inputLine is the name of the string variable receiving the input string.

getline(cin, inputLine);

Program 3-21

1 // This program illustrates a problem that can occur if
2 // cin is used to read character data into a string object.
3 #include <iostream>
4 #include <string> // Header file needed to use string objects
5 using namespace std;
6
7 int main()
8 {
9 string name;
10 string city;
11
12 cout << "Please enter your name: ";
13 cin >> name;
14 cout << "Enter the city you live in: ";
15 cin >> city;
16
17 cout << "Hello, " << name << endl;
18 cout << "You live in " << city << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
Please enter your name. John Doe[Enter]
Enter the city you live in: Hello, John
You live in Doe

120 Chapter 3 Expressions and Interactivity

Program 3-22 illustrates the getline function.

Inputting a Character
Sometimes you want to read only a single character of input. For example, some programs
display a menu of items for the user to choose from. Often the selections will be denoted
by the letters A, B, C, and so forth. The user chooses an item from the menu by typing a
character. The simplest way to read a single character is with cin and the >> operator, as
illustrated in Program 3-23.

Program 3-22

1 // This program illustrates using the getline function
2 // to read character data into a string object.
3 #include <iostream>
4 #include <string> // Header file needed to use string objects
5 using namespace std;
6
7 int main()
8 {
9 string name;
10 string city;
11
12 cout << "Please enter your name: ";
13 getline(cin, name);
14 cout << "Enter the city you live in: ";
15 getline(cin, city);
16
17 cout << "Hello, " << name << endl;
18 cout << "You live in " << city << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
Please enter your name. John Doe[Enter]
Enter the city you live in: Chicago[Enter]
Hello, John Doe
You live in Chicago

Program 3-23

1 // This program reads a single character into a char variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char ch;
8
9 cout << "Type a character and press Enter: ";
10 cin >> ch;
11 cout << "You entered " << ch << endl;
12 return 0;
13 }

(program continues)

Working with Characters and Strings 121

Using cin.get
As with string input, however, there are times when using cin >> to read a character does
not do what we want. For example, because it passes over all leading whitespace, it is
impossible to input just a blank or [Enter] with cin >>. The program will not continue past
the cin statement until some character other than the spacebar, the tab key, or the [Enter]
key has been pressed. (Once such a character is entered, the [Enter] key must still be pressed
before the program can continue to the next statement.) Thus, programs that ask the user
to "Press the enter key to continue." cannot use the >> operator to read only the
pressing of the [Enter] key.

In those situations, the cin object has a built-in function named get that is helpful.
Because the get function is built into the cin object, we say that it is a member function
of cin. The get member function reads a single character, including any whitespace
character. If the program needs to store the character being read, the get member
function can be called in either of the following ways. In both examples, assume that ch
is the name of a char variable the character is being read into.

cin.get(ch);
ch = cin.get();

If the program is using the get function simply to pause the screen until the [Enter] key is
pressed, and does not need to store the character, the function can also be called like this:

cin.get();

Notice that in all three of these programming statements the format of the get function
call is actually the same. First comes the name of the object. In this case it is cin. Then
comes a period, followed by the name of the member function being called. In this case
it is get. The statement ends with a set of parentheses and a closing semicolon. This is
the basic format for calling any member function and is illustrated in Figure 3-5

Program 3-24 illustrates all three ways to use the get member function.

Program Output with Example Input Shown in Bold
Type a character and press Enter: A[Enter]
You entered A

Figure 3-5

Program 3-23 (continued)

This is the object whose
function is being called.

A period
comes next.

This is the member
function being called.

The () tells C++ that
this is a function call.

The statement ends
with a semicolon.

cin.get();

122 Chapter 3 Expressions and Interactivity

Mixing cin >> and cin.get
Mixing cin >> with cin.get can cause an annoying and hard-to-find problem. For example,
look at the following code segment. The lines are numbered for reference.

1 char ch; // Define a character variable
2 int number; // Define an integer variable
3 cout << "Enter a number: ";
4 cin >> number; // Read an integer
3 cout << "Enter a character: ";
6 ch = cin.get(); // Read a character
7 cout << "Thank You!\n";

These statements allow the user to enter a number, but not a character. It will appear
that the cin.get statement on line 6 has been skipped. This happens because cin >>
and cin.get use slightly different techniques for reading data.

In the example code segment, when line 4 is executed, the user enters a number and
then presses the [Enter] key. Let’s suppose the number 100 is entered. Pressing the
[Enter] key causes a newline character ('\n') to be stored in the keyboard buffer right
after the 100, as shown in Figure 3-6.

Program 3-24

1 // This program demonstrates three ways to use cin.get()
2 // to pause a program.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char ch;
9
10 cout << "This program has paused. Press Enter to continue.";
11 cin.get(ch);
12 cout << "It has paused a second time. Please press Enter again.";
13 ch = cin.get();
14 cout << "It has paused a third time. Please press Enter again.";
15 cin.get();
16 cout << "Thank you!";
17 return 0;
18 }

Program Output with Example Input Shown in Bold
This program has paused. Press Enter to continue.[Enter]
It has paused a second time. Please press Enter again.[Enter]
It has paused a third time. Please press Enter again.[Enter]
Thank you!

Working with Characters and Strings 123

When the cin >> statement in line 4 reads the data the user entered, it stops when it comes
to the newline character. The newline character is not read, but remains in the keyboard
buffer. Input statements that read data from the keyboard only wait for the user to enter a
value if the keyboard buffer is empty, but now it’s not empty. When the cin.get function
in line 6 executes, it begins reading the keyboard buffer from where the previous input
operation stopped, and it finds the newline character. So it uses it and does not wait for the
user to input another value. You can remedy this situation by using the cin.ignore
function, described in the following section.

Using cin.ignore
The cin.ignore function tells the cin object to skip one or more characters in the
keyboard buffer. Here is its general form:

cin.ignore(n, c);

The arguments shown in the parentheses are optional. If they are used, n is an integer
and c is a character. They tell cin to skip n number of characters, or until the character
c is encountered. For example, the following statement causes cin to skip the next 20
characters or until a newline is encountered, whichever comes first:

cin.ignore(20,'\n');

If no arguments are used, cin will only skip the very next character. Here’s an example:

cin.ignore();

The problem that previously occurred when cin >> and cin.get statements were
intermixed can be avoided by inserting a cin.ignore statement after the cin >>
statement, as shown below. This causes the newline character left behind by cin >> to
be bypassed, forcing cin.get to wait for the user to enter another character.

cout << "Enter a number: ";
cin >> number;
cin.ignore(); // Skip the newline character
cout << "Enter a character: ";
cin.get(ch);
cout << "Thank You!" << endl;

Useful string Member Functions and Operators
C++ string objects also have a number of member functions. For example, if you want to
know the length of the string that is stored in a string object, you can call the object’s
length member function. Here is an example of how to use it.

string state = "New Jersey";
int size = state.length();

Figure 3-6

cin begins
reading here.

Keyboard buffer

1 0 0 \n

cin stops reading here,
but does not read in the

\n character.

124 Chapter 3 Expressions and Interactivity

The first statement creates a string object named state, and initializes it with the string
“New Jersey”. The second statement defines an int variable named size, and initializes it
with the length of the string in the state object. After this code executes, the size variable
will hold the value 10. The blank space between "New" and "Jersey" is a character and is
counted just like any other character. On the other hand, the '\0' null character you learned
about in Chapter 2 that marks the end of a string literal is not counted.

Another useful member function is assign. One of the versions of this function lets you
assign a set of repeated characters to a string without having to count the characters. Suppose,
for example, you have declared a string object named spaces, and you want to assign it 22
blanks. You could do it by using a string literal like this:

spaces = " ";

However, counting the number of spaces to include in the string literal is tedious, and it is
easy to miscount. It would be much easier to use the string class assign member function,
as shown here.

spaces.assign(22, ' ');

 The string class also has special operators for working with strings. One of them is
the + operator.

You have already encountered the + operator to add two numeric quantities. Because strings
cannot be added, when this operator is used with string operands it concatenates them, or joins
them together. Assume we have the following definitions and initializations in a program.

string greeting1 = "Hello ",
 greeting2;
string word1 = "World";
string word2 = "People";

The following statements illustrate how string concatenation works.

greeting2 = greeting1 + word1; // greeting2 now holds "Hello World"
greeting1 = greeting1 + word2; // greeting1 now holds "Hello People"

Notice that the string stored in greeting1 has a blank as its last character. If the blank
were not there, greeting2 would have been assigned the string "HelloWorld".

The last statement could also have been written using the += combined assignment operator,
like this:

greeting1 += word2;

Program 3-25 uses the string class member functions and the string concatenation operator
we have just been looking at. You will learn about many other useful string class member
functions and operators in later chapters.

Program 3-25

1 // This program displays the user’s name surrounded by stars.
2 // It uses the + operator and several string class member functions.
3 #include <iostream>
4 #include <string> // Header file needed to use string objects
5 using namespace std;

(program continues)

Using C-Strings 125

3.9 Using C-Strings

CONCEPT: C-strings provide another way to store and work with strings.

In C, and in C++ prior to the introduction of the string class, strings were stored as a set of
individual characters. A group of contiguous 1-byte memory cells was set up to hold them, with
each cell holding just one character of the string. A group of memory cells like this is called an
array. You will learn more about arrays in Chapter 8, but for now all you need to know is how
to set one up and use it to hold and work with the characters that make up a string.

Because this was the way to create a string variable in C, a string defined in this manner is
called a C-string. Here is a statement that defines word to be an array of characters that will
hold a C-string and initializes it to "Hello".

char word[10] = "Hello";

6
7 int main()
8 {
9 string firstName, lastName, fullName;
10 string stars;
11 int numStars;
12
13 cout << "Please enter your first name: ";
14 getline(cin, firstName);
15
16 cout << "Please enter your last name: ";
17 getline(cin, lastName);
18
19 fullName = firstName + " " + lastName;
20
21 numStars = fullName.length();
22 stars.assign(numStars, '*');
23
24 cout << endl;
25 cout << stars << endl;
26 cout << fullName << endl;
27 cout << stars << endl;
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Please enter your first name: Mary Lou[Enter]
Please enter your last name: St. Germaine[Enter]

Mary Lou St. Germaine

Program 3-25 (continued)

126 Chapter 3 Expressions and Interactivity

Notice that the way we define word is similar to the way we define any other variable.
The data type is specified first and then the variable name is given. The only difference is
the [10] that follows the name of the variable. This is called a size declarator. It tells
how many memory cells to set up to hold the characters in the C-string.

As with string literals, the null character is automatically appended to the end of a C-string
to mark its end. Figure 3-7 shows what the contents of the word variable would look like
in memory. Notice that the 10 memory cells are numbered 0–9.

Because one space must be reserved for the null terminator, word can only hold a string
of up to nine characters.

Like string objects, C-strings can have their contents input using cin, and they can have their
contents displayed using cout. This is illustrated in Program 3-26. Because the variable name
is defined in line 8 to have 12 memory cells, it can store a name of up to 11 characters.
Notice that no special header file is needed to use C-strings.

Except for inputting and displaying them with cin >> and cout <<, almost everything
else about using string objects and C-strings is different. This is because the string
class includes functions and operators that save the programmer having to worry about
many of the details of working with strings. When using C-strings, however, it is the
responsibility of the programmer to handle these things.

Because C-strings are harder to work with than string objects, you might be wondering
why you are learning about them. There are two reasons. First, you are apt to encounter
older programs that use them, so you need to understand them. Second, even though

Figure 3-7

Program 3-26

1 // This program uses cin >> to read a word into a C-string.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int SIZE = 12;
8 char name[SIZE]; // name is a set of 12 memory cells
9
10 cout << "Please enter your first name: ";
11 cin >> name;
12 cout << "Hello, " << name << endl;
13 return 0;
14 }

Program Output with Example Input Shown in Bold
Please enter your first name: Sebastian[Enter]
Hello, Sebastian

H

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

e l l o \0

Using C-Strings 127

strings can now be declared as string objects in most cases, there are still times when only
C-strings will work. You will be introduced to some of these cases later in the book.

Assigning a Value to a C-String
The first way in which using a C-string differs from using a string object is that, except for
initializing it at the time of its definition, it cannot be assigned a value using the assignment
operator. In Program 3-26 we could not, for example, replace the cin statement with the
following line of code.

name = "Sebastian"; // Wrong!

Instead, to assign a value to a C-string, we must use a function called strcpy (pronounced
string copy) to copy the contents of one string into another. In the following line of code
Cstring is the name of the variable receiving the value, and value is either a string literal
or the name of another C-string variable.

strcpy(Cstring, value);

Program 3-27 shows how the strcpy function works.

Keeping Track of a How Much a C-String Can Hold
Another crucial way in which using a C-string differs from using a string object involves the
memory allocated for it. With a string object, you do not have to worry about there being too
little memory to hold a string you wish to place in it. If the storage space allocated to the
string object is too small, the string class functions will make sure more memory is
allocated to it. With C-strings this is not the case. The number of memory cells set aside to hold
a C-string remains whatever size you originally set it to in the definition statement. It is the job
of the programmer to ensure that the number of characters placed in it does not exceed the

Program 3-27

1 // This program uses the strcpy function to copy one C-string to another.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int SIZE = 12;
8 char name1[SIZE],
9 name2[SIZE];
10
11 strcpy(name1, "Sebastian");
12 cout << "name1 now holds the string " << name1 << endl;
13
14 strcpy(name2, name1);
15 cout << "name2 now also holds the string " << name2 << endl;
16
17 return 0;
18 }

Program Output
name1 now holds the string Sebastian
name2 now also holds the string Sebastian

128 Chapter 3 Expressions and Interactivity

storage space. If the programmer uses cin to read a value into a C-string and the user types in
more characters than it can hold, cin will store all the characters anyway. The ones that don’t
fit will spill over into the following memory cells, overwriting whatever was previously stored
there. This type of error, known as a buffer overrun, can lead to serious problems.

One way to prevent this from happening is to use the setw stream manipulator. This
manipulator, which we used earlier in this chapter to format output, can also be used to
control the number of characters that cin >> inputs on its next read, as illustrated here:

char word[5];
cin >> setw(5) >> word;

Another way to do the same thing is by using the cin width function.

char word[5];
cin.width(5);
cin >> word;

In both cases the field width specified is 5 and cin will read, at most, one character less than
this, leaving room for the null character at the end. Program 3-28 illustrates the use of the
setw manipulator with cin, while Program 3-29 uses its width function. Both programs
produce the same output.

Program 3-28

1 // This program uses setw with the cin object.
2 #include <iostream>
3 #include <iomanip> // Header file needed to use stream manipulators
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 5;
9 char word[SIZE];
10
11 cout << "Enter a word: ";
12 cin >> setw(SIZE) >> word;
13 cout << "You entered " << word << endl;
14
15 return 0;
16 }

Program 3-29

1 // This program uses cin's width function.
2 #include <iostream>
3 #include <iomanip> // Header file needed to use stream manipulators
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 5;
9 char word[SIZE];

(program continues)

Using C-Strings 129

In Program 3-29, cin only reads and stores four characters into word. If the field width had
not been specified, cin would have written the entire word “Eureka” into memory,
overflowing the space set up to hold word. Figure 3-8 illustrates the way memory would have
been affected by this. The shaded area is the 5 bytes of memory allocated to hold the C-string.

There are three important points to remember about the way cin handles field widths:

• The field width only pertains to the very next item entered by the user.
• To leave space for the '\0' character, the maximum number of characters read and

stored will be one less than the size specified.
• If cin comes to a whitespace character before reading the specified number of characters,

it will stop reading.

Reading a Line of Input
Still another way in which using C-strings differs from using string objects is that you must use a
different set of functions when working with them. To read a line of input, for example, you
must use cin.getline rather than getline. These two names look a lot alike, but they are two
different functions and are not interchangeable. Like getline, cin.getline allows you to read
in a string containing spaces. It will continue reading until it has read the maximum specified
number of characters, or until the [Enter] key is pressed. Here is an example of how it is used:

cin.getline(sentence, 20);

10
11 cout << "Enter a word: ";
12 cin.width(SIZE);
13 cin >> word;
14 cout << "You entered " << word << endl;
15
16 return 0;
17 }

Program Output for Programs 3-28 and 3-29 with Example Input Shown in Bold
Enter a word: Eureka[Enter]
You entered Eure

Figure 3-8

Program 3-29 (continued)

E u r e k a \0

The 5 bytes allocated
to hold the word array

Next item in memory,
overwritten with ‘a’
and null character

130 Chapter 3 Expressions and Interactivity

The getline function takes two arguments separated by a comma. The first argument is the
name of the array that the string is to be stored in. The second argument is the size of the
array. When the cin.getline statement executes, cin will read up to one character less
than this number, leaving room for the null terminator. This eliminates the need for using the
setw manipulator or the width function. The statement above will read up to 19 characters.
The null terminator will automatically be placed in the array after the last character. Program
3-30 shows the getline function being used to read a sentence of up to 80 characters.

Later chapters cover more on C-strings and how they differ from string objects.

Checkpoint

3.26 Will the following string literal fit in the space allocated for name? Why or why not?

char name[4] = "John";

3.27 If a program contains the definition string name; indicate whether each of the
following lettered program statements is legal or illegal.

A) cin >> name;

B) cin.getline(name, 20);

C) cout << name;

D) name = "John";

3.28 If a program contains the definition char name[20]; indicate whether each of the
following lettered program statements is legal or illegal.

A) cin >> name;

B) cin.getline(name, 20);

C) cout << name;

D) name = "John";

Program 3-30

1 // This program demonstrates cin's getline function
2 // to read a line of text into a C-string.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 81;
9 char sentence[SIZE];
10
11 cout << "Enter a sentence: ";
12 cin.getline(sentence, SIZE);
13 cout << "You entered " << sentence << endl;
14 return 0;
15 }

Program Output with Example Input Shown in Bold
Enter a sentence: To be, or not to be, that is the question.[Enter]
You entered To be, or not to be, that is the question.

More Mathematical Library Functions 131

3.10 More Mathematical Library Functions

CONCEPT: The C++ run-time library provides functions for performing complex
mathematical operations.

Earlier in this chapter you learned to use the pow function to raise a number to a power. The
C++ library has numerous other functions that perform specialized mathematical operations.
These functions are useful in scientific and special purpose programs. Table 3-13 shows some
of the most common ones. They all require the cmath header file.

With the exception of the abs and round functions, all of the functions listed in Table 3-13
take one or more double arguments and return a double value. However, most C++ compilers

Table 3-13 Selected Mathematical Library Functions

Function Example Description

abs y = abs(x); Returns the absolute value of the argument. The argument and
the return value are integers.

cos y = cos(x); Returns the cosine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

exp y = exp(x); Computes the exponential function of the argument, which is x.
The return type and the argument are doubles.

fmod y = fmod(x, z); Returns, as a double, the remainder of the first argument divided
by the second argument. Works like the modulus operator, but the
arguments are doubles. (The modulus operator only works with
integers.) Take care not to pass zero as the second argument.
Doing so would cause division by zero.

log y = log(x); Returns the natural logarithm of the argument. The return type
and the argument are doubles.

log10 y = log10(x); Returns the base-10 logarithm of the argument. The return type
and the argument are doubles.

round y = round(x); Returns the argument rounded to the nearest whole number. The
return value is an integer.

sin y = sin(x); Returns the sine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

sqrt y = sqrt(x); Returns the square root of the argument. The return type and
argument are doubles. The argument must be zero or greater.

tan y = tan(x); Returns the tangent of the argument. The argument should be
an angle expressed in radians. The return type and the argument
are doubles.

132 Chapter 3 Expressions and Interactivity

allow them to be called with int arguments as well. So, for example, both of the following will
work to print the square root of 30.

cout << sqrt(30.0); // Displays 5.47723
cout << sqrt(30); // Displays 5.47723

Program 3-31 shows the sqrt function being used to find the hypotenuse of a right triangle.
The program uses the following formula, taken from the Pythagorean theorem:

In the formula, c is the length of the hypotenuse, and a and b are the lengths of the
other sides of the triangle.

The following statement, taken from line 18 of Program 3-31, calculates the square root
of the sum of the squares of the triangle’s two sides:

c = sqrt(pow(a, 2.0) + pow(b, 2.0));

Notice that the following mathematical expression is used as the sqrt function’s argument:

pow(a, 2.0) + pow(b, 2.0)

Program 3-31

1 // This program inputs the lengths of the two sides of a right
2 // triangle, then calculates and displays the length of the hypotenuse.
3 #include <iostream>
4 #include <cmath> // Header file needed to use the sqrt function
5 using namespace std;
6
7 int main()
8 {
9 double a, b, c;
10
11 // Get the length of the two sides
12 cout << "Enter the length of side a: ";
13 cin >> a;
14 cout << "Enter the length of side b: ";
15 cin >> b;
16
17 // Compute and display the length of the hypotenuse
18 c = sqrt(pow(a, 2.0) + pow(b, 2.0));
19
20 cout << "The length of the hypotenuse is ";
21 cout << c << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
Enter the length of side a: 5.0[Enter]
Enter the length of side b: 12.0[Enter]
The length of the hypotenuse is 13

c a2 b2
��

More Mathematical Library Functions 133

This expression calls the pow function twice: once to calculate the square of a and again
to calculate the square of b. These two squares are then added together, and the sum is
sent to the sqrt function.

Random Numbers
Some programs need to use randomly generated numbers. The C++ library has a function
called rand() for this purpose. To use the rand() function, you must include the cstdlib
header file in your program. The number returned by the function is a non-negative integer.
Here is an example of how it is used.

randomNum = rand();

However, the numbers returned by the function are really pseudorandom. This means
they have the appearance and properties of random numbers, but in reality are not
random. They are actually generated with an algorithm. The algorithm needs a starting
value, called a seed, to generate the numbers. If it is not given one, it will produce the
same stream of numbers each time it is run. Program 3-32 illustrates this.

To get a different stream of random numbers each time you run the program, you must
provide a seed for the random number generator to start with. In C++ this is done by
calling the srand function. Program 3-33 illustrates this. Notice that the srand function
is called on line 16 before rand is ever called, and that rand is only called once for the
whole program.

Notice also that the variable created in line 9 to hold the seed is declared to be unsigned. As
you may recall, this data type holds only non-negative integers. This is the data type the
srand function expects to receive when it is called, so making the variable unsigned
guarantees that no negative numbers will be sent to srand.

Program 3-32

1 // This program demonstrates what happens in C++ if you
2 // try to generate random numbers without setting a "seed".
3 #include <iostream>
4 #include <cstdlib> // Header file needed to use rand
5 using namespace std;
6
7 int main()
8 {
9 // Generate and print three random numbers
10 cout << rand() << " " ;
11 cout << rand() << " " ;
12 cout << rand() << endl;
13
14 return 0;
15 }

Program Output from Run 1 Program Output from Run 2
41 18467 6334 41 18467 6334

134 Chapter 3 Expressions and Interactivity

As you can see from the Program 3-33 output, each time the program is run with a different
seed, a different stream of random numbers is generated. However, if we run the program a
third time using 19 or 171 as the seed again, we will get exactly the same numbers we did the
first time.

Notice that on line 13 of Program 3-33 cin is used to get a value from the user for the
random number generator seed. Another common practice for getting a seed value is
to call the time function, which is part of the C++ standard library. This function
returns the number of seconds that have elapsed since midnight, January 1, 1970, so it
will provide a different seed value each time the program is run. Program 3-34
illustrates the use of the time function, which appears on line 13 of the program.
Notice that when you call it, you must pass 0 as an argument. Notice also that
Program 3-34 has a new header file, ctime, which is included on line 5. This header
file is needed to use time.

Program 3-33

1 // This program demonstrates using random numbers when a
2 // "seed" is provided for the random number generator.
3 #include <iostream>
4 #include <cstdlib> // Header file needed to use srand and rand
5 using namespace std;
6
7 int main()
8 {
9 unsigned seed; // Random generator seed
10
11 // Get a "seed" value from the user
12 cout << "Enter a seed value: ";
13 cin >> seed;
14
15 // Set the random generator seed before calling rand()
16 srand(seed);
17
18 // Now generate and print three random numbers
19 cout << rand() << " " ;
20 cout << rand() << " " ;
21 cout << rand() << endl;
22
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Run 1: Run 2:
Enter a seed value: 19[Enter] Enter a seed value: 171[Enter]
100 15331 209 597 10689 28587

NOTE: The stream of random numbers generated on your computer system may be
different.

More Mathematical Library Functions 135

The above output was produced by one sample run. It will be different every time you
run the program.

Limiting the Range of a Random Number
Sometimes a program needs a random number in a specific range. To limit the range of the
random number to an integer between 1 and some maximum value max, you can use the
following formula.

number = rand() % max + 1;

For example, to generate a random number in the range of 1 through 6 to represent the
roll of a dice, you would use

dice = rand() % 6 + 1;

Here is how the statement works. Recall that the modulus operator gives us the
remainder of an integer divide. When the positive integer returned by the rand function
is divided by 6, the remainder will be a number between 0 and 5. Because we want a
number between 1 and 6, we simply add 1 to it.

This idea can be extended to produce a random number in any range. For example,
suppose a program needs a random number in the range of 10–18. Since that range
includes 9 numbers, we could use the following line of code:

number = rand() % 9 + 10;

The operation rand() % 9 gives us a number between 0 and 8. Adding 10 to it give us
the desired result, a number in the range 10 to 18.

Program 3-34

1 // This program demonstrates using the C++ time function
2 // to provide a "seed" for the random number generator.
3 #include <iostream>
4 #include <cstdlib> // Header file needed to use srand and rand
5 #include <ctime> // Header file needed to use time
6 using namespace std;
7
8 int main()
9 {
10 unsigned seed; // Random generator seed
11
12 // Use the time function to get a "seed" value for srand
13 seed = time(0);
14 srand(seed);
15
16 // Now generate and print three random numbers
17 cout << rand() << " " ;
18 cout << rand() << " " ;
19 cout << rand() << endl;
20
21 return 0;
22 }

Program Output
2961 21716 181

136 Chapter 3 Expressions and Interactivity

Checkpoint

3.29 Assume the variables angle1 and angle2 hold angles stored in radians. Write a
statement that adds the sine of angle1 to the cosine of angle2 and stores the result
in the variable x.

3.30 To find the cube root (the third root) of a number, raise it to the power of 1⁄3. To
find the fourth root of a number, raise it to the power of 1⁄4. Write a statement that
will find the fifth root of the variable x and store the result in the variable y.

3.31 Write a statement that produces a random number between 1 and 100 and
stores it in the variable luckyNumber.

3.11 Focus on Debugging: Hand Tracing a Program
Hand tracing is a debugging process where you pretend that you are the computer executing
a program. You step through each of the program’s statements one by one. As you look at a
statement, you record the contents that each variable will have after the statement executes.
This process is helpful in finding mathematical mistakes and other logic errors.

To hand trace a program you construct a chart with a column for each variable. The
rows in the chart correspond to the lines in the program. For example, Program 3-35 is
shown with a hand trace chart. The program uses the following four variables: num1,
num2, num3, and avg. Notice that the hand trace chart has a column for each variable
and a row for each line of code in function main.

Program 3-35 (with hand trace chart empty)

1 // This program computes and displays the average of three numbers
2 // entered by the user. However, it contains a bug. Can you find it?
3 #include <iostream>
4 using namespace std;
5

6 int main()

7 { num1 num2 num3 avg

8 double num1, num2, num3, avg;

9

10 cout << "Enter the first number: ";

11 cin >> num1;

12 cout << "Enter the second number: ";

13 cin >> num2;

14 cout << "Enter the third number: ";

15 cin >> num3;

16 avg = num1 + num2 + num3 / 3;

17 cout << "The average is " << avg << endl;

18 return 0;
19 }

(program continues)

Focus on Debugging: Hand Tracing a Program 137

Notice that the program runs, but it displays an incorrect average. The correct average
of 10, 20, and 30 is 20, not 40. To find the error we will hand trace the program.

To hand trace a program, you step through each statement, observe the operation that is
taking place, and then record the contents of the variables after the statement executes.
After the hand trace is complete, the chart will appear as follows. We have written question
marks in the chart where we do not yet know the contents of a variable.

Do you see the error? By examining the statement on line 16 that computes the average,
we find a mistake. The division operation takes place before the addition operations, so
we must rewrite that statement as

avg = (num1 + num2 + num3) / 3;

Hand tracing is a simple process that focuses your attention on each statement in a
program. Often this helps you locate errors that are not obvious.

Program Output with Example Input Shown in Bold
Enter the first number: 10[Enter]
Enter the second number: 20[Enter]
Enter the third number: 30[Enter]
The average is 40

Program 3-35 (with hand trace chart filled in)

1 // This program computes and displays the average of three numbers
2 // entered by the user. However, it contains a bug. Can you find it?
3 #include <iostream>
4 using namespace std;
5

6 int main()

7 { num1 num2 num3 avg

8 double num1, num2, num3, avg; ? ? ? ?

9

10 cout << "Enter the first number: "; ? ? ? ?

11 cin >> num1; 10 ? ? ?

12 cout << "Enter the second number: "; 10 ? ? ?

13 cin >> num2; 10 20 ? ?

14 cout << "Enter the third number: "; 10 20 ? ?

15 cin >> num3; 10 20 30 ?

16 avg = num1 + num2 + num3 / 3; 10 20 30 40

17 cout << "The average is " << avg << endl; 10 20 30 40

18 return 0;
19 }

Program 3-35 (with hand trace chart empty) (continued)

138 Chapter 3 Expressions and Interactivity

3.12 Green Fields Landscaping Case Study—Part 1

Problem Statement
One of the services provided by Green Fields Landscaping is the sale and delivery of mulch,
which is measured and priced by the cubic yard. You have been asked to create a program
that will determine the number of cubic yards of mulch the customer needs and the total price.

Program Design

Program Steps

The program must carry out the following general steps (this list of steps is sometimes
called General Pseudocode):

1. Set the price for a cubic yard of mulch (currently 22.00).
2. Ask the user to input the number of square feet to be covered and the depth of the

mulch to be spread over this area.
3. Calculate the number of cubic feet of mulch needed.
4. Calculate the number of cubic yards of mulch needed.
5. Calculate the total price for the mulch.
6. Display the results.

Variables whose values will be input

double squareFeet // square feet of land to be covered
int depth // how many inches deep the mulch is to be spread

Variables whose values will be output

double cubicYards // number of cubic yards of mulch needed
double totalPrice // total price for all the cubic yards ordered

Program Constants

double PRICE_PER_CUBIC_YD // the price for 1 delivered cubic yard of mulch

Additional Variables

double cubicFeet // number of cubic feet of mulch needed

Detailed Pseudocode (including actual variable names and needed calculations)

PRICE_PER_CUBIC_YD = 22.00
Input squareFeet // with prompt
Input depth // with prompt
cubicFeet = squareFeet * (depth / 12.0)
cubicYards = cubicFeet / 27
totalPrice = cubicYards * PRICE_PER_CUBIC_YD
Display cubicYards, PRICE_PER_CUBIC_YD, and totalPrice

Green Fields Landscaping Case Study—Part 1 139

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 3-36.

Program 3-36

1 // This program is used by Green Fields Landscaping to compute the
2 // number of cubic yards of mulch a customer needs and its price.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 const double PRICE_PER_CUBIC_YD = 22.00;
8
9 int main()
10 {
11 double squareFeet; // square feet of land to be covered
12 int depth; // inches deep the mulch is to be spread
13 double cubicFeet, // number of cubic feet of mulch needed
14 cubicYards, // number of cubic yards of mulch needed
15 totalPrice; // total price for all the cubic yards ordered
16
17 // Get inputs
18 cout << "Number of square feet to be covered with mulch: ";
19 cin >> squareFeet;
20 cout << "Number of inches deep: ";
21 cin >> depth;
22
23 // Perform calculations
24 cubicFeet = squareFeet * (depth / 12.0);
25 cubicYards = cubicFeet / 27;
26 totalPrice = cubicYards * PRICE_PER_CUBIC_YD;
27
28 // Display outputs
29 cout << "\n Number of cubic yards needed: " << cubicYards << endl;
30 cout << fixed << showpoint << setprecision(2);
31 cout << "Price per cubic yard: $" << setw(7)
32 << PRICE_PER_CUBIC_YD << endl;
33 cout << "Total price: $" << setw(7)
34 << totalPrice << endl << endl;
35
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Number of square feet to be covered with mulch: 270[Enter]
Number of inches deep: 12[Enter]

Number of cubic yards needed: 10
Price per cubic yard: $ 22.00
Total price: $ 220.00

(program output continues)

140 Chapter 3 Expressions and Interactivity

General Crates, Inc., Case Study
The following additional case study, which contains applications of material introduced in
Chapter 3, can be found on the book’s companion website.

This case study develops a program that accepts the dimensions on a crate to be built and
outputs information on its volume, building cost, selling cost, and profit. The case study
illustrates the major program development steps: initial problem statement, program
design using hierarchy charts and pseudocode, development of the algorithm needed to
create the outputs, source code for the final working program, and output created by
running the program with several test cases.

3.13 Tying It All Together: Word Game

With the programming knowledge you have learned so far, you can start constructing
simple games. Here is one that creates a program to play a word game. It will ask the
player to enter the following:

Then it will display a story using those words.

Program Output with Different Example Input Shown in Bold
Number of square feet to be covered with mulch: 800[Enter]
Number of inches deep: 3[Enter]

Number of cubic yards needed: 7.40741
Price per cubic yard: $ 22.00
Total price: $ 162.96

• their name (name)
• the name of a city (city)
• a fun activity (activity)
• a type of animal (animal)

• a food or product you can buy (product)
• an adjective noun (petname)
• a number between 10 and 50 (age)
• a number between 0 and 15 (kids)

Program 3-37

1 // This program uses strings to play a word game.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5

(program continues)

Program 3-36 (continued)

Tying It All Together: Word Game 141

6 int main()
7 { // Stored strings
8 string s1 = "There once was a person named ",
9 s2 = " who lived in ",
10 s3 = "\nand who loved ",
11 s4 = ". At the age of ",
12 s5 = ", ",
13 s6 = " graduated \nfrom high school and went to work in a ",
14 s7 = " factory.\n",
15 s8 = " got married and had ",
16 s9 = " children and a pet ",
17 s10= " named ",
18 s11= ".\nEvery weekend the family and ",
19 s12= " had fun ",
20 s13= " together.";
21
22 // Values input by the user
23 string name, city, activity, animal, product, petName;
24 int age, kids;
25
26 cout << "Enter the following information and I\'ll "
27 << "tell you a story.\n\n";
28 cout << "Your name: ";
29 getline(cin, name);
30
31 cout << "The name of a city: ";
32 getline(cin, city);
33
34 cout << "A physical activity (e.g. jogging, playing baseball): ";
35 getline(cin, activity);
36
37 cout << "An animal: ";
38 getline(cin, animal);
39
40 cout << "A food or product you can buy: ";
41 getline(cin, product);
42
43 cout << "An adjective noun (e.g. blue car): ";
44 getline(cin, petName);
45
46 cout << "A number between 10 and 50: ";
47 cin >> age;
48
49 cout << "A number between 0 and 15: ";
50 cin >> kids;
51
52 cout << endl << s1 << name << s2 << city << s3 << activity;
53 cout << s4 << age << s5 << name << s6 << product << s7;
54 cout << name << s8 << kids << s9 << animal << s10 << petName;
55 cout << s11 << petName << s12 << activity << s13 << endl;
56
57 return 0;
58 }

(program continues)

Program 3-37 (continued)

142 Chapter 3 Expressions and Interactivity

Try running this program with a variety of inputs. Then try modifying it to make up new stories.

Review Questions and Exercises

Short Answer

1. Assume a string object has been defined as follows:

string description;

A) Write a cin statement that reads in a one word description.
B) Write a statement that reads in a description that can contain multiple words

separated by blanks.

2. Write a definition statement for a character array large enough to hold any of the
following strings:

"Billy Bob's Pizza"
"Downtown Auto Supplies"
"Betty Smith School of Architecture"
"ABC Cabinet Company"

3. Assume the array name is defined as follows:

char name[25];

A) Using a stream manipulator, write a cin statement that will read a string into
name, but will read no more characters than name can hold.

B) Using the getline function, write a cin statement that will read a string into
name but that will read no more characters than name can hold.

Sample Run with User Input Shown in Bold
Enter the following information and I'll tell you a story.

Your name: Joe[Enter]
The name of a city: Honolulu[Enter]
A physical activity (e.g. jogging, playing baseball): scuba diving[Enter]
An animal: bear[Enter]
A food or product you can buy: potato chips[Enter]
An adjective noun (e.g. blue car): dish rag[Enter]
A number between 10 and 50: 20[Enter]
A number between 0 and 15: 10[Enter]

There once was a person named Joe who lived in Honolulu
and who loved scuba diving. At the age of 20, Joe graduated
from high school and went to work in a potato chips factory.
Joe got married and had 10 children and a pet bear named dish rag.
Every weekend the family and dish rag had fun scuba diving together.

Program 3-37 (continued)

Review Questions and Exercises 143

4. Assume the following variables are defined:

int age;
double pay;
char section;

Write a single cin statement that will read input into each of these variables.

5. What header files must be included in the following program?

int main()
{

double amount = 89.7;
cout << fixed << showpoint << setprecision(1);
cout << setw(8) << amount << endl;
return 0;

}

6. Write a definition statement for a character array named city. It should be large
enough to hold a string 30 characters in length.

7. Assume the following preprocessor directive appears in a program:

#define SIZE 12

How will the preprocessor rewrite the following lines?

A) price = SIZE * unitCost;
B) cout << setw(SIZE) << 98.7;
C) cout << SIZE;

8. Complete the following table by writing the value of each expression in the Value
column.

9. Write C++ expressions for the following algebraic expressions:

A)

B) z = 5x + 14y + 6k

C) y = x4

D)

E)

Expression Value

28 / 4 - 2
6 + 12 * 2 - 8
4 + 8 * 2
6 + 17 % 3 - 2
2 + 22 * (9 - 7)
(8 + 7) * 2
(16 + 7) % 2 - 1
12 / (10 - 6)
(19 - 3) * (2 + 2) / 4

a 12x�

g h 12�
4k

-----------------�

g a3

b2k4
------------�

144 Chapter 3 Expressions and Interactivity

10. Assume a program has the following variable definitions

int units;
float mass;
double weight;

and the following statement:

weight = mass * units;

Which automatic data type conversions will take place?

11. Assume a program has the following variable definitions

int a, b = 2;
double c = 4.3;

and the following statement:

a = b * c;

What value will be stored in a?

12. Assume that qty and salesReps are both integers. Use a type cast expression to
rewrite the following statement so it will no longer perform integer division.

unitsEach = qty / salesReps;

13. Rewrite the following variable definition so the variable is a named constant with the
value 12.

int rate;

14. Complete the following table by writing statements with combined assignment
operators in the right-hand column. The statements should be equivalent to the
statements in the left-hand column.

15. Write a multiple assignment statement that can be used instead of the following group
of assignment statements:

east = 1;
west = 1;
north = 1;
south = 1;

Statements with
Assignment Operator

Statements with
Combined Assignment Operator

x = x + 5;
total = total + subtotal;
dist = dist / rep;
ppl = ppl * period;
inv = inv - shrinkage;
num = num % 2;

Review Questions and Exercises 145

16. Replace the following statements with a single statement that initializes sum to 0 at
the time it is defined.

int sum;
sum = 0;

17. Is the following code legal? Why or why not?

const int DAYS_IN_WEEK;
DAYS_IN_WEEK = 7;

18. Write a cout statement so the variable divSales is displayed in a field of eight
spaces, in fixed-point notation, with a decimal point and two decimal digits.

19. Write a cout statement so the variable profit is displayed in a field of 12 spaces, in
fixed-point notation, with a decimal point and four decimal digits.

20. What header file must be included

A) to perform mathematical functions like sqrt?
B) to use cin and cout?
C) to use stream manipluators like setprecision?

Algorithm Workbench

21. A bowling alley is offering a prize to the bowler whose average score from bowling
three games is the lowest. Write a pseudocode algorithm for a program that inputs
three bowling scores and calculates and displays their average.

22. Pet World offers a 15% discount to senior citizens. Write a pseudocode algorithm for
a program that inputs the amount of a sale, then calculates and displays both the
amount the customer saves and the amount they must pay.

23. A retail store grants its customers a maximum amount of credit. Each customer’s
available credit is his or her maximum amount of credit minus the amount of credit
used. Write a pseudocode algorithm for a program that asks for a customer’s
maximum credit and amount of credit used, then calculates and displays the
customer’s available credit.

24. Little Italy Pizza charges $12.00 for a 12-inch diameter sausage pizza and $14.00
for a 14-inch diameter sausage pizza. Write the pseudocode for an algorithm that
calculates and displays how much each of these earns the establishment per square
inch of pizza sold. (Hint: you will need to first calculate how many square inches
there are in each pizza.)

Predict the Output

25. Trace the following programs and tell what each will display. (Some require a calculator.)

A) (Assume the user enters 38711. Use a calculator.)

#include <iostream>
using namespace std;

146 Chapter 3 Expressions and Interactivity

int main()
{

double salary, monthly;

cout << "What is your annual salary? ";
cin >> salary;
monthly = static_cast<int>(salary) / 12;
cout << "Your monthly wages are " << monthly << endl;
return 0;

}

B) #include <iostream>
using namespace std;

int main()
{

long x, y, z;
x = y = z = 4;
x += 2;
y -= 1;
z *= 3;
cout << x << " " << y << " " << z << endl;
return 0;

}

C) #include <iostream>
using namespace std;
#define WHO "Columbus"
#define DID "sailed"
#define WHAT "the ocean blue."

int main()
{

const int WHEN = 1492;
cout << "In " << WHEN << " " << WHO << " "
 << DID << " " << WHAT << endl;
return 0;

}

26. A) (Assume the user enters George Washington.)

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main()
{

string userInput;

cout << "What is your name? ";
cin >> userInput;
cout << "Hello " << userInput << endl;
return 0;

}

Chapter 3 Expressions and Interactivity

Review Questions and Exercises 147

B) (Assume the user enters George Washington.)
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;

int main()
{

string userInput;

cout << "What is your name? ";
getline(cin, userInput);
cout << "Hello " << userInput << endl;
return 0;

}

C) (Assume the user enters 36720152. Use a calculator.)
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

long seconds;
double minutes, hours, days, months, years;

cout << "Enter the number of seconds that have\n";
cout << "elapsed since some time in the past and\n";
cout << "I will tell you how many minutes, hours,\n";
cout << "days, months, and years have passed: ";
cin >> seconds;
minutes = seconds / 60;
hours = minutes / 60;
days = hours / 24;
years = days / 365;
months = years * 12;

cout << fixed << showpoint << setprecision(4) << left;
cout << "Minutes: " << setw(6) << minutes << endl;
cout << "Hours: " << setw(6) << hours << endl;
cout << "Days: " << setw(6) << days << endl;
cout << "Months: " << setw(6) << months << endl;
cout << "Years: " << setw(6) << years << endl;
return 0;

}

Find the Errors

27. Each of the following programs has some errors. Locate as many as you can.

A) using namespace std;
int main()
{

double number1, number2, sum;

148 Chapter 3 Expressions and Interactivity

Cout << "Enter a number: ";
Cin << number1;
Cout << "Enter another number: ";
Cin << number2;
number1 + number2 = sum;
Cout "The sum of the two numbers is " << sum
return 0;

}

B) #include <iostream>
using namespace std;
int main()
{

int number1, number2;
double quotient;
cout << "Enter two numbers and I will divide\n";
cout << "the first by the second for you.\n";
cin >> number1, number2;
quotient = double<static_cast>(number1)/number2;
cout << quotient

}

28. A) #include <iostream>;
using namespace std;
int main()
{

const int number1, number2, product;

cout << "Enter two numbers and I will multiply\n";
cout << "them for you.\n";
cin >> number1 >> number2;
product = number1 * number2;
cout << product
return 0;

}

B) #include <iostream>;
using namespace std;
main
{

int number1, number2;

cout << "Enter two numbers and I will multiply\n"
cout << "them by 50 for you.\n"
cin >> number1 >> number2;
number1 =* 50;
number2 =* 50;
return 0;
cout << number1 << " " << number2;

}

29. A) #include <iostream>;
using namespace std;
main
{

Review Questions and Exercises 149

double number, half;

cout << "Enter a number and I will divide it\n"
cout << "in half for you.\n"
cin >> number1;
half =/ 2;

}

B) #include <iostream>;
using namespace std;
int main()
{

char name, go;

cout << "Enter your name: ";
cin.width(20);
cin.getline >> name;
cout << "Hi " << name << endl;
cout "Press the ENTER key to end this program.";
cin >> go;
return 0;

}

Soft Skills

Often programmers work in teams with other programmers to develop a piece of software.
It is important that the team members be able to communicate clearly with one another.

30. Suppose you and a fellow student have been assigned to develop together the pizza
cost program described in Problem 24. You have developed a pseudocode algorithm
for the program and emailed it to your partner, but he does not understand how it
works. Write a paragraph that you might email back clearly explaining how the
algorithm works, what steps must be done, why they must be done in a particular
order, and why the calculations you have specified in the pseudocode are the correct
ones to use. Write your answer using full English sentences with correct spelling and
grammar.

Programming Challenges

1. Miles per Gallon

Write a program that calculates a car’s gas mileage. The program should ask the user to
enter the number of gallons of gas the car can hold and the number of miles it can be
driven on a full tank. It should then calculate and display the number of miles per gallon
the car gets.

2. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost $15,
Class B seats cost $12, and Class C seats cost $9. Write a program that asks how many
tickets for each class of seats were sold, then displays the amount of income generated
from ticket sales. Format your dollar amount in a fixed-point notation with two decimal
points and make sure the decimal point is always displayed.

VideoNote

Solving the
Stadium
Seating
Problem

150 Chapter 3 Expressions and Interactivity

3. Housing Costs

Write a program that asks the user to enter their monthly costs for each of the following
housing related expenses:

The program should then display the total monthly cost of these expenses, and the total
annual cost of these expenses.

4. How Much Insurance?

Many financial experts advise property owners to insure their homes or buildings for at
least 80 percent of the amount it would cost to replace the structure. Write a program that
asks the user to enter the replacement cost of a building and then displays the minimum
amount of insurance that should be purchased for the property.

5. Batting Average

Write a program to find a baseball player’s batting average. The program should ask the
user to enter the number of times the player was at bat and the number of hits he got. It
should then display his batting average to 4 decimal places.

6. Test Average

Write a program that asks for five test scores. The program should calculate the average test
score and display it. The number displayed should be formatted in fixed-point notation, with
one decimal point of precision.

7. Average Rainfall

Write a program that calculates the average monthly rainfall for three months. The
program should ask the user to enter the name of each month, such as June or July, and the
amount of rain (in inches) that fell that month. The program should display a message
similar to the following:

The average monthly rainfall for June, July, and August was 6.72 inches.

8. Box Office

A movie theater only keeps a percentage of the revenue earned from ticket sales. The
remainder goes to the distibutor. Write a program that calculates a theater’s gross and net
box office profit for a night. The program should ask for the name of the movie, and how
many adult and child tickets were sold. (The price of an adult ticket is $6.00 and a child’s
ticket is $3.00.) It should display a report similar to the following:

Movie Name: “Wheels of Fury”
Adult Tickets Sold: 382
Child Tickets Sold: 127
Gross Box Office Profit: $ 2673.00
Amount Paid to Distributor: – $ 2138.40
Net Box Office Profit: $ 534.60

Assume the theater keeps 20 percent of the gross box office profit.

• rent or mortgage payment
• utilities

• phones
• cable

Review Questions and Exercises 151

9. How Many Widgets?

The Yukon Widget Company manufactures widgets that weigh 9.2 pounds each. Write a
program that calculates how many widgets are stacked on a pallet, based on the total
weight of the pallet. The program should ask the user how much the pallet weighs by itself
and with the widgets stacked on it. It should then calculate and display the number of
widgets stacked on the pallet.

10. How many Calories?

A bag of cookies holds 40 cookies. The calorie information on the bag claims that there are
10 “servings” in the bag and that a serving equals 300 calories. Write a program that asks
the user to input how many cookies they actually ate and then reports how many total
calories were consumed.

11. Celsius to Fahrenheit

Write a program that converts Celsius temperatures to Fahrenheit temperatures. The
formula is

where F is the Fahrenheit temperature and C is the Celsius temperature. The program
should prompt the user to input a Celsius temperature and should display the corresponding
Farenheit temperature.

12. Currency

Write a program that will convert U.S. dollar amounts to Japanese yen and to euros,
storing the conversion factors in the constant variables YEN_PER_DOLLAR and
EUROS_PER_DOLLAR. To get the most up-to-date exchange rates, search the Internet
using the term “currency exchange rate” or “currency converter”. If you cannot find the
most recent exchange rates, use the following:

1 Dollar = 78.18 Yen
1 Dollar = .8235 Euros

13. Monthly Sales Tax

A retail company must file a monthly sales tax report listing the sales for the month and
the amount of sales tax collected. Write a program that asks for the month, the year, and
the total amount collected at the cash register (that is, sales plus sales tax). Assume the
state sales tax is 4 percent and the county sales tax is 2 percent.

If the total amount collected is known and the total sales tax is 6 percent, the amount of
product sales may be calculated as

where S is the product sales and T is the total income (product sales plus sales tax).

S
T

1.06
-----------=

F 9
5
---C 32��

152 Chapter 3 Expressions and Interactivity

The program should display a report similar to the following:

Month: March 2008

Total Collected: $ 26572.89
Sales: $ 25068.76
County Sales Tax: $ 501.38
State Sales Tax: $ 1002.75
Total Sales Tax: $ 1504.13

14. Property Tax

Madison County collects property taxes on the assessed value of property, which is 60
percent of its actual value. For example, if a house is valued at $158,000 its assessed value
is $94,800. This is the amount the homeowner pays tax on. At last year’s tax rate of $2.64
for each $100 of assessed value, the annual property tax for this house would be $2502.72.
Write a program that asks the user to input the actual value of a piece of property and
the current tax rate for each $100 of assessed value. The program should then
calculate and report how much annual property tax the homeowner will be charged for
this property.

15. Senior Citizen Property Tax

Madison County provides a $5000 homeowner exemption for senior citizens. For example, if
their house is valued at $158,000 its assessed value would be $94,800, as explained above.
However they would only pay tax on $89,800. At last year’s tax rate of $2.64 for each $100
of assessed value, their property tax would be $2370.72. In addition to the tax break, senior
citizens are allowed to pay their property tax in 4 equal payments. The quarterly payment due
on this property would be $592.68. Write a program that asks the user to input the actual
value of a piece of property and the current tax rate for each $100 of assessed value. The
program should then calculate and report how much annual property tax a senior
homeowner will be charged for this property and what their quarterly tax bill will be.

16. Math Tutor

Write a program that can be used as a math tutor for a young student. The program should
display two random numbers between 1 and 9 to be added, such as

2
+ 1

After the student has entered an answer and pressed the [Enter] key, the program should
display the correct answer so the student can see if his or her answer is correct.

17. Interest Earned

Assuming there are no deposits other than the original investment, the balance in a savings
account after one year may be calculated as

where Principal is the balance in the account, Rate is the annual interest rate, and T is the
number of times the interest is compounded during a year (e.g., T is 4 if the interest is
compounded quarterly).

Amount Principal * 1 Rate

T
---------�⎝ ⎠

⎛ ⎞
T

�

Review Questions and Exercises 153

Write a program that asks for the principal, the interest rate, and the number of times
the interest is compounded. It should display a report similar to the following:

Interest Rate: 4.25%
Times Compounded: 12
Principal: $ 1000.00
Interest: $ 43.33
Final balance: $ 1043.33

18. Monthly Payments

The monthly payment on a loan may be calculated by the following formula:

Rate is the monthly interest rate, which is the annual interest rate divided by 12. (A 12
percent annual interest would be 1 percent monthly interest.) N is the number of payments
and L is the amount of the loan. Write a program that asks for these values and displays
a report similar to the following:

Loan Amount: $ 10000.00
Monthly Interest Rate: 1%
Number of Payments: 36
Monthly Payment: $ 332.14
Amount Paid Back: $ 11957.15
Interest Paid: $ 1957.15

19. Pizza Slices

Joe’s Pizza Palace needs a program to calculate the number of slices a pizza of any size can
be divided into. The program should perform the following steps:

A) Ask the user for the diameter of the pizza in inches.
B) Calculate the number of slices that may be taken from a pizza of that size if each

slice has an area of 14.125 square inches.
C) Display a message telling the number of slices.

The number of square inches in the total pizza can be calculated with this formula:

Area = πr2

where variable r is the radius of the pizza and π is the Greek letter PI. In your program
make PI a named constant with the value 3.14. Display the number of slices as a whole
number (i.e., with no decimals).

20. How Many Pizzas?

Modify the program you wrote in Programming Challenge 19 so that it reports the number
of pizzas you need to buy for a party if each person attending is expected to eat an average
of 4 slices. The program should ask the user for the number of people who will be at the
party and for the diameter of the pizzas to be ordered. It should then calculate and display
the number of pizzas to purchase. Because it is impossible to buy a part of a pizza, the
number of required pizzas should be displayed as a whole number.

Payment
Rate * 1 Rate�()N

1 Rate�()N
1�

--- * L/;�

154 Chapter 3 Expressions and Interactivity

21. Angle Calculator

Write a program that asks the user for an angle, entered in radians. The program should
then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and tan library
functions to determine these values.) The output should be displayed in fixed-point
notation, rounded to four decimal places of precision.

22. Stock Transaction Program

Last month Joe purchased 100 shares of stock. Here are the details of the purchase:

• When Joe purchased the stock, he paid $32.87 per share.
• Joe paid his stock broker a commission that amounted to 2% of the amount he paid

for the stock.

Two months later Joe sold the stock. Here are the details of the sale:

• He sold the stock for $33.92 per share.
• He paid his stock broker another commission that amounted to 2% of the amount he

received for the stock.

Write a program that displays the following information:

• The amount of money Joe paid for the stock.
• The amount of commission Joe paid his broker when he bought the stock.
• The amount that Joe sold the stock for.
• The amount of commission Joe paid his broker when he sold the stock.
• The amount of profit or loss that Joe had after selling his stock and paying both

broker commissions.

155

C
H

A
P

T
E

R

4 Making Decisions

4.1 Relational Operators

CONCEPT: Relational operators allow you to compare numeric and char values and
determine whether one is greater than, less than, equal to, or not equal to
another.

So far, the programs you have written follow this simple scheme:

• Gather input from the user.
• Perform one or more calculations.
• Display the results on the screen.

Computers are good at performing calculations, but they are also quite adept at comparing
values to determine if one is greater than, less than, or equal to, the other. These types of
operations are valuable for tasks such as examining sales figures, determining profit and
loss, checking a number to ensure it is within an acceptable range, and validating the input
given by a user.

TOPICS

4.1 Relational Operators
4.2 The if Statement
4.3 The if/else Statement
4.4 The if/else if Statement
4.5 Menu-Driven Programs
4.6 Nested if Statements
4.7 Logical Operators
4.8 Validating User Input
4.9 More About Blocks and Scope

4.10 More About Characters and Strings
4.11 The Conditional Operator
4.12 The switch Statement
4.13 Enumerated Data Types
4.14 Focus on Testing and Debugging:

Validating Output Results
4.15 Green Fields Landscaping Case

Study—Part 2
4.16 Tying It All Together: Fortune Teller

156 Chapter 4 Making Decisions

Numeric data is compared in C++ by using relational operators. Characters can also be
compared with these operators, because characters are considered numeric values in C++. Each
relational operator determines whether a specific relationship exists between two values. For
example, the greater-than operator (>) determines if a value is greater than another. The equality
operator (==) determines if two values are equal. Table 4-1 lists all of C++’s relational operators.

All of the relational operators are binary. This means they use two operands. Here is an
example of an expression using the greater-than operator:

x > y

This expression is called a relational expression. It is used to determine whether x is greater
than y. The following expression determines whether x is less than y:

x < y

The Value of a Relationship
So, how are relational expressions used in a program? Remember, all expressions have a value.
Relational expressions are Boolean expressions, which means their value can only be true or
false. If x is greater than y, the expression x > y will be true and the expression x < y will be
false.

The == operator determines whether the operand on its left is equal to the operand on its
right. If both operands have the same value, the expression is true. Assuming that a is 4,
the following expression is true:

a == 4

and the following expression is false:

a == 2

Table 4-1 Relational Operators

Relational
Operators Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

NOTE: All the relational operators are binary operators with left-to-right associativity.
Recall that associativity is the order in which an operator works with its operands.

WARNING! Notice the equality operator is two = symbols together. Don’t confuse this
operator with the assignment operator, which is one = symbol. The == operator determines
if a variable is equal to another value, but the = operator assigns the value on the operator’s
right to the variable on its left. There will be more about this later in the chapter.

Relational Operators 157

Two of the relational operators actually test for a pair of relationships. The >= operator
determines whether the operand on its left is greater than or equal to the operand on the
right. If a is 4, b is 6, and c is 4, both of the following expressions are true:

b >= a
a >= c

and the following expression is false:

a >= 5

The <= operator determines whether the operand on its left is less than or equal to the
operand on its right. Once again, if a is 4, b is 6, and c is 4, both of the following expressions
are true:

a <= c
b <= 10

and the following expression is false:

b <= a

The last relational operator is !=, which is the not-equal operator. It determines
whether the operand on its left is different than (i.e., not equal to) the operand on its
right, which is the opposite of the == operator. As before, if a is 4, b is 6, and c is 4,
both of the following expressions are true:

a != b
b != c

These expressions are true because a is not equal to b and b is not equal to c. However, the
following expression is false because a is equal to c:

a != c

Table 4-2 shows other relational expressions and their true or false values.

What Is Truth?
If a relational expression can evaluate to either true or false, how are those values represented
internally in a program? How does a computer store true in memory? How does it store false?

As you saw in Program 2-16, those two abstract states are converted to numbers. This can be
confusing, especially for new programmers, because in C++ zero is considered false, and any
nonzero value is considered true. The C++ key word false is stored as 0, and the key word
true is stored as 1. And when a relational expression is false it evaluates to 0. However,
when a relational expression is true it does not always evaluate to 1. Though it usually does,
it can actually evaluate to any nonzero value.

Table 4-2 Example Relational Expressions (Assume x is 10 and y is 7.)

Expression Value

x < y false, because x is not less than y.

x > y true, because x is greater than y.

x >= y true, because x is greater than or equal to y.

x <= y false, because x is not less than or equal to y.

y != x true, because y is not equal to x.

158 Chapter 4 Making Decisions

To illustrate this more fully, look at Program 4-1.

Let’s examine the statements containing the relational expressions a little closer:

trueValue = (x < y);
falseValue = (y == x);

These statements may seem odd because they are assigning the value of a comparison to a
variable. In the first statement, the variable trueValue is being assigned the result of x < y.
Because x is less than y, the expression is true, and the variable trueValue is assigned a
nonzero value. In the second statement, the expression y == x is false, so the variable
falseValue is set to 0.

When writing statements such as these, most programmers enclose the relational
expression in parentheses, as shown above, to make it clearer.

Parentheses are not actually required, however, because even without them the relational
operation is carried out before the assignment operation is performed. This occurs because
relational operators have a higher precedence than the assignment operator. Likewise,
arithmetic operators have a higher precedence than relational operators.

The statement

result = x < y - 8;

is equivalent to the statement

result = x < (y - 8);

In both cases, y - 8 is evaluated first. Then this value is compared to x. Notice, however,
how much clearer the second statement is. It is always a good idea to place parentheses
around an arithmetic expression when its result will be used in a relational expression.

Program 4-1

1 // This program displays the values C++ uses to represent true and false.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 bool trueValue, falseValue;
8 int x = 5, y = 10;
9
10 trueValue = (x < y);
11 falseValue = (y == x);
12
13 cout << "True is " << trueValue << endl;
14 cout << "False is " << falseValue << endl;
15 return 0;
16 }

Program Output
True is 1
False is 0

Relational Operators 159

Table 4-3 shows examples of other statements that include relational expressions.

Relational operators also have a precedence order among themselves. The two operators that
test for equality or lack of equality (== and !=) have the same precedence as each other. The
four other relational operators, which test relative size, have the same precedence as each
other. These four relative relational operators have a higher precedence than the two equality
relational operators. Table 4-4 shows the precedence of relational operators.

Here is an example of how this is applied. If a = 9, b = 24, and c = 0, the following
statement displays a 1.

cout << (c == a > b);

Because of the relative precedence of the operators in this expression, a > b is evaluated
first. Since 9 is not greater than 24, it evaluates to false, or 0. Then c == 0 is evaluated.
Because c does equal 0, this evaluates to true, or 1. So a 1 is inserted into the output stream
and printed.

In this chapter’s remaining sections you will see how to get the most from relational expressions
by using them in statements that take action based on the results of the comparison.

Checkpoint

4.1 Assuming x is 5, y is 6, and z is 8, indicate whether each of the following relational
expressions is true or false:

A) x == 5
B) 7 <= (x + 2)
C) z > 4
D) (2 + x) != y
E) z != 4
F) x >= 0
G) x <= (y * 2)

Table 4-3 Statements that Include Relational Expressions
(Assume x is 10, y is 7, and z is an int or bool.)

Statement Outcome

z = x < y z is assigned 0 because x is not less than y.

cout << (x > y); Displays 1 because x is greater than y.

z = (x >= y); z is assigned 1 because x is greater than or equal to y.

cout << (x <= y); Displays 0 because x is not less than or equal to y.

z = (y != x); z is assigned 1 because y is not equal to x.

cout << (x == (y + 3)); Displays 1 because x is equal to y + 3.

Table 4-4 Precedence of Relational Operators
(Highest to Lowest)

 > >= < <=

 == !=

160 Chapter 4 Making Decisions

4.2 Indicate whether each of the following statements about relational expressions is
correct or incorrect.

A) x <= y is the same as y > x.
B) x != y is the same as y >= x.
C) x >= y is the same as y <= x.

4.3 Answer the following questions with a yes or no.

A) If it is true that x > y and it is also true that x < z, does that mean y < z is true?
B) If it is true that x >= y and it is also true that z == x, does that mean that z == y

is true?
C) If it is true that x != y and it is also true that x != z, does that mean that

z != y is true?

4.4 What will the following program segment display?

int a = 0, b = 2, x = 4, y = 0;

cout << (a == b) << " " << (a != y) << " "
 << (b <= x) << " " << (y > a) << endl;

4.2 The if Statement

CONCEPT: The if statement can cause other statements to execute only under certain
conditions.

You might think of the statements in a procedural program as individual steps taken as you
are walking down a road. To reach the destination, you must start at the beginning and
take each step, one after the other, until you reach the destination. The programs you have
written so far are like a “path” of execution for the program to follow.

Figure 4-1

VideoNote

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

// A program to calculate the area of a rectangle

#include <iostream>
using namespace std;

int main()
{
 double length, width, area;

 cout << "Enter the length of the rectangle: ";
 cin >> length;
 cout << "Enter the width of the rectangle: ";
 cin >> width;
 area = length * width;
 cout << "The area is: " << area << endl;
 return 0;
}

Using an if
Statement

The if Statement 161

The type of code in Figure 4-1 is called a sequence structure because the statements are
executed in sequence, one after another, without branching off in another direction. Programs
often need more than one path of execution, however. Many algorithms require a program to
execute some statements only under certain circumstances. This can be accomplished with a
decision structure.

In a decision structure’s simplest form an action, or set of actions, is carried out only when
a specific condition exists. If the condition does not exist, the actions are not performed.
The flowchart in Figure 4-2 shows the logic of a decision structure. The diamond symbol
represents a yes/no question or a true/false condition. If the answer to the question is yes
(or if the condition is true), the program flow follows one path, which leads to the actions
being performed. If the answer to the question is no (or the condition is false), the program
flow follows another path, which skips the actions.

In the flowchart, the actions “Wear a coat”, “Wear a hat”, and “Wear gloves” are performed
only when it is cold outside. If it is not cold outside, these actions are skipped. The actions
are conditionally executed because they are performed only when a certain condition (cold
outside) exists.

We perform mental tests like these every day. Here are some other examples:

If the car is low on gas, stop at a service station and get gas.
If it’s raining outside, go inside.
If you’re hungry, get something to eat.

The most common way to code a decision structure in C++ is with the if statement.
Figure 4-3 shows the general format of the if statement and a flowchart visually depicting
how it works.

Figure 4-2

Is it cold
outside?

No

Yes

Wear a coat.

Wear a hat.

Wear gloves.

162 Chapter 4 Making Decisions

Notice that the statements inside the body of the if construct are contained within a set of
curly braces. This creates what C++ calls a block and lets the compiler know which statements
are associated with the if. The opening brace must be located after the if condition and
before the first statement in the body. However, while following this requirement, different
programmers choose different places to locate it. The two most common placements are
shown in Figure 4-3. This book uses the form shown on the left. Your instructor will tell you
what form he or she wants you to use.

Program 4-2 illustrates the use of an if statement. The user enters three test scores and the
program calculates their average. If the average equals 100, the program congratulates the
user on earning a perfect score.

Figure 4-3

Program 4-2

1 // This program correctly averages 3 test scores.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 int score1, score2, score3;
9 double average;
10
11 // Get the three test scores
12 cout << "Enter 3 test scores and I will average them: ";
13 cin >> score1 >> score2 >> score3;
14
15 // Calculate and display the average score
16 average = (score1 + score2 + score3) / 3.0;
17 cout << fixed << showpoint << setprecision(1);
18 cout << "Your average is " << average << endl;
19
20 // If the average equals 100, congratulate the user
21 if (average == 100)
22 { cout << "Congratulations! ";
23 cout << "That's a perfect score!\n";
24 }
25 return 0;
26 }

(program continues)

if (condition) {

 statement 1;
 statement 2;
 .
 .
 statement n;
}

or

if (condition)
{
 statement 1;
 statement 2;
 .
 .
 statement n;
}

condition

true

false

statement(s)

The if Statement 163

Let’s look more closely at lines 21–24 of Program 4-2, which cause the congratulatory
message to be printed.

if (average == 100)
{ cout << "Congratulations! ";

 cout << "That's a perfect score!\n";
}

There are four important things to notice. First, the word if, which begins the statement,
is a C++ key word and must be written in lowercase. Second, the condition to be tested
(average == 100) must be enclosed inside parentheses. Third, there is no semicolon after
the test condition, even though there is a semicolon after each action associated with the if
construct. We will explain why shortly. And finally, the block of statements to be
conditionally executed is surrounded by curly braces. This is required whenever two or
more actions are associated with an if statement.

If there is only one statement to be conditionally executed, the braces can be omitted. For
example, in Program 4-2 if the two cout statements were combined into one statement,
they could be written as shown here.

if (average == 100)
cout << "Congratulations! That's a perfect score!\n";

However, some instructors prefer that you always place braces around a conditionally executed
block, even when it consists of only one statement.

Table 4-5 shows other examples of if statements and their outcomes.

Program Output with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0

Program Output with Other Example Input Shown in Bold
Enter 3 test scores and I will average them: 100 100 100[Enter]
Your average is 100.0
Congratulations! That's a perfect score!

Table 4-5 Example if Statements

Statements Outcome

if (hours > 40)
{ overTime = true;

payRate *= 2;
}

Assigns true to Boolean variable overTime and doubles payRate
only when hours is greater than 40. Because there is more than one
statement in the conditionally executed block, braces {} are
required.

if (temperature > 32)
 freezing = false;

Assigns false to Boolean variable freezing only when
temperature is greater than 32. Because there is only one
statement in the conditionally executed block, braces {} are
optional.

Program 4-2 (continued)

164 Chapter 4 Making Decisions

Programming Style and the if Statement
Even though if statements usually span more than one line, they are technically one long
statement. For instance, the following if statements are identical except in style:

if (a >= 100)
cout << "The number is out of range.\n";

if (a >= 100) cout << "The number is out of range.\n";

The first of these two if statements is considered to be better style because it is easier
to read. By indenting the conditionally executed statement or block of statements, you
cause it to stand out visually so you can tell at a glance what part of the program the
if statement executes. This is a standard way of writing if statements and is the
method you should use. Here are two important style rules for writing if statements:

• The conditionally executed statement(s) should begin on the line after the if statement.
• The conditionally executed statement(s) should be indented one “level” from the if

statement.

Three Common Errors to Watch Out For
When writing if statements, there are three common errors you must watch out for.

1. Misplaced semicolons
2. Missing braces
3. Confusing = with ==

Be Careful with Semicolons

Semicolons do not mark the end of a line. They mark the end of a complete C++ statement.
The if construct isn’t complete without the one or more conditionally executed statements that
come after it. So you must not put a semicolon after the if (condition) portion of an if
statement.

If you inadvertently put a semicolon after the if part, the compiler will assume you are
placing a null statement there. The null statement is an empty statement that does nothing.
This will prematurely terminate the if statement, which disconnects it from the block of

NOTE: In most editors, each time you press the tab key, you are indenting one level.

No semicolon goes here

Semicolons go here

if (condition)
{
 statement 1;
 statement 2;
 .
 .
 statement n;
}

The if Statement 165

statements that follows it. These statements will then always execute. For example, notice
what would have happened in Program 4-2 if the if statement had been prematurely
terminated with a semicolon, as shown here.

if (average == 100); // Error. The semicolon terminates
{ // the if statement prematurely.

 cout << "Congratulations! ";
 cout << "That's a perfect score!\n";

}

Output of Revised Program 4-2 with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Because the if statement ends when the premature semicolon is encountered, the cout
statements inside the braces are no longer part of it. Therefore, they always execute,
regardless of whether average equals 100 or not. This erroneous version of Program 4-2
can be found on the book’s companion website as Program 4-2B.

Don’t Forget the Braces

If you intend to conditionally execute a block of statements rather than just one statement with
an if statement, don’t forget the braces. Without a set of braces, the if condition only
determines whether or not the very next statement will be executed. Any following statements
are considered to be outside the if statement and will always be executed. For example, notice
what would have happened in the original Program 4-2 if the braces enclosing the two cout
statements had been omitted.

if (average == 100)
 cout << "Congratulations! "; // There are no braces.
 cout << "That's a perfect score!\n"; // This is outside the if.

Output of Program 4-2 Revised a Second Time with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
That's a perfect score!

With no braces around the set of statement to be conditionally executed, only the first of
these statements belongs to the if construct. Because the condition in our test case (average
== 100) was false, the Congratulations! message was skipped. However the cout
statement that prints That's a perfect score! was executed, as it would be every time,
regardless of whether average equals 100 or not. This erroneous version of Program 4-2 can
be found on the book’s companion website as Program 4-2C.

NOTE: Indentation and spacing are for human readers of a program, not the computer.
Even though the cout statements inside the braces in the above example are indented, the
semicolon still terminates the if construct.

166 Chapter 4 Making Decisions

Don’t Confuse == With =

Earlier you saw a warning not to confuse the equality operator (==) with the assignment
operator (=), as in the following statement:

if (x = 2) // Caution here!
 cout << "It is True!";

This statement does not determine whether x is equal to 2; instead it assigns x the value 2!
Furthermore, the cout statement will always be executed because the expression x = 2
evaluates to 2, which C++ considers true.

This occurs because the value of an assignment expression is the value being assigned to
the variable on the left side of the = operator. Therefore the value of the expression x = 2 is
2. Earlier you learned that C++ stores the value true as 1. However, it actually considers
all nonzero values, not just 1, to be true. Thus 2 represents a true condition.

Let’s examine this more closely by looking at yet another variation of the original Program
4-2. This time notice what would have happened if the equal-to relational operator in the
if condition had been replaced by the assignment operator, as shown here.

if (average = 100) // Error. This assigns 100 to average.
{

 cout << "Congratulations! ";
 cout << "That's a perfect score!\n";

}

Output of Program 4-2 Revised a Third Time with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Rather than comparing average to 100, the if statement assigns it the value 100. This
causes the if test to evaluate to 100, which is considered true. Therefore the two cout
statements will execute every time, regardless of what test scores are entered by the user.
This erroneous version of Program 4-2 can be found on the book’s companion website as
Program 4-2D.

More About Truth
Now that you’ve gotten your feet wet with relational expressions and if statements, let’s look
further at the subject of truth. You have seen that a relational expression has the value 1 when
it is true and 0 when false. You have also seen that while 0 is considered false, all values other
than 0 are considered true. This means that any value, even a negative number, represents
true as long as it is not 0.

Just as in real life, truth is a complicated thing. Here is a summary of the rules you have
seen so far:

• When a relational expression is true, it has a nonzero value, which in most cases is
represented by the value 1.

• When a relational expression is false, it has the value 0.

The if Statement 167

• An expression that has the value 0 is considered false by the if statement. This
includes the bool value false, which is equivalent to 0.

• An expression that has any value other than 0 is considered true. This includes the
bool value true, which is equivalent to 1.

The fact that the if statement considers any nonzero value as true opens many possibilities.
Relational expressions are not the only conditions that may be tested. For example, if the
variable value is an integer, the following is a legal if statement in C++:

if (value)
cout << "It is True!";

If value contains any number other than 0, the if condition will evaluate to true, and the
message “It is True!” will be displayed. If value is set to 0, however, the if condition
will evaluate to false, and the cout statement will be skipped. Here is another example:

if (x + y)
cout << "It is True!";

In this statement the sum of x and y is tested. If the sum is 0, the expression is considered
false; otherwise it is considered true. You may also use the return value of a function call as
a conditional expression. Here is an example that uses the pow function:

if (pow(a, b))
cout << "It is True!";

This if statement uses the pow function to raise a to the power of b. If the result is
anything other than 0, the cout statement will be executed.

Flags
A flag is a variable that signals whether or not some condition currently exists in a program.
Because bool variables hold the values true and false, they are the perfect type of variables
to use for flags. When the flag variable is set to true, it means the condition does exist. When
the flag variable is set to false, it means that the condition does not exist, at least not yet.

For example, suppose a program that calculates sales commissions has a Boolean variable,
defined and initialized as shown here:

bool salesQuotaMet = false;

In the program, the salesQuotaMet variable is used as a flag to indicate whether a
salesperson has met the sales quota. When we define the variable, we initialize it with
false because we do not yet know if the salesperson has met the quota. Assuming a
variable named sales holds the amount of sales, code similar to the following might
appear in the program.

if (sales >= QUOTA_AMOUNT)
 salesQuotaMet = true;

If the test condition is true (i.e., sales is greater than or equal to the QUOTA_AMOUNT), the
flag salesQuotaMet is set to true. Otherwise, it remains false.

168 Chapter 4 Making Decisions

Later in the program we might test the flag in the following way:

if (salesQuotaMet)
 cout << "You have met your sales quota!\n";

This code displays “You have met your sales quota!” if the bool variable salesQuotaMet
is true. Otherwise, it does not display anything. Notice that we did not have to use the ==
operator to explicitly compare the salesQuotaMet variable with the value true. The
above code is equivalent to the following:

if (salesQuotaMet == true)
 cout << "You have met your sales quota!\n";

Integer Flags
Integer variables may also be used as flags. This is because in C++ the value 0 is considered
false, and any nonzero value is considered true. In the sales commission program
previously described, we could define the salesQuotaMet variable with the following
statement:

int salesQuotaMet = 0; // 0 means false

As before, we initialize the variable with 0, meaning false, because we do not yet know if
the sales quota has been met. After the sales have been calculated, we can use code similar
to the following:

if (sales >= QUOTA_AMOUNT)
 salesQuotaMet = 1; // 1 means true

Later in the program we could test the flag like this:

if (salesQuotaMet) // Any value other than 0 evaluates to true
 cout << "You have met your sales quota!\n";

This is equivalent to the following:

if (salesQuotaMet != 0)
 cout << "You have met your sales quota!\n";

Checkpoint

4.5 Write an if statement that performs the following logic: if the value of variable
price is greater than 500, then assign 0.2 to the variable discountRate.

4.6 Write an if statement that multiplies payRate by 1.5 if hours is greater than 40.

4.7 Write an if statement that performs the following logic: if the variable sales is
greater than 50,000, then assign 0.25 to the commissionRate variable, and assign
250 to the bonus variable.

4.8 TRUE or FALSE: Both of the following if statements perform the same operation.

if (calls == 20) if (calls = 20)
 rate *= 0.5; rate *= 0.5;

The if/else Statement 169

4.9 Write an if statement that performs the following logic: if the variable named
ticketsSold is equal to 200, then set the Boolean flag variable soldOut to true;

4.10 Write an if statement that prints “The performance is sold out!” if the Boolean flag
variable soldOut is set to true.

4.11 Although the following code segments are syntactically correct, each contains an
error. Locate the error and indicate what is wrong.
A) hours = 12;

if (hours > 40);
cout << hours << " hours qualifies for over-time.\n";

B) interestRate = .05;
if (interestRate = .07)

cout << "This account is earning the maximum rate.\n";
C) interestRate = .05;

if (interestRate > .07)
cout << "This account earns a $10 bonus.\n";
balance += 10.0;

4.3 The if/else Statement

CONCEPT: The if/else statement will execute one set of statements when the if
condition is true, and another set when the condition is false.

The if/else statement is an expansion of the if statement. Figure 4-4 shows the general
format of this statement and a flowchart visually depicting how it works.

As with the if statement, a condition is tested. If the condition is true, a block containing
one or more statements is executed. If the condition is false, however, a different group of
statements is executed. Program 4-3 uses the if/else statement along with the modulus
operator to determine if a number is odd or even.

Figure 4-4

VideoNote

true false
condition

statement
set 2

statement
set 1

if (condition)
{
 statement set 1;
}
else
{
 statement set 2;
}

Using an
if/else
Statement

170 Chapter 4 Making Decisions

The else part at the end of the if statement specifies one or more statements that are to
be executed when the condition is false. When number % 2 does not equal 0, a message is
printed indicating the number is odd. Note that the program will only take one of the two
paths in the if/else statement. If you think of the statements in a computer program as
steps taken down a road, consider the if/else statement as a fork in the road. It causes
program execution to follow one of two mutually exclusive paths.

Notice the programming style used to construct the if/else statement. The word else is
at the same level of indention as if. The statements whose execution are controlled by the
if and by the else are both indented one level. This makes the two possible paths of
execution visually clear to anyone reading the code.

When to Use if and When to Use if/else
Sometimes new programming students are unsure whether to use two separate if statements
or a single if/else statement when two possible conditions exist. Here is the basic rule. If
both conditions could be true or both could be false, use two separate if statements. Here is an
example:

 if (score >= 60) // Use 2 if statements here
 cout << "You passed. \n";
 if (score >= 80)
 cout << "Good job. \n";

Program 4-3

1 // This program uses the modulus operator to determine
2 // if a number is odd or even. If the number is evenly divisible
3 // by 2, it is an even number. A remainder indicates it is odd.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int number;
10
11 cout << "Enter an integer and I will tell you if it\n";
12 cout << "is odd or even. ";
13 cin >> number;
14
15 if (number % 2 == 0)
16 cout << number << " is even.\n";
17 else
18 cout << number << " is odd.\n";
19 return 0;
20 }

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it
is odd or even. 17[Enter]
17 is odd.

The if/else Statement 171

In this case two separate if statements are needed because with a score below 60 we do
not want either message to be displayed, and with a score of 80 or higher we want both
messages to be displayed.

On the other hand, if the two conditions are mutually exclusive, such that one must be true
and the other false, an if/else statement should be used. Here is an example:

 if (score >= 60) // Do NOT use 2 if statements here
 cout << "You passed. \n";
 if (score < 60)
 cout << "You failed. \n";

Here the two test conditions are mutually exclusive. Either it is true that the score is 60 or
higher, in which case the first message should be displayed, or it is false and the score is
below 60, in which case the second message should be displayed. Therefore these two
statements should be combined into a single if/else construct, like this:

 if (score >= 60) // Use a single if/else statement instead
 cout << "You passed. \n";
 else
 cout << "You failed. \n";

Program 4-3 used a single if/else statement to test the integer variable number to see if it
was even or odd because these are mutually exclusive conditions. If a number is evenly
divisible by 2, it is even. If not, it must be odd. Program 4-4 includes another case where
if/else is the right construct to use. It shows how to make sure a program does not
attempt to perform division by zero.

Division by zero is mathematically impossible to perform and it normally causes a program to
crash. This means the program will prematurely stop running, sometimes with an error
message. Program 4-4 shows a way to test the value of a divisor before the division takes place.

Program 4-4

1 // This program makes sure that the divisor is not
2 // equal to 0 before it performs a divide operation.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 double num1, num2, quotient;
9
10 // Get the two numbers
11 cout << "Enter two numbers: ";
12 cin >> num1 >> num2;
13
14 // If num2 is not zero, perform the division.
15 if (num2 != 0)
16 {
17 quotient = num1 / num2;
18 cout << "The quotient of " << num1 << " divided by "
19 << num2 << " is " << quotient << ".\n";
20 }

(program continues)

172 Chapter 4 Making Decisions

Notice how line 15 of Program 4-4 tests the value of num2. If the user enters anything other
than zero, the lines controlled by the if are executed, allowing the division to be performed
and the result to be displayed. But if the user enters a zero for num2, the lines controlled by
the else are executed instead, causing an error message to be displayed. Notice also the
braces on lines 22 and 26. As with the if part of an if construct, if you wish to execute
more than one statement in the else part, these statements must be placed inside a set of
braces. Otherwise the else only controls a single statement.

Comparing Floating-Point Numbers
Testing floating-point numbers for equality can sometimes give erroneous results. Because of a
lack of precision or round-off errors, a number that should be mathematically equal to another
might not be. In Program 4-5, the number 6 is multiplied by 0.666667, a decimal version of
2/3. Of course, 6 times 2/3 is 4. The program, however, disagrees.

21 else
22 {
23 cout << "Division by zero is not possible.\n";
24 cout << "Please run the program again and enter "
25 << "a number other than zero.\n";
26 }
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter two numbers: 10 0[Enter]
Division by zero is not possible.
Please run the program again and enter a number other than zero.

Program 4-5

1 // This program demonstrates how a lack of precision in
2 // floating-point numbers can make equality comparisons unreliable.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 double result = .666667 * 6.0;
9
10 // 2/3 of 6 should be 4 and, if you print result, 4 is displayed.
11 cout << "result = " << result << endl;
12
13 // However, internally result is NOT precisely equal to 4.
14 if (result == 4.0)
15 cout << "result DOES equal 4!" << endl;
16 else
17 cout << "result DOES NOT equal 4!" << endl;
18
19 return 0;
20 }

(program continues)

Program 4-4 (continued)

The if/else Statement 173

Typically, the value in result will be a number just short of 4, like 3.999996. To prevent
errors like this, it is wise to stick with greater-than and less-than comparisons when using
floating-point numbers. For example, instead of testing if the result equals 4.0, you could
test to see if it is very close to 4.0. Program 4-6 demonstrates this technique.

Line 16 of the program uses the abs function introduced in Chapter 3. Recall that it returns
the absolute value of the argument. By using it, we ensure that the test condition will be true
if the difference between result and 4.0 is less than .0001, regardless of whether result is
just a tiny bit smaller or a tiny bit larger than .0001.

Checkpoint

4.12 Write an if/else statement that assigns 0.10 to commission unless sales is
greater than or equal to 50,000.00, in which case it assigns 0.20 to commission.

4.13 Write an if/else statement that assigns 1 to x if y is equal to 100. Otherwise it
should assign 0 to x.

Program Output
result = 4
result DOES NOT equal 4!

Program 4-6

1 // This program demonstrates how to safely test a floating-point number
2 // to see if it is, for all practical purposes, equal to some value.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 int main()
8 {
9 double result = .666667 * 6.0;
10
11 // 2/3 of 6 should be 4 and, if you print result, 4 is displayed.
12 cout << "result = " << result << endl;
13
14 // However, internally result is NOT precisely equal to 4.
15 // So test to see if it is "close" to 4.
16 if (abs(result - 4.0 < .0001))
17 cout << "result DOES equal 4!" << endl;
18 else
19 cout << "result DOES NOT equal 4!" << endl;
20
21 return 0;
22 }

Program Output
result = 4
result DOES equal 4!

Program 4-5 (continued)

174 Chapter 4 Making Decisions

4.14 Write an if/else statement that assigns .10 to the variable discount if the
Boolean flag variable prepaid is true and assigns 0.0 to discount if prepaid
is false.

4.15 True or false: The following if/else statements cause the same output to display.

A) if (x > y)
cout << "x is greater than y.\n";

else
cout << "x is not greater than y.\n";

B) if (x <= y)
cout << "x is not greater than y.\n";

else
cout << "x is greater than y\n";

4.16 Will the if/else statement shown on the right below function exactly the same as
the two separate if statements shown on the left?

if (x < y) if (x < y)
cout << 1; cout << 1;

if (x > y) else
cout << 2; cout << 2;

4.4 The if/else if Statement

CONCEPT: The if/else if statement is a chain of if statements. They perform their
tests, one after the other, until one of them is found to be true.

We make certain mental decisions by using sets of different but related rules. For example,
we might decide the type of coat or jacket to wear by consulting the following rules:

if it is very cold, wear a heavy coat,
else, if it is chilly, wear a light jacket,
else, if it is windy, wear a windbreaker,
else, if it is hot, wear no jacket.

The purpose of these rules is to determine which type of outer garment to wear. If it is cold,
the first rule dictates that a heavy coat must be worn. All the other rules are then ignored.
If the first rule doesn’t apply, however (if it isn’t cold), then the second rule is consulted. If
that rule doesn’t apply, the third rule is consulted, and so forth.

The way these rules are connected is very important. If they were consulted individually, we
might go out of the house wearing the wrong jacket or, possibly, more than one jacket. For
instance, if it is windy, the third rule says to wear a windbreaker. What if it is both windy and
very cold? Will we wear a windbreaker? A heavy coat? Both? Because of the order that the
rules are consulted in, the first rule will determine that a heavy coat is needed. The third rule
will not be consulted, and we will go outside wearing the most appropriate garment.

This type of decision making is also very common in programming. In C++ it can be
accomplished through the if/else if statement. Figure 4-5 shows its format and a
flowchart visually depicting how it works.

VideoNote

Using an
if/else if
Statement

The if/else if Statement 175

This construction is like a chain of if/else statements. The else part of one statement is
linked to the if part of another. When put together this way, the chain of if/elses
becomes one long statement. Program 4-7 shows an example. The user is asked to enter a
numeric test score, and the program displays the letter grade earned.

Figure 4-5

Program 4-7

1 // This program uses an if/else if statement to assign a
2 // letter grade of A, B, C, D, or F to a numeric test score.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // Create named constants to hold minimum
9 // scores required for each letter grade.
10 const int MIN_A_SCORE = 90,
11 MIN_B_SCORE = 80,
12 MIN_C_SCORE = 70,
13 MIN_D_SCORE = 60;
14
15 int testScore; // Holds a numeric test score
16 char grade; // Holds a letter grade
17
18 // Get the numeric score
19 cout << "Enter your numeric test score and I will\n";
20 cout << "tell you the letter grade you earned: ";
21 cin >> testScore;

(program continues)

if (condition 1)
{
 statement set 1;
}
else if (condition 2)
{
 statement set 2;
}
 .
 .

else if (condition n)
{
 statement set n;
}

condition
1

false

true statement
set 1

condition
2

false

true statement
set 2

condition
n

false

true statement
set n

..

176 Chapter 4 Making Decisions

As with other forms of the if statement, braces are required in an if/else if whenever
there is more than one statement in a conditionally executed block. Otherwise they are
optional. Because each of the conditionally executed blocks of code in Program 4-7 contains
only one statement, braces were not used.

The if/else if statement has a number of notable characteristics. Let’s analyze how it
works in Program 4-7. First, the relational expression testScore >= MIN_A_SCORE is
tested on line 24.

if (testScore >= MIN_A_SCORE)
 grade = 'A';

If testScore is greater than or equal to MIN_A_SCORE, which is 90, the letter ‘A’ is
assigned to grade and the rest of the linked if statements are skipped. If testScore is not
greater than or equal to MIN_A_SCORE, the else part takes over and causes the next if
condition to be tested on line 26.

else if (testScore >= MIN_B_SCORE)
 grade = 'B';

The first if statement filtered out all of the grades of 90 or higher, so when this next if
statement executes, testScore will have a value of 89 or less. If testScore is greater than
or equal to MIN_B_SCORE, which is 80, the letter ‘B’ is assigned to grade and the rest of the
if statements are skipped. This chain of events continues until one of the conditional
expressions is found true or the end of the entire if/else if construct is encountered. In
either case, the program resumes at the statement immediately following the if/else if
statement. This is the cout statement on line 36 that prints the grade. Figure 4-6 shows the
paths that may be taken by the if/else if statement.

22
23 // Determine the letter grade
24 if (testScore >= MIN_A_SCORE)
25 grade = 'A';
26 else if (testScore >= MIN_B_SCORE)
27 grade = 'B';
28 else if (testScore >= MIN_C_SCORE)
29 grade = 'C';
30 else if (testScore >= MIN_D_SCORE)
31 grade = 'D';
32 else if (testScore >= 0)
33 grade = 'F';
34
35 // Display the letter grade
36 cout << "Your grade is " << grade << ".\n";
37
38 return 0;
39 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 88[Enter]
Your grade is B.

Program 4-7 (continued)

The if/else if Statement 177

Each if condition in the structure depends on all the if conditions before it being false.
The statements following a particular else if are executed when the conditional
expression associated with that else if is true and all previous conditional expressions are
false. To demonstrate how this interconnection works, let’s look at Program 4-8, which
uses independent if statements instead of an if/else if statement.

Figure 4-6

Program 4-8

1 // This program illustrates a bug that occurs when independent if/else
2 // statements are used to assign a letter grade to a numeric test score.
3 #include <iostream>
4 using namespace std;
5

(program continues)

testScore
>= 90?

grade = 'A'
testScore
>= 80?

grade = 'B'

YesNo

Yes

testScore
>= 70?

grade = 'C'

No

Yes

testScore
>= 60?

grade = 'D'

No

Yes

testScore
>= 0?

grade = 'F'

No

YesNo

178 Chapter 4 Making Decisions

In Program 4-8, all the if statements execute because they are individual statements. In the
example output, testScore is assigned the value 88, yet the student receives an F. Here is
what happens. First the program comes to the if statement on line 24. Because the student’s
score is not at least 90, the assignment statement on line 25 is skipped. Next the program
comes to the if statement on line 27. Because the student’s score is at least 80, the
statement on line 28 executes and grade is assigned a ‘B’. However, because none of the if

6 int main()
7 {
8 // Create named constants to hold minimum
9 // scores required for each letter grade.
10 const int MIN_A_SCORE = 90,
11 MIN_B_SCORE = 80,
12 MIN_C_SCORE = 70,
13 MIN_D_SCORE = 60;
14
15 int testScore; // Holds a numeric test score
16 char grade; // Holds a letter grade
17
18 // Get the numeric score
19 cout << "Enter your numeric test score and I will\n";
20 cout << "tell you the letter grade you earned: ";
21 cin >> testScore;
22
23 // Determine the letter grade
24 if (testScore >= MIN_A_SCORE)
25 grade = 'A';
26
27 if (testScore >= MIN_B_SCORE)
28 grade = 'B';
29
30 if (testScore >= MIN_C_SCORE)
31 grade = 'C';
32
33 if (testScore >= MIN_D_SCORE)
34 grade = 'D';
35
36 if (testScore >= 0)
37 grade = 'F';
38
39 // Display the letter grade
40 cout << "Your grade is " << grade << ".\n";
41
42 return 0;
43 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will tell you
the letter grade you earned: 88[Enter]
Your grade is F.

Program 4-8 (continued)

The if/else if Statement 179

statements are connected to the ones above them, the if statements on lines 30, 33, and 36
all execute as well. Because testScore is also at least 70, it causes ‘C’ to be assigned to
grade, replacing the ‘B’ that was previously stored there. This continues until all the if
statements have executed. The last one will cause ‘F’ to be assigned to grade. (Students will
be very unhappy with this method since ‘F’ is the only grade it gives out!)

Using a Trailing else
A final else, placed at the end of an if/else if statement is called a trailing else. A
trailing else provides a default action, or set of actions, when none of the if expressions
are true and is often used to catch errors. This feature would be helpful, for example, in
Program 4-7. What happens in the current version of that program if the user accidentally
enters a test score that is less than zero? The if/else if statement handles all scores down
through zero, but none lower. If the user enters −88, for example, the program does not
assign any value to the variable grade because there is no code to handle a negative score.
We can fix this problem by adding a trailing else to the if/else if statement. This is
done in Program 4-9.

Program 4-9

1 // This program uses an if/else if statement to assign a letter
2 // grade of A, B, C, D, or F to a numeric test score. A trailing
3 // else is used to set a flag if a negative value is entered.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // Create named constants to hold minimum
10 // scores required for each letter grade.
11 const int MIN_A_SCORE = 90,
12 MIN_B_SCORE = 80,
13 MIN_C_SCORE = 70,
14 MIN_D_SCORE = 60,
15 MIN_POSSIBLE_SCORE = 0;
16
17 int testScore; // Holds a numeric test score
18 char grade; // Holds a letter grade
19 bool goodScore = true;
20
21 // Get the numeric score
22 cout << "Enter your numeric test score and I will\n";
23 cout << "tell you the letter grade you earned: ";
24 cin >> testScore;
25
26 // Determine the letter grade
27 if (testScore >= MIN_A_SCORE)
28 grade = 'A';
29 else if (testScore >= MIN_B_SCORE)
30 grade = 'B';
31 else if (testScore >= MIN_C_SCORE)
32 grade = 'C';

(program continues)

180 Chapter 4 Making Decisions

Checkpoint

4.17 What will the following program segment display?

int funny = 1, serious;
if (funny != 1)
{ funny = serious = 1;
}
else if (funny == 2)
{ funny = serious = 3;
}
else
{ funny = serious = 5;
}
cout << funny << " " << serious << endl;

4.18 The following program is used in a bookstore to determine how many discount
coupons a customer gets. Complete the table that appears after the program.

#include <iostream>
using namespace std;
int main()
{
 int numBooks, numCoupons;
 cout << "How many books are being purchased? ";
 cin >> numBooks;

33 else if (testScore >= MIN_D_SCORE)
34 grade = 'D';
35 else if (testScore >= MIN_POSSIBLE_SCORE)
36 grade = 'F';
37 else
38 goodScore = false; // The score was below 0
39
40 // Display the letter grade
41 if (goodScore)
42 cout << "Your grade is " << grade << ".\n";
43 else
44 cout << "The score cannot be below zero. \n";
45
46 return 0;
47 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will tell you
the letter grade you earned: 88[Enter]
Your grade is B.

Program Output with Different Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: -88[Enter]
The score cannot be below zero.

Program 4-9 (continued)

Menu-Driven Programs 181

 if (numBooks < 1)
 numCoupons = 0;
 else if (numBooks < 3)
 numCoupons = 1;
 else if (numBooks < 5)
 numCoupons = 2;
 else
 numCoupons = 3;
 cout << "The number of coupons to give is " << numCoupons << endl;
 return 0;
}

—————–––––––––––––––––––––––––––––———————————————
If the customer purchases
this many books... ...This many coupons are given.
—————–––––––––––––––––––––––––––––———————————————

 1
 2
 3
 4
 5
10

—————–––––––––––––––––––––––––––––———————————————

4.19 Write an if/else if statement that carries out the following logic. If the value of
variable quantityOnHand is equal to 0, display the message “Out of stock”. If the
value is greater than 0, but less than 10, display the message “Reorder”. If the value
is 10 or more do not display anything.

4.20 Write an if/else if statement that performs the same actions as in the above
question when the value of quantityOnHand is equal to 0 or is greater than 0, but
less than 10. However, when the value is 10 or more it should display the message
“Quantity OK”.

4.5 Menu-Driven Programs

CONCEPT: A menu is a set of choices presented to the user. A menu-driven program
allows the user to determine the course of action by selecting it from the
menu.

A menu is a screen displaying a set of choices the user selects from. For example, a
program that keeps a mailing list might give you the following menu:

1. Add a name to the list.
2. Remove a name from the list.
3. Change a name in the list.
4. Print the list.
5. Quit the program.

182 Chapter 4 Making Decisions

The user selects one of the operations by entering its number. Entering 4, for example, causes the
mailing list to be printed, and entering 5 causes the program to end. The if/else if structure
can be used to set up such a menu. After the user enters a number, it compares the number to the
available selections and executes the statements that perform the requested operation.

Program 4-10 calculates the charges for membership in a health club. The club has three
membership packages to choose from: standard adult membership, child membership, and
senior citizen membership. The program presents a menu that allows the user to choose the
desired package and then calculates the cost of the membership.

Program 4-10

1 // This menu-driven program uses an if/else statement to carry
2 // out the correct set of actions based on the user's menu choice.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 // Constants for membership rates
10 const double ADULT_RATE = 120.0;
11 const double CHILD_RATE = 60.0;
12 const double SENIOR_RATE = 100.0;
13
14 int choice; // Menu choice
15 int months; // Number of months
16 double charges; // Monthly charges
17
18 // Display the menu and get the user's choice
19 cout << " Health Club Membership Menu\n\n";
20 cout << "1. Standard Adult Membership\n";
21 cout << "2. Child Membership\n";
22 cout << "3. Senior Citizen Membership\n";
23 cout << "4. Quit the Program\n\n";
24 cout << "Enter your choice: ";
25 cin >> choice;
26
27 // Set the numeric output formatting
28 cout << fixed << showpoint << setprecision(2);
29
30 // Use the menu selection to execute the correct set of actions
31 if (choice == 1)
32 { cout << "For how many months? ";
33 cin >> months;
34 charges = months * ADULT_RATE;
35 cout << "\nThe total charges are $" << charges << endl;
36 }
37 else if (choice == 2)
38 { cout << "For how many months? ";
39 cin >> months;
40 charges = months * CHILD_RATE;
41 cout << "\nThe total charges are $" << charges << endl;
42 }

(program continues)

Nested if Statements 183

Notice that three double constants ADULT_RATE, CHILD_RATE, and SENIOR_RATE are
defined in lines 10 through 12. These constants hold the monthly membership rates for
adult, child, and senior citizen memberships. Also notice that the program lets the user
know when an invalid menu choice is made. If a number other than 1, 2, 3, or 4 is entered,
an error message is printed. This is known as input validation.

4.6 Nested if Statements

CONCEPT: To test more than one condition, an if statement can be nested inside
another if statement.

It is possible for one if statement or if/else statement to be placed inside another one.
This construct, called a nested if, allows you to test more than one condition to determine
which block of code should be executed. For example, consider a banking program that
determines whether a bank customer qualifies for a special low interest rate on a loan. To
qualify, two conditions must exist:

1. The customer must be currently employed.
2. The customer must have recently graduated from college (in the past two years).

Figure 4-7 shows a flowchart for an algorithm that could be used in such a program.

43 else if (choice == 3)
44 { cout << "For how many months? ";
45 cin >> months;
46 charges = months * SENIOR_RATE;
47 cout << "\nThe total charges are $" << charges << endl;
48 }
49 else if (choice != 4)
50 { cout << "\nThe valid choices are 1 through 4.\n"
51 << "Run the program again and select one of those.\n";
52 }
53 return 0;
54 }

Program Output with Example Input Shown in Bold
 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 3[Enter]
For how many months? 4[Enter]
The total charges are $400.00

Program 4-10 (continued)

184 Chapter 4 Making Decisions

If we follow the flow of execution in this diagram, we see that first the expression
employed == 'Y' is tested. If this expression is false, there is no need to perform any
other tests. We know that the customer does not qualify for the special interest rate. If the
expression is true, however, we need to test the second condition. This is done with a
nested decision structure that tests the expression recentGrad == 'Y'. If this expression is
also true, then the customer qualifies for the special interest rate. If this second expression
is false, the customer does not qualify. Program 4-11 shows the code that corresponds to
the logic of the flowchart. It nests one if/else statement inside another one.

Figure 4-7

Program 4-11

1 // This program determines whether a loan applicant qualifies for
2 // a special loan interest rate. It uses nested if/else statements.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char employed, // Currently employed? (Y or N)
9 recentGrad; // Recent college graduate? (Y or N)
10
11 // Is the applicant employed and a recent college graduate?
12 cout << "Answer the following questions\n";
13 cout << "with either Y for Yes or N for No.\n";
14

(program continues)

employed = ‘Y’
False

False True

True

Display “You must be
employed to qualify.”

Display “You must have
graduated from college
in the past two years to

qualify.”

Display “You qualify for
the special interest

rate.”

recentGrad = ‘Y’

Nested if Statements 185

Let’s take a closer look at this program. The if statement that begins on line 21 tests the
expression employed == 'Y'. If the expression is true, the inner if statement that begins
on line 23 is executed. However, if the outer expression is false, the program jumps to line
33 and executes the statements in the outer else block instead.

15 cout << "Are you employed? ";
16 cin >> employed;
17 cout << "Have you graduated from college in the past two years? ";
18 cin >> recentGrad;
19
20 // Determine the applicant's loan qualifications
21 if (employed == 'Y')
22 {
23 if (recentGrad == 'Y') // Employed and a recent grad
24 {
25 cout << "You qualify for the special interest rate.\n";
26 }
27 else // Employed but not a recent grad
28 {
29 cout << "You must have graduated from college in the past\n";
30 cout << "two years to qualify for the special interest rate.\n";
31 }
32 }
33 else // Not employed
34 {
35 cout << "You must be employed to qualify for the "
36 << "special interest rate. \n";
37 }
38 return 0;
39 }

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? N[Enter]
Have you graduated from college in the past two years? Y[Enter]
You must be employed to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y[Enter]
Have you graduated from college in the past two years? N[Enter]
You must have graduated from college in the past
two years to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y[Enter]
Have you graduated from college in the past two years? Y[Enter]
You qualify for the special interest rate.

Program 4-11 (continued)

186 Chapter 4 Making Decisions

When you are debugging a program with nested if/else statements, it’s important
to know which if statement each else goes with. The rule for matching each else
with the proper if is this: An else goes with the closest previous if statement that
doesn’t already have its own else. This is easier to see when the statements are
properly indented. Figure 4-8 shows lines similar to lines 21 through 37 of Program
4-11. It illustrates how each else should line up with the if it belongs to. These
visual cues are important because nested if statements can be very long and
complex.

Checkpoint

4.21 If you execute the following code, what will it display if the user enters 5? 15?
30? −1?

int number;

cout << "Enter a number: ";
cin >> number;
if (number > 0)
{ cout << "Zero ";
 if (number > 10)
 { cout << "Ten ";
 if (number > 20)
 { cout << "Twenty ";
 }
 }
}

Figure 4-8

if (employed == ‘Y’)
{
 if (recentGrad == ‘Y’) // Nested if
 {
 cout << “You qualify for the special ”;
 cout << “interest rate.\n”;
 }
 else // Not a recent grad, but employed
 {
 cout << “You must have graduated from ”;
 cout << “college in the past two\n”;
 cout << “years to qualify.\n”;
 }
}
else // Not employed
{
 cout << “You must be employed to qualify.\n”
}

This if and else
go together.

This if and else
go together.

Logical Operators 187

4.22 If you execute the following code, what will it display if the user enters 15 18?
15 10? 9 7?

int teamWins, teamLosses;

cout << " Enter the number of team wins and number of team losses: ";
cin >> team Wins >> teamLosses;
if (teamWins > teamLosses)
{
 if(teamWins > 10)
 cout << "You are the champions. \n";
 else
 cout << "You have won more than 50% of your games. \n";
}
else
 cout << "Good luck in the rest of your games. ";

4.7 Logical Operators

CONCEPT: Logical operators connect two or more relational expressions into one or
reverse the logic of an expression.

In the previous section you saw how a program tests two conditions with two if statements.
In this section you will see how to use logical operators to combine two or more relational
expressions into one. Table 4-6 lists C++’s logical operators.

The && Operator
The && operator is known as the logical AND operator. It takes two expressions as operands
and creates an expression that is true only when both sub-expressions are true. Here is an
example of an if statement that uses the && operator:

if ((temperature < 20) && (minutes > 12))
cout << "The temperature is in the danger zone.";

Notice that both of the expressions being ANDed together are complete expressions that
evaluate to true or false. First temperature < 20 is evaluated to produce a true or false
result. Then minutes > 12 is evaluated to produce a true or false result. Then, finally,

Table 4-6 Logical Operators

Operator Meaning Effect

&& AND Connects two expressions into one. Both expressions must be true
for the overall expression to be true.

|| OR Connects two expressions into one. One or both expressions must
be true for the overall expression to be true. It is only necessary for
one to be true, and it does not matter which.

! NOT Reverses the “truth” of an expression. It makes a true expression
false, and a false expression true.

VideoNote

Using Logical
Operators

188 Chapter 4 Making Decisions

these two results are ANDed together to arrive at a final result for the entire expression.
The cout statement will only be executed if temperature is less than 20 AND minutes is
greater than 12. If either relational test is false, the entire expression is false and the cout
statement is not executed.

Table 4-7 shows a truth table for the && operator. The truth table lists all the possible
combinations of values that two expressions may have and the resulting value returned by
the && operator connecting the two expressions. As the table shows, both sub-expressions
must be true for the && operator to return a true value.

The && operator can be used to simplify programs that otherwise would use nested if
statements. Program 4-12 is similar to Program 4-11, which determines if a bank customer
qualifies for a special interest rate. However, Program 4-12 uses the logical && operator
instead of nested if statements.

Table 4-7 Logical AND

Expression Value of the Expression

false && false false (0)

false && true false (0)

true && false false (0)

true && true true (1)

NOTE: If the sub-expression on the left side of an && operator is false, the expression
on the right side will not be checked. Because the entire expression is false if even just
one of the sub-expressions is false, it would waste CPU time to check the remaining
expression. This is called short circuit evaluation.

Program 4-12

1 // This program determines whether a loan applicant qualifies for
2 // a special loan interest rate. It uses the && logical operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char employed, // Currently employed? (Y or N)
9 recentGrad; // Recent college graduate? (Y or N)
10
11 // Is the applicant employed and a recent college graduate?
12 cout << "Answer the following questions\n";
13 cout << "with either Y for Yes or N for No.\n";
14
15 cout << "Are you employed? ";
16 cin >> employed;
17 cout << "Have you graduated from college in the past two years? ";
18 cin >> recentGrad;
19

(program continues)

Logical Operators 189

Note that while this program is similar to Program 4-11, it is not the exact logical
equivalent. In Program 4-12 the following message displays any time the applicant does
not qualify for the special rate: “You must be employed and have graduated from college
in the past two years to qualify for the special interest rate.” Program 4-11, on the other
hand, displays different messages when the loan applicant does not qualify depending on
why they failed to qualify.

The || Operator
The || operator is known as the logical OR operator. It takes two expressions as operands and
creates an expression that is true when either of the sub-expressions are true. Here is an
example of an if statement that uses the || operator:

if ((temperature < 20) || (temperature > 100))
 cout << "The temperature is in the danger zone.";

The cout statement will be executed if temperature is less than 20 OR temperature is
greater than 100. If either relational test is true, the entire expression is true and the cout
statement is executed.

20 // Determine the applicant's loan qualifications
21 if (employed == 'Y' && recentGrad == 'Y') // Uses logical AND
22 cout << "\nYou qualify for the special interest rate.\n";
23 else
24 { cout << "\nYou must be employed and have graduated from college\n"
25 << "in the past two years to qualify "
26 << "for the special interest rate. \n";
27 }
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y[Enter]
Have you graduated from college in the past two years? N[Enter]

You must be employed and have graduated from college
in the past two years to qualify for the special interest rate.

NOTE: The two things being ORed should both be logical expressions that evaluate to
true or false. It would not be correct to write the if condition like this:

 if (temperature < 20 || > 100)

NOTE: There is no || key on the computer keyboard. Use two | symbols. This symbol
is on the backslash key. Press Shift and backslash to type it.

Program 4-12 (continued)

190 Chapter 4 Making Decisions

Table 4-8 shows a truth table for the || operator.

All it takes for an OR expression to be true is for one of the sub-expressions to be true. It
doesn’t matter if the other sub-expression is false or true.

Program 4-13 performs different tests to qualify a person for a loan. This one determines
if the customer earns at least $35,000 per year or has been employed for more than five
years.

Table 4-8 Logical OR

Expression Value of the Expression

false || false false (0)

false || true true (1)

true || false true (1)

true || true true (1)

Program 4-13

1 // This program determines whether or not an applicant qualifies
2 // for a loan. It uses the logical || operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const double MIN_INCOME = 35000.0;
9 const int MIN_YEARS = 5;
10
11 double income; // Annual income
12 int years; // Years at the current job
13
14 // Get annual income and years on the job
15 cout << "What is your annual income? ";
16 cin >> income;
17 cout << "How many years have you worked at your current job? ";
18 cin >> years;
19
20 // Determine if the applicant qualifies for a loan
21 if (income >= MIN_INCOME || years > MIN_YEARS) // Uses logical OR
22 cout << "You qualify for a loan.\n";
23 else
24 { cout << "\nYou must earn at least $" << MIN_INCOME
25 << " or have been employed \n"
26 << "for more than " << MIN_YEARS << " years "
27 << "to qualify for a loan. \n";
28 }
29 return 0;
30 }

Logical Operators 191

The message “You qualify for a loan.” is displayed when either or both expressions income
>= MIN_INCOME or years > MIN_YEARS are true. If both of these are false, the disqualifying
message is printed.

The ! Operator
The ! operator performs a logical NOT operation. It takes an operand and reverses its truth or
falsehood. In other words, if the expression is true, the ! operator returns false, and if the
expression is false, it returns true. Here is an if statement using the ! operator:

if (!(temperature > 100))
cout << "You are below the maximum temperature.\n";

First, the expression (temperature > 100) is tested to be true or false. Then the ! operator is
applied to that value. If the expression (temperature > 100) is true, the ! operator returns
false. If it is false, the ! operator returns true. In the example, it is equivalent to asking “is the
temperature not greater than 100?” or “is it false that the temperature is greater than 100?”

Table 4-9 shows a truth table for the ! operator.

Program 4-14 performs the same task as Program 4-13. The if statement, however, uses
the ! operator to determine if it is false that the applicant makes at least $35,000 or has
been on the job more than five years.

Program Output with Example Input Shown in Bold
What is your annual income? 40000[Enter]
How many years have you worked at your current job? 2[Enter]
You qualify for a loan.

Program Output with Other Example Input Shown in Bold
What is your annual income? 20000[Enter]
How many years have you worked at your current job? 7[Enter]
You qualify for a loan.

Program Output with Other Example Input Shown in Bold
What is your annual income? 30000[Enter]
How many years have you worked at your current job? 3[Enter]
You must earn at least $35000 or have been employed
for more than 5 years to qualify for a loan.

NOTE: The || operator also performs short circuit evaluation. If the sub-expression on
the left side of an || operator is true, the sub-expression on the right side will not be
checked because it is only necessary for one of the sub-expressions to be true for the whole
expression to evaluate to true.

Table 4-9 Logical NOT

Expression Value of the Expression

!false true (1)

!true false (0)

Program 4-13 (continued)

192 Chapter 4 Making Decisions

Boolean Variables and the ! Operator
An interesting feature of a Boolean variable is that its value can be tested just by naming it.
Suppose moreData is a Boolean variable. Then the test

if (moreData == true)

can be written simply as

if (moreData)

and the test

if (moreData == false)

can be written simply as

if (!moreData)

In fact, this second way of testing the value of a Boolean variable is preferable. This is
because although the C++ constant true always has the value 1, a condition that evaluates

Program 4-14

1 // This program determines whether or not an applicant
2 // qualifies for a loan. It uses the ! logical operator
3 // to reverse the logic of the if statement.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 const double MIN_INCOME = 35000.0;
10 const int MIN_YEARS = 5;
11
12 double income; // Annual income
13 int years; // Years at the current job
14
15 // Get annual income and years on the job
16 cout << "What is your annual income? ";
17 cin >> income;
18 cout << "How many years have you worked at your current job? ";
19 cin >> years;
20
21 // Determine if the applicant qualifies for a loan
22 if (!(income >= MIN_INCOME || years > MIN_YEARS)) // Uses logical NOT
23 { cout << "\nYou must earn at least $" << MIN_INCOME
24 << " or have been employed \n"
25 << "for more than " << MIN_YEARS << " years "
26 << "to qualify for a loan. \n";
27 }
28 else
29 cout << "You qualify for a loan.\n";
30 return 0;
31 }

Program Output 4-14 is the same as that of Program 4-13.

Logical Operators 193

to true may have any nonzero value. For example, C++ has a function called isalpha(),
which tests whether or not a character is an alphabetic character. As you would expect, the
test isalpha('?') evaluates to false and the test isalpha('x') evaluates to true.
However, for some alphabetic characters, this function returns a value other than 1 to
represent true. Program 4-15 illustrates this.

In line 14 when the condition isalpha('x') == true was tested, the program did not
produce the desired result. The value 2 returned by the isalpha function was compared to
the value 1, so the condition evaluated to false even though, in fact, both values being
tested represent true. The code in line 20 worked correctly because the value 2, returned by
the isalpha function, was correctly interpreted as true.

Program 4-15

1 // This program illustrates what can happen when a
2 // Boolean value is compared to the C++ constant true.
3 #include <iostream>
4 #include <cctype> // Needed to use the isalpha function
5 using namespace std;
6
7 int main()
8 {
9 cout << "Is '?' an alphabetic character? " << isalpha('?') << "\n";
10 cout << "Is 'X' an alphabetic character? " << isalpha('X') << "\n";
11 cout << "Is 'x' an alphabetic character? " << isalpha('x') << "\n\n";
12
13 cout << "Ask if(isalpha('x') == true) \n";
14 if (isalpha('x') == true)
15 cout << "The letter x IS an alphabetic character. \n\n";
16 else
17 cout << "The letter x is NOT an alphabetic character. \n\n";
18
19 cout << "Ask if(isalpha('x')) \n";
20 if (isalpha('x'))
21 cout << "The letter x IS an alphabetic character. \n";
22 else
23 cout << "The letter x is NOT an alphabetic character. \n";
24
25 return 0;
26 }

Program Output
Is '?' an alphabetic character? 0
Is 'X' an alphabetic character? 1
Is 'x' an alphabetic character? 2

Ask if(isalpha('x') == true
The letter x is NOT an alphabetic character

Ask if(isalpha('x'))
The letter x IS an alphabetic character

194 Chapter 4 Making Decisions

Precedence and Associativity of Logical Operators
Table 4-10 shows the precedence of C++’s logical operators, from highest to lowest.

The ! operator has a higher precedence than many of the C++ operators. Therefore, to avoid
an error, it is a good idea always to enclose its operand in parentheses, unless you intend to
apply it to a variable or a simple expression with no other operators. For example, consider
the following expressions:

!(x > 2)
!x > 2

The first expression applies the ! operator to the expression x > 2. It is asking “is x not greater
than 2?” The second expression, however, applies the ! operator to x only. It is asking “is the
logical negation of x greater than 2?” Suppose x is set to 5. Since 5 is nonzero, it would be
considered true, so the ! operator would reverse it to false, which is 0. The > operator would
then determine if 0 is greater than 2. To avoid such an error, it is wise to always use parentheses.

The && and || operators rank lower in precedence than relational operators, which means
that relational expressions are evaluated before their results are logically ANDed or ORed.

a > b && x < y is the same as (a > b) && (x < y)
a > b || x < y is the same as (a > b) || (x < y)

Thus you don’t normally need parentheses when mixing relational operators with && and
||. However it is a good idea to use them anyway to make your intent clearer for someone
reading the program.

Parentheses are even more strongly recommended anytime && and || operators are both
used in the same expression. This is because && has a higher precedence than ||. Without
parentheses to indicate which you want done first, && will always be done before ||, which
might not be what you intended. Assume recentGrad, employed, and goodCredit are
three Boolean variables. Then the expression

recentGrad || employed && goodCredit

is the same as

recentGrad ||(employed && goodCredit)

and not the same as

(recentGrad || employed)&& goodCredit

Checking Numeric Ranges with Logical Operators
Logical operators are effective for determining if a number is in or out of a range. To check if a
number is inside a numeric range, it’s best to use the && operator. For example, the following if
statement checks the value in x to determine if it is in the range of 20 through 40.

if ((x >= 20) && (x <= 40))
cout << x << " is in the acceptable range.\n";

Table 4-10 Precedence of Logical Operators

!

&&

||

Logical Operators 195

The expression in the if statement will be true only when x is both greater than or equal
to 20 AND less than or equal to 40. The value of x must be within the range of 20 through
40 for this expression to be true.

To check if a number is outside a range, the || operator is best to use. The following
statement determines if the value of x is outside the range of 20 to 40:

if ((x < 20) || (x > 40))
cout << x << " is outside the acceptable range.\n";

It’s important not to get the logic of these logical operators confused. For example, the
following if statement would never test true:

if ((x < 20) && (x > 40))
cout << x << " is outside the acceptable range.\n";

Obviously, x can never be both less than 20 and greater than 40 at the same time.

Checkpoint

4.23 The following truth table shows various combinations of the values true and
false connected by a logical operator. Complete the table by indicating if the result
of such a combination is true or false.

Logical Expression Result (true or false)
——
true && false
true && true
false && false
true || false
true || true
false || false
!true
!false

4.24 If a = 2, b = 4, and c = 6, indicate whether each of the following conditions is
true or false:

A) (a == 4) || (b > 2)
B) (6 <= c) && (a > 3)
C) (1 != b) && (c != 3)
D) (a >= -1) || (a <= b)
E) !(a > 2)

4.25 If a = 2, b = 4, and c = 6, is the following expression true or false?

(b > a) || (b > c) && (c == 5)

4.26 Rewrite the following using the ! operator so that the logic remains the same.

if (activeEmployee == false)

NOTE: C++ does not allow you to check numeric ranges with expressions such as
5 < x < 20. Instead you must use a logical operator to connect two relational expressions,
as previously discussed.

196 Chapter 4 Making Decisions

4.8 Validating User Input

CONCEPT: As long as the user of a program enters bad input, the program will produce
bad output. Programs should be written to filter out bad input.

A famous saying of the computer world is “garbage in, garbage out.” The integrity of a
program’s output is only as good as its input, so you should try to make sure garbage does not
go into your programs. Input validation is the process of inspecting information given to a
program by the user and determining if it is valid. A good program should give clear
instructions about the kind of input that is acceptable, but still not assume the user has
followed those instructions. Here are just a few examples of input validations performed by
programs:

• Numbers are checked to ensure they are within a range of possible values. For example,
there are 168 hours in a week. It is not possible for a person to be at work longer than
168 hours in one week.

• Values are checked for their “reasonableness.” Although it might be possible for a
person to be at work for 168 hours per week, it is not probable.

• Items selected from a menu or some other set of choices are checked to ensure they
are available options.

• Variables are checked for values that might cause problems, such as division by zero.

Program 4-16 is a test scoring program that rejects any score less than 0 or greater than 100.

Program 4-16

1 // This test scoring program does not accept test
2 // scores that are less than 0 or greater than 100.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // Constants for grade thresholds
9 const int A_SCORE = 90,
10 B_SCORE = 80,
11 C_SCORE = 70,
12 D_SCORE = 60,
13 MIN_SCORE = 0, // Minimum valid score
14 MAX_SCORE = 100; // Maximum valid score
15
16 int testScore; // Holds the user entered numeric test score
17
18 // Get the numeric test score
19 cout << "Enter your numeric test score and I will\n"
20 << "tell you the letter grade you earned: ";
21 cin >> testScore;
22

(program continues)

More About Blocks and Scope 197

In Chapter 5 you will learn an even better way to validate input data.

4.9 More About Blocks and Scope

CONCEPT: The scope of a variable is limited to the block in which it is defined.

C++ allows you to create variables almost anywhere in a program. It is a common practice to
define all of a function’s variables at the top of the function, right after the opening brace that
marks the beginning of its body. However, especially in longer programs, variables are
sometimes defined near the part of the program where they are used. This is permitted
provided they are defined before they are used.

23 // Check if the input is valid
24 if (testScore >= MIN_SCORE && testScore <= MAX_SCORE)
25 {
26 // The score is valid, so determine the letter grade
27 if (testScore >= A_SCORE)
28 cout << "Your grade is A.\n";
29 else if (testScore >= B_SCORE)
30 cout << "Your grade is B.\n";
31 else if (testScore >= C_SCORE)
32 cout << "Your grade is C.\n";
33 else if (testScore >= D_SCORE)
34 cout << "Your grade is D.\n";
35 else
36 cout << "Your grade is F.\n";
37 }
38 else
39 {
40 // An invalid score was entered
41 cout << "That is an invalid score. Run the program\n"
42 << "again and enter a value in the range of\n"
43 << MIN_SCORE << " through " << MAX_SCORE << ".\n";
44 }
45 return 0;
46 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: -1[Enter]

That is an invalid score. Run the program
again and enter a value in the range of
0 through 100.

Program Output with Different Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 81[Enter]
Your grade is B.

Program 4-16 (continued)

198 Chapter 4 Making Decisions

You learned earlier in this chapter that surrounding one or more programming statements with
curly braces defines a block of code. The body of function main, which must be surrounded by
braces, is a block of code. So is the set of statements associated with an if or an else in an if/
else statement. Whenever a variable is defined inside a block, and you may define a variable
inside any block, its scope is the part of the program between its definition and the block’s
closing brace. Thus the scope of a variable defined at the top of a function is, essentially, the
entire function, while a variable defined in an inner block, is just that block.

Program 4-17 defines its variables later.

Program 4-17

1 // This program determines whether or not an applicant qualifies
2 // for a loan. It demonstrates late variable declaration, and
3 // even has a variable defined in an inner block.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // Constants for minimum income and years
10 const double MIN_INCOME = 35000.0;
11 const int MIN_YEARS = 5;
12
13 // Get the annual income
14 cout << "What is your annual income? ";
15
16 double income; // Variable definition
17 cin >> income;
18
19 if (income >= MIN_INCOME)
20 {
21 // Income is high enough, so get years at current job
22 cout << "How many years have you worked at your current job? ";
23
24 int years; // Variable defined inside the if block
25 cin >> years;
26
27 if (years > MIN_YEARS)
28 cout << "\nYou qualify.\n";
29 else
30 cout << "\nYou must have been employed for more than "
31 << MIN_YEARS << " years to qualify.\n";
32 }
33 else // Income is too low
34 {
35 cout << "\nYou must earn at least $" << MIN_INCOME
36 << " to qualify.\n";
37 }
38 return 0;
39 }

More About Blocks and Scope 199

In Program 4-17 the income variable is defined on line 16, inside the braces marking the
block of code that makes up the body of the main function. So its scope , the part of the
program where it can be used, includes lines 16 through 38. Those are the lines from the
point it is defined until the brace that closes the main function. The years variable is
defined on line 24, inside the braces marking the block of code to be conditionally
executed by the if statement. So its scope includes only lines 24 through 31. Those are the
lines from the point it is defined until the brace that closes the if block. Variables like these
that are defined inside a set of braces are said to have local scope or block scope. They are
not visible and able to be used before their definition or after the closing brace of the block
they are defined in.

Variables with the Same Name
When a block is nested inside another block, a variable defined in the inner block may have the
same name as a variable defined in the outer block. This is generally not considered a good
idea, as it can lead to confusion. However, it is permitted. When the variable in the inner block
comes into scope, the variable in the outer block becomes “hidden” and cannot be used. This is
illustrated by Program 4-18.

NOTE: When a program is running and it enters the section of code that constitutes a
variable’s scope, it is said that the variable comes into scope. This simply means the
variable is now visible and the program may reference it. Likewise, when a variable
leaves scope, it may no longer be used.

Program 4-18

1 // This program uses two variables with the same name.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number; // Define a variable named number
8
9 cout << "Enter a number greater than 0: ";
10 cin >> number;
11
12 if (number > 0)
13 { int number; // Define another variable named number
14
15 cout << "Now enter another number: ";
16 cin >> number;
17 cout << "The second number you entered was ";
18 cout << number << endl;
19 }
20 cout << "Your first number was " << number << endl;
21 return 0;
22 }

(program continues)

200 Chapter 4 Making Decisions

Program 4-18 has two separate variables named number. One is defined on line 7 in the
outer block. The other is defined on line 13 in the inner block. The cin and cout
statements in the inner block (belonging to the if statement) can only work with the
number variable defined in that block. As soon as the program leaves that block, the inner
number goes out of scope, revealing the outer number variable again.

Checkpoint

4.27 Write an if statement that prints the message “The number is valid.” if the variable
speed is within the range 0 through 200.

4.28 Write an if statement that prints the message “The number is not valid.” if the
variable speed is outside the range 0 through 200.

4.29 Find and fix the errors in the following program.

#include <iostream>
using namespace std;

int main()
{

cout << "This program calculates the area of a "
<< "rectangle. Enter the length: ";

cin >> length;
cin >> width;
int length, width, area;
area = length * width;
cout << "The area is " << area << endl;
return 0;

}

4.10 More About Characters and Strings

CONCEPT: Relational operators can also be used to compare characters and string
objects.

Earlier in this chapter you learned to use relational operators to compare numeric values.
They can also be used to compare characters and string objects.

Program Output with Example Input Shown in Bold
Enter a number greater than 0: 2[Enter]
Now enter another number: 7[Enter]
The second number you entered was 7
Your first number was 2

WARNING! Although it’s perfectly acceptable to define variables inside nested blocks,
you should avoid giving them the same names as variables in the outer blocks. It’s too easy
to confuse one variable with another.

Program 4-18 (continued)

More About Characters and Strings 201

Comparing Characters
As you learned in Chapter 3, characters are actually stored in memory as integers. On most
systems, this integer is the ASCII value of the character. For example, the letter ‘A’ is
represented by the number 65, the letter ‘B’ is represented by the number 66, and so on. Table
4-11 shows the ASCII numbers that correspond to some of the commonly used characters.

Every character, even the blank, has an ASCII code associated with it. Notice that the
uppercase letters ‘A’–’Z’ have different codes than the lowercase letters ‘a’–’z’. Notice also
that the ASCII code of a character representing a digit, such as '1' or '2', is not the same
as the value of the digit itself. A complete table showing the ASCII values for all characters
can be found in Appendix A.

When two characters are compared, it is actually their ASCII values that are being
compared. 'A' < 'B' because the ASCII value of 'A' (65) is less than the ASCII value of
'B' (66). Likewise '1' < '2' because the ASCII value of '1' (49) is less than the ASCII
value of '2' (50). However, as Table 4-11 shows, lowercase letters have higher numbers
than uppercase letters, so 'a' > 'Z'. Program 4-19 shows how characters can be
compared with relational operators.

Table 4-11 ASCII Values of Commonly Used Characters

Character ASCII Value

‘0’–‘9’ 48–57

‘A’–‘Z’ 65–90

‘a’–‘z’ 97–122

blank 32

period 46

Program 4-19

1 // This program demonstrates how characters can
2 // be compared with the relational operators.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char ch;
9
10 // Get a character from the user
11 cout << "Enter a digit or a letter: ";
12 ch = cin.get();
13
14 // Determine what the user entered
15 if (ch >= '0' && ch <= '9')
16 cout << "You entered a digit.\n";
17 else if (ch >= 'A' && ch <= 'Z')
18 cout << "You entered an uppercase letter.\n";
19 else if (ch >= 'a' && ch <= 'z')

(program continues)

202 Chapter 4 Making Decisions

Comparing string Objects
string objects can also be compared with relational operators. As with individual characters,
when two string objects are compared, it is actually the ASCII value of the characters
making up the strings that are being compared. For example, assume the following definitions
exist in a program:

string str1 = "ABC";
string str2 = "XYZ";

The string object str1 is considered less than the string object str2 because the
characters “ABC” alphabetically precede (have lower ASCII values than) the characters
“XYZ”. So the following if statement will cause the message “str1 is less than str2.” to be
displayed on the screen.

if (str1 < str2)
 cout << "str1 is less than str2.";

One by one, each character in the first operand is compared with the character in the
corresponding position in the second operand. If all the characters in both string objects
match, the two strings are equal. Other relationships can be determined if two characters
in corresponding positions do not match. The first operand is less than the second operand
if the first mismatched character in the first operand is less than its counterpart in the
second operand. Likewise, the first operand is greater than the second operand if the first
mismatched character in the first operand is greater than its counterpart in the second
operand.

20 cout << "You entered a lowercase letter.\n";
21 else
22 cout << "That is not a digit or a letter.\n";
23
24 return 0;
25 }

Program Output with Example Input Shown in Bold
Enter a digit or a letter: t[Enter]
You entered a lowercase letter.

Program Output with Different Example Input Shown in Bold
Enter a digit or a letter: V[Enter]
You entered an uppercase letter.

Program Output with Different Example Input Shown in Bold
Enter a digit or a letter: 5[Enter]
You entered a digit.

Program Output with Different Example Input Shown in Bold
Enter a digit or a letter: &[Enter]
That is not a digit or a letter.

Program 4-19 (continued)

More About Characters and Strings 203

For example, assume a program has the following definitions:

string name1 = "Mary";
string name2 = "Mark";

The value in name1, “Mary”, is greater than the value in name2, “Mark”. This is because
the first three characters in name1 have the same ASCII values as the first three characters
in name2, but the ‘y’ in the fourth position of “Mary” has a greater ASCII value than the
‘k’ in the corresponding position of “Mark”.

Any of the relational operators can be used to compare two string objects. Here are some
of the valid comparisons of name1 and name2.

name1 > name2 // true
name1 <= name2 // false
name1 != name2 // true

string objects can also, of course, be compared to string literals:

name1 < "Mary Jane" // true

Program 4-20 further demonstrates how relational operators can be used with string
objects.

Program 4-20

1 // This program uses relational operators to compare a string
2 // entered by the user with valid stereo part numbers.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 int main()
9 {
10 const double PRICE_A = 249.0,
11 PRICE_B = 299.0;
12
13 string partNum; // Holds a stereo part number
14
15 // Display available parts and get the user's selection
16 cout << "The stereo part numbers are:\n";
17 cout << "Boom Box : part number S-29A \n";
18 cout << "Shelf Model: part number S-29B \n";
19 cout << "Enter the part number of the stereo you\n";
20 cout << "wish to purchase: ";
21 cin >> partNum;
22
23 // Set the numeric output formatting
24 cout << fixed << showpoint << setprecision(2);
25
26 // Determine and display the correct price

(program continues)

204 Chapter 4 Making Decisions

Testing Characters
Program 4-19 compared a user entered character to certain character literals to test whether
the entered character was a digit, an uppercase letter, or a lowercase letter. We can also test for
these things, and more, by using character testing functions provided by the C++ library. These
Boolean functions test the ASCII code of a character and return either true or false. For
example, the following program segment uses the isupper function to determine if the
character passed to it as an argument is an uppercase letter. If it is, the function returns true.
Otherwise, it returns false*

char letter = 'a';
if (isupper(letter))
 cout << "Letter is uppercase.\n";
else
 cout << "Letter is not uppercase.\n";

Because the variable letter, in this example, contains a lowercase character, isupper
returns false. The if statement will cause the message “Letter is not uppercase” to be
displayed.

Table 4-12 lists some of the common character-testing functions C++ provides. To use
these you need to include the cctype header file in your program.

27 if (partNum == "S-29A")
28 cout << "The price is $" << PRICE_A << endl;
29 else if (partNum == "S-29B")
30 cout << "The price is $" << PRICE_B << endl;
31 else
32 cout << partNum << " is not a valid part number.\n";
33 return 0;
34 }

Program Output with Example Input Shown in Bold
The stereo part numbers are:
Boom Box : part number S-29A
Shelf Model: part number S-29B
Enter the part number of the stereo you
wish to purchase: S-29A[Enter]
The price is $249.00

NOTE: C-strings, unlike string objects, cannot be compared with relational operators.
To compare C-strings, which you recall are strings defined as arrays of characters, you
must use the strcmp function, which is discussed in Chapter 12.

* These functions actually return an int value. A non-zero value indicates true and a zero indicates false.

Program 4-20 (continued)

More About Characters and Strings 205

Program 4-21 uses several of the functions shown in Table 4-12. It asks the user to input a
character and then displays various messages, depending on the return value of each function.

Table 4-12 Character Testing Functions

Character Function Description

isalpha Returns true if the argument is a letter of the alphabet. Otherwise, it
returns false.

isalnum Returns true if the argument is a letter of the alphabet or a digit.
Otherwise, it returns false.

isdigit Returns true if the argument is a digit from 0 to 9. Otherwise, it
returns false.

islower Returns true if the argument is a lowercase letter. Otherwise, it returns false.

isprint Returns true if the argument is a printable character (including a space).
Otherwise, it returns false.

ispunct Returns true if the argument is a printable character other than a digit,
letter, or space. Otherwise, it returns false.

isupper Returns true if the argument is an uppercase letter. Otherwise, it
returns false.

isspace Returns true if the argument is a whitespace character. Otherwise it
returns false. Whitespace characters are any of the following:
 space ' ' vertical tab '\v'
 newline '\n' tab '\t'

Program 4-21

1 // This program demonstrates some of the available
2 // C++ character testing functions.
3 #include <iostream>
4 #include <cctype> // Needed to use character testing functions
5 using namespace std;
6
7 int main()
8 {
9 char input;
10
11 cout << "Enter any character: ";
12 cin.get(input);
13
14 cout << "The character you entered is: " << input << endl;
15 cout << "Its ASCII code is: " << static_cast<int>(input) << endl;
16
17 if (isalpha(input))
18 cout << "That's an alphabetic character.\n";
19
20 if (isdigit(input))
21 cout << "That's a numeric digit.\n";

(program continues)

206 Chapter 4 Making Decisions

Checkpoint

4.30 Indicate whether each of the following relational expressions is true or false.
Refer to the ASCII table in Appendix A if necessary.
A) ‘a’ < ‘z’ D) ‘a’ < ‘A’
B) ‘a’ == ‘A’ E) ‘1’ == 1
C) ‘5’ < ‘7’ F) ‘1’ == 49

4.31 Indicate whether each of the following relational expressions is true or false.
Refer to the ASCII table in Appendix A if necessary.
A) “Bill” == “BILL” E) “189” > “Bill”
B) “Bill” < “BILL” F) “Mary” == “ Mary”
C) “Bill” < “Bob” G) “Mary” < “MaryEllen”
D) “189” > “23” H) “MaryEllen” < “Mary Ellen”

4.32 Assume str1 and str2 are string objects that have been initialized with values.
Write an if/else if statement that compares the two objects. If their values are
the same, it should print a message saying so and display their value. Otherwise, it
should display the values in alphabetical order.

4.33 Indicate whether each of these character testing functions will return true or false.
A) isalpha(‘B’) E) isprint(‘B’)
B) isalnum(‘B’) F) ispunct(‘B’)
C) isdigit(‘B’) G) isupper(‘B’)
D) islower(‘B’) H) isspace(‘B’)

22
23 if (islower(input))
24 cout << "The letter you entered is lowercase.\n";
25
26 if (isupper(input))
27 cout << "The letter you entered is uppercase.\n";
28
29 if (isspace(input))
30 cout << "That's a whitespace character.\n";
31
32 return 0;
33 }

Program Output with Example Input Shown in Bold
Enter any character: A[Enter]
The character you entered is: A
Its ASCII code is: 65
That's an alphabetic character.
The letter you entered is uppercase.

Program Output with Other Example Input Shown in Bold
Enter any character: 7[Enter]
The character you entered is: 7
Its ASCII code is: 55
That's a numeric digit.

Program 4-21 (continued)

The Conditional Operator 207

4.11 The Conditional Operator

CONCEPT: You can use the conditional operator to create short expressions that work
like if/else statements.

The conditional operator is powerful and unique. It provides a shorthand method of
expressing a simple if/else statement. The operator consists of the question mark (?) and
the colon(:). Its format is

Here is an example of a statement using the conditional operator:

x < 0 ? y = 10 : z = 20;

This statement is called a conditional expression and consists of three sub-expressions
separated by the ? and : symbols. The expressions are x < 0, y = 10, and z = 20.

The conditional expression above performs the same operation as this if/else statement:

if (x < 0)
y = 10;

else
z = 20;

The part of the conditional expression that comes before the question mark is the condition
to be tested. It’s like the expression in the parentheses of an if statement. If the condition is
true, the part of the statement between the ? and the : is executed. Otherwise, the part after
the : is executed. Figure 4-9 illustrates the roles played by the three sub-expressions.

If it helps, you can put parentheses around the sub-expressions, as shown here:

(x < 0) ? (y = 10) : (z = 20);

expression ? expression : expression;

x < 0 ? y = 10 : z = 20;

Figure 4-9

NOTE: Because it takes three operands, the conditional operator is a ternary operator.

x < 0 ? y = 10 : z = 20;

First expression:
condition to
be tested

3rd expression:
executes if the
condition is false

2nd expression:
executes if the
condition is true

208 Chapter 4 Making Decisions

Using the Value of a Conditional Expression
Remember, in C++ all expressions have a value, and this includes the conditional
expression. If the first sub-expression is true, the value of the conditional expression is
the value of the second sub-expression. Otherwise it is the value of the third sub-
expression. Here is an example of an assignment statement that uses the value of a
conditional expression:

a = (x > 100) ? 0 : 1;

The value assigned to variable a will be either 0 or 1, depending upon whether x is greater
than 100. This statement has the same logic as the following if/else statement:

if (x > 100)
 a = 0;

else
 a = 1;

Program 4-22 can be used to help a consultant calculate her charges. Her rate is $50.00 per
hour, but her minimum charge is for five hours. The conditional operator is used in a
statement that ensures the number of hours does not go below five.

Program 4-22

1 // This program calculates a consultant's charges at $50
2 // per hour, for a minimum of 5 hours. The ?: operator
3 // adjusts hours to 5 if fewer than 5 hours were worked.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 const double PAY_RATE = 50.0; // Hourly pay rate
11 const int MIN_HOURS = 5; // Minimum billable hours
12 double hours, // Hours worked
13 charges; // Total charges
14
15 // Get the hours worked
16 cout << "How many hours were worked? ";
17 cin >> hours;
18
19 // Determine how many hours to charge for
20 hours = hours < MIN_HOURS ? MIN_HOURS : hours;
21
22 // Calculate and display the charges
23 charges = PAY_RATE * hours;
24 cout << fixed << showpoint << setprecision(2)
25 << "The charges are $" << charges << endl;
26 return 0;
27 }

(program continues)

The Conditional Operator 209

Let’s look more closely at the statement in line 20 that uses a conditional expression:

hours = hours < MIN_HOURS ? MIN_HOURS : hours;

If the value of the hours variable is less than MIN_HOURS, it stores MIN_HOURS in hours.
Otherwise it assigns hours the value it already has. This ensures that hours will not have a
value less than MIN_HOURS when it is used in line 23 to calculate the consultant’s charges.

As you can see, the conditional operator gives you the ability to pack decision-making
power into a concise line of code. With a little imagination it can be applied to many other
programming problems. For instance, consider the following statement:

cout << "Your grade is: " << (score < 60 ? "Fail." : "Pass.");

If you were to use an if/else statement, this statement would be written as follows:

if (score < 60)
cout << "Your grade is: Fail.";

else
cout << "Your grade is: Pass.";

Checkpoint

4.34 Rewrite the following if/else statements as conditional expressions.

A) if (x > y)
 z = 1;
else
 z = 20;

B) if (temp > 45)
 population = base * 10;

else
 population = base * 2;

C) if (hours > 40)
 wages *= 1.5;

else
 wages *= 1;

D) if (result >= 0)
 cout << "The result is positive\n";

else
 cout << "The result is negative.\n";

Program Output with Example Input Shown in Bold
How many hours were worked? 10[Enter]
The charges are $500.00

Program Output with Other Example Input Shown in Bold
How many hours were worked? 2[Enter]
The charges are $250.00

NOTE: The parentheses are placed around the conditional expression because the <<
operator has higher precedence than the ?: operator. Without the parentheses, just the
value of the expression score < 60 would be sent to cout.

Program 4-22 (continued)

210 Chapter 4 Making Decisions

4.35 Rewrite the following conditional expressions as if/else statements.

A) j = k > 90 ? 57 : 12;
B) factor = x >= 10 ? y * 22 : y * 35;
C) total += count == 1 ? sales : count * sales;
D) cout << ((num % 2) == 0) ? "Even\n" : "Odd\n");

4.36 What will the following program segment display?

const int UPPER = 8, LOWER = 2;
int num1, num2, num3 = 12, num4 = 3;

num1 = num3 < num4 ? UPPER : LOWER;
num2 = num4 > UPPER ? num3 : LOWER;
cout << num1 << " " << num2 << endl;

4.12 The switch Statement

CONCEPT: The switch statement uses the value of a variable or expression to determine
where the program will branch to.

A branch occurs when one part of a program causes another part to execute. The if/else
if statement, introduced earlier in this chapter, allows your program to branch into one of
several possible paths. It performs a series of tests (usually relational) and branches when
one of these tests is true. The switch statement is a similar mechanism. It, however, tests
the value of an integer expression and then uses that value to determine which set of
statements to branch to. Here is the format of the switch statement:

The first line of the statement starts with the word switch, followed by an integer
expression inside parentheses. This can be either of the following:

• A variable of any of the integer data types (including char).
• An expression whose value is of any of the integer data types.

On the next line is the beginning of a block containing several case statements. Each case
statement is formatted in the following manner:

case ConstantExpression: // Place one or more
// statements here

switch (IntegerExpression)
{
 case ConstantExpression: // Place one or more
 // statements here

 case ConstantExpression: // Place one or more
 // statements here

 // case statements may be repeated
 // as many times as necessary

 default: // Place one or more
// statements here

}

The switch Statement 211

After the word case is a constant expression (which must be of an integer type such as an
int or char), followed by a colon. The constant expression can be either an integer literal
or an integer named constant. The expression cannot be a variable and it cannot be a Boolean
expression such as x < 22 or n == 25. The case statement marks the beginning of a
section of statements that are branched to if the value of the switch expression matches
that of the case expression. Notice that, unlike most blocks of statements, no braces are
required around this set of statements.

An optional default section comes after all the case statements. This section is branched
to if none of the case expressions match the switch expression. Thus it functions like a
trailing else in an if/else if statement.

Program 4-23 shows how a simple switch statement works.

WARNING! The expressions of each case statement in the block must be unique.

Program 4-23

1 // This program demonstrates the use of a switch statement.
2 // The program simply tells the user what character they entered.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char choice;
9
10 cout << "Enter A, B, or C: ";
11 cin >> choice;
12
13 switch (choice)
14 {
15 case 'A':cout << "You entered A.\n";
16 break;
17 case 'B':cout << "You entered B.\n";
18 break;
19 case 'C':cout << "You entered C.\n";
20 break;
21 default: cout << "You did not enter A, B, or C!\n";
22 }
23 return 0;
24

Program Output with Example Input Shown in Bold
Enter A, B, or C: B[Enter]
You entered B.

Program Output with Different Example Input Shown in Bold
Enter A, B, or C: F[Enter]
You did not enter A, B, or C!

212 Chapter 4 Making Decisions

The first case statement is case 'A':, the second is case 'B':, and the third is case
'C':. These statements mark where the program is to branch to if the variable choice
contains the values ‘A’, ‘B’, or ‘C’. (Remember, character variables and literals are
considered integers.) The default section is branched to if the user enters anything
other than A, B, or C.

Notice the break statements at the end of the case 'A', case 'B', and case 'C' sections.

switch (choice)
{

case 'A':cout << "You entered A.\n";
 break;
case 'B':cout << "You entered B.\n";
 break;
case 'C':cout << "You entered C.\n";
 break;
default:cout << "You did not enter A, B, or C!\n";

}

The break statement causes the program to exit the switch statement. The next statement
executed after encountering a break statement will be whatever statement follows the closing
brace that terminates the entire switch statement. A break statement is needed whenever you
want to “break out of” a switch statement because it is not automatically exited after carrying
out a set of statements the way an if/else if statement is.

The case statements show the program where to start executing in the block, and the
break statements show the program where to stop. Without the break statements, the
program would execute all of the lines from the matching case statement to the end of
the block.

Program 4-24 is a modification of Program 4-23 that demonstrates what happens if the
break statements are omitted.

NOTE: The default section (or the last case section if there is no default) does not
need a break statement. Some programmers prefer to put one there anyway for
consistency.

Program 4-24

1 // This program demonstrates how a switch statement
2 // works if there are no break statements.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char choice;
9
10 cout << "Enter A, B, or C: ";
11 cin >> choice;
12

(program continues)

The switch Statement 213

Without the break statement, Program 4-24 “falls through” all of the statements below
the one with the matching case expression. Sometimes this is what you want. Program
4-25 lists the features of three TV models a customer may choose from. Model 100
includes a 42" LCD flat screen. Model 200 includes 1080p high definition picture as well
as a 42" LCD flat screen. Model 300 includes all of this as well as a built-in digital video
recorder (DVR). The program uses a switch statement with carefully omitted breaks to
print the features of the selected model.

13 // The following switch statement is missing its break statements!
14 switch (choice)
15 {
16 case 'A':cout << "You entered A.\n";
17 case 'B':cout << "You entered B.\n";
18 case 'C':cout << "You entered C.\n";
19 default :cout << "You did not enter A, B, or C!\n";
20 }
21 return 0;
22 }

Program Output with Example Input Shown in Bold
Enter A, B, or C: A[Enter]
You entered A.
You entered B.
You entered C.
You did not enter A, B, or C!

Program Output with Different Example Input Shown in Bold
Enter A, B, or C: C[Enter]
You entered C.
You did not enter A, B, or C!

Program 4-25

1 // This program is carefully constructed to use the
2 // "fall through" feature of the switch statement.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int modelNum;
9
10 // Display available models and get the user's choice
11 cout << "Our TVs come in three models: The 100, 200, and 300. \n";
12 cout << "Which do you want? ";
13 cin >> modelNum;
14

(program continues)

Program 4-24 (continued)

214 Chapter 4 Making Decisions

Another example of how useful this “fall through” capability can be is when you want
the program to branch to the same set of statements for multiple case expressions. For
instance, Program 4-26 asks the user to select a grade of dog food. The available
choices are A, B, and C. The switch statement will recognize either uppercase or
lowercase letters.

15 // Display the features of the selected model
16 cout << "\nThat model has the following features:\n";
17
18 switch (modelNum)
19 {
20 case 300: cout << " Built-in DVR \n";
21 case 200: cout << " 1080p high definition picture \n";
22 case 100: cout << " 42\" LCD flat screen \n";
23 break;
24 default : cout << "You can only choose the 100, 200, or 300. \n ";
25 }
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Our TVs come in three models: The 100, 200, and 300.
Which do you want? 100[Enter]
That model has the following features:
 42" LCD flat screen

Program Output with Different Example Input Shown in Bold
Our TVs come in three models: The 100, 200, and 300.
Which do you want? 200[Enter]
That model has the following features:
 1080p high definition picture
 42" LCD flat screen

Program Output with Different Example Input Shown in Bold
Our TVs come in three models: The 100, 200, and 300.
Which do you want? 300[Enter]
That model has the following features:
 Built-in DVR
 1080p high definition picture
 42" LCD flat screen

Program Output with Different Example Input Shown in Bold
Our TVs come in three models: The 100, 200, and 300.
Which do you want? 500[Enter]

That model has the following features:
You can only choose the 100, 200, or 300.

Program 4-25 (continued)

The switch Statement 215

When the user enters 'a' the corresponding case has no statements associated with it, so
the program falls through to the next case, which corresponds with 'A'.

case 'a':
case 'A':cout << "30 cents per pound.\n";

break;

The same is technique is used for 'b' and 'c'.

Program 4-26

1 // The switch statement in this program uses the "fall through" feature
2 // to accept both uppercase and lowercase letters entered by the user.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char feedGrade;
9
10 // Get the desired grade of feed
11 cout << "Our dog food is available in three grades:\n";
12 cout << "A, B, and C. Which do you want pricing for? ";
13 cin >> feedGrade;
14
15 // Find and display the price
16 switch(feedGrade)
17 {
18 case 'a':
19 case 'A': cout << "30 cents per pound.\n";
20 break;
21 case 'b':
22 case 'B': cout << "20 cents per pound.\n";
23 break;
24 case 'c':
25 case 'C': cout << "15 cents per pound.\n";
26 break;
27 default : cout << "That is an invalid choice.\n";
28 }
29 return 0;
30 }

Program Output with Example Input Shown in Bold
 Our dog food is available in three grades:
 A, B, and C. Which do you want pricing for? b[Enter]
 20 cents per pound.

Program Output with Different Example Input Shown in Bold
 Our dog food is available in three grades:
 A, B, and C. Which do you want pricing for? B[Enter]
 20 cents per pound.

216 Chapter 4 Making Decisions

Using switch in Menu-Driven Systems
The switch statement is a natural mechanism for building menu-driven systems like the one
we built in Program 4-10. However in that program, once the user selects which health club
package to purchase, the program uses an if/else if statement to calculate the charges.
Program 4-27 is a modification of that program that uses a switch statement instead. Notice
how the switch statement is nested inside an if statement that validates the user’s menu
choice before prompting for the number of months. This means that the prompt and input for
the number of months only has to appear once. It also means that the user is never prompted to
enter the number of months if the menu choice is invalid.

Program 4-27

1 // This menu-driven program uses a switch statement to carry out
2 // the appropriate set of actions based on the user's menu choice.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 // Constants for membership rates
10 const double ADULT_RATE = 120.0;
11 const double CHILD_RATE = 60.0;
12 const double SENIOR_RATE = 100.0;
13
14 int choice; // Menu choice
15 int months; // Number of months
16 double charges; // Monthly charges
17
18 // Display the menu and get the user's choice
19 cout << " Health Club Membership Menu\n\n";
20 cout << "1. Standard Adult Membership\n";
21 cout << "2. Child Membership\n";
22 cout << "3. Senior Citizen Membership\n";
23 cout << "4. Quit the Program\n\n";
24 cout << "Enter your choice: ";
25 cin >> choice;
26
27 // Validate and process the menu choice
28 if (choice >= 1 && choice <= 3)
29 { cout << "For how many months? ";
30 cin >> months;
31
32 // Set charges based on user input
33 switch (choice)
34 {
35 case 1: charges = months * ADULT_RATE;
36 break;
37 case 2: charges = months * CHILD_RATE;
38 break;
39 case 3: charges = months * SENIOR_RATE;
40 }

The switch Statement 217

Checkpoint

4.37 Explain why you cannot convert the following if/else if statement into a switch
statement.

if (temp == 100)
x = 0;

else if (population > 1000)
x = 1;

else if (rate < .1)
x = -1;

41 // Display the monthly charges
42 cout << fixed << showpoint << setprecision(2);
43 cout << "The total charges are $" << charges << endl;
44 }
45 else if (choice != 4)
46 { cout << "The valid choices are 1 through 4.\n";
47 cout << "Run the program again and select one of these.\n";
48 }
49 return 0;
50 }

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 2[Enter]
For how many months? 6[Enter]
The total charges are $360.00

Program Output with Different Example Input Shown in Bold
 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 5[Enter]
The valid choices are 1 through 4.
Run the program again and select one of these.

Program 4-27 (continued)

218 Chapter 4 Making Decisions

4.38 What is wrong with the following switch statement?

switch (temp)
{

case temp < 0 : cout << "Temp is negative.\n";
 break;

case temp == 0: cout << "Temp is zero.\n";
 break;

case temp > 0 : cout << "Temp is positive.\n";
 break;

}

4.39 What will the following program segment display?

int funny = 7, serious = 15;

funny = serious * 2;
switch (funny)
{ case 0 : cout << "That is funny.\n";
 break;
 case 30: cout << "That is serious.\n";
 break;
 case 32: cout << "That is seriously funny.\n";
 break;
 default: cout << funny << endl;
}

4.40 Complete the following program skeleton by writing a switch statement that displays
"one" if the user has entered 1, "two" if the user has entered 2, and "three" if the user
has entered 3. If a number other than 1, 2, or 3 is entered, the program should display
an error message.

#include <iostream>
using namespace std;

int main()
{

int userNum;

cout << "Enter one of the numbers 1, 2, or 3: ";
cin >> userNum;

// Write the switch statement here.

return 0;
}

4.41 Rewrite the following program segment using a switch statement instead of the
if/else if statement.

int selection;

cout << "Which formula do you want to see?\n\n";
cout << "1. Area of a circle\n";
cout << "2. Area of a rectangle\n";
cout << "3. Area of a cylinder\n"
cout << "4. None of them!\n";
cin >> selection;

Enumerated Data Types 219

if (selection == 1)
cout << "Pi times radius squared\n";

else if (selection == 2)
cout << "Length times width\n";

else if (selection == 3)
cout << "Pi times radius squared times height\n";

else if (selection == 4)
cout << "Well okay then, good-bye!\n";

else
cout << "Not good with numbers, eh?\n";

4.13 Enumerated Data Types

CONCEPT: An enumerated data type in C++ is a programmer-defined data type whose
legal values are a set of named integer constants.

So far we have used data types that are built into the C++ language, such as int and
double, and object types, like string, which are provided by C++ classes. However,
C++ also allows programmers to create their own data types. An enumerated data type
is a programmer-defined data type that consists of values known as enumerators,
which represent integer constants. Here is an example of an enumerated type
declaration.

enum Roster { Tom, Sharon, Bill, Teresa, John };

This creates a data type named Roster. It is called an enumerated type because the legal set
of values that variables of this data type can have are enumerated, or listed, as part of the
declaration. A variable of the Roster data type may only have values that are in the list
inside the braces.

It is important to realize that the example enum statement does not actually create
any variables. It just defines the data type. It says that when we later create variables
of this data type, this is what they will look like—integers whose values are limited
to the integers associated with the symbolic names in the enumerated set. The
following statement shows how a variable of the Roster data type would be defined.

Roster student;

The form of this statement is like any other variable definition: first the data type
name, then the variable name. Notice that the data type name is Roster, not enum
Roster.

Because student is a variable of the Roster data type, we may store any of the values
Tom, Sharon, Bill, Teresa, or John in it. An assignment operation would look like
this:

student = Sharon;

220 Chapter 4 Making Decisions

The value of the variable could then be tested like this:

if (student == Sharon)

Notice in the two examples that there are no quotation marks around Sharon. It is a
named constant, not a string literal.

In Chapter 3 you learned that named constants are constant values that are accessed
through their symbolic name. So what is the value of Sharon? The symbol Tom is
stored as the integer 0. Sharon is stored as the integer 1. Bill is stored as the integer
2, and so forth.

Even though the values in an enumerated data type are actually stored as integers, you
cannot always substitute the integer value for the symbolic name. For example, assuming
that student is a variable of the Roster data type, the following assignment statement is
illegal.

student = 2; // Error!

You can, however, test an enumerated variable by using an integer value instead of a
symbolic name. For example, the following two if statements are equivalent.

if (student == Bill)
if (student == 2)

You can also use relational operators to compare two enumerated variables. For example,
the following if statement determines if the value stored in student1 is less than the value
stored in student2:

if (student1 < student2)

If student1 equals Bill and student2 equals John, this statement would be true.
However, if student1 equals Bill and student2 equals Sharon, the statement would be
false.

By default, the symbols in the enumeration list are assigned the integer values 0, 1, 2, and
so forth. If this is not appropriate, you can specify the values to be assigned, as in the
following example.

enum Department { factory = 1, sales = 2, warehouse = 4 };

Remember that if you do assign values to the enumerated symbols, they must be integers.
The following value assignments would produce an error.

enum Department { factory = 1.1, sales = 2.2, warehouse = 4.4 };
 // Error!

While there is no requirement that assigned integer values be placed in ascending order, it
is generally considered a good idea to do this.

If you leave out the value assignment for one or more of the symbols, it will be assigned a
default value, as illustrated here:

enum Colors { red, orange, yellow = 9, green, blue };

red will be assigned the value 0, orange will be 1, yellow will be 9, green will be 10, and
blue will be 11.

Enumerated Data Types 221

One of the purposes of an enumerated data type is that the symbolic names help to make a
program self-documenting. However, because these names are not strings, they are for use
inside the program only. Using the Roster data type in our example, the following two
statements would output a 2, not the name Sharon.

Roster student1 = Sharon;
cout << student1;

Because the symbolic names of an enumerated data type are associated with integer values,
they may be used in a switch statement, as shown in Program 4-28. This program also
demonstrates that it is possible to use an enumerated data type without actually creating
any variables of that type.

Program 4-28

1 // This program demonstrates an enumerated data type.
2 #include <iostream>
3 using namespace std;
4
5 // Declare the enumerated type
6 enum Roster { Tom = 1, Sharon, Bill, Teresa, John };
7 // Sharon – John will be assigned default values 2-5.
8 int main()
9 {
10 int who;
11
12 cout << "This program will give you a student's birthday.\n";
13 cout << "Whose birthday do you want to know?\n";
14 cout << "1 = Tom\n";
15 cout << "2 = Sharon\n";
16 cout << "3 = Bill\n";
17 cout << "4 = Teresa\n";
18 cout << "5 = John\n";
19 cin >> who;
20
21 switch (who)
22 {
23 case Tom : cout << "\nTom's birthday is January 3.\n";
24 break;
25 case Sharon: cout << "\nSharon's birthday is April 22.\n";
26 break;
27 case Bill : cout << "\nBill's birthday is December 19.\n";
28 break;
29 case Teresa: cout << "\nTeresa's birthday is February 2.\n";
30 break;
31 case John : cout << "\nJohn's birthday is June 17.\n";
32 break;
33 default : cout << "\nInvalid selection\n";
34 }
35 return 0;
36 }

(program continues)

222 Chapter 4 Making Decisions

Checkpoint

4.42 Find all the things that are wrong with the following declaration.

Enum Pet = { "dog", "cat", "bird", "fish" }

4.43 Follow the instructions to complete the following program segment.

enum Paint { red, blue, yellow, green, orange, purple };
Paint color = green;

// Write an if/else statement that will print out "primary color"
// if color is red, blue, or yellow, and will print out
// "mixed color" otherwise. The if test should use a relational
// expression.

4.14 Focus on Testing and Debugging:
Validating Output Results

CONCEPT: When testing a newly created or modified program, the output it produces
must be carefully examined to ensure it is correct.

Once a program being developed has been designed, written in a programming
language, and found to compile and link without errors, it is easy to jump to the
conclusion that it works correctly. This is especially true if it runs without aborting
and produces “reasonable” output. However, just because a program runs and
produces output does not mean that it is correct. It may still contain logic errors that
cause the output to be incorrect. To determine if a program actually works correctly it
must be tested with data whose output can be predicted and the output examined to
ensure it is accurate.

Program 4-29 runs and produces output that may initially appear reasonable. However, it
contains a bug that causes it to produce incorrect output.

Program Output with Example Input Shown in Bold
This program will give you a student's birthday.
Whose birthday do you want to know?
1 = Tom
2 = Sharon
3 = Bill
4 = Teresa
5 = John
2[Enter]

Sharon's birthday is April 22.

Program 4-28 (continued)

Focus on Testing and Debugging: Validating Output Results 223

At first glance the program may appear to run correctly. The per person charge for
adults is $6.25, so if there were 100 adult guests the price would be $625. But there are
only 96 guests and four of them are children, so it should cost less. $570 sounds
“about right”.

Program 4-29

1 // This program determines a client’s total buffet luncheon cost
2 // when the number of guests and the per person cost are known.
3 // It contains a logic error.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 const int ADULT_MEAL_COST = 6.25; // Child meal cost = 75% of this
9
10 int main()
11 {
12 int numAdults, // Number of guests ages 12 and older
13 numChildren; // Number of guests ages 2-11
14 double adultMealTotal, // Cost for all adult meals
15 childMealTotal, // Cost for all child meals
16 totalMealCost;
17
18 // Get number of adults and children attending
19 cout << "This program calculates total cost "
20 << "for a buffet luncheon.\n";
21 cout << "Enter the number of adult guests (age 12 and over): ";
22 cin >> numAdults;
23 cout << "Enter the number of child guests (age 2-11): ";
24 cin >> numChildren;
25
26 // Calculate meal costs
27 adultMealTotal = numAdults * ADULT_MEAL_COST;
28 childMealTotal = numChildren * ADULT_MEAL_COST * .75;
29 totalMealCost = adultMealTotal + childMealTotal;
30
31 // Display total meal cost
32 cout << fixed << showpoint << setprecision(2);
33 cout << "\nTotal buffet cost is $" << totalMealCost << endl;
34 return 0;
35 }

Program Output with Example Input Shown in Bold
This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 92[Enter]
Enter the number of child guests (age 2-11): 4[Enter]

Total buffet cost is $570.00

224 Chapter 4 Making Decisions

However, “about right” is not an a sufficient test of accuracy. If the program had been run
with data whose output could have been more easily checked, the programmer would have
quickly seen that there is an error. Here is the output from two more runs of the same
program using more carefully selected sample data.

Program Output with Different Example Input Shown in Bold
This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 1[Enter]
Enter the number of child guests (age 2-11): 0[Enter]

Total buffet cost is $6.00

Program Output with Still Different Example Input Shown in Bold
This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 0[Enter]
Enter the number of child guests (age 2-11): 1[Enter]

Total buffet cost is $4.50

From this output we can see that the cost of a child meal is correctly being calculated as
75% of the cost of an adult meal, but the adult meal cost is wrong. For one adult, it is
coming out as $6.00, when it should have been $6.25.

To find the problem, the programmer should determine which lines of code are most
apt to have caused the problem. Most likely something is wrong either in the
initialization or storage of ADULT_MEAL_COST on line 8, in the calculation or storage of
adultMealTotal or totalMealCost on lines 14, 16, 27, and 29 or in the printing of
totalMealCost on line 33. Because the cost for one adult meal is erroneously coming
out as a whole dollar amount, even though it is formatted to appear as a floating-point
number, one of the things to check is whether all the variables that need to hold
floating-point values have been defined as type float or double. Sure enough,
although adultMealTotal and totalMealCost have each been defined as a double,
the named constant ADULT_MEAL_COST has been defined to be an int. So the 6.25 with
which it is initialized is truncated to 6 when it is stored. When the definition of this
named constant is rewritten as

const double ADULT_MEAL_COST = 6.25;

and the program is rerun, we get the following results.

Output of Revised Program with Example Input Shown in Bold

This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 1[Enter]
Enter the number of child guests (age 2-11): 0[Enter]

Total buffet cost is $6.25

Now that this error has been found and fixed, the program is correct. However,
additional testing with carefully developed test cases should be used to confirm this.
The topic of how to develop good test cases will be dealt with further in the next
chapter.

Green Fields Landscaping Case Study—Part 2 225

4.15 Green Fields Landscaping Case Study—Part 2

Problem Statement
Another of the services provided by Green Fields Landscaping is the sale of evergreen trees,
which are priced by height. Customers have the choice of purchasing a tree on a “cash and
carry” basis, of purchasing a tree and having it delivered, or of purchasing a tree and having it
both delivered and planted. Table 4-13 shows the price for each of these. You have been asked
to develop a program that uses the number of trees purchased, their height, and the delivery
and planting information to create a customer invoice. To simplify the program you may
assume that all trees purchased by a customer are the same height.

Program Design

Program Steps

The program must carry out the following general steps:

1. Have the user input the number of trees purchased and their height.
2. Have the user indicate if the trees will be planted by Green Fields.
3. If planting service is not desired, have the user indicate if they want delivery.
4. Calculate the total tree cost.
5. Calculate the planting and delivery charges.
6. Calculate the total of all charges.
7. Print a bill that displays the purchase information and all charges.

Named constants

double PRICE_1 = 39.00
double PRICE_2 = 69.00
double PRICE_3 = 99.00
double PRICE_4 = 199.00
double PER_TREE_DELIVERY = 20.00
double MAX_DELIVERY = 100.00

Variables whose values will be input

int numTrees // Number of evergreen trees purchased
int height // Tree height to the nearest foot
char planted // Are trees to be planted?('Y'/'N')
char delivered // Are trees to be delivered?('Y'/'N')

Table 4-13 Evergreen Tree Pricing Information

Under 3 feet tall 39.00 (tax included)

3 to 5 feet tall 69.00 (tax included)

6 to 8 feet tall 99.00 (tax included)

over 8 feet tall 199.00 (tax included)

delivery only (per tree) 20.00 (100.00 max. per order)

delivery + planting 50% of the cost of the tree

226 Chapter 4 Making Decisions

Variables whose values will be output

double treeCost // Cost of each tree
double totalTreeCost // Total price for all the trees
double deliveryCost // Delivery cost for all the trees
double plantingCost // Planting cost for all the trees
double totalCharges // Total invoice amount

Detailed Pseudocode (including actual variable names and needed calculations)

Initialize deliveryCost and plantingCost to 0
Display screen heading
Input numTrees, height, planted
If planted = 'N'
 Input delivery
End If
If height < 3
 treeCost = PRICE_1
Else If height <= 5
 treeCost = PRICE_2
Else If height <= 8
 treeCost = PRICE_3
Else
 treeCost = PRICE_4
End If
totalTreeCost = numTrees * treeCost
If planted = 'Y'
 plantingCost = totalTreeCost / 2 // deliveryCost stays 0
Else If delivered = 'Y'
 If numTrees <= 5
 deliveryCost = PER_TREE_DELIVERY * numTrees
 Else
 deliveryCost = MAX_DELIVERY
 End If
End If
totalCharges = totalTreeCost + deliveryCost + plantingCost
Display invoice heading
Display numTrees, treeCost, totalTreeCost,
 deliveryCost, plantingCost, totalCharges

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 4-30.

Program 4-30

1 // This program is used by Green Fields Landscaping to
2 // create customer invoices for evergreen tree sales.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6

(program continues)

Green Fields Landscaping Case Study—Part 2 227

7 int main()
8 {
9 const double PRICE_1 = 39.00, // Set prices for different
10 PRICE_2 = 69.00, // size trees
11 PRICE_3 = 99.00,
12 PRICE_4 = 199.00;
13
14 const double PER_TREE_DELIVERY = 20.00, // Set delivery fees
15 MAX_DELIVERY = 100.00;
16
17 int numTrees, // Number of evergreen trees purchased
18 height; // Tree height to the nearest foot
19 char planted, // Are trees to be planted?('Y'/'N')
20 delivered; // Are trees to be delivered?('Y'/'N')
21 double treeCost, // Cost of a particular tree
22 totalTreeCost, // Total price for all the trees
23 deliveryCost = 0.0, // Delivery cost for all the trees
24 plantingCost = 0.0, // Planting cost for all the trees
25 totalCharges; // Total invoice amount
26
27 // Display purchase screen and get purchase information
28 cout << " Green Fields Landscaping\n"
29 << " Evergreen Tree Purchase\n\n";
30 cout << "Number of trees purchased: ";
31 cin >> numTrees;
32 cout << "Tree height to the nearest foot: ";
33 cin >> height;
34 cout << "Will Green Fields do the planting?(Y/N): ";
35 cin >> planted;
36
37 if (!(planted == 'Y' || planted == 'y'))
38 { cout << "Do you want the trees delivered? (Y/N): ";
39 cin >> delivered;
40 }
41
42 // Calculate costs
43 if (height < 3)
44 treeCost = PRICE_1;
45 else if(height <= 5)
46 treeCost = PRICE_2;
47 else if(height <= 8)
48 treeCost = PRICE_3;
49 else
50 treeCost = PRICE_4;
51
52 totalTreeCost = numTrees * treeCost;
53

(program continues)

Program 4-30 (continued)

228 Chapter 4 Making Decisions

54 if ((planted == 'Y') || (planted == 'y'))
55 plantingCost = totalTreeCost / 2;
56 else if((delivered == 'Y') || (delivered == 'y'))
57 if (numTrees <= 5)
58 deliveryCost = PER_TREE_DELIVERY * numTrees;
59 else
60 deliveryCost = MAX_DELIVERY;
61 //else planting and delivery costs both remain 0.0
62
63 totalCharges = totalTreeCost + deliveryCost + plantingCost;
64
65 // Display information on the invoice
66 cout << fixed << showpoint << setprecision(2);
67 cout << "\n\n Green Fields Landscaping\n"
68 << " Evergreen Tree Purchase\n\n";
69 cout << setw(2) << numTrees << " trees @ $" << setw(6) << treeCost
70 << " each = $" << setw(8) << totalTreeCost << endl;
71 cout << "Delivery charge $"
72 << setw(8) << deliveryCost << endl;
73 cout << "Planting charge $"
74 << setw(8) << plantingCost << endl;
75 cout << " ________" << endl;
76 cout << "Total Amount Due $"
77 << setw(8) << totalCharges << endl << endl;
78 return 0;
79 }

Program Output with Example Input Shown in Bold
 Green Fields Landscaping
 Evergreen Tree Purchase

Number of trees purchased: 4[Enter]
Tree height to the nearest foot: 7[Enter]
Will Green Fields do the planting?(Y/N): y[Enter]

 Green Fields Landscaping
 Evergreen Tree Purchase

 4 trees @ $ 99.00 each = $ 396.00
Delivery charge $ 0.00
Planting charge $ 198.00

Total Amount Due $ 594.00

Program 4-30 (continued)

Chapter 4 Making Decisions

Tying It All Together: Fortune Teller 229

Crazy Al’s Computer Emporium Case Study
The following additional case study, which contain applications of material introduced in
Chapter 4, can be found on the book’s companion website.

Crazy Al’s is a retail seller of home computers whose sales staff work on commission. The
commission rate varies depending on the amount of sales. This case study develops a
program that computes monthly sales commission and then subtracts any pay already
advanced to the salesperson to calculate how much remaining pay is due at the end of the
month. The case study, which employs branching logic to determine the correct
commission rate, includes problem definition, general and detailed pseudocode design, and
a final running program with sample output.

4.16 Tying It All Together: Fortune Teller

With the rand() function you learned about in Chapter 3 and the if/else if statement
you learned about in this chapter, you can now create a simple fortune telling game. Your
program will start by asking users to enter three careers they would like to have some day.
The program will then use random numbers to predict their future.

Program 4-31

1 // This program predicts the player's future using
2 // random numbers and an if/else if statement.
3 #include <iostream>
4 #include <string> // Needed to use strings
5 #include <cstdlib> // Needed for random numbers
6 using namespace std;
7
8 int main()
9 {
10 // Strings to hold user entered careers
11 string career1, career2, career3;
12
13 int randomNum; // Will hold the randomly generated integer
14
15 // "Seed" the random generator
16 unsigned seed = time(0);
17 srand(seed);
18

(program continues)

230 Chapter 4 Making Decisions

19 // Explain the game and get the player's career choices
20 cout << "I am a fortune teller. Look into my crystal screen \n"
21 << "and enter 3 careers you would like to have. Example: \n\n"
22 << " chef \n astronaut \n CIA agent \n\n"
23 << "Then I will predict what you will be. \n\n";
24
25 cout << "Career choice 1: ";
26 getline(cin, career1);
27 cout << "Career choice 2: ";
28 getline(cin, career2);
29 cout << "Career choice 3: ";
30 getline(cin, career3);
31
32 // Randomly generate an integer between 1 and 4.
33 randomNum = 1 + rand() % 4;
34
35 // Use branching logic to output the prediction
36 if (randomNum == 1)
37 cout << "\nYou will be a " << career1 << ". \n";
38 else if (randomNum == 2)
39 cout << "\nYou will be a " << career2 << ". \n";
40 else if (randomNum == 3)
41 cout << "\nYou will be a " << career3 << ". \n";
42 else
43 cout << "\nSorry. You will not be any of these. \n";
44 return 0;
45 }

Sample Run with User Input Shown in Bold
I am a fortune teller. Look into my crystal screen
and enter 3 careers you would like to have. For example,

 chef
 astronaut
 CIA agent

Then I will predict what you will be.

Career choice 1: radio announcer[Enter]
Career choice 2: sky diving instructor[Enter]
Career choice 3: circus clown[Enter]

You will be a radio announcer.

Program 4-31 (continued)

Review Questions and Exercises 231

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. An expression using the greater-than, less-than, greater-than-or-equal-to, less-than-or-
equal-to, equal, or not-equal operator is called a(n) __________ expression.

2. The value of a relational expression is 0 if the expression is __________ or 1 if the
expression is __________.

3. The if statement regards an expression with the value 0 as __________ and an
expression with a nonzero value as __________.

4. For an if statement to conditionally execute a group of statements, the statements
must be enclosed in a set of __________.

5. In an if/else statement, the if part executes its statement(s) if the expression is
__________, and the else part executes its statement(s) if the expression is
__________.

6. The trailing else in an if/else if statement has a similar purpose as the
__________ section of a switch statement.

7. If the sub-expression on the left of the && logical operator is __________, the right
sub-expression is not checked.

8. If the sub-expression on the left of the || logical operator is __________, the right
sub-expression is not checked.

9. The __________ logical operator has higher precedence than the other logical
operators.

10. Logical operators have __________ precedence than relational operators.

11. The __________ logical operator works best when testing a number to determine if it
is within a range.

12. The __________ logical operator works best when testing a number to determine if it
is outside a range.

13. A variable with __________ scope is only visible when the program is executing in the
block containing the variable’s definition.

14. The expression that is tested by a switch statement must have a(n) __________ value.

15. A program will “fall through” to the following case section if it is missing the
__________ statement.

16. What value will be stored in the variable t after each of the following statements
executes?

A) t = (12 > 1);__________
B) t = (2 < 0);__________
C) t = (5 == (3 * 2));__________
D) t = (5 == 5);__________

17. Write an if statement that assigns 100 to x when y is equal to 0.

18. Write an if/else statement that assigns 0 to x when y is equal to 10. Otherwise it
should assign 1 to x.

232 Chapter 4 Making Decisions

19. Write an if/else statement that prints “Excellent” when score is 90 or higher,
“Good” when score is between 80 and 89, and “Try Harder” when score is less
than 80.

20. Write an if statement that sets the variable hours to 10 when the flag variable
minimum is set to true.

21. Convert the following conditional expression into an if/else statement.

q = (x < y) ? (a + b) : (x * 2);

22. Convert the following if/else if statement into a switch statement:

if (choice == 1)
{

cout << fixed << showpoint << setprecision(2);
}
else if ((choice == 2) || (choice == 3))
{

cout << fixed << showpoint << setprecision(4);
}
else if (choice == 4)
{

cout << fixed << showpoint << setprecision(6);
}
else
{

cout << fixed << showpoint << setprecision(8);
}

23. Assume the variables x = 5, y = 6, and z = 8. Indicate if each of the following
conditions is true or false:

A) (x == 5) || (y > 3)
B) (7 <= x) && (z > 4)
C) (2 != y) && (z != 4)

24. Assume the variables x = 5, y = 6, and z = 8. Indicate if each of the following
conditions is true or false:

A) (x >= 0) || (x <= y)
B) (z - y) > y
C) !((z - y) > x)

Algorithm Workbench

25. Write a C++ statement that prints the message “The number is valid.” if the variable
grade is within the range 0 through 100.

26. Write a C++ statement that prints the message “The number is valid.” if the variable
temperature is within the range −50 through 150.

27. Write a C++ statement that prints the message “The number is not valid.” if the
variable hours is outside the range 0 through 80.

28. Write a C++ statement that displays the titles stored in the string objects book1 and
book2 in alphabetical order.

Review Questions and Exercises 233

29. Using the following chart, write a C++ statement that assigns .10, .15, or .20 to
commission, depending on the value in sales.

30. Write one or more C++ statements that assign the correct value to discount, using
the logic described here:

Assign .20 to discount if dept equals 5 and price is $100 or more.
Assign .15 to discount if dept is anything else and price is $100 or more.
Assign .10 to discount if dept equals 5 and price is less than $100.
Assign .05 to discount if dept is anything else and price is less than $100.

31. The following statement should determine if x is not greater than 20. What is wrong
with it?

if (!x > 20)

32. The following statement should determine if count is within the range of 0 through
100. What is wrong with it?

if (count >= 0 || count <= 100)

33. The following statement should determine if count is outside the range of 0 through
100. What is wrong with it?

if (count < 0 && count > 100)

34. The following statement should determine if x has a value other than 1 or 2. What is
wrong with it?

if (x! = 1 || x! = 2)

Find the Errors

35. Each of the following program segments has errors. Find as many as you can.

A) cout << "Enter your 3 test scores and I will ";
 << "average them:";
 int score1, score2, score3,
 cin >> score1 >> score2 >> score3;

 double average;
 average = (score1 + score2 + score3) / 3.0;
 if (average = 100);

 perfectScore = true;// Set the flag variable
 cout << "Your average is " << average << endl;
 bool perfectScore;
 if (perfectScore);
 {
 cout << "Congratulations!\n";
 cout << "That's a perfect score.\n";
 cout << "You deserve a pat on the back!\n";

Sales Commission Rate

Up to $10,000
$10,000 to $15,000
Over $15,000

10%
15%
20%

234 Chapter 4 Making Decisions

B) double num1, num2, quotient;

 cout << "Enter a number: ";
 cin >> num1;
 cout << "Enter another number: ";
 cin >> num2;

 if (num2 == 0)
 cout << "Division by zero is not possible.\n";
 cout << "Please run the program again ";
 cout << "and enter a number besides zero.\n";
 else
 quotient = num1 / num2;
 cout << "The quotient of " << num1 <<
 cout << " divided by " << num2 << " is ";
 cout << quotient << endl;

C) int testScore;

 cout << "Enter your test score and I will tell you\n";
 cout << "the letter grade you earned: ";
 cin >> testScore;

 if (testScore < 60)
 cout << "Your grade is F.\n";
 else if (testScore < 70)
 cout << "Your grade is D.\n";
 else if (testScore < 80)
 cout << "Your grade is C.\n";
 else if (testScore < 90)
 cout << "Your grade is B.\n";
 else
 cout << "That is not a valid score.\n";
 else if (testScore <= 100)
 cout << "Your grade is A.\n";

D) double testScore;

 cout << "Enter your test score and I will tell you\n";
 cout << "the letter grade you earned: ";
 cin >> testScore;

 switch (testScore)
 { case (testScore < 60.0):
 cout << "Your grade is F.\n";
 break;
 case (testScore < 70.0):
 cout << "Your grade is D.\n";
 break;
 case (testScore < 80.0):
 cout << "Your grade is C.\n";
 break;
 case (testScore < 90.0):
 cout << "Your grade is B.\n";
 break;
 case (testScore <= 100.0):
 cout << "Your grade is A.\n";
 break;
 default: cout << "That score isn't valid\n"; }

Review Questions and Exercises 235

Soft Skills

Programmers need to be able to look at alternative approaches to solving a problem and at
different ways of implementing a solution, weighing the pros and cons of each. Further,
they need to be able to clearly articulate to others why they recommend, or have chosen, a
particular solution. Come to class prepared to discuss the following:

36. Sometimes either a switch statement or an if/else if statement can be used to
implement logic that requires branching to different blocks of program code. But the
two are not interchangeable.

A) Under what circumstances would an if/else if statement be a more appropriate
choice than a switch statement?

B) Under what circumstances would a switch statement be a more appropriate
choice than an if/else if statement?

C) Under what circumstances would a set of nested if/else statements be more
appropriate than either of the other two structures?

Try to come up with at least one example case for each of the three, where it is the best
way to implement the desired branching logic.

Programming Challenges

1. Minimum/Maximum

Write a program that asks the user to enter two numbers. The program should use the
conditional operator to determine which number is the smaller and which is the larger.

2. Roman Numeral Converter

Write a program that asks the user to enter a number within the range of 1 through 10.
Use a switch statement to display the Roman numeral version of that number.

Input Validation: Decide how the program should handle an input that is less than 1
or greater than 10.

3. Magic Dates

The date June 10, 1960, is special because when we write it in the following format, the
month times the day equals the year.

 6/10/60

Write a program that asks the user to enter a month (in numeric form), a day, and a two-
digit year. The program should then determine whether the month times the day is equal to
the year. If so, it should display a message saying the date is magic. Otherwise, it should
display a message saying the date is not magic.

Input Validation: Think about what legal values the program should accept for month
and day.

4. Areas of Rectangles

The area of a rectangle is the rectangle’s length times its width. Write a program that asks for
the length and width of two rectangles. The program should then tell the user which
rectangle has the greater area, or if the areas are the same.

236 Chapter 4 Making Decisions

5. Book Club Points

An online book club awards points to its customers based on the number of books purchased
each month. Points are awarded as follows:

Write a program that asks the user to enter the number of books purchased this month and
then displays the number of points awarded.

6. Change for a Dollar Game

Create a change-counting game that asks the user to enter what coins to use to make
exactly one dollar. The program should ask the user to enter the number of pennies,
nickels, dimes, and quarters. If the total value of the coins entered is equal to one dollar,
the program should congratulate the user for winning the game. Otherwise, the program
should display a message indicating whether the amount entered was more or less than one
dollar. Use constant variables to hold the coin values.

7. Time Calculator

Write a program that asks the user to enter a number of seconds.

• There are 86400 seconds in a day. If the number of seconds entered by the user is
greater than or equal to 86400, the program should display the number of days in
that many seconds.

• There are 3600 seconds in an hour. If the number of seconds entered by the user is
less than 86400, but is greater than or equal to 3600, the program should display the
number of hours in that many seconds.

• There are 60 seconds in a minute. If the number of seconds entered by the user is less
than 3600, but is greater than or equal to 60, the program should display the number
of minutes in that many seconds.

8. Math Tutor Version 2

This is a modification of the math tutor problem in Chapter 3. Write a program that can be
used as a math tutor for a young student. The program should display two random
numbers between 10 and 50 that are to be added, such as:

 24
+ 12
 ——

The program should then wait for the student to enter the answer. If the answer is correct,
a message of congratulations should be printed. If the answer is incorrect, a message
should be printed showing the correct answer.

Books Purchased Points Earned

0 0
1 5
2 15
3 30

4 or more 60

VideoNote

Solving
the Time
Calculator
Problem

Review Questions and Exercises 237

9. Software Sales

A software company sells a package that retails for $99. Quantity discounts are given
according to the following table.

Write a program that asks for the number of units purchased and computes the total cost
of the purchase.

Input Validation: Decide how the program should handle an input of less than 0.

10. Bank Charges

A bank charges $10 per month plus the following check fees for a commercial checking
account:

$.10 each for fewer than 20 checks
$.08 each for 20–39 checks
$.06 each for 40–59 checks
$.04 each for 60 or more checks

Write a program that asks for the number of checks written during the past month, then
computes and displays the bank’s fees for the month.

Input Validation: Decide how the program should handle an input of less than 0.

11. Geometry Calculator

Write a program that displays the following menu:

Geometry Calculator

1. Calculate the Area of a Circle
2. Calculate the Area of a Rectangle
3. Calculate the Area of a Triangle
4. Quit

Enter your choice (1-4):

If the user enters 1, the program should ask for the radius of the circle and then display its
area. Use 3.14159 for π. If the user enters 2, the program should ask for the length and
width of the rectangle, and then display the rectangle’s area. If the user enters 3, the
program should ask for the length of the triangle’s base and its height, and then display its
area. If the user enters 4, the program should end.

Input Validation: Decide how the program should handle an illegal input for the
menu choice or a negative value for any of the other inputs.

Quantity Discount

10–19 20%

20–49 30%

50–99 40%

100 or more 50%

238 Chapter 4 Making Decisions

12. Running the Race

Write a program that asks for the names of three runners and the time it took each of them
to finish a race. The program should display who came in first, second, and third place.
Think about how many test cases are needed to verify that your problem works correctly.
(That is, how many different finish orders are possible?)

Input Validation: Only allow the program to accept positive numbers for the times.

13. Personal Best

Write a program that asks for the name of a pole vaulter and the dates and vault heights (in
meters) of the athlete’s three best vaults. It should then report in height order (best first),
the date on which each vault was made, and its height.

Input Validation: Only allow the program to accept values between 2.0 and 5.0 for
the heights.

14. Body Mass Index

Write a program that calculates and displays a person’s body mass index (BMI). The
BMI is often used to determine whether a person with a sedentary lifestyle is
overweight or underweight for his or her height. A person’s BMI is calculated with the
following formula:

BMI = weight × 703/height2

where weight is measured in pounds and height is measured in inches. The program
should display a message indicating whether the person has optimal weight, is
underweight, or is overweight. A sedentary person’s weight is considered to be optimal if
his or her BMI is between 18.5 and 25. If the BMI is less than 18.5, the person is
considered to be underweight. If the BMI value is greater than 25, the person is
considered to be overweight.

Input Validation: Determine what inputs the program needs the user to enter and
what legal values the program should accept for these inputs.

15. Fat Gram Calculator

Write a program that asks for the number of calories and fat grams in a food. The program
should display the percentage of calories that come from fat. If the calories from fat are less
than 30 percent of the total calories of the food, it should also display a message indicating
the food is low in fat.

One gram of fat has 9 calories, so

Calories from fat = fat grams * 9

The percentage of calories from fat can be calculated as

Calories from fat ÷ total calories

Input Validation: The program should make sure that the number of calories is
greater than 0, the number of fat grams is 0 or more, and the number of calories from
fat is not greater than the total number of calories.

Review Questions and Exercises 239

16. The Speed of Sound

The speed of sound varies depending on the medium through which it travels. In general,
sound travels fastest in rigid media, such as steel, slower in liquid media, such as water, and
slowest of all in gases, such as air. The following table shows the approximate speed of
sound, measured in feet per second, in air, water, and steel.

Write a program that displays a menu allowing the user to select air water, or steel. After
the user has made a selection, the number of feet a sound wave will travel in the selected
medium should be entered. The program will then display the amount of time it will take.
(Round the answer to four decimal places.)

Input Validation: Decide how the program should handle an illegal input for the
menu choice or a negative value for the distance.

17. The Speed of Sound in Gases

When traveling through a gas, the speed of sound depends primarily on the density of the
medium. The less dense the medium, the faster the speed will be. The following table
shows the approximate speed of sound at 0 degree celsius, measured in meters per second,
when traveling through carbon dioxide, air, helium, and hydrogen.

Write a program that displays a menu allowing the user to select one of these 4 gases. After
a valid selection has been made, the program should ask the user to enter the number of
seconds (0 to 30) it took for the sound to travel in this medium from its source to the
location at which it was detected. The program should then report how far away (in
meters) the source of the sound was from the detection location.

Input Validation: The program should ensure that the user has selected one of the
available menu choices and should only prompt for the number of seconds if the
menu choice is legal.

Medium Speed (feet per sec.)

Air 1,100

Water 4,900

Steel 16,400

Medium Speed (meters per sec.)

Carbon dioxide 258.0

Air 331.5

Helium 972.0

Hydrogen 1270.0

240 Chapter 4 Making Decisions

18. Spectral Analysis

If a scientist knows the wavelength of an electromagnetic wave she can determine what type of
radiation it is. Write a program that asks for the wavelength in meters of an electromagnetic
wave and then displays what that wave is according to the following chart. (For example, a
wave with a wavelength of 1E-10 meters would be an X-ray.)

19. Long-Distance Calls

A long-distance carrier charges the following rates for telephone calls between the United
States and Mexico:

Write a program that asks for the starting time and the number of minutes of the call, and
displays the charges. The program should ask for the time to be entered as a floating-point
number in the form HH.MM. For example, 07:00 hours should be entered as 07.00, and
16:28 hours should be entered as 16.28.

Hint: To find the fractional part of the entered number you can use the following
expression:

startTime - static_cast<int>(startTime)

Input Validation: Figure out what inputs are valid for startTime, and how the
program will handle invalid inputs.

20. Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances. Write a
program that asks the user to enter a temperature, and then shows all the substances that
will freeze at that temperature and all that will boil at that temperature. For example, if the
user enters –20 the program should report that water will freeze and oxygen will boil at
that temperature.

Starting Time of Call Rate per Minute

00:00–06:59 $0.12

07:00–19:00 0.55

19:01–23:59 0.35

Substance Freezing Point (°F) Boiling Point (°F)

Ethyl alcohol –173 172

Mercury –38 676

Oxygen –362 –306

Water 32 212

1 × 10–21 × 10–37 × 10–74 × 10–71 × 10–81 × 10–11

Radio WavesMicrowavesInfraredVisible LightUltravioletX RaysGamma Rays

Review Questions and Exercises 241

21. Internet Service Provider Part 1

An International Internet phone company has three different subscription packages for its
customers:

Package A: For $9.95 per month 5 hours of call time are provided. Additional
usage costs $0.08 per minute.

Package B: For $14.95 per month 10 hours of call time are provided. Additional
usage costs $0.06 per minute.

Package C: For $19.95 per month unlimited call time is provided.

Write a program that calculates a customer’s monthly bill. It should input customer name,
which package the customer has purchased, and how many hours were used. It should
then create a bill that includes the input information and the total amount due. Wherever
possible use named constants instead of numbers.

Input Validation: Be sure the user only selects package A, B, or C.

22. Internet Service Provider Part 2

Modify the program in problem 21 so it also displays how much money Package A
customers would save if they purchased packages B or C, and how much money package B
customers would save if they purchased package C. If there would be no savings, no
message should be printed.

This page intentionally left blank

243

C
H

A
P

T
E

R

5 Looping

5.1 Introduction to Loops: The while Loop

CONCEPT: A loop is part of a program that repeats.

Chapter 4 included several programs that report a student’s letter grade based on his or her
numeric test score. But what if we want to find out the letter grade for every student in a
class of twenty students? We would have to run the program twenty times. Wouldn’t it be
easier if we could simply indicate that the code should be repeated twenty times in a single
run? Fortunately there is a mechanism to do this. It is called a loop.

A loop is a control structure that causes a statement or group of statements to repeat. C++
has three looping control structures: the while loop, the do-while loop, and the for loop.
The difference between each of these is how they control the repetition.

TOPICS

5.1 Introduction to Loops:
The while Loop

5.2 Using the while Loop for Input
Validation

5.3 The Increment and Decrement Operators
5.4 Counters
5.5 The do-while Loop
5.6 The for Loop
5.7 Keeping a Running Total
5.8 Sentinels

5.9 Focus on Software Engineering:
Deciding Which Loop to Use

5.10 Nested Loops
5.11 Breaking Out of a Loop
5.12 Using Files for Data Storage
5.13 Focus on Testing and Debugging:

Creating Good Test Data
5.14 Central Mountain Credit Union

Case Study
5.15 Tying It All Together: What a Colorful

World

244 Chapter 5 Looping

The while Loop
The while loop has two important parts: (1) an expression that is tested for a true or
false value, and (2) a statement or block that is repeated as long as the expression is true.
Figure 5-1 shows the general format of the while loop and a flowchart visually depicting
how it works.

Let’s look at each part of the while loop. The first line, sometimes called the loop header,
consists of the key word while followed by a condition to be tested enclosed in parentheses.
The condition is expressed by any expression that can be evaluated as true or false. Next
comes the body of the loop. This contains one or more C++ statements.

Here’s how the loop works. The condition expression is tested, and if it is true, each
statement in the body of the loop is executed. Then, the condition is tested again. If it is still
true, each statement is executed again. This cycle repeats until the condition is false.

Notice that, as with an if statement, each statement in the body to be conditionally
executed ends with a semicolon, but there is no semicolon after the condition expression in
parentheses. This is because the while loop is not complete without the statements that
follow it. Also, as with an if statement, when the body of the loop contains two or more
statements, these statements must be surrounded by braces. When the body of the loop
contains only one statement, the braces may be omitted. Essentially, the while loop works
like an if statement that can execute over and over. As long as the expression in the
parentheses is true, the conditionally executed statements will repeat.

Program 5-1 uses a while loop to print “Hello” five times.

Figure 5-1

Program 5-1

1 // This program demonstrates a simple while loop.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {

(program continues)

VideoNote

while (condition)
{
 statement;
 statement;
 // Place as many statements
 // here as necessary
}

condition
false

true

statement(s)

The while
Loop

Introduction to Loops: The while Loop 245

Let’s take a closer look at this program. In line 7 an integer variable number is defined and
initialized with the value 1. In line 9 the while loop begins with this statement:

while (number <= 5)

This statement tests the variable number to determine whether its value is less than or equal
to 5. Because it is, the statements in the body of the loop (lines 11 and 12) are executed:

cout << "Hello ";
number = number + 1;

The statement in line 11 prints the word “Hello”. The statement in line 12 adds one to
number, giving it the value 2. This is the last statement in the body of the loop, so after it
executes the loop starts over. It tests the expression number <= 5 again, and because it is still
true, the statements in the body of the loop are executed again. This cycle repeats until the
value of number equals 6, making the expression number <= 5 false. Then the loop is exited.
This is illustrated in Figure 5-2.

Each execution of a loop is known as an iteration. This loop will perform five
iterations before the expression number <= 5 is tested and found to be false, causing the
loop to terminate. The program then resumes execution at the statement immediately
following the loop. A variable that controls the number of time a loop iterates is

7 int number = 1;
8
9 while (number <= 5)
10 {
11 cout << "Hello ";
12 number = number + 1;
13 }
14 cout << "\nThat's all!\n";
15 return 0;
16 }

Program Output
Hello Hello Hello Hello Hello
That's all!

Figure 5-2

Program 5-1 (continued)

while (number <= 5)
{
 cout << "Hello ";
 number = number + 1;
}

Test this condition.

If the condition is false, exit the loop.
If the condition is true, perform
these statements.

After executing the body of the loop, start over.

246 Chapter 5 Looping

referred to as a loop control variable. In the example we have just seen, number is the
loop control variable.

while Is a Pretest Loop
The while loop is a pretest loop. This means it tests its condition before each iteration. If the
test expression is false to start with, the loop will never iterate. So if you want to be sure a
while loop executes at least once, you must initialize the relevant data in such a way that the
test expression starts out as true. For example, notice the variable definition of number in line
7 of Program 5-1:

int number = 1;

The number variable is initialized with the value 1. If number had been initialized with a value
greater than 5, as shown in the following program segment, the loop would never execute:

int number = 6;
while (number <= 5)
{

cout << "Hello ";
number = number + 1;

}

Infinite Loops
In all but rare cases, a loop must include a way to terminate. This means that something
inside the loop must eventually make the test expression false. The loop in Program 5-1 stops
when the expressions number <= 5 becomes false.

If a loop does not have a way of stopping, it is called an infinite loop. Infinite loops keep
repeating until the program is interrupted. Here is an example:

int number = 1;
while (number <= 5)
{

cout << "Hello ";
}

This is an infinite loop because it does not contain a statement that changes the value of the
number variable. Each time the expression number <= 5 is tested, number will still have the
value 1.

Be Careful with Semicolons

It’s also possible to create an infinite loop by accidentally placing a semicolon after the first
line of the while loop. Here is an example:

int number = 1;
while (number <= 5); // This semicolon is an ERROR!
{

cout << "Hello ";
number = number + 1;

}

Introduction to Loops: The while Loop 247

The semicolon at the end of the first line is interpreted as a null statement and disconnects the
while statement from the block that comes after it. To the compiler, this loop looks like this:

while (number <= 5);

This while loop will continue executing the null statement, which does nothing, forever.
The program will appear to have “gone into space” because there is nothing to display
screen output or show any activity.

Don’t Forget the Braces

If you write a loop that conditionally executes a block of statements, don’t forget to enclose
all of the statements in a set of braces. If the braces are accidentally left out, the while
statement conditionally executes only the very next statement. For example, look at the
following code.

int number = 1;
// This loop is missing its braces!
while (number <= 5)

cout << "Hello ";
number = number + 1;

In this code, the body of the while loop ends with the cout statement. The statement that
increases the value of number is not in the body of the loop, so the value of number
remains 1, and the loop test condition remains true forever. The loop will print “Hello”
over and over again, until the user stops the program.

Don’t Confuse = with ==

Another common pitfall with loops is accidentally using the = operator when you intend to
use the == operator. The following is an infinite loop because the test expression assigns 1 to
remainder each time it is evaluated rather than testing if remainder is equal to 1:

while (remainder = 1) // Error: Notice the assignment.
{

cout << "Enter a number: ";
cin >> num;
remainder = num % 2;

}

Remember, any nonzero value is evaluated as true.

Programming Style and the while Loop
It’s possible to create loops that look like this:

while (number <= 5) { cout << "Hello "; number = number + 1; }

Avoid this style of programming, however. The programming layout style you should use
with the while loop is similar to that of the if statement:

• If there is only one statement repeated by the loop, it should appear on the line after
the while statement and be indented one level.

• If the loop repeats a block of statements, the block should begin on the line after the
while statement, and each line inside the braces should be indented.

In general, you’ll find a similar layout style being used with the other types of loops
presented in this chapter.

248 Chapter 5 Looping

Now that you understand the while loop, let’s see how it can be used in a useful situation.
Program 5-2 revises Program 4-9 from the previous chapter to compute letter grades for
multiple students.

Program 5-2

1 // This program uses a loop to compute letter grades for multiple students.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 // Create named constants to hold minimum scores for each letter grade
8 const int MIN_A_SCORE = 90,
9 MIN_B_SCORE = 80,
10 MIN_C_SCORE = 70,
11 MIN_D_SCORE = 60,
12 MIN_POSSIBLE_SCORE = 0;
13
14 int numStudents, // The total number of students
15 student, // The current student being processed
16 testScore; // Current student's numeric test score
17 char grade; // Current student's letter grade
18 bool goodScore = true;
19
20 // Get the number of students
21 cout << "How many students do you have grades for? ";
22 cin >> numStudents;
23
24 // Initialize the loop control variable
25 student = 1;
26
27 // Loop once for each student
28 while (student <= numStudents)
29 {
30 // Get this student's numeric score
31 cout << "\nEnter the numeric test score for student #"
32 << student << ": ",
33 cin >> testScore;
34
35 // Determine the letter grade
36 if (testScore >= MIN_A_SCORE)
37 grade = 'A';
38 else if (testScore >= MIN_B_SCORE)
39 grade = 'B';
40 else if (testScore >= MIN_C_SCORE)
41 grade = 'C';
42 else if (testScore >= MIN_D_SCORE)
43 grade = 'D';
44 else if (testScore >= MIN_POSSIBLE_SCORE)
45 grade = 'F';
46 else
47 goodScore = false; // The score was below 0

(program continues)

Introduction to Loops: The while Loop 249

Let’s take a look at some of the key features of Program 5-2. The loop header for the
while loop is on line 28. The body of the loop, which contains the statements to be
executed each time the loop iterates, is contained between the braces on lines 29 and 57.
The loop control variable is student, and it is initialized to 1 on line 25, before the loop.
Notice that this variable is changed on line 56, inside the loop. This is very important.
Because it is increased by one each time through the loop, it will eventually become greater
than numStudents, and the loop will be exited. While the primary purpose of a loop
control variable is to control the number of loop iterations, it can also be used for other
purposes. Notice how Program 5-2 displays its current value as part of the prompt to the
user on lines 31 and 32.

Checkpoint

5.1 How many lines will each of the following while loops display?

A) int count = 1;
while (count < 5)
{ cout << "My favorite day is Sunday \n";
 count = count + 1;
}

48
49 // Display the letter grade
50 if (goodScore)
51 cout << "The letter grade is " << grade << ".\n";
52 else
53 cout << "The score cannot be below zero. \n";
54
55 // Set student to the next student
56 student = student + 1;
57 }
58 return 0;
59 }

Program Output with Example Input Shown in Bold
How many students do you have grades for? 3[Enter]

Enter the numeric test score for student #1: 88[Enter]
The letter grade is B.

Enter the numeric test score for student #2: 70[Enter]
The letter grade is C.

Enter the numeric test score for student #3: 93[Enter]
The letter grade is A.

Program 5-2 (continued)

250 Chapter 5 Looping

B) int count = 10;
while (count < 5)
{ cout << "My favorite day is Sunday \n";
 count = count + 1;
}

C) int count = 1;
while (count < 5);
{ cout << "My favorite day is Sunday \n";
 count = count + 1;
}

D) int count = 1;
while (count < 5)
 cout << "My favorite day is Sunday \n";
 count = count + 1;

5.2 Write a code segment that uses a while loop to display the odd numbers from 1
through 15.

5.2 Using the while Loop for Input Validation

CONCEPT: The while loop can be used to create input routines that repeat until
acceptable data is entered.

Chapter 4 introduced the idea of data validation and showed how to use an if statement
to validate data that is entered by the user. However, the if construct can only catch one
bad value. If the user enters a second bad value after being prompted to reenter the original
one, it will not be checked.

The while loop solves this problem, and is especially useful for validating input. If an
invalid value is entered, a loop can require that the user re-enter it as many times as
necessary until an acceptable value is received. For example, the following loop asks for
a number in the range of 1 through 100:

cout << "Enter a number in the range 1 - 100: ";
cin >> number;
while ((number < 1) || (number > 100))
{

cout << "ERROR: Enter a value in the range 1 - 100: ";
cin >> number;

}

This code first allows the user to enter a number. This takes place just before the loop.
If the input is valid, the while condition will be false, so the loop will not execute. If
the input is invalid, however, the while condition will be true, so the statements in
the body of the loop will be executed. They will display an error message and require
the user to enter another number. The loop will continue to execute until the user
enters a valid number. The general logic of performing input validation is shown in
Figure 5-3.

Using the while Loop for Input Validation 251

The read operation that takes place just before the loop is called a priming read. It provides
the first value for the loop to test. Subsequent values, if required, are obtained by the loop.

Program 5-3 calculates the number of soccer teams a youth league may create, based on
the given number of available players and a minimum and maximum number of players
per team. The program uses while loops (in lines 26 through 32 and lines 37 through 41)
to validate the user’s input.

Figure 5-3

Program 5-3

1 // This program calculates the number of soccer teams a
2 // youth league can create from the number of available
3 // players. It performs input validation using while loops.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // Constants for minimum and maximum players per team
10 const int MIN_PLAYERS = 9,
11 MAX_PLAYERS = 15;
12
13 // Variables
14 int players, // Number of available players
15 teamSize, // Number of desired players per team
16 numTeams, // Number of teams
17 leftOver; // Number of players left over
18
19 // Get the number of players per team
20 cout << "How many players do you wish per team?\n";
21 cout << "(Enter a value in the range "
22 << MIN_PLAYERS << " - " << MAX_PLAYERS << "): ";
23 cin >> teamSize;

(program continues)

Display an
error message

Yes

No

Is the
value

invalid?
Read another

value

Read the first
value

252 Chapter 5 Looping

5.3 The Increment and Decrement Operators

CONCEPT: C++ provides a pair of operators for incrementing and decrementing variables.

To increment a value means to increase it, and to decrement a value means to decrease it. In
the example below, qtyOrdered is incremented by 10 and numSold is decremented by 3.

qtyOrdered = qtyOrdered + 10;
numSold = numSold � 3;

24
25 // Validate the input
26 while (teamSize < MIN_PLAYERS || teamSize > MAX_PLAYERS)
27 {
28 cout << "\nTeam size should be "
29 << MIN_PLAYERS << " to " << MAX_PLAYERS << " players.\n";
30 cout << "How many players do you wish per team? ";
31 cin >> teamSize;
32 }
33 // Get and validate the number of players available
34 cout << "\nHow many players are available? ";
35 cin >> players;
36
37 while (players <= 0)
38 {
39 cout << "Please enter a positive number: ";
40 cin >> players;
41 }
42 // Calculate the number of teams and number of leftover players
43 numTeams = players / teamSize;
44 leftOver = players % teamSize;
45
46 // Display the results
47 cout << "\nThere will be " << numTeams << " teams with ";
48 cout << leftOver << " players left over.\n";
49 return 0;
50 }

Program Output with Example Input Shown in Bold
How many players do you wish per team?
(Enter a value in the range 9 - 15): 8[Enter]

Team size should be 9 to 15 players.
How many players do you wish per team? 12[Enter]

How many players are available? -138[Enter]
Please enter a positive number: 138[Enter]

There will be 11 teams with 6 players left over.

Program 5-3 (continued)

The Increment and Decrement Operators 253

Although the values stored in variables can be increased or decreased by any amount, it
is particularly common to increment them or decrement them by 1. We did this in
Programs 5-1 and 5-2 when we incremented the loop control variable by 1 each time the
while loop iterated. In fact, increasing or decreasing a variable’s value by 1 is so
common that if we say a value is being incremented or decremented without specifying
by how much, it is understood that it is being incremented or decremented by 1. C++
provides a pair of operators to do this. They are both unary operators. That means they
operate on just one operand. The ++ operator increases its operand’s value by 1. The ––
operator decreases its operand’s value by 1. For example, in the expression num++, the
single operand is the variable num. The expression increases its value by 1.

Here are three different ways to increment the value of the variable num by 1.

num = num + 1;
num += 1;
num++; // This statement uses the increment operator.

And here are three different ways to decrement it by 1:

num = num - 1;
num -= 1;
num--; // This statement uses the decrement operator.

Notice that there is no space between the two plus signs in ++ or between them and the
name of the variable being incremented. Likewise, there is no space between the two minus
signs –– or between them and the name of the variable being decremented. Note also that
unlike binary arithmetic operators, which can have either variables or literals as their
operands, the ++ and –– operators cannot operate on literals. They can only operate on an
lvalue, such as a variable. Here are some examples of legal and illegal expressions using ++
and ––.

count++; // legal
count-- // legal
5++ // illegal
5-- // illegal

Program 5-4 illustrates the correct use of the ++ and –– operators. It uses each of them to
change the value of a loop control variable.

NOTE: The expression num++ is pronounced “num plus plus,” and num-- is pronounced
“num minus minus.”

Program 5-4

1 // This program has two loops. The first displays the numbers
2 // from 1 up to 5. The second displays the numbers from 5 down to 1.
3 // The program uses the ++ and -- operators to change the value
4 // of the loop control variables.
5 #include <iostream>
6 using namespace std;
7

(program continues)

254 Chapter 5 Looping

Postfix and Prefix Modes
Our examples so far show the increment and decrement operators used in postfix mode,
which means the operator is placed after the variable. The operators also work in prefix
mode, where the operator is placed before the variable name. The statements on lines 14 and
22 of Program 5-4 could have been written like this:

++countUp;
--countDown;

In both prefix and postfix mode, these operators add 1 to, or subtract 1 from, their operand.
What then is the difference between them?

In simple statements like those used in Program 5-4, there is no difference. The difference
is important, however, when these operators are used in statements that do more than just
increment or decrement a variable. For example, look at the following lines:

num = 4;
cout << num++;

This cout statement is doing two things: displaying the value of num, and incrementing
num. But which happens first? cout will display a different value if num is incremented first
than if it is incremented last. The answer depends on the mode of the increment operator.

Postfix mode causes the increment to happen after the value of the variable is used in the
expression. In the example, cout will display 4, then num will be incremented to 5. Prefix
mode, however, causes the increment to be done first. In the following statements, num will
first be incremented to 5, and then cout will display 5:

num = 4;
cout << ++num;

8 int main()
9 {
10 int countUp = 1; // Initialize the first loop control variable to 1
11 while (countUp < 6)
12 {
13 cout << countUp << " ";
14 countUp++; // The ++ operator increments countUp
15 }
16 cout << endl << endl;
17
18 int countDown = 5; // Initialize the second loop control variable to 5
19 while (countDown > 0)
20 {
21 cout << countDown << " ";
22 countDown--; // The -- operator decrements countDown
23 }
24 return 0;
25 }

Program Output
1 2 3 4 5
5 4 3 2 1

Program 5-4 (continued)

The Increment and Decrement Operators 255

Program 5-5 illustrates these dynamics further by placing increment and decrement
operators in cout statements. This makes it easy to see the difference between using them
in prefix and postfix mode. However, this should not normally be done. That is, in actual
programming applications it is not recommended to place increment or decrement
operators in cout statements.

Let’s analyze the statements in this program. In line 8, num is initialized with the value 4, so
the cout statement in line 11 displays 4. Then, line 12 sends the expression num++ to cout.
Because the ++ operator is used in postfix mode, the value 4 is first sent to cout, and then
1 is added to num, making its value 5.

When line 13 executes, num will hold the value 5, so 5 is displayed. Then, line 14 sends the
expression ++num to cout. Because the ++ operator is used in prefix mode, 1 is first added
to num (making it 6), and then the value 6 is sent to cout. This same sequence of events
happens in lines 17 through 20, except the –– operator is used.

For another example, look at the following code:

int x = 1;
int y
y = x++; // Postfix increment
 // Assign x’s old value to y and then increment x

Program 5-5

1 // This program demonstrates the postfix and prefix
2 // modes of the increment and decrement operators.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int num = 4;
9
10 // Illustrate postfix and prefix ++ operator
11 cout << num << " "; // Displays 4
12 cout << num++ << " "; // Displays 4, then adds 1 to num
13 cout << num << " "; // Displays 5
14 cout << ++num << "\n\n"; // Adds 1 to num, then displays 6
15
16 // Illustrate postfix and prefix -- operator
17 cout << num << " "; // Displays 6
18 cout << num-- << " "; // Displays 6, then subtracts 1 from num
19 cout << num << " "; // Displays 5
20 cout << --num << "\n\n"; // Subtracts 1 from num, then displays 4
21
22 return 0;
23 }

Program Output
4 4 5 6

6 6 5 4

256 Chapter 5 Looping

The first statement defines the variable x (initialized with the value 1) and the second
statement defines the variable y. The third statement does two things:

• It assigns the value of x to the variable y.
• The variable x is incremented.

Because the ++ operator is used in postfix mode, the old value of x (which is 1) is
assigned to y before x is incremented. After the statement executes, y will contain 1, and
x will contain 2.

Let’s look at the same code, but with the ++ operator used in prefix mode:

int x = 1;
int y;
y = ++x; // Prefix increment

In the third statement, the ++ operator is now used in prefix mode, causing variable x to be
incremented before the assignment takes place. So, this code will store 2 in y. After the
code has executed, x and y will both contain 2.

Using ++ and -- in Mathematical Expressions
The increment and decrement operators can also be used on variables in mathematical
expressions. Consider the following program segment:

a = 2;
b = 5;
c = a * b++;
cout << a << " " << b << " " << c;

In the statement c = a * b++, c is assigned the value of a times b, which is 10. The variable
b is then incremented. The cout statement will display

2 6 10

If the statement were changed to read

c = a * ++b;

the variable b would be incremented before it was multiplied by a. In this case c would be
assigned the value of 2 times 6, so the cout statement would display

2 6 12

You can pack a lot of action into a single statement using the increment and decrement
operators, but don’t get too tricky with them. You might be tempted to try something like
the following, thinking that c will be assigned 11:

a = 2;
b = 5;
c = ++(a * b); // Error!

But this assignment statement simply will not work because, as previously mentioned, the
operand of the increment and decrement operators must be an lvalue.

The Increment and Decrement Operators 257

Using ++ and -- in Relational Expressions
The ++ and -- operators may also be used in relational expressions. Just as in arithmetic
expressions, the difference between postfix and prefix mode is critical. Consider the
following program segment:

x = 10;
if (x++ > 10)

cout << "x is greater than 10.\n";

Two operations are taking place in this if statement: the value in x is tested to
determine if it is greater than 10, and x is incremented. Because the increment operator
is used in postfix mode, the comparison happens first. Since 10 is not greater than 10,
the value of x before it is incremented, the cout statement won’t execute. If the
increment operator is used in prefix mode, however, x will be incremented before the
if condition is tested, so the if statement will compare 11 to 10 and the cout
statement will execute:

x = 10;
if (++x > 10)

cout << "x is greater than 10.\n";

Checkpoint

5.3 What will each of the following program segments display?

A) x = 2;
y = x++;
cout << x << " " << y;

B) x = 2;
y = ++x;
cout << x << " " << y;

C) x = 2;
y = 4;
cout << x++ << " " << --y;

D) x = 2;
y = 2 * x++;
cout << x << " " << y;

E) x = 99;
if (x++ < 100)

cout "It is true!\n";
else

cout << "It is false!\n";

NOTE: Some instructors prefer that you only use the ++ and -- operators in
statements whose sole purpose is to increment or decrement a variable. They may ask
you not to use them in assignment statements, mathematical expressions, or relational
expressions.

258 Chapter 5 Looping

F) x = 0;
if (++x)

cout << "It is true!\n";
else

cout << "It is false!\n";

5.4 Counters

CONCEPT: A counter is a variable that is regularly incremented or decremented each
time a loop iterates.

Sometimes it’s important for a program to keep track of the number of iterations a loop
performs. For example, Program 5-6 displays a table consisting of the numbers 1 through
5 and their squares, so its loop must iterate 5 times.

In Program 5-6 the loop control variable num starts at 1 and is incremented each time
through the loop. When num reaches 6, the condition num <= 5 becomes false, and the
loop is exited. Variable num also acts as a counter, keeping count of how many times

Program 5-6

1 // This program uses a while loop to display
2 // the numbers 1-5 and their squares.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 { int num = 1;
9
10 cout << "Number Square\n";
11 cout << "--------------\n";
12 while (num <= 5)
13 {
14 cout << setw(4) << num << setw(7) << (num * num) << endl;
15 num++; // Increment counter
16 }return 0;
17 }

Program Output
Number Square

 1 1
 2 4
 3 9
 4 16
 5 25

Counters 259

the loop has iterated so far. Notice how num is incremented in line 15 of the program.
Because counters most often count by 1’s, the increment operator is frequently used
with them.

Letting the User Control the Loop
Sometimes we want to let the user decide how many times a loop should iterate. Program 5-2
did this. Program 5-7, which is a revision of Program 5-6, also does this. It prompts the user
to enter the maximum integer value to be displayed and squared. Then it has num, the loop
counter, count up to that value.

NOTE: It’s important that num be properly initialized. Remember, variables defined
inside a function have no guaranteed starting value.

Program 5-7

1 // This program displays integer numbers and their squares, beginning
2 // with one and ending with whatever number the user requests.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int num, // Counter telling what number to square
10 lastNum; // The final integer value to be squared
11
12 // Get and validate the last number in the table
13 cout << "This program will display a table of integer\n"
14 << "numbers and their squares, starting with 1.\n"
15 << "What should the last number be?\n"
16 << "Enter an integer between 2 and 10: ";
17 cin >> lastNum;
18
19 while ((lastNum < 2) || (lastNum > 10))
20 { cout << "Please enter an integer between 2 and 10: ";
21 cin >> lastNum;
22 }
23 // Display the table
24 cout << "\nNumber Square\n";
25 cout << "--------------\n";
26
27 num = 1; // Set the counter to the starting value
28 while (num <= lastNum)
29 {
30 cout << setw(4) << num << setw(7) << (num * num) << endl;
31 num++; // Increment the counter
32 }
33 return 0;
34 }

260 Chapter 5 Looping

5.5 The do-while Loop

CONCEPT: The do-while loop is a post test loop, which means its expression is tested
after each iteration.

In addition to the while loop, C++ also offers the do-while loop. The do-while loop
looks similar to a while loop turned upside down. Figure 5-4 shows its format and a
flowchart visually depicting how it works.

As with the while loop, if there is only one conditionally executed statement in the loop
body, the braces may be omitted.

Program Output with Example Input Shown in Bold
This program will display a table of integer
numbers and their squares, starting with 1.
What should the last number be?
Enter an integer between 2 and 10: 3[Enter]

Number Square

 1 1
 2 4
 3 9

Figure 5-4

NOTE: The do-while loop must be terminated with a semicolon after the closing
parenthesis of the test expression.

Program 5-7 (continued)

do
{ statement;
 statement;
 // Place as many statements
 // here as necessary.
} while (condition);

false

true

statement(s)

condition

The do-while Loop 261

Besides the way it looks, the difference between the do-while loop and the while loop is
that do-while is a post test loop. This means it tests its expression at the end of the loop,
after each iteration is complete. Therefore a do-while always performs at least one
iteration, even if the test expression is false at the start. For example, in the following
while loop the cout statement will not execute at all.

int x = 1;
while (x < 0)
 cout << x << endl;

But the cout statement in the following do-while loop will execute once because the
do-while loop does not evaluate the expression x < 0 until the end of the iteration.

int x = 1;
do

 cout << x << endl;
while (x < 0);

You should use the do-while loop when you want to make sure the loop executes at least
once. For example, Program 5-8 computes and displays the average of a set of test scores
before asking if the user wants to repeat the process with another set of scores. As with the
while loop, a do-while loop can be written to iterate a set number of times or to allow
the user to control how many times to loop. Program 5-8 illustrates another method for
letting the user control the loop. It will repeat as long as the user enters a Y or y for yes.

Program 5-8

1 // This program averages 3 test scores. It uses a do-while loop
2 // that allows the code to repeat as many times as the user wishes.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int score1, score2, score3; // Three test scores
9 double average; // Average test score
10 char again; // Loop again? Y or N
11
12 do
13 { // Get three test scores
14 cout << "\nEnter 3 scores and I will average them: ";
15 cin >> score1 >> score2 >> score3;
16
17 // Calculate and display the average
18 average = (score1 + score2 + score3) / 3.0;
19 cout << "The average is " << average << "\n\n";
20
21 // Does the user want to average another set?
22 cout << "Do you want to average another set? (Y/N) ";
23 cin >> again;
24 } while (again == 'Y' || again == 'y');
25 return 0;
26 }

(program continues)

262 Chapter 5 Looping

The toupper Function
Let’s take a closer look at the line containing the do-while loop test expression in Program
5-8.

while (again == 'Y' || again == 'y');

Notice how the logical OR operator is used to allow the user to enter either an uppercase
or a lowercase 'Y' to do another iteration of the loop.

While this method works well to test both of these characters, it can be done more easily
by using a C++ function named toupper (pronounced “to upper”). This function is passed
a character and returns the integer ASCII code of a character. If the character it receives is
a lowercase letter, it returns the ASCII code of its uppercase equivalent. If the character it
receives is not a lowercase letter, it returns the ASCII code for the same character it was
passed.

If the value returned by toupper were printed, it is the ASCII code that would print.
However, if it is assigned to a char variable, which is then printed, the character itself will
print. The following examples illustrate this.

char letter1, letter2, letter3;

letter1 = toupper(‘?’);
cout << letter1; // This displays ?

letter2 = toupper(‘A’);
cout << letter2; // This displays A

letter3 = toupper(‘b’);
cout << letter3; // This displays B

cout << toupper(‘c’); // This displays 67, the ASCII code for C

In the first example, the character passed to the toupper function is not a letter at all, so
the ASCII code of the same character is returned and assigned to letter1 for printing. In
the second example, the character passed to toupper is already an uppercase letter so,
again, the ASCII code of the same character it received is returned. In the third example,
toupper receives a lowercase letter, so the ASCII code of its uppercase equivalent is
returned. In the final example, toupper again receives a lowercase letter and returns the

Program Output with Example Input Shown in Bold

Enter 3 scores and I will average them: 80 90 70[Enter]
The average is 80

Do you want to average another set? (Y/N) y[Enter]

Enter 3 scores and I will average them: 60 75 88[Enter]
The average is 74.3333

Do you want to average another set? (Y/N) n[Enter]

Program 5-8 (continued)

The do-while Loop 263

ASCII code of its uppercase equivalent. However, this time the returned value is printed
instead of being assigned to a char variable, so it is the integer value of the ASCII code
itself that displays.

The value passed to toupper does not have to be a character literal. It can also be a
character variable, as shown here:

char letter1 = ‘b’;
char letter2 = toupper(letter1); // Now letter2’s value is ‘B’

The toupper function is especially useful when used in the test expression of a do-while
loop. It can test the variable holding a user’s input to see if the user has entered a ‘Y’ or a
‘y’ when asked whether or not the loop should iterate again. The following two do-while
tests are logically equivalent:

while (again == 'Y' || again == 'y');
while (toupper(again) == 'Y');

It is important to understand that this last test expression does not change the value stored
in the again variable. Rather, it compares the value returned by toupper to a character
literal. To actually change the value stored in again, the value returned by the function
would have to be assigned to it, as shown here:

again = toupper(again);

C++ provides a similar function to convert an uppercase letter to its lowercase
equivalent. This function is named tolower (pronounced “to lower”). Here are two
examples of its use:

while (tolower(again) == 'y');
again = tolower(again);

Using do-while with Menus
The do-while loop is a good choice for repeating a menu. Recall Program 4-27, which
displays a menu of health club packages. Program 5-9 is a modification of that program that
uses a do-while loop to repeat the program until the user selects item 4 from the menu.

NOTE: To use toupper and tolower you must include the cctype file in your
program. You can include it with the following statement:

#include <cctype>

Program 5-9

1 // This menu-driven Health Club membership program carries out the
2 // appropriate actions based on the menu choice entered. A do-while loop
3 // allows the program to repeat until the user selects menu choice 4.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;

(program continues)

264 Chapter 5 Looping

7
8 int main()
9 {
10 // Constants for membership rates
11 const double ADULT_RATE = 120.0;
12 const double CHILD_RATE = 60.0;
13 const double SENIOR_RATE = 100.0;
14
15 int choice; // Menu choice
16 int months; // Number of months
17 double charges; // Monthly charges
18
19 do
20 { // Display the menu and get the user's choice
21 cout << "\n Health Club Membership Menu\n\n";
22 cout << "1. Standard Adult Membership\n";
23 cout << "2. Child Membership\n";
24 cout << "3. Senior Citizen Membership\n";
25 cout << "4. Quit the Program\n\n";
26 cout << "Enter your choice: ";
27 cin >> choice;
28
29 // Validate the menu selection
30 while ((choice < 1) || (choice > 4))
31 {
32 cout << "Please enter 1, 2, 3, or 4: ";
33 cin >> choice;
34 }
35 // Process the user's choice
36 if (choice != 4)
37 { cout << "For how many months? ";
38 cin >> months;
39
40 // Compute charges based on user input
41 switch (choice)
42 {
43 case 1: charges = months * ADULT_RATE;
44 break;
45 case 2: charges = months * CHILD_RATE;
46 break;
47 case 3: charges = months * SENIOR_RATE;
48 }
49 // Display the monthly charges
50 cout << fixed << showpoint << setprecision(2);
51 cout << "The total charges are $" << charges << endl;
52 }
53 } while (choice != 4); // Loop again if the user did not
54 // select choice 4 to quit
55 return 0;
56 }

(program continues)

Program 5-9 (continued)

The do-while Loop 265

Checkpoint

5.4 What will the following program segments display?

A) int count = 3;
do
 cout << "Hello World\n";
 count--;
while (count < 1);

B) int val = 5;
do
 cout << val << " ";
while (val >= 5);

C) int count = 0, number = 0, limit = 4;
do
{
 number += 2;
 count++;
} while (count < limit);
cout << number << " " << count << endl;

5.5 Write a program segment with a do-while loop that displays whether a user-
entered integer is even or odd. The code should then ask the user if he or she wants
to test another number. The loop should repeat so long as the user enters Y or y. Use
a logical OR operator in the do-while loop test expression.

5.6 Revise your answer to question 5.5 to use the toupper function in the do-while
loop test expression.

Program Output with Example Input Shown in Bold

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 1[Enter]
For how many months? 4[Enter]
The total charges are $480.00

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 4[Enter]

Program 5-9 (continued)

266 Chapter 5 Looping

5.6 The for Loop

CONCEPT: The for loop is a pretest loop that combines the initialization, testing, and
updating of a loop control variable in a single loop header.

In general, there are two categories of loops: conditional loops and count-controlled loops.
A conditional loop executes as long as a particular condition exists. For example, an input
validation loop executes as long as the input value is invalid. When you write a conditional
loop, you have no way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must perform. A loop that
repeats a specific number of times is known as a count-controlled loop. For example, if a
loop asks the user to enter the sales amounts for each month in the year, it will iterate
twelve times. In essence, the loop counts to twelve and asks the user to enter a sales
amount each time it makes a count. A count-controlled loop must possess three elements:

1. It must initialize a counter variable to a starting value.
2. It must test the counter variable by comparing it to a final value. When the counter

variable reaches its final value, the loop terminates.
3. It must update the counter variable during each iteration. This is usually done by

incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop specifically for
them. It is known as the for loop. The for loop is specifically designed to initialize, test,
and update a counter variable. Here is the format of the for loop.

As with the other loops you have used, if there is only one statement in the loop body, the
braces may be omitted.

The first line of the for loop is the loop header. After the key word for, there are three
expressions inside the parentheses, separated by semicolons. (Notice there is no semicolon
after the third expression.) The first expression is the initialization expression. It is typically
used to initialize a counter to its starting value. This is the first action performed by the loop
and it is only done once.

The second expression is the test expression. It tests a condition in the same way the test
expression in the while and do-while loop does, and controls the execution of the loop.
As long as this condition is true, the body of the for loop will repeat. The for loop is a
pretest loop, so it evaluates the test expression before each iteration.

The third expression is the update expression. It executes at the end of each iteration.
Typically, this is a statement that increments the loop’s counter variable.

for (initialization; test; update)

{
 statement;
 statement;
 // Place as many statements
 // here as necessary.
}

VideoNote

The for Loop

The for Loop 267

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

In this loop, the initialization expression is count = 1, the test expression is count <= 5,
and the update expression is count++. The body of the loop has one statement, which is the
cout statement. Figure 5-5 illustrates the sequence of events that take place during the loop’s
execution. Notice that Steps 2 through 4 are repeated as long as the test expression is true.

Figure 5-6 shows the loop’s logic in the form of a flowchart.

Notice how the counter variable count is used to control the number of times the loop
iterates. During the execution of the loop, this variable takes on the values 1 through 5, and
when the test expression count <= 5 becomes false, the loop terminates. Also notice that
in this example the count variable is used only in the loop header, to control the number of
loop iterations. It is not used for any other purpose. However, it is also possible to use the
counter variable within the body of a loop. For example, look at the following code:

for (number = 1; number <= 5; number++)
cout << number << " ";

Figure 5-5

Figure 5-6

for (count = 1; count <= 5; count++)
{ cout << "Hello" << endl;

Step 1: Perform the initialization expression.

Step 2: Evaluate the test expression.
If it is true, go to step 3.
Otherwise, terminate the loop.

Step 3: Execute the body
of the loop.

Step 4: Perform the update expression.
 Then go back to step 2.

{

cout
statement

True

False

count
<= 5

Increment
count

Assign 1 to
count

268 Chapter 5 Looping

The counter variable in this loop is number. In addition to controlling the number of
iterations, it is also used in the body of the loop. This loop will produce the following
output:

1 2 3 4 5

As you can see, the loop displays the contents of the number variable during each
iteration.

Program 5-10 is a new version of Program 5-6 that displays the numbers 1–5 and their
squares by using a for loop instead of a while loop.

The for Loop is a Pretest Loop
Because the for loop tests its test expression before it performs an iteration, it is possible to
write a for loop in such a way that it will never iterate. Here is an example:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

Because the variable count is initialized to a value that makes the test expression false
from the beginning, this loop terminates as soon as it begins.

Program 5-10

1 // This program uses a for loop to display the numbers 1-5
2 // and their squares.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 { int num;
9
10 cout << "Number Square\n";
11 cout << "--------------\n";
12
13 for (num = 1; num <= 5; num++)
14 cout << setw(4) << num << setw(7) << (num * num) << endl;
15 return 0;
16 }

Program Output
Number Square

 1 1
 2 4
 3 9
 4 16
 5 25

The for Loop 269

Avoid Modifying the Counter Variable in the Body of
the for Loop
Although it is okay to use the counter variable inside the body of the loop, as we did in
Program 5-10, be careful not to place a statement there that modifies it. All modifications of
the counter variable should take place in the update expression, which is automatically
executed at the end of each iteration. If a statement in the body of the loop also modifies the
counter variable, the loop will probably not terminate when you expect it to. The following
loop, for example, increments x twice for each iteration:

for (x = 1; x <= 10; x++)
{

cout << x << endl;
x++; // Wrong!

}

Other Forms of the Update Expression
You are not limited to incrementing the loop control variable by just 1 in the update
expression. Here is a loop that displays all the even numbers from 2 through 100 by adding
2 to its counter:

for (num = 2; num <= 100; num += 2)
cout << num << endl;

And here is a loop that counts backward from 10 down to 0:

for (num = 10; num >= 0; num--)
cout << num << endl;

Defining a Variable in the for Loop’s Initialization
Expression
Not only may the counter variable be initialized in the initialization expression, it may be
defined there as well. The following code shows an example. This is a modified version of the
loop in Program 5-10.

for (int num = 1; num <= 5; num++)
cout << setw(4) << num << setw(7) << (num * num) << endl;

In this loop, the num variable is both defined and initialized in the initialization expression.
If the counter variable is used only in the loop, it is considered good programming practice
to define it in the loop header. This makes the variable’s purpose clearer.

However, when a variable is defined in the initialization expression of a for loop, the
scope of the variable is limited to the loop. This means you cannot access the variable in
statements outside the loop. For example, the following program segment will not compile
because the last cout statement cannot access the variable count.

for (int count = 1; count <= 10; count++)
cout << count << endl;

cout << "count is now " << count << endl; // ERROR!

270 Chapter 5 Looping

Creating a User-Controlled for Loop
In Program 5-7 we allowed the user to control how many times a while loop should iterate.
This can also be done with a for loop by having the user enter the final value for the counter
variable. The following program segment illustrates this.

// Get the final counter value
cout << "How many times should the loop execute? ";
cin >> finalValue;

for (int num = 1; num <= finalValue; num++)
{

// Statements in the loop body go here.
}

Using Multiple Statements in the Initialization
and Update Expressions
It is possible to execute more than one statement in the initialization expression and the
update expression. When using multiple statements in either of these expressions, simply
separate the statements with commas. For example, look at the loop in the following code,
which has two statements in the initialization expression.

for (int x = 1, y = 1; x <= 5; x++)
{

cout << x << " plus " << y << " equals " << (x + y) << endl;
}

The loop’s initialization expression is

int x = 1, y = 1

This defines and initializes two int variables, x and y. The output produced by this loop is:

1 plus 1 equals 2
2 plus 1 equals 3
3 plus 1 equals 4
4 plus 1 equals 5
5 plus 1 equals 6

We can further modify the loop to execute two statements in the update expression. Here is
an example:

for (int x = 1, y = 1; x <= 5; x++, y++)
{

cout << x << " plus " << y << " equals " << (x + y) << endl;
}

The loop’s update expression increments both the x and y variables.

x++, y++

The output produced by this loop is:

1 plus 1 equals 2
2 plus 2 equals 4
3 plus 3 equals 6
4 plus 4 equals 8
5 plus 5 equals 10

The for Loop 271

Connecting multiple statements with commas is allowed in the initialization and update
expressions, but not in the test expression. If you wish to combine multiple expressions in
the test expression, you must use the && or || operators.

Here is an example of a for loop header that does this:

for (int count = 1; count <= 10 && moreData, count++)

This loop will execute only as long as count <= 10 and Boolean variable moreData is true.
As soon as either of these conditions becomes false, the loop will be exited.

Omitting the for Loop’s Expressions or Loop Body
Although it is generally considered bad programming style to do so, one or more of the for
loop’s expressions, or even its loop body, can be omitted.

The initialization expression may be omitted from inside the for loop’s parentheses if it
has already been performed or if no initialization is needed. Here is an example a loop with
the initialization being performed prior to the loop:

int num = 1;
for (; num <= maxValue; num++)

cout << num << " " << (num * num) << endl;

The update expression may be omitted if it is being performed elsewhere in the loop or if
none is needed. Although this type of code is not recommended, the following for loop
works just like a while loop:

int num = 1;
for (; num <= maxValue;)
{ cout << num << " " << (num * num) << endl;
 num++;
}

It is also possible, though not recommended, to write a for loop that has no formal body.
In this case, all the work of the loop is done by statements in the loop header. Here is an
example that displays the numbers from 1 to 10. The combined increment operation and
cout statement in the update expression perform the work of each iteration.

for (number = 1; number <= 10; cout << number++);

Checkpoint

5.7 What three expressions appear inside the parentheses of the for loop’s header?

5.8 You want to write a for loop that displays “I love to program” 50 times. Assume
that you will use a counter variable named count.
A) What initialization expression will you use?
B) What test expression will you use?
C) What update expression will you use?
D) Write the loop.

5.9 What will each of the following program segments display?

A) for (int count = 0; count < 6; count++)
cout << (count + count) << " ";

B) for (int value = -5; value < 5; value++)
cout << value << " ";

272 Chapter 5 Looping

C) int x
for (x = 3; x <= 10; x += 3)

cout << x << " ";
cout << x << " ";

5.10 Write a for loop that displays your name 10 times.

5.11 Write a for loop that displays all of the odd numbers, 1 through 49.

5.12 Write a for loop that displays every fifth number, 0 through 100.

5.7 Keeping a Running Total

CONCEPT: A running total is a sum of numbers that accumulates with each iteration of a
loop. The variable used to keep the running total is called an accumulator.

Many programming tasks require you to add up a series of numbers. For example, if you
want to find the average of a set of number, you must first add them up. Programs that add
a series of numbers typically use two elements:

• A loop that reads each number in the series.
• A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator. It is
often said that the loop keeps a running total because it accumulates the total as it reads each
number in the series. Figure 5-7 shows the general logic of a loop that calculates a running total.

When the loop finishes, the accumulator will contain the total of the numbers read by the
loop. Notice that the first step in the flowchart is to set the accumulator variable to 0. This
is a critical step. Each time the loop reads a number, it adds it to the accumulator. If the
accumulator starts with any value other than 0, it will not contain the correct total when
the loop finishes.

Figure 5-7

Yes

No

Read the next
number

Add the
number to the
accumulator

Set
accumulator

to 0

Is there
another
number
to read?

Keeping a Running Total 273

Let’s look at a program that keeps a running total. Program 5-11 calculates a company’s
total sales over a period of time by reading daily sales figures and adding them to an
accumulator. It then uses this total to find the average sales per day.

Program 5-11

1 // This program takes daily sales figures over a period of time
2 // and calculates their total. It then uses this total to compute
3 // the average daily sales.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 int numDays; // Number of days
11 double dailySales, // The sales amount for a single day
12 totalSales = 0.0, // Accumulator, initialized with 0
13 averageSales; // The average daily sales amount
14
15 // Get the number of days
16 cout << "For how many days do you have sales figures? ";
17 cin >> numDays;
18
19 // Get the sales for each day and accumulate a total
20 for (int day = 1; day <= numDays; day++) // day is the counter
21 {
22 cout << "Enter the sales for day " << day << ": ";
23 cin >> dailySales;
24 totalSales += dailySales; // Accumulate the running total
25 }
26 // Compute the average daily sales
27 averageSales = totalSales / numDays;
28
29 // Display the total sales and average daily sales
30 cout << fixed << showpoint << setprecision(2);
31 cout << "\nTotal sales: $" << setw(8) << totalSales;
32 cout << "\nAverage daily sales: $" << setw(8) << averageSales
33 << endl;
34 return 0;
35 }

Program Output with Example Input Shown in Bold
For how many days do you have sales figures? 5[Enter]
Enter the sales for day 1: 425.16[Enter]
Enter the sales for day 2: 397.20[Enter]
Enter the sales for day 3: 404.11[Enter]
Enter the sales for day 4: 468.43[Enter]
Enter the sales for day 5: 502.19[Enter]

Total sales: $ 2197.09
Average daily sales: $ 439.42

274 Chapter 5 Looping

Let’s take a closer look at a few of the key lines in this program. In line 12 the totalSales
variable is defined. This is the accumulator. Notice that it is initialized with 0. In line 17 the user
enters how many days of sales figures there are. This number is stored in the numDays variable
and determines how many times the loop beginning in line 20 iterates. The variable day, which
is defined in the loop’s initialization expression, is initialized with 1. This variable is the counter
that controls the loop and keeps track of which day’s sales amount is currently being read in and
processed. The test expression specifies the loop will repeat as long as day is less than or equal to
numDays. The update expression increments day by one at the end of each loop iteration.

During each loop iteration, in line 23, the user enters the amount of sales for one specific
day. This amount is stored in the dailySales variable. Then, in line 24, this amount is
added to the existing value stored in the totalSales variable. Note that line 24 does not
assign dailySales to totalSales, but rather increases the value stored in totalSales by
the amount in dailySales. After the loop has finished, totalSales will contain the total of
all the daily sales figures entered. In line 27, this total is used to calculate the average daily
sales amount. To do this the value stored in totalSales is divided by the value stored in
numDays and the result is placed in the variable averageSales. The program now has all the
information needed to display the totalSales and averageSales in lines 31–33.

5.8 Sentinels

CONCEPT: A sentinel is a special value that marks the end of a list of values.

Program 5-11, in the previous section, requires the user to know in advance the number of
days there are sales figures for. Sometimes the user has a list that is very long and doesn’t
know how many items there are.

A technique that can be used in a situation like this is to ask the user to enter a sentinel at
the end of the list. A sentinel is a special value that cannot be mistaken for a member of the
list and that signals that there are no more values to be entered. When the user enters the
sentinel, the loop terminates.

Program 5-12 provides an example of using an end sentinel. This program calculates the
total points earned by a soccer team over a series of games. It allows the user to enter the
series of game points, then enter –1 to signal the end of the list.

Program 5-12

1 // This program illustrates the use of an end sentinel. It calculates
2 // the total number of points a soccer team has earned over a series
3 // of games. The user enters the point values, then -1 when finished.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int game = 1, // Game counter
10 points, // Holds number of points for a specific game
11 total = 0; // Accumulates total points for all games

(program continues)

Sentinels 275

The value -1 was chosen for the sentinel in this program because it is not possible for a
team to score negative points. Notice that this program performs a priming read in line 17
to get the first value. This is done so the while loop will not try to test the value of points
until a first value has been read in. It also makes it possible for the loop to immediately
terminate if the user enters -1 for the first value, as shown in the second sample run. Also
note that the sentinel value is not included in the running total.

12
13 // Read in the points for game 1
14 cout << "Enter the number of points your team has earned\n";
15 cout << "so far this season. Then enter -1 when finished.\n\n";
16 cout << "Enter the points for game " << game << ": ";
17 cin >> points;
18
19 // Loop as long as the end sentinel has not yet been entered
20 while (points != -1)
21 { // Add point just read in to the accumulator
22 total += points;
23
24 // Enter the points for the next game
25 game++;
26 cout << "Enter the points for game " << game << ": ";
27 cin >> points;
28 }
29 // Display the total points
30 cout << "\nThe total points are " << total << endl;
31 return 0;
32 }

Program Output with Example Input Shown in Bold
Enter the number of points your team has earned
so far this season. Then enter -1 when finished.

Enter the points for game 1: 2[Enter]
Enter the points for game 2: 1[Enter]
Enter the points for game 3: 3[Enter]
Enter the points for game 4: 2[Enter]
Enter the points for game 5: 1[Enter]
Enter the points for game 6: -1[Enter]

The total points are 9

Program Output with Different Example Input Shown in Bold
Enter the number of points your team has earned
so far this season. Then enter −1 when finished.

Enter the points for game 1: -1

The total points are 0

Program 5-12 (continued)

276 Chapter 5 Looping

Checkpoint

5.13 In the following program segment, which variable is the counter and which is the
accumulator?

int number, x = 0, y = 0, maxNums;
cout << "How many numbers do you wish to enter? ";
cin >> maxNums;
while (x < maxNums)
{

cout << "Enter a number: ";
cin >> number;
y += number;
x++;

}
cout << "The sum of those numbers is " << y << endl;

5.14 Write a for loop that sums up the squares of the integers from 1 through 10.

5.15 Write a for loop that sums up the squares of the odd integers from 1 through 9.

5.16 Write a for loop that repeats seven times, asking the user to enter a number each
time and summing the numbers entered.

5.17 Write a for loop that calculates the total of the following series of numbers:

5.18 Write a for loop that calculates the total of the following series of numbers:

5.19 Write a sentinel controlled while loop that accumulates a series of test scores input
by the user, until -99 is entered. The code should then report how many scores were
entered and the average of these scores. Do not count the end sentinel -99 as a score.

5.9 Focus on Software Engineering:
Deciding Which Loop to Use

CONCEPT: Although most repetitive algorithms can be written with any of the three
types of loops, each works best in different situations.

Each of C++’s three loops are ideal to use in different situations. Here’s a short summary of
when each loop should be used.

The while Loop
The while loop is a pretest loop. It is ideal in situations where you do not want the loop to
iterate if the test condition is false from the beginning. For example, validating input that has
been read and reading lists of data terminated by a sentinel value are good applications of the
while loop.

1
30
------ 2

29
------ 3

28
------ 4

27
------ ...30

1
------+ + + +

1
2
--- 1

4
--- 1

8
--- 1

16
------ ... 1

1024
------------+ + + +

Nested Loops 277

cout << "This program finds the square of any integer.\n";
cout << "\nEnter an integer, or -99 to quit: ";
cin >> num;

while (num != -99)
{ cout << num << " squared is " << pow(num, 2.0) << endl;

cout << "\nEnter an integer, or -99 to quit ";
cin >> num;

}

The do-while Loop
The do-while loop is a post test loop. It is ideal in situations where you always want the
loop to iterate at least once. The do-while loop is a good choice for repeating a menu or for
asking the user if they want to repeat a set of actions.

cout << "This program finds the square of any integer.\n";
do
{ cout << "\nEnter an integer: ";

cin >> num;
cout << num << " squared is " << pow(num, 2.0) << endl;
cout << "Do you want to square another number? (Y/N) ";
cin >> doAgain;

} while (doAgain == 'Y' || doAgain == 'y');

The for Loop
The for loop is a pretest loop with built-in expressions for initializing, testing, and updating
a counter variable. The for loop is ideal in situations where the exact number of iterations is
known.

cout << "This program finds the squares of the integers "
<< "from 1 to 8.\n\n";

for (num = 1; num <= 8; num++)
{

cout << num << " squared is " << pow(num, 2.0) << endl;
}

A program containing the above code for all three types of loops can be found in the
loop-examples.cpp file on the book’s companion website, along with all the other
programs in this chapter.

5.10 Nested Loops

CONCEPT: A loop that is inside another loop is called a nested loop.

In Chapter 4 you saw how one if statement could be nested inside another one. It is
also possible to nest one loop inside another loop. The first loop is called the outer
loop. The one nested inside it is called the inner loop. This is illustrated by the following
two while loops. Notice how the inner loop must be completely contained within the
outer one.

VideoNote

Nested Loops

278 Chapter 5 Looping

while (condition1) // Beginning of the outer loop
{ ---

while (condition2) // Beginning of the inner loop
{ ---

} // End of the inner loop

} // End of the outer loop

Nested loops are used when, for each iteration of the outer loop, something must be
repeated a number of times. Here are some examples from everyday life:

• For each batch of cookies to be baked we must put each cookie on the cookie sheet.
• For each salesperson, we must add up each sale to determine total commission.
• For each teacher we must produce a class list for each of their classes.
• For each student we must add up each test score to find the student’s test average.

Whatever the task, the inner loop will go through all its iterations each time the outer loop
is executed. This is illustrated by Program 5-13, which handles this last task, finding
student test score averages. Any kind of loop can be nested within any other kind of loop.
This program uses two for loops.

Program 5-13

1 // This program averages test scores. It asks the user for the
2 // number of students and the number of test scores per student.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int numStudents, // Number of students
9 numTests; // Number of tests per student
10 double average; // Average test score for a student
11
12 // Get the number of students
13 cout << "This program averages test scores.\n";
14 cout << "How many students are there? ";
15 cin >> numStudents;
16
17 // Get the number of test scores per student
18 cout << "How many test scores does each student have? ";
19 cin >> numTests;
20 cout << endl;
21
22 // Read each student's scores and compute their average
23 for (int snum = 1; snum <= numStudents; snum++) // Outer loop
24 { double total = 0.0; // Initialize accumulator
25
26 for (int test = 1; test <= numTests; test++) // Inner loop
27 { int score;
28

(program continues)

Nested Loops 279

Let’s trace what happened in Program 5-13, using the sample data shown. In this case,
for each of two students, each of three scores were input and summed. First in line 23 the
outer loop was entered and snum was set to 1. Then, once the total accumulator was
initialized to zero for that student, the inner loop, which begins on line 26, was entered.
While the outer loop was still on its first iteration and snum was still 1, the inner loop
went through all of its iterations, handling tests 1, 2, and 3 for that student. It then
exited the inner loop and in lines 36 through 38 calculated and output the average for
student 1. Only then did the program reach the bottom of the outer loop and go back up
to do its second iteration. The second iteration of the outer loop processed student 2. For
each iteration of the outer loop, the inner loop did all its iterations.

It might help to think of each loop as a rotating wheel. The outer loop is a big wheel that is
moving slowly. The inner loop is a smaller wheel that is spinning quickly. For every
rotation the big wheel makes, the little wheel makes many rotations. Since, in our example,
the outer loop was done twice, and the inner loop was done three times for each iteration
of the outer loop, the inner loop was done a total of six times in all. This corresponds to
the six scores input by the user. The following points summarize this.

• An inner loop goes through all of its iterations for each iteration of an outer loop.
• Inner loops complete their iterations faster than outer loops.
• To get the total number of iterations of an inner loop, multiply the number of iterations

of the outer loop by the number of iterations done by the inner loop each time the outer
loop is done.

29 // Read a score and add it to the accumulator
30 cout << "Enter score " << test << " for ";
31 cout << "student " << snum << ": ";
32 cin >> score;
33 total += score; //
34 } // End inner loop
35 // Compute and display the student's average
36 average = total / numTests;
37 cout << "The average score for student " << snum;
38 cout << " is " << average << "\n\n";
39 } // End outer loop
40 return 0;
41 }

Program Output with Example Input Shown in Bold
This program averages test scores.
How many students are there? 2[Enter]
How many test scores does each student have? 3[Enter]

Enter score 1 for student 1: 84[Enter]
Enter score 2 for student 1: 79[Enter]
Enter score 3 for student 1: 97[Enter]
The average for student 1 is 86.6667
Enter score 1 for student 2: 92[Enter]
Enter score 2 for student 2: 88[Enter]
Enter score 3 for student 2: 94[Enter]
The average for student 2 is 91.3333

Program 5-13 (continued)

280 Chapter 5 Looping

5.11 Breaking Out of a Loop

CONCEPT: C++ provides ways to break out of a loop or out of a loop iteration early.

Sometimes it’s necessary to stop a loop before it goes through all its iterations. The break
statement, which was used with switch in Chapter 4, can also be placed inside a loop.
When it is encountered, the loop immediately stops, and the program jumps to the
statement following the loop.

Here is an example of a loop with a break statement. The while loop in the following
program segment appears to execute 10 times, but the break statement causes it to stop
after the fifth iteration.

int count = 1;
while (count <= 10)
{

cout << count << endl;
count++;
if (count == 6)

break;
}

This example is just to illustrate what a break statement inside a loop will do. However,
you would not normally want to use one in this way because it violates the rules of
structured programming and makes code more difficult to understand, debug, and
maintain. The exit from a loop should be controlled by its condition test at the top of the
loop, as in a while loop or for loop, or at the bottom, as in a do-while loop. Normally
the only time a break statement is used inside a loop is to exit the loop early if an error
condition occurs. Program 5-14 illustrates an example of this.

Program 5-14

1 // This program is supposed to find the square root of 5 numbers
2 // entered by the user. However, if a negative number is entered
3 // an error message displays and a break statement is used to
4 // stop the loop early.
5 #include <iostream>
6 #include <cmath>
7 using namespace std;
8
9 int main()
10 {
11 double number;
12
13 cout << "Enter 5 positive numbers separated by spaces and \n"
14 << "I will find their square roots: ";
15

(program continues)

Breaking Out of a Loop 281

Using break in a Nested Loop
In a nested loop, the break statement only interrupts the loop it is placed in. The following
program segment displays five rows of asterisks on the screen. The outer loop controls the
number of rows, and the inner loop controls the number of asterisks in each row. The inner
loop is designed to display 20 asterisks, but the break statement stops it during the
11th iteration.

for (row = 0; row < 3; row++)
{

for (star = 0; star < 20; star++)
{

cout << '*';
if (star == 10)

 break;
}
cout << endl;

}

The output of this program segment is

16 for (int count = 1; count <= 5; count++)
17 {
18 cin >> number;
19 if (number >= 0.0)
20 { cout << "\nThe square root of " << number << " is "
21 << sqrt(number);
22 }
23 else
24 { cout << "\n\n" << number << " is negative. "
25 << "I cannot find the square root \n"
26 << "of a negative number. The program is terminating.\n";
27 break;
28 }
29 }
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter 5 positive numbers separated by spaces and
I will find their square roots: 12 15 –17 19 31[Enter]

The square root of 12 is 3.4641
The square root of 15 is 3.87298

-17 is negative. I cannot find the square root
of a negative number. The program is terminating.

Program 5-14 (continued)

282 Chapter 5 Looping

The continue Statement
Sometimes you want to stay in a loop, but cause the current loop iteration to end
immediately. This can be done with the continue statement. When continue is
encountered, all the statements in the body of the loop that appear after it are ignored, and
the loop prepares for the next iteration. In a while loop, this means the program jumps to
the test expression at the top of the loop. If the expression is still true, the next iteration
begins. Otherwise, the loop is exited. In a do-while loop, the program jumps to the test
expression at the bottom of the loop, which determines if the next iteration will begin. In a
for loop, continue causes the update expression to be executed, and then the test
expression to be evaluated.

The following program segment demonstrates the use of continue in a while loop:

int testVal = 0;
while (testVal < 10)
{

testVal++;
if (testVal) == 4

continue; // Terminate this iteration of the loop
cout << testVal << " ";

}

This loop looks like it displays the integers 1–10. However, here is the output:

1 2 3 5 6 7 8 9 10

Notice that the number 4 does not print. This is because when testVal is equal to 4, the
continue statement causes the loop to skip the cout statement and begin the next
iteration.

There are some practical uses of the continue statement, however, and Program 5-15
illustrates one of these. The program calculates the charges for DVD rentals where current
releases cost $3.50 and all others cost $2.50. If a customer rents several DVDs, every third
one is free. The continue statement is used to skip the part of the loop that calculates the
charges for every third DVD.

WARNING! Use the break statement with great caution. Because it bypasses the loop
condition to terminate a loop, it violates the rules of structured programming and
makes code more difficult to understand, debug, and maintain. For this reason, we do
not recommend using it to exit a loop. Because it is part of the C++ language, however,
we have included it in this section.

WARNING! As with the break statement, the continue statement violates the rules
of structured programming and makes code more difficult to understand, debug, and
maintain. For this reason, you should use continue with great caution.

Breaking Out of a Loop 283

Program 5-15

1 // This program calculates DVD rental charges where every third DVD
2 // is free. It illustrates the use of the continue statement.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int numDVDs; // Number of DVDs being rented
10 double total = 0.0; // Accumulates total charges for all DVDs
11 char current; // Current release? (Y/N)
12
13 // Get number of DVDs rented
14 cout << "How many DVDs are being rented? ";
15 cin >> numDVDs;
16
17 // Determine the charges
18 for (int dvdCount = 1; dvdCount <= numDVDs; dvdCount++)
19 { if (dvdCount % 3 == 0) // If it's a 3rd DVD it's free
20 {
21 cout << "DVD #" << dvdCount << " is free!\n";
22 continue;
23 }
24 cout << "Is DVD #" << dvdCount << " a current release (Y/N)? ";
25 cin >> current;
26 if ((current == 'Y') || (current == 'y'))
27 total += 3.50;
28 else
29 total += 2.50;
30 }
31 // Display the total charges
32 cout << fixed << showpoint << setprecision(2);
33 cout << "The total is $" << total << endl;
34 return 0;
35 }

Program Output with Example Input Shown in Bold
How many DVDs are being rented? 6[Enter]
Is DVD #1 a current release (Y/N)? y[Enter]
Is DVD #2 a current release (Y/N)? n[Enter]
DVD #3 is free!
Is DVD #4 a current release (Y/N)? n[Enter]
Is DVD #5 a current release (Y/N)? y[Enter]
DVD #6 is free!
The total is $12.00

284 Chapter 5 Looping

Checkpoint

5.20 Which loop (while, do-while, or for) is best to use in the following situations?

A) The user must enter a set of exactly 14 numbers.
B) A menu must be displayed for the user to make a selection.
C) A calculation must be made an unknown number of times. (Maybe even no times.)
D) A series of numbers must be entered by the user, terminated by a sentinel value.
E) A series of values must be entered. The user specifies exactly how many.

5.21 How many total stars will be displayed by each of the following program segments?

A) for (row = 0; row < 20; row++)
{ for (star = 0; star < 30; star++)
 { cout << '*';
 }
 cout << endl;
}

B) for (row = 0; row < 20; row ++)
{ for (star = 0; star < 30; star++)
 { if (star > 10)
 break;
 cout << '*';
 }
 cout << endl;
}

5.22 What will the following program segment display?
int addOn = 0, subTotal = 0;
while (addOn < 5)
{
 addOn++;
 if (addOn == 3)
 continue;
 subTotal += addOn;
 cout << subTotal << " ";
}

5.12 Using Files for Data Storage

CONCEPT: When a program needs to save data for later use, it writes the data in a file.
The data can be read from the file at a later time.

The programs you have written so far require the user to reenter data each time the program
runs because data kept in variables is stored in RAM and disappears once the program stops
running. If a program is to retain data between the times it runs, it must have a way of saving
it. Data written into a file, which is usually stored on a computer’s disk, will remain there
after the program stops running. That data can then be retrieved and used at a later time.

Most of the commercial software programs that you use on a day-to-day basis store data
in files. The following are a few examples.

• Word processors: Word processing programs are used to write letters, memos,
reports, and other documents. The documents are then saved in files so they can be
viewed, edited, and printed at a later time.

Using Files for Data Storage 285

• Spreadsheets: Spreadsheet programs are used to work with numerical data. Numbers
and mathematical formulas can be inserted into the rows and columns of the
spreadsheet. The spreadsheet can then be saved in a file for use later.

• Image editors: Image editing programs are used to draw graphics and edit images,
such as the ones that you take with a digital camera. The images that you create or
edit with an image editor are saved in files.

• Business operations software: Programs used in daily business operations rely
extensively on files. Payroll programs keep employee data in files, inventory
programs keep data about a company’s products in files, accounting systems keep
data about a company’s financial operations in files, and so on.

• Web browsers: Sometimes when you visit a Web page, the browser stores a small file
known as a cookie on your computer. Cookies typically contain information about
the browsing session, such as the contents of a shopping cart.

• Games: Many computer games keep data stored in files. For example, some games
keep a list of player names with their scores stored in a file. These games typically
display the players’ names in order of their scores, from highest to lowest. Some
games also allow you to save your current game status in a file so you can quit the
game and then resume playing it later without having to start from the beginning.

Programmers usually refer to the process of saving data in a file as writing data to the file.
When a piece of data is written to a file, it is copied from a variable in RAM to the file.
This is illustrated in Figure 5-8. The term output file is used to describe a file that data is
written to. It is called an output file because the program stores output in it.

The process of retrieving data from a file is known as reading data from the file. When a
piece of data is read from a file, it is copied from the file into a variable in RAM. Figure 5-9
illustrates this. The term input file is used to describe a file that data is read from. It is called
an input file because the program gets input from the file.

Figure 5-8 Writing data to a file

 Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employeeName

7451Z
Variable
employeeID

18.65
Variable
payRate

Data is copied from
variables to the file.

A file on the disk

286 Chapter 5 Looping

Types of Files
In general, there are two types of files: text and binary. A text file contains data that has been
encoded as text, using a scheme such ASCII or Unicode. Even if the file contains numbers, those
numbers are stored in the file as a series of characters. As a result, the file may be opened and
viewed in a text editor such as Notepad. A binary file contains data that has not been converted
to text. As a consequence, you cannot view the contents of a binary file with a text editor. In this
chapter we will work only with text files. In Chapter 13 you will learn to work with binary files.

File Access Methods
There are two general ways to access data stored in a file: sequential access and direct access.
When you work with a sequential access file, you access data from the beginning of the file to
the end of the file. If you want to first read a piece of data that is stored at the very end of the
file, you have to first read all of the data that comes before it. You cannot jump directly to the
desired data. This is similar to the way cassette tape players work. If you want to listen to the
last song on a cassette tape, you have to either fast-forward over all of the songs that come
before it or listen to them. There is no way to jump directly to a specific song.

When you work with a random access file (which is also known as a direct access file), you
can directly access any piece of data in the file without reading the data that comes before
it. This is similar to the way a CD player or an MP3 player works. You can jump directly
to any song that you want to listen to.

This chapter focuses on sequential access text files. These files are easy to work with, and
you can use them to gain an understanding of basic file operations. In Chapter 13 you will
learn to work with random access and binary files.

Figure 5-9 Reading data from a file

 Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employeeName

7451Z
Variable
employeeID

18.65
Variable
payRate

Data is copied from
the file to variables.

A file on the disk

Using Files for Data Storage 287

Filenames and File Stream Objects
Files on a disk are identified by a filename. For example, when you create a document with a
word processor and then save the document in a file, you have to specify a filename. When
you use a utility such as Windows Explorer to examine the contents of your disk, you see a
list of filenames. Figure 5-10 shows how three files named cat.jpg, notes.txt, and
resume.doc might be represented in Windows Explorer.

Each operating system has its own rules for naming files. Many systems, including
Windows, support the use of filename extensions, which are short sequences of
characters that appear at the end of a filename preceded by a period. The files depicted
in Figure 5-10 have the extensions .jpg, .txt, and .doc. The period is called a “dot”.
So, for example, the filename resume.doc would be read “resume dot doc”. The
extension usually indicates the type of data stored in the file. For example, the .jpg
extension usually indicates that the file contains a graphic image compressed according
to the JPEG image standard. The .txt extension usually indicates that the file contains
text. The .doc extension usually indicates that the file contains a Microsoft Word
document.

In order for a program to work with a file on the computer’s disk, the program must create
a file stream object in memory. A file stream object is an object that is associated with a
specific file and provides a way for the program to work with that file. It is called a
“stream” object because a file can be thought of as a stream of data.

File stream objects work very much like the cin and cout objects. A stream of data may
be sent to cout, which causes values to be displayed on the screen. A stream of data may
be read from the keyboard by cin and stored in variables. Likewise, streams of data may
be sent to a file stream object, which writes the data to the file it is associated with. When
data is read from a file, the data flows from the file stream object associated with the file
into variables.

Setting Up a Program for File Input/Output
There are five steps that must be taken when a file is used by a program:

1. Include the header file needed to perform file input/output.
2. Define a file stream object.
3. Open the file.
4. Use the file.
5. Close the file.

Let’s examine each of these, beginning with step 1.

Figure 5-10 Three files

288 Chapter 5 Looping

Just as you need to include the iostream file in your program to use cin and cout, you
need another header file to use files. The fstream file contains all the declarations
necessary for file operations. You can include it with the following statement:

#include <fstream>

The fstream header file defines the data types ofstream, ifstream, and fstream.
Before a C++ program can work with a file, it must define an object of one of these
data types. The object will be “linked” with an actual file on the computer’s disk, and
the operations that may be performed on the file depend on which of these three data
types you pick for the file stream object. Table 5-1 lists and describes the file stream
data types.

Creating a File Stream Object and Opening a File
Before data can be written to or read from a file, two things must happen:

• A file stream object must be created.
• The file must be opened and linked to the file stream object.

The following code shows an example of opening a file for input (reading).

ifstream inputFile;
inputFile.open("Customers.txt");

The first statement defines an ifstream object named inputFile. The second statement
calls the object’s open member function, passing the string "Customers.txt" as an
argument. In this statement, the open member function opens the Customers.txt file and
links it with the inputFile object. After this code executes, you will be able to use
inputFile to read data from the Customers.txt file.

The following code shows an example of opening a file for output (writing).

ofstream outputFile;
outputFile.open("Employees.txt");

Table 5-1

File Stream
Data Type Description

ofstream This stands for output file stream and is pronounced 'o' 'f' stream. An object of this
data type can be used to create a file and write data to it.

ifstream This stands for input file stream and is pronounced 'i' 'f' stream. An object of this
data type can be used to open an existing file and read data from it.

fstream This stands for file stream and is pronounced 'f' stream. An object of this data type
can be used to open files for reading, writing, or both.

NOTE: In this chapter we only discuss the ofstream and ifstream data types. The
fstream type is covered in Chapter 13.

Using Files for Data Storage 289

The first statement defines an ofstream object named outputFile. The second
statement then calls the object’s open member function, passing it the string
"Employees.txt" as an argument. This opens a file named Employees.txt and links
it with outputFile. If the specified file did not previously exist, it will be created. If
the specified file already exists, it will be erased and a new file with the same name will
be created. After this code executes, you will be able to use outputFile to write data
to the Employees.txt file.

Sometimes, when opening a file, you will need to specify its full path as well as its name.
For example, on a Windows system the following statement opens the file C:\data\
inventory.txt and links it with inputFile:

inputFile.open("C:\\data\\inventory.txt");

It is possible to define a file stream object and open a file all in one statement. Here is an
example that defines an ifstream object named inputFile, opens the Customers.txt
file, and associates inputFile with it:

ifstream inputFile("Customers.txt");

And here is an example that defines an ofstream object named outputFile, opens the
Employees.txt file, and associates outputFile with it:

ofstream outputFile("Employees.txt");

Closing a File
The opposite of opening a file is closing it. Although a program’s files are automatically
closed when the program shuts down, it is a good programming practice to write statements
that explicitly close them. Here are two reasons a program should close files when it is
finished using them:

• Most operating systems temporarily store data in a file buffer before it is written to
a file. A file buffer is a small “holding section” of memory that file-bound data is
first written to. The data is not actually written to the file until the buffer is full.
This is done to improve the system’s performance because doing file I/O is much
slower than processing data in memory. Closing a file causes any unsaved data still
in a buffer to be written out to its file. This ensures that all the data the program
intended to write to the file is actually in it if you need to read it back in later in the
same program.

• Some operating systems limit the number of files that may be open at one time. When
a program closes files that are no longer being used, it will not deplete more of the
operating system’s resources than necessary.

Calling the file stream object’s close member function closes the file associated with it.
Here is an example:

inputFile.close();

NOTE: Notice the use of two backslashes in the file’s path. As mentioned before in this
text, two backslashes are needed to represent one backslash in a string literal.

290 Chapter 5 Looping

Writing Data to a File
You already know how to use the stream insertion operator (<<) with the cout object to
write data to the screen. It can also be used with ofstream objects to write data to a file.
Assuming outputFile is an ofstream object, the following statement demonstrates using
the << operator to write a string literal to a file:

outputFile << "I love C++ programming\n";

This statement writes the string literal “I love C++ programming\n” to the file associated
with outputFile. As you can see, the statement looks like a cout statement, except the
name of the ofstream object name replaces cout. Here is a statement that writes both a
string literal and the contents of a variable to a file:

outputFile << "Price: " << price << endl;

This statement writes the stream of data to outputFile exactly as cout would write it to
the screen: It writes the string "Price: ", followed by the value of the price variable,
followed by a newline character.

Program 5-16 demonstrates opening a file, writing data to the file, and closing the file.
After this code has executed, we can open the demofile.txt file using a text editor, look
at its contents, and, if we wish, print it.

Program 5-16

1 // This program writes data to a file.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 using namespace std;
5
6 int main()
7 {
8 ofstream outputFile;
9
10 // Open the output file
11 outputFile.open("demofile.txt");
12
13 cout << "Now writing data to the file.\n";
14
15 // Write four names to the file
16 outputFile << "Bach\n";
17 outputFile << "Beethoven\n";
18 outputFile << "Mozart\n";
19 outputFile << "Schubert\n";
20
21 // Close the file
22 outputFile.close();
23
24 cout << "Done.\n";
25 return 0;
26 }

Program Screen Output
Now writing data to the file.
Done.

Using Files for Data Storage 291

Figure 5-11 shows how the file’s contents appear in Notepad.

Notice that in lines 14 through 17 of Program 5-16, each string that was written to the file
ends with a newline escape sequence (\n). The newline specifies the end of a line of text.
Because a newline is written at the end of each string, the strings appear on separate lines
when viewed in a text editor, as shown in Figure 5-11.

If we wrote the same four names without the \n escape sequence or an endl after each
one, they would all appear on the same line of the file with no spaces between them, as
shown in Figure 5-12 .

Program 5-17 also writes data to a file, but it gets its data from keyboard input when the
program runs. This program asks the user to enter the first names of three friends, and then
it writes those names to a file named Friends.txt.

Figure 5-11

Figure 5-12

Program 5-17

1 // This program writes user input to a file.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 #include <string>
5 using namespace std;
6

(program continues)

292 Chapter 5 Looping

Figure 5-13 shows an example of the Friends.txt file opened in Notepad.

7 int main()
8 {
9 ofstream outputFile;
10 string name1, name2, name3;
11
12 // Open the output file
13 outputFile.open("Friends.txt");
14
15 // Get the names of three friends
16 cout << "Enter the names of three friends.\n";
17 cout << "Friend #1: ";
18 cin >> name1;
19 cout << "Friend #2: ";
20 cin >> name2;
21 cout << "Friend #3: ";
22 cin >> name3;
23
24 // Write the names to the file
25 outputFile << name1 << endl;
26 outputFile << name2 << endl;
27 outputFile << name3 << endl;
28
29 // Close the file
30 outputFile.close();
31
32 cout << "The names were saved to a file.\n";
33 return 0;
34 }

Program Screen Output with Example Input Shown in Bold
Enter the names of three friends.
Friend #1: Joe[Enter]
Friend #2: Chris[Enter]
Friend #3: Geri[Enter]
The names were saved to a file.

Figure 5-13

Program 5-17 (continued)

Using Files for Data Storage 293

Reading Data from a File
In addition to viewing a text file with a text editor, you can also use the data in a text file
as input for a program. This is easy to do because the >> operator can read data from a
file as well as from the cin object. Assuming inputFile is an fstream or ifstream
object, the following statement will read a string from the file and store it in the string
variable name:

inputFile >> name;

Program 5-18 uses this statement. It opens the Friends.txt file holding the three names
that we created by Program 5-17. It reads in the names and displays them on the screen.
Then it closes the file.

Program 5-18

1 // This program reads data from a file.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 ifstream inputFile;
10 string name;
11
12 // Open the input file
13 inputFile.open("Friends.txt");
14
15 cout << "Reading data from the file.\n";
16
17 inputFile >> name; // Read name 1 from the file and display it
18 cout << name << endl;
19
20 inputFile >> name; // Read name 2 from the file and display it
21 cout << name << endl;
22
23 inputFile >> name; // Read name 3 from the file and display it
24 cout << name << endl;
25
26 inputFile.close(); // Close the file
27 return 0;
28 }

Program Output
Reading data from the file.
Joe
Chris
Geri

294 Chapter 5 Looping

The Read Position
When a file has been opened for input, the file stream object internally maintains a special
value known as a read position. A file’s read position marks the location of the next byte
that will be read from the file. When an input file is opened, its read position is initially set
to the first byte in the file. So the first read operation extracts data starting at the first byte.
As data is read from the file, the read position moves forward, toward the end of the file.

Let’s see how this works with the example shown in Program 5-18. When the
Friends.txt file is opened by the statement in line 13, the read position for the file will be
positioned as shown in Figure 5-14.

Keep in mind that when the >> operator extracts data from a file, it expects to read pieces
of data that are separated by whitespace characters (spaces, tabs, or newlines). When the
statement in line 17 executes, the >> operator reads data from the file’s current read
position, up to the \n character. The data that is read from the file is assigned to the name
variable. The \n character is also read from the file, but it is not included as part of the
data. So name will hold the value "Joe" after this statement executes. The file’s read
position will then be at the location shown in Figure 5-15.

When the statement in line 20 executes, it reads the next item from the file, which is
"Chris", and assigns that value to the name variable. After this statement executes, the
file’s read position will be at the location shown in Figure 5-16.

When the statement in line 23 executes, it reads the next item from the file, which is
"Geri", and assigns that value to the name variable. After this statement executes, the file’s
read position will be at the end of the file, as shown in Figure 5-17.

Figure 5-14

Figure 5-15

Figure 5-16

J o e \n C h r i s \n G e r i \n

Read position

J o e \n C h r i s \n G e r i \n

Read position

J o e \n C h r i s \n G e r i \n

Read position

Using Files for Data Storage 295

Using Loops to Process Files
Although some programs use files to store only small amounts of data, files are typically used
to hold large collections of data. When a program uses a file to write or read a large amount
of data, a loop is typically involved. For example, look at the code in Program 5-19. This
program gets sales amounts for a series of days from the user and writes those amounts to a
file named Sales.txt. The user specifies how many days of sales data will be entered. In
the sample run of the program, the user enters sales amounts for five days.

Figure 5-17

Program 5-19

1 // This program uses a loop to write multiple values to a file.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 using namespace std;
5
6 int main()
7 {
8 ofstream outputFile; // File stream object
9 int numberOfDays; // Number of days of sales
10 double sales; // Sales amount for a day
11
12 // Get the number of days
13 cout << "For how many days do you have sales? ";
14 cin >> numberOfDays;
15
16 // Open the output file
17 outputFile.open("Sales.txt");
18
19 // Loop once for each day of sales
20 for (int count = 1; count <= numberOfDays; count++)
21 {
22 // Get the sales amount for a day
23 cout << "Enter the sales for day " << count << ": ";
24 cin >> sales;
25
26 // Write the sales amount to the file
27 outputFile << sales << endl;
28 }
29 // Close the file
30 outputFile.close();
31
32 cout << "Data written to Sales.txt\n";
33 return 0;
34 }

(program continues)

J o e \n C h r i s \n G e r i \n

Read position

296 Chapter 5 Looping

Figure 5-18 shows the contents of the Sales.txt file containing the data entered by the
user in the sample run.

When data is stored in a text file, it is encoded as text, using a scheme such ASCII or
Unicode. As previously mentioned, even numeric data is stored in the file as a series of
characters. To read a numeric data value from a text file into a program you can use the >>
operator. Just be sure to store the data in a numeric variable. The >> operator will then
automatically convert the data to a numeric data type, just as it does when reading
numeric data from the keyboard into a numeric variable. Program 5-20 uses the >>
operator to read the data in the Sales.txt file and sum the values to find the total sales
for the five days.

Program Output (with Input Shown in Bold)
For how many days do you have sales? 5[Enter]
Enter the sales for day 1: 1000.00[Enter]
Enter the sales for day 2: 2000.00[Enter]
Enter the sales for day 3: 3000.00[Enter]
Enter the sales for day 4: 4000.00[Enter]
Enter the sales for day 5: 5000.00[Enter]
Data written to Sales.txt

Figure 5-18

Program 5-20

1 // This program uses a loop to read in multiple values from a file.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 using namespace std;
5

(program continues)

Program 5-19 (continued)

Using Files for Data Storage 297

Detecting the End of the File
Program 5-20 asked the user how many values were in the file, and that is how many data
items it read in. However, when reading data from a file, it is not necessary for the user to
specify how many data values there are or where the data ends. This is because files have an
end of file (EOF) mark at their end. You cannot see it, but it is there, and a program can test
to see whether or not it has been reached. This test is important because an error will occur if
the program attempts to read beyond the end of the file.

The easiest way to test if the end of the file has been reached is with the >> operator. This
operator not only can read data from a file, but it also returns a true or false value
indicating whether the data was successfully read or not. If the operator returns true, then
a value was successfully read. If the operator returns false, it means that no value was read
from the file. The EOF has been reached.

6 int main()
7 {
8 ifstream inputFile; // File stream object
9 int numberOfDays; // Number of days of sales
10 double sales, // Sales amount for a day
11 totalSales = 0.0; // Accumulator
12
13 // Get the number of days
14 cout << "How many days of sales data are stored in your file? ";
15 cin >> numberOfDays;
16
17 // Open the input file
18 inputFile.open("Sales.txt");
19
20 // Loop once for each piece of data to be read from the file
21 for (int count = 1; count <= numberOfDays; count++)
22 {
23 // Read a sales figure from the file and add it to the sum
24 inputFile >> sales;
25 totalSales += sales;
26 }
27 // Close the file
28 inputFile.close();
29
30 cout << "Total sales for the " << numberOfDays << " days were $"
31 << totalSales;
32
33 return 0;
34 }

Program Output (with Input Shown in Bold)
How many days of sales data are stored in your file? 5[Enter]
Total sales for the 5 days were $15000

Program 5-20 (continued)

298 Chapter 5 Looping

Program 5-21 revises Program 5-20 to read in the data from the Sales.txt file and sum
the sales figures, without knowing how many numbers are in the file. It also counts the
numbers as it reads them in.

Take a closer look at line 18:

while (inputFile >> sales)

Notice that the statement that extracts data from the file is used as a Boolean test
expression in the while loop. It works like this:

• The expression inputFile >> sales executes.
• If an item is successfully read from the file, the item is stored in the sales variable,

and the expression returns true to indicate that it succeeded. In that case, the
statements in lines 19 and 20 execute and the loop repeats.

• When there are no more items to read from the file, the expression inputFile >> sales
returns false, indicating that it did not read a value. In that case, the loop terminates.

Program 5-21

1 // This program uses a loop to read in values
2 // from a file until the end of file is reached.
3 #include <iostream>
4 #include <fstream> // Needed to use files
5 using namespace std;
6
7 int main()
8 {
9 ifstream inputFile; // File stream object
10 int numberOfDays = 0; // Counts the records in the file
11 double sales, // Sales amount for a day
12 totalSales = 0.0; // Accumulator
13
14 // Open the input file
15 inputFile.open("Sales.txt");
16
17 // Loop until the EOF is reached
18 while(inputFile >> sales) // If a value was read
19 { totalSales += sales;
20 numberOfDays++;
21 }
22 // Close the file
23 inputFile.close();
24
25 cout << "Total sales for the " << numberOfDays << " days were $"
26 << totalSales;
27
28 return 0;
29 }

Program Output
Total sales for the 5 days were $15000

Using Files for Data Storage 299

Testing for File Open Errors
Under certain circumstances, the open member function will not work. For example, the
following code will fail if the file info.txt does not exist or cannot be found in the
expected directory:

fstream inputFile;
inputFile.open("info.txt");

Fortunately, there is a way to determine whether the open member function successfully
opened the file. After you call the open member function, you can test the file stream object
as if it were a Boolean expression. Program 5-22 shows how to do this.

Let’s take a closer look at certain parts of the code. Line 12 calls the open member function
to open the file ListOfNumbers.txt and associate it with the ifstream object named
inputFile. Then the if statement in line 15 tests the value of inputFile as if it were a
Boolean expression. When tested this way, inputFile will give a true value if the file was
successfully opened. Otherwise it will give a false value. As the example output shows, the
program displays an error message if it could not open the file.

Program 5-22

1 // This program tests for file open errors.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 using namespace std;
5
6 int main()
7 {
8 ifstream inputFile;
9 int number;
10
11 // Attempt to open the input file
12 inputFile.open("ListOfNumbers.txt");
13
14 // If the file successfully opened, process it
15 if (inputFile)
16 {
17 // Read the numbers from the file and display them
18 while (inputFile >> number)
19 cout << number << endl;
20
21 // Close the file
22 inputFile.close();
23 }
24 else // The file could not be found and opened
25 {
26 // Display an error message
27 cout << "Error opening the file.\n";
28 }
29 return 0;
30 }

Program Output (when ListOfNumbers.txt does not exist)
Error opening the file.

300 Chapter 5 Looping

Another way to detect a failed attempt to open a file is with an ifstream class member
function named fail, as shown in the following code:

ifstream inputFile;
inputFile.open("customers.txt");

if (inputFile.fail())
 cout << "Error opening file.\n";
else
{
 // Process the file
}

The fail member function returns true when an attempted file operation fails (i.e., is
unsuccessful), and returns false otherwise. When using file I/O, it is good idea to always
test the file stream object to make sure the file was opened successfully before attempting
to use it. If the file could not be opened, the user should be informed and appropriate
action taken by the program.

Letting the User Specify a Filename
In each of the previous examples, the name of the file being opened is hard-coded as a string
literal into the program. In many cases, however, you will want to let the user specify the
name of the file to be used.

In standard C++, a file stream object’s open member function will not accept a string
object as an argument. It requires you to pass it the name of the file as a C-string, which
you recall is an array of characters terminated by the null character. String literals are
stored in memory as C-strings (which explains why you can pass them to the open
function), but string objects are not.

Fortunately, string objects have a member function named c_str that returns a copy
of the object’s contents formatted as a null-terminated C-string. You call the function
like this:

stringObject.c_str()

where stringObject is the name of the string object. Program 5-23 shows an example
of how to use the function. This is a modified version of Program 5-22 that prompts the
user to enter the name of the file. In line 15, the name the user enters is stored in a string
object named filename. In line 18, the value returned from filename.c_str() is passed
as an argument to the open function.

Program 5-23

1 // This program lets the user enter a filename.
2 #include <iostream>
3 #include <string>
4 #include <fstream> // Needed to use files
5 using namespace std;
6

(program continues)

Using Files for Data Storage 301

Checkpoint

5.23 A) What is an output file? B) What is an input file?

5.24 What header file must be included in a program to use files?

5.25 What five steps must be taken when a file is used by a program?

5.26 What is the difference between a text file and a binary file?

5.27 What is the difference between sequential access and random access?

5.28 What type of file stream object do you create if you want to write data to a file?

5.29 What type of file stream object do you create if you want to read data from a
file?

7 int main()
8 {
9 ifstream inputFile;
10 string filename;
11 int number;
12
13 // Get the filename from the user
14 cout << "Enter the filename: ";
15 cin >> filename;
16
17 // Open the input file
18 inputFile.open(filename.c_str());
19
20 // If the file successfully opened, process it
21 if (inputFile)
22 {
23 // Read the numbers from the file and display them
24 while (inputFile >> number)
25 cout << number << endl;
26
27 // Close the file.
28 inputFile.close();
29 }
30 else
31 {
32 // Display an error message
33 cout << "Error opening the file.\n";
34 }
35 return 0;
36 }

Program Output with Example Input Shown in Bold
Enter the filename: myData.txt[Enter]
100
125
150
200

Program 5-23 (continued)

302 Chapter 5 Looping

5.30 Assuming dataFile is an ofstream object associated with a disk file named
payroll.dat, which of the following statements would write the value of the
salary variable to the file?
A) cout << salary; C) dataFile << salary;
B) ofstream << salary; D) payroll.dat << salary;

5.31 The following code has an error. Can you correct it?

ofstream outputFile;
string filename = "numbers.txt";
outputFile.open(filename);

5.32 Assume you have an output file named numbers.txt that is open and associated
with an ofstream object named outfile. Write a program segment that uses a for
loop to write the numbers 1 through 10 to the file.

5.13 Focus on Testing and Debugging: Creating Good
Test Data

CONCEPT: Thorough testing of a program requires good test data.

Once a program has been designed, written in a programming language, and found to
compile and link without errors, it must be thoroughly tested to find any logic errors and
to ensure that it works correctly according to the original problem specification. When it
comes to creating test data, quality is more important than quantity. That is, a small set of
good test cases can provide more information about how a program works than twice as
many cases that are not carefully thought out. Each test case should be designed to test a
different aspect of the program, and you should always know what each test set you use is
checking for. To illustrate this, look at Program 5-24. It uses a sentinel-controlled loop to
average two test scores for each student in the class, where all test scores are between 0 and
100. The program compiles, links, and runs. But it contains several logic errors.

Program 5-24

1 // This program attempts to average 2 test scores for each
2 // student in a class. However, it contains logic errors.
3 #include <iostream>
4 #include <string>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 string name; // Student first name
11
12 int count = 1, // Student counter
13 score, // An individual score read in
14 totalScore = 0; // Total of a student's 2 scores
15 double average; // Average of a student's 2 scores
16

(program continues)

Focus on Testing and Debugging: Creating Good Test Data 303

17 cout << fixed << showpoint << setprecision(1);
18 cout << "Enter the first name of student " << count
19 << " (or Q to quit): ";
20 cin >> name;
21
22 while (name != "Q" && name != "q")
23 {
24 // Get and validate the first score
25 cout << "Enter score 1: ";
26 cin >> score;
27 if (score <= 0 || score >= 100)
28 { cout << "Score must be between 0 and 100. Please reenter: ";
29 cin >> score;
30 }
31 totalScore += score; // Add the first score onto the total
32
33 // Get and validate the second score
34 cout << "Enter score 2: ";
35 cin >> score;
36 if (score <= 0 || score >= 100)
37 { cout << "Score must be between 0 and 100. Please reenter: ";
38 cin >> score;
39 }
40 totalScore += score; // Add the second score onto the total
41
42 // Calculate and print average
43 average = totalScore / 2;
44 cout << name << setw(6) << average << endl;
45
46 // Get the next student name
47 cout << "Enter the first name of student " << count++
48 << " (or Q to quit): ";
49 cin >> name;
50 }
51 return 0;
52 }

Table 5-2 Preliminary Test Plans for Program 5-24

Name Score 1 Score 2 Expected Outcome

Test 1: Mary
Q

80 80 80.0
program quits

Test 2: Bill
Q

70 80 75.0
program quits

Test 3: Tom
q

80 90 85.0
program quits

Test 4: Sam
q

–1 then 1 999 then 99 50.0
program quits

Program 5-24 (continued)

304 Chapter 5 Looping

Try running the program using the four test cases shown in Table 5-2. The program
contains five logic errors. However, if it is run with just these four test cases, none of the
errors will be revealed. The test data is not designed carefully enough to catch them. Tests
1, 2, and 3 are really just three versions of the same test. They all simply check that the
program can compute a correct average for a single student where the result has no
decimal digits. The final test checks that the program can catch a single invalid value that is
too small or too big, but does not check what will happen if a second invalid value is
entered for the same input. Table 5-3 contains a better set of tests and illustrates some of
the kinds of things you should check for when you test a program. These tests will reveal
all five of the program’s errors.

Rerun Program 5-24 using the test cases from Table 5-3 and examine the incorrect
output to identify the errors. Then see if you can fix them. Do not rewrite the program.
Just make the smallest changes necessary to correct the errors. Now test the program
again using the test cases in Table 5-3. Continue making corrections and retesting until
the program successfully passes all three of these test cases. A correct solution can be
found on the book’s companion website in the pr5-24B.cpp file of the Chapter 5
programs folder.

Table 5-3 Modified Test Plans for Program 5-24

Test Name Score 1 Score 2 Purpose
Expected
Outcome

1 Mary
Bill
Tom
Q

80
70
80

80
80
91

Program correctly
handles both even
results and ones with
decimal values.
Program can loop to
handle multiple students.
Program ends when Q is
entered for the name.

80.0
75.0
85.5
program ends

2 Sam
Ted
q

 –1 then 1
 –1 then –2 then 1

101 then 99
200 then 500
then 99

Program correctly
handles invalid scores,
even when more than
one bad score is entered
in a row.
Program catches bad
inputs immediately outside
the valid range
(e.g., –1 & 101).
Program ends when q
is entered for the name.

50.0
50.0
program ends

3 Bob
q

 0 100 Program allows values
at extreme ends of the
valid range.

50.0
program ends

Central Mountain Credit Union Case Study 305

5.14 Central Mountain Credit Union Case Study
The manager of the Central Mountain Credit Union has asked you to write a loan
amortization program that his loan officers can run on their laptops. Here is what it
should do.

Problem Statement
When given the loan amount, annual interest rate, and number of years of a loan, the
program must determine and display the monthly payment amount. It must then create
and display an amortization table that lists the following information for each month of
the loan:

• payment number
• amount of that month’s payment that was applied to interest
• amount of that month’s payment that was applied to principal
• balance after that payment.

The following report may be used as a model. It shows all the required information on a
$2000 loan at 7.5% annual interest for .5 years (i.e., 6 months).

Monthly payment: $340.66

Month Interest Principal Balance

1 12.50 328.16 1671.84
2 10.45 330.21 1341.62
3 8.39 332.28 1009.34
4 6.31 334.35 674.99
5 4.22 336.44 338.55
6 2.12 338.55 0.00

Calculations
The credit union uses the following formula to calculate the monthly payment of a loan:

where:

Loan = the amount of the loan
Rate = the annual interest rate
Term = (1+ Rate/12)Years*12

Variables
Table 5-4 lists the variables needed in the program.

Payment Loan * Rate/12 * Term
Term 1–

--=

306 Chapter 5 Looping

Program Design
Figure 5-19 shows a hierarchy chart for the program.

Detailed Pseudocode (including actual variable names and needed calculations)

Input loan, rate, years
numPayments = years * 12.0
moInterestRate = rate / 12.0
term = (1 + moInterestRate)numPayments
payment = (loan * moInterestRate * term) / (term – 1.0)
Display payment
Display a report header with column headings
balance = loan // Remaining balance starts out as full loan amount

Table 5-4 Variables Used in the Central Mountain Credit Union Case Study

Variable Description

loan A double. Holds the loan amount.

rate A double. Holds the annual interest rate.

moInterestRate A double. Holds the monthly interest rate.

years A double. Holds the number of years of the loan.

balance A double. Holds the remaining balance to be paid.

term A double. Used in the monthly payment calculation.

payment A double. Holds the monthly payment amount.

numPayments An int. Holds the total number of payments.

month An int. Loop control variable that holds the current payment number.

moInterest A double. Holds the monthly interest amount.

principal A double. Holds the amount of the monthly payment that pays down the loan.

Figure 5-19

Perform
starting

calculations

Input loan
parameters

Display
report

Read loan
amount

Read annual
interest rate

Read years
of loan

Calculate
number of
payments

Calculate
monthly
payment

Calculate
monthly

interest rate

Print
header

For each month calculate
interest, principal, new
balance. Display report
detail line

Main

Central Mountain Credit Union Case Study 307

For each month of the loan
moInterest = moInterestRate * balance // Calculate interest first
If it’s not the final month
 principal = payment – moInterest // Rest of pmt goes to principal

Else // It’s the last month so
 principal = balance // pay off exact final balance
 payment = balance + moInterest

 End If
 balance = balance – principal // Only principal reduces the balance
 Display month, moInterest, principal, balance
End of loop

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 5-25.

Program 5-25

1 // This program produces a loan amortization table
2 // for the Central Mountain Credit Union.
3 #include <iostream>
4 #include <iomanip>
5 #include <cmath> // Needed for the pow function
6 using namespace std;
7
8 int main()
9 {
10 double loan, // Loan amount
11 rate, // Annual interest rate
12 moInterestRate, // Monthly interest rate
13 years, // Years of loan
14 balance, // Monthly balance
15 term, // Used to calculate payment
16 payment; // Monthly payment
17 int numPayments; // Number of payments
18
19 // Get loan information
20 cout << "Loan amount: $";
21 cin >> loan;
22 cout << "Annual interest rate (entered as a decimal): ";
23 cin >> rate;
24 cout << "Years of loan: ";
25 cin >> years;
26
27 // Calculate monthly payment
28 numPayments = static_cast<int>(12 * years);
29 moInterestRate = rate / 12.0;
30 term = pow((1 + moInterestRate), numPayments);
31 payment = (loan * moInterestRate * term) / (term - 1.0);
32
33 // Display monthly payment
34 cout << fixed << showpoint << setprecision(2);
35 cout << "Monthly payment: $" << payment << endl;
36

(program continues)

308 Chapter 5 Looping

37 // Display report header
38 cout << endl;
39 cout << setw(5) << "Month" << setw(10) << "Interest";
40 cout << setw(10) << "Principal" << setw(9) << "Balance" << endl;
41 cout << "----------------------------------\n";
42
43 balance = loan; // Remaining balance starts out as full loan amount
44
45 // Produce a listing for each month
46 for (int month = 1; month <= numPayments; month++)
47 {
48 double moInterest, // Amount of pmt that pays interest
49 principal; // Amount of pmt that lowers the balance
50
51 // Calculate amount paid for this month's interest and principal
52 moInterest = moInterestRate * balance; // Calculate interest first
53 if (month != numPayments) // If not the final month
54 principal = payment - moInterest; // rest of pmt goes
55 // to principal
56
57 else // It's the last month so
58 { principal = balance; // pay exact final balance
59 payment = balance + moInterest;
60 }
61 // Calculate new loan balance // Only principal reduces the
62 balance -= principal; // balance, not the whole pmt
63
64 // Display this month's payment figures
65 cout << setw(4) << month << setw(10) << moInterest;
66 cout << setw(10) << principal << setw(10) << balance << endl;
67 }
68 return 0;
69 }

Program Output with Example Input Shown in Bold
Loan amount: $1200[Enter]
Annual interest rate (entered as a decimal): .08[Enter]
Years of loan: 1[Enter]
Monthly payment: $104.39

Month Interest Principal Balance

 1 8.00 96.39 1103.61
 2 7.36 97.03 1006.59
 3 6.71 97.68 908.91
 4 6.06 98.33 810.58
 5 5.40 98.98 711.60
 6 4.74 99.64 611.96
 7 4.08 100.31 511.65
 8 3.41 100.98 410.68
 9 2.74 101.65 309.03
 10 2.06 102.33 206.70
 11 1.38 103.01 103.69
 12 0.69 103.69 0.00

Program 5-25 (continued)

Tying It All Together: What a Colorful World 309

Testing the Program
Testing the program has been left as an exercise for you to do. Use what you learned in
Section 5.13 about developing good test cases to develop a set of cases you can use to
test Program 5-25. The program runs correctly except for one special case, where it fails.
The program design failed to realize the need to handle this special case differently than
it handles other data. Try to come up with input data for a test case that reveals the
error. Then, once you have identified the problem, see if you can revise the program to
fix it. A corrected version of Program 5-25 can be found in the pr5-25B.cpp file of the
Chapter 5 programs folder on the book’s companion website.

Lightening Lanes Case Study
The following additional case study, which contain applications of material introduced in
Chapter 5, can be found on the book’s companion website.

On Tuesday afternoons, Lightening Lanes Bowling Alley runs a special class to teach
children to bowl. Each lane has an instructor who works with a team of four student
bowlers and instructs them as they bowl three lines (i.e., games). The management of
Lightening Lanes has asked you to develop a program that will report each student’s three-
game average score and compare it to the average score they bowled the previous week. In
this way, the students can see how much they are improving. The program will use looping
structures and data validation techniques learned in Chapter 5.

5.15 Tying It All Together: What a Colorful World

In Chapter 5’s Tying It All Together section we’ll take a look at how to use the looping
constructs you learned about in this chapter, along with colorful output characters, to create
interesting screen displays.

All the C++ programs you have seen so far produce output that is white on a black
background. This is because they use the standard C++ iostream libraries, which can
only display output in these two colors. However, C++ compilers provide other libraries
you can use to call operating system functions that can display output in many colors.
Because these libraries are tailored to specific operating systems, programs that use them
will only run on the system they were written for.

Here is how to use Microsoft Windows functions to create programs with colorful output
that can run on Windows 2000 and newer operating systems.

NOTE: You might have noticed in the output that for some months, such as months 5
and 6, the interest amount plus the principal amount does not add up to the monthly
payment amount. Also, for some months, the previous balance minus the principal paid
does not exactly equal the new balance. These problems are due to round-off error,
which is caused by a disparity between the precision of a value the computer stores
internally and the precision of the value it displays. Do not worry about this for now.
You will learn later how to deal with this.

310 Chapter 5 Looping

The first thing you need to do is include the following file in your program so you will be
able to use the functions you need:

#include <windows.h>

Next, because programs can actually access more than one screen device at a time, you will
need to indicate which screen you want the colors you set to appear on. The cout object
writes to the standard output screen. You can set colors on this screen by providing a
handle to it. A handle is an object of type HANDLE, which is defined by Microsoft Windows.
Here is how to obtain a handle to the standard output screen:

HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);

GetStdHandle is a Windows-specific library function and STD_OUTPUT_HANDLE is a
Windows-specific constant.

The easiest way to set a color is to call the SetConsoleTextAttribute function and
pass it the name of the handle to the output screen and a number that tells what color
you want the output text to appear in. Table 5-5 shows the number that corresponds to
each color.

Once you set a color it will remain in effect for all output text until you set a new one.

The following code segment shows how you can write the string “red” in red, “white” in
white, “blue” in blue, and “bright yellow” in bright yellow.

SetConsoleTextAttribute(screen, 4);
cout << "Red" << endl;
SetConsoleTextAttribute(screen, 7);
cout << "White" << endl;
SetConsoleTextAttribute(screen, 1);
cout << "Blue" << endl;
SetConsoleTextAttribute(screen, 14);
cout << "Bright Yellow" << endl;

Here are two programs that use color. Neither one requires any input. Try running them to
see their output displayed in color. Program 5-26 uses a loop to display "Hello World" on
a black background in each of the 16 colors shown in Table 5-5.

Table 5-5 Windows Text Colors

Number Text Color Number Text Color

0 Black 8 “Bright” Black

1 Blue 9 Bright Blue

2 Green 10 Bright Green

3 Cyan 11 Bright Cyan

4 Red 12 Bright Red

5 Purple 13 Bright Purple

6 Yellow 14 Bright Yellow

7 White 15 Bright White

Tying It All Together: What a Colorful World 311

Notice in Program 5-26 that each cout statement ended with an endl. This is needed to
“flush” the buffer to ensure that all the output has been written to the screen before you
change to another color. A '\n' will not work because it causes output to go to the next
line, but does not flush the output buffer.

 Program 5-27 provides another example of creating colorful output. It uses a loop to print
the ABCs in color, alternating between bright green, red, and yellow.

Program 5-26

1 // This program demonstrates Windows functions to print colored
2 // text. It displays " Hello World!" in 16 different colors.
3 #include <iostream>
4 #include <windows.h> // Needed to display colors and call Sleep
5 using namespace std;
6
7 int main()
8 {
9 // Create a handle to the computer screen.
10 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
11
12 // Write 16 lines in 16 different colors.
13 for (int color = 0; color < 16; color++)
14 {
15 SetConsoleTextAttribute (screen, color);
16 cout << " Hello World!" << endl;
17 Sleep(400); // Pause between lines to watch them appear
18 }
19 // Restore the normal text color)
20 SetConsoleTextAttribute(screen, 7);
21 return 0;
22 }

Program 5-27

1 // This program writes the ABCs in green, red, and yellow.
2 #include <iostream>
3 #include <windows.h> // Needed to display colors and call sleep
4 using namespace std;
5
6 int main()
7 {
8 // Bright Green = 10 Bright Red = 12 Bright Yellow = 14
9
10 // Get the handle to standard output device (the console)
11 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
12

(program continues)

312 Chapter 5 Looping

There are three important things to remember when working with colors:

• Include the <windows.h> header file.
• Follow each cout statement with an endl.
• Always set the text color back to normal (i.e., white) before quitting.

Review Questions and Exercises

Fill-in-the-Blank

1. To __________ a value means to increase it by one.

2. To __________ a value means to decrease it by one.

3. When the increment or decrement operator is placed before the operand (or to the
operand’s left), the operator is being used in __________ mode.

4. When the increment or decrement operator is placed after the operand (or to the
operand’s right), the operator is being used in __________ mode.

5. The statement or block that is repeated is known as the __________ of the loop.

6. Each repetition of a loop is known as a(n) __________.

7. A loop that evaluates its test expression before each repetition is a(n) __________ loop.

8. A loop that evaluates its test expression after each repetition is a(n) __________ loop.

9. A loop that does not have a way of stopping is a(n) __________ loop.

10. A(n)__________ is a variable that “counts” the number of times a loop repeats.

13 // Write the ABCs using 3 colors
14 int color = 10; // Staring color = green
15 for (char letter = 'A'; letter <= 'Z'; letter++)
16 {
17 SetConsoleTextAttribute (screen, color); // Set the color
18 cout << letter << " " << endl; // Print the letter
19
20 color +=2; // Choose next color
21 if (color > 14)
22 color = 10;
23
24 Sleep(280); // Pause between characters to watch them appear
25 }
26 // Restore normal text attribute (i.e. white)
27 SetConsoleTextAttribute(screen, 7);
28 return 0;
29 }

Program 5-27 (continued)

Review Questions and Exercises 313

11. A(n) __________ is a sum of numbers that accumulates with each iteration of a
loop.

12. A(n) __________ is a variable that is initialized to some starting value, usually zero,
and then has numbers added to it in each iteration of a loop.

13. A(n) __________ is a special value that marks the end of a series of values.

14. The __________ loop is ideal for situations that require a counter.

15. The __________ loop always iterates at least once.

16. The __________ and __________ loops will not iterate at all if their test expressions
are false to start with.

17. Inside the for loop’s parentheses, the first expression is the __________ , the second
expression is the __________ , and the third expression is the __________.

18. A loop that is inside another is called a(n) __________ loop.

19. The __________ statement causes a loop to terminate immediately.

20. The __________ statement causes a loop to skip the remaining statements in the
current iteration.

21. What header file do you need to include in a program that performs file
operations?

22. What data type do you use when you want to create a file stream object that can write
data to a file?

23. What happens if you open an output file and the file already exists?

24. What data type do you use when you want to create a file stream object that can read
data from a file?

25. What is a file’s read position? Where is the read position when a file is first opened for
reading?

26. Why should a program do when it is finished using a file?

Algorithm Workbench

27. Write code that lets the user enter a number. The number should be multiplied by 2
and printed until the number exceeds 50. Use a while loop.

28. Write a do-while loop that asks the user to enter two numbers. The numbers should
be added and the sum displayed. The user should be asked if he or she wishes to
perform the operation again. If so, the loop should repeat; otherwise it should
terminate.

29. Write a for loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 . . . 1000

30. Write a loop that asks the user to enter a number. The loop should iterate 10 times
and keep a running total of the numbers entered.

31. Write a nested loop that displays the following ouput:

314 Chapter 5 Looping

32. Write a nested loop that displays 10 rows of ‘#’ characters. There should be 15 ‘#’
characters in each row.

33. Rewrite the following code, converting the while loop to a do-while loop:

char doAgain = 'y';
int sum = 0;

cout << "This code will increment sum 1 or more times.\n";
while ((doAgain == 'y') || (doAgain == 'Y'))
{ sum++;

cout << "Sum has been incremented. Increment it again(y/n)? ";
cin >> doAgain;

}
cout << "Sum was incremented " << sum << " times.\n";

34. Rewrite the following code, replacing the do-while loop with a while loop. When
you do this you will no longer need an if statement.
int number;
cout << "Enter an even number: ";
do
{ cin >> number;

if (number % 2 != 0)
cout << "Number must be even. Reenter number: ";

} while (number % 2 != 0);

35. Convert the following while loop to a for loop:

int count = 0;
while (count < 50)
{

cout << "count is " << count << endl;
count++;

}

36. Convert the following for loop to a while loop:

for (int x = 50; x > 0; x--)
{

cout << x << " seconds to go.\n";
}

37. Write a code segment that creates an ofstream object named outfile, opens a file
named numbers.txt, and associates it with outfile. The code should then use a
loop to write the numbers 1 through 100 to the file before closing it.

38. Write a code segment that creates an ifstream object named infile, opens the
numbers.txt file created by the code in the previous question, and associates it with
infile. The code should then use a loop to read and display all of the numbers in the
file before closing it.

Review Questions and Exercises 315

Predict the Output

What will each of the following program segments display?

39. int x = 1;
while (x < 10);

 x++;
 cout << x;

40. int x = 1;
while (x < 10)

 x++;
 cout << x;

41. for (int count = 1; count <= 10; count++)
{ cout << ++count << " "; // This is a bad thing to do!
}

42. for (int row = 1; row <= 3; row++)
{ cout << "\n$";

for (int digit = 1; digit <= 4; digit++)
cout << '9';

}

Find the Errors

43. Each of the program segments in this section has errors. Find as many as you can.

A) int num1 = 0, num2 = 10, result;

num1++;
result = ++(num1 + num2);
cout << num1 << " " << num2 << " " << result;

B) // This code should add two user-entered numbers.
int num1, num2;
char again;

while ((again == 'y') || (again == 'Y'))
cout << "Enter two numbers: ";
cin >> num1 >> num2;
cout << "Their sum is << (num1 + num2) << endl;
cout << "Do you want to do this again? ";
cin >> again;

44. A) // This code should use a loop to raise a number to a power.

int num, bigNum, power, count;

cout << "Enter an integer: ";
cin >> num;
cout << "What power do you want it raised to? ";
cin >> power;
bigNum = num;

while (count++ < power);
bigNum *= num;

cout << "The result is << bigNum << endl;

316 Chapter 5 Looping

B) // This code should average a set of numbers.
int numCount, total;
double average;

cout << "How many numbers do you want to average? ";
cin >> numCount;
for (int count = 0; count < numCount; count++)
{

int num;
cout << "Enter a number: ";
cin >> num;
total += num;
count++;

}
average = total / numCount;
cout << "The average is << average << endl;

45. A) // This code should display the sum of two numbers.
int choice, num1, num2;

do
{

cout << "Enter a number: ";
cin >> num1;
cout << "Enter another number: ";
cin >> num2;
cout << "Their sum is " << (num1 + num2) << endl;
cout << "Do you want to do this again?\n";
cout << "1 = yes, 0 = no\n";
cin >> choice;

} while (choice = 1)

B) // This code should display the sum of the numbers 1 - 100.
int count = 1, total;

while (count <= 100)
total += count;
cout << "The sum of the numbers 1 - 100 is ";
cout << total << endl;

Soft Skills

Programmers not only need to be able to analyze what is wrong with a faulty algorithm,
but also need to be able to explain the problem to others.

46. Write a clear problem description for a simple program and create a pseudocode
solution for it. The pseudocode should incorporate the logic, including all the
calculations, needed in the program, but should purposely contain a subtle logic error.
Then pair up with another student in the class who has done the same thing and swap
your work. Each of you should trace the logic to find the error in the pseudocode you
are given, then clearly explain to your partner what the problem is, why the “code”
will not work as written, and what should be done to correct it.

As an alternative, your instructor may wish to provide you with a problem
description and an incorrect pseudocode solution. Again, the goal is not only for you
to find the error, but also to clearly explain what the problem is, why the “code” will
not work as written, and what should be done to correct it.

Review Questions and Exercises 317

Programming Challenges

1. Characters for the ASCII Codes

Write a program that uses a loop to display the characters for each ASCII code 32 through
127. Display 16 characters on each line with one space between characters.

2. Sum of Numbers

Write a program that asks the user for a positive integer value and that uses a loop to
validate the input. The program should then use a second loop to compute the sum of all
the integers from 1 up to the number entered. For example, if the user enters 50, the loop
will find the sum of 1, 2, 3, 4, … 50.

3. Distance Traveled

The distance a vehicle travels can be calculated as follows:

distance = speed * time

For example, if a train travels 40 miles per hour for 3 hours, the distance traveled is
120 miles.

Write a program that asks the user for the speed of a vehicle (in miles per hour) and how
many hours it has traveled. It should then use a loop to display the total distance traveled
at the end of each hour of that time period. Here is an example of the output:

What is the speed of the vehicle in mph? 40
How many hours has it traveled? 3
Hour Miles Traveled

1 40
2 80
3 120

4. Celsius to Fahrenheit Table

In one of the Chapter 3 Programming Challenges you were asked to write a program
that converts a Celsius temperature to Fahrenheit. Modify that program so it uses a
loop to display a table of the Celsius temperatures from 0 to 20 and their Fahrenheit
equivalents.

F = 9/5C + 32

5. Speed Conversion Chart

Write a program that displays a table of speeds in kilometers per hour with their
values converted to miles per hour. The table should display the speeds from 40
kilometers per hour through 120 kilometers per hour, in increments of 5 kilometers
per hour. (In other words, it should display 40 kph, 45 kph, 50 kph and so forth, up
through 120 kph.)

MPH = KPH * 0.6214

318 Chapter 5 Looping

6. Ocean Levels

Assuming the level of the Earth’s oceans continues rising at about 3.1 millimeters per year,
write a program that displays a table showing the total number of millimeters the oceans
will have risen each year for the next 25 years.

7. Pennies for Pay

Write a program that calculates how much a person earns in a month if the salary is one
penny the first day, two pennies the second day, four pennies the third day, and so on
with the daily pay doubling each day the employee works. The program should ask the
user for the number of days the employee worked during the month, validate that it is
between 1 and 31, and then display a table showing how much the salary was for each
day worked, as well as the total pay earned for the month. The output should be
displayed in dollars with two decimal points, not in pennies.

8. Calories Burned

Running on a particular treadmill you burn 3.9 calories per minute. Write a program
that uses a loop to display the number of calories burned after 10, 15, 20, 25, and 30
minutes.

9. Membership Fees Increase

A country club, which currently charges $2500 per year for membership, has announced it
will increase its membership fee by 4% each year for the next six years. Write a program
that uses a loop to display the projected rates for the next six years.

10. Random Number Guessing Game

Write a program that generates a random number between 1 and 100 and asks the user to
guess what the number is. If the user’s guess is higher than the random number, the
program should display “Too high. Try again.” If the user’s guess is lower than the random
number, the program should display “Too low. Try again.” The program should use a
loop that repeats until the user correctly guesses the random number. Then the program
should display “Congratulations. You figured out my number.”

11. Random Number Guessing Game Enhancement

Enhance the program that you wrote for Programming Challenge 10 so it keeps a count of
the number of guesses the user makes. When the user correctly guesses the random
number, the program should display the number of guesses along with the message of
congratulations.

12. The Greatest and Least of These

Write a program with a loop that lets the user enter a series of integers, followed by �99 to
signal the end of the series. After all the numbers have been entered, the program should
display the largest and smallest numbers entered.

VideoNote

Solving the
Ocean Levels
Problem

Review Questions and Exercises 319

13. Student Line Up

A teacher has asked all her students to line up single file according to their first name.
For example, in one class Amy will be at the front of the line and Yolanda will be at
the end. Write a program that prompts the user to enter a number between 1 and 25
for the number of students in the class, then loops to read in that many names. Once
all the names have been read in it reports which student would be at the front of the
line and which one would be at the end of the line. You may assume that no two
students have the same name.

14. Rate of Inflation

The annual rate of inflation is the rate at which money loses its value. For example, if
the annual rate of inflation is 3.0%, then in one year it will cost $1030 to buy the
goods that could have been purchased for $1000 today. Put another way, a year from
now $1000 will only buy 1/1.03 * $1000, or $970.87, worth of goods. Two years from
now $1000 will only buy only 1/1.03 of $970.87, or $942.59 worth of goods. Write a
program that allows the user to enter an annual rate of inflation between 1% and
15%, and which then reports how much $1000 today will be worth each year for the
next 10 years.

15. Population

Write a program that will predict the size of a population of organisms. The program
should ask the user for the starting number of organisms, their average daily population
increase (as a percentage of current population), and the number of days they will multiply.
A loop should display the size of the population for each day.

Input Validation: The program should not accept a number less than two for the
starting size of the population, a negative number for average daily population
increase, or a number less than one for the number of days they will multiply.

16. Math Tutor Version 3

This program started in Chapter 3 and was modified in Chapter 4. Starting with the
version described in Chapter 4, modify the program again so it displays a menu allowing
the user to select an addition, subtraction, or multiplication problem. The final selection on
the menu should let the user quit the program. After the user has finished the math
problem, the program should display the menu again. This process must repeat until the
user chooses to quit the program. If the user selects an item not on the menu, the program
should print an error message and then display the menu again.

17. Hotel Suites Occupancy

Write a program that calculates the occupancy rate of the 120 suites (20 per floor) located
on the top 6 floors of a 15-story luxury hotel. These are floors 10–12 and 14–16 because,
like many hotels, there is no 13th floor. Solve the problem by using a single loop that loops
once for each floor between 10 and 16 and, on each iteration, asks the user to input the
number of suites occupied on that floor. Use a nested loop loop to validate that the value
entered is between 0 and 20. After all the iterations, the program should display how many
suites the hotel has, how many of them are occupied, and what percentage of them are
occupied.

320 Chapter 5 Looping

18. Rectangle Display

Write a program that asks the user for two positive integers between 2 and 10 to use for
the length and width of a rectangle. If the numbers are different, the larger of the two
numbers should be used for the length and the smaller for the width. The program should
then display a rectangle of this size on the screen using the character ‘X’. For example, if
the user enters either 2 5 or 5 2, the program should display the following:

XXXXX
XXXXX

19. Diamond Display

Write a program that uses nested loops to display the diamond pattern shown below.

 +
 +++
 +++++
+++++++
 +++++
 +++
 +

20. Triangle Display

Write a program that uses nested loops to display the triangle pattern shown below.

+
+++
+++++
+++++++
+++++
+++
+

21. Arrowhead Display

Write a program that uses nested loops to display the arrowhead pattern shown below.

 +
 +++
 +++++
+++++++++++++
 +++++
 +++
 +

22. Sales Bar Chart

Write a program that asks the user to enter today’s sales rounded to the nearest $100 for
each of three stores. The program should then display a bar graph comparing each store’s
sales. Create each bar in the graph by displaying a row of asterisks. Each asterisk should
represent $100 of sales.

Here is an example of the program’s output. User input is shown in bold.

Review Questions and Exercises 321

Enter today’s sales for store 1: 1000[Enter]
Enter today’s sales for store 2: 1200[Enter]
Enter today’s sales for store 3: 900[Enter]

 DAILY SALES
 (each * = $100)
Store 1: **********
Store 2: ************
Store 3: *********

23. Savings Account Balance

Write a program that calculates the balance of a savings account at the end of a three-
month period. It should ask the user for the starting balance and the annual interest
rate. A loop should then iterate once for every month in the period, performing the
following steps:

A) Ask the user for the total amount deposited into the account during that month
and add it to the balance. Do not accept negative numbers.

B) Ask the user for the total amount withdrawn from the account during that
month and subtract it from the balance. Do not accept negative numbers or
numbers greater than the balance after the deposits for the month have been
added in.

C) Calculate the interest for that month. The monthly interest rate is the annual
interest rate divided by 12. Multiply the monthly interest rate by the average of
that month’s starting and ending balance to get the interest amount for the
month. This amount should be added to the balance.

After the last iteration, the program should display a report that includes the following
information:

• starting balance at the beginning of the three-month period
• total deposits made during the three months
• total withdrawals made during the three months
• total interest posted to the account during the three months
• final balance

24. Using Files—Total and Average Rainfall

Write a program that reads in from a file a starting month name, an ending month name,
and then the monthly rainfall for each month during that period. As it does this, it should
sum the rainfall amounts and then report the total rainfall and average rainfall for the
period. For example, the output might look like this:

During the months of March–June the total rainfall was 7.32 inches and the average
monthly rainfall was 1.83 inches.

Data for the program can be found in the Rainfall.txt file.

Hint: After reading in the month names, you will need to read in rain amounts until
the EOF is reached, and count how many pieces of rain data you read in.

322 Chapter 5 Looping

25. Using Files—Population Bar Chart

Write a program that produces a bar chart showing the population growth of
Prairieville, a small town in the Midwest, at 20 year intervals during the past 100
years. The program should read in the population figures (rounded to the nearest 1000
people) for 1910, 1930, 1950, 1970, 1990, and 2010 from a file. For each year it
should display the date and a bar consisting of one asterisk for each 1000 people. The
data can be found in the People.txt file.

Here is an example of how the chart might begin:

PRAIRIEVILLE POPULATION GROWTH
(each * represents 1000 people)

1910 **
1930 ****
1950 *****

26. Using Files—Student Line Up

Modify the Student Line Up program described in Programming Challenge 13 so that it
gets the names from a data file. Names should be read in until there is no more data to
read. Data to test your program can be found in the LineUp.txt file.

27. Using Files—Savings Account Balance Modification

Modify the Savings Account Balance program described in Programming Challenge 23 so
that it writes the report to a file. After the program runs, print the file to hand in to your
instructor.

323

C
H

A
P

T
E

R

6 Functions

6.1 Modular Programming

CONCEPT: A program may be broken up into a set of manageable functions, or
modules. This is called modular programming.

A function is a collection of statements that performs a specific task. So far you have used
functions in two ways: 1) you have created a function called main in every program you’ve
written, and 2) you have called library functions such as pow and sqrt. In this chapter you
will learn how to create your own functions that can be used like library functions.

Functions are commonly used to break a problem down into small manageable pieces, or
modules. Instead of writing one long function that contains all the statements necessary to
solve a problem, several smaller functions can be written, with each one solving a specific
part of the problem. These small functions can then be executed in the desired order to
solve the problem. This approach is sometimes called divide and conquer because a large
problem is divided into several smaller problems that are more easily solved. Figure 6-1
illustrates this idea by comparing two programs, one that uses a single module containing
all of the statements necessary to solve a problem, and another that divides a problem into
a set of smaller problems, each handled by a separate function.

TOPICS

6.1 Modular Programming
6.2 Defining and Calling Functions
6.3 Function Prototypes
6.4 Sending Data into a Function
6.5 Passing Data by Value
6.6 The return Statement
6.7 Returning a Value from a Function
6.8 Returning a Boolean Value
6.9 Using Functions in a Menu-Driven

Program
6.10 Local and Global Variables

6.11 Static Local Variables
6.12 Default Arguments
6.13 Using Reference Variables as

Parameters
6.14 Overloading Functions
6.15 The exit() Function
6.16 Stubs and Drivers
6.17 Little Lotto Case Study
6.18 Tying It All Together: Glowing

Jack-o-lantern

324 Chapter 6 Functions

Another reason to write functions is that they simplify programs. If a specific task is
performed in several places in a program, a function can be written once to perform that
task, and then be executed anytime it is needed. This benefit of using functions is known as
code reuse because you are writing the code to perform a task once and then reusing it
each time you need to perform the task.

6.2 Defining and Calling Functions

CONCEPT: A function call is a statement that causes a function to execute. A function
definition contains the statements that make up the function.

When creating a function, you must write its definition. All function definitions have the
following parts:

Name Every function must have a name. In general, the same rules that apply
to variable names also apply to function names.

Parameter list The program module that calls a function can send data to it. The parameter
list is the list of variables that hold the values being passed to the function. If
no values are being passed to the function, its parameter list is empty.

Body The body of a function is the set of statements that carry out the task
the function is performing. These statements are enclosed in a set of
braces.

Figure 6-1

main function

function 2

function 3

 int main()
 {
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 }

 int main()
 {
 statement;
 statement;
 statement;
 }

 void function2()
 {
 statement;
 statement;
 statement;
 }

 void function3()
 {
 statement;
 statement;
 statement;
 }

This program has one long, complex
function containing all of the statements
necessary to solve a problem.

In this program the problem has been
divided into smaller problems, each
handled by a separate function.

VideoNote

Defining and
Calling
Functions

Defining and Calling Functions 325

Return type A function can send a value back to the program module that called it.
The return type is the data type of the value being sent back.

Figure 6-2 shows the definition of a simple function with the various parts labeled. Notice
that the function’s return type is actually listed first.

The line in the definition that reads int main () is called the function header.

Void Functions
You already know that a function can return a value. The main function in all of the programs
you have seen in this book is declared to return an int value to the operating system.
The return 0; statement causes the value 0 to be returned when the main function finishes
executing.

It isn’t necessary for all functions to return a value, however. Some functions simply perform
one or more statements and then return. In C++ these are called void functions. The
displayMessage function shown here is an example:

void displayMessage()
{

cout << "Hello from the function displayMessage.\n";
}

The function’s name is displayMessage. This name is descriptive, as function names
should be. It gives an indication of what the function does. It displays a message.
Notice the function’s return type is void. This means the function does not send back a
value when it has finished executing and returns to the part of the program that
invoked it. Because no value is being sent back, no return statement is required. When
the statements in the function have finished executing and the right brace that ends the
function is encountered, the program automatically returns.

Calling a Function
A function is executed when it is called. Function main is called automatically when a
program starts, but all other functions must be executed by function call statements.
When a function is called, the program branches to that function and executes the
statements in its body. Let’s look at Program 6-1, which contains two functions: main
and displayMessage.

Figure 6-2

int main ()
{
 cout << "Hello World\n";
 return 0;
}

 Name

Parameter list (This one is empty)

Body

Return type

326 Chapter 6 Functions

The function displayMessage is called by the following statement in line 20:

displayMessage();

This statement is the function call. It is simply the name of the function followed by a set of
parentheses and a semicolon. Let’s compare this with the function header:

Function Header void displayMessage()
Function Call displayMessage();

The function header is part of the function definition. It declares the function’s return type,
name, and parameter list. It must not be terminated with a semicolon because the
definition of the function’s body follows it.

The function call is a statement that executes the function, so it is terminated with a
semicolon like all other C++ statements. Notice that the function call does not list the
return type and, if the program is not passing data into the function, the parentheses are
left empty.

Program 6-1

1 // This program has two functions: main and displayMessage.
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * displayMessage *
7 * This function displays a greeting. *
8 ***************************************/
9 void displayMessage()
10 {
11 cout << "Hello from the function displayMessage.\n";
12 }
13
14 /***************************************
15 * main *
16 ***************************************/
17 int main()
18 {
19 cout << "Hello from main.\n";
20 displayMessage(); // Call displayMessage
21 cout << "Back in function main again.\n";
22 return 0;
23 }

Program Output
Hello from main.
Hello from the function displayMessage.
Back in function main again.

NOTE: Later in this chapter you will see how data can be passed into a function by
being listed inside the parentheses.

Defining and Calling Functions 327

Even though the program starts executing at main, the function displayMessage is defined
first. This is because before a function can be called, the compiler must know certain things
about it. It must know the function’s name, its return type, how many parameter variables it
has, and what the data type of each of these variables is. One way to ensure the compiler will
know this information is to place the function definition before all calls to that function.
(Later you will see an alternative and preferred method of accomplishing this.)

Notice how Program 6-1 flows. It starts, of course, in function main. When the call to
displayMessage is encountered, the program branches to that function and performs its
statements. Once displayMessage has finished executing, the program branches back to
function main and resumes with the line that follows the function call. This is illustrated in
Figure 6-3.

Function call statements may be used in control structures such as loops, if statements, and
switch statements. Program 6-2 places the displayMessage function call inside a loop.

NOTE: You should always document your functions by writing comments that describe
what they do. These comments should appear just before the function definition.

Figure 6-3

Program 6-2

1 // The function displayMessage is repeatedly called from within a loop.
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * displayMessage *
7 * This function displays a greeting. *
8 ***************************************/
9 void displayMessage()
10 {
11 cout << "Hello from the function displayMessage.\n";
12 }
13

(program continues)

void displayMessage()
{
 cout << "Hello from the function displayMessage.\n";
}

int main()
{
 cout << "Hello from main.\n";
 displayMessage();
 cout << "Back in function main again.\n";
 return 0;
}

1 2

328 Chapter 6 Functions

It is possible to have many functions and function calls in a program. Program 6-3 has
three functions: main, first, and second.

14 /***************************************
15 * main *
16 ***************************************/
17 int main()
18 {
19 cout << "Hello from main.\n";
20
21 for (int count = 0; count < 3; count++)
22 displayMessage(); // Call displayMessage
23
24 cout << "Back in function main again.\n";
25 return 0;
26 }

Program Output
Hello from main.
Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Back in function main again.

Program 6-3

1 // This program has three functions: main, first, and second.
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * first *
7 * This function displays a message. *
8 ***************************************/
9 void first()
10 {
11 cout << "I am now inside the function first.\n";
12 }
13
14 /***************************************
15 * second *
16 * This function displays a message. *
17 ***************************************/
18 void second()
19 {
20 cout << "I am now inside the function second.\n";
21 }
22

(program continues)

Program 6-2 (continued)

Defining and Calling Functions 329

In lines 29 and 30 of Program 6-3, function main contains a call to first and a call
to second:

first();
second();

Each call statement causes the program to branch to a function and then back to main
when the function is finished. Figure 6-4 illustrates the paths taken by the program.

23 /***************************************
24 * main *
25 ***************************************/
26 int main()
27 {
28 cout << "I am starting in function main.\n";
29 first(); // Call function first
30 second(); // Call function second
31 cout << "Back in function main again.\n";
32 return 0;
33 }

Program Output
I am starting in function main.
I am now inside the function first.
I am now inside the function second.
Back in function main again.

Figure 6-4

Program 6-3 (continued)

void first()
{
 cout << "I am now inside the function first.\n";
}

void second()
{
 cout << "I am now inside the function second.\n";
}

int main()
{
 cout << "I am starting in function main.\n";
 first();
 second();
 cout << "Back in function main again.\n";
 return 0;
}

1 2

3 4

330 Chapter 6 Functions

Functions may also be called in a hierarchical, or layered, fashion. This is demonstrated by
Program 6-4, which has three functions: main, deep, and deeper.

In Program 6-4, function main only calls the function deep. In turn, deep calls deeper.
The paths taken by this program are shown in Figure 6-5.

Program 6-4

1 // This program has three functions: main, deep, and deeper.
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * deeper *
7 * This function displays a message. *
8 ***************************************/
9 void deeper()
10 {
11 cout << "I am now inside the function deeper.\n";
12 }
13
14 /***************************************
15 * deep *
16 * This function displays a message. *
17 ***************************************/
18 void deep()
19 {
20 cout << "I am now inside the function deep.\n";
21 deeper(); // Call function deeper
22 cout << "Now I am back in deep.\n";
23 }
24
25 /***************************************
26 * main *
27 ***************************************/
28 int main()
29 {
30 cout << "I am starting in function main.\n";
31 deep(); // Call function deep
32 cout << "Back in function main again.\n";
33 return 0;
34 }

Program Output
I am starting in function main.
I am now inside the function deep.
I am now inside the function deeper.
Now I am back in deep.
Back in function main again.

Defining and Calling Functions 331

Checkpoint

6.1 Is the following a function header or a function call?

calcTotal();

6.2 Is the following a function header or a function call?

void showResults()

6.3 What will the output of the following program be if the user enters 10?

#include <iostream>
using namespace std;

void func1()
{

cout << "Able was I\n";
}

void func2()
{

cout << "I saw Elba\n";
}

int main()
{

int input;
cout << "Enter a number: ";
cin >> input;
if (input < 10)
{

func1();
func2();

}

Figure 6-5

void deeper()
{
 cout << "I am now inside the function deeper.\n";
}

void deep()
{
 cout << "I am now inside the function deep.\n";
 deeper(); // Call function deeper
 cout << "Now I am back in deep.\n";
}

int main()
{
 cout << "I am starting in function main.\n";
 deep(); // Call function deep
 cout << "Back in function main again.\n";
 return 0;
}

1

2

3

4

332 Chapter 6 Functions

else
{

func2();
func1();

}
return 0;

}

6.4 The following program skeleton determines whether a person qualifies for a credit
card. To qualify, the person must have worked on his or her current job for at least
two years and make at least $17,000 per year. Finish the program by writing the
definitions of the functions qualify and noQualify. The function qualify should
explain that the applicant qualifies for the card and that the annual interest rate is
12 percent. The function noQualify should explain that the applicant does not
qualify for the card and give a general explanation why.

#include <iostream>
using namespace std;

// You must write definitions for the two functions qualify
// and noQualify.

int main()
{

double salary;
int years;

cout << "This program will determine if you qualify\n";
cout << "for our credit card.\n";
cout << "What is your annual salary? ";
cin >> salary;
cout << "How many years have you worked at your ";
cout << "current job? ";
cin >> years;

if (salary >= 17000.0 && years >= 2)
 qualify();

else
 noQualify();

return 0;
}

6.3 Function Prototypes

CONCEPT: A function prototype eliminates the need to place a function definition
before all calls to the function.

Before the compiler encounters a call to a particular function, it must already know certain
things about the function. In particular, it must know the number of parameters the
function uses, the type of each parameter, and the return type of the function. Parameters
allow information to be sent to a function. Certain return types allow information to be
returned from a function. You will learn more about parameters and return types in later
sections of this chapter. For now, the functions we will use will have no parameters and,
except for main, will have a return type of void.

Function Prototypes 333

One way of ensuring that the compiler has this required information is to place the
function definition before all calls to that function. This was the approach taken in
Programs 6-1 through 6-4. Another method is to declare the function with a function
prototype. Here is a prototype for the displayMessage function in Program 6-1:

void displayMessage();

This prototype looks similar to the function header, except there is a semicolon at the end.
The statement tells the compiler that the function displayMessage uses no parameters
and has a void return type, meaning it doesn’t return a value.

Function prototypes are usually placed near the top of a program so the compiler will “see”
them before any function calls. Program 6-5 is a modification of Program 6-3. The definitions
of the functions first and second have been placed after main, and their function prototypes
have been placed above main, directly after the using namespace std statement.

NOTE: Function prototypes are also known as function declarations.

WARNING! You must either place the function definition or the function prototype
ahead of all calls to the function. Otherwise the program will not compile.

Program 6-5

1 // This program has three functions: main, first, and second.
2 // It uses function prototypes.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void first();
8 void second();
9
10 int main()
11 {
12 cout << "I am starting in function main.\n";
13 first(); // Call function first
14 second(); // Call function second
15 cout << "Back in function main again.\n";
16 return 0;
17 }
18
19 /***************************************
20 * first *
21 * This function displays a message. *
22 ***************************************/
23 void first()
24 {
25 cout << "I am now inside the function first.\n";
26 }

(program continues)

334 Chapter 6 Functions

When the compiler is reading Program 6-5, it encounters the calls to the functions first
and second in lines 13 and 14 before it has read the definition of those functions.
Because of the function prototypes, however, the compiler already knows the return type
and parameter information of first and second. There should be a prototype for each
function in a program except main. A prototype is never needed for main because it is
the starting point of the program.

6.4 Sending Data into a Function

CONCEPT: When a function is called, the program may send values into the function.

Values that are sent into a function are called arguments. You’re already familiar with how
to use arguments in a function call. In the following statement the function pow is being
called with two arguments, 2.0 and 4.0 passed to it:

result = pow(2.0, 4.0);

A parameter is a special variable that holds a value being passed as an argument into a
function. By using parameters, you can design your own functions that accept data this
way. Here is the definition of a function that has a parameter. The parameter is num.

void displayValue(int num)
{

cout << "The value is " << num << endl;
}

Notice that the parameter variable is defined inside the parentheses (int num). Because it
is declared to be an integer, the function displayValue can accept an integer value as an
argument. Program 6-6 is a complete program that uses this function.

27
28 /***************************************
29 * second *
30 * This function displays a message. *
31 ***************************************/
32 void second()
33 {
34 cout << "I am now inside the function second.\n";
35 }

 Program Output is the same as the output of Program 6-3.

NOTE: Although some programmers make main the last function in the program,
many prefer it to be first because it is the program’s starting point.

Program 6-5 (continued)

VideoNote

Using Function
Arguments

Sending Data into a Function 335

Notice the function prototype for displayValue in line 6:

void displayValue(int num); // Function prototype

It lists both the data type and the name of the function’s parameter variable. However, it is not
actually necessary to list the name of the parameter variable inside the parentheses. Only the
data type of the variable is required. The function prototype could have been written like this:

void displayValue(int); // Function prototype

Because some instructors prefer that you list only the data type for each parameter in a
function prototype, while others prefer that you list both the data type and name, we use
both versions throughout this book. Your instructor will tell you which version to use.

Program 6-6

1 // This program demonstrates a function with a parameter.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 void displayValue(int num);
7
8 int main()
9 {
10 cout << "I am passing 5 to displayValue.\n";
11 displayValue(5); // Call displayValue with argument 5
12 cout << "Now I am back in main.\n";
13 return 0;
14 }
15
16 /**
17 * displayValue *
18 * This function uses an integer parameter *
19 * whose value is displayed. *
20 **/
21 void displayValue(int num)
22 {
23 cout << "The value is " << num << endl;
24 }

Program Output
I am passing 5 to displayValue.
The value is 5
Now I am back in main.

NOTE: Your instructor will also tell you what to call the function parameters. In this
text, the values that are passed into a function are called arguments, and the variables
that receive those values are called parameters. However, there are several variations of
these terms in use. Some call the arguments actual parameters and the parameters
formal parameters. Others use the terms actual arguments and formal arguments.
Regardless of which set of terms you use, it is important to be consistent.

336 Chapter 6 Functions

In Program 6-6 the displayValue function is called in line 11 of main with the argument
5 inside the parentheses. The number 5 is passed into num, which is displayValue’s
parameter. This is illustrated in Figure 6-6.

Any argument listed inside the parentheses of a function call is copied into the function’s
parameter variable. In essence, parameter variables are initialized to the value of the
corresponding arguments passed to them when the function is called. Program 6-7 shows
the function displayValue being called several times with a different argument passed
each time.

Figure 6-6

Program 6-7

1 // This program demonstrates a function with a parameter.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 void displayValue(int num);
7
8 int main()
9 {
10 cout << "I am passing several values to displayValue.\n";
11 displayValue(5); // Call displayValue with argument 5
12 displayValue(10); // Call displayValue with argument 10
13 displayValue(2); // Call displayValue with argument 2
14 displayValue(16); // Call displayValue with argument 16
15 cout << "Now I am back in main.\n";
16 return 0;
17 }
18
19 /**
20 * displayValue *
21 * This function uses an integer parameter *
22 * whose value is displayed. *
23 **/
24 void displayValue(int num)
25 {
26 cout << "The value is " << num << endl;
27 }

(program continues)

displayValue(5); // Function call

void displayValue(int num) // Function header
{
 cout << "The value is " << num << endl;
}

Sending Data into a Function 337

In lines 11–14 of Program 6-7 the displayValue function is called four times, and each
time num takes on a different value. Any expression whose value could normally be assigned
to num may be used as an argument. For example, the following function call would pass
the value 8 into num:

displayValue(3 + 5);

When a function is called, it is best if each argument passed to it has the same data type
as the parameter receiving it. However, it is possible to send an argument with a different
data type. In this case, the argument will be promoted or demoted to match the data type
of the parameter receiving it. Be very careful if you do this, as you may introduce a hard
to find bug. For example, the displayValue function in Program 6-7 has an integer
parameter, which means it expects to receive an integer value. If the function is called as
shown here,

displayValue(4.7);

the argument will be truncated and the integer 4 will be stored in the parameter num.

Often it is useful to pass several arguments into a function. Program 6-8 includes a
function that has three parameters. Look carefully at how these parameters are defined
in the function header in line 27, as well as in the function prototype in line 6. In this
case the prototype lists variable names along with the data types of the function’s
parameters. This makes the prototype look exactly like the function header except that
the prototype must end with a semicolon and the function header must not end with a
semicolon.

// Prototype
 void showSum(int num1, int num2, int num3); // Ends with ;

// Function header
 void showSum(int num1, int num2, int num3) // NO ;

Notice also that the call to the function in line 18 must now send three arguments to
the function.

showSum(value1, value2, value3);

Program Output
I am passing several values to displayValue.
The value is 5
The value is 10
The value is 2
The value is 16
Now I am back in main.

Program 6-7 (continued)

338 Chapter 6 Functions

One important point to mention about Program 6-8 is how the showSum parameter
variables are defined in its function header.

void showSum(int num1, int num2, int num3)

As you might expect they are each preceded by their data type and they are separated by
commas. However, unlike regular variable definitions, they cannot be combined into a single
definition even if they all have the same data type. That is, even though all three parameter
variables are integers, they cannot be defined like this:

void showSum(int num1, num2, num3) // Error!

Another point to notice is that whereas the function prototype and function header must
list the data type of each parameter, the call to the function must not list any data types.
Each argument in the function call must be a value or something that can be evaluated to
produce a value. If value1, value2, and value3 hold the values 4, 8, and 7 respectively, as

Program 6-8

1 // This program demonstrates a function with three parameters.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 void showSum(int num1, int num2, int num3);
7
8 int main()
9 {
10 int value1, value2, value3;
11
12 // Get 3 integers
13 cout << "Enter three integers and I will display ";
14 cout << "their sum: ";
15 cin >> value1 >> value2 >> value3;
16
17 // Call showSum, passing 3 arguments
18 showSum(value1, value2, value3);
19 return 0;
20 }
21
22 /**
23 * showSum *
24 * This function displays the sum of the *
25 * 3 integers passed into its parameters. *
26 **/
27 void showSum(int num1, int num2, int num3)
28 {
29 cout << "The sum is " << (num1 + num2 + num3) << endl;
30 }

Program Output with Example Input Shown in Bold
Enter three integers and I will display their sum: 4 8 7[Enter]
The sum is 19

Passing Data by Value 339

they did in the sample run for Program 6-8, the following three function calls would all be
legal and would cause the showSum function to display the same thing.

showSum(value1, value2, value3); // Legal The sum is 19

showSum(4, 8, 7); // Legal The sum is 19

showSum(3+1, 16/2, 7); // Legal The sum is 19

But the following function call would cause an error.

showSum(int value1, int value2, int value3); // Error!

Figure 6-7 shows the difference in the syntax between the function call and the function
header when variables are used as arguments. It also illustrates that when a function with
multiple parameters is called, the arguments are passed to the parameters in order.

The following function call will cause 4 to be passed into the num1 parameter, 8 to be
passed into num2, and 7 to be passed into num3:

showSum(4, 8, 7);

6.5 Passing Data by Value

CONCEPT: When an argument is passed into a parameter by value, only a copy of the
argument’s value is passed. Changes to the parameter do not affect the
original argument.

As you have seen in this chapter, parameters are special-purpose variables that are defined
inside the parentheses of a function definition. Their purpose is to hold the information passed
to them by the arguments, which are listed inside the parentheses of a function call. Normally
when information is passed to a function it is passed by value. This means the parameter
receives a copy of the value that is passed to it. If a parameter’s value is changed inside a
function, it has no effect on the original argument. Program 6-9 demonstrates this concept.

Program 6-9 also illustrates that when a function prototype lists variable names along with
data types, the names it uses are just dummy names. They are not actually used by the

Figure 6-7

NOTE: Like all variables, parameters have a scope. The scope of a parameter is limited
to the body of the function which uses it.

 showSum(value1, value2, value3)

 void showSum(int num1, int num2, int num3)
 {
 cout << num1 + num2 + num3 << endl;
 }

Function call

340 Chapter 6 Functions

compiler and do not have to agree with the names used in the function header. The
changeMe function prototype in line 7 and the changeMe function header in line 29 both
specify that the function has one int parameter, but they use different names for it.

Even though the parameter variable myValue is changed in the changeMe function, the
argument number is not modified. This occurs because the myValue variable contains only
a copy of the number variable. Just this copy is changed, not the original. The changeMe
function does not have access to the original argument.

Program 6-9

1 // This program demonstrates that changes to a function
2 // parameter have no effect on the original argument.
3 #include <iostream>
4 using namespace std;
5
6 // Function Prototype
7 void changeMe(int aValue);
8
9 int main()
10 {
11 int number = 12;
12
13 // Display the value in number
14 cout << "In main number is " << number << endl;
15
16 // Call changeMe, passing the value in number as an argument
17 changeMe(number);
18
19 // Display the value in number again
20 cout << "Back in main again, number is still " << number << endl;
21 return 0;
22 }
23
24 /*************************************
25 * changeMe *
26 * This function changes the value *
27 * stored in its parameter myValue *
28 *************************************/
29 void changeMe(int myValue)
30 {
31 // Change the value of myValue to 0
32 myValue = 0;
33
34 // Display the value in myValue
35 cout << "In changeMe, the value has been changed to "
36 << myValue << endl;
37 }

Program Output
In main number is 12
In changeMe, the value has been changed to 0
Back in main again, number is still 12

Passing Data by Value 341

Figure 6-8 illustrates that a parameter variable’s storage location in memory is separate
from that of the original argument.

Checkpoint

6.5 Indicate which of the following is the function prototype, the function header, and
the function call:

void showNum(double num)
void showNum(double);
showNum(45.67);

6.6 Write a function named timesTen. The function should have an integer parameter
named number. When timesTen is called, it should display the product of number
times 10. (Note: just write the function. Do not write a complete program.)

6.7 Write a function prototype for the timesTen function you wrote in question 6.6.

6.8 What is the output of the following program?

#include <iostream>
using namespace std;

void showDouble(int value); // Function prototype

int main()
{

int num;

for (num = 0; num < 10; num++)
showDouble(num);

return 0;
}
// Definition of function showDouble
void showDouble(int value)
{

cout << value << " " << (value * 2) << endl;
}

Figure 6-8

NOTE: Later in this chapter you will learn ways to give a function access to its original
arguments.

Original argument
(in its memory location)

 12

 Function parameter
 (in its own memory location)

 12

342 Chapter 6 Functions

6.9 What is the output of the following program?

#include <iostream>
using namespace std;

void func1(double, int); // Function prototype

int main()
{

int x = 0;
double y = 1.5;

cout << x << " " << y << endl;
func1(y, x);
cout << x << " " << y << endl;
return 0;

}
void func1(double a, int b)
{

cout << a << " " << b << endl;
a = 0.0;
b = 10;
cout << a << " " << b << endl;

}

6.10 The following program skeleton asks for the number of hours you’ve worked and
your hourly pay rate. It then calculates and displays your wages. The function
showDollars, which you are to write, formats the output of the wages.

#include <iostream>
#include <iomanip>
using namespace std;

void showDollars(double pay); // Function prototype

int main()
{

double payRate, hoursWorked, wages;

cout << "How many hours have you worked? "
cin >> hoursWorked;
cout << "What is your hourly pay rate? ";
cin >> payRate;
wages = hoursWorked * payRate;
showDollars(wages);
return 0;

}

// Write the definition of the showDollars function here.
// It should have one double parameter and display the message
// "Your wages are $" followed by the value of the parameter.

The return Statement 343

6.6 The return Statement

CONCEPT: The return statement causes a function to end immediately.

When the last statement in a function has finished executing, the function terminates.
The program returns to the module that called it and continues executing from the point
immediately following the function call. It is possible, however, to force a function to
return to where it was called from before its last statement has been executed. This can
be done with the return statement, as illustrated in Program 6-10. In this program,
the function divide shows the quotient of arg1 divided by arg2. If arg2 is set to zero,
however, the function returns back to main without performing the division.

Program 6-10

1 // This program uses a function to perform division.
2 // It illustrates the return statement.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 void divide(double arg1, double arg2);
8
9 int main()
10 {
11 double num1, num2;
12
13 cout << "Enter two numbers and I will divide the first\n";
14 cout << "number by the second number: ";
15 cin >> num1 >> num2;
16 divide(num1, num2);
17 return 0;
18 }
19
20 /**
21 * divide *
22 * This function uses two parameters, arg1 and arg2. *
23 * If arg2 does not = zero, the function displays the *
24 * result of arg1/arg2. Otherwise it returns without *
25 * performing the division. *
26 **/
27 void divide(double arg1, double arg2)
28 {
29 if (arg2 == 0.0)
30 {
31 cout << "Sorry, I cannot divide by zero.\n";
32 return;
33 }
34 cout << "The quotient is " << (arg1 / arg2) << endl;
35 }

(program continues)

344 Chapter 6 Functions

In the example running of the program, the user entered 12 and 0 as input. These were
stored as double values as variables num1 and num2. In line 16 the divide function was
called, passing 12.0 into the arg1 parameter and 0.0 into the arg2 parameter. Inside the
divide function, the if statement in line 29 executes. Because arg2 is equal to 0.0, the code
in lines 31 and 32 execute. When the return statement in line 32 executes, the divide
function immediately ends. This means the cout statement in line 34 does not execute. The
program resumes at line 17 in the main function.

6.7 Returning a Value from a Function

CONCEPT: A function may send a value back to the part of the program that called the
function.

You’ve seen that data may be passed into a function by way of parameter variables. Data
may also be returned from a function back to the statement that called it. Functions that
return a value are known as value-returning functions.

The pow function, which you have already used, is an example of a value-returning
function. Here is an example:

double x;
x = pow(4.0, 2.0);

This code calls the pow function, passing 4.0 and 2.0 as arguments. The function calculates
the value of 4.0 raised to the power of 2.0 and returns that value. The value, which is 16.0,
is assigned to the x variable by the = operator.

Although several arguments can be passed into a function, only one value can be returned
from it. Think of a function as having multiple communication channels for receiving data
(parameters), but only one channel for sending data (the return value). This is illustrated in
Figure 6-9.

Program Output with Example Input Shown in Bold
Enter two numbers and I will divide the first
number by the second number: 12 0[Enter]
Sorry, I cannot divide by zero.

Figure 6-9

Program 6-10 (continued)

VideoNote

Argument 1

Argument 2
 Function Return value
Argument 3

Argument 4

Value-Returning
Functions

Returning a Value from a Function 345

Defining a Value-Returning Function
When you are writing a value-returning function, you must decide what type of value the
function will return. This is because you must specify the data type of the return value in
the function header and function prototype. Up until now all the functions we have written
have been void functions. This means they do not return a value. These functions use the
key word void as the return type in their function header and function prototype. A value-
returning function, on the other hand, uses int, double, bool, or any other valid data
type in its header. Here is an example of a function that returns an int value:

int sum(int num1, int num2)
{

int result;

result = num1 + num2;
return result;

}

The name of this function is sum. Notice in the function header that the return type is int,
as illustrated in Figure 6-10.

This code defines a function named sum that accepts two int arguments. The arguments
are passed into the parameter variables num1 and num2. Inside the function, the variable
result is defined. Variables that are defined inside a function are called local variables.
After the variable definition, the values of the parameter variables num1 and num2
are added, and their sum is assigned to the result variable. The last statement in the
function is:

return result;

This statement causes the function to end, and it sends the value of the result variable
back to the statement that called the function. A value-returning function must have a
return statement written in the following general format:

return expression;

In the general format, expression is the value to be returned. It can be any expression
that has a value, such as a variable, literal, or mathematical expression. The value of the
expression is converted to the data type that the function returns and is sent back to the
statement that called the function. In this case, the sum function returns the value in
the result variable.

NOTE: In order to return multiple values from a function, they must be “packaged” in
such a way that they are treated as a single value. You will learn to do this in Chapter 7.

Figure 6-10

int sum(int num1, int num2)

Return type

346 Chapter 6 Functions

However, we could have eliminated the result variable entirely and returned the
expression num1 + num2, as shown in the following code:

int sum(int num1, int num2)
{

return num1 + num2;
}

The prototype for a value-returning function follows the same conventions that we
covered earlier. Here is the prototype for the sum function:

int sum(int num1, int num2);

Calling a Value-Returning Function
Program 6-11 shows an example of how to call the sum function.

Program 6-11

1 // This program uses a function that returns a value.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 int sum(int num1, int num2);
7
8 int main()
9 {
10 int value1 = 20, // The first value
11 value2 = 40, // The second value
12 total; // Holds the returned total
13
14 // Call the sum function, passing the contents of
15 // value1 and value2 as arguments. Assign the return
16 // value to the total variable.
17 total = sum(value1, value2);
18
19 // Display the sum of the values
20 cout << "The sum of " << value1 << " and "
21 << value2 << " is " << total << endl;
22 return 0;
23 }
24
25 /***
26 * sum *
27 * This function returns the sum of its two parameters. *
28 ***/
29 int sum(int num1, int num2)
30 {
31 return num1 + num2;
32 }

Program Output
The sum of 20 and 40 is 60

Returning a Value from a Function 347

Here is the statement in line 17, which calls the sum function, passing value1 and value2
as arguments.

total = sum(value1, value2);

This statement assigns the value returned by the sum function to the total variable. In this
case, the function will return 60. Figure 6-11 shows how the arguments are passed into the
function and how a value is passed back from the function.

When you call a value-returning function, you usually want to do something meaningful
with the value it returns. Program 6-11 shows a function’s return value being assigned to a
variable. This is commonly how return values are used, but you can do many other things
with them as well. For example, the following code shows a math expression that uses a
call to the sum function:

int x = 10, y = 15;
double average;
average = sum(x, y) / 2.0;

In the last statement, the sum function is called with x and y as its arguments. The
function’s return value, which is 25, is divided by 2.0. The result, 12.5, is assigned to
average. Here is another example:

int x = 10, y = 15;
cout << "The sum is " << sum(x, y) << endl;

This code sends the sum function’s return value to cout so it can be displayed on the screen.
The message “The sum is 25” will be displayed.

Remember, a value-returning function returns a value of a specific data type. You can use
the function’s return value anywhere that you can use a regular value of the same data
type. This means that anywhere an int value can be used, a call to an int value-returning
function can be used. Likewise, anywhere a double value can be used, a call to a double
value-returning function can be used. The same is true for all other data types.

Let’s look at another example. Program 6-12, which calculates the area of a circle, has two
functions in addition to main. One of the functions is named square, and it returns the square
of any number passed to it as an argument. The square function is called in a mathematical
statement. The program also has a function named getRadius, which prompts the user to
enter the circle’s radius. The value entered by the user is returned from the function.

Figure 6-11

int sum(int num1, int num2)
{
 return num + num;
}

total = sum(value1, value2);

40

20

60

348 Chapter 6 Functions

Program 6-12

1 // This program demonstrates two value-returning functions.
2 // The square function is called in a mathematical statement.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 //Function prototypes
8 double getRadius();
9 double square(double number);
10
11 int main()
12 {
13 const double PI = 3.14159; // Constant for pi
14 double radius; // Holds the circle's radius
15 double area; // Holds the circle's area
16
17 // Set the numeric output formatting
18 cout << fixed << showpoint << setprecision(2);
19
20 // Get the radius of the circle
21 cout << "This program calculates the area of a circle.\n";
22 radius = getRadius();
23
24 // Caclulate the area of the circle
25 area = PI * square(radius);
26
27 // Display the area
28 cout << "The area is " << area << endl;
29 return 0;
30 }
31
32 /**
33 * getRadius *
34 * This function returns the circle radius *
35 * input by the user. *
36 **/
37 double getRadius()
38 {
39 double rad;
40
41 cout << "Enter the radius of the circle: ";
42 cin >> rad;
43 return rad;
44 }
45
46 /***
47 * square *
48 * This function returns the square of the *
49 * double argument sent to it *
50 ***/
51 double square(double number)
52 {
53 return number * number;
54 }

Returning a Value from a Function 349

First, look at the getRadius function which is defined in lines 37 through 44. Notice
that there is nothing inside the parentheses of the function header on line 37. This means
the function has no parameters, so no arguments are sent to it when it is called. The
purpose of this function is to get the circle radius from the user. In line 39 the function
defines a local variable, rad. Line 41 displays a prompt and line 42 accepts the user’s
input for the circle’s radius, which is stored in the rad variable. In line 43 the value of
the rad variable is returned. The getRadius function is called in line 22 of the main
function. When the value is returned from the getRadius function it is assigned to the
radius variable.

Next look at the square function, which is defined in lines 51 through 54. When the
function is called, a double argument is passed to it. The function stores the argument
in its number parameter. The return statement in line 53 returns the value of the
expression number * number, which is the square of the value in the number parameter.
The square function is called in line 25 of the main function, with the value of radius
passed as an argument. The square function will return the square of the radius
variable, and that value will be used in the mathematical expression that computes the
circle’s area.

Assuming the user has entered 10.0 as the radius, and this value is passed as an
argument to the square function, the function will return the value 100.0. Figure 6-12
illustrates how this value is passed back to be used in the mathematical expression.

Functions can return values of any type. Both the getRadius and square functions
in Program 6-12 return a double. The sum function you saw in Program 6-11
returned an int. When a statement calls a value-returning function, it should
properly handle the return value. For example, if you assign the return value of the
square function to a variable, the variable should be a double. If the return value of
the function has a fractional portion and you assign it to an int variable, the value
will be truncated.

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
Enter the radius of the circle: 10[Enter]
The area is 314.16

Figure 6-12

Program 6-12 (continued)

double square(double number)
{
 return number * number;
}

area = PI * square(radius);
10.0

100.0

350 Chapter 6 Functions

6.8 Returning a Boolean Value

CONCEPT: Functions may return true or false values.

Frequently there is a need for a function that tests an argument and returns a true or false
value indicating whether or not a condition is satisfied. Such a function would return a bool
value. For example, the isValid function shown below accepts an int argument and
returns true if the argument is within the range of 1 through 100, or false otherwise.

bool isValid(int number)
{

bool status;

if (number >= 1 && number <= 100)
status = true;

else
status = false;

return status;
}

The following code shows an if/else statement that makes a call to the function:

int value = 20;
if (isValid(value))

cout << "The value is within range.\n";
else

cout << "The value is out of range.\n";

Because value equals 20, this code will display the message “The value is within range.”
when it executes.

Program 6-13 shows another example of a function whose return type is bool. This
program has a function named isEven, which returns true if its argument is an even
number. Otherwise, the function returns false.

Program 6-13

1 // This program uses a function that returns true or false.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 bool isEven(int);
7
8 int main()
9 {
10 int val; // the value to be tested
11
12 // Get a number from the user
13 cout << "Enter an integer and I will tell you ";
14 cout << "if it is even or odd: ";
15 cin >> val;
16

(program continues)

Returning a Boolean Value 351

Notice how the isEven function is called in line 18 with the following statement:

if (isEven(val))

Recall from Chapter 4 that this is asking if the function call isEven(val) returned the
value true. When the if statement executes, isEven is called with val as its argument. If
val is even, isEven returns true, otherwise it returns false.

Notice also how the isEven function that begins on line 31 uses an if statement to return
either the value true or the value false. There are several other ways this function could
have been written. Let’s compare three different ways to write it.

// Program 6-13 code // Version 2 // Version 3
bool isEven(int number) bool isEven(int number) bool isEven(int number)
{ { bool answer; { bool answer = false;
 if (number % 2 == 0)
 return true; if (number % 2 == 0) if (number % 2 == 0)
 else answer = true; answer = true;
 return false; else
} answer = false; return answer;

}
 return answer;
}

17 // Indicate whether it is even or odd
18 if (isEven(val))
19 cout << val << " is even.\n";
20 else
21 cout << val << " is odd.\n";
22 return 0;
23 }
24
25 /***
26 * isEven *
27 * This Boolean function tests if the integer argument *
28 * it receives is even or odd. It returns true if the *
29 * argument is even and false if it is odd. *
30 ***/
31 bool isEven(int number)
32 {
33 if (number % 2 == 0)
34 return true; // The number is even if there's no remainder
35 else
36 return false; // Otherwise, the number is odd
37 }

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it is even or odd: 5[Enter]
5 is odd.

Program 6-13 (continued)

352 Chapter 6 Functions

Although the code used in Program 6-13 is short and clear, it has two different return
statements. Many instructors prefer that a value-returning function have only a single
return statement, placed at the end of the function. Versions 2 and 3 do this. Your
instructor will let you know which method you should use.

Checkpoint

6.11 How many return values may a function have?

6.12 Write a header for a function named distance. The function should return a
double and have two double parameters: rate and time.

6.13 Write a header for a function named days. The function should return an int and
have three int parameters: years, months, and weeks.

6.14 Write a header for a function named getKey. The function should return a char
and use no parameters.

6.15 Write a header for a function named lightYears. The function should return a
long and have one long parameter: miles.

6.9 Using Functions in a Menu-Driven Program

CONCEPT: Functions are ideal for use in menu-driven programs. When the user selects
an item from a menu, the program can call the appropriate function.

In Chapters 4 and 5 you saw a menu-driven program that calculates the charges for a
health club membership. Program 6-14 is an improved modular version of that program.

Program 6-14

1 // This is a modular, menu-driven program that computes
2 // health club membership fees.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 // Function prototypes
9 void displayMenu();
10 int getChoice();
11 void showFees(string category, double rate, int months);
12
13 int main()
14 {
15 // Constants for monthly membership rates
16 const double ADULT_RATE = 120.0,
17 CHILD_RATE = 60.0,
18 SENIOR_RATE = 100.0;

(program continues)

Using Functions in a Menu-Driven Program 353

19 int choice, // Holds the user's menu choice
20 months; // Number of months being paid
21
22 // Set numeric output formatting
23 cout << fixed << showpoint << setprecision(2);
24
25 do
26 { displayMenu();
27 choice = getChoice(); // Assign choice the value returned
28 // by the getChoice function
29 if (choice != 4) // If user does not want to quit, proceed
30 {
31 cout << "For how many months? ";
32 cin >> months;
33
34 switch (choice)
35 {
36 case 1: showFees("Adult", ADULT_RATE, months);
37 break;
38 case 2: showFees("Child", CHILD_RATE, months);
39 break;
40 case 3: showFees("Senior", SENIOR_RATE, months);
41 }
42 }
43 } while (choice != 4);
44 return 0;
45 }
46
47 /**
48 * displayMenu *
49 * This function clears the screen and then *
50 * displays the menu choices. *
51 **/
52 void displayMenu()
53 {
54 system("cls"); // Clear the screen.
55 cout << "\n Health Club Membership Menu\n\n";
56 cout << "1. Standard Adult Membership\n";
57 cout << "2. Child Membership\n";
58 cout << "3. Senior Citizen Membership\n";
59 cout << "4. Quit the Program\n\n";
60 }
61
62 /**
63 * getChoice *
64 * This function inputs, validates, and returns *
65 * the user's menu choice. *
66 **/

(program continues)

Program 6-14 (continued)

354 Chapter 6 Functions

67 int getChoice()
68 {
69 int choice;
70
71 cin >> choice;
72 while (choice < 1 || choice > 4)
73 { cout << "The only valid choices are 1-4. Please re-enter. ";
74 cin >> choice;
75 }
76 return choice;
77 }
78
79 /**
80 * showFees *
81 * This function uses the membership type, monthly rate, and *
82 * number of months passed to it as arguments to compute and *
83 * display a member's total charges. It then holds the screen *
84 * until the user presses the ENTER key. This is necessary *
85 * because after returning from this function the displayMenu *
86 * function will be called, and it will clear the screen. *
87 **/
88 void showFees(string memberType, double rate, int months)
89 {
90 cout << endl
91 << "Membership Type : " << memberType << " "
92 << "Number of months: " << months << endl
93 << "Total charges : $" << (rate * months) << endl;
94
95 // Hold the screen until the user presses the ENTER key.
96 cout << "\nPress the Enter key to return to the menu. ";
97 cin.get(); // Clear the previous \n out of the input buffer
98 cin.get(); // Wait for the user to press ENTER
99 }

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

1[Enter]
For how many months? 3[Enter]

Membership Type : Adult Number of months: 3
Total charges : $360.00

Press the Enter key to return to the menu.

Program 6-14 (continued)

Local and Global Variables 355

Notice how each function, or module, of Program 6-14 is designed to perform a specific task.

• displayMenu, as its name suggests, displays the menu of choices.
• getChoice gets the user’s menu choice and validates it before returning it to the

main function. The main function can then use the value, knowing it is good, without
having to validate it itself.

• showFees computes and displays membership information and fees.

Notice, in particular, the versatility of the showFees function, which is called in three
different places within the switch statement. It is passed three arguments: a string holding
the membership type, a double holding the monthly fee for that membership type, and an
int holding the number of months being billed. Without these arguments, we would need
a whole set of functions: one to compute adult membership fees, another to compute child
membership fees, and a third to compute senior membership fees. Because we can vary the
information passed as arguments to the function, however, we are able to create a single
general-purpose function that works for all three cases.

Clearing the Screen
Sometimes in a program you want to clear the screen and place the cursor back up at the top.
This is particularly useful when you are writing a menu-driven program. After the user has
made a menu selection and the function to carry out that choice has been executed, it would
be nice to be able to clear the screen before redisplaying the menu. This can be accomplished
by inserting a command in your program that asks the operating system to clear the screen
for you. Here is the command for Unix-based operating systems, such as Linux and Mac OS:

system("clear");

And here is the command for Windows operating systems. You may have noticed that it
appears in line 54 of Program 6-14, just before the menu is displayed.

system("cls");

This removes the previous report from the screen before the user selects a new one to be
displayed. However, it is important not to clear the screen too quickly after a report displays,
or it will disappear before the user has a chance to look at it. Take a look at lines 95 through
98 of Program 6-14. These lines hold the report screen until the user presses the [Enter] key
to signal readiness to return to the menu and begin something new.

6.10 Local and Global Variables

CONCEPT: A local variable is defined inside a function and is not accessible outside the
function. A global variable is defined outside all functions and is accessible
to all functions in its scope.

Local Variables
Variables defined inside a function are local to that function. They are hidden from the
statements in other functions, which normally cannot access them. Program 6-15 shows
that because the variables defined in a function are hidden, other functions may have
separate, distinct variables with the same name.

356 Chapter 6 Functions

Even though there are two variables named num, the program can only “see” one of them at a
time because they are in different functions. When the program is executing in main, the num
variable defined in main is visible. When anotherFunction is called, however, only variables
defined inside it are visible, so the num variable in main is hidden. Figure 6-13 illustrates the
closed nature of the two functions. The boxes represent the scope of the variables.

Program 6-15

1 // This program shows that variables defined in a function
2 // are hidden from other functions.
3 #include <iostream>
4 using namespace std;}
5
6 void anotherFunction(); // Function prototype
7
8 int main()
9 {
10 int num = 1; // Local variable
11
12 cout << "In main, num is " << num << endl;
13 anotherFunction();
14 cout << "Back in main, num is still " << num << endl;
15 return 0;
16 }
17
18 /***
19 * anotherFunction *
20 * This function displays the value of its local variable num. *
21 ***/
22 void anotherFunction()
23 {
24 int num = 20; // Local variable
25
26 cout << "In anotherFunction, num is " << num << endl;
27 }

Program Output
In main, num is 1
In anotherFunction, num is 20
Back in main, num is still 1

Figure 6-13

Function main

int num = 1; This num variable is visible
 only in main

Function anotherFunction

int num = 20; This num variable is visible
 only in anotherFunction

Local and Global Variables 357

Local Variable Lifetime
A local variable exists only while the function it is defined in is executing. This is known as
the lifetime of a local variable. When the function begins, its parameter variables and any
local variables it defines are created in memory, and when the function ends, they are
destroyed. This means that any values stored in a function’s parameters or local variables
are lost between calls to the function.

Initializing Local Variables with Parameter Values
It is possible to use parameter variables to initialize local variables. Sometimes this
simplifies the code in a function. Here is a modified version of the sum function we
looked at earlier. In this version, the function’s parameters are used to initialize the
local variable result.

int sum(int num1, int num2)
{

int result = num1 + num2;
return result;

}

Global Variables
A global variable is any variable defined outside all the functions in a program, including
main. The scope of a global variable is the portion of the program from the variable
definition to the end of the entire program. This means that a global variable can be accessed
by all functions that are defined after the global variable is defined. Program 6-16 shows two
functions, main and anotherFunction, which access the same global variable, num.

Program 6-16

1 // This program shows that a global variable is visible to all functions
2 // that appear in a program after the variable's definition.
3 #include <iostream>
4 using namespace std;
5
6 void anotherFunction(); // Function prototype
7 int num = 2; // Global variable
8
9 int main()
10
11 {
12 cout << "In main, num is " << num << endl;
13 anotherFunction();
14 cout << "Back in main, num is " << num << endl;
15 return 0;
16 }
17 /***
18 * anotherFunction *
19 * This function changes the value of the global variable num. *
20 ***/

(program continues)

358 Chapter 6 Functions

In Program 6-16, num is defined outside of all the functions. Because its definition appears
before the definitions of main and anotherFunction, both functions have access to it.

In C++, unless you explicitly initialize numeric global variables, they are automatically
initialized to zero. Global character variables are initialized to NULL.* In Program 6-17
the variable globalNum is never set to any value by a statement, but because it is global
it is automatically set to zero.

Although global variables can be useful, you should restrict your use of them. When
beginning students first learn to write programs with multiple functions, they are sometimes
tempted to make all their variables global. This is usually because global variables can be
accessed by any function in the program without being passed as arguments. Although this
approach might make a program easier to create, it usually causes problems later.

21 void anotherFunction()
22 {
23 cout << "In anotherFunction, num is " << num << endl;
24 num = 50;
25 cout << "But, it is now changed to " << num << endl;
26 }

Program Output
In main, num is 2
In anotherFunction, num is 2
But, it is now changed to 50
Back in main, num is 50

* The NULL character is stored as ASCII 0.

Program 6-17

1 // This program has an uninitialized global variable.
2 #include <iostream>
3 using namespace std;
4
5 int globalNum; // Global variable automatically set to zero
6
7 int main()
8 {
9 cout << "globalNum is " << globalNum << endl;
10 return 0;
11 }

Program Output
globalNum is 0

NOTE: Remember that local variables are not automatically initialized as global
variables are. The programmer must handle this.

Program 6-16 (continued)

Local and Global Variables 359

The reasons are as follows:

• Global variables make debugging difficult. Any statement in a program can change the
value of a global variable. If you find that the wrong value is being stored in a global
variable, you have to track down every statement that accesses it to determine where the
bad value is coming from. In a program with thousands of lines of code, this can be
difficult.

• Functions that use global variables are usually dependent on those variables. If you want
to use such a function in a different program, most likely you will have to redesign it so it
does not rely on the global variable.

• Global variables make a program hard to understand. A global variable can be modified
by any statement in the program. So to understand any part of the program that uses a
global variable, you have to be aware of all the other parts of the program that access it.

Because of this, you should not use global variables for the conventional purposes of
storing, manipulating, and retrieving data. In most cases, you should declare variables
locally and pass them as arguments to the functions that need to access them.

Global Constants
Although you should try to avoid the use of global variables, it is generally permissible to
use global constants in a program. A global constant is a named constant that is available
to every function in a program. Because a global constant’s value cannot be changed
during the program’s execution, you do not have to worry about the potential hazards
associated with the use of global variables.

Global constants are typically used to represent unchanging values that are needed
throughout a program. For example, suppose a banking program uses a named constant to
represent an interest rate. If the interest rate is used in several functions, it is easier to
create a global constant, rather than a local named constant in each function. This also
simplifies maintenance. If the interest rate changes, only the declaration of the global
constant has to be changed, instead of several local declarations.

Program 6-18 shows an example of how global constants might be used. The program
calculates gross pay, including overtime, for a company’s management trainees. All
trainees earn the same amount per hour. In addition to main, this program has two
functions: getBasePay and getOvertimePay. The getBasePay function accepts the
number of hours worked and returns the amount of pay for the non-overtime hours.
The getOvertimePay function accepts the number of hours worked and returns the
amount of pay for the overtime hours, if any.

Program 6-18

1 // This program calculates gross pay. It uses global constants.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5

(program continues)

360 Chapter 6 Functions

6 // Global constants
7 const double PAY_RATE = 22.55; // Hourly pay rate
8 const double BASE_HOURS = 40.0; // Max non-overtime hours
9 const double OT_MULTIPLIER = 1.5; // Overtime multiplier
10
11 // Function prototypes
12 double getBasePay(double);
13 double getOvertimePay(double);
14
15 int main()
16 {
17 double hours, // Hours worked
18 basePay, // Base pay
19 overtimePay = 0.0, // Overtime pay
20 totalPay; // Total pay
21
22 // Get the number of hours worked
23 cout << "How many hours did you work? ";
24 cin >> hours;
25
26 // Get the amount of base pay
27 basePay = getBasePay(hours);
28
29 // Get overtime pay, if any
30 if (hours > BASE_HOURS)
31 overtimePay = getOvertimePay(hours);
32
33 // Calculate the total pay
34 totalPay = basePay + overtimePay;
35
36 // Display the pay
37 cout << setprecision(2) << fixed << showpoint;
38 cout << "Base pay $" << setw(7) << basePay << endl;
39 cout << "Overtime pay $" << setw(7) << overtimePay << endl;
40 cout << "Total pay $" << setw(7) << totalPay << endl;
41 return 0;
42 }
43
44 /***
45 * getBasePay *
46 * This function uses the hours worked value passed in to *
47 * compute and return an employee's pay for non-overtime hours.*
48 ***/
49 double getBasePay(double hoursWorked)
50 {
51 double basePay;
52
53 if (hoursWorked > BASE_HOURS)
54 basePay = BASE_HOURS * PAY_RATE;
55 else
56 basePay = hoursWorked * PAY_RATE;
57
58 return basePay;
59 }

(program continues)

Program 6-18 (continued)

Local and Global Variables 361

Let’s take a closer look at the program. Three global constants are defined in lines 7, 8, and
9. The PAY_RATE constant is set to the employee’s hourly pay rate, which is 22.55. The
BASE_HOURS constant is set to 40.0, which is the number of hours an employee can work
in a week without getting paid overtime. The OT_MULTIPLIER constant is set to 1.5, which
is the pay rate multiplier for overtime hours. This means that the employee’s hourly pay
rate is multiplied by 1.5 for all overtime hours.

Because these constants are global and are defined before all of the functions in the
program, all the functions may access them. For example, the getBasePay function
accesses the BASE_HOURS constant in lines 53 and 54 and accesses the PAY_RATE constant
in lines 54 and 56. The getOvertimePay function accesses the BASE_HOURS constant in
line 70 and all three constants in line 73.

Local and Global Variables with the Same Name
You cannot have two local variables with the same name in the same function. This
applies to parameter variables as well. A parameter variable is, in essence, a local
variable. So, you cannot give a parameter variable and a local variable in the same
function the same name.

60
61 /**
62 * getOvertimePay *
63 * This function uses the hours worked value passed in *
64 * to compute and return an employee's overtime pay. *
65 **/
66 double getOvertimePay(double hoursWorked)
67 {
68 double overtimePay;
69
70 if (hoursWorked > BASE_HOURS)
71 {
72 overtimePay =
73 (hoursWorked - BASE_HOURS) * PAY_RATE * OT_MULTIPLIER;
74 }
75 else
76 overtimePay = 0.0;
77
78 return overtimePay;
79 }

Program Output with Example Input Shown in Bold
How many hours did you work? 48[Enter]
Base pay $ 902.00
Overtime pay $ 270.60
Total pay $1172.60

Program 6-18 (continued)

362 Chapter 6 Functions

However, you can have a parameter or local variable with the same name as a global
variable or constant. When you do this, the name of the parameter or local variable
shadows the name of the global variable or constant. This means that the global variable
or constant’s name is hidden by the name of the parameter or local variable. So, the global
variable or constant can’t be seen or used in this part of the program. Program 6-19
illustrates this. It has a global constant named BIRDS set to 500 and a local constant in the
california function named BIRDS set to 10000.

When the program is executing in the main function, the global constant BIRDS, which is
set to 500, is visible. The cout statement in line 12 displays “In main there are 500
birds.” (My apologies to folks living in Maine for the difference in spelling.) When the
program is executing in the california function, however, the local constant BIRDS
shadows the global constant BIRDS. When the california function accesses BIRDS, it
accesses the local constant. That is why the cout statement in line 24 displays “In
california there are 10000 birds.”

Program 6-19

1 // This program demonstrates how a local variable or constant
2 // can shadow the name of a global variable or constant.
3 #include <iostream>
4 using namespace std;
5
6 void california(); // Function prototype
7
8 const int BIRDS = 500; // Global constant
9
10 int main()
11 {
12 cout << "In main there are " << BIRDS << " birds.\n";
13 california();
14 return 0;
15 }
16
17 /*******************************
18 * california *
19 *******************************/
20 void california()
21 {
22 const int BIRDS = 10000;
23
24 cout << "In california there are " << BIRDS << " birds.\n";
25 }

Program Output
In main there are 500 birds.
In california there are 10000 birds.

Static Local Variables 363

6.11 Static Local Variables
If a function is called more than once in a program, the values stored in the function’s local
variables do not persist between function calls. This is because local variables are
destroyed when a function terminates and are then re-created when the function starts
again. This is shown in Program 6-20.

Even though in line 25 the last statement in the showLocal function stores 99 in localNum,
the variable is destroyed when the function terminates. The next time the function is called,
localNum is re-created and initialized to 5 all over again.

Sometimes, however, it’s desirable for a program to “remember” what value is stored in
a local variable between function calls. This can be accomplished by making the variable
static. Static local variables are not destroyed when a function returns. They exist for

Program 6-20

1 // This program shows that local variables do not retain
2 // their values between function calls.
3 #include <iostream>
4 using namespace std;
5
6 void showLocal(); // Function prototype
7
8 int main()
9 {
10 showLocal();
11 showLocal();
12 return 0;
13 }
14
15 /**
16 * showLocal *
17 * This function sets, displays, and then changes the *
18 * value of local variable localNum before returning. *
19 **/
20 void showLocal()
21 {
22 int localNum = 5; // Local variable
23
24 cout << "localNum is " << localNum << endl;
25 localNum = 99;
26 }

Program Output
localNum is 5
localNum is 5

364 Chapter 6 Functions

the entire lifetime of the program, even though their scope is only the function in which
they are defined. Program 6-21 uses a static local variable to count how many times a
function is called.

In Program 6-21 numCalls is defined and initialized to 0 in line 23. It is incremented in line
26 once each time the showStatic function is called, and because it is a static variable, it
retains its value between calls. You might think that every time the function is called,
numCalls would be reinitialized to 0. But this does not happen because a variable is only
initialized when it is first created, and static variables are only created once during the
running of the program. If we had not initialized numCalls, it would automatically have
been initialized to 0 because numeric static local variables, like global variables, are
initialized to 0 if the programmer does not initialize them.

Program 6-21

1 // This program uses a static local variable.
2 #include <iostream>
3 using namespace std;
4
5 void showStatic(); // Function prototype
6
7 int main()
8 {
9 // Call the showStatic function five times
10 for (int count = 0; count < 5; count++)
11 showStatic();
12 return 0;
13 }
14
15 /**
16 * showStatic *
17 * This function keeps track of how many times it *
18 * has been called by incrementing a static local *
19 * variable, numCalls, each time it is called. *
20 **/
21 void showStatic()
22 {
23 static int numCalls = 0; // Static local variable
24
25 cout << "This function has been called "
26 << ++numCalls << " times. " << endl;
27 }

Program Output
This function has been called 1 times.
This function has been called 2 times.
This function has been called 3 times.
This function has been called 4 times.
This function has been called 5 times.

Default Arguments 365

Checkpoint

6.16 What is the difference between a static local variable and a global variable?

6.17 What is the output of the following program?

#include <iostream>
using namespace std;

void myFunc(); // Function prototype

int main()
{ int var = 100;

cout << var << endl;
myFunc();
cout << var << endl;
return 0;

}
// Definition of function myFunc
void myFunc()
{ int var = 50;

cout << var << endl;
}

6.18 What is the output of the following program?

#include <iostream>
using namespace std;

void showVar(); // Function prototype

int main()
{ for (int count = 0; count < 10; count++)

showVar();
return 0;

}
// Definition of function showVar
void showVar()
{ static int var = 10;

cout << var << endl;
var++;

}

6.12 Default Arguments

CONCEPT: Default arguments are passed to parameters automatically if no argument is
provided in the function call.

It’s possible to assign default arguments to function parameters. A default argument is
passed to the parameter when the actual argument is left out of the function call. The
default arguments are usually listed in the function prototype. Here is an example:

void showArea(double length = 20.0, double width = 10.0);

366 Chapter 6 Functions

Because parameter names are not required in function prototypes, the example prototype
could also be declared like this:

void showArea(double = 20.0, double = 10.0);

In either case, the default arguments, which must be literal values or constants, have an =
operator in front of them.

Notice that in both example prototypes, the function showArea has two double
parameters. The first is assigned the default argument 20.0 and the second is assigned the
default argument 10.0. Here is the definition of the function:

void showArea(double length, double width)
{

double area = length * width;
cout << "The area is " << area << endl;

}

The default argument for length is 20.0, and the default argument for width is 10.0.
Because both parameters have default arguments, they may optionally be omitted in the
function call, as shown here:

showArea();

In this function call, both default arguments will be passed to the parameters. Parameter
length will receive the value 20.0, and width will receive the value 10.0. The output of
the function will be

The area is 200

The default arguments are only used when the actual arguments are omitted from the
function call. In the following call, the first argument is specified, but the second is omitted:

showArea(12.0);

The value 12.0 will be passed to length, while the default value 10.0 will be passed to
width. The output of the function will be

The area is 120

Of course, all the default arguments may be overridden. In the following function call,
arguments are supplied for both parameters:

showArea(12.0, 5.5);

The output of this function call will be

The area is 66

NOTE: A function’s default arguments should be assigned in the earliest occurrence of
the function name. This will usually be the function prototype. However, if a function
does not have a prototype, default arguments may be specified in the function header.
The showArea function could be defined as follows:

void showArea(double length = 20.0, double width = 10.0)
{

double area = length * width;
cout << "The area is " << area << endl;

}

Default Arguments 367

Program 6-22 illustrates the use of default function arguments. It has a function that displays
asterisks on the screen. This function receives arguments specifying how many rows of
asterisks to display and how many asterisks to print on each row. Default arguments are
provided to display 1 row of 10 asterisks.

Program 6-22

1 // This program demonstrates the use of default function arguments.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype with default arguments
6 void displayStars(int starsPerRow = 10, int numRows = 1);
7
8 int main()
9 {
10 displayStars(); // starsPerRow & numRows use defaults (10 & 1)
11 cout << endl;
12 displayStars(5); // starsPerRow 5. numRows uses default value 1
13 cout << endl;
14 displayStars(7, 3); // starsPerRow 7. numRows 3. No defaults used.
15 return 0;
16 }
17
18 /***
19 * displayStars *
20 * This function displays a rectangle made of asterisks. *
21 * If arguments are not passed to it, it uses the default *
22 * arguments 10 for starsPerRow and 1 for numRows. *
23 ***/
24 void displayStars(int starsPerRow, int numRows)
25 {
26 // Nested loop. The outer loop controls the rows and
27 // the inner loop controls the number of stars per row.
28 for (int row = 1; row <= numRows; row++)
29 {
30 for (int star = 1; star <= starsPerRow; star++)
31 cout << '*';
32 cout << endl;
33 }
34 }

Program Output

368 Chapter 6 Functions

Although C++’s default arguments are very convenient, they are not totally flexible in their
use. When an argument is left out of a function call, all arguments that come after it must
be left out as well. In the displayStars function in Program 6-22, it is not possible to
omit the argument for starsPerRow without also omitting the argument for numRows. For
example, the following function call would be illegal:

displayStars(, 3); // Illegal function call!

It is possible, however, for a function to have some parameters with default arguments
and some without. For example, in the following function, only the last parameter has a
default argument:

// Function prototype
void calcPay(int empNum, double payRate, double hours = 40.0);

// Definition of function calcPay
void calcPay(int empNum, double payRate, double hours)
{

double wages;

wages = payRate * hours;

cout << "Gross pay for employee number ";
cout << empNum << " is " << wages << endl;

}

When calling this function, arguments must always be specified for the first two
parameters (empNum and payRate) because they have no default arguments. Here are
examples of valid calls:

calcPay(769, 15.75); // Uses default argument for hours
calcPay(142, 12.00, 20); // Specifies number of hours

When a function uses a mixture of parameters with and without default arguments, the
parameters with default arguments must be declared last. In the calcPay function, hours
could not have been declared before either of the other parameters. The following
prototypes are illegal:

// Illegal prototype
void calcPay(int empNum, double hours = 40.0, double payRate);

// Illegal prototype
void calcPay(double hours = 40.0, int empNum, double payRate);

Here is a summary of the important points about default arguments:

• The value of a default argument must be a literal value or a named constant.
• When an argument is left out of a function call (because it has a default value), all the

arguments that come after it must also be left out.
• When a function has a mixture of parameters both with and without default

arguments, the parameters with default arguments must be defined last.

Using Reference Variables as Parameters 369

6.13 Using Reference Variables as Parameters

CONCEPT: A reference variable is a variable that references the memory location of
another variable. Any change made to the reference variable is actually
made to the one it references. Reference variables are sometimes used as
function parameters.

Earlier you saw that arguments are normally passed to a function by value. This means
that parameters receive only a copy of the value sent to them, which they store in the
function’s local memory. Any changes made to the parameter’s value do not affect the
value of the original argument.

Sometimes, however, we want a function to be able to change a value in the calling
function (i.e., the function that called it). This can be done by making the parameter a
reference variable.

You learned in Chapter 1 that variables are the names of memory locations that may hold data.
When we use a variable we are accessing data stored in the memory location assigned to it. A
reference variable is an alias for another variable. Instead of having its own memory location
for storing data, it accesses the memory location of another variable. Any change made to the
reference variable’s data is actually made to the data stored in the memory location of the other
variable. When we use a reference variable as a parameter, it becomes an alias for the
corresponding variable in the argument list. Any change made to the parameter is actually
made to the variable in the calling function. When data is passed to a parameter in this manner,
the argument is said to be passed by reference.

Reference variables are defined like regular variables, except there is an ampersand (&)
between the data type and the name. For example, the following function definition makes
the parameter refVar a reference variable:

void doubleNum(int &refVar)
{

refVar *= 2;
}

You may place the space either before or after the ampersand. The doubleNum function
heading could also have been written like this:

void doubleNum(int& refVar)

This function doubles refVar by multiplying it by 2. Because refVar is a reference
variable, this action is actually performed on the variable that was passed to the function
as an argument.

The prototype for a function with a reference parameter must have an ampersand as well.
As in the function header, it goes between the data type and the variable name. If the

NOTE: The variable refVar is called “a reference to an int.”

370 Chapter 6 Functions

variable name is omitted from the prototype, the ampersand simply follows the data type.
All of the following prototypes for the doubleNum function are correct.

void doubleNum(int &refVar);
void doubleNum(int& refVar);
void doubleNum(int &);
void doubleNum(int&);

Your instructor will let you know which form to use.

Program 6-23 demonstrates the use of a parameter that is a reference variable.

NOTE: The ampersand must appear in both the prototype and the header of any function
that uses a reference variable as a parameter. It does not appear in the function call.

Program 6-23

1 // This program uses a reference variable as a function parameter.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype. The parameter is a reference variable.
6 void doubleNum(int &refVar);
7
8 int main()
9 {
10 int value = 4;
11
12 cout << "In main, value is " << value << endl;
13 cout << "Now calling doubleNum..." << endl;
14 doubleNum(value);
15 cout << "Now back in main, value is " << value << endl;
16 return 0;
17 }
18
19 /**
20 * doubleNum *
21 * This function's parameter is a reference variable. The & *
22 * tells us that. This means it receives a reference to the *
23 * original variable passed to it, rather than a copy of that *
24 * variable's data. The statement refVar *= 2 is doubling the *
25 * data stored in the value variable defined in main. *
26 **/
27 void doubleNum (int &refVar)
28 {
29 refVar *= 2;
30 }

Program Output
In main, value is 4
Now calling doubleNum...
Now back in main, value is 8

Using Reference Variables as Parameters 371

The parameter refVar in Program 6-23 “points” to the value variable in function main.
When a program works with a reference variable, it is actually working with the variable it
references, or points to. This is illustrated in Figure 6-14.

Using reference variables as function parameters is especially useful when the purpose of
the function is to accept input values to be stored in variables of the calling function.
Another use of reference parameters is when multiple values must be sent back from the
function. If the function is computing and sending back a single value, it is generally
considered more appropriate to use a value-returning function and send the value back
with a return statement.

Program 6-24 is a modification of Program 6-23. It adds a function getNum, which accepts
an input from the user and stores it in userNum. However, the parameter userNum is a
reference to main’s variable value, so that is where the input data is actually stored.
Program 6-24 also rewrites the function doubleNum as a value-returning function. Notice
in line 19 how main must now store the value when doubleNum returns it.

Figure 6-14

Program 6-24

1 // This program uses 2 functions: a void function with a reference
2 // variable as a parameter, and a value-returning function.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void getNum(int &);
8 int doubleNum(int);
9
10 int main()
11 {
12 int value;
13
14 // Call getNum to get a number and store it in value
15 getNum(value);
16
17 // Call doubleNum, passing it the number stored in value
18 // Assign value the number returned by the function
19 value = doubleNum(value);
20
21 // Display the resulting number
22 cout << "That value doubled is " << value << endl;
23 return 0;
24 }
25

(program continues)

Reference variable

Original argument 4

372 Chapter 6 Functions

If a function has more than one parameter that is a reference variable, you must use an
ampersand for each of them in both the prototype and the function header. Here is the
prototype for a function that uses four reference variable parameters:

void addThree(int& num1, int& num2, int& num3, int& sum);

and here is the function definition:

void addThree(int& num1, int& num2, int& num3, int& sum)
{

cout << "Enter three integer values: ";
cin >> num1 >> num2 >> num3;
sum = num1 + num2 + num3;

}

Notice, however, that the addThree function really only needed one reference parameter,
sum. The other three parameters could have received their arguments by value, because the
function was not changing them.

26 /**
27 * getNum *
28 * This function stores user input data in main's value *
29 * variable by using a reference variable as a parameter. *
30 **/
31 void getNum(int &userNum)
32 {
33 cout << "Enter a number: ";
34 cin >> userNum;
35 }
36
37 /***
38 * doubleNum *
39 * This function doubles the number it receives as an *
40 * argument and returns it to main thru a return statement.*
41 ***/
42 int doubleNum (int number)
43 {
44 return number * 2;
45 }

Program Output with Example Input Shown in Bold
Enter a number: 12[Enter]
That value doubled is 24

NOTE: Only variables may be passed by reference. If you attempt to pass a non-variable
argument, such as a literal, a constant, or an expression, into a reference parameter, an
error will result.

Program 6-24 (continued)

Using Reference Variables as Parameters 373

When to Pass Arguments by Reference and When to Pass
Arguments by Value
New programmers often have a problem determining when an argument should be passed
to a function by reference and when it should be passed by value. The problem is further
compounded by the fact that if a value must be “sent back” to the calling function there
are two ways to do it: by using a reference parameter or by using a return statement. Here
are some general guidelines.

• When an argument is a constant, it must be passed by value. Only variables can be
passed by reference.

• When a variable passed as an argument should not have its value changed, it should
be passed by value. This protects it from being altered.

• When exactly one value needs to be “sent back” from a function to the calling
routine, it should generally be returned with a return statement rather than through
a reference parameter.

• When two or more variables passed as arguments to a function need to have their
values changed by that function, they should be passed by reference.

• When a copy of an argument cannot reasonably or correctly be made, such as when
the argument is a file stream object, it must be passed by reference.

Here are three common instances when reference parameters are used.

• When data values being input in a function need to be known by the calling function.
• When a function must change existing values in the calling function.
• When a file stream object is passed to a function.

Program 6-25 illustrates the first two of these uses. The getNums function uses reference
variables as parameters so that it can store the values it inputs into the main function’s small
and big variables. The orderNums function uses reference variables as parameters so that when
it swaps the two items passed to it, the values will actually be swapped in the main function.

WARNING! Don’t get carried away with using reference variables as function
parameters. Only use them where absolutely needed. Any time you allow a function to
alter a variable that’s outside the function, you are creating potential debugging problems.

Program 6-25

1 // This program illustrates two appropriate uses
2 // of passing arguments by reference.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void getNums (int&, int&); // Uses reference parameters to input
8 // values in the function, but to actually
9 // store them in variables defined in main
10
11 void orderNums(int&, int&); // Uses reference parameters to change the
12 // values of existing values stored in main

(program continues)

374 Chapter 6 Functions

13
14 int main()
15 {
16 int small, big;
17
18 // Call getNums to input the two numbers
19 getNums(small, big);
20
21 // Call orderNums to put the numbers in order
22 orderNums(small, big);
23
24 // Display the new values
25 cout << "The two input numbers ordered smallest to biggest are "
26 << small << " and " << big << endl;
27 return 0;
28 }
29
30 /**
31 * getNums *
32 * The arguments passed into input1 and input2 are passed *
33 * by reference so that the values entered into them will *
34 * actually be stored in the memory space of main's small *
35 * and big variables. *
36 **/
37 void getNums(int &input1, int &input2)
38 {
39 cout << "Enter an integer: ";
40 cin >> input1;
41 cout << "Enter a second integer: ";
42 cin >> input2;
43 }
44
45 /**
46 * orderNums *
47 * The arguments passed into num1 and num2 are passed by *
48 * reference so that if they are out of order main's *
49 * variables small and big can be swapped. Just swapping *
50 * num1 and num2 in orderNum's local memory would not *
51 * accomplish the desired result. *
52 **/
53 void orderNums (int &num1, int &num2)
54 {
55 int temp;
56
57 if (num1 > num2) // If the numbers are out of order, swap them
58 { temp = num1;
59 num1 = num2;
60 num2 = temp;
61 }
62 }

(program continues)

Program 6-25 (continued)

Using Reference Variables as Parameters 375

Passing Files to Functions
As mentioned previously, reference parameters should always be used when a file stream
object is passed to a function. Program 6-26 illustrates how to pass a file to a function. The
weather.dat file used by the program contains the following seven values: 72 83 71 69
75 77 70.

Program Output With Example Input Shown in Bold
Enter an integer: 10[Enter]
Enter a second integer: 5[Enter]
The two input numbers ordered smallest to biggest are 5 and 10

Program 6-26

1 // This program reads a set of daily high temperatures from a file
2 // and displays them. It demonstrates how to pass a file to a
3 // function. The function argument, which is a file stream object,
4 // must be passed by reference.
5 #include <iostream>
6 #include <fstream>
7 using namespace std;
8
9 void readFile(ifstream&); // Function prototype
10
11 int main()
12 {
13 ifstream dataIn;
14
15 dataIn.open("weather.dat");
16 if (dataIn.fail())
17 cout << "Error opening data file.\n";
18 else
19 { readFile(dataIn);
20 dataIn.close();
21 }
22 return 0;
23 }
24
25 /**
26 * readFile *
27 * This function reads and displays the contents of the *
28 * input file whose file stream object is passed to it. *
29 **/

(program continues)

Program 6-25 (continued)

376 Chapter 6 Functions

Checkpoint

6.19 What kinds of values may be specified as default arguments?

6.20 Write the prototype and header for a function called compute. The function should
have three parameters: an int, a double, and a long (not necessarily in that order).
The int parameter should have a default argument of 5, and the long parameter
should have a default argument of 65536. The double parameter should not have
a default argument.

6.21 Write the prototype and header for a function called calculate. The function
should have three parameters: an int, a reference to a double, and a long (not
necessarily in that order.) Only the int parameter should have a default
argument, which is 47.

6.22 What is the output of the following program?

#include <iostream>
using namespace std;

void test(int = 2, int = 4, int = 6);

int main()
{

test();
test(6);
test(3, 9);
test(1, 5, 7);
return 0;

}

void test (int first, int second, int third)
{

first += 3;
second += 6;
third += 9;
cout << first << " " << second << " " << third << endl;

}

30 void readFile(ifstream &someFile)
31 {
32 int temperature;
33
34 while (someFile >> temperature)
35 cout << temperature << " ";
36 cout << endl;
37 }

Program Output
72 83 71 69 75 77 70

Program 6-26 (continued)

Overloading Functions 377

6.23 The following program asks the user to enter two numbers. What is the output of
the program if the user enters 12 and 14?

#include <iostream>
using namespace std;

void func1(int &, int &);
void func2(int &, int &, int &);
void func3(int, int, int);

int main()
{

int x = 0, y = 0, z = 0;
cout << x << " " << y << z << endl;
func1(x, y);
cout << x << " " << y << z << endl;
func2(x, y, z);
cout << x << " " << y << z << endl;
func3(x, y, z);
cout << x << " " << y << z << endl;
return 0;

}

void func1(int &a, int &b)
{ cout << "Enter two numbers: ";

cin >> a >> b;
}

void func2(int &a, int &b, int &c)
{ b++;

c--;
a = b + c;

}

void func3(int a, int b, int c)
{ a = b - c;
}

6.14 Overloading Functions

CONCEPT: Two or more functions may have the same name, as long as their parameter
lists are different.

Sometimes you will create two or more functions that perform the same operation, but use
a different set of parameters, or parameters of different data types. For instance, in
Program 6-12 there is a square function that uses a double parameter. But suppose you
also wanted a square function that works exclusively with integers and accepts an int as
its argument. Both functions would do the same thing, return the square of their argument.
The only difference is the data type involved in the operation. If you were to use both these
functions in the same program, you could assign a unique name to each function. For
example, the function that squares an int might be named squareInt, and the one that

378 Chapter 6 Functions

squares a double might be named squareDouble. C++, however, allows you to overload
function names. That means you may assign the same name to multiple functions, as long
as their parameter lists are different. Program 6-27 uses two overloaded square functions.

Program 6-27

1 // This program uses overloaded functions.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 // Function prototypes
7 int square(int);
8 double square(double);
9
10 int main()
11 {
12 int userInt;
13 double userReal;
14
15 // Get an int and a double
16 cout << "Enter an integer and a floating-point value: ";
17 cin >> userInt >> userReal;
18
19 // Display their squares
20 cout << "Here are their squares: ";
21 cout << fixed << showpoint << setprecision(2);
22 cout << square(userInt) << " and " << square(userReal) << endl;
23 return 0;
24 }
25
26 /***
27 * overloaded function square *
28 * This function returns the square of the value *
29 * passed into its int parameter. *
30 ***/
31 int square(int number)
32 {
33 return number * number;
34 }
35
36 /***
37 * overloaded function square *
38 * This function returns the square of the value *
39 * passed into its double parameter. *
40 ***/
41 double square(double number)
42 {
43 return number * number;
44 }

Program Output with Example Input Shown in Bold
Enter an integer and a floating-point value: 12 4.2[Enter]
Here are their squares: 144 and 17.64

Overloading Functions 379

Here are the headers for the square functions used in Program 6-27:

int square(int number)
double square(double number)

In C++, each function has a signature. The function signature is the name of the function
and the data types of the function’s parameters in the proper order. The square functions
in Program 6-27 would have the following signatures:

square(int)
square(double)

When an overloaded function is called, C++ uses the function signature to distinguish
it from other functions with the same name. In Program 6-27, when an int argument
is passed to square, the version of the function that has an int parameter is called.
Likewise, when a double argument is passed to square, the version with a double
parameter is called.

Note that the function’s return value is not part of the signature. The following functions
could not be used in the same program because their parameter lists aren’t different.

int square(int number)
{

return number * number
}

double square(int number) // Wrong! Parameter lists must differ
{

return number * number
}

Overloading is also convenient when there are similar functions that use a different
number of parameters. For example, consider a program with functions that return the
sum of integers. One returns the sum of two integers, another returns the sum of three
integers, and yet another returns the sum of four integers. Here are their function headers:

int sum(int num1, int num2)
int sum(int num1, int num2, int num3)
int sum(int num1, int num2, int num3, int num4)

Because the number of parameters is different in each, they may all be used in the same
program. Program 6-28 uses two functions, each named calcWeeklyPay, to determine an
employee’s gross weekly pay. One version of the function uses an int and a double
parameter, while the other version only uses a double parameter.

Program 6-28

1 // This program demonstrates overloaded functions to calculate
2 // the gross weekly pay of hourly-wage or salaried employees.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6

(program continues)

380 Chapter 6 Functions

7 // Function prototypes
8 char getChoice();
9 double calcWeeklyPay(int, double);
10 double calcWeeklyPay(double);
11
12 int main()
13 {
14 char selection; // Menu selection
15 int worked; // Weekly hours worked
16 double rate, // Hourly pay rate
17 yearly; // Annual salary
18
19 // Set numeric output formatting
20 cout << fixed << showpoint << setprecision(2);
21
22 // Display the menu and get a selection
23 cout << "Do you want to calculate the weekly pay of\n";
24 cout << "(H) an hourly-wage employee, or \n";
25 cout << "(S) a salaried employee? ";
26 selection = getChoice();
27
28 // Process the menu selection
29 switch (selection)
30 {
31 // Hourly employee
32 case 'H' :
33 case 'h' : cout << "How many hours were worked? ";
34 cin >> worked;
35 cout << "What is the hourly pay rate? ";
36 cin >> rate;
37 cout << "The gross weekly pay is $";
38 cout << calcWeeklyPay(worked, rate) << endl;
39 break;
40
41 // Salaried employee
42 case 'S' :
43 case 's' : cout << "What is the annual salary? ";
44 cin >> yearly;
45 cout << "The gross weekly pay is $";
46 cout << calcWeeklyPay(yearly) << endl;
47 }
48 return 0;
49 }
50
51 /***
52 * getChoice *
53 * Accepts and returns user's validated menu choice. *
54 ***/
55 char getChoice()
56 {
57 char letter; // Holds user's letter choice
58

(program continues)

Program 6-28 (continued)

Overloading Functions 381

59 // Get the user's choice
60 cin >> letter;
61
62 // Validate the choice
63 while (letter != 'H' && letter != 'h'
64 && letter != 'S' && letter != 's')
65 {
66 cout << "Enter H or S: ";
67 cin >> letter;
68 }
69 // Return the choice
70 return letter;
71 }
72
73 /***
74 * overloaded function calcWeeklyPay *
75 * This function calculates and returns the gross weekly pay *
76 * of an hourly-wage employee. Parameters hours and payRate *
77 * hold the number of hours worked and the hourly pay rate. *
78 ***/
79 double calcWeeklyPay(int hours, double payRate)
80 {
81 return hours * payRate;
82 }
83
84 /***
85 * overloaded function calcWeeklyPay *
86 * This function calculates and returns the gross weekly pay *
87 * of a salaried employee. The parameter annSalary holds the *
88 * employee's annual salary. *
89 ***/
90 double calcWeeklyPay(double annSalary)
91 {
92 return annSalary / 52.0;
93 }

Program Output with Example Input Shown in Bold
Do you want to calculate the weekly pay of
(H) an hourly-wage employee, or
(S) a salaried employee? H[Enter]
How many hours were worked? 40[Enter]
What is the hourly pay rate? 18.50[Enter]
The gross weekly pay is $740.00

Program Output with Other Example Data Shown in Bold
Do you want to calculate the weekly pay of
(H) an hourly-wage employee, or
(S) a salaried employee? S[Enter]
What is the annual salary? 48000.00[Enter]
The gross weekly pay is $923.08

Program 6-28 (continued)

382 Chapter 6 Functions

6.15 The exit() Function

CONCEPT: The exit() function causes a program to terminate, regardless of which
function or control mechanism is executing.

A C++ program stops executing when a return statement in function main is encountered.
When other functions end, however, the program does not stop. Control of the program
goes back to the place immediately following the function call. Sometimes, however, rare
circumstances make it necessary to terminate a program in a function other than main. To
accomplish this, the exit function is used.

When the exit function is called, it causes the program to stop, regardless of which
function contains the call. Program 6-29 demonstrates this.

Program 6-29

1 // This program shows how the exit function causes a program
2 // to stop executing.
3 #include <iostream>
4 #include <cstdlib> // Needed to use the exit function
5 using namespace std;
6
7 // Function prototype
8 void someFunction();
9
10 int main()
11 {
12 someFunction();
13 return 0;
14 }
15
16 /**
17 * someFunction *
18 * This function demonstrates that exit() can be used to end *
19 * a program from a function other than main. This is not *
20 * considered good programming practice and should normally *
21 * be done only to signal that an error condition has occurred. *
22 **/
23 void someFunction()
24 {
25 cout << "This program terminates with the exit function.\n";
26 cout << "Bye!\n";
27 exit(0);
28 cout << "This message will never be displayed\n";
29 cout << "because the program has already terminated.\n";
30 }

Program Output
This program terminates with the exit function.
Bye!

The exit() Function 383

To use the exit function, you must include the cstdlib header file. Notice the function
takes an integer argument. This argument is the exit code you wish the program to pass
back to the computer’s operating system. This code is sometimes used outside of the
program to indicate whether the program ended successfully or as the result of a failure.
In Program 6-29, the exit code zero is passed. This code, which is also normally used in
the return statement at the end of a program’s main function, indicates a successful
program termination. Another way to signal this is to use the C++ named constant
EXIT_SUCCESS. This constant, which is defined in cstdlib, is used with the exit
function like this:

exit(EXIT_SUCCESS);

However, because it is considered good programming practice to always terminate a
program at the end of the main function where possible, many programmers use exit()
only to handle error conditions. In this case, the error code should indicate that a problem
has occurred. This can be done by using another C++ named constant, EXIT_FAILURE.
This named constant, also defined in cstdlib, is defined as the termination code that
commonly represents an unsuccessful exit under the current operating system. Here is an
example of its use:

exit(EXIT_FAILURE);

Checkpoint

6.24 Is it required that overloaded functions have different return types, different
parameter lists, or both?

6.25 What is the output of the following program?

#include <iostream>
#include <cstdlib>
using namespace std;

void showVals(double, double);

int main()
{

double x = 1.2, y = 4.5;

showVals(x, y);
return 0;

}

void showVals(double p1, double p2)
{

cout << p1 << endl;
exit(0);
cout << p2 << endl;

}

WARNING! The exit() function unconditionally shuts down your program.
Because it bypasses a program’s normal logical flow, you should use it with caution.

384 Chapter 6 Functions

6.26 What is the output of the following program?

#include <iostream>
using namespace std;
int manip(int);
int manip(int, int);
int manip(int, double);

int main()
{

int x = 2, y= 4, z;
double a = 3.1;

z = manip(x) + manip(x, y) + manip(y, a);
cout << z << endl;
return 0;

}

int manip(int val)
{

return val + val * 2;
}

int manip(int val1, int val2)
{

return (val1 + val2) * 2;
}

int manip(int val1, double val2)
{

return val1 * static_cast<int>(val2);
}

6.16 Stubs and Drivers
Stubs and drivers are very helpful tools for testing and debugging programs that use
functions. They allow you to test the individual functions in a program, in isolation from
the parts of the program that call the functions.

A stub is a dummy function that is called instead of the actual function it represents. It
usually displays a test message acknowledging that it was called, and nothing more. For
example, if a stub were used for the showFees function in Program 6-14 (the modular
health club membership program), it might look like this:

// Stub for the showFees function
void showFees(string memberType, double rate, int months)
{
 cout << "The function showFees was called with arguments:\n"
 << "Member type: " << memberType << endl
 << "rate: " << rate << endl
 << "months: " << months << endl;
}

Stubs and Drivers 385

Here is example output of the program if it were run with this stub instead of with the
actual showFees function. Input is shown in bold.

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

1[Enter]
For how many months? 3[Enter]
The function showFees was called with arguments:
Member type: Adult
rate: 120.00
months: 3

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

4[Enter]

As you can see, by replacing an actual function with a stub, you can concentrate your
testing efforts on the parts of the program that call the function. Primarily, the stub allows
you to determine whether your program is calling a function when you expect it to and
confirm that valid values are being passed to the function. If the stub represents a function
that returns a value, then the stub should return a test value. This helps you confirm that
the return value is being handled properly. When the parts of the program that call a
function are debugged to your satisfaction, you can move on to testing and debugging the
actual functions themselves. This is where drivers become useful.

A driver is a program that tests a function by simply calling it. If the function accepts any
arguments, the driver passes test data. If the function returns a value, the driver displays
the return value on the screen. This allows you to see how the function performs in
isolation from the rest of the program it will eventually be part of. Program 6-30 is a driver
for testing the showFees function in the health club membership program.

Program 6-30

1 // This program is a driver for testing the showFees function.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 // Function prototype
7 void showFees(string, double, int);
8

(program continues)

386 Chapter 6 Functions

9 int main()
10 {
11 cout << "Calling the showFees function with arguments "
12 << "Adult, 120.0, 3.\n";
13 showFees("Adult", 120.0, 3);
14
15 cout << "Calling the showFees function with arguments "
16 << "Child, 60.0, 2.\n";
17 showFees("Child", 60.0, 2);
18
19 cout << "Calling the showFees function with arguments "
20 << "Senior, 100.0, 4.\n";
21 showFees("Senior", 100.0, 4);
22
23 return 0;
24 }
25
26 /***
27 * showFees *
28 * This function uses the membership type, monthly *
29 * rate and number of months passed to it as arguments *
30 * to compute and print a member's total charges. *
31 ***/
32 void showFees(string memberType, double rate, int months)
33 {
34 cout << endl
35 << "Membership Type : " << memberType << " "
36 << "Monthly rate $" << rate << endl
37 << "Number of months: " << months << endl
38 << "Total charges : $"<< (rate * months)
39 << endl << endl;
40 }

Program Output
Calling the showFees function with arguments Adult, 120.0, 3.

Membership Type : Adult Monthly rate $120
Number of months: 3
Total charges : $360

Calling the showFees function with arguments Child, 60.0, 2.

Membership Type : Child Monthly rate $60
Number of months: 2
Total charges : $120

Calling the showFees function with arguments Senior, 100.0, 4.

Membership Type : Senior Monthly rate $100
Number of months: 4
Total charges : $400

Program 6-30 (continued)

Little Lotto Case Study 387

As shown in Program 6-30, a driver can be used to thoroughly test a function. It can
repeatedly call the function with different test values as arguments. When the function
performs as desired, it can be placed into the actual program it will be part of.

6.17 Little Lotto Case Study

Problem Statement
The mathematics department of Jefferson Junior High School wants a program
developed that will illustrate basic probability for their students in an entertaining
way. In particular they want a program called “Little Lotto” that simulates a lottery. In
this program students can specify the number of numbers in the selection set (1–12)
and the number of numbers patrons must pick and match to the winning numbers
(between 1 and the size of the selection set). The order of the selected numbers is not
significant. It will report the patron’s chances of winning as both a number and a
probability.

Example Output

This example output clarifies exactly what the department wants the program to do.

This program will tell you your probability of winning "Little Lotto".

How many numbers (1-12) are there to pick from? 12
How many numbers must you pick to play? 5

Your chance of winning the lottery is 1 chance in 792.
This is a probability of 0.0013

Program Design

Program Steps

The program must carry out the following general steps:

1. Get and validate how many numbers there are to choose from (n).
2. Get and validate how many of these numbers must be selected (k).
3. Compute the number of ways a set of k items can be selected from a set of n items.
4. Report to the player his chance of winning and his probability of winning.

Program Modules

The program will be designed as a set of modules, each having a specific function. Table 6-1
describes the modules that will be used:

388 Chapter 6 Functions

Program Organization

In previous chapters hierarchy charts were used to illustrate the relationship of actions that
a program must carry out. However, they are more commonly used to illustrate the
relationship of program modules in a program that is organized into a set of functions. The
hierarchy chart in Figure 6-15 illustrates the organization of the Little Lotto program.
Notice that it clarifies which functions call which other functions.

Variables whose values will be input

int pickFrom // Number of numbers available to select from
int numPicks // Number of numbers that must be chosen

Variables and values whose values will be output

long int ways // Number of different possible selections
 // Only 1 of these can "win"

1.0 / ways // Probability of winning

Detailed Pseudocode for Each Module

In a modular program, a separate pseudocode routine should be created to capture the
logic of each function. Here is the pseudocode for each function in the Little Lotto
program.

Table 6-1 Little Lotto Program Modules

Function Description

main This function explains the “game”, organizes calls to other functions,
and reports results.

getLotteryInfo This function gets and validates the number of numbers to select from (n)
and the number that must be chosen (k).

computeWays This function computes the number of different sets of size k that can be
chosen from n numbers.

factorial This function computes factorials. It is used by computeWays.

Figure 6-15

main

getLotteryInfo computeWays

factorial

Little Lotto Case Study 389

main
Display information on what the program does
Call getLotteryInfo // Puts value in pickFrom and numPicks variables
Call computeWays // Returns number of ways numbers can be selected
Store the returned result in the ways variable
Display ways and 1 / ways

End main

getLotteryInfo // Places inputs in reference variables
Input pickFrom
While pickFrom < 1 or pickFrom > 12

Display an error message
Input pickFrom

End while
Input numPicks
While numPicks < 1 or numPicks > pickFrom

Display an error message
Input pickFrom

End while
End getLotteryInfo

computeWays // Receives pickFrom as n and numPicks as k
Call factorial 3 times to get information for its calculations
Return factorial(n)

factorial(k) * factorial (n-k)
End computeWays

factorial // Receives number whose factorial is to be calculated
factTotal = 1
Loop for count = number down to 1

factTotal = factTotal * count
End Loop
Return factTotal

End factorial

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 6-31.

Program 6-31

1 // This program finds the probability of winning a "mini" lottery when
2 // the user's set of numbers must exactly match the set drawn by the
3 // lottery organizers. In addition to main, it uses three functions.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 // Function prototypes
9 void getLotteryInfo(int&, int&);
10 long int computeWays(int, int);
11 long int factorial(int);
12

(program continues)

390 Chapter 6 Functions

13 int main()
14 {
15 int pickFrom, // The number of numbers to pick from
16 numPicks; // The number of numbers to select
17 long int ways; // The number of different possible
18 // ways to pick the set of numbers
19
20 cout << "This program will tell you your probability of "
21 << "winning \"Little Lotto\". \n";
22 getLotteryInfo(pickFrom, numPicks);
23 ways = computeWays(pickFrom, numPicks);
24
25 cout << fixed << showpoint << setprecision(4);
26 cout << "\nYour chance of winning the lottery is "
27 << "1 chance in " << ways << ".\n";
28 cout << "This is a probability of " << (1.0 / ways) << "\n";
29 return 0;
30 }
31
32 /***
33 * getLotteryInfo *
34 * Gets and validates lottery info. from the user and places it in *
35 * reference parameters referencing variables in the main function.*
36 ***/
37 void getLotteryInfo(int &pickFrom, int &numPicks)
38 {
39 cout << "\nHow many numbers (1-12) are there to pick from? ";
40 cin >> pickFrom;
41 while (pickFrom < 1 || pickFrom > 12)
42 {
43 cout << "There must be between 1 and 12 numbers.\n"
44 << "How many numbers (1-12) are there to pick from? ";
45 cin >> pickFrom;
46 }
47 cout << "How many numbers must you pick to play? ";
48 cin >> numPicks;
49 while (numPicks < 1 || numPicks > pickFrom)
50 {
51 if (numPicks < 1) // too few picks
52 cout << "You must pick at least one number.\n";
53 else // too many picks
54 cout << "You must pick " << pickFrom << " or fewer numbers.\n";
55
56 cout << "How many numbers must you pick to play? ";
57 cin >> numPicks;
58 }
59 }
60

(program continues)

Program 6-31 (continued)

Little Lotto Case Study 391

High Adventure Travel Agency Case Study
The following additional case study, which contain applications of material introduced in
Chapter 6, can be found on the book’s companion website. It demonstrates all the steps
needed to develop a modular program that calculates and itemizes charges for the vacation
packages offered by the High Adventure Travel Agency.

61 /***
62 * computeWays *
63 * Computes and returns the number of different possible sets *
64 * of k numbers that can be chosen from a set of n numbers. *
65 * The formula for this is n! *
66 * -------- *
67 * k!(n-k)! *
68 ***/
69 // Note that the computation is done in a way that does not require
70 // multiplying two factorials together. This is done to prevent any
71 // intermediate result becoming so large that it causes overflow.
72 long int computeWays(int n, int k)
73 {
74 return (factorial(n) / factorial(k) / factorial (n-k));
75 }
76
77 /***
78 * factorial *
79 * Computes and returns the factorial of the non-negative integer *
80 * passed to it. n! means n * (n-1) * (n-2) ... * 1 *
81 * 0! is a special case and is defined to be 1. *
82 ***/
83 // Notice that if number equals 0, the loop condition will
84 // initially be false and the loop will never be executed.
85 // This will, correctly, leave factTotal = 1.
86
87 long int factorial(int number)
88 {
89 long int factTotal = 1;
90
91 for (int count = number; count >= 1; count--)
92 {
93 factTotal *= count;
94 }
95 return factTotal;
96 }

Program Output with Example Input Shown in Bold
This program will tell you your probability of winning "Little Lotto".

How many numbers (1-12) are there to pick from? 10[Enter]
How many numbers must you pick to play? 3[Enter]

Your chance of winning the lottery is 1 chance in 120.
This is a probability of 0.0083

Program 6-31 (continued)

392 Chapter 6 Functions

6.18 Tying It All Together: Glowing Jack-o-lantern
Functions are not just practical. They are fun. True, they let you simplify programs by breaking
them into smaller modules. And they minimize repetitive code. If you need to do the same thing
in several different places in your program, you can just write a function to do it, then call that
function from different places in the program instead of writing the same block of code more
than once. But they also let you do new and fun things. This is because even though the function
code is the same, it will behave differently every time it is called with different arguments.

For example, we could write the following printSpaces function and each time it will
print a different number of spaces depending on the value passed in to its parameter n.

void printSpaces(int n)
{
 for (int space = 1; space <= n; space++)
 cout << " ";
}

Now that may not sound like fun, but let’s see how we can use it and other functions to
enhance the smiley face we created in Chapter 2 and the colored alphabet program we
created in Chapter 5. We will start with the alphabet program and use the simple
printSpaces function shown above to make the letters appear to “climb down a set of
stairs” by moving them across the screen as they are displayed. So that they will all fit on
one screen, we will print them in pairs.

Recall from Chapter 5, however, that the function we are using to display output in color uses
a Windows operating system function, so this program will only run on Windows systems.

Program 6-32

1 // This program writes the ABCs in green, red, and yellow,
2 // displaying them diagonally across the screen so they
3 // appear to be climbing down a staircase.
4 #include <iostream>
5 #include <windows.h> // Needed to display colors and call Sleep
6 using namespace std;
7
8 // Prototype
9 void printSpaces(int n);
10
11 int main()
12 {
13 // Bright Green = 10 Bright Red = 12 Bright Yellow = 14
14
15 // Get the handle to standard output device (the console)
16 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
17
18 // Write the ABCs using 3 colors
19 // Display 2 per line, stair stepping across the screen
20 int color = 10; // Starting color = green

(program continues)

Tying It All Together: Glowing Jack-o-lantern 393

21 for (char letter = 'A'; letter <= 'Z'; letter+=2)
22 {
23 SetConsoleTextAttribute (screen, color); // Set the color
24 printSpaces(letter-'A'); // Indent
25 cout << letter // Print 2 letters
26 << static_cast<char>(letter+1) << endl;
27 color +=2; // Choose next color
28 if (color > 14)
29 color = 10;
30
31 Sleep(280); // Pause between characters to watch them appear
32 }
33 // Restore normal text attribute (i.e. white)
34 SetConsoleTextAttribute(screen, 7);
35 return 0;
36 }
37
38 /**
39 * printSpaces *
40 * Prints n spaces where n is passed as an *
41 * argument to the function. *
42 **/
43 void printSpaces(int n)
44 {
45 for (int space = 1; space <= n; space++)
46 cout << " ";
47 }

Program 6-32 (continued)

Run the program and view the results.
The output display should look like
the one below, but in color of course.

AB

 CD

EF

GH

IJ

KL

MN

OP

QR

ST

UV

WX

YZ

Now, can you modify the program to make
the letters appear to climb UP the stairs? The
program will still print starting with the top
line and move down the screen, but the final
display should look like this:

If you have trouble figuring this out, the
solution can be found in the Program 6-32B.
cpp file on the book’s companion website.

AB

 CD

EF

GH

IJ

KL

MN

OP

QR

ST

UV

WX

YZ

394 Chapter 6 Functions

Now let’s use a function to turn the Smiley Face we created in Chapter 2’s Tying It All
Together into a spooky Jack-o-lantern glowing in the dark. We’ll let the user pick what
color to display it in.

Program 6-33

1 // This program displays a Jack-o-lantern glowing in the dark.
2 // It lets the user select what color it should be.
3 #include <iostream>
4 #include <windows.h> // Needed to display colors
5 using namespace std;
6
7 // Function prototypes
8 void displayMenu();
9 int getChoice();
10 void makeJackOLantern();
11
12 // Global constants
13 const int QUIT = 6, MAX_CHOICE = 6;
14
15 int main()
16 {
17 int colorChoice;
18 // Get the handle to standard output device (the console)
19 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
20
21 do
22 { SetConsoleTextAttribute(screen, 7); // Set to white on black
23 displayMenu(); // for menu display
24 colorChoice = getChoice();
25
26 if (colorChoice != QUIT)
27 { SetConsoleTextAttribute(screen, colorChoice + 9);
28 makeJackOLantern();
29 }
30 } while (colorChoice != QUIT);
31 return 0;
32 }
33
34 /**
35 * displayMenu *
36 * This function displays the menu of color choices.*
37 **/
38 void displayMenu()
39 { system("cls"); // Clear the screen
40 cout << "I will draw a Jack-o-lantern. What color should it be?\n\n"
41 << "Enter 1 for Green 2 for Blue 3 for Red \n"
42 << " 4 for Purple 5 for Yellow 6 to quit: ";
43 }
44

(program continues)

Review Questions and Exercises 395

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The _________ is the part of a function definition that shows the function name,
return type, and parameter list.

2. If a function doesn’t return a value, the word _________ will appear as its return type.

3. If function showValue has the following header: void showValue(int quantity)
you would use the statement _________ to call it with the argument 5.

4. Either a function’s _________ or its _________ must precede all calls to the function.

5. Values that are sent into a function are called _________.

6. Special variables that hold copies of function arguments are called _________.

45 /**
46 * getChoice *
47 * This function inputs, validates, and returns *
48 * the user's menu choice. *
49 **/
50 int getChoice()
51 {
52 int choice;
53
54 cin >> choice;
55 while (choice < 1 || choice > MAX_CHOICE)
56 { cout << "\nThe only valid choices are 1-" << MAX_CHOICE
57 << ". Please re-enter. ";
58 cin >> choice;
59 }
60 return choice;
61 }
62
63 /***
64 * makeJackOLantern *
65 * This function draws a Jack-o-lantern *
66 * in whatever color the user selected. *
67 ***/
68 void makeJackOLantern()
69 {
70 cout << "\n\n";
71 cout << " ^ ^ \n";
72 cout << " * \n";
73 cout << " ___/ " << endl;
74 cout << "\n\n Press ENTER to return to the menu." ;
75 cin.get(); // Clear the previous \n out of the input buffer
76 cin.get(); // Wait for the user to press ENTER
77 }

Program 6-33 (continued)

396 Chapter 6 Functions

7. When only a copy of an argument is passed to a function, it is said to be passed by
_________.

8. A(n)_________ eliminates the need to place a function definition before all calls to the
function.

9. A(n)_________ variable is defined inside a function and is not accessible outside the
function.

10. _________ variables are defined outside all functions and are accessible to any
function within their scope.

11. _________ variables provide an easy way to share large amounts of data among all the
functions in a program.

12. Unless you explicitly initialize numeric global variables, they are automatically
initialized to _________.

13. If a function has a local variable with the same name as a global variable, only the
_________ variable can be seen by the function.

14. _________ local variables retain their value between function calls.

15. The _________ statement causes a function to end immediately.

16. _________ arguments are passed to parameters automatically if no argument is
provided in the function call.

17. When a function uses a mixture of parameters with and without default arguments,
the parameters with default arguments must be defined _________.

18. The value of a default argument must be a(n)_________.

19. When used as parameters, _________ variables allow a function to access the
parameter’s original argument.

20. Reference variables are defined like regular variables, except there is a(n) _________ in
front of the name.

21. Reference variables allow arguments to be passed by ____________.

22. The _________ function causes a program to terminate immediately.

23. Two or more functions may have the same name, as long as their _________ are
different.

24. What is the advantage of breaking your application’s code into several small functions?

25. What is the difference between an argument and a parameter variable?

26. When a function accepts multiple arguments, does it matter what order the arguments
are passed in?

27. What does it mean to overload a function?

28. If you are writing a function that accepts an argument and you want to make sure the
function cannot change the value of the argument, what should you do?

29. Give an example where an argument should be passed by reference.

30. How do you return a value from a function?

31. Can a function have a local variable with the same name as a global variable?

32. When should a static local variable be used?

Review Questions and Exercises 397

Algorithm Workbench

33. The following statement calls a function named half, which returns a value that is
half that of the argument passed to it. Assume that result and number have both
been defined to be double variables. Write the half function.

result = half(number);

34. A program contains the following function.

int cube(int num)
{

return num * num * num;
}

Write a statement that passes the value 4 to this function and assigns its return value
to the variable result.

35. Write a function, named timesTen, that accepts an integer argument. When the
function is called, it should display the product of its argument multiplied times 10.

36. A program contains the following function.

void display(int arg1, double arg2, char arg3)
{

cout << "Here are the values: "
 << arg1 << " " << arg2 << " " << arg3 << endl;

}

Write a statement that calls the function and passes the following variables to it:

int age;
double income;
char initial;

37. Write a function named getNumber, which uses a reference parameter to accept an
integer argument. The function should prompt the user to enter a number in the range
of 1 through 100. The input should be validated and stored in the parameter variable.

38. Write a function named biggest that receives three integer arguments and returns the
largest of the three values.

Find the Errors

39. Each of the following functions has errors. Locate as many errors as you can.

A) void total(int value1, value2, value3)

{
return value1 + value2 + value3;

}

B) double average(int value1, int value2, int value3)

{
double average;

average = value1 + value2 + value3 / 3;
}

398 Chapter 6 Functions

C) void area(int length = 30, int width)

{
return length * width;

}

D) void getValue(int value&)

{
cout << "Enter a value: ";
cin >> value&;

}

E) // Overloaded functions

int getValue()
{

int inputValue;
cout << "Enter an integer: ";
cin >> inputValue;
return inputValue;

}
double getValue()
{

double inputValue;

cout << "Enter a floating-point number: ";
cin >> inputValue;
return inputValue;

}

Soft Skills

Programmers need to develop the ability to break a large problem into a set of manageable
components, or modules, each of which can focus on handling one specific task. If these
tasks are large, they may be divided even further into a set of subtasks. Each component
can then be programmed as a separate function. Often there is more than one acceptable
way to divide a program into modules and to organize the modules. However, in general, if
module A calls module B then module B should carry out some subtask that helps module
A perform its function.

40. Read the following program statement and then come to class prepared to discuss
how you would design the program. How many modules would you use? What task
would each module handle? How would you organize the modules? That is, which
modules would call which other modules? Be prepared to state the advantages of the
design you have chosen.

Artistic Solutions Paint Job Estimator

Artistic Solutions, a painting company, has determined that for every 160 square feet of wall
space, one gallon of paint and three hours of labor are required. The company charges
$28.00 per hour for labor. Design a modular program that allows the user to enter the
number of rooms that are to be painted, the approximate square feet of wall space in each
room (it may differ from room to room), and the price of the paint per gallon. It should then
create a report that includes a fancy company header and displays the following information:

• The number of gallons of paint required (rounded up to the next full gallon)
• The hours of labor required

Review Questions and Exercises 399

• The cost of the paint
• The labor charges
• The total cost of the paint job

Input validation: The program should not accept a value less than 1 or more than 12
for the number of rooms or a value less than 100 for the square footage of a room. It
should also not accept a value less than $10.00 or more than $25.00 for the price of a
gallon of paint.

Programming Challenges

1. Markup

Write a program that asks the user to enter an item’s wholesale cost and its markup
percentage. It should then display the item’s retail price. For example:

• If an item’s wholesale cost is 5.00 and its markup percentage is 100%, then the item’s
retail price is 10.00.

• If an item’s wholesale cost is 5.00 and its markup percentage is 50%, then the item’s
retail price is 7.50.

The program should have a function named calculateRetail that receives the
wholesale cost and the markup percentage as arguments and returns the retail price of
the item.

2. Celsius Temperature Table

The formula for converting a temperature from Fahrenheit to Celsius is

where F is the Fahrenheit temperature and C is the Celsius temperature. Write a function
named celsius that accepts a Fahrenheit temperature as an argument. The function
should return the temperature, converted to Celsius. Demonstrate the function by calling
it in a loop that displays a table of the Fahrenheit temperatures 0 through 20 and their
Celsius equivalents.

3. Falling Distance

The following formula can be used to determine the distance an object falls due to gravity
in a specific time period:

d � 1⁄2 gt2

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and t is the
time in seconds that the object has been falling.

Write a function named fallingDistance that accepts an object’s falling time (in
seconds) as an argument. The function should return the distance, in meters, that the
object has fallen during that time interval. Write a program that demonstrates the function
by calling it in a loop that passes the values 1 through 10 as arguments and displays the
return value.

VideoNote

C
5
9
--- F 32�()�

Solving the
Markup
Problem

400 Chapter 6 Functions

4. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy. The following formula
can be used to determine a moving object’s kinetic energy:

KE � 1⁄2 mv2

The variables in the formula are as follows: KE is the kinetic energy in joules, m is the
object’s mass in kilograms, and v is the object’s velocity in meters per second.

Write a function named kineticEnergy that accepts an object’s mass (in kilograms) and
velocity (in meters per second) as arguments. The function should return the amount of
kinetic energy that the object has. Demonstrate the function by calling it in a program that
asks the user to enter values for mass and velocity.

5. Winning Division

Write a program that determines which of a company’s four divisions (Northeast,
Southeast, Northwest, and Southwest) had the greatest sales for a quarter. It should
include the following two functions, which are called by main.

• double getSales() is passed the name of a division. It asks the user for a division’s
quarterly sales figure, validates that the input is not less than 0, then returns it. It should
be called once for each division.

• void findHighest() is passed the four sales totals. It determines which is the
largest and prints the name of the high grossing division, along with its sales figure.

6. String Compare

You know that the == operator can be used to test if two string objects are equal.
However, you will recall that they are not considered equal, even when they hold the exact
same letters, if the cases of any letters are different. So, for example, if name1 = "Jack"
and name2 = "JACK", they are not considered the same. Write a program that asks the
user to enter two names and stores them in string objects. It should then report whether
or not, ignoring case, they are the same.

To help the program accomplish its task, it should use two functions in addition to main,
upperCaseIt() and sameString(). Here are their function headers.

string upperCaseIt(string s)
Boolean sameString (string s1, string s2)

The sameString function, which receives the two strings to be compared, will need to call
upperCaseIt for each of them before testing if they are the same. The upperCaseIt
function should use a loop so that it can call the toupper function for every character in
the string it receives before returning it back to the sameString function.

7. Lowest Score Drop

• Write a program that calculates the average of a group of test scores, where the lowest
score in the group is dropped. It should use the following functions:

• void getScore() should ask the user for a test score, store it in a reference
parameter variable, and validate that it is not lower than 0 or higher than 100. This
function should be called by main once for each of the five scores to be entered.

Review Questions and Exercises 401

• void calcAverage() should calculate and display the average of the four highest
scores. This function should be called just once by main and should be passed the five
scores.

• int findLowest() should find and return the lowest of the five scores passed to it.
It should be called by calcAverage, which uses the function to determine which one
of the five scores to drop.

8. Star Search

A particular talent competition has 5 judges, each of whom awards a score between 0 and
10 to each performer. Fractional scores, such as 8.3, are allowed. A performer’s final score
is determined by dropping the highest and lowest score received, then averaging the 3
remaining scores. Write a program that uses these rules to calculate and display a
contestant’s score. It should include the following functions:

• void getJudgeData() should ask the user for a judge’s score, store it in a reference
parameter variable, and validate it. This function should be called by main once for each
of the 5 judges.

• double calcScore() should calculate and return the average of the 3 scores that
remain after dropping the highest and lowest scores the performer received. This
function should be called just once by main and should be passed the 5 scores.

Two additional functions, described below, should be called by calcScore, which uses the
returned information to determine which of the scores to drop.

• int findLowest() should find and return the lowest of the 5 scores passed to it.
• int findHighest() should find and return the highest of the 5 scores passed to it.

9. isPrime Function

A prime number is an integer greater than 1 that is evenly divisible by only 1 and itself. For
example, the number 5 is prime because it can only be evenly divided by 1 and 5. The
number 6, however, is not prime because it can be divided by 1, 2, 3, and 6.

Write a Boolean function named isPrime, which takes an integer as an argument and
returns true if the argument is a prime number, and false otherwise. Demonstrate the
function in a complete program.

10. Present Value

Suppose you want to deposit a certain amount of money into a savings account and then
leave it alone to draw interest for the next 10 years. At the end of 10 years you would like
to have $10,000 in the account. How much do you need to deposit today to make that
happen? To find out you can use the following formula, which is known as the present
value formula:

TIP: Recall that the % operator divides one number by another and returns the
remainder of the division. In an expression such as num1 % num2, the % operator will
return 0 if num1 is evenly divisible by num2.

P F
1 r�()n

--------------------�

402 Chapter 6 Functions

The terms in the formula are as follows:

• P is the present value, or the amount that you need to deposit today.
• F is the future value that you want in the account (in this case, $10,000).
• r is the annual interest rate (expressed in decimal form, such as .042).
• n is the number of years that you plan to let the money sit in the account.

Write a program with a function named presentValue that performs this calculation. The
function should accept the future value, annual interest rate, and number of years as
arguments. It should return the present value, which is the amount that you need to
deposit today. Demonstrate the function in a program that lets the user experiment with
different values for the formula’s terms.

11. Stock Profit

The profit from the sale of a stock can be calculated as follows:

Profit � ((NS � SP) � SC) � ((NS � PP) � PC)

where NS is the number of shares, SP is the sale price per share, SC is the sale commission
paid, PP is the purchase price per share, and PC is the purchase commission paid. If the
calculation yields a positive value, then the sale of the stock resulted in a profit. If the
calculation yields a negative number, then the sale resulted in a loss.

Write a function that accepts as arguments the number of shares, the purchase price per
share, the purchase commission paid, the sale price per share, and the sale commission
paid. The function should return the profit (or loss) from the sale of stock.

Demonstrate the function in a program that asks the user to enter the necessary data and
displays the amount of the profit or loss.

12. Multiple Stock Sales

Use the function that you wrote for Programming Challenge 11 (Stock Profit) in a program
that calculates the total profit or loss from the sale of multiple stocks. The program should
ask the user for the number of stock sales, and the necessary data for each stock sale. It
should accumulate the profit or loss for each stock sale and then display the total.

13. Order Status

The Middletown Wholesale Copper Wire Company sells spools of copper wiring for $100
each and ships them for $10 apiece. Write a program that displays the status of an order. It
should use two functions. The first function asks for the following data and stores the
input values in reference parameters.

• The number of spools ordered.
• The number of spools in stock.
• Any special shipping and handling charges (above the regular $10 rate).

The second function receives as arguments any values needed to compute and display the
following information:

• The number of ordered spools ready to ship from current stock.
• The number of ordered spools on backorder (if the number ordered is greater than

what is in stock).

Review Questions and Exercises 403

• Total selling price of the portion ready to ship (the number of spools ready to ship
times $100).

• Total shipping and handling charges on the portion ready to ship.
• Total of the order ready to ship.

The shipping and handling parameter in the second function should have the default
argument 10.00.

14. Overloaded Hospital

Write a program that computes and displays the charges for a patient’s hospital stay. First,
the program should ask if the patient was admitted as an in-patient or an out-patient. If the
patient was an in-patient the following data should be entered:

• The number of days spent in the hospital
• The daily rate
• Charges for hospital services (lab tests, etc.)
• Hospital medication charges.

If the patient was an out-patient the following data should be entered:

• Charges for hospital services (lab tests, etc.)
• Hospital medication charges.

Use a single, separate function to validate that no input is less than zero. If it is, it should
be re-entered before being returned.

Once the required data has been input and validated, the program should use two
overloaded functions to calculate the total charges. One of the functions should accept
arguments for the in-patient data, while the other function accepts arguments for out-
patient data. Both functions should return the total charges.

15. Population

In a population, the birth rate is the percentage increase of the population due to births,
and the death rate is the percentage decrease of the population due to deaths. Write a
program that asks for the following:

• The starting size of a population (minimum 2)
• The annual birth rate
• The annual death rate
• The number of years to display (minimum 1)

The program should then display the starting population and the projected population at
the end of each year. It should use a function that calculates and returns the projected new
size of the population after a year. The formula is

N = P(1 + B)(1 - D)

where N is the new population size, P is the previous population size, B is the birth rate, and
D is the death rate. Annual birth rate and death rate are the typical number of births and
deaths in a year per 1000 people, expressed as a decimal. So, for example, if there are
normally about 32 births and 26 deaths per 1000 people in a given population, the birth
rate would be .032 and the death rate would be .026.

404 Chapter 6 Functions

16. Transient Population

Modify Programming Challenge 15 to also consider the effect on population caused by
people moving into or out of a geographic area. Given as input a starting population
size, the annual birth rate, the annual death rate, the number of individuals that typically
move into the area each year, and the number of individuals that typically leave the area
each year, the program should project what the population will be numYears from now.
You can either prompt the user to input a value for numYears, or you can set it within
the program.

17. Using Files—Hospital Report

Modify Programming Challenge 14, Overloaded Hospital, to write the report it creates to
a file. Print the contents of the file to hand in to your instructor.

Group Project

18. Using Files—Travel Expenses
This program should be designed and written by a team of students. Here are some
suggestions:

• One student should design function main, which will call the other functions in
the program. The rest of the functions should be designed by other team members.

• Analyze the program requirements so each student is given about the same workload.
• Decide on the function names, parameters, and return types in advance.
• Use stubs and drivers to test and debug the program.
• The program can be implemented either as a multi-file program, or all the functions

can be cut and pasted into the main file.

Here is the assignment. Write a program that calculates and displays the total travel
expenses of a businessperson on a trip. The program should have functions that ask for
and return the following:

• The total number of days spent on the trip
• The time of departure on the first day of the trip, and the time of arrival back home

on the last day of the trip
• The amount of any round-trip airfare
• The amount of any car rentals
• Miles driven, if a private vehicle was used. Vehicle allowance is $0.58 per mile.
• Parking fees. (The company allows up to $12 per day. Anything in excess of this

must be paid by the employee.)
• Taxi fees. (The company allows up to $40 per day for each day a taxi was used.

Anything in excess of this must be paid by the employee.)
• Conference or seminar registration fees
• Hotel expenses. (The company allows up to $90 per night for lodging. Anything in

excess of this must be paid by the employee.)
• The cost of each meal eaten. On the first day of the trip, breakfast is allowed as an

expense if the time of departure is before 7 a.m. Lunch is allowed if the time of
departure is before noon. Dinner is allowed if the time of departure is before 6 p.m.
On the last day of the trip, breakfast is allowed if the time of arrival is after 8 a.m.
Lunch is allowed if the time of arrival is after 1 p.m. Dinner is allowed if the time of

Review Questions and Exercises 405

arrival is after 7 p.m. The program should only ask for the costs of allowable meals.
(The company allows up to $18 for breakfast, $12 for lunch, and $20 for dinner.
Anything in excess of this must be paid by the employee.)

The program should perform the necessary calculations to determine the total amount
spent by the business traveler in each category (mileage charges, parking, hotel, meals, etc.)
as well as the maximum amount allowed in each category. It should then create a well laid
out expense report that includes the amount spent and the amount allowed in each
category, as well as the total amount spent and total amount allowed for the entire trip.
This report should be written to a file.

Input Validation: The program should not accept negative numbers for any dollar
amount or for miles driven in a private vehicle. It should also ensure that the number
of days is at least 1 and that the time of departure and the time of arrival are valid.

This page intentionally left blank

407

C
H

A
P

T
E

R

7 Introduction to
Classes and Objects

7.1 Abstract Data Types

CONCEPT: An abstract data type (ADT) is a data type that specifies the values the data
type can hold and the operations that can be done on them without the
details of how the data type is implemented.

Abstraction
An abstraction is a general model of something. It is a definition that includes only the
general characteristics of an object without the details that characterize specific instances
of the object.

An automobile provides an illustration of abstraction. Most people understand what an
automobile is, and many people know how to drive one. Yet few people understand
exactly how an automobile works or what all its parts are. This is a feature of abstraction.

TOPICS

7.1 Abstract Data Types
7.2 Object-Oriented Programming
7.3 Introduction to Classes
7.4 Creating and Using Objects
7.5 Defining Member Functions
7.6 Constructors
7.7 Destructors
7.8 Private Member Functions
7.9 Passing Objects to Functions
7.10 Object Composition

7.11 Focus on Software Engineering:
Separating Class Specification,
Implementation, and Client Code

7.12 Structures
7.13 Home Software Company OOP

Case Study
7.14 Introduction to Object-Oriented

Analysis and Design
7.15 Screen Control
7.16 Tying It All Together: Yoyo Animation

408 Chapter 7 Introduction to Classes and Objects

Details of the internal components, organization, and operations of an object are kept
separate from the description of what it can do and how to operate it. We are surrounded
in our everyday lives with such examples of abstraction, from our microwaves and
washing machines to our DVD players and computers. We know what these objects can
do, and we understand how to operate them, but most of us do not know, or care, how
they work inside. We do not need to be concerned with this information.

The Use of Abstraction in Software Development
Abstraction occurs in programming as well. In order to focus on the bigger picture of
creating a working application, a programmer needs to be able to use certain objects
and routines without having to be concerned with the details of their implementation.
You have been doing this since the beginning of this text when you used objects such as
cin and cout and functions such as sqrt and pow. All you need to know to use the
objects or functions is what they do and the interface for using them. For example, to
use the sqrt function you only have to know its name and that it must be called with
one numeric argument, the value whose square root is to be returned. To use the pow
function you only have to know its name and that it must be called with two numeric
arguments. The first is the value to be raised to a power, and the second is the exponent.
In neither case do you need to know what algorithm is used by the function to compute
the result it returns.

Abstraction applies to data too. To use any data type you need to know just two things
about it: what values it can hold and what operations apply to it. For example, to use a
double you need to know that it can only hold numeric values, such as 5.0 or –5.1, and
not strings, such as "5.1". To use a double you also need to know what operations can
be performed on it. It can be used with the addition, subtraction, multiplication, and
division operators, but not with the modulus operator (which only works with integer
operands, as in the expression 8 % 3). You do not have to know anything else about a
double to use it. You do not have to know how it is stored in memory or how the
arithmetic operations that can be performed on it are carried out by the computer. This
separation of a data type’s logical properties from its implementation details is known as
data abstraction.

Abstract Data Types
The term abstract data type (ADT) describes any data type whose implementation
details are kept separate from the logical properties needed to use it. Normally though,
the term is used to refer to data types created by the programmer. Often these data types
can hold more than one value, as with classes, which you will learn about in this chapter.
The programmer defines a set of values the data type can hold, defines a set of operations
that can be performed on the data, and creates a set of functions to carry out these
operations. In C++ and other object-oriented languages, programmer created ADTs are
normally implemented as classes.

Object-Oriented Programming 409

7.2 Object-Oriented Programming

CONCEPT: Object-oriented programming is centered around objects that encapsulate
both data and the functions that operate on them.

There are two common programming methods in practice today: procedural
programming and object-oriented programming (OOP). Up to this chapter, you have
learned to write procedural programs.

Procedural programming is a method of writing software centered on the procedures, or
functions, that carry out the actions of the program. The program’s data, typically stored
in variables, is separate from these procedures. So you must pass the variables to the
functions that need to work with them. Object-oriented programming, on the other hand,
is centered on objects. You will learn about objects in this chapter.

Procedural programming has worked well for software developers for many years. However,
as programs become larger and more complex, the separation of a program’s data from the
code that operates on it can lead to problems. For example, quite often a program’s
specifications change, resulting in the need to change the format of the data or the design of a
data structure. When the structure of the data changes, the code that operates on the data
must also be changed to accept the new format. Finding all the code that needs changing
results in additional work for programmers and an opportunity for bugs to be introduced
into the code.

This problem has helped influence the shift from procedural programming to object-
oriented programming. OOP is centered on creating and using objects. An object is a
software entity that combines both data and the procedures that work with it in a single
unit. An object’s data items, also referred to as its attributes, are stored in member
variables. The procedures that an object performs are called its member functions. This
bundling of an object’s data and procedures together is called encapsulation.

Figure 7-1 shows a representation of what a Circle object might look like. It has just one
member variable to hold data and two member functions. The Circle object’s member variable
is radius. Its setRadius member function sets the radius, and its getArea member function
calculates and returns the area.

NOTE: In some object-oriented programming languages, the procedures that an object
performs are called methods.

Figure 7-1

Circle Member variables (Attributes)
double radius;

Member functions
void setRadius(double r)

double getArea()

410 Chapter 7 Introduction to Classes and Objects

The member variable and the member functions are all members of the Circle object, bound
together in a single unit. When an operation needs to be performed, such as calculating the area
of the circle, a message is passed to the object telling it to execute the getArea function.
Because getArea is a member of the Circle object, it automatically has access to the object’s
member variables. Therefore, there is no need to pass radius to the getArea function.

In addition to bundling associated data and functions together, objects also permit data
hiding. Data hiding refers to an object’s ability to hide its data from code outside the object.
Only the object’s member functions can directly access and make changes to its data. An
object typically hides its data, but allows outside code to access it through some of its
member functions. As Figure 7-2 illustrates, the object’s member functions provide
programming statements outside the object with a way to indirectly access the object’s data.

Why is hiding information a good thing? When an object’s internal data is hidden from
outside code, and that data can only be accessed by going through the object’s member
functions, the data is protected from accidental or intentional corruption. In addition, the
programming code outside the object does not need to know about the format or internal
structure of the object’s data. The code only needs to interact with the object’s functions.
When a programmer changes the structure of an object’s internal data, the object’s member
functions are also modified so they will still properly operate on it. These changes,
however, are hidden from code outside the object. That code does not have to be changed.
It can call and use the member functions exactly the same way as it did before.

Earlier we used the automobile as an example of an abstract object that can be used without
having to understand the details of how it works. It has a rather simple interface that consists
of an ignition switch, steering wheel, gas pedal, brake pedal, and a gear selector. (Vehicles
with manual transmissions also provide a clutch pedal). If you want to drive an automobile,
you only have to learn to operate these elements of its interface. To start the motor, you
simply turn the key in the ignition switch. What happens internally is irrelevant to the driver.
If you want to steer the auto to the left, you rotate the steering wheel left. The movements of
all the linkages connecting the steering wheel to the front tires occur without your awareness.
If the manufacturer redesigns the vehicle to perform one of the behind-the-scenes operations
differently, the driver does not need to learn a new interface.

Because automobiles have simple user interfaces, they can be driven by people who have
no mechanical knowledge. This is good for the makers of automobiles because it means
more people are likely to become customers. It’s good for the users of automobiles because
they can learn just a few simple procedures and operate almost any vehicle.

Figure 7-2

Circle

radius

setRadiusCode
Outside

the
Object

getArea
 computed area using radius

Introduction to Classes 411

These are also valid concerns in software development. A program is rarely written by only
one person. Even the small programs you have created so far weren’t written entirely by
you. If you incorporated C++ library functions, or objects like cin and cout, you used
code written by someone else. In the world of professional software development,
programmers commonly work in teams, buy and sell their code, and collaborate on
projects. With OOP, programmers can create objects with powerful engines tucked away
“under the hood,” but simple interfaces that safeguard the object’s algorithms and data.

7.3 Introduction to Classes

CONCEPT: In C++, the class is the construct primarily used to create objects.

Before we can create and use an object, there must be a description of what member
variables and member functions it will have. This is done by defining a class. A class is a
programmer-defined data type that describes what objects of the class will look like when
they are created. Shortly, you will see how to define your own classes, but first let’s look at
a class you are already familiar with.

Using a Class You Already Know
You have been using the string class to create and use string objects since almost the
beginning of this book. Recall that you must have the following #include directive in
any program that uses the string class:

#include <string>

This is necessary because the string header file is where the string class is defined. With
this header file included in your program, you can now define as many string objects as
you wish. To do this you simply name the class, followed by the names you wish to give
the objects. Here is an example:

string city,
 state;

This statement creates two string objects. One is named city and the other is named state.
Both objects are instances of the string class, and although they can be assigned different data
values, both objects essentially look the same. That is, both will have a member variable that
can hold a string, and both will have the same set of functions that can operate on strings.

Once a string object has been created, you can store data in it. Because the string class is
designed to work with the assignment operator, you can assign a string literal to a string
object. Here is an example:

city = "Chicago";
state = "Illinois";

These statements store "Chicago" in the city object’s member variable and "Illinois"
in the state object’s member variable.

The string class includes numerous member functions that perform operations on the
data that a string object holds. In earlier chapters you were introduced to several of

412 Chapter 7 Introduction to Classes and Objects

these. One is a member function named length, which returns the length of the string
stored in a string object. The following code demonstrates this:

cout << city.length() << endl; // This prints 7
cout << state.length() << endl; // This prints 8

These statements both call their same member function, but in each case it works with the
object’s own data. The data stored in city is a string of length 7. The data stored in state
is a string of length 8.

It is important to note that in order to create and use string objects, we do not need to
know anything about how the string class is implemented. We just have to know what
kind of data it can hold and what functions we can call to operate on the data.

Creating Your Own Class
To create your own class, you must write a class declaration. Here is the general format
of a class declaration.

class ClassName // Class declaration begins with
{ // the key word class and a name.

Declarations for class member variables
and member functions go here.

}; // Notice the required semicolon.

We will learn how to implement a class by building one step by step. Our example will be the
simple Circle class depicted in Figure 7-1. The first step is to determine what member
variables and member functions the class should have. In this case we have determined, as
already described, that the class needs a member variable to hold the circle’s radius and two
member functions: setRadius and getArea.

Once the class has been designed, the next step is to write the class declaration. This tells
the compiler what the class includes. Here is the declaration for our Circle class. Notice
that the class name begins with a capital letter. Although this is not strictly required, it is
conventional to always begin class names with an uppercase letter.

class Circle
{ private:

 double radius;

public:
void setRadius(double r)
{ radius = r; }

double getArea()
{ return 3.14 * pow(radius, 2); }

};

NOTE: This information, along with other design information, is sometimes expressed using
visual modeling tools that are part of an object-oriented modeling “language” known as the
Unified Modeling Language, or UML. Figure 7-1 illustrated a commonly used type of UML
diagram called a class diagram. You will see more examples of these later in this chapter, and
more detailed examples can be found in Appendix F (Using UML in Class Design).

VideoNote

Creating a
Class

Introduction to Classes 413

Access Specifiers
The class declaration looks very much like Figure 7-1 with the addition of the actual
code for each member function and two key words, private and public. These are
called access specifiers because they designate who can access various members of the
class. Notice that each access specifier is followed by a colon. A public member variable
can be accessed by functions outside the class, and a public member function can be called
by functions outside the class. A private member variable, on the other hand, can only be
accessed by a function that is a member of the same class, and a private member function
can only be called by other functions that are members of the class. If we had omitted the
words public and private altogether, everything would have defaulted to being private.
This would not have been very useful because then, except in special circumstances, no
functions outside the class could ever use the class.

In our Circle class, the member variable radius is declared to be private, and the
member functions are declared to be public. This is common. Member data is usually
made private to safeguard it. Public functions are then created to allow carefully
controlled access to this data from outside the class. For now, all our class member variables
will be declared as private and all our member functions will be declared as public. Later you
will see cases where private member functions are used.

Placement of private and public Members
It does not matter whether we list the private or public members first. In fact, it is not
even required that all members of the same access specification be declared together. Both
examples below are legal declarations of the Circle class.

class Circle class Circle
{public: { public:

void setRadius(double r) void setRadius(double r)
{ radius = r; } { radius = r; }

double getArea() private:
{ return 3.14 * pow(radius, 2); } double radius;

private: public:
double radius; double getArea()

}; { return 3.14 * pow
 (radius, 2); }
 };

However, most programmers consider it more orderly to separate private and public
members, and most instructors prefer that you do this. In this text we follow the standard
practice of listing private members together first, followed by the public members, as
shown in the initial Circle declaration.

NOTE: If a program statement outside a class attempts to access a private member, a
compiler error will result. Later you will learn how outside functions may be given
special permission to access private class members.

414 Chapter 7 Introduction to Classes and Objects

7.4 Creating and Using Objects

CONCEPT: Objects are instances of a class. They are created with a definition statement
after the class has been declared.

A class declaration is similar to the blueprint for a house. The blueprint itself is not a
house, but is a detailed description of a house. When we use the blueprint to build an
actual house, we could say we are constructing an instance of the house described by the
blueprint. If we wish, we can construct several identical houses from the same blueprint.
Each house is a separate instance of the house described by the blueprint. This idea is
illustrated in Figure 7-3.

A class declaration serves a similar purpose. It describes what the objects created from the
class will look like when they are constructed. Each object created from it is called an
instance of the class, and defining a class object is called instantiating the class.

Class objects for classes you define are created with simple definition statements, just
like objects of classes defined in header files and just like variables. For example, the
following statement defines circle1 and circle2 to be two objects of the Circle
class:

Circle circle1,
 circle2;

They are two distinct instances of the Circle class, with different memory assigned to
hold the values stored in their member variables.

Figure 7-3

VideoNote

House Plan

Living Room

Bedroom

Blueprint that describes a house.

Instances of the house described by the blueprint.

Creating and
Using Class
Objects

Creating and Using Objects 415

Accessing an Object’s Members
Public members of a class object are accessed with the dot operator. You saw this in the
previous section when we called the length function for the string object city with
the following statement:

cout << city.length() << endl;

The following statements call the setRadius function of circle1 and circle2.

circle1.setRadius(1.0); // This sets circle1's radius to 1.0
circle2.setRadius(2.5); // This sets circle2's radius to 2.5

Notice that member functions, just like regular functions, can be passed arguments when
they are called if they have been defined to accept arguments. We defined setRadius to
accept one double argument.

As mentioned earlier, an object’s member variables are usually declared to be private.
However, if one were declared to be public, it also could be accessed from outside the class
by using the dot operator. If the circle class radius variable was public, we could just set
it like this:

circle1.radius = 1.0;
circle2.radius = 2.5;

Now that the radii have been set, we can call the getArea member function to return the
area of the Circle objects:

cout << "The area of circle1 is " << circle1.getArea() << endl;
cout << "The area of circle2 is " << circle2.getArea() << endl;

Program 7-1 is a complete program that demonstrates the Circle class. Notice that the
statements to create and use Circle objects are in main, not in the class declaration.

Program 7-1

1 // This program demonstrates a simple class.
2 #include <iostream>
3 #include <cmath>
4 using namespace std;
5
6 // Circle class declaration
7 class Circle
8 { private:
9 double radius;
10
11 public:
12 void setRadius(double r)
13 { radius = r; }
14
15 double getArea()
16 { return 3.14 * pow(radius, 2); }
17 };
18

(program continues)

416 Chapter 7 Introduction to Classes and Objects

Accessors and Mutators
Notice in lines 13 and 16 of Program 7-1 how the class member functions setRadius
and getArea use the member variable radius. They do not need to use the dot operator
to reference it because member functions of a class can access member variables of the
same class like regular variables, without any extra notation. Notice also that the class
member function getArea only uses, but does not modify, the member variable radius.
A function like this, that uses the value of a class variable but does not change it, is known as
an accessor. The function setRadius, on the other hand, modifies the contents of radius.
A member function like this, which stores a value in a member variable or changes its
value, is known as a mutator. Some programmers refer to mutators as set functions or setter
functions because they set the value of a class variable and refer to accessors as get functions
or getter functions because they just retrieve or use the value.

7.5 Defining Member Functions

CONCEPT: Class member functions can be defined either inside or outside the class
declaration.

Class member functions are defined similarly to regular functions. Except for a few special
cases we will look at later, they have a function header that includes a return type (which
may be void), a function name, and a parameter list (which may possibly be empty). The
statements that carry out the actions of the function are contained within a pair of braces
that follow the function header.

19 int main()
20 {
21 // Define 2 Circle objects
22 Circle circle1,
23 circle2;
24
25 // Call the setRadius function for each circle
26 circle1.setRadius(1); // This sets circle1's radius to 1.0
27 circle2.setRadius(2.5); // This sets circle2's radius to 2.5
28
29 // Call the getArea function for each circle and
30 // display the returned result
31 cout << "The area of circle1 is " << circle1.getArea() << endl;
32 cout << "The area of circle2 is " << circle2.getArea() << endl;
33
34 return 0;
35 }

Program Output
The area of circle1 is 3.14
The area of circle2 is 19.625

Program 7-1 (continued)

Defining Member Functions 417

When we defined the Circle class in the previous section, we defined its two member
functions within the class declaration itself. When a class function is defined there, it is
called an inline function. Inline functions provide a convenient way to contain function
information within a class declaration, but they can only be used when a function body
is very short, usually a single line. When a function body is longer, we place a prototype
for the function in the class declaration, instead of the function definition itself. We then
put the function definition outside the class declaration, either following it or in a
separate file.

Even though the two functions in our Circle class are short enough to be written as inline
functions, we will rewrite them as regular functions, defined outside the class declaration,
to illustrate how this is done. Inside the class declaration the functions will be replaced by
the following prototypes:

void setRadius(double);
double getArea();

Following the class declaration we will place a function implementation section containing
the following function definitions:

void Circle::setRadius(double r)
{ radius = r;
}

double Circle::getArea()
{ return 3.14 * pow(radius, 2);
}

Notice that these look like ordinary functions except that the class name and a double
colon (::) are placed after the function return type, just before the function name. The ::
symbol is called the scope resolution operator. It is needed to indicate that these are class
member functions and to tell the compiler which class they belong to.

Here are some additional examples to illustrate how the scope resolution is used when a
class function is defined outside the class declaration.

double getArea() // Wrong! The class name and scope
 // resolution operator are missing.

Circle::double getArea() // Wrong! The class name and scope
 // resolution operator are misplaced.

double Circle::getArea() // Correct!

Program 7-2 revises Program 7-1 to define the class member functions outside the class.

WARNING! The class name and scope resolution operator are an extension of the
function name. When a function is defined outside the class declaration, these must be
present and must be located immediately before the function name in the function
header.

418 Chapter 7 Introduction to Classes and Objects

Program 7-2

1 // This program demonstrates a simple class with member functions
2 // defined outside the class declaration.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 // Circle class declaration
8 class Circle
9 { private:
10 double radius; // This is a member variable.
11
12 public:
13 void setRadius(double); // These are just prototypes
14 double getArea(); // for the member functions.
15 };
16
17 // The member function implementation section follows. It contains the
18 // actual function definitions for the Circle class member functions.
19
20 /***
21 * Circle::setRadius *
22 * This function copies the argument passed into the parameter to *
23 * the private member variable radius. *
24 ***/
25 void Circle::setRadius(double r)
26 { radius = r;
27 }
28
29 /**
30 * Circle::getArea *
31 * This function calculates and returns the Circle object's area. *
32 * It does not need any parameters because it already has access *
33 * to the member variable radius. *
34 **/
35 double Circle::getArea()
36 { return 3.14 * pow(radius, 2);
37 }
38
39 /**
40 * main *
41 **/
42 int main()
43 {
44 Circle circle1, // Define 2 Circle objects
45 circle2;
46
47 circle1.setRadius(1); // This sets circle1's radius to 1.0
48 circle2.setRadius(2.5); // This sets circle2's radius to 2.5
49

(program continues)

Defining Member Functions 419

Naming Conventions for Class Member Functions
Program 7-3 provides another example using classes and objects. It declares and
implements a Rectangle class that has two private member variables and five public
member functions. Notice that the names of the member functions in Program 7-3 all
begin with the word set or the word get. Functions setLength and setWidth are
mutator, or set, functions. It is common to name a mutator with the word set followed
by the name of the member variable whose value it is setting. As you would expect, the
setLength function sets the value of the length member variable and the setWidth
function sets the value of the width member variable.

Member functions getLength and getWidth are accessor, or get, functions. It is common
to name an accessor with the word get followed by the name of the member variable
whose value it is getting. Function getLength returns the value stored in the length
member variable, while getWidth returns the value stored in the width member variable.
The member function getArea also has a name that begins with get because it gets and
returns the area, even though it calculates this value rather than retrieving it from a
member variable.

50 // Get and display each circle's area
51 cout << "The area of circle1 is " << circle1.getArea() << endl;
52 cout << "The area of circle2 is " << circle2.getArea() << endl;
53
54 return 0;
55 }

 Program Output is the same as for Program 7-1.

Program 7-3

1 // This program implements a Rectangle class.
2 #include <iostream>
3 using namespace std;
4
5 // Rectangle class declaration
6 class Rectangle
7 {
8 private:
9 double length;
10 double width;
11 public:
12 void setLength(double);
13 void setWidth(double);
14 double getLength();
15 double getWidth();
16 double getArea();
17 };
18

(program continues)

Program 7-2 (continued)

420 Chapter 7 Introduction to Classes and Objects

19 // Member function implementation section
20
21 /**
22 * Rectangle::setLength *
23 * This function sets the value of the member variable length. *
24 * If the argument passed to the function is zero or greater, it is *
25 * copied into length. If it is negative, 1.0 is assigned to length.*
26 **/
27 void Rectangle::setLength(double len)
28 {
29 if (len >= 0.0)
30 length = len;
31 else
32 { length = 1.0;
33 cout << "Invalid length. Using a default value of 1.0\n";
34 }
35 }
36
37 /**
38 * Rectangle::setWidth *
39 * This function sets the value of the member variable width. *
40 * If the argument passed to the function is zero or greater, it is *
41 * copied into width. If it is negative, 1.0 is assigned to width. *
42 **/
43 void Rectangle::setWidth(double w)
44 {
45 if (w >= 0.0)
46 width = w;
47 else
48 { width = 1.0;
49 cout << "Invalid width. Using a default value of 1.0\n";
50 }
51 }
52
53 /**
54 * Rectangle::getLength *
55 * This function returns the value in member variable length. *
56 **/
57 double Rectangle::getLength()
58 {
59 return length;
60 }
61
62 /**
63 * Rectangle::getWidth *
64 * This function returns the value in member variable width. *
65 **/
66 double Rectangle::getWidth()
67 {
68 return width;
69 }
70

(program continues)

Program 7-3 (continued)

Defining Member Functions 421

71 /***
72 * Rectangle::getArea *
73 * This function calculates and returns the area of the rectangle. *
74 ***/
75 double Rectangle::getArea()
76 {
77 return length * width;
78 }
79
80 /***
81 * main *
82 ***/
83 int main()
84 {
85 Rectangle box; // Declare a Rectangle object
86 double boxLength, boxWidth;
87
88 // Get box length and width
89 cout << "This program will calculate the area of a rectangle.\n";
90 cout << "What is the length? ";
91 cin >> boxLength;
92 cout << "What is the width? ";
93 cin >> boxWidth;
94
95 // Call member functions to set box dimensions
96 box.setLength(boxLength);
97 box.setWidth(boxWidth);
98
99 // Call member functions to get box information to display
100 cout << "\nHere is the rectangle’s data:\n";
101 cout << "Length: " << box.getLength() << endl;
102 cout << "Width : " << box.getWidth() << endl;
103 cout << "Area : " << box.getArea() << endl;
104 return 0;
105 }

Program Output with Example Input Shown in Bold
This program will calculate the area of a rectangle.
What is the length? 3[Enter]
What is the width? –1[Enter]
Invalid width. Using a default value of 1.0
Here is the rectangle’s data:
Length: 3
Width : 1
Area : 3

Program Output with Different Example Input Shown in Bold
This program will calculate the area of a rectangle.
What is the length? 10.1[Enter]
What is the width? 5[Enter]

Here is the rectangle’s data:
Length: 10.1
Width : 5
Area : 50.5

Program 7-3 (continued)

422 Chapter 7 Introduction to Classes and Objects

We mentioned earlier that when designing a class it is common practice to make all
member variables private and to provide public set and get functions for accessing those
variables. This safeguards the data. Functions outside the class can only access the
member data through calls to the public member functions, and these functions can be
written to prevent the data from being corrupted or modified in a way that might
adversely affect the behavior of an object of the class. Notice in Program 7-3 how the
two set functions are written to filter out invalid data. Rather than allowing an invalid
value to be stored in a member variable, they use a default value if the data passed to
them is not acceptable.

Avoiding Stale Data
In the Rectangle class, the getLength and getWidth member functions return the
values stored in the length and width member variables, but the getArea member
function returns the result of a calculation. You might wonder why the area of the
rectangle is not also stored in a member variable. The area is not stored because it could
potentially become stale. When the value of an item is dependent on other data and that
item is not updated when the other data is changed, we say that the item has become
stale. If the area of the rectangle were stored in a member variable, its value would
become incorrect as soon as either the length or width member variables changed.

When designing a class, you should normally not use a member variable to store a calculated
value that could potentially become stale. Instead, provide a member function that calculates
the value, using the most current data, and then returns the result of the calculation.

More on Inline Functions
When designing a class, you will need to decide which member functions to write as
inline functions within the class declaration and which ones to define outside the class.
Inline functions are handled completely differently by the compiler than regular
functions are. An understanding of this difference may help you decide which to use
when.

A lot goes on behind the scenes each time a regular function is called. A number of special
items, such as the address to return to when the function has finished executing and the values
of the function arguments, must be stored in a section of memory called the stack. In
addition, local variables are created and a location is reserved to hold the function’s return
value. All this overhead, which sets the stage for a function call, takes CPU time. Although
the time needed is small, it can add up if a function is called many times, as in a loop.

An inline function, on the other hand, is not called in the conventional sense at all.
Instead, in a process known as inline expansion, the compiler replaces every call to the
function with the actual code of the function itself. This means that if the function is
called from multiple places in the program, the entire body of its code will be inserted
multiple times, increasing the size of the program. This is why only a function with very
few lines of code should be written as an inline function. In fact, if the function is too
large to make the inline expansion practical, the compiler will ignore the request to
handle the function this way. However, when a member function is small, it can improve
performance to write it as an inline function because there is less overhead when you
don’t make actual function calls.

Constructors 423

Checkpoint

7.1 Which of the following shows the correct use of the scope resolution operator in a
member function definition?
A) InvItem::void setOnHand(int units)
B) void InvItem::setOnHand(int units)

7.2 An object’s private member variables can be accessed from outside the object by
A) public member functions
B) any function
C) the dot operator
D) the scope resolution operator

7.3 Assuming that soap is an instance of the Inventory class, which of the following is
a valid call to the setOnHand member function?
A) setOnHand(20);
B) soap::setOnHand(20);
C) soap.setOnHand(20);
D) Inventory.setOnHand(20);

7.4 Complete the following code skeleton to declare a class called Date. The class
should contain member variables and functions to store and retrieve the month,
day, and year components of a date.

class Date
{ private:

public:
}

7.6 Constructors

CONCEPT: A constructor is a member function that is automatically called when a class
object is created.

A constructor is a special public member function that is automatically called to construct
a class object when it is created. If the programmer does not write a constructor, C++
automatically provides one. You never see it, but it runs silently in the background each
time your program defines an object. Often, however, programmers write their own
constructor when they create a class. If they do this, in addition to constructing each newly
created object of the class, it will execute whatever code the programmer has included in it.
Most often programmers use a constructor to initialize an object’s member variables.
However, it can do anything a normal function can do.

A constructor looks like a regular function except that its name must be the same as the
name of the class it is a part of. This is how the compiler knows that a particular member
function is a constructor. Also, a constructor is not allowed to have a return type.

NOTE: Appendix F shows how to denote a constructor in UML.

424 Chapter 7 Introduction to Classes and Objects

Program 7-4 includes a class called Demo with a constructor that does nothing except print
a message. It was written this way to demonstrate when the constructor executes. Because
the Demo object is created between two cout statements, the constructor will print its
message between the output lines produced by those two statements.

In Program 7-4 we defined the constructor as an inline function inside the class
declaration. However, like any other class member function, we could have just put its
prototype in the class declaration and then defined it outside the class. In that case, we
would need to add the name of the class the function belongs to and the scope
resolution operator in front of the function name. But the name of the constructor
function is the same as the class name, so the name would appear twice. Here is how
the function header for the Demo constructor would look if we defined it outside the
class.

Demo::Demo() // Constructor
{
 cout << "Now the constructor is running.\n";
}

Program 7-4

1 // This program demonstrates when a constructor executes.
2 #include <iostream>
3 using namespace std;
4
5 class Demo
6 {
7 public:
8 Demo() // Constructor
9 {
10 cout << "Now the constructor is running.\n";
11 }
12 };
13
14 int main()
15 {
16 cout << "This is displayed before the object is created.\n";
17
18 Demo demoObj; // Define a Demo object
19
20 cout << "This is displayed after the object is created.\n";
21 return 0;
22 }

Program Output
This is displayed before the object is created.
Now the constructor is running.
This is displayed after the object is created.

Constructors 425

Program 7-5 modifies Program 7-2 to include a constructor that initializes an object’s
member data. The constructor is defined outside of the class.

Program 7-5

1 // This program uses a constructor to initialize a member variable.
2 #include <iostream>
3 #include <cmath>
4 using namespace std;
5
6 // Circle class declaration
7 class Circle
8 { private:
9 double radius;
10
11 public: // Member function prototypes
12 Circle();
13 void setRadius(double);
14 double getArea();
15 };
16
17 // Circle member function implementation section
18
19 /**
20 * Circle::Circle *
21 * This is the constructor. It initializes *
22 * the radius class member variable. *
23 **/
24 Circle::Circle()
25 { radius = 1.0;
26 }
27
28 /**
29 * Circle::setRadius *
30 * This function validates the value passed *
31 * to it before assigning it to the radius *
32 * member variable. *
33 **/
34 void Circle::setRadius(double r)
35 { if (r >= 0.0)
36 radius = r;
37 // else leave it set to its previous value
38 }
39
40 /**
41 * Circle::getArea *
42 * This function calculates and returns the *
43 * Circle object's area. It does not need any *
44 * parameters because it can directly access *
45 * the member variable radius. *
46 **/

(program continues)

426 Chapter 7 Introduction to Classes and Objects

Overloading Constructors
Recall from Chapter 6 that when two or more functions share the same name, the function
name is said to be overloaded. Multiple functions with the same name may exist in a C++
program, as long as their parameter lists are different.

Any class member function may be overloaded, including the constructor. One constructor
might take an integer argument, for example, while another constructor takes a double.
There could even be a third constructor taking two integers. As long as each constructor
has a different list of parameters, the compiler can tell them apart.

Program 7-6 declares and uses a class named Sale, which has two constructors. The first
has a parameter that accepts a sales tax rate. The second, which is for tax-exempt sales,
has no parameters. It sets the tax rate to 0. A constructor like this, which has no parameters,
is called a default constructor.

47 double Circle::getArea()
48 { return 3.14 * pow(radius, 2);
49 }
50
51 /***************************************
52 * main *
53 * The main function creates and uses *
54 * 2 Circle objects. *
55 ***************************************/
56 int main()
57 {
58 // Define a Circle object. Because the setRadius function
59 // is never called for it, it will keep the value set
60 // by the constructor.
61 Circle circle1;
62
63 // Define a second Circle object and set its radius to 2.5
64 Circle circle2;
65 circle2.setRadius(2.5);
66
67 // Get and display each circle's area
68 cout << "The area of circle1 is " << circle1.getArea() << endl;
69 cout << "The area of circle2 is " << circle2.getArea() << endl;
70
71 return 0;
72 }

Program Output
The area of circle1 is 3.14
The area of circle2 is 19.625

Program 7-5 (continued)

Constructors 427

Program 7-6

1 // This program demonstrates the use of overloaded constructors.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 // Sale class declaration
7 class Sale
8 {
9 private:
10 double taxRate;
11
12 public:
13 Sale(double rate) // Constructor with 1 parameter
14 { taxRate = rate; // handles taxable sales
15 }
16
17 Sale() // Default constructor
18 { taxRate = 0.0 // handles tax-exempt sales
19 }
20
21 double calcSaleTotal(double cost)
22 { double total = cost + cost*taxRate;
23 return total;
24 }
25 };
26
27 int main()
28 {
29 Sale cashier1(.06); // Define a Sale object with 6% sales tax
30 Sale cashier2; // Define a tax-exempt Sale object
31
32 // Format the output
33 cout << fixed << showpoint << setprecision(2);
34
35 // Get and display the total sale price for two $24.95 sales
36 cout << "With a 0.06 sales tax rate, the total\n";
37 cout << "of the $24.95 sale is $";
38 cout << cashier1.calcSaleTotal(24.95) << endl;
39
40 cout << "\nOn a tax-exempt purchase, the total\n";
41 cout << "of the $24.95 sale is, of course, $";
42 cout << cashier2.calcSaleTotal(24.95) << endl;
43 return 0;
44 }

Program Output
With a 0.06 sales tax rate, the total
of the $24.95 sale is $26.45

On a tax-exempt purchase, the total
of the $24.95 sale is, of course, $24.95

428 Chapter 7 Introduction to Classes and Objects

Notice on lines 29 and 30 of Program 7-6 how the two Sale objects are defined.

Sale cashier1(.06);
Sale cashier2;

There is a pair of parentheses after the name cashier1 to hold the value being sent to the
1-parameter constructor. However, there are no parentheses after the name cashier2,
which sends no arguments. In C++ when an object is defined using the default constructor,
instead of passing arguments, there must not be any parentheses.

Sale cashier2(); // Wrong!
Sale cashier2; // Correct

Default Constructors
The Sale class needed a default constructor to handle tax-free sales. Other classes may appear
not to need one—for example, if objects created from them are always expected to pass
arguments to the constructors. Yet, any time you design a class that will have constructors, it is
considered good programming practice to include a default constructor. If you do not have one,
and the program tries to create an object without passing any arguments, it will not compile.
This is because there must be a constructor to create an object. In order to create an object that
passes no arguments, there must be a constructor that expects no arguments—a default
constructor. If the programmer doesn’t write any constructors for a class, the compiler
automatically creates a default constructor for it. However, when the programmer writes one
or more constructors, even ones that all have parameters, the compiler does not create a default
constructor. So it is the responsibility of the programmer to do this.

A class may have many constructors, but can only have one default constructor. This is
because if multiple functions have the same name, the compiler must be able to determine
from their parameter lists which one is being called at any given time. It uses the number
and type of arguments passed to the function to determine which of the overloaded
functions to invoke. Because there can be only one function with the class name that is able
to accept no arguments, there can be only one default constructor.

Normally, as in the Sale class, default constructors have no parameters. However, it is
possible to have a default constructor with parameters if all of its parameters have
default values, so that it can be called with no arguments. It would be an error to create
one constructor that accepts no arguments and another that has arguments but allows
default values for all of them. This would essentially create two “default” constructors.
The following class declaration illegally does this.

class Sale // Illegal declaration!
{ private:
 double taxRate;

 public:
 Sale() // Default constructor with no arguments
 { taxRate = 0.05; }

 Sale(double r = 0.05) // Default constructor with a default argument
 { taxRate = r; }

 double calcSaleTotal(double cost)
 { double total = cost + cost * taxRate;
 return total;
};

Destructors 429

As you can see, the first constructor has no parameters. The second constructor has one
parameter, but it has a default argument. If an object is defined with no argument list, the
compiler will not be able to tell which constructor to execute.

7.7 Destructors

CONCEPT: A destructor is a member function that is automatically called when an
object is destroyed.

Destructors are public member functions with the same name as the class, preceded by a
tilde character (~). For example, the destructor for the Rectangle class would be named
~Rectangle.

Destructors are automatically called when an object is destroyed. In the same way that
constructors can be used to set things up when an object is created, destructors are used to
perform shutdown procedures when an object ceases to exist. This happens, for example,
when a program with an object stops executing or when you return from a function that
created an object.

Program 7-7 shows a simple class with a constructor and a destructor. It illustrates when
each is called during the program’s execution.

NOTE: Appendix F shows how to denote a destructor in UML.

Program 7-7

1 // This program demonstrates a destructor.
2 #include <iostream>
3 using namespace std;
4
5 class Demo
6 {
7 public:
8 Demo(); // Constructor prototype
9 ~Demo(); // Destructor prototype
10 };
11
12 Demo::Demo() // Constructor function definition
13 { cout << "An object has just been defined, so the constructor"
14 << " is running.\n";
15 }
16
17 Demo::~Demo() // Destructor function definition
18 { cout << "Now the destructor is running.\n";
19 }
20

(program continues)

430 Chapter 7 Introduction to Classes and Objects

In addition to the fact that destructors are automatically called when an object is
destroyed, the following points should be mentioned:

• Like constructors, destructors have no return type.
• Destructors cannot accept arguments, so they never have a parameter list.
• Because destructors cannot accept arguments, there can only be one destructor.

Destructors are most useful when working with objects that are dynamically allocated.
You will learn about this in Chapter 10.

Checkpoint

7.5 Briefly describe the purpose of a constructor.

7.6 Constructor functions have the same name as the
A) class
B) class instance
C) program
D) none of the above

7.7 A constructor that requires no arguments is called
A) a default constructor
B) an inline constructor
C) a null constructor
D) none of the above

7.8 Assume the following is a constructor:

ClassAct::ClassAct(int x)
{

item = x;
}

Define a ClassAct object called sally that passes the value 25 to the constructor.

7.9 True or false: Like any C++ function, a constructor may be overloaded, providing
each constructor has a unique parameter list.

21 int main()
22 {
23 Demo demoObj; // Declare a Demo object;
24
25 cout << "The object now exists, but is about to be destroyed.\n";
26 return 0;
27 }

Program Output
An object has just been defined, so the constructor is running.
The object now exists, but is about to be destroyed.
Now the destructor is running.

Program 7-7 (continued)

Destructors 431

7.10 True or false: A class may have a constructor with no parameter list, and an
overloaded constructor whose parameters all take default arguments.

7.11 A destructor function name always starts with
A) a number
B) the tilde character (~)
C) a data type name
D) the name of the class

7.12 True or false: Just as a class can have multiple constructors, it can also have
multiple destructors.

7.13 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Tank
{
private:

int gallons;
public:

Tank()
{ gallons = 50; }

Tank(int gal)
{ gallons = gal; }

int getGallons()
{ return gallons; }

};

int main()
{ Tank storage1, storage2, storage3(20);

cout << storage1.getGallons() << endl;
cout << storage2.getGallons() << endl;
cout << storage3.getGallons() << endl;
return 0;

}

7.14 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Package
{
private:

int value;
public:

Package()
 { value = 7; cout << value << endl; }
Package(int v)
 { value = v; cout << value << endl; }
~Package()
 { cout << "goodbye" << endl; }

};

432 Chapter 7 Introduction to Classes and Objects

int main()
{ Package obj1(4);

Package obj2;
return 0;

}

7.8 Private Member Functions

CONCEPT: Private member functions may only be called from a function that is a
member of the same class.

Until now all of the class member functions you have seen have been public functions. This
means they can be called by code in programs outside the class. Often, however, a class
needs functions for internal processing that should not be called by code outside the class.
These functions should be made private.

Program 7-8 shows an example of a class with a private function. The SimpleStat
class is designed to find and report information, such as the average and the largest
number, from a set of non-negative integers sent to it. However, once a number has been
received and added to a running total, it is not kept. So the class cannot later determine
which number was the biggest. It must do this by examining each number it reads in
to see if it is bigger than any number it previously read. The private isNewLargest
function does this.

NOTE: Appendix F shows how to denote private and public members in UML.

Program 7-8

1 // This program uses a private Boolean function to determine if
2 // a new value sent to it is the largest value received so far.
3 #include <iostream>
4 using namespace std;
5
6 class SimpleStat
7 {
8 private:
9 int largest; // The largest number received so far
10 int sum; // The sum of the numbers received
11 int count; // How many numbers have been received
12
13 bool isNewLargest(int); // This is a private class function

(program continues)

Private Member Functions 433

14
15 public:
16
17 SimpleStat(); // Default constructor
18 bool addNumber(int);
19 double getAverage();
20
21 int getLargest()
22 { return largest; }
23
24 int getCount()
25 { return count; }
26 };
27
28 // SimpleStat Class Implementation Code
29
30 /*************************************
31 * SimpleStat Default Constructor *
32 *************************************/
33 SimpleStat::SimpleStat()
34 {
35 largest = sum = count = 0;
36 }
37
38 /*************************************
39 * SimpleStat::addNumber *
40 *************************************/
41 bool SimpleStat::addNumber(int num)
42 { bool goodNum = true;
43 if (num >= 0) // If num is valid
44 {
45 sum += num; // Add it to the sum
46 count++; // Count it
47 if(isNewLargest(num)) // Find out if it is
48 largest = num; // the new largest
49 }
50 else // num is invalid
51 goodNum = false;
52
53 return goodNum;
54 }
55
56 /*************************************
57 * SimpleStat::isNewLargest *
58 *************************************/
59 bool SimpleStat::isNewLargest(int num)
60 {
61 if (num > largest)
62 return true;
63 else
64 return false;
65 }

(program continues)

Program 7-8 (continued)

434 Chapter 7 Introduction to Classes and Objects

66
67 /*************************************
68 * SimpleStat::getAverage *
69 *************************************/
70 double SimpleStat::getAverage()
71 {
72 if (count > 0)
73 return static_cast<double>(sum) / count;
74 else
75 return 0;
76 }
77
78 // Client Program
79
80 /*************************************
81 * main *
82 *************************************/
83 int main()
84 {
85 int num;
86 SimpleStat statHelper;
87
88 cout << "Please enter the set of non-negative integer \n";
89 cout << "values you want to average. Separate them with \n";
90 cout << "spaces and enter -1 after the last value. \n\n";
91
92 cin >> num;
93 while (num >= 0)
94 {
95 statHelper.addNumber(num);
96 cin >> num;
97 }
98 cout << "\nYou entered " << statHelper.getCount() << " values. \n";
99 cout << "The largest value was " << statHelper.getLargest() << endl;
100 cout << "The average value was " << statHelper.getAverage() << endl;
101
102 return 0;
103 }

Program Output with Example Input Shown in Bold
Please enter the set of non-negative integer
values you want to average. Separate them with
spaces and enter -1 after the last value.

7 6 8 8 9 7 7 8 9 7 -1[Enter]

You entered 10 values.
The largest value was 9
The average value was 7.6

Program 7-8 (continued)

Passing Objects to Functions 435

In Program 7-8 the private function isNewLargest was written to create a more modular
class with code that is easy to follow. The program could have been written without this
function. However, in that case, the addNumber function itself would have to handle the
additional work of comparing the new value with largest. In later chapters you will
encounter many examples where the use of private functions is essential.

7.9 Passing Objects to Functions

CONCEPT: Class objects may be passed as arguments to functions.

In Chapter 6 you learned how to use variables as function arguments. Class objects can
also be passed as arguments to functions. For example, the following function has a
parameter that receives a Rectangle object.

void displayRectangle(Rectangle r)
{
 cout << "Length = " << r.getLength() << endl;
 cout << "Width = " << r.getWidth() << endl;
 cout << "Area = " << r.getArea() << endl;
}

The following lines of code create a Rectangle object with length 15 and width 10, and
then pass it to the displayRectangle function.

Rectangle box(15, 10);
displayRectangle(box);

Assuming the Rectangle class includes the member functions used in this example, the
displayRectangle function will output the following information:

Length = 15
Width = 10
Area = 150

As with regular variables, objects can be passed to functions by value or by reference. In
the Rectangle example, box is passed to the displayRectangle function by value. This
means that displayRectangle receives a copy of box. If displayRectangle called any
Rectangle class mutator functions, they would only change the copy of box, not the
original. If a function needs to store or change data in an object’s member variables, the
object must be passed to it by reference.

Program 7-9 illustrates this. It has two functions that receive an InventoryItem object.
The object is passed to storeValues by reference because this function needs to call a
class mutator function that stores new values into the object. The object is passed to
showValues by value because this function only needs to use accessor functions that
retrieve and use values stored in the object’s data members. Notice in Program 7-9 that the
InventoryItem class declaration appears before the prototype for the storeValues and

436 Chapter 7 Introduction to Classes and Objects

showValues functions. This is important. Because both functions have an InventoryItem
object as a parameter, the compiler must know what an InventoryItem is before it
encounters anything that refers to it. Otherwise an error will occur.

Program 7-9

1 // This program passes an object to a function. It passes it
2 // to one function by reference and to another by value.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 class InventoryItem
9 {
10 private:
11 int partNum; // Part number
12 string description; // Item description
13 int onHand; // Units on hand
14 double price; // Unit price
15
16 public:
17
18 void storeInfo(int p, string d, int oH, double cost); // Prototype
19
20 int getPartNum()
21 { return partNum; }
22
23 string getDescription()
24 { return description; }
25
26 int getOnHand()
27 { return onHand; }
28
29 double getPrice()
30 { return price; }
31 };
32
33 // Implementation code for InventoryItem class function storeInfo
34 void InventoryItem::storeInfo(int p, string d, int oH, double cost)
35 { partNum = p;
36 description = d;
37 onHand = oH;
38 price = cost;
39 }
40
41 // Function prototypes for client program
42 void storeValues(InventoryItem&); // Receives an object by reference
43 void showValues (InventoryItem); // Receives an object by value
44

(program continues)

Passing Objects to Functions 437

45 //**************** main ******************
46 int main()
47 {
48 InventoryItem part; // part is an InventoryItem object
49
50 storeValues(part);
51 showValues(part);
52 return 0;
53 }
54
55 /**
56 * storeValues *
57 * This function stores user input data in the members of *
58 * an InventoryItem object passed to it by reference. *
59 * **/
60 void storeValues(InventoryItem &item)
61 {
62 int partNum; // Local variables to hold user input
63 string description;
64 int qty;
65 double price;
66
67 // Get the data from the user
68 cout << "Enter data for the new part number \n";
69 cout << "Part number: ";
70 cin >> partNum;
71 cout << "Description: ";
72 cin.get(); // Move past the '\n' left in the
73 // input buffer by the last input
74 getline(cin, description);
75 cout << "Quantity on hand: ";
76 cin >> qty;
77 cout << "Unit price: ";
78 cin >> price;
79
80 // Store the data in the InventoryItem object
81 item.storeInfo(partNum, description, qty, price);
82 }
83
84 /**
85 * showValues *
86 * This function displays the member data stored in the *
87 * InventoryItem object passed to it by value. *
88 **/
89 void showValues(InventoryItem item)
90 {
91 cout << fixed << showpoint << setprecision(2) << endl;;
92 cout << "Part Number : " << item.getPartNum() << endl;
93 cout << "Description : " << item.getDescription() << endl;
94 cout << "Units On Hand: " << item.getOnHand() << endl;
95 cout << "Price : $" << item.getPrice() << endl;
96 }

(program continues)

Program 7-9 (continued)

438 Chapter 7 Introduction to Classes and Objects

Constant Reference Parameters
In Program 7-9 part, the InventoryItem object, was passed by value to the showValues
function. However, passing an object by value requires making a copy of all of the
object’s members. This can slow down a program’s execution time, particularly if it has
many members. When an object is passed by reference, on the other hand, no copy has to
be made because the function has access to the original object. For this reason it is
generally preferable to pass objects by reference.

There is a disadvantage to passing an object by reference, however. Because the
function has access to the original object, it can call its mutator functions and alter its
member data. This is why we normally do not pass variables by reference when we
want to safeguard their contents. Luckily there is a solution. To protect an object when
it is passed as an argument, without having to make a copy, it can be passed as a
constant reference. This means that a reference to the original object is passed to the
function, but it cannot call any mutator functions or change any of the object’s
member data. It can only call accessor functions that have themselves been designated
as constant functions.

To declare a parameter to be a constant reference parameter, we must put the key word
const in the parameter list of both the function prototype and function header. Here is
what the function prototype and header of the showValues function from Program 7-9
would look like if we changed it to use a constant reference parameter.

void showValues (const InventoryItem&) // Function prototype
void showValues (const InventoryItem &item) // Function header

Now the showValues function can only call InventoryItem functions that also have the
key word const listed in their function prototype and header, like this:

double getPrice() const

Program Output with Example Input Shown in Bold
Enter data for the new part number

Part number: 175[Enter]
Description: Hammer[Enter]
Quantity on hand: 12[Enter]
Unit price: 7.49[Enter]

Part Number : 175
Description : Hammer
Units On Hand: 12
Price : $7.49

Program 7-9 (continued)

Passing Objects to Functions 439

If showValues tried to call any other InventoryItem functions, a compiler error
would occur. Notice that when showValues is modified to have a constant reference
parameter, only the function prototypes and headers are changed to include the word
const. The body of the showValues function and the call to showValues do not
change.

Returning an Object from a Function
Just as functions can be written to return an int, double, or other data type, they can also
be designed to return an object. In fact, you have done this before when you returned a
string from a function, since a string is an object. When a function returns an object it
normally creates a local instance of the class, sets its data members, and then returns it.
Here is an example of how the InventoryItem object used in Program 7-9 could be
created in the storeValues function and then returned to the calling function. Notice that
this new version of the storeValues function does not accept any arguments, and its
return type is now InventoryItem rather than void.

InventoryItem storeValues()
{
 InventoryItem tempItem; // Local InventoryItem object
 int partNum; // Local variables to hold user input
 string description;
 int qty;
 double price;

 // Code to get the data from the user goes here.

// Store the data in the InventoryItem object and return it.
 tempItem.storeInfo(partNum, description, qty, price);
 return tempItem;
}

The main function could then create part like this:

InventoryItem part = storeValues();

Program 7-10 revises Program 7-9 to incorporate the techniques we have just discussed.
The function previously named storeValues is renamed createItem, as it now creates
an InventoryItem object and returns it to main. The showValues function now receives
part as a constant reference, instead of having it passed by value, as before.

Program 7-10

1 // This program uses a constant reference parameter.
2 // It also shows how to return an object from a function.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7

(program continues)

440 Chapter 7 Introduction to Classes and Objects

8 class InventoryItem
9 {
10 private:
11 int partNum; // Part number
12 string description; // Item description
13 int onHand; // Units on hand
14 double price; // Unit price
15
16 public:
17
18 void storeInfo(int p, string d, int oH, double cost); // Prototype
19
20 int getPartNum() const // The get functions have all been made
21 { return partNum; } // const functions. This ensures they
22 // cannot alter any class member data.
23 string getDescription() const
24 { return description; }
25
26 int getOnHand() const
27 { return onHand; }
28
29 double getPrice() const
30 { return price; }
31 };
32
33 // Implementation code for InventoryItem class function storeInfo
34 void InventoryItem::storeInfo(int p, string d, int oH, double cost)
35 { partNum = p;
36 description = d;
37 onHand = oH;
38 price = cost;
39 }
40
41 // Function prototypes for client program
42 InventoryItem createItem(); // Returns an InventoryItem object
43 void showValues (const InventoryItem&); // Receives a reference to an
44 // InventoryItem object
45
46 //*************** main *****************
47 int main()
48 {
49 InventoryItem part = createItem();
50 showValues(part);
51 return 0;
52 }
53

(program continues)

Program 7-10 (continued)

Passing Objects to Functions 441

54 /**
55 * createItem *
56 * This function stores user input data in the members of a *
57 * locally defined InventoryItem object, then returns it. *
58 **/
59 InventoryItem createItem()
60 {
61 InventoryItem tempItem; // Local InventoryItem object
62 int partNum; // Local variables to hold user input
63 string description;
64 int qty;
65 double price;
66
67 // Get the data from the user
68 cout << "Enter data for the new part number \n";
69 cout << "Part number: ";
70 cin >> partNum;
71 cout << "Description: ";
72 cin.get(); // Move past the '\n' left in the
73 // input buffer by the last input
74 getline(cin, description);
75 cout << "Quantity on hand: ";
76 cin >> qty;
77 cout << "Unit price: ";
78 cin >> price;
79
80 // Store the data in the InventoryItem object and return it
81 tempItem.storeInfo(partNum, description, qty, price);
82 return tempItem;
83 }
84
85 /***
86 * showValues *
87 * This function displays the member data in the InventoryItem *
88 * object passed to it. Because it was passed as a constant *
89 * reference, showValues accesses the original object, not a *
90 * copy, but it can only call member functions declared to be *
91 * const. This prevents it from calling any mutator functions. *
92 ***/
93 void showValues(const InventoryItem &item)
94 {
95 cout << fixed << showpoint << setprecision(2) << endl;;
96 cout << "Part Number : " << item.getPartNum() << endl;
97 cout << "Description : " << item.getDescription() << endl;
98 cout << "Units On Hand: " << item.getOnHand() << endl;
99 cout << "Price : $" << item.getPrice() << endl;
100 }

Program Output is the Same as for Program 7-9.

Program 7-10 (continued)

442 Chapter 7 Introduction to Classes and Objects

Checkpoint

7.15 A private class member function can be called by
A) any other function
B) only public functions in the same class
C) only private functions in the same class
D) any function in the same class

7.16 When an object is passed to a function, a copy of it is made if the object is
A) passed by value
B) passed by reference
C) passed by constant reference
D) any of the above

7.17 If a function receives an object as an argument and needs to change the object’s
member data, the object should be
A) passed by value
B) passed by reference
C) passed by constant reference
D) none of the above

7.18 True or false: Objects can be passed to functions, but they cannot be returned by
functions.

7.19 True or false: When an object is passed to a function, but the function is not
supposed to change it, it is best to pass it by value.

7.10 Object Composition

CONCEPT: It is possible for a class to have a member variable that is an instance of
another class.

Sometimes it’s helpful to nest an object of one class inside another class. For example,
consider the following declarations:

class Rectangle
{
 private:
 double length;
 double width;
 public:
 void setLength(double);
 void setWidth(double);
 double getLength();
 double getWidth();
 double getArea();
};

Object Composition 443

class Carpet
{
 private:
 double pricePerSqYd;
 Rectangle size; // size is an instance of
 // the Rectangle class
 public:
 void setPricePerYd(double p);
 void setDimensions(double l, double w);
 double getTotalPrice();
};

Notice that the Carpet class has a member variable named size, which is an instance of
the Rectangle class. The Carpet class can use this object to store the room dimensions
and to compute the area for a carpet purchase. Figure 7-4 illustrates how the two classes
are related. When one class is nested inside another like this, it is called object
composition.

Program 7-11 uses these two classes to create an application that computes carpet sale
prices.

Figure 7-4

Program 7-11

1 // This program nests one class inside another. It has a class
2 // with a member variable that is an instance of another class.
3 #include <iostream>
4 using namespace std;
5
6 class Rectangle
7 {
8 private:
9 double length;
10 double width;

(program continues)

Carpet

Carpet member functions

size

pricePerSqYd

Rectangle

length
width

Rectangle
member functions

444 Chapter 7 Introduction to Classes and Objects

11 public:
12 void setLength(double len)
13 { length = len; }
14
15 void setWidth(double wid)
16 { width = wid; }
17
18 double getLength()
19 { return length; }
20
21 double getWidth()
22 { return width; }
23
24 double getArea()
25 { return length * width; }
26 };
27
28 class Carpet
29 {
30 private:
31 double pricePerSqYd;
32 Rectangle size; // size is an instance of
33 // the Rectangle class
34 public:
35 void setPricePerYd(double p)
36 { pricePerSqYd = p; }
37
38 void setDimensions(double len, double wid)
39 { size.setLength(len/3); // Convert feet to yards
40 size.setWidth (wid/3);
41 }
42
43 double getTotalPrice()
44 { return (size.getArea() * pricePerSqYd); }
45 };
46
47 // ************** Client Program *****************
48 int main()
49 {
50 Carpet purchase; // This variable is a Carpet object
51 double pricePerYd;
52 double length;
53 double width;
54
55 cout << "Room length in feet: ";
56 cin >> length;
57 cout << "Room width in feet : ";
58 cin >> width;
59 cout << "Carpet price per sq. yard: ";
60 cin >> pricePerYd;

(program continues)

Program 7-11 (continued)

Object Composition 445

Let’s take a closer look at Program 7-11. Notice that the client program, which defines
purchase, a Carpet object, only uses it to call Carpet class functions, not Rectangle
class functions. It does not even know that the Carpet class has a Rectangle object inside
it. Notice also, in lines 39, 40, and 44, how Carpet class functions call Rectangle
functions. Just as the user program calls Carpet functions through the name of its Carpet
object, the Carpet class functions must call Rectangle functions through the name of its
Rectangle object. The Rectangle object, defined in line 32, is named size. That is why
the Carpet functions make calls like this:

size.getArea()

Checkpoint

7.20 Assume a Map class has a member variable named position that is an instance
of the Location class. The Location class has a private member variable
named latitude and a public member function called getLatitude. Which of
the following lines of code would correctly get and return the value stored in
latitude?
A) return Location.latitude;
B) return Location.getLatitude();
C) return position.latitude;
D) return position.getLatitude();

7.21 Write a class declaration for a class named Circle, which has the data member
radius, a double, and member functions setRadius and getArea. Write the code
for these as inline functions.

61
62 purchase.setDimensions(length, width);
63 purchase.setPricePerYd(pricePerYd);
64
65 cout << "\nThe total price of my new " << length << " x " << width
66 << " carpet is $" << purchase.getTotalPrice() << endl;
67
68 return 0;
69 }

Program Output with Example Input Shown in Bold
Room length in feet: 16.5[Enter]
Room width in feet : 12[Enter]
Carpet price per sq. yard: 22.49[Enter]

The total price of my new 16.5 x 12 carpet is $494.78

Program 7-11 (continued)

446 Chapter 7 Introduction to Classes and Objects

7.22 Write a class declaration for a class named Pizza that has the data members price,
a double, and size, a Circle object (declared in question 7.21). It also has member
functions: setPrice, setSize, and costPerSqIn. Write the code for these as inline
functions.

7.23 Write 4 lines of code that might appear in a client program using the Pizza class to
do the following:
Define an instance of the Pizza class named myPizza.
Call a Pizza function to set the price.
Call a Pizza function to set the size (i.e., the radius).
Call a Pizza function to return the price per square inch and then print it.

7.11 Focus on Software Engineering: Separating Class
Specification, Implementation, and Client Code

CONCEPT: Usually class declarations are stored in their own header files and member
function definitions are stored in their own .cpp files.

In the programs we’ve looked at so far, the class declaration, the member function definitions,
and the application program that uses the class are all stored in one file. A more conventional
way of designing C++ programs is to store these in three separate files. Typically, program
components are stored in the following fashion:

• Class declarations are stored in their own header files. A header file that contains a
class declaration is called a class specification file. The name of the class specification
file is usually the same as the name of the class, with a .h extension. For example, the
Rectangle class would be declared in the file Rectangle .h.

• Any program that uses the class should #include this header file.

• The member function definitions for a class are stored in a separate .cpp file,
which is called the class implementation file. The file usually has the same name
as the class, with the .cpp extension. For example the Rectangle class member
functions would be defined in the file Rectangle.cpp.

• The class .cpp file should be compiled and linked with the application program that uses
the class. This program, also known as the client program, or client code, is the one that
includes the main function. This process can be automated with a project or make
utility. Integrated development environments such as Visual Studio also provide the
means to create multi-file projects.

Let’s see how we could rewrite Program 7-3, the rectangle program, using this design
approach. First, the Rectangle class declaration would be stored in the following
Rectangle.h file.

447

This is the specification file for the Rectangle class. It contains only the declaration of the
Rectangle class. It does not contain any member function definitions. When we write
other programs that use the Rectangle class, we can have an #include directive that
includes this file. That way, we won’t have to write the class declaration in every program
that uses the Rectangle class.

This file also introduces two new preprocessor directives: #ifndef and #endif. The
#ifndef directive that appears in line 2 is called an include guard. It prevents the header
file from accidentally being included more than once. When your main program file has
an #include directive for a header file, there is always the possibility that the header file
will have an #include directive for a second header file. If your main program file also
has an #include directive for the second header file, the preprocessor will include the
second header file twice. Unless an include guard has been written into the second header
file, an error will occur because the compiler will process the declarations in the second
header file twice. Let’s see how an include guard works.

The word ifndef stands for “if not defined”. It is used to determine whether or not a
specific constant has already been defined with another #define directive. When the
Rectangle.h file is being compiled, the #ifndef directive checks for the existence of a
constant named RECTANGLE_H. If this constant has not been defined yet, it is immediately
defined in line 3, and the rest of the file is included. However, if the constant has already
been defined, it means that this file has already been included. In that case, it is not
included a second time. Instead, everything between the #ifndef and #endif directives is
skipped. Note that the constant used in the #infdef and #define directives should be
written in all capital letters and is customarily named FILENAME_H, where FILENAME is the
name of the header file.

Next we need an implementation file that contains the class member function definitions.
The implementation file for the Rectangle class is Rectangle.cpp.

Contents of Rectangle.h
1 // Rectangle.h is the Rectangle class specification file.
2 #ifndef RECTANGLE_H
3 #define RECTANGLE_H
4
5 // Rectangle class declaration
6 class Rectangle
7 {
8 private:
9 double length;
10 double width;
11 public:
12 bool setLength(double);
13 bool setWidth(double);
14 double getLength();
15 double getWidth();
16 double getArea();
17 };
18 #endif

Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code

448 Chapter 7 Introduction to Classes and Objects

Contents of Rectangle.cpp
1 // Rectangle.cpp is the Rectangle class function implementation file.
2 #include "Rectangle.h"
3
4 /***
5 * Rectangle::setLength *
6 * If the argument passed to the setLength function is zero or *
7 * greater, it is copied into the member variable length, and true *
8 * is returned. If the argument is negative, the value of length *
9 * remains unchanged and false is returned. *
10 ***/
11 bool Rectangle::setLength(double len)
12 {
13 bool validData = true;
14
15 if (len >= 0) // If the len is valid
16 length = len; // copy it to length
17 else
18 validData = false; // else leave length unchanged
19
20 return validData;
21 }
22
23 /**
24 * Rectangle::setWidth *
25 * If the argument passed to the setWidth function is zero or *
26 * greater, it is copied into the member variable width, and true *
27 * is returned. If the argument is negative, the value of width *
28 * remains unchanged and false is returned. *
29 **/
30 bool Rectangle::setWidth(double w)
31 {
32 bool validData = true;
33
34 if (w >= 0) // If w is valid
35 width = w; // copy it to width
36 else
37 validData = false; // else leave width unchanged
38
39 return validData;
40 }
41
42 /**
43 * Rectangle::getLength *
44 * This function returns the value in member variable length. *
45 **/
46 double Rectangle::getLength()
47 {
48 return length;
49 }
50

449

Look at the code for the five functions. Notice that the three accessor functions, getLength,
getWidth, and getArea, are the same as those that appeared in Program 7-3. However, a
change has been made to the two mutator functions, setLength and setWidth, to illustrate
another way that public class functions can safeguard private member data. In Program 7-3,
the setLength and setWidth functions use a default value for length and width if invalid
data is passed to them. In the Rectangle.cpp code, these two functions return a Boolean value
indicating whether or not the value received was stored in the member variable. If a valid
argument is received, it is stored in the member variable and true is returned. If an invalid
argument is received, the member variable is left unchanged and false is returned. The client
program that uses this class must test the returned Boolean value to determine how to proceed.

Now look at line 2, which has the following #include directive:

#include "Rectangle.h"

This directive includes the Rectangle.h file, which contains the Rectangle class
declaration. Notice that the name of the header file is enclosed in double-quote characters
(" ") instead of angled brackets (< >). When you are including a C++ system header file,
such as iostream, you enclose the name of the file in angled brackets. This indicates that
the file is located in the compiler’s include file directory. That is the directory or folder
where all of the standard C++ header files are located. When you are including a header file
that you have written, such as a class specification file, you enclose the name of the file in
double quote marks. This indicates that the file is located in the current project directory.

Any file that uses the Rectangle class must have an #include directive for the
Rectangle.h file. We need to include Rectangle.h in the class specification file
because the functions in this file belong to the Rectangle class. Before the compiler
can process a function with Rectangle:: in its name, it must have already processed
the Rectangle class declaration.

With the Rectangle class stored in its own specification and implementation files, we can
see how to use them in a program. Program 7-12 is a modified version of Program 7-3.
Notice that Program 7-12 is much shorter than Program 7-3 because it does not contain the
Rectangle class declaration or member function definitions. Instead, it is designed to be

51 /**
52 * Rectangle::getWidth *
53 * This function returns the value in member variable width. *
54 **/
55 double Rectangle::getWidth()
56 {
57 return width;
58 }
59
60 /***
61 * Rectangle::getArea *
62 * This function calculates and returns the area of the rectangle. *
63 ***/
64 double Rectangle::getArea()
65 {
66 return length * width;
67 }

Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code

450 Chapter 7 Introduction to Classes and Objects

compiled and linked with the class specification and implementation files. Program 7-12 only
needs to contain the client code that creates and uses a Rectangle object.

Notice that line 6 of Program 7-12 has an #include directive for the Rectangle.h
file. This is needed so the Rectangle class declaration will be included in the file.

Now that we have created the three files for this program, the following steps must be
taken to create an executable program.

• First, the implementation file, Rectangle.cpp, should be compiled to create an
object file. This file would typically be named Rectangle.obj.

• Next, the main program file, located in file pr7-12.cpp, must be compiled to
create an object file. This file would typically be named pr7-12.obj.

• Finally, the object files pr7-12.obj and Rectangle.obj are linked together to
create an executable file, which would be named something like pr7-12.exe.

Program 7-12

1 // This program uses the Rectangle class.
2 // The Rectangle class declaration is in file Rectangle.h.
3 // The Rectangle member function definitions are in Rectangle.cpp
4 // These files should all be combined into a project.
5 #include <iostream>
6 #include "Rectangle.h" // Contains Rectangle class declaration
7 using namespace std;
8
9 int main()
10 {
11 Rectangle box; // Declare a Rectangle object
12 double boxLength, boxWidth;
13
14 //Get box length and width
15 cout << "This program will calculate the area of a rectangle.\n";
16 cout << "What is the length? ";
17 cin >> boxLength;
18 cout << "What is the width? ";
19 cin >> boxWidth;
20
21 // Call member functions to set box dimensions.
22 // If the function call returns false, it means the
23 // argument sent to it was invalid and not stored.
24 if (!box.setLength(boxLength)) // Store the length
25 cout << "Invalid box length entered.\n";
26 else if (!box.setWidth(boxWidth)) // Store the width
27 cout << "Invalid box width entered.\n";
28 else // Both values were valid
29 {
30 // Call member functions to get box information to display
31 cout << "\nHere is the rectangle's data:\n";
32 cout << "Length: " << box.getLength() << endl;
33 cout << "Width : " << box.getWidth() << endl;
34 cout << "Area : " << box.getArea() << endl;
35 }
36 return 0;
37 }

451

Table 7-1 summarizes how the different files of Program 7-12 are organized and compiled
on a typical Windows computer.

Figure 7-5 further illustrates this process.

The exact details on how these steps take place are different for each C++ development
system. Fortunately, most systems perform all of these steps automatically for you. For
example, in Microsoft Visual C++ you create a project, and then you simply add all of the
files to the project. When you compile the project, the steps are done for you and an
executable file is generated. Once the executable file has been created, you can run the
program. When valid values are entered for boxLength and boxWidth the output should
be identical to that shown for Program 7-3.

Advantages of Using Multiple Files
Separating a client program from the details of a class it uses is considered good
programming practice. A class is an example of an abstract data type and, as you learned
earlier in this chapter, the only thing a programmer writing an application that uses the
class needs to know is what the class does, what kind of data it can hold, what functions

Table 7-1 Files Used in Program 7-12

Rectangle.h Contains the Rectangle class declaration. This file is included by
Rectangle.cpp and pr7-12.cpp.

Rectangle.cpp Contains the definitions of the Rectangle class member functions. This
file is compiled to create an object file, such as Rectangle.obj.

pr7-12.cpp Contains the application program that uses the class. In this case, the
application program consists of just the function main. This file is
compiled to create an object file, such as pr7-12.obj.

Linking the .obj
files

The two object code files created by compiling Rectangle.cpp and
pr7-12.cpp are linked to make the executable file pr7-12.exe

Figure 7-5

NOTE: Appendix G, Multi-Source File Programs, provides additional information on
creating multifile projects.

Link

Compile

Compile

Include

Headers
Source
files

Object
files

Executable
file

Rectangle.h
Specification

file

Rectangle.cpp
Implementation

file

Rectangle.obj

pr7-12.exe

pr7-12.cpp
Main program

file

pr7-12.obj

Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code

452 Chapter 7 Introduction to Classes and Objects

it provides, and how to call them. Programmers, and any programs using the class, do
not need to know anything about the implementation of the class. In addition, often
many different programs use a particular class. If the implementation code that defines
the class member functions is in its own separate file, this code does not have to be in all
of these programs. They can each simply #include the file containing the defintions.

Separating a class into a specification file and an implementation file is also considered
good programming practice. If you wish to give your class to other programmers, you
don’t have to share all of your source code. You can just provide a copy of the
specification file and the compiled object file for the class’s implementation. The other
programmers simply insert the necessary #include directive into their programs,
compile them, and link them with your class object file. This prevents other programmers,
who might not understand all the details of your code, from making changes that
introduce bugs.

Separating a class into specification and implementation files also makes things easier when
class member functions must be modified. It is only necessary to modify the
implementation file and recompile it to create a new object file. Programs that use the class
don’t have to be recompiled. They just have to be linked with the new object file.

Performing Input/Output in a Class Object
You may have noticed in Program 7-12 that we avoided doing any I/O inside the Rectangle
class. In general is it considered good design to have class member functions avoid using
cin and cout. This is so anyone writing a program that uses the class will not be locked
into the particular way the class performs input or output. Unless a class is specifically
designed to perform I/O, it is best to leave operations such as user input and output to
the person designing the application. As a general rule, classes should provide member
functions for retrieving data values without displaying them on the screen. Likewise, they
should provide member functions that store data into private member variables without
using cin. Program 7-12 follows both of these practices.

Checkpoint

7.24 Assume the following class components exist in a program:

BasePay class declaration
BasePay member function definitions
Overtime class declaration
Overtime member function definitions

What files would you store each of the above components in?

7.25 What header files should be included in the client program that uses the BasePay
and Overtime classes?

NOTE: There are instances where it is appropriate for a class to perform I/O. For
example, a class might be designed to display a menu on the screen and get the user’s
selection. Another example is a class designed to handle a program’s file I/O. Classes
that hold and manipulate data, however, should not be tied to any particular I/O
routines. This allows them to be more versatile.

Structures 453

7.12 Structures

CONCEPT: C++ allows a set of variables to be combined together into a single unit called
a structure.

A structure is a programmer-defined data type that can hold many different data values. In
the past, before the use of object-oriented programming became common, programmers
typically used these to group logically connected data together into a single unit. Once a
structure type is declared and its data members identified, multiple variables of this type
can be created, just as multiple objects can be created for the same class.

Although structures are less commonly used today, it is important that you know what
they are and how to use them. Not only may you encounter them in older programs, but
there are actually some instances in which classes will not work and structures must be
used. You will see an example of this later in this chapter.

The way a structure is declared is similar to the way a class is declared, with the following
differences:

• The key word struct is used instead of the key word class.
• Although structures can include member functions, they rarely do. So normally a

structure declaration only declares member variables.
• Structure declarations normally do not include the access specifiers public or private.
• Unlike class members, which are private by default, members of a structure

default to being public. Programmers normally want them to remain public and
simply use the default.

Here is an example of a declaration for a structure that bundles together five variables
holding payroll data for an employee. The name of this particular structure is PayRoll.
Notice that it begins with a capital letter. The convention is to begin structure names, just
like class names, with an uppercase letter. Notice also that, like a class declaration, there
must be a semicolon after the closing brace of the declaration.

struct PayRoll
{

int empNumber;
string name;
double hours,
 payRate,
 grossPay;

};

Just as a class declaration is not instantiated until objects of the class are created, a
structure declaration does not create any instances of the structure. The structure
declaration in our example simply tells the compiler what a Payroll structure looks like.
It in essence creates a new data type named Payroll.

You define variables that are Payroll structures the way you define any variable, by first
listing the data type, and then the variable name. The following definition creates three
variables that are Payroll structures.

Payroll deptHead, foreman, associate;

454 Chapter 7 Introduction to Classes and Objects

Creating and
Using
Structures

Each is an instance of a Payroll structure, with its own memory allocated to hold its
member data. Notice that although the three structure variables have distinct names, each
contains members with the same name. Figure 7.6 illustrates this.

Accessing Structure Members
Members of a structure are accessed just like public members of a class, with the dot
operator. However, the data members of a class are normally private and must be accessed
through functions. Because structure data members are public, they are accessed directly and
can be used like regular variables. The following statements assign values to the empNumber
member of each of the Payroll variables we created.

deptHead.empNumber = 475;
foreman.empNumber = 897;
associate.empNumber = 729;

And the following statements display the contents of all the deptHead’s members.

cout << deptHead.empNumber << endl;
cout << deptHead.name << endl;
cout << deptHead.hours << endl;
cout << deptHead.payRate << endl;
cout << deptHead.grossPay << endl;

Program 7-13 is a complete program that uses the PayRoll structure. Notice how the
individual structure members are used just like regular variables in cin statements, in cout
statements, and in mathematical operations.

Figure 7-6

Program 7-13

1 // This program demonstrates the use of a structure.
2 #include <iostream>
3 #include <iomanip>
4 #include <string>
5 using namespace std;
6

(program continues)

empNumber

name

hours

payRate

grossPay

deptHead

empNumber

name

hours

payRate

grossPay

foreman

empNumber

name

hours

payRate

grossPay

associate

VideoNote

Structures 455

7 struct PayRoll
8 {
9 int empNumber; // Employee number
10 string name; // Employee name
11 double hours, // Hours worked
12 payRate; // Hourly pay rate
13 };
14
15 int main()
16 {
17 PayRoll employee; // Employee is a PayRoll structure
18 double grossPay; // Gross amount the employee earned this week
19
20 //Get the employee's data
21 cout << "Enter the employee's number: ";
22 cin >> employee.empNumber;
23
24 cout << "Enter the employee's name: ";
25 cin.ignore(); // Skip the '\n' character left in the input buffer
26 getline(cin, employee.name);
27
28 cout << "Hours worked this week: ";
29 cin >> employee.hours;
30
31 cout << "Employee's hourly pay rate: ";
32 cin >> employee.payRate;
33
34 // Calculate the employee's gross pay
35 grossPay = employee.hours * employee.payRate;
36
37 // Display the results
38 cout << "\nHere is the employee's payroll data:\n";
39 cout << "Name: " << employee.name << endl;
40 cout << "Employee number: " << employee.empNumber << endl;
41 cout << "Hours worked: " << employee.hours << endl;
42 cout << "Hourly pay rate: " << employee.payRate << endl;
43 cout << fixed << showpoint << setprecision(2);
44 cout << "Gross pay: $" << grossPay << endl;
45 return 0;
46 }

Program Output with Example Input Shown in Bold
Enter the employee's number: 2214[Enter]
Enter the employee's name: Jack Smith[Enter]
Hours worked this week: 40[Enter]
Employee's hourly pay rate: 12.50[Enter]

Here is the employee's payroll data:
Name: Jack Smith
Employee number: 2214
Hours worked: 40
Hourly pay rate: 12.5
Gross pay: $500.00

Program 7-13 (continued)

456 Chapter 7 Introduction to Classes and Objects

In Program 7-13 the variable employee is defined in line 17 to be an instance of a Payroll
structure. Its five data members can then be accessed with the dot operator through the
name of the variable. For example, in line 22 the following statement reads a value into the
variable’s empNumber member.

cin >> employee.empNumber; // Correct

It would have been wrong to try to access this member through the name of the structure type.

cin >> Payroll.empNumber; // Wrong!

Displaying and Comparing Structure Variables
In Program 7-13 each member of the employee structure variable was displayed separately.
This is necessary because the entire contents of a structure variable cannot be displayed
by simply passing the whole variable to cout. For example, the following statement will
not work.

cout << employee << endl; // Error!

Likewise, while it is possible to compare the contents of two individual structure members,
you cannot perform comparison operations on entire structures. For example, if
employee1 and employee2 are both Payroll structure variables, this comparison will
cause an error.

if (employee1 == employee2) // Error!

The following comparison, on the other hand, is perfectly legal.

if (employee1.hours == employee2.hours) // Legal

Initializing a Structure
There are two ways a structure variable can be initialized when it is defined: with an
initialization list or with a constructor.

The simplest way to initialize the members of a structure variable is to use an
initialization list. An initialization list is a list of values used to initialize a set of memory
locations. The items in the list are separated by commas and surrounded by braces.
Suppose, for example, the following Date structure has been declared:

struct Date
{ int day,

 month,
 year;

};

A Date variable can now be defined and initialized by following the variable name with the
assignment operator and an initialization list, as shown here:

Date birthday = {23, 8, 1983};

This statement defines birthday to be a variable which is a Date structure. The values
inside the curly braces are assigned to its members in order. So the data members of
birthday have been initialized as shown in Figure 7-7.

Structures 457

It is also possible to initialize just some of the members of a structure variable. For
example, if we know the birthday to be stored is August 23, but do not know the year, the
variable could be defined and initialized like this:

Date birthday = {23, 8};

Only the day and month members are initialized here. The year member is not initialized.
If you leave a structure member uninitialized, however, you must leave all the members
that follow it uninitialized as well. C++ does not provide a way to skip members when
using an initialization list. The following statement attempts to skip the initialization of the
month member. It is not legal.

Date birthday = {23, , 1983}; // Illegal!

It is important to note that you cannot initialize a structure member in the declaration of
the structure because the structure declaration just creates a new data type. No variables of
this type exist yet. For example, the following declaration is illegal:

// Illegal structure declaration
struct Date
{ int day = 23,

 month = 8,
 year = 1983;

};

Because a structure declaration only declares what a structure “looks like”, the member
variables are not created in memory until the structure is instantiated by defining a variable
of that structure type. Until then there is no place to store an initial value.

Although an initialization list is easy to use, it has two drawbacks:

1. It does not allow you to leave some members uninitialized and still initialize others
that follow.

2. It will not work on many compilers if the structure includes any objects, such as
strings.

In these cases you can initialize structure member variables the same way you initialize class
member variables—by using a constructor. As with a class constructor, a constructor for a
structure must be a public member function with the same name as the structure and no
return type. Because all structure members are public by default, however, the key word
public does not need to be used. Here is a structure declaration for a structure named
Employee. It includes a 2-argument constructor that provides default values in case an
Employee variable is created without passing any arguments to the constructor.

Figure 7-7

23birthday.day

birthday.month

birthday.year

8

1983

458 Chapter 7 Introduction to Classes and Objects

struct Employee
{

string name; // Employee name
int vacationDays, // Vacation days allowed per year
 daysUsed; // Vacation days used so far

Employee(string n = "", int d = 0) // Constructor
{ name = n;
 vacationDays = 10;
 daysUsed = d;
}

};

Nested Structures
Just as objects of one class can be nested within another class, instances of one structure can
be nested within another structure. For example, consider the following declarations:

struct Costs
{

double wholesale;
double retail;

};

struct Item
{

string partNum;
string description;
Costs pricing;

};

The Costs structure has two double members, wholesale and retail. The Item
structure has three members. The first two, partNum and description, are string
objects. The third, pricing, is a nested Costs structure. If widget is defined to be an Item
structure, Figure 7-8 illustrates its members.

They would be accessed as follows:

widget.partnum = "123A";
widget.description = "iron widget";
widget.pricing.wholesale = 100.0;
widget.pricing.retail = 150.0;

Figure 7-8

widget partNum

description

pricing
wholesale

retail

Structures 459

Notice that wholesale and retail are not members of widget; pricing is. To access
wholesale and retail, widget’s pricing member must first be accessed and then, because
it is a Costs structure, its wholesale and retail members can be accessed. Notice also, as
with all structures, it is the member name, not the structure name, that must be used in
accessing a member. The following statements would not be legal.

cout << widget.retail; // Wrong!
cout << widget.Costs.wholesale; // Wrong!

When you are deciding whether to use nested structures or not, think about how various
members are related. A structure bundles together items that logically belong together.
Normally the members of a structure are attributes describing some object. In our
example, the object was a widget, and its part number, description, and wholesale and
retail prices were its attributes. When some of the attributes are related and form a logical
subgroup of the object’s attributes, it makes sense to bundle them together and use a nested
structure. Notice the relatedness of the attributes in the inner structure of Program 7-14,
which uses a nested structure.

Program 7-14

1 // This program demonstrates the use of a nested structure.
2 #include <iostream>
3 #include <iomanip>
4 #include <string>
5 using namespace std;
6
7 struct CostInfo
8 {
9 double food, // Food costs
10 medical, // Medical costs
11 license, // License fee
12 misc; // Miscellaneous costs
13 };
14
15 struct PetInfo
16 {
17 string name; // Pet name
18 string type; // Pet type
19 int age; // Pet age
20
21 CostInfo cost; // A PetInfo structure has a CostInfo structure
22 // nested inside as one of its members
23
24 PetInfo() // Default constructor
25 { name = "unknown";
26 type = "unknown";
27 age = 0;
28 cost.food = cost.medical = cost.license = cost.misc = 0.00;
29 }
30 };

(program continues)

460 Chapter 7 Introduction to Classes and Objects

Checkpoint

7.26 Write a structure declaration for a structure named Student that holds the following
data about a student:

ID (int)
entry year (int)
GPA (double)

Then write definition statements that create the following two Student variables
and initialize them using initialization lists.

Variable s1 should have ID number 1234, entry year 2008, and GPA 3.41.
Variable s2 should have ID number 5678 and entry year 2010. The GPA
member should be left uninitialized.

7.27 Write a structure declaration for a structure named Account that holds the following
data about a savings account. Include a constructor that allows data values to be
passed in for all four members.

Account number (string)
Account balance (double)
Interest rate (double)
Average monthly balance (double)

31
32 int main()
33 {
34 // Define a PetInfo structure variable called pet
35 PetInfo pet;
36
37 // Assign values to the pet member variables.
38 // Notice that cost.misc is not assigned a value,
39 // so it remains 0, as set by the constructor.
40 pet.name = "Sassy";
41 pet.type = "cat";
42 pet.age = 5;
43 pet.cost.food = 300.00;
44 pet.cost.medical = 200.00;
45 pet.cost.license = 7.00;
46
47 // Display the total annual costs for the pet
48 cout << fixed << showpoint << setprecision(2);
49 cout << "Annual costs for my " << pet.age << "-year-old "
50 << pet.type << " " << pet.name << " are $"
51 << (pet.cost.food + pet.cost.medical +
52 pet.cost.license + pet.cost.misc) << endl;
53 return 0;
54 }

Sample Output
Annual costs for my 5-year-old cat Sassy are $507.00

Program 7-14 (continued)

Structures 461

Now write a definition statement for an Account variable that initializes the
members with the following data:

Account number: ACZ42137
Account balance: $4512.59
Interest rate: 4%
Average monthly balance: $4217.07

7.28 The following program skeleton, when complete, asks the user to enter the following
information about his or her favorite movie:

Name of the movie
Name of the movie’s director
The year the movie was released

Complete the program by declaring the structure that holds this information, defining
a structure variable, and writing the required individual statements.

#include <iostream>
#include <string>
using namespace std;

// Write the structure declaration to hold the movie information.

int main()
{

// Define the structure variable here.

cout << "Enter the following information about your "
 << " favorite movie.\n" << "Name: ";
// Write a statement here that lets the user enter a movie name.
// Store it in the appropriate structure member.

cout << "Director: ";
// Write a statement here that lets the user enter the director's
// name. Store it in the appropriate structure member.

cout << "Year of Release: ";
// Write a statement here that lets the user enter the movie
// release year. Store it in the appropriate structure member.

cout << "\nHere is information on your favorite movie:\n";
// Write statements here that display the information
// just entered into the structure variable.
return 0;

}

7.29 Write a declaration for a structure named Location, with the following three
double member variables: latitude, longitude, and height.

7.30 Write a declaration for a structure named City, which has the members cityName,
a string, and position, a Location structure (declared above). Then define a
variable named destination that is an instance of the City structure.

7.31 Write assignment statements that store the following information in destination.
city name : Tupelo
latitude : 34.28 // 34.28 degrees north
longitude : −88.77 // 88.77 degrees west
height : 361.0 // feet above sea level

462 Chapter 7 Introduction to Classes and Objects

Passing Structures to Functions
Structure variables, just like class objects, can be passed to functions by value, by
reference, and by constant reference. By default, they are passed by value. This means
that a copy of the entire original structure is made and passed to the function. Because it
is not desirable to take the time to copy an entire structure, unless it is quite small,
structures are normally passed to functions by reference. This, however, gives the
function access to the member variables of the original structure, allowing it to change
them. If you do not want a function to change any member variable values, the structure
variable should be passed to it as a constant reference.

Program 7-15 is a modification of Program 7-9 that defines a structure variable and passes
it to two functions.

Program 7-15

1 // This program passes a structure variable to one function
2 // by reference and to another as a constant reference.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 struct InvItem // Holds data for an inventory item
9 {
10 int partNum; // Part number
11 string description; // Item description
12 int onHand; // Units on hand
13 double price; // Unit price
14 };
15
16 // Function prototypes
17 void getItemData(InvItem &); // Function getItemData will receive an
18 // InvItem structure passed to it by
19 // reference so new values can be stored
20 // in its member variables.
21
22 void showItem(const InvItem &);
23 // Function showItem will receive an
24 // InvItem structure passed to it as a
25 // constant reference because showItem
26 // just needs display member variable
27 // values, not change them.
28 int main()
29 {
30 InvItem part; // Define an InvItem structure variable.
31
32 getItemData(part);
33 showItem(part);
34 return 0;
35 }

(program continues)

Structures 463

36
37 /**
38 * getItemData *
39 * This function stores data input by the user in the members of an *
40 * InvItem structure variable passed to the function by reference. *
41 * **/
42 void getItemData(InvItem &item)
43 {
44 cout << "Enter the part number: ";
45 cin >> item.partNum;
46 cout << "Enter the part description: ";
47 cin.get(); // Move past the '\n' left in the
48 // input buffer by the last input.
49 getline(cin, item.description);
50 cout << "Enter the quantity on hand: ";
51 cin >> item.onHand;
52 cout << "Enter the unit price: ";
53 cin >> item.price;
54 }
55
56 /**
57 * showItem *
58 * This function displays the data stored in the members of an *
59 * InvItem structure variable passed to it as a constant reference. *
60 * **/
61 void showItem(const InvItem &item)
62 {
63 cout << fixed << showpoint << setprecision(2) << endl;;
64 cout << "Part Number : " << item.partNum << endl;
65 cout << "Description : " << item.description << endl;
66 cout << "Units On Hand: " << item.onHand << endl;
67 cout << "Price : $" << item.price << endl;
68 }

Program Output with Example Input Shown in Bold
Enter the part number: 800[Enter]
Enter the part description: Screwdriver[Enter]
Enter the quantity on hand: 135[Enter]
Enter the unit price: 1.25[Enter]

Part Number : 800
Description : Screwdriver
Units On Hand: 135
Price : $1.25

Program 7-15 (continued)

464 Chapter 7 Introduction to Classes and Objects

Returning a Structure from a Function
A structure variable can also be returned from a function. In this case the return type of the
function is the name of the structure. Program 7-15 could have been written to allow the
getItemData function to create a local instance of an InvItem structure, place data values
into its member variables, and then pass it back to main, instead of receiving it from main
as a reference variable. This is what the revised getItemData function would look like.

/***
 * getItemData *
 * This function stores data input by the user in the members *
 * of a local InvItem structure variable and then returns it. *
 * ***/

InvItem getItemData()
{

InvItem item; // Create a local InvItem variable
 // to hold data until it can be returned.
cout << "Enter the part number: ";
cin >> item.partNum;
cout << "Enter the part description: ";
cin.get(); // Move past the '\n' left in the
 // input buffer by the last input.
getline(cin, item.description);
cout << "Enter the quantity on hand: ";
cin >> item.onHand;
cout << "Enter the unit price: ";
cin >> item.price;

return item;
}

And here is how it would be called from main.

part = getItemData();

This version of Program 7-15 can be found in the Chapter 7 folder on the book’s
companion website as Program 7-15B.

Checkpoint

Use the following structure declaration to answer the questions in this section.

struct Rectangle
{

int length;
int width;

};

7.32 Write a function that accepts the Rectangle structure defined above as its
argument and displays the structure’s contents on the screen.

NOTE: In Chapter 6 you learned that C++ only allows you to return a single value from a
function. Structures, however, provide a way around this limitation. Even though a
structure may have several members, it is technically a single object. By packaging multiple
values inside a structure, you can return as many values as you need from a function.

Structures 465

7.33 Write a function that uses a Rectangle structure reference variable as its parameter
and stores the user’s input in the structure’s members.

7.34 Write a function that returns a Rectangle structure. The function should create
a local Rectangle variable, store the user’s input in its members, and then
return it.

Unions
A union is like a structure, except all the member variables occupy the same memory area,
so only one member can be used at a time. A union might be used in an application where
the program needs to work with two or more values (of different data types), but only
needs to use one of the values at a time. Unions conserve memory by storing all of their
members in the same memory location.

Unions are declared just like structures, except the key word union is used instead of
struct. Here is an example:

union PaySource
{

short hours;
float sales;

};

A union variable of the data type shown can then be defined like this:

PaySource employee1;

The PaySource union variable defined here has two members: hours (a short) and sales
(a float). The entire variable will only take up as much memory as the largest member (in
this case, a float). The way this variable is stored on a typical computer is illustrated
in Figure 7-9.

As shown in Figure 7-9, this union uses four bytes on a typical computer. It can store a
short or a float, depending on which member is used. When a value is stored in the
sales member, all four bytes are needed to hold the data. When a value is stored in the
hours member, only the first two bytes are used. Obviously, both members can’t hold values
at the same time. This union is demonstrated in Program 7-16.

Figure 7-9

employee1: a PaySource union variable

1st two bytes are used
by hours, a short

All four bytes are used by sales, a float

466 Chapter 7 Introduction to Classes and Objects

Program 7-16

1 // This program demonstrates a union.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 union PaySource // Declare a union
7 {
8 short hours; // These two variables share
9 float sales; // the same memory space
10 };
11
12 int main()
13 {
14 const double COMMISSION_PCT = .10;
15
16 PaySource employee1; // employee1 is a PaySource union
17 // This employee can have hours or
18 // sales, but not both at once
19
20 char hourlyType; // 'y' if hourly, 'n' if on commission
21 float payRate, grossPay;
22
23 cout << fixed << showpoint << setprecision(2);
24 cout << "This program calculates either hourly wages or "
25 << "sales commission.\n";
26 cout << "Is this an hourly employee (y or n)? ";
27 cin >> hourlyType;
28
29 if (hourlyType == 'y' || hourlyType == 'Y') // Hourly employee
30 {
31 cout << "What is the hourly pay rate? ";
32 cin >> payRate;
33 cout << "How many hours were worked? ";
34 cin >> employee1.hours;
35 grossPay = employee1.hours * payRate;
36 cout << "Gross pay: $" << grossPay << endl;
37 }
38 else // Commission employee
39 {
40 cout << "What are the total sales for this employee? ";
41 cin >> employee1.sales;
42 grossPay = employee1.sales * COMMISSION_PCT;
43 cout << "Gross pay: $" << grossPay << endl;
44 }
45 return 0;
46 }

(program continues)

Home Software Company OOP Case Study 467

Everything else you already know about structures applies to unions.

7.13 Home Software Company OOP Case Study
You are a programmer for the Home Software Company assigned to develop a class that
models the basic workings of a bank account. The class should perform the following
tasks:

• Save the account balance.
• Save the number of transactions performed on the account.
• Allow deposits to be made to the account.
• Allow withrawals to be taken from the account.
• Calculate interest for the period.
• Report the current account balance at any time.
• Report the current number of transactions at any time.

Private Member Variables
Table 7-2 lists the private member variables needed by the class.

Program Output with Example Input Shown in Bold
This program calculates either hourly wages or sales commission.
Is this an hourly employee (y or n)? y[Enter]
What is the hourly pay rate? 20[Enter]
How many hours were worked? 40[Enter]
Gross pay: $800.00

Program Output with Other Example Input Shown in Bold
This program calculates either hourly wages or sales commission.
Is this an hourly employee (y or n)? n[Enter]
What are the total sales for this employee? 5000[Enter]
Gross pay: $500.00

Table 7-2 Private Member Variables of the Account Class

Variable Description

balance A double that holds the current account balance

intRate A double that holds the interest rate for the period

interest A double that holds the interest earned for the current period

transactions An integer that holds the current number of transactions

Program 7-16 (continued)

468 Chapter 7 Introduction to Classes and Objects

Public Member Functions
Table 7-3 lists the public member functions in the class.

The Class Declaration
The following listing shows the class declaration.

Table 7-3 Public Member Functions of the Account Class

Function Description

constructor Takes arguments to be initially stored in the balance and intRate
members. The default value for the balance is zero and the default value for
the interest rate is 0.045.

makeDeposit Takes a double argument that is the amount of the deposit. This argument
is added to balance.

withdraw Takes a double argument that is the amount of the withdrawal. This value
is subtracted from the balance, unless the withdrawal amount is greater
than the balance. If this happens, the function reports an error.

calcInterest Takes no arguments. This function calculates the amount of interest for the
current period, stores this value in the interest member, and then adds it
to the balance member.

getBalance Returns the current balance (stored in the balance member).

getInterest Returns the interest earned for the current period (stored in the interest
member).

getTransactions Returns the number of transactions for the current period (stored in the
transactions member).

Contents of Account.h
1 // Account.h is the Account class specification file.
2 class Account
3 {
4 private:
5 double balance;
6 double intRate;
7 double interest;
8 int transactions;
9
10 public:
11
12 // Constructor
13 Account(double rate = 0.045, double bal = 0.0)
14 { balance = bal; intRate = rate;
15 interest = 0.0; transactions = 0;
16 }
17
18 void makeDeposit(double amount)
19 { balance += amount;
20 transactions++;
21 }
22
23 bool withdraw(double amount); // Defined in account.cpp

Home Software Company OOP Case Study 469

The withdraw Member Function
The only member function not defined inline in the class declaration is withdraw. The
purpose of that function is to subtract the amount of a withdrawal from the balance
member. If the amount to be withdrawn is greater than the current balance, however, no
withdrawal is made. The function returns true if the withdrawal is made or false if there
is not enough in the account.

The Class Interface
The balance, intRate, interest, and transactions member variables are private, so
they are hidden from the world outside the class. This is because a programmer with
direct access to these variables might unknowingly commit any of the following errors:

• A deposit or withdrawal might be made without the transactions member being
incremented.

• A withdrawal might be made for more than is in the account. This will cause the
balance member to have a negative value.

24
25 void calcInterest()
26 { interest = balance * intRate;
27 balance += interest;
28 }
29
30 double getBalance()
31 { return balance;
32 }
33
34 double getInterest()
35 { return interest;
36 }
37
38 int getTransactions()
39 { return transactions;
40 }
41 };

Contents of Account.cpp
1 // Account.cpp is the Account class function implementation file.
2 #include "Account.h"
3
4 bool Account::withdraw(double amount)
5 {
6 if (balance < amount)
7 return false; // Not enough in the account
8 else
9 {
10 balance -= amount;
11 transactions++;
12 return true;
13 }
14 }

470 Chapter 7 Introduction to Classes and Objects

• The interest rate might be calculated and the balance member adjusted, but the
amount of interest might not get recorded in the intRate member.

• The wrong interest rate might be used.

Because of the potential for these errors, the class contains public member functions that
ensure the proper steps are taken when the account is manipulated.

Implementing the Class
Program 7-17 shows an implementation of the Account class. It presents a menu for
displaying a savings account’s balance, number of transactions, and interest earned. It
also allows the user to deposit an amount into the account, make a withdrawal from the
account, and calculate the interest earned for the current period.

Program 7-17

1 // This client program uses the Account class to perform simple
2 // banking operations. This file should be combined into a
3 // project along with the Account.h and Account.cpp files.
4 #include <iostream>
5 #include <iomanip>
6 #include "Account.h"
7 using namespace std;
8
9 // Function prototypes
10 void displayMenu();
11 char getChoice(char);
12 void makeDeposit(Account &);
13 void withdraw(Account &);
14
15 int main()
16 {
17 const char MAX_CHOICE = '7';
18 Account savings; // Account object to model savings account
19 char choice;
20
21 cout << fixed << showpoint << setprecision(2);
22 do
23 {
24 displayMenu();
25 choice = getChoice(MAX_CHOICE); // This returns only '1' - '7'
26 switch(choice)
27 {
28 case '1': cout << "The current balance is $";
29 cout << savings.getBalance() << endl;
30 break;
31 case '2': cout << "There have been ";
32 cout << savings.getTransactions()
33 << " transactions.\n";
34 break;

(program continues)

Home Software Company OOP Case Study 471

35 case '3': cout << "Interest earned for this period: $";
36 cout << savings.getInterest() << endl;
37 break;
38 case '4': makeDeposit(savings);
39 break;
40 case '5': withdraw(savings);
41 break;
42 case '6': savings.calcInterest();
43 cout << "Interest added.\n";
44 }
45 } while(choice != '7');
46 return 0;
47 }
48
49 /**
50 * displayMenu *
51 * This function displays the user's menu on the screen. *
52 **/
53 void displayMenu()
54 {
55 cout << "\n\n MENU\n\n";
56 cout << "1) Display the account balance\n";
57 cout << "2) Display the number of transactions\n";
58 cout << "3) Display interest earned for this period\n";
59 cout << "4) Make a deposit\n";
60 cout << "5) Make a withdrawal\n";
61 cout << "6) Add interest for this period\n";
62 cout << "7) Exit the program\n\n";
63 cout << "Enter your choice: ";
64 }
65
66 /***
67 * getChoice *
68 * This function gets, validates, and returns the user's choice. *
69 ***/
70 char getChoice(char max)
71 {
72 char choice = cin.get();
73 cin.ignore(); // Bypass the '\n' in the input buffer
74
75 while (choice < '1' || choice > max)
76 {
77 cout << "Choice must be between 1 and " << max << ". "
78 << "Please re-enter choice: ";
79 choice = cin.get();
80 cin.ignore(); // Bypass the '\n' in the input buffer
81 }
82 return choice;
83 }
84

(program continues)

Program 7-17 (continued)

472 Chapter 7 Introduction to Classes and Objects

85 /**
86 * makeDeposit *
87 * This function accepts a reference to an Account object. *
88 * The user is prompted for the dollar amount of the deposit, *
89 * and the makeDeposit member of the Account object is *
90 * then called. *
91 **/
92 void makeDeposit(Account &account)
93 {
94 double dollars;
95
96 cout << "Enter the amount of the deposit: ";
97 cin >> dollars;
98 cin.ignore();
99 account.makeDeposit(dollars);
100 }
101
102 /**
103 * withdraw *
104 * This function accepts a reference to an Account object. *
105 * The user is prompted for the dollar amount of the withdrawal,*
106 * and the withdraw member of the Account object is then called.*
107 **/
108 void withdraw(Account &account)
109 {
110 double dollars;
111
112 cout << "Enter the amount of the withdrawal: ";
113 cin >> dollars;
114 cin.ignore();
115 if (!account.withdraw(dollars))
116 cout << "ERROR: Withdrawal amount too large.\n\n";
117 }

Program Output with Example Input Shown in Bold
 Menu

 1) Display the account balance
 2) Display the number of transactions
 3) Display interest earned for this period
 4) Make a deposit
 5) Make a withdrawal
 6) Add interest for this period
 7) Exit the program

 Enter your choice: 4[Enter]
 Enter the amount of the deposit: 500[Enter]

 Menu
 1) Display the account balance
 2) Display the number of transactions
 3) Display interest earned for this period
 4) Make a deposit
 5) Make a withdrawal
 6) Add interest for this period
 7) Exit the program

 Enter your choice: 1[Enter]
 The current balance is $500.00

(program output continues)

Program 7-17 (continued)

Home Software Company OOP Case Study 473

 Menu
 1) Display the account balance
 2) Display the number of transactions
 3) Display interest earned for this period
 4) Make a deposit
 5) Make a withdrawal
 6) Add interest for this period
 7) Exit the program

 Enter your choice: 5[Enter]
 Enter the amount of the withdrawal: 700[Enter]
 ERROR: Withdrawal amount too large.

 Menu
 1) Display the account balance
 2) Display the number of transactions
 3) Display interest earned for this period
 4) Make a deposit
 5) Make a withdrawal
 6) Add interest for this period
 7) Exit the program

 Enter your choice: 5[Enter]
 Enter the amount of the withdrawal: 200[Enter]

 Menu
 1) Display the account balance
 2) Display the number of transactions
 3) Display interest earned for this period
 4) Make a deposit
 5) Make a withdrawal
 6) Add interest for this period
 7) Exit the program

 Enter your choice: 6[Enter]
 Interest added.

 Menu
 1) Display the account balance
 2) Display the number of transactions
 3) Display interest earned for this period
 4) Make a deposit
 5) Make a withdrawal
 6) Add interest for this period
 7) Exit the program

 Enter your choice: 1[Enter]
 The current balance is: $313.50

 Menu
 1) Display the account balance
 2) Display the number of transactions
 3) Display interest earned for this period
 4) Make a deposit
 5) Make a withdrawal
 6) Add interest for this period
 7) Exit the program

 Enter your choice: 7[Enter]

Program 7-17 (continued)

474 Chapter 7 Introduction to Classes and Objects

7.14 Introduction to Object-Oriented Analysis
and Design

CONCEPT: Object-oriented analysis determines the requirements for a system to clarify
what it must be able to do, what classes are needed, and how those classes are
related. Object-oriented design then designs the classes and specifies how they
will carry out their responsibilities.

So far you have learned the basics of writing a class, creating an object from the class, and using
the object to perform operations. This knowledge is necessary to create an object-oriented
application, but it is not the first step in designing the application. First a programmer or
analyst must carefully analyze the problem to be solved to determine exactly what the program
must be able to do. In OOP terminology, this phase of program development is known as the
object-oriented analysis phase. During this time it is determined what classes are needed.

The process of object-oriented analysis typically includes the following steps:

1. Identify the classes and objects to be used in the program.
2. Define the attributes for each class.
3. Define the behaviors for each class.
4. Define the relationships between classes.

Let’s look at each step more closely.

1. Identify the Classes and Objects.
Remember, a class is a package that consists of data and procedures that perform operations
on the data. In order to determine the classes that will appear in a program, the programmer
should think of the major data elements and decide what procedures or actions are required
for each class. For example, consider a restaurant that uses an object-oriented program to
enter customer orders. A customer order is a list of menu items with their respective prices.
The restaurant uses this list to charge the customer, so a class could be created to model it.
Also, the restaurant’s menu has several main entrees, appetizers, side dishes, and beverages to
choose from. A class could be designed to represent menu items as well.

Classes can be easily designed to model real-world objects, such as customer orders and a
restaurant’s menu items. Here are some other types of items that may be candidates for
classes in a program:

• User-interface components, such as windows, menus, and dialog boxes
• Input/output devices, such as the keyboard, mouse, display, and printer
• Physical objects, such as vehicles, machines, or manufactured products
• Recordkeeping items, such as customer histories, and payroll records
• A role played by a human (employee, client, teacher, student, and so forth).

2. Define Each Class’s Attributes.
A class’s attributes are the data elements used to describe an object instantiated from
the class. They are the values needed for the object to function properly in the program.

Introduction to Object-Oriented Analysis and Design 475

Using the restaurant example, here is the beginning of a possible specification for a
menuItem class.

Class name: MenuItem

Attributes: itemName
price
category // 1 = appetizer, 2 = salad, 3 = entrée

 // 4 = side dish, 5 = dessert, 6 = beverage

And here is the beginning of a possible specification for a CustomerOrder class.

Class name: CustomerOrder

Attributes: orderNumber
tableNumber
serverNumber
date
items // a list of MenuItem objects
totalPrice
tip

3. Define Each Class’s Behaviors.
Once the class’s attributes have been defined, the programmer must identify the
activities, or behaviors, each class must be capable of performing. For example, some of
the the activities the MenuItem class should be able to perform include

• changing a price
• displaying a price

Some of the activities the CustomerOrder class should be able to perform include

• accepting the information for a new order
• adding an item to an existing order
• returning any information on a previously stored order
• calculating the total price of all items on an order
• printing a list of ordered items for the kitchen
• printing a bill for the patron.

In C++, a class’s behaviors are its member functions.

4. Define the Relationships Between Classes.
The last step in our object-oriented analysis phase is to define the relationships that exist
between and among the classes in a program. The possible relationships may be formally
stated as

• Access
• Ownership (Composition)
• Inheritance.

Informally, these three relationships can be described as

• Uses-a
• Has-a
• Is-a.

476 Chapter 7 Introduction to Classes and Objects

The first relationship, access, allows an object to modify the attributes of another
object. Normally, an object has attributes not accessible to parts of the program
outside the object. These are known as private attributes. An access relationship
between two objects means that one object will have access to the other object’s
private attributes. When this relationship exists, it can be said that one object uses the
other.

The second relationship, ownership, means that one object has another object as one of its
members. For example, in our restaurant example, the CustomerOrder class has a list of
MenuItem objects as one of its attributes. In OOP terminology, this type of relationship is
also called composition.

The third relationship is inheritance. Sometimes a class is based on another class. This
means that one class is a specialized case of the other. For example, consider a program
that uses classes representing cars, trucks, and jet planes. Although those three types of
classes in the real world are very different, they have many common characteristics: They
are all modes of transportation, and they all carry some number of passengers. So each of
the three classes could be based on a Vehicle class that has attributes and behaviors
common to them all. This is illustrated in Figure 7-10.

In OOP terminology, the Vehicle class is the base class and the Car, Truck and Jet Plane
classes are derived classes. All of the attributes and behaviors of the Vehicle class are
inherited by the Car, Truck, and Jet Plane classes. The relationship implies that a car is a
vehicle, a truck is a vehicle and a jet plane is a vehicle.

In addition to inheriting the attributes and behaviors of the base class, derived classes
add their own. For example, the Car class might have attributes and behaviors that set
and indicate whether it is a sedan or a coupe and the type of engine it has. The Truck
class might have attributes and behaviors that set and indicate the maximum amount of
weight it can carry, and how many miles it can travel between refuelings. The Jet Plane
class might have attributes and behaviors that set and indicate its altitude and heading.
These added components of the derived classes make them more specialized than the
base class.

These three types of relationships between classes, access, ownership, and inheritance, are
discussed further in Chapter 11.

Once an enterprise and its operations have been analyzed, each class can be designed, and
a set of programs can be developed to automate some of these operations.

Figure 7-10

Vehicle

TruckCar Jet Plane

Introduction to Object-Oriented Analysis and Design 477

Finding the Classes
Let’s look further at step 1 in the analysis process: identifying the classes. Over the years,
software professionals have developed numerous techniques for doing this, but they all
involve identifying the different types of real-world objects present in the problem, so
that classes can be created for them. One simple and popular technique involves the
following steps:

1. Get a written description of the problem domain.

2. Identify all the nouns (including pronouns and noun phrases) in the description.
Each of these is a potential class.

3. Refine the list to include only the classes that are relevant to the problem.

Let’s take a closer look at each of these steps.

Write a Description of the Problem Domain

The problem domain is the set of real-world objects, parties, and major events related to
the problem. If you understand the nature of the problem you are trying to solve, you
can write a description of the problem domain yourself. If you do not thoroughly
understand it, you should have an expert write the description for you.

For example, suppose we are programming an application that the manager of Joe’s
Automotive Shop will use to print service quotes for customers. Here is a description that
an expert, perhaps Joe himself, might have written:

Joe’s Automotive Shop services foreign cars and specializes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager
gets the customer’s name, address, and telephone number. The manager then determines
the make, model, and year of the car, and gives the customer a service quote. The service
quote shows the estimated parts charges, estimated labor charges, sales tax, and total
estimated charges.

The problem domain description should include any of the following:

• Physical objects such as vehicles, machines, or products
• Any role played by a person, such as manager, employee, customer, teacher, or student
• The results of a business event, such as a customer order, or in this case a service quote
• Record-keeping items, such as customer histories and payroll records

Identify All of the Nouns

The next step is to identify all of the nouns and noun phrases. (If the description contains
pronouns, include them too.) Here’s another look at the previous problem domain
description. This time the nouns and noun phrases appear in bold.

Joe’s Automotive Shop services foreign cars, and specializes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager
gets the customer’s name, address, and telephone number. The manager then
determines the make, model, and year of the car, and gives the customer a service
quote. The service quote shows the estimated parts charges, estimated labor charges,
sales tax, and total estimated charges.

478 Chapter 7 Introduction to Classes and Objects

Notice that some of the nouns are repeated. The following lists all of the nouns without
duplicating any of them.

Refine the List of Nouns

The nouns that appear in the problem description are merely candidates to become
classes. It might not be necessary to make classes for them all. The next step is to refine
the list to include only the classes that are necessary to solve the particular problem at
hand. Here are the common reasons that a noun can be eliminated from the list of
potential classes.

Some of the nouns really mean the same thing.

In this example, the following sets of nouns refer to the same thing:

• cars and foreign cars both refer to the general concept of a car.
• Joe’s Automotive Shop and shop both refer to the same shop.

We can settle on a single class for each of these. In this example we will arbitrarily eliminate
foreign cars from the list, and use the word cars. Likewise we will eliminate Joe’s Automotive
Shop from the list and use the word shop. The updated list of potential classes is:

Some nouns might represent items that we do not need to be concerned with in order
to solve the problem.

A quick review of the problem description reminds us of what the application should do:
print a service quote. To do this, two of the potential classes we have listed are not needed.

• We can cross shop off the list because our application only needs to be concerned
with individual service quotes. It doesn’t need to work with or determine any
company-wide information. If the problem description asked us to keep a total of all
the service quotes, then it would make sense to have a class for the shop.

• We will also not need a class for the manager because the problem statement does
not ask us to process any information about the manager. If there were multiple shop
managers, and the problem description asked us to record which manager wrote
each service quote, it would make sense to have a class for the manager.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

Introduction to Object-Oriented Analysis and Design 479

The updated list of potential classes at this point is:

Some of the nouns might represent objects, not classes.

We can eliminate Mercedes, Porsche, and BMW as classes because, in this example, they
all represent specific cars, and can be considered instances of a single cars class. Also, we
can eliminate the word car from the list. In the description it refers to a specific car
brought to the shop by a customer. Therefore, it would also represent an instance of a
cars class. At this point the updated list of potential classes is:

Some of the nouns might represent simple values that can be stored in a variable
and do not require a class.

Remember, a class contains attributes and member functions. Attributes are related items
stored within a class object that define its state. Member functions are actions or behaviors
the class object can perform. If a noun represents a type of item that would not have any
identifiable attributes or member functions, then it can probably be eliminated from the
list. To help determine whether a noun represents an item that would have attributes and
member functions, ask the following questions about it:

• Would you use a group of related values to represent the item’s state?
• Are there any obvious actions to be performed by the item?

If the answers to both of these questions are no, then the noun probably represents a
value that can be stored in a simple variable. If we apply this test to each of the nouns
that remain in our list, we can conclude that the following are probably not classes:
address, estimated labor charges, estimated parts charges, make, model, name, sales
tax, telephone number, total estimated charges and year. These are all simple string or
numeric values that can be stored in variables.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

480 Chapter 7 Introduction to Classes and Objects

Here is the updated list of potential classes:

As you can see from the list, we have eliminated everything except cars, customer, and
service quote. This means that in our application, we will need classes to represent cars,
customers, and service quotes. Ultimately, we will write a Car class, a Customer class,
and a ServiceQuote class.

Identifying Class Responsibilities
Once the classes have been identified, the next task is to identify each class’s responsibilities.
Class responsibilities are

• the things that the class is responsible for knowing
• the actions that the class is responsible for doing

When you have identified the things that a class is responsible for knowing, then you have
identified the class’s attributes. Likewise, when you have identified the actions that a class
is responsible for doing, you have identified its member functions.

It is often helpful to ask the questions “In the context of this problem, what must the class
know? What must the class do?” The first place to look for the answers is in the
description of the problem domain. Many of the things that a class must know and do will
be mentioned. Some class responsibilities, however, might not be directly mentioned in the
problem domain, so additional analysis is often required. Let’s apply this methodology to
the classes we previously identified from our problem domain.

The Customer Class

In the context of our problem domain, what must any object of the Customer class
know? The description mentions the following items, which are all attributes of a
customer:

• the customer’s name
• the customer’s address
• the customer’s telephone number.

These are all values that can be represented as strings and stored in the class’s member
variables. The Customer class can potentially know many other things also. One mistake
that can be made at this point is to identify too many things that an object is responsible for
knowing. In some applications, for example, a Customer class might know the
customer’s email address. However, this particular problem domain does not mention
that the customer’s email address is used for any purpose, so it is not the responsibility of
this class to know it, and we should not include it as an attribute.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

Introduction to Object-Oriented Analysis and Design 481

Now let’s identify the class’s member functions. In the context of our problem domain,
what must the Customer class do? The only obvious actions are:

• create an object of the Customer class
• set and get the customer’s name
• set and get the customer’s address
• set and get the customer’s telephone number.

From this list we can see that the Customer class will need a constructor, as well as accessor
and mutator functions for each of its attributes.

Figure 7-11 shows a UML class diagram for the Customer class. Notice that the diagram
looks like a simple rectangle with three parts. The top section holds the name of the class.
The middle section lists the class attributes, that is, its member variables. The bottom
section lists its member functions. The minus sign to the left of each attribute indicates that
it is private. The plus sign to the left of each function indicates that it is public. Each
attribute name is followed by a colon and its data type. Each function name is followed by
a set of parentheses. If the function accepts any arguments, its parameters will be listed
inside these parentheses, along with the data type of each one. After the parentheses is a
colon, followed by the function’s return type. More information on class UML diagrams
can be found in Appendix F.

The Car Class

In the context of our problem domain, what must an object of the Car class know? The
following items are all attributes of a car, and are mentioned in the problem domain:

• the car’s make
• the car’s model
• the car’s year

Figure 7-11

Customer

- name:string
- address:string
- phone:string

+ Customer():
+ setName(n:string):void
+ setAddress(a:string):void
+ setPhone(p:string):void
+ getName():string
+ getAddress():string
+ getPhone():int

482 Chapter 7 Introduction to Classes and Objects

Now let’s identify the class member functions. In the context of our problem domain, what
must the Car class do? Once again, the only obvious actions are the standard member
functions we find in most classes: constructors, accessors, and mutators. Specifically, the
actions are:

• create an object of the Car class
• set and get the car’s make
• set and get the car’s model
• set and get the car’s year

Figure 7-12 shows a UML class diagram for the Car class at this point.

The ServiceQuote Class

In the context of our problem domain, what must an object of the ServiceQuote class
know? The problem domain mentions the following items:

• the estimated parts charges
• the estimated labor charges
• the sales tax
• the total estimated charges.

Careful thought will reveal that two of these items are the results of calculations: sales tax
and total estimated charges. These items are dependent on the values of the estimated parts
and labor charges. In order to avoid the risk of holding stale data, we will not store these
values in member variables. Rather, we will provide member functions that calculate these
values and return them. The other member functions that we will need for this class are a
constructor and the accessors and mutators for the estimated parts charges and estimated
labor charges attributes.

Figure 7-12

Car

- make:string
- model:string
- year:int

+ Car():
+ setMake(m:string):void
+ setModel(m:string):void
+ setYear(y:int):void
+ getMake():string
+ getModel():string
+ getYear():int

Introduction to Object-Oriented Analysis and Design 483

Figure 7-13 shows a UML class diagram for the ServiceQuote class.

This Is Only the Beginning
You should look at the process that we have discussed in this section as merely a starting
point. It’s important to realize that designing an object-oriented application is an iterative
process. It may take you several attempts to identify all of the classes that you will need, and
to determine all of their responsibilities. As the design process unfolds, you will gain a deeper
understanding of the problem, and consequently you will see ways to improve the design.

Object Reusability
We have mentioned several advantages offered by object-oriented programming. Still another is
object reusability. A class is not a stand-alone program. It is a mechanism for creating objects
used by programs that need its service. Ideally, a class created for use in one program can be
made general enough to be used by other programs as well. For example, the Customer class can
be designed to create objects used by many different applications that have customers. The Car
class can be designed to create objects used by many different programs that involve vehicles.

Object-Oriented vs. Object-Based Programming
Although classes and objects form the basis of object-oriented programming, by themselves
they are not sufficient to constitute true object-oriented programming. Using them might
more correctly be referred to as object-based programming. When we add the ability to
define relationships among different classes of objects, to create classes of objects from other
classes (inheritance) and to determine the behavior of a member function depending on
which object calls it (polymorphism), it becomes true object-oriented programming. You will
learn about these more advanced object-oriented programming features later in the book.

Checkpoint

7.35 What is a problem domain?

7.36 When designing an object-oriented application, who should write a description of
the problem domain?

7.37 How do you identify the potential classes in a problem domain description?

Figure 7-13

ServiceQuote

- partsCharges:double
- laborCharges:double

+ ServiceQuote():
+ setPartsCharges(c:double):void
+ setLaborCharges(c:double):void
+ getPartsCharges():double
+ getLaborCharges():double
+ getSalesTax():double
+ getTotalCharges():double

484 Chapter 7 Introduction to Classes and Objects

7.38 What two questions should you ask to determine a class’s responsibilities?

7.39 Look at the following description of a problem domain:

A doctor sees patients in her practice. When a patient comes to the practice, the
doctor performs one or more procedures on the patient. Each procedure performed
has a description and a standard fee. As patients leave, they receive a statement that
shows their name and address, as well as the procedures that were performed, and
the total charge for the procedures.

Assume that you are creating an application to generate a statement that can be
printed and given to the patient.

A) Identify all of the potential classes in this problem domain.
B) Refine the list to include only the necessary class or classes for this problem.
C) Identify the responsibilities of the class or classes that you identified in step B.

7.15 Screen Control

CONCEPT: Operating system functions allow you to control how output appears on the
console screen.

Positioning the Cursor on the Screen
In Chapter 5’s Tying It All Together section you learned that C++ compilers provide
special libraries for calling on operating system functions. So far, in Chapters 5 and 6, we
have used the Windows SetConsoleTextAttribute function to display screen output in
color. Now we will look at a Windows operating system function for positioning the
cursor on the screen. This function is SetConsoleCursorPosition.

Until now, all the programs you have created display output beginning on the top line of
the screen. They then move down the screen, one line at a time, when the user presses the
[Enter] key or when the program outputs an endl or "\n". But what if you are writing
on the fifth row of the screen and want to go back to the second row? Or what if you
want to display something in the very middle of the screen? You can do these things on a
Windows system by using the SetConsoleCursorPosition function to move the cursor
to the desired location before writing the output.

To use this function, you will need to do the same two things you did in Chapters 5 and
6 to use color. You must

• #include <windows.h> in your program.
• Create a handle to the standard output screen by including the following

definition in your program.

HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);

NOTE: Recall from Chapter 5 that operating system functions are tailored to specific
operating systems. So programs that use them will only run on the system for which they
were written. The functions described here work with Windows 2000 and newer
operating systems. If you are using Linux or Mac OS, your instructor may be able to
provide you with similar functions that work on those systems.

Screen Control 485

A typical text screen has 25 rows, or lines, with 80 print positions per row. Each of
these positions is called a cell. A cell is a little block that can display a single character
and it is identified by its row number and its position on that row. The rows range
from 0 to 24, with 0 being the top row of the screen. The print positions on each row,
usually referred to as columns, range from 0 to 79, with 0 being at the far left-hand
side. The row and column of a cell, which identifies its location on the screen, are
called its coordinates.

To place the cursor in a specific screen cell, you must specify its cell coordinates by
setting two variables in a COORD structure that is already defined in Windows. This
structure has two member variables named X and Y, with X holding the column and Y
holding the row. Here is what the structure looks like.

struct COORD
{
 short int X; // Column position
 short int Y; // Row position
};

Here is how you use it. The following code segment writes the word Hello centered on
the standard output screen.

HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
COORD position; // position is a COORD structure

position.X = 38; // Set column near screen center
position.Y = 11; // Set row near screen center
 // Place cursor there, then print
SetConsoleCursorPosition(screen, position);
cout << "Hello" << endl;

Program 7.18 positions the cursor to display a set of nested boxes near the center of the
screen. Notice that it uses the Sleep function, previously seen in Chapter 5 and Chapter
6’s Tying It All Together programs. This function pauses the program execution for part
of a second so things do not happen too fast for the user to see them. The argument
passed to the function tells it how many milliseconds it should pause. A millisecond is a
thousandth of a second. So, for example, to pause execution of a program for a half
second the following function call would work.

Sleep(500);

Program 7.18 uses the command Sleep(750) to pause the program execution for of a
second after each box displays.

NOTE: When you set a screen position, you must follow all output that your program
writes there with an endl. This is necessary to ensure that the output is actually
displayed at this location. If you do not use an endl, the output may be buffered and
written to the screen much later, after the cursor position has changed. Following your
output with the new line character '\n' does not work because it does not flush the
screen buffer like endl does.

3
4

486 Chapter 7 Introduction to Classes and Objects

Program 7-18

1 // This program demonstrates the use of Windows functions
2 // for positioning the cursor. It displays a series of nested
3 // boxes near the center of the screen.
4 #include <iostream>
5 #include <windows.h> // Needed to set cursor positions & call Sleep
6 using namespace std;
7
8 void placeCursor(HANDLE, int, int); // Function prototypes
9 void printStars(int);
10
11 int main()
12 {
13 const int midRow = 12,
14 midCol = 40,
15 numBoxes = 3;
16 int width, startRow, endRow;
17
18 // Get the handle to standard output device (the console)
19 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
20
21 // Each loop prints one box
22 for (int box = 1, height = 1; box <= numBoxes; box++, height+=2)
23 { startRow = midRow - box;
24 endRow = midRow + box;
25 width = box*5 + (box+1)%2; // Adds 1 if box*5 is an even number
26
27 // Draw box top
28 placeCursor(screen, startRow, midCol-width/2);
29 printStars(width);
30
31 // Print box sides
32 for (int sideRow = 1; sideRow <= height; sideRow++)
33 { placeCursor(screen, startRow + sideRow, midCol-width/2);
34 cout << '*' << endl;
35 placeCursor(screen, startRow + sideRow, midCol+width/2);
36 cout << '*' << endl;
37 }
38 // Draw box bottom
39 placeCursor(screen, endRow, midCol-width/2);
40 printStars(width);
41
42 Sleep(750); // Pause 3/4 second between boxes displayed
43 }
44
45 placeCursor(screen, 20, 0); // Move cursor out of the way
46 return 0;
47 }
48
49 /**
50 * placeCursor *
51 **/

(program continues)

Screen Control 487

Creating a Screen Input Form
Program 7-18 is fun to run, but Program 7-19 demonstrates a more practical application
of positioning the cursor on the screen. Instead of prompting the user to input a series of
entries one prompt at a time, we can design a screen input form. This more professional
looking way of getting input from the user involves creating and displaying a screen that
shows all the prompts at once. The cursor is then placed beside a particular prompt the
user is expected to respond to. When the user enters the data for this prompt and presses
[Enter], the cursor moves to the next prompt.

52 void placeCursor(HANDLE screen, int row, int col)
53 { // COORD is a defined C++ structure that
54 COORD position; // holds a pair of X and Y coordinates
55 position.Y = row;
56 position.X = col;
57 SetConsoleCursorPosition(screen, position);
58 }
59
60 /**
61 * printStars *
62 **/
63 void printStars(int numStars)
64 {
65 for (int star = 1; star <= numStars; star++)
66 cout << '*';
67 cout << endl;
68 }

Program Output

 * *********** *
 * * ***** * *
 * * * * * *
 * * ***** * *
 * *********** *

Program 7-19

1 // This program creates a screen form for user input.
2 // from the user.
3 #include <iostream>
4 #include <windows.h> // Needed to set cursor positions
5 #include <string>
6 using namespace std;
7
8 struct UserInfo
9 { string name;
10 int age;
11 char gender;
12 };

(program continues)

Program 7-18 (continued)

488 Chapter 7 Introduction to Classes and Objects

13
14 void placeCursor(HANDLE, int, int); // Function prototypes
15 void displayPrompts(HANDLE);
16 void getUserInput(HANDLE, userInfo&);
17 void displayData (HANDLE, userInfo);
18
19 int main()
20 {
21 userInfo input; // input is a UserInfo structure
22 // that has 3 member variables
23
24 // Get the handle to standard output device (the console)
25 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
26
27 displayPrompts(screen);
28 getUserInput(screen, input);
29 displayData (screen, input);
30
31 return 0;
32 }
33
34 /**
35 * placeCursor *
36 **/
37 void placeCursor(HANDLE screen, int row, int col)
38 { // COORD is a defined C++ structure that
39 COORD position; // holds a pair of X and Y coordinates
40 position.Y = row;
41 position.X = col;
42 SetConsoleCursorPosition(screen, position);
43 }
44
45 /**
46 * displayPrompts *
47 **/
48 void displayPrompts(HANDLE screen)
49 {
50 placeCursor(screen, 3, 25);
51 cout << "******* Data Entry Form *******" << endl;
52 placeCursor(screen, 5, 25);
53 cout << "Name: " << endl;
54 placeCursor(screen, 7, 25);
55 cout << "Age: Gender (M/F): " << endl;
56 }
57
58 /**
59 * getUserInput *
60 **/
61 void getUserInput(HANDLE screen, userInfo &input)
62 {
63 placeCursor(screen, 5, 31);
64 getline(cin, input.name);

(program continues)

Program 7-19 (continued)

Tying It All Together: Yoyo Animation 489

7.16 Tying It All Together: Yoyo Animation

With what you have learned in this chapter you can now create simple text-based
graphics. To do that, simply arrange characters in different patterns to form images on
the screen. Then animate those images, giving the illusion of motion, by erasing them
from their old position and redisplaying them somewhere else on the screen. To erase a
character from the screen simply write a blank " " on top of it.
Program 7-20 uses Windows operating system functions to simulate a yoyo unwinding
and then winding back up. The Sleep function is used to pause execution between
moves, so that the user can watch the motion taking place.

65 placeCursor(screen, 7, 30);
66 cin >> input.age;
67 placeCursor(screen, 7, 55);
68 cin >> input.gender;
69 }
70
71 /**
72 * displayData *
73 **/
74 void displayData(HANDLE screen, userInfo input)
75 {
76 placeCursor(screen, 10, 0);
77 cout << "Here is the data you entered.\n";
78 cout << "Name : " << input.name << endl;
79 cout << "Age : " << input.age << endl;
80 cout << "Gender: " << input.gender << endl;
81 }

Initial Screen Display
 ******* Data Entry Form *******

 Name:

 Age: Gender (M/F):

Program Output with Example Input Shown in Bold

 ******* Data Entry Form *******

 Name: Mary Beth Jones[Enter]

 Age: 19[Enter] Gender (M/F): F[Enter]

Here is the data you entered.
Name : Mary Beth Jones
Age : 19
Gender: F

Program 7-19 (continued)

490 Chapter 7 Introduction to Classes and Objects

You will need to run the program to see the animation as the yoyo unwinds and then
winds back up on its string.

:
:
:
:
0

Program 7-20

1 // This program creates a simple animation using Windows
2 // functions to simulate a yoyo moving down and up.
3 #include <iostream>
4 #include <windows.h> // Needed to set cursor positions
5 using namespace std;
6
7 int main()
8 {
9 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
10 COORD pos = {40, 3}; // Start position
11 SetConsoleCursorPosition(screen, pos);
12 cout << "O" << endl;
13 Sleep(500);
14
15 // Watch the yoyo go down & back up 3 times
16 for (int tossIt = 1; tossIt <= 3; tossIt++)
17 {
18 // Yoyo unwinds
19 while (pos.Y <= 20) // pos.Y is the row
20 {
21 // Move the yoyo down 1 position and then pause
22 SetConsoleCursorPosition(screen, pos);
23 cout << "|" << endl;
24 pos.Y++;
25 SetConsoleCursorPosition(screen, pos);
26 cout << "O" << endl;
27 Sleep(100);
28 }
29
30 // Yoyo winds back up
31 while (pos.Y > 3)
32 {
33 // Erase character at current position
34 // Move yoyo up one position, then pause
35 SetConsoleCursorPosition(screen, pos);
36 cout << " " << endl;
37 pos.Y --;
38 SetConsoleCursorPosition(screen, pos);
39 cout << "O" << endl;
40 Sleep(100);
41 }
42 }
43 return 0;
44 }

Review Questions and Exercises 491

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. What does ADT stand for?

2. Which of the following must a programmer know about an ADT to use it?

A) What values it can hold
B) What operations it can perform
C) How the operations are implemented

3. The two common programming methods in practice today are _________ and
_________.

4. ____________ programming is centered around functions, or procedures, whereas
 ____________ programming is centered around objects.

5. An object is a software entity that combines both __________ and ____________in a
single unit.

6. An object is a(n) ______________ of a class.

7. Creating a class object is often called _____________ the class.

8. Once a class is declared, how many objects can be created from it?

A) 1
B) 2
C) Many

9. An object’s data items are stored in its ___________________________________.

10. The procedures, or functions, an object performs are called its _________________.

11. Bundling together an object’s data and procedures is called ___________________.

12. An object’s members can be declared public or private.
A public member can be accessed by ____________________________________.
A private member can be accessed by ____________________________________.

13. Normally a class’s _______________________________ are declared to be private
and its ___ are declared to be public.

14. A class member function that uses, but does not change, the value of a member
variable is called a(n) ___________.

15. A class member function that changes the value of a member variable is called a(n)
____________.

16. When a member function’s body is written inside a class declaration, the function is
a(n) _________ function.

17. A class constructor is a member function with the same name as the _________.

18. A constructor is automatically called when an object is _________.

19. Constructors cannot have a(n) _________ type.

20. A(n) _________ constructor is one that requires no arguments.

492 Chapter 7 Introduction to Classes and Objects

21. A destructor is a member function that is automatically called when an object is
_________.

22. A destructor has the same name as the class, but is preceded by a(n) _________
character.

23. A constructor whose parameters all have default values is a(n) _________ constructor.

24. A class may have more than one constructor, as long as each has a different
_________.

25. A class may only have one default _________ and one _________.

26. In general it is considered good practice to have member functions avoid doing
_________.

27. When a member function forms part of the interface through which a client program
can use the class, the function must be _____________.

28. When a member function performs a task internal to the class and should not be
called by a client program, the function should be made ___________.

29. True or false: A class object can be passed to a function, but cannot be returned by a
function.

30. True or false: C++ class objects are always passed to functions by reference.

31. It is considered good programming practice to store the declaration for a class, its
function definitions, and the client program that uses the class in __________________
files.

32. If you were writing a class declaration for a class named Canine and wanted to place
it in its own file, what should you name the file? ___________________

33. If you were writing the definitions for the Canine class member functions and wanted
to place these in their own file, what should you name the file? ____________________

34. A structure is like a class, but normally only contains member variables and no
_______________________.

35. By default, are the members of a structure public or private? _____________________

36. Before a structure variable can be created, the structure must be __________________.

37. When a structure variable is created its members can be initialized with either a(n)
________________________ or a(n) __________________________.

38. The __________ operator is used to access structure members.

39. An Inventory structure is declared as follows:

struct Inventory
{

int itemCode;
int qtyOnHand;

};

Write a definition statement that creates an Inventory variable named trivet
and initializes it with an initialization list so that its code is 555 and its quantity is
110.

Review Questions and Exercises 493

40. A Car structure is declared as follows:

struct Car
{

string make,
 model;
int year;
double cost;

Car(string mk, string md, int y, double c)
{ make = mk; model = md; year = y; cost = c; }

};

Write a definition statement that defines a Car structure variable initialized with the
following information:

Make: Ford Model: Mustang
Year: 2010 Cost: $22,495

41. Declare a structure named TempScale, with the following members:

fahrenheit: a double
celsius: a double

Next, declare a structure named Reading, with the following members:

windSpeed: an int
humidity: a double
temperature: a TempScale structure variable

Next, define a Reading structure variable named today.

Now write statements that will store the following data in the Reading variable.

Wind speed: 37 mph
Humidity: 32%
Fahrenheit temperature: 32 degrees
Celsius temperature: 0 degrees

42. Write a function called showReading. It should have a parameter that accepts a
Reading structure variable (see question 41) and should display the values of the
structure’s member variables on the screen.

43. Write a function called inputReading that has a parameter to accept a Reading
structure reference variable (see question 41). The function should ask the user to
enter values for each member of the structure.

44. Write a function called getReading, which returns a Reading structure (see question 41).
The function should ask the user to enter values for each member of a Reading structure,
and then return the structure.

45. Write the declaration of a union called Items with the following members. Then
define an Items union variable named anItem.

alpha: a character // 1 byte
num: an integer // 4 bytes
bigNum: a long integer // 4 bytes
real: a double // 8 bytes

46. How many bytes of memory will be allocated for anItem?

494 Chapter 7 Introduction to Classes and Objects

Algorithm Workbench

47. Assume a class named Inventory keeps track of products in stock for a company. It
has member variables prodID, prodDescription, and qtyInStock. Write a
constructor that initializes a new Inventory object with the values passed as
arguments, but which also includes a reasonable default value for each parameter.

48. Write a remove member function that accepts an argument for a number of units
and removes that number of units of an item from inventory. If the operation is
completed successfully it should return the number of units remaining in stock for
that item. However, if the number of units passed to the function is less than the
number of units in stock, it should not make the removal and should return –1 as
an error signal.

Find the Errors

Each of the following declarations, programs, and program segments has errors. Locate as
many as you can.

49. A) struct
{ int x;

double y;
};

B) struct Values
{ string name;

int age;
}

50. A) struct TwoVals
{

int a, b;
};
int main()
{

TwoVals.a = 10;
TwoVals.b = 20;
return 0;

}

B) #include <iostream>
using namespace std;

struct ThreeVals
{

int a, b, c;
void ThreeVals()
{a = 1; b = 2; c = 3;}

};
int main()
{

ThreeVals vals;
cout << vals << endl;
return 0;

}

Review Questions and Exercises 495

51. A) struct Names
{ string first;

string last;
};
int main()
{

Names customer ("Smith", "Orley");
cout << Names.first << endl;
cout << Names.last << endl;
return 0;

}

B) struct TwoVals
{

int a = 5;
int b = 10;

};

int main()
{

TwoVals v;
cout << v.a << " " << v.b;
return 0;

}

52. A) class Circle:
{
 private

double centerX;
double centerY;
double radius;

 public
setCenter(double, double);
setRadius(double);

}

B) #include <iostream>
using namespace std;
Class Moon;
{
 Private;

double earthWeight;
double moonWeight;

 Public;
moonWeight(double ew);// Constructor

 { earthWeight = ew; moonWeight = earthWeight / 6; }
double getMoonWeight();

 { return moonWeight; }
}

496 Chapter 7 Introduction to Classes and Objects

int main()
{

double earth;

cout >> "What is your weight? ";
cin << earth;
Moon lunar(earth);
cout << "On the moon you would weigh "
 <<lunar.getMoonWeight() << endl;
return 0;

}

53. A) #include <iostream>
using namespace std;

class DumbBell;
{

int weight;
 public:

void setWeight(int);
};
void setWeight(int w)
{ weight = w; }

int main()
{

DumBell bar;

DumbBell.setWeight(200);
cout << "The weight is " << bar.weight << endl;
return 0;

}

B) class Change
{
 private:

int pennies;
int nickels;
int dimes;
int quarters;
Change()

{ pennies = nickels = dimes = quarters = 0; }
 Change(int p = 100, int n = 50, d = 50, q = 25);
};
void Change::Change(int p, int n, d, q)
{

pennies = p;
nickels = n;
dimes = d;
quarters = q;

}

Review Questions and Exercises 497

54. If the items on the following list appeared in a problem domain description, which
would be potential classes?

Animal Medication Nurse
Inoculate Operate Advertise
Doctor Invoice Measure
Patient Client Customer

55. Look at the following description of a problem domain:

The bank offers the following types of accounts to its customers: savings
accounts, checking accounts, and money market accounts. Customers are
allowed to deposit money into an account (thereby increasing its balance),
withdraw money from an account (thereby decreasing its balance), and earn
interest on the account. Each account has an interest rate.

Assume that you are writing an application that will calculate the amount of
interest earned for a bank account.
A) Identify the potential classes in this problem domain.
B) Refine the list to include only the necessary class or classes for this problem.
C) Identify the responsibilities of the class or classes.

Soft Skills

Working in a team can often help individuals better understand new ideas related to
programming. Others can explain things that you do not understand. Also, you will find that
by explaining something to someone else, you actually understand it better.

56. Write down one question you have about the object-oriented programming material
from Chapter 7. For example, you could mention something you want explained
about how classes are designed and created, about how objects are related to classes,
or about how overloaded constructors work. Then form a group with three to four
other students. Each person in the group should participate in answering the
questions posed by the other members of the group.

Programming Challenges

1. Date

Design a class called Date that has integer data members to store month, day, and year. The
class should have a three-parameter default constructor that allows the date to be set at the
time a new Date object is created. If the user creates a Date object without passing any
arguments, or if any of the values passed are invalid, the default values of 1, 1, 2001 (i.e.,
January 1, 2001) should be used. The class should have member functions to print the date
in the following formats:

3/15/13
March 15, 2013
15 March 2013

Demonstrate the class by writing a program that uses it. Be sure your program only accepts
reasonable values for month and day. The month should be between 1 and 12. The day
should be between 1 and the number of days in the selected month.

498 Chapter 7 Introduction to Classes and Objects

2. Report Heading

Design a class called Heading that has data members to hold the company name and the
report name. A two-parameter default constructor should allow these to be specified at the
time a new Heading object is created. If the user creates a Heading object without passing
any arguments, “ABC Industries” should be used as a default value for the company name
and “Report” should be used as a default for the report name. The class should have
member functions to print a heading in either one-line format, as shown here:

Pet Pals Payroll Report

or in four-line “boxed” format, as shown here:

 Pet Pals

 Payroll Report

Try to figure out a way to center the headings on the screen, based on their lengths.
Demonstrate the class by writing a simple program that uses it.

3. Widget Factory

Design a class for a widget manufacturing plant. Assuming that 10 widgets may be produced
each hour, the class object will calculate how many days it will take to produce any number
of widgets. (The plant operates two 8-hour shifts per day.) Write a program that asks the user
for the number of widgets that have been ordered and then displays the number of days it
will take to produce them. Think about what values your program should accept for the
number of widgets ordered.

4. Car Class

Write a class named Car that has the following member variables:

• year. An int that holds the car’s model year.
• make. A string object that holds the make of the car.
• speed. An int that holds the car’s current speed.

In addition, the class should have the following member functions.

• Constructor. The constructor should accept the car’s year and make as arguments
and assign these values to the object’s year and make member variables. The
constructor should initialize the speed member variable to 0.

• Accessors. Appropriate accessor functions should be created to allow values to
be retrieved from an object’s year, make, and speed member variables.

• accelerate. The accelerate function should add 5 to the speed member
variable each time it is called.

• brake. The brake function should subtract 5 from the speed member variable
each time it is called.

Demonstrate the class in a program that creates a Car object, and then calls the accelerate
function five times. After each call to the accelerate function, get the current speed of the
car and display it. Then, call the brake function five times. After each call to the brake
function, get the current speed of the car and display it.

VideoNote

Solving the
Car Class
Problem

Review Questions and Exercises 499

5. Population

In a population, the birth rate and death rate are calculated as follows:

Birth Rate = Number of Births ÷ Population
Death Rate = Number of Deaths ÷ Population

For example, in a population of 100,000 that has 8,000 births and 6,000 deaths per year,

Birth Rate = 8,000 ÷ 100,000 = 0.08
Death Rate = 6,000 ÷ 100,000 = 0.06

Design a Population class that stores a current population, annual number of births, and
annual number of deaths for some geographic area. The class should allow these three
values to be set in either of two ways: by passing arguments to a three-parameter
constructor when a new Population object is created or by calling the setPopulation,
setBirths, and setDeaths class member functions. In either case, if a population figure
less than 2 is passed to the class, use a default value of 2. If a birth or death figure less than
0 is passed in, use a default value of 0. The class should also have getBirthRate and
getDeathRate functions that compute and return the birth and death rates. Write a short
program that uses the Population class and illustrates its capabilities.

6. Gratuity Calculator

Design a Tips class that calculates the gratuity on a restaurant meal. Its only class member
variable, taxRate, should be set by a one-parameter constructor to whatever rate is passed to it
when a Tips object is created. If no argument is passed, a default tax rate of .065 should be
used. The class should have just one public function, computeTip. This function needs to accept
two arguments, the total bill amount and the tip rate. It should use this information to compute
what the cost of the meal was before the tax was added. It should then apply the tip rate to just
the meal cost portion of the bill to compute and return the tip amount. Demonstrate the class by
creating a program that creates a single Tips object, then loops multiple times to allow the
program user to retrieve the correct tip amount using various bill totals and desired tip rates.

7. Inventory Class

Design an Inventory class that can hold information for an item in a retail store’s inventory.
The class should have the following private member variables.

The class should have the following public member functions.

Variable Name Description

itemNumber An int that holds the item’s number.

quantity An int that holds the quantity of the item on hand.

cost A double that holds the wholesale per-unit cost of the item

Member Function Description

default constructor Sets all the member variables to 0.

constructor #2 Accepts an item’s number, quantity, and cost as arguments. Calls
other class functions to copy these values into the appropriate
member variables. Then calls the setTotalCost function.

500 Chapter 7 Introduction to Classes and Objects

Demonstrate the class by writing a simple program that uses it. This program should validate
the user inputs to ensure that negative values are not accepted for item number, quantity, or cost.

8. Movie Data

Write a program that uses a structure named MovieData to store the following information
about a movie:

Title
Director
Year Released
Running time (in minutes)

Include a constructor that allows all four of these member data values to be specified at the
time a MovieData variable is created. The program should create two MovieData variables
and pass each one in turn to a function that displays the information about the movie in a
clearly formatted manner. Pass the MovieData variables to the display function by value.

9. Movie Profit

Modify the Movie Data program written for Programming Challenge 8 to include two more
members that hold the movie’s production costs and first-year revenues. The constructor
should be modified so that all six member values can be specified when a MovieData variable
is created. Modify the function that displays the movie data to display the title, director,
release year, running time, and first year’s profit or loss. Also, improve the program by having
the MovieData variables passed to the display function as constant references.

10. Corporate Sales Data

Write a program that uses a structure named CorpData to store the following information
on a company division:

Division name (such as East, West, North, or South)
First quarter sales
Second quarter sales
Third quarter sales
Fourth quarter sales

setItemNumber Accepts an int argument and copies it into the itemNumber
member variable.

setQuantity Accepts an int argument and copies it into the quantity member
variable.

setCost Accepts a double argument and copies it into the cost member
variable.

getItemNumber Returns the value in itemNumber.

getQuantity Returns the value in quantity.

getCost Returns the value in cost.

getTotalCost Computes and returns the totalCost.

Member Function Description

Review Questions and Exercises 501

Include a constructor that allows the division name and four quarterly sales amounts to be
specified at the time a CorpData variable is created.

The program should create four CorpData variables, each representing one of the
following corporate divisions: East, West, North, and South. These variables should be
passed one at a time, as constant references, to a function that computes the division’s
annual sales total and quarterly average, and displays these along with the division name.

11. Monthly Budget Screen Form

A student has established the following monthly budget:

Housing 500.00
Utilities 150.00
Household expenses 65.00
Transportation 50.00
Food 250.00
Medical 30.00
Insurance 100.00
Entertainment 150.00
Clothing 75.00
Miscellaneous 50.00

Write a modular program that declares a MonthlyBudget structure with member variables
to hold each of these expense categories. The program should create two MonthlyBudget
structure variables. The first will hold the budget figures given above. The second will hold
the user-enter amounts actually spent during the past month. Using Program 7-19 as a
model, the program should create a screen form that displays each category name and its
budgeted amount, then positions the cursor next to it for the user to enter the amount
actually spent in that category. Once the user data has all been entered, the program should
compute and display the amount over or under budget the student’s expenditures were in
each category, as well as the amount over or under budget for the entire month.

12. Ups and Downs

Write a program that displays the word UP on the bottom line of the screen a couple of
inches to the left of center and displays the word DOWN on the top line of the screen a
couple of inches to the right of center. Moving about once a second, move the word UP up a
line and the word DOWN down a line until UP disappears at the top of the screen and
DOWN disappears at the bottom of the screen.

13. Wrapping Ups and Downs

Modify the program you wrote for Programming Challenge 12, so that after disappearing off
of the screen, the word UP reappears at the bottom of the screen and the word DOWN
reappears at the top of the screen. Have these words each traverse the screen three times
before the program terminates.

14. Left and Right

Modify the program you wrote for Programming Challenge 12 to display the words LEFT
(starting at the right-hand side of the screen a row or two down from the middle) and
RIGHT (starting at the left-hand side of the screen a row or two up from the middle).
Moving about 6 moves per second, move LEFT to the left and RIGHT to the right until
both words disappear off the screen.

502 Chapter 7 Introduction to Classes and Objects

15. Moving Inchworm

Write a program that displays an inchworm on the left-hand side of the screen, facing right.
Then slowly move him across the screen, until he disappears off the right-hand side. You may
wish to do this in a loop so that after disappearing to the right, the worm appears again on
the left. The diagram below shows how he may look at various points on the screen.

Group Project

16. Patient Fees

This program should be designed and written by a team of students. Here are some
suggestions:

• One or more students may work on a single class.
• The requirements of the program should be analyzed so each student is given

about the same workload.
• The names, parameters, and return types of each function and class member

function should be decided in advance.
• The program will be best implemented as a multifile program.

Write a program that computes a patient’s bill for a hospital stay. The different components
of the program are

• The PatientAccount class will keep a total of the patient’s charges. It will also keep
track of the number of days spent in the hospital. The group must decide on the
hospital’s daily rate.

• The Surgery class will have stored within it the charges for at least five types of
surgery. It can update the charges variable of the PatientAccount class.

• The Pharmacy class will have stored within it the price of at least five types of
medication. It can update the charges variable of the PatientAccount class.

• The main program.

The student who designs the main program will design a menu that allows the user to enter
a type of surgery, enter one or more types of medication, and check the patient out of the
hospital. When the patient checks out, the total charges should be displayed.

\/
00

~000000000

\/
 0 00
~0000 0000

\/
000 00

~000 000

\/
0 00

~0000 0000

\/
00

~000000000

503

C
H

A
P

T
E

R

8 Arrays

8.1 Arrays Hold Multiple Values

CONCEPT: An array allows you to store and work with multiple values of the same
data type.

The variables you have worked with so far are designed to hold only one value at a time.
Each of the variable definitions in Figure 8-1 cause only enough memory to be reserved to
hold one value of the specified data type.

TOPICS

8.1 Arrays Hold Multiple Values
8.2 Accessing Array Elements
8.3 Inputting and Displaying Array Contents
8.4 Array Initialization
8.5 Processing Array Contents
8.6 Using Parallel Arrays
8.7 The typedef Statement
8.8 Arrays as Function Arguments

8.9 Two-Dimensional Arrays
8.10 Arrays with Three or More

Dimensions
8.11 Vectors
8.12 Arrays of Objects
8.13 National Commerce Bank Case Study
8.14 Tying It All Together: Rock, Paper,

Scissors

Figure 8-1

int count; 12314 Enough memory for 1 int

double price; 56.981 Enough memory for 1 double

char letter; A Enough memory for 1 char

504 Chapter 8 Arrays

An array works like a variable that can store a group of values, all of the same type. The
values are stored together in consecutive memory locations. Here is a definition of an array
of integers:

int hours[6];

The name of this array is hours. The number inside the brackets is the array’s size
declarator. It indicates the number of elements, or values, the array can hold. The
hours array can store six elements, each one an integer. This is depicted in Figure 8-2.

An array’s size declarator must be a constant integer expression with a value greater
than zero. It can be either a literal, as in the previous example, or a named constant, as
shown here:

const int SIZE = 6;
int hours[SIZE];

Arrays of any data type can be defined. The following are all valid array definitions:

float temperature[100]; // Array of 100 floats
char letter[26]; // Array of 26 characters
double size[1200]; // Array of 1200 doubles
string name[10]; // Array of 10 string objects

Memory Requirements of Arrays
The amount of memory used by an array depends on the array’s data type and the number of
elements. The age array, defined here, is an array that holds six short int values.

short age[6];

On a typical PC, a short int uses 2 bytes of memory, so the age array would occupy
12 bytes. This is shown in Figure 8-3.

Figure 8-2

Figure 8-3

hours array: enough memory to hold six int values

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

age array: each element uses 2 bytes

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Accessing Array Elements 505

The size of an array can be calculated by multiplying the number of bytes needed to store
an individual element by the number of elements in the array. Table 8-1 shows the sizes of
various arrays on a typical system.

8.2 Accessing Array Elements

CONCEPT: The individual elements of an array are assigned unique subscripts. These
subscripts are used to access the elements.

Even though an entire array has only one name, the elements may be accessed and used
as individual variables. This is possible because each element is assigned a number
known as a subscript. A subscript is used as an index to pinpoint a specific element
within an array. The first element is assigned the subscript 0, the second element is
assigned 1, and so forth. The six elements in the hours array we defined in the previous
section would have the subscripts 0 through 5. This is shown in Figure 8-4.

Each element in the hours array, when accessed by its subscript, can be used as an int variable.
Here is an example of a statement that stores the number 20 in the first element of the array:

hours[0] = 20;

Table 8-1 Example Array Size Declarators

Array declaration Number of elements Size of each element Size of the array

char letter[26]; 26 1 byte 26 bytes

short ring[100]; 100 2 bytes 200 bytes

int mile[84]; 84 4 bytes 336 bytes

float temp[12]; 12 4 bytes 48 bytes

double distance[1000]; 1000 8 bytes 8,000 bytes

Figure 8-4

NOTE: Subscript numbering in C++ always starts at zero. The subscript of the last
element in an array is one less than the total number of elements in the array. This
means that in the array shown in Figure 8-4, the element hours[6] does not exist.
The last element in the array is hours[5].

NOTE: The expression hours[0] is pronounced “hours sub zero.” You would read
this assignment statement as “hours sub zero is assigned twenty.”

VideoNote

0

Subscripts

5 4 3 2 1

Accessing
Array Elements

506 Chapter 8 Arrays

Figure 8-5 shows the contents of the hours array after the statement assigns 20 to hours[0].

The following statement stores the integer 30 in hours[3]. Note that this is the fourth
array element.

hours[3] = 30;

Figure 8-6 shows the contents of the array after this statement executes.

Array elements may receive values with assignment statements just like other variables.
However, entire arrays may not receive values for all their elements at once. Assume the
following two arrays have been defined.

int doctorA[5]; // Holds the number of patients seen by Dr. A
// on each of 5 days.

int doctorB[5]; // Holds the number of patients seen by Dr. B
// on each of 5 days.

The following are all legal assignment statements.

doctorA[0] = 31; // doctorA[0] now holds 31.
doctorA[1] = 40; // doctorA[1] now holds 40.
doctorA[2] = doctorA[0]; // doctorA[2] now also holds 31.
doctorB[0] = doctorA[1]; // doctorB[0] now holds 40.

Figure 8-5

NOTE: Because values have not been assigned to the other elements of the array,
question marks are used to indicate that the contents of those elements are unknown. If
an array holding numeric values is defined globally, all of its elements are initialized to
zero by default. Local arrays, however, have no default initialization value.

Figure 8-6

NOTE: It is important to understand the difference between the array size
declarator and a subscript. The number inside the brackets in an array definition is
the size declarator. It specifies how many elements the array holds. The number
inside the brackets in an assignment statement or any statement that works with the
contents of an array is a subscript. It specifies which element is being accessed.

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 ? ? ? ? ?

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 ? ? ? 30 ?

Inputting and Displaying Array Contents 507

However, the following statements are not legal.

doctorA = 152; // Illegal! An array as a whole may not
doctorB = doctorA; // be assigned a value. This must be done

// one element at a time, using a subscript.

8.3 Inputting and Displaying Array Contents
Array elements may also have information read into them using the cin object and have
their values displayed with the cout object, just like regular variables, as long as it is done
one element at a time. Program 8-1 shows the hours array, discussed in the last section,
being used to store and display values entered by the user.

Program 8-1

1 // This program stores employee work hours in an int array.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int NUM_EMPLOYEES = 6;
8 int hours[NUM_EMPLOYEES]; // Holds hours worked for 6 employees
9
10 // Input the hours worked by each employee
11 cout << "Enter the hours worked by " << NUM_EMPLOYEES
12 << " employees: ";
13 cin >> hours[0];
14 cin >> hours[1];
15 cin >> hours[2];
16 cin >> hours[3];
17 cin >> hours[4];
18 cin >> hours[5];
19
20 // Display the contents of the array
21 cout << "The hours you entered are:";
22 cout << " " << hours[0];
23 cout << " " << hours[1];
24 cout << " " << hours[2];
25 cout << " " << hours[3];
26 cout << " " << hours[4];
27 cout << " " << hours[5] << endl;
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 6 employees: 20 12 40 30 30 15[Enter]
The hours you entered are: 20 12 40 30 30 15

508 Chapter 8 Arrays

Figure 8-7 shows the contents of the hours array with the example values entered by the
user for Program 8-1.

Even though most C++ compilers require the size declarator of an array definition to be a
constant or a literal, subscript numbers can be stored in variables. This makes it possible to
use a loop to “cycle through” an entire array, performing the same operation on each
element. For example, Program 8-1 could be simplified by using two loops: one to input
the values into the array and another to display the contents of the array. This is shown in
Program 8-2.

Figure 8-7

Program 8-2

1 // This program stores employee work hours in an int array. It uses
2 // one loop to input the hours and another loop to display them.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int NUM_EMPLOYEES = 6;
9 int hours[NUM_EMPLOYEES]; // Holds hours worked for 6 employees
10 int count; // Loop counter
11
12 // Input the hours worked by each employee
13 cout << "Enter the hours worked by " << NUM_EMPLOYEES
14 << " employees: ";
15
16 for (count = 0; count < NUM_EMPLOYEES; count++)
17 cin >> hours[count];
18
19 // Display the contents of the array
20 cout << "The hours you entered are:";
21
22 for (count = 0; count < NUM_EMPLOYEES; count++)
23 cout << " " << hours[count];
24
25 cout << endl;
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 6 employees: 20 12 40 30 30 15[Enter]
The hours you entered are: 20 12 40 30 30 15

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 12 15 30 30 40

Inputting and Displaying Array Contents 509

Let’s look at Program 8-2 more carefully. In line 9, the hours array is defined using the
named constant NUM_EMPLOYEES as the size declarator. This creates the hours array with
six elements, hours[0] through hours[5]. In lines 16 and 17 a for loop is used to input a
value into each array location. Notice that count, the loop control variable, is also used as
the subscript for the hours array. Each time the loop iterates, count will have a different
value, so a different array element will be accessed.

Because the for loop initializes count to 0, the first time the loop iterates, the user input
value is read into hours[0]. The next time the loop iterates, count equals 1, so this time
the user input value is read into hours[1]. This continues until, on the last iteration,
count equals 5, and the final user input value is read into hours[5]. The for loop test
condition is written so that when count reaches NUM_EMPLOYEES, which equals 6, the
loop will stop.

The program’s second for loop appears in lines 22 and 23. It works in a similar fashion,
except that this loop is using cout to display each array element’s value, rather than cin
to read a value into each array element. In line 22 the count variable is re-initialized to
0, so the first time the loop iterates, the value stored in hours[0] is displayed. The next
time the loop iterates, count equals 1, so this time the value stored in hours[1] is
displayed. This continues until, on the final iteration, count equals 5 and the value
stored in hours[5] is displayed.

Reading Data from a File into an Array
Sometimes you will need to read data from a file and store it in an array. The process is
straightforward. Simply open the file and use a loop to read each item from the file, storing
each item in an array element. The loop should iterate until either the array is filled or the
end of the file is reached. Program 8-3 modifies Program 8-2 to read the data from a file.

Program 8-3

1 // This program reads employee work hours from a file
2 // and stores them in an int array. It uses one loop
3 // to input the hours and another to display them.
4 #include <iostream>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 const int NUM_EMPLOYEES = 6; // Sets number of employees
11 int hours[NUM_EMPLOYEES]; // Holds each employee's hours
12 int count = 0; // Loop control variable counts
13 // how many data items have been read in
14 ifstream datafile; // Input file stream object
15
16 // Open the data file.
17 datafile.open("work.dat");
18 if (!datafile)
19 cout << "Error opening data file\n";

(program continues)

510 Chapter 8 Arrays

Notice in Program 8-3 that the contents of the hours array were input and displayed one
element at a time. The following statements would have been incorrect.

cin >> hours; // Incorrect!
cout << hours; // Incorrect!
datafile >> hours; // Incorrect!

Notice also that when we displayed a worker’s data in line 33 we used the loop control
variable, employee, as the subscript to access that worker’s data in the hours array.

cout << hours[employee] << endl;

However, when we displayed that same worker’s number in line 32 we added 1 to the
value of the loop control variable, like this:

cout << "Employee " << employee+1 << ": ";

This is because the data for employee 1 is stored in hours[0], the data for employee 2 is
stored in hours[1], and so forth.

Writing the Contents of an Array to a File
Writing the contents of an array to a file is also a straightforward matter. First open an
output file pointed to by an ofstream object, as you learned to do in Chapter 5. Then
simply use a loop to step through each element of the array and direct the output to the
file instead of to the computer screen.

20 else
21 { // Read the numbers from the file into the array. When we exit
22 // the loop, count will hold the number of items read in.
23 while (count < NUM_EMPLOYEES && datafile >> hours[count])
24 count++;
25
26 // Close the file.
27 datafile.close();
28
29 // Display the contents of the array.
30 cout << "The hours worked by each employee are\n";
31 for (int employee = 0; employee < count; employee++)
32 { cout << "Employee " << employee+1 << ": ";
33 cout << hours[employee] << endl;
34 }
35 }
36 return 0;
37 }

Program Output
The hours worked by each employee are
Employee 1: 20
Employee 2: 12
Employee 3: 40
Employee 4: 30
Employee 5: 30
Employee 6: 15

Program 8-3 (continued)

Inputting and Displaying Array Contents 511

No Bounds Checking in C++
Historically, one of the reasons for C++’s popularity has been the freedom it gives
programmers to work with the computer’s memory. However, this means that many of the
safeguards provided by other languages to prevent programs from unsafely accessing
memory are absent in C++. For example, C++ does not perform array bounds checking. This
means you could write a program that accidentally allows an array’s subscript to go beyond
its boundaries. This is why line 23 of Program 8-3 tested the value of the loop control
variable to make sure it was less than NUM_EMPLOYEES, which was the size of the array,
before it allowed the loop to continue iterating and reading in values. If the program tried to
read in all the items in a file that contained more items than the array could hold, it could
cause serious problems. What exactly occurs depends on how your system manages memory.
On many systems it causes other nearby variables to have their contents overwritten, losing
their correct value. On some systems it can even cause the computer to crash.

Program 8-4 demonstrates what occurs on the authors’ computer when an array
subscript goes out of bounds. It shows that data stored into one array overwrites the
data in another array. It also shows, in line 10, how to initialize an array with data when
it is defined. This technique is discussed further in the following section.

Program 8-4

1 // This program unsafely stores values beyond an array's boundary.
2 // What happens depends on how your computer manages memory.
3 // It MAY overwrite other memory variables. It MAY crash your computer.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 const int SIZE = 3;
10 int A[SIZE] = {1, 1, 1}; // Define A as a 3-element int array
11 // holding the values 1, 1, 1
12 int B[SIZE]; // Define B as another 3-element int array
13
14 // Here is what is stored in array A
15 cout << "Here are the original numbers in 3-element array A: ";
16 for (int count = 0; count < 3; count++)
17 cout << A[count] << " ";
18
19 // Attempt to store seven numbers in the 3-element array
20 cout << "\n\nNow I'm storing 7 numbers in 3-element array B.";
21 for (int count = 0; count < 7; count++)
22 B[count] = 5;
23
24 // If the program is still running, display the numbers
25 cout << "\nIf you see this message, the computer did not crash.";
26 cout << "\n\nHere are the 7 numbers in array B : ";
27 for (int count = 0; count < 7; count++)
28 cout << B[count] << " ";
29

(program continues)

512 Chapter 8 Arrays

Let’s look more closely at what occurred. Notice that array A started out with the values 1, 1, 1,
but ended up with the values 5, 5, 5. This occurred because the loop in lines 21 and 22 of the
program stored the value 5 in seven array B elements, even though array B only had enough
memory assigned to it to store three values. The rest of the values were stored in adjacent
memory locations that did not belong to array B. In this case, some of them belonged to array
A, so its contents were overwritten and destroyed. Figure 8-8 illustrates this.

30 cout << "\nHere are the numbers now in array A: ";
31 for (int count = 0; count < 3; count++)
32 cout << A[count] << " ";
33
34 cout << "\n\nArray A's values were overwritten by \n"
35 << "the values that did not fit in Array B.\n";
36 return 0;
37 }

Program Output
Here are the original numbers in 3-element array A: 1 1 1

Now I'm storing 7 numbers in 3-element array B.
If you see this message, the computer did not crash.

Here are the 7 numbers in array B : 5 5 5 5 5 5 5
Here are the numbers now in array A: 5 5 5

Array A's values were overwritten by
the values that did not fit in Array B.

Figure 8-8

Program 8-4 (continued)

5

B[0] B[1] B[2] A[0] A[1] A[2]

B[0] B[1] B[2] B[3] B[4]

Memory outside
the array

Memory outside
the array

The way the A and B arrays are set up in memory on the authors’ computer
The outlined areas are the arrays

(each block = 4 bytes)

How the numbers assigned to array B elements overflow the array’s boundaries

Anything previously
stored here is overwritten

5 5 5 5

B[5] B[6]

5 5

Inputting and Displaying Array Contents 513

You can see why it’s important to make sure that any time you assign values to array
elements, the values are written within the array’s boundaries.

Watch for Off-By-One Errors
When working with arrays, a common type of mistake is the off-by-one error. This is an easy
mistake to make because array subscripts start at 0 rather than 1. For example, look at the
following code:

// This code has an off-by-one error
const int SIZE = 100;
int numbers[SIZE];
for (int count = 1; count <= SIZE; count++)

numbers[count] = 0;

The intent of this code is to create an array of integers with 100 elements, and store the
value 0 in each element. However, this code has an off-by-one error. The loop uses its
counter variable, count, as a subscript with the numbers array. During the loop’s
execution, the variable count takes on the values 1 through 100, when it should take
on the values 0 through 99. As a result, the first element, which is at subscript 0, is
skipped. In addition, the loop attempts to use 100 as a subscript during the last
iteration. Because 100 is an invalid subscript, the program will write data beyond the
array’s boundaries.

Checkpoint

8.1 Define the following arrays:
A) empNum, a 100-element array of ints
B) payRate, a 25-element array of doubles
C) miles, a 14-element array of longs
D) stateCapital, a 50-element array of string objects.
E) lightYears, a 1,000-element array of doubles

8.2 What’s wrong with the following array definitions?

int readings[-1];
double measurements[4.5];
int size;
string name[size];

8.3 What would the valid subscript values be in a four-element array of doubles?

8.4 What is the difference between an array’s size declarator and a subscript?

8.5 What is “array bounds checking”? Does C++ perform it?

8.6 What is the output of the following code?

int values[5], count;

for (count = 0; count < 5; count++)
values[count] = count + 1;

for (count = 0; count < 5; count++)
cout << values[count] << endl;

514 Chapter 8 Arrays

8.7 Complete the following program skeleton so it will have a 10-element array of int
values called fish. When completed, the program should ask how many fish were
caught by fishermen 1 through 10, and store this information in the array. Then it
should display the data.

#include <iostream>
using namespace std;

int main ()
{

const int NUM_MEN = 10;
// Define an array named fish that can hold 10 int values.

// You must finish this program so it works as
// described above.
return 0;

}

8.4 Array Initialization

CONCEPT: Arrays may be initialized when they are defined.

Sometimes it is more appropriate to set variable values within a program than to input them.
However, writing separate assignment statements for the individual elements of an array can
mean a lot of typing, especially for large arrays. For example, consider Program 8-5.

Program 8-5

1 // This program displays the number of days in each month.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 const int NUM_MONTHS = 12;
9 int days[NUM_MONTHS];
10
11 days[0] = 31; // January
12 days[1] = 28; // February
13 days[2] = 31; // March
14 days[3] = 30; // April
15 days[4] = 31; // May
16 days[5] = 30; // June
17 days[6] = 31; // July
18 days[7] = 31; // August
19 days[8] = 30; // September
20 days[9] = 31; // October
21 days[10] = 30; // November
22 days[11] = 31; // December
23

(program continues)

Array Initialization 515

Fortunately, there is an alternative. As you saw briefly in Program 8-4, C++ allows you to
initialize arrays when you define them. By using an initialization list, all the elements of the
array can be easily initialized when the array is created. The following statement defines
the days array and initializes it with the same values established by the set of assignment
statements in Program 8-5:

int days[NUM_MONTHS] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

These values are stored in the array elements in the order they appear in the list. (The first
value, 31, is stored in days[0], the second value, 28, is stored in days[1], and so forth).
Figure 8-9 shows the contents of the array after the initialization.

Program 8-6 is a modification of Program 8-5. It initializes the days array at the time it is
created rather than by using separate assignment statements. Notice that the initialization
list is spread across multiple lines. The program also adds an array of string objects to
hold the month names.

24 for (int month = 0; month < NUM_MONTHS; month++)
25 {
26 cout << "Month " << setw(2) << (month+1) << " has ";
27 cout << days[month] << " days.\n";
28 }
29 return 0;
30 }

Program Output
Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.
Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

Figure 8-9

Program 8-6

1 // This program displays the number of days in each month. It uses an
2 // array of string objects to hold the month names and an int array
3 // to hold the number of days in each month. Both are initialized with
4 // initialization lists at the time they are created.

(program continues)

Program 8-5 (continued)

31

0

28

1

31

2

30

3

31

4

30

5

31

6

31

7

30

8

31

9

30

10

31

11

Subscripts

516 Chapter 8 Arrays

So far we have demonstrated how to fill an array with values and then display all
the values. Sometimes, however, we want to retrieve one specific value from the array.
Program 8-7 is a variation of Program 8-6 that displays how many days are in the
month the user selects.

5 #include <iostream>
6 #include <iomanip>
7 #include <string>
8 using namespace std;
9
10 int main()
11 {
12 Const int NUM_MONTHS = 12;
13 string name[NUM_MONTHS] =
14 { "January", "February", "March", "April",
15 "May", "June", "July", "August",
16 "September", "October", "November", "December" };
17
18 int days[NUM_MONTHS] = {31, 28, 31, 30,
19 31, 30, 31, 31,
20 30, 31, 30, 31};
21
22 for (int month = 0; month < NUM_MONTHS; month++)
23 {
24 cout << setw(9) << left << name[month] << " has ";
25 cout << days[month] << " days.\n";
26 }
27 return 0;
28 }

Program Output
January has 31 days.
February has 28 days.
March has 31 days.
April has 30 days.
May has 31 days.
June has 30 days.
July has 31 days.
August has 31 days.
September has 30 days.
October has 31 days.
November has 30 days.
December has 31 days.

Program 8-7

1 // This program allows the user to select a month and then
2 // displays how many days are in that month. It does this
3 // by "looking up" information it has stored in arrays.
4 #include <iostream>

(program continues)

Program 8-6 (continued)

Array Initialization 517

5 #include <iomanip>
6 #include <string>
7 using namespace std;
8
9 int main()
10 {
11 const int NUM_MONTHS = 12;
12 int choice;
13 string name[NUM_MONTHS] =
14 { "January", "February", "March", "April",
15 "May", "June", "July", "August",
16 "September", "October", "November", "December" };
17
18 int days[NUM_MONTHS] = {31, 28, 31, 30,
19 31, 30, 31, 31,
20 30, 31, 30, 31};
21
22 cout << "This program will tell you how many days are "
23 << "in any month.\n\n";
24
25 // Display the months
26 for (int month = 1; month <= NUM_MONTHS; month++)
27 cout << setw(2) << month << " " << name[month-1] << endl;
28
29 cout << "\nEnter the number of the month you want: ";
30 cin >> choice;
31
32 // Use the choice the user entered to get the name of
33 // the month and its number of days from the arrays.
34 cout << "The month of " << name[choice-1] << " has "
35 << days[choice-1] << " days.\n";
36 return 0;
37 }

Program Output with Example Input Shown in Bold
This program will tell you how many days are in any month.

 1 January
 2 February
 3 March
 4 April
 5 May
 6 June
 7 July
 8 August
 9 September
10 October
11 November
12 December

Enter the number of the month you want: 4[Enter]
The month of April has 30 days.

Program 8-7 (continued)

518 Chapter 8 Arrays

Starting with Array Element 1
Some instructors prefer that you not use array element 0 and, instead, begin storing the
actual data in element 1 when you are modeling something in the real world that logically
begins with 1. The months of the year are a good example. In this case you would declare the
name and days arrays to each have 13 elements and would initialize them like this:

string name[NUM_MONTHS+1] =
 { " ", "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December" };

int days[NUM_MONTHS+1] = {0, 31, 28, 31, 30,
 31, 30, 31, 31,
 30, 31, 30, 31};

Notice that array element 0 is not used. It just holds a dummy value. This allows the
name of the first month, January, to be stored in name[1], the name of the second
month, February, to be stored in name[2], and so on. Likewise, the number of days in
January is found in days[1], the number of days in February in days[2], and so on.

Here is what the loop found in lines 22 through 26 of Program 8-6 would look like if the
arrays were defined and initialized as we have done here. It displays the contents of array
elements 1 through 12, instead of elements 0 through 11 as before.

 for (int month = 1; month <= NUM_MONTHS; month++)
 {
 cout << setw(9) << left << name[month] << " has ";
 cout << days[month] << " days.\n";
 }

If the actual data is stored beginning with element 1, it is also not necessary to offset
array subscripts by 1 to locate a particular piece of data. Here is what the loop in lines
26 and 27 of Program 8-7 that lists each month number with its name would look like:

 for (int month = 1; month <= NUM_MONTHS; month++)
 cout << setw(2) << month << " " << name[month] << endl;

And lines 34 and 35 of Program 8-7 that display the number of days in a month selected
by the user would look like this:

 cout << "The month of " << name[choice] << " has "
 << days[choice] << " days.\n";

Versions of Programs 8-5, 8-6, and 8-7 that store data values beginning with element 1
can be found in the Chapter 8 folder of the book’s companion website in files
pr8-05B.cpp, pr8-06B.cpp, and pr8-07B.cpp, respectively.

Partial Array Initialization
When an array is being initialized, C++ does not require a value for every element. It’s
possible to only initialize part of an array, like this:

int numbers[7] = {1, 2, 4, 8};

This definition only initializes the first four elements of a seven-element array, as illustrated
in Figure 8-10.

Array Initialization 519

Notice in Figure 8-10 that the uninitialized elements have all been set to zero. This is
what happens when a numeric array is partially initialized. When an array of string
objects is partially initialized, the uninitialized elements will all contain empty strings,
that is, strings of length 0. This is true even if the partially initialized array is defined
locally. If a local array is completely uninitialized, however, its elements will contain
“garbage,” just like other local variables. Program 8-8 shows the contents of the numbers
array after it is partially initialized.

Although an array initialization list can have fewer values than the array has elements, it is
not allowed to have more values than the array can hold. The following statement would
be illegal because the numbers array can only hold 7 values, but the initialization list
contains 8 values.

int numbers[7] = {1, 2, 4, 8, 3, 5, 7, 9}; // NOT legal!

Also, if you leave an element uninitialized, you must leave all the elements that follow it
uninitialized as well. C++ does not provide a way to skip elements in the initialization list.
Here is another example that is illegal.

int numbers[7] = {1, , 4, , 3, 5, 7}; // NOT legal!

Figure 8-10

Program 8-8

1 // This program has a partially initialized array.
2 #include <iostream>
3 using namespace std;
4
5 int main ()
6 {
7 const int SIZE = 7;
8 int numbers[SIZE] = {1, 2, 4, 8}; // Initialize the first 4 elements
9
10 cout << "Here are the contents of the array:\n";
11 for (int index = 0; index < SIZE; index++)
12 cout << numbers[index] << " ";
13 cout << endl;
14 return 0;
15 }

Program Output
Here are the contents of the array:
1 2 4 8 0 0 0

1

numbers
[0]

2

numbers
[1]

4

numbers
[2]

8

numbers
[3]

0

numbers
[4]

0

numbers
[5]

0

numbers
[6]

int numbers[7] = {1, 2, 4, 8};

Uninitialized elements

520 Chapter 8 Arrays

Implicit Array Sizing
You can define an array without specifying its size by providing an initialization list that
includes a value for every element. C++ counts the number of items in the initialization list
and gives the array that many elements. For example, the following definition creates an
array with five elements:

double ratings[] = {1.0, 1.5, 2.0, 2.5, 3.0};

8.5 Processing Array Contents

CONCEPT: Individual array elements are processed like any other type of variable.

Processing array elements is no different than processing other variables. For example, the
following statement multiplies hours[3] by the variable rate:

pay = hours[3] * rate;

And the following are examples of pre-increment and post-increment operations on array
elements:

int score[5] = {7, 8, 9, 10, 11};
++score[2]; // Pre-increment operation on the value in score[2]
score[4]++; // Post-increment operation on the value in score[4]

amount[count]--; // This decrements the value stored in amount[count]
amount[count--]; // This decrements the variable count, but does

 // nothing to the value stored in amount[count]

Program 8-9 demonstrates the use of array elements in a simple mathematical statement. A
loop steps through each element of the array, using the elements to calculate the gross pay
of five employees.

NOTE: You must specify an initialization list if you leave out the size declarator.
Otherwise, C++ doesn’t know how large to make the array.

NOTE: When using increment and decrement operators, be careful not to confuse the
subscript with the array element. The following example illustrates the difference.

Program 8-9

1 // This program uses an array to store the hours worked by
2 // a set of employees who all make the same hourly wage.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6

(program continues)

Processing Array Contents 521

Array elements can be used in all the same ways regular variables can. You have seen
how to read in a value and store it in an array element, how to assign a value to an array
element, and how to display an element’s value.

7 int main()
8 {
9 const int NUM_WORKERS = 5; // Set the number of employees
10 int hours[NUM_WORKERS]; // Array to hold each employee's hours
11 double payRate; // Hourly pay rate for all employees
12
13 // Input hours worked by each employee
14 cout << "Enter the hours worked by \n";
15 for (int worker = 0; worker < NUM_WORKERS; worker++)
16 {
17 cout << "Employee #" << (worker+1) << ": ";
18 cin >> hours[worker];
19 }
20
21 // Input the hourly pay rate for all employees
22 cout << "\nEnter the hourly pay rate for all the employees: ";
23 cin >> payRate;
24
25 // Display each employee's gross pay
26 cout << "\nHere is the gross pay for each employee:\n";
27 cout << fixed << showpoint << setprecision(2);
28 for (int worker = 0; worker < NUM_WORKERS; worker++)
29 {
30 double grossPay = hours[worker] * payRate;
31 cout << "Employee #" << (worker + 1);
32 cout << ": $" << setw(7) << grossPay << endl;
33 }
34 return 0;
35 }

Program Output with Example Input Shown in Bold
Enter the hours worked by
Employee #1: 5[Enter]
Employee #2: 10[Enter]
Employee #3: 15[Enter]
Employee #4: 20[Enter]
Employee #5: 40[Enter]

Enter the hourly pay rate for all the employees: 12.75[Enter]

Here is the gross pay for each employee:
Employee #1: $ 63.75
Employee #2: $ 127.50
Employee #3: $ 191.25
Employee #4: $ 255.00
Employee #5: $ 510.00

Program 8-9 (continued)

522 Chapter 8 Arrays

Array elements can also be used in relational expressions. For example, the following if
statement tests cost[20] to determine whether it is less than cost[0]:

if (cost[20] < cost[0])

And this line begins a while loop that iterates as long as value[place] does not equal 0:

while (value[place] != 0)

Copying One Array to Another
We have already discussed that you cannot simply assign one array to another array. To copy
the contents of one array to another, you must assign each element of the first array, one
at a time, to the corresponding element of the second array. The following code segment
uses a for loop to do this.

const int SIZE = 6;
int arrayA[SIZE] = {10, 20, 30, 40, 50, 60};
int arrayB[SIZE] = { 2, 4, 6, 8, 10, 12};
for (int index = 0; index < SIZE; index++)

arrayA[index] = arrayB[index];

On the first iteration of the loop, index = 0, so arrayA[0] is assigned the value stored in
arrayB[0]. On the second iteration, index = 1, so arrayA[1] is assigned the value stored in
arrayB[1]. This continues until, one by one, all the elements of arrayB are copied to arrayA.
When the loop is finished executing, both arrays will contain the values 2, 4, 6, 8, 10, 12.

This code can be found in the program ArrayCopy.cpp in the Chapter 8 folder on the
book’s companion website.

Comparing Two Arrays
Just as you cannot copy one array to another with a single statement, you also cannot
compare the contents of two arrays with a single statement. That is, you cannot use the
== operator with the names of two arrays to determine whether the arrays are equal. The
following code appears to compare the contents of two arrays, but in reality does not.

int arrayA[] = { 5, 10, 15, 20, 25 };
int arrayB[] = { 5, 10, 15, 20, 25 };

if (arrayA == arrayB) // This is a mistake
cout << "The arrays are the same.\n";

else
cout << "The arrays are not the same.\n";

When you use the == operator with array names, the operator compares the beginning
memory addresses of the arrays, not the contents of the arrays. The two arrays in this code
will obviously have different memory addresses. Therefore, the result of the expression
arrayA == arrayB is false and the code reports that the arrays are not the same.

To compare the contents of two arrays, you must compare their individual elements. For
example, look at the following code.

const int SIZE = 5;
int arrayA[SIZE] = { 5, 10, 15, 20, 25 };
int arrayB[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable

Processing Array Contents 523

// Determine whether the elements contain the same data
while (arraysEqual && count < SIZE)
{

if (arrayA[count] != arrayB[count])
arraysEqual = false;

count++;
}
// Display the appropriate message
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

This code determines whether arrayA and arrayB contain the same values. A bool
variable arraysEqual, which is initialized to true, signals whether or not the arrays
are equal. Another variable count, which is initialized to 0, is used as a loop counter.

Then a while loop begins. The loop executes as long as arraysEqual is true and the
counter variable count is less than SIZE. During each iteration, it compares a different
pair of corresponding elements in the arrays. If it finds two corresponding elements that
have different values, the arraysEqual variable is set to false, which allows the loop to
be exited without examining any more values. After the loop finishes, an if statement tests
the arraysEqual variable. If the variable is still true, then no differences were found.
The arrays are equal, and a message indicating this is displayed. Otherwise, they are not
equal, so a different message is displayed. This code can be found in the program
ArrayCompare.cpp in the Chapter 8 folder on the book’s companion website.

Summing the Values in a Numeric Array
To sum the values in an array, you must use a loop with an accumulator variable. The
loop adds the value in each array element to the accumulator. For example, assume that
the following statements appear in a program.

const int NUM_UNITS = 6;
int units[NUM_UNITS] = {16, 20, 14, 8, 6, 10};
int total = 0; // Initialize accumulator

The following loop adds the values of each element in the array to the total variable.
When the code is finished, total will contain the sum of the units array’s elements.

for (int count = 0; count < NUM_UNITS; count++)
 total += units[count];

Finding the Average of the Values in a Numeric Array
The first step in calculating the average of all the values in an array is to sum the values. The
second step is to divide the sum by the number of elements in the array. Assume that the
following statements appear in a program.

const int NUM_SCORES = 5;
double scores[NUM_SCORES] = {90, 88, 91, 82, 95};

NOTE: Notice that total is initialized to 0. Recall from Chapter 5 that an
accumulator variable must be set to 0 before it is used to keep a running total or the
sum will not be correct.

524 Chapter 8 Arrays

The following code calculates the average of the values in the scores array and stores the
result in the average variable.

double total = 0; // Initialize accumulator
double average; // Will hold the average

for (int count = 0; count < NUM_SCORES; count++)
total += scores[count];

average = total / NUM_SCORES;

Notice that the last statement, which divides total by NUM_SCORES, is not inside the loop.
This statement should only execute once, after the loop has finished all its iterations.

Finding the Highest and Lowest Values in a Numeric Array
The algorithms for finding the highest and lowest values in an array are very similar. First,
let’s look at code for finding the highest value in an array. Assume that the following lines
appear in a program.

const int SIZE = 10;
int numbers[SIZE] = {15, 6, 3, 11, 22, 4, 0, 1, 9, 12};

The code to find the highest value in the array is as follows.

int count;
int highest;

highest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] > highest)
highest = numbers[count];

}

First we copy the value in the first array element to the variable named highest. Then the loop
compares all of the remaining array elements, beginning at subscript 1, to the value stored in
highest. Each time it finds a value in the array that is greater than highest, it copies it to
highest. When the loop has finished, highest will contain the highest value in the array.

The following code finds the lowest value in the array. As you can see, it is nearly identical
to the code for finding the highest value.

int count;
int lowest;

lowest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] < lowest)
lowest = numbers[count];

}

When the loop has finished, lowest will contain the lowest value in the array.

Program 8-10, which creates a monthly sales report, demonstrates the algorithms for
finding the sum, average, highest, and lowest values in an array. It combines the

Processing Array Contents 525

algorithms to find the highest and the lowest value into a single loop. The sales data used
to fill the array is read in from the sales.dat file, which contains the following values

62458 81598 98745 53460 35678 86322
89920 78960 124569 43550 45679 98750

Program 8-10

1 // This program uses an array to store monthly sales figures
2 // for a company's regional offices. It then finds and displays
3 // the total, average, highest, and lowest sales amounts.
4 // The data to fill the array is read in from a file.
5 #include <iostream>
6 #include <fstream> // Needed to use files
7 #include <iomanip>
8 using namespace std;
9
10 int main()
11 {
12 const int NUM_OFFICES = 12;
13 ifstream dataIn;
14 int office; // Loop counter
15 double sales[NUM_OFFICES], // Array to hold the sales data
16 totalSales = 0.0, // Accumulator initialized to zero
17 averageSales,
18 highestSales,
19 lowestSales;
20
21 // Open the data file
22 dataIn.open("sales.dat");
23 if (!dataIn)
24 cout << "Error opening data file.\n";
25 else
26 { // Fill the array with data from the file
27 for (office = 0; office < NUM_OFFICES; office++)
28 dataIn >> sales[office];
29 dataIn.close();
30
31 // Sum all the array elements
32 for (office = 0; office < NUM_OFFICES; office++)
33 totalSales += sales[office];
34
35 // Calculate average sales
36 averageSales = totalSales / NUM_OFFICES;
37
38 // Find highest and lowest sales amounts
39 highestSales = lowestSales = sales[0];
40 for (office = 1; office < NUM_OFFICES; office++)
41 {
42 if (sales[office] > highestSales)
43 highestSales = sales[office];
44 else if (sales[office] < lowestSales)
45 lowestSales = sales[office];
46 }

(program continues)

526 Chapter 8 Arrays

Partially-Filled Arrays
Sometimes you need to store a series of items in an array, but you do not know the number of
items that there are. As a result, you do not know the exact number of elements needed for the
array. One solution is to make the array large enough to hold the largest possible number of
items. This can lead to another problem, however. If the actual number of items stored in the
array is less than the number of elements, the array will be only partially filled. When you process
a partially-filled array, you must only process the elements that contain valid data items.

A partially-filled array is normally used with an accompanying integer variable that tells
how many items are currently stored in the array. For example, suppose a program uses the
code shown below to create a 100-element array, and an int variable named numValues
which will hold the number of items stored in the array. Notice that numValues is
initialized to zero because no values have been stored in the array yet.

const int SIZE = 100;
int array[SIZE];
int numValues = 0;

Each time we add an item to the array, we must increment numValues. The following code
demonstrates.

int number;

cout << "Enter a number or -1 to quit: ";
cin >> number;
while (number != -1 && numValues < SIZE)
{

array[numValues] = number;
numValues++;
cout << "Enter a number or -1 to quit: ";
cin >> number;

}

Each iteration of this sentinel-controlled loop allows the user to enter a number to be
stored in the array, or −1 to quit. After each value is stored in the array, numValues is

47 // Display results
48 cout << fixed << showpoint << setprecision(2);
49 cout << "Total sales $" << setw(9) << totalSales << endl;
50 cout << "Average sales $" << setw(9) << averageSales << endl;
51 cout << "Highest sales $" << setw(9) << highestSales << endl;
52 cout << "Lowest sales $" << setw(9) << lowestSales << endl;
53 }
54 return 0;
55 }

Program Output
Total sales $899689.00
Average sales $ 74974.08
Highest sales $124569.00
Lowest sales $ 35678.00

Program 8-10 (continued)

Processing Array Contents 527

incremented to hold the subscript of the next available element in the array. When the user
enters −1, or when numValues exceeds 99, the loop stops. The following code displays all
of the valid items in the array.

for (int index = 0; index < numValues; index++)
{

cout << array[index] << endl;
}

Why Use an Array?
Program 8-10 stored a set of numbers in an array in order to sum the numbers and find the
average, largest, and smallest values. However, this could have been done without using an
array at all. The sales figures could have just been placed one at a time into a simple variable,
added to a sum, and compared to the largest and smallest values as they were read in. This is
illustrated by the following code segment.

dataIn >> salesAmt; // Input the data from the first office
totalSales = highestSales = lowestSales = salesAmt;
for (office = 2; office <= numOffices; office++)
{ dataIn >> salesAmt;

totalSales += salesAmt;
if (salesAmt > highestSales)

highestSales = salesAmt;
else if (salesAmt < lowestSales)

lowestSales = salesAmt;

}
averageSales = totalSales / numOffices;

Then why use an array at all? There are many reasons. One of the most important is that
once the data is in the array it can be used more than once without having to be input
again. For example, suppose that instead of finding the highest and lowest sales figures we
want to create a report that tells which offices have below-average sales figures. Program 8-11
modifies Program 8-10 to do this. Note that it requires looking at each piece of data twice.
First each value is input and summed to find and display the average. Then each data
value is examined again, so it can be compared to the average, and any below-average
value can be displayed. Program 8-11 also illustrates the use of a partially-filled array. It
allows the sales array to hold up to 20 values, then uses the loop control variable of a
while loop to count the actual number of values stored in it as they are read in from the
file. The data is read in from the same sales.dat file used by Program 8-10.

Program 8-11

1 // This program uses a partially-filled array to store monthly sales
2 // figures for a set of offices. It then finds and displays the total
3 // sales amount, the average sales amount, and a listing of the offices
4 // with sales below the average. The data to fill the array is read
5 // in from a file and the number of data values are counted.
6 #include <iostream>

(program continues)

528 Chapter 8 Arrays

7 #include <fstream> // Needed to use files
8 #include <iomanip>
9 using namespace std;
10
11 int main()
12 {
13 const int SIZE = 20;
14 ifstream dataIn; // Object to read file input
15 int numOffices, // Number of data values read in
16 count; // Loop counter
17 double sales[SIZE], // Array to hold the sales data
18 totalSales = 0.0, // Accumulator initialized to zero
19 averageSales; // Average sales for all offices
20
21 // Open the data file
22 dataIn.open("sales.dat");
23 if (!dataIn)
24 cout << "Error opening the data file.\n";
25 else
26 { // Read values from the file and store them in the array,
27 // counting them and summing them as they are read in
28 count = 0;
29 while (count < SIZE && dataIn >> sales[count])
30 { totalSales += sales[count];
31 count++;
32 }
33 numOffices = count;
34 dataIn.close();
35
36 // Calculate average sales
37 averageSales = totalSales / numOffices;
38
39 // Display total and average
40 cout << fixed << showpoint << setprecision(2);
41 cout << "The total sales are $"
42 << setw(9) << totalSales << endl;
43 cout << "The average sales are $"
44 << setw(9) << averageSales << endl;
45
46 // Display figures for offices performing below the average
47 cout << "\nThe following offices have below-average "
48 << "sales figures.\n";
49 for (int office = 0; office < numOffices; office++)
50 { if (sales[office] < averageSales)
51 cout << "Office " << setw(2) << (office + 1)
52 << " $" << sales[office] << endl;
53 }
54 }
55 return 0;
56 }

(program continues)

Program 8-11 (continued)

Processing Array Contents 529

Let’s look at a couple of key points in Program 8-11. First, look at line 29. This line
controls the while loop and reads in the data.

while (count < SIZE && dataIn >> sales[count])

The loop repeats as long as count is less than the size of the array and a data value is
successfully read in from the file (i.e., the end of the file has not been encountered). The
first part of the while loop’s test expression, count < SIZE, prevents the loop from
writing outside the array boundaries. The second part of the test expression stops the loop
if there is no more data in the file to read. Recall from Chapter 4 that the && operator
performs short-circuit evaluation, so the second part of the while loop’s test expression,
dataIn >> sales[count], will be executed only if count is less than SIZE. The sales
array defined in line 17 has room to store up to 20 values, but because the data file
contains only 12 values, the while loop terminates after reading in these 12 items.

Notice how count, the loop control variable, serves two purposes in addition to controlling
execution of the loop. Because it is initialized to zero and is incremented on line 31 once each
time the loop iterates, it keeps count of which array position the next item read should be
stored in, correctly allowing the 12 values from the sales.dat file to be stored in array
positions 0 through 11. It also keeps count of how many values are read in. When the loop
terminated in our sample run, count was 12, which equaled the number of items read in.

We said that using an array is particularly helpful when data values need to be looked at more
than once. That is exactly what happens in Program 8-11. The statement in line 30 adds each
piece of stored data to a total it is accumulating of all the values. This total is later used in line
37 to compute an average. Then, inside the for loop on lines 49 through 53, each stored data
item is again examined to compare it to the average and to display it if it is below the average

As you continue to program you will encounter many additional algorithms that require
examining data values more than once and you will discover many cases where arrays are
a particularly useful way to organize and store data.

Processing Strings
Strings are internally stored as arrays of characters. They are different from other arrays in
that the elements can either be treated as a set of individual characters or can be used as a
single entity. The following sample code defines a string object and treats it as a single
entity, inputting it and displaying it as a single unit.

Program Output
The total sales are $899689.00
The average sales are $ 74974.08

The following offices have below-average sales figures.
Office 1 $62458.00
Office 4 $53460.00
Office 5 $35678.00
Office 10 $43550.00
Office 11 $45679.00

Program 8-11 (continued)

530 Chapter 8 Arrays

string name;
cout << "Enter your name: ";
cin >> name;
cout << "Hello, " << name << endl;

This is, in fact, how strings are normally treated and processed—as single entities. However,
C++ provides the ability to index them with a subscript, like an array, so they can be
processed character by character. If "Warren" were entered for the name in the previous code
segment, it would be stored in the name string object as shown in Figure 8-11.

If we wanted to process the string character by character, like a regular array, we could do
so. For example the statement

cout << name[0]; would print the letter W,
cout << name[1]; would print the letter a, and so forth

Program 8-12 illustrates character by character string processing. It reads in a string and
then counts the number of vowels in the string. The string class member function length
is used to determine how many characters are in the string.

Figure 8-11

NOTE: Both string objects and C-strings are stored as characters in contiguous bytes of
memory, as shown in Figure 8-11. String literals and C-strings are terminated by placing a
'\0', which represents the null terminator, in the byte of memory following the last
character of the string. There is no guarantee, however, how string objects will be
implemented. Many versions of C++ do terminate string objects with the null terminator,
but it is never safe to assume they will be terminated this way.

Program 8-12

1 // This program illustrates how a string can be processed as an array
2 // of individual characters. It reads in a string, then counts the
3 // number of vowels in the string. It uses the toupper function to
4 // uppercase each letter in the string and the string class member
5 // function length() to determine how many characters are in the string.
6 #include <iostream>
7 #include <string> // Needed to use string objects
8 #include <cctype> // Needed for the toupper function
9 using namespace std;
10
11 int main()
12 {
13 char ch;
14 int vowelCount = 0;
15 string sentence;

(program continues)

'W'

name
[0]

'a'

name
[1]

'r'

name
[2]

'r'

name
[3]

'e'

name
[4]

'n'

name
[5]

Using Parallel Arrays 531

Additional examples of string processing are introduced in Chapter 12.

8.6 Using Parallel Arrays

CONCEPT: By using the same subscript, you can build relationships between data
stored in two or more arrays.

Sometimes it is useful to store related data in two or more arrays. It’s especially useful
when the related data is of different data types. We did this in Programs 8-6 and 8-7,
where the name array stored the names of the 12 months and the days array stored the
number of days in a given month. A month name and its number of days were related
by having the same subscript. For example, days[3] stored the number of days in the
month whose name was stored in month[3]. When data items stored in two or more
arrays are related in this fashion, the arrays are called parallel arrays. Program 8-13,
which is a variation of the payroll program, uses parallel arrays. An int array stores
the hours worked by each employee, and a double array stores each employee’s hourly
pay rate.

16
17 cout << "Enter any sentence you wish and I will \n"
18 << "tell you how many vowels are in it.\n";
19 getline(cin, sentence);
20
21 for (int pos = 0; pos < sentence.length(); pos++)
22 {
23 // Uppercase a copy of the next character and assign it to ch
24 ch = toupper(sentence[pos]);
25
26 // If the character is a vowel, increment vowelCount
27 switch(ch)
28 { case 'A':
29 case 'E':
30 case 'I':
31 case 'O':
32 case 'U': vowelCount++;
33 }
34 }
35 cout << "There are " << vowelCount << " vowels in the sentence.\n";
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Enter any sentence you wish and I will
tell you how many vowels are in it.
The quick brown fox jumped over the lazy dog.[Enter]
There are 12 vowels in the sentence.

Program 8-12 (continued)

532 Chapter 8 Arrays

Program 8-13

1 // This program stores employee hours worked
2 // and hourly pay rates in two parallel arrays.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int NUM_EMPS = 5;
10 int index;
11 int hours[NUM_EMPS]; // Define 2 parallel arrays
12 double payRate[NUM_EMPS];
13 double grossPay;
14
15 // Get employee work data
16 cout << "Enter the hours worked and hourly pay rates of "
17 << NUM_EMPS << " employees. \n";
18
19 for (index = 0; index < NUM_EMPS; index++)
20 {
21 cout << "Hours worked by employee #" << (index + 1) << ": ";
22 cin >> hours[index];
23 cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
24 cin >> payRate[index];
25 }
26 // Display the data
27 cout << "\nHere is the gross pay for each employee:\n";
28 cout << fixed << showpoint << setprecision(2);
29 for (index = 0; index < NUM_EMPS; index++)
30 {
31 grossPay = hours[index] * payRate[index];
32 cout << "Employee #" << (index + 1);
33 cout << ": $" << setw(7) << grossPay << endl;
34 }
35 return 0;
36 }

Program Output with Example Input Shown in Bold
Enter the hours worked and hourly pay rates of 5 employees.
Hours worked by employee #1: 10[Enter]
Hourly pay rate for employee #1: 9.75[Enter]
Hours worked by employee #2: 15[Enter]
Hourly pay rate for employee #2: 8.62[Enter]
Hours worked by employee #3: 20[Enter]
Hourly pay rate for employee #3: 10.50[Enter]
Hours worked by employee #4: 40[Enter]
Hourly pay rate for employee #4: 18.75[Enter]
Hours worked by employee #5: 40[Enter]
Hourly pay rate for employee #5: 15.65[Enter]

(program output continues)

Using Parallel Arrays 533

Notice in the loops that the same subscript is used to access both arrays. That’s because the
data for a particular employee is stored in the same relative position in each array. For
example, the hours worked by employee #1 are stored in hours[0], and the same
employee’s pay rate is stored in payRate[0]. The subscript relates the data in both arrays.
This concept is illustrated in Figure 8-12.

Checkpoint

8.8 Define the following arrays:

A) ages, a 10-element array of ints initialized with the values 5, 7, 9, 14, 15, 17,
18, 19, 21, and 23

B) temps, a 7-element array of doubles initialized with the values 14.7, 16.3,
18.43, 21.09, 17.9, 18.76, and 26.7

C) alpha, an 8-element array of chars initialized with the values ‘J’, ‘B’, ‘L’, ‘A’,
‘*’, ‘$’, ‘H’, and ‘M’

8.9 Indicate if each of the following array definitions is valid or invalid. (If a definition
is invalid, explain why.)

A) int numbers[10] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};
B) int matrix[5] = {1, 2, 3, 4, 5, 6, 7};
C) double radii[10] = {3.2, 4.7};
D) int table[7] = {2, , , 27, , 45, 39};
E) char codes[] = {'A', 'X', '1', '2', 's'};
F) int blanks[];
G) string suit[4] = {"Clubs", "Diamonds", "Hearts", "Spades"};

Here is the gross pay for each employee:
Employee #1: $ 97.50
Employee #2: $ 129.30
Employee #3: $ 210.00
Employee #4: $ 750.00
Employee #5: $ 626.00

Figure 8-12

Program 8-13 (continued)

10

hours[0]

15

hours[1]

20

hours[2]

40

hours[3]

40

hours[4]

9.75

payRate[0]

8.62

payRate[1]

10.50

payRate[2]

18.75

payRate[3]

15.65

payRate[4]

Employee
#1

Employee
#2

Employee
#3

Employee
#4

Employee
#5

534 Chapter 8 Arrays

8.10 Given the following array definitions

double array1[4] = {1.2, 3.2, 4.2, 5.2};
double array2[4];

will the following statement work? If not, why?

array2 = array1;

8.11 Given the following array definition:

int values[] = {2, 6, 10, 14};

what do each of the following display?

A) cout << values[2];
B) cout << ++values[0];
C) cout << values[1]++;
D) x = 2;

cout << values[++x];

8.12 Given the following array definition

int nums[5] = {1, 2, 3};

what will the following statement display?

cout << nums[3];

8.13 What is the output of the following code?

double balance[5] = {100.0, 250.0, 325.0, 500.0, 1100.0};
const double INT_RATE = 0.1;

cout << fixed << showpoint << setprecision(2);
for (int count = 0; count < 5; count++)

cout << (balance[count] * INT_RATE) << endl;

8.14 What is the output of the following code?

const int SIZE 5;
int count;
int time[SIZE] = {1, 2, 3, 4, 5},

 speed[SIZE] = {18, 4, 27, 52, 100},
 dist[SIZE];

for (count = 0; count < SIZE; count++)
dist[count] = time[count] * speed[count];

for (count = 0; count < SIZE; count++)
{

cout << time[count] << " ";
cout << speed[count] << " ";
cout << dist[count] << endl;

}

Arrays as Function Arguments 535

8.7 The typedef Statement

CONCEPT: The typedef statement allows an alias to be associated with a simple or
structured data type.

The typedef statement allows the programmer to create an alias, or synonym, for an
existing data type. This can be a simple data type, like an int, or a more complicated data
type such as an array. The simplest form of the statement is

typedef <existing data type> <alias>;

For example, the following statements declare examScore to be another name for an int
and then define two variables of type examScore.

typedef int examScore;
examScore score1, score2; // score1 and score2 are of type examScore

The declaration emphasizes that variables of type examScore are integers that will hold
exam scores.

One of the most common uses of the typedef statement is to provide a descriptive alias
for an array of a specific purpose. When used with arrays, the [] holding the array size is
written next to the alias name, not next to the data type name. The following statement
creates an alias named score for a double array of size 100.

typedef double score[100];

This means that anything defined to be a score is an array of 100 double elements
intended to hold scores. The following two statements now do the same thing.

double finalExam[100];
score finalExam;

Sometimes it is desirable to create an alias for an array of a specific data type without
specifying its size. The following statement creates an alias, named arrayType for an
int array of unspecified size.

typedef int arrayType[];

In the next section, when you learn how to pass arrays as function arguments, it will
become apparent why it is convenient to set up a typedef for an array type.

8.8 Arrays as Function Arguments

CONCEPT: Individual elements of arrays and entire arrays can both be passed as
arguments to functions.

Quite often you’ll want to write functions that process the data in arrays. For example,
functions can be written to put values in an array, display an array’s contents on the screen,
total all of an array’s elements, or calculate their average. Usually, such functions accept an
array as an argument.

VideoNote

Passing an
Array to a
Function

536 Chapter 8 Arrays

When a single element of an array is passed to a function, it is handled like any other
variable. For example, Program 8-14 shows a loop that passes one element of the
collection array to the showValue function each time the loop is executed. Because the
elements of the collection array are ints, a single int value is passed to the showValue
function each time it is called. Notice how this is specified in the showValue function
prototype and function header. All showValue knows is that it is receiving an int. It does
not matter that it happens to be coming from an array.

Because the showValue function simply displays the contents of num and doesn’t need to
work directly with the array elements themselves, the array elements are passed to it by
value. If the function needed to access the original array elements, they would be passed by
reference.

If the function were written to accept the entire array as an argument, the parameter would
be set up differently. In the following function definition, the parameter nums is followed
by an empty set of brackets. This indicates that the argument will be an entire array, not a
single value.

Program 8-14

1 // This program demonstrates that an array element
2 // can be passed to a function like any other variable.
3 #include <iostream>
4 using namespace std;
5
6 void showValue(int); // Function prototype
7
8 int main()
9 {
10 const int ARRAY_SIZE = 8;
11 int collection[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
12
13 for (int index = 0; index < ARRAY_SIZE; index++)
14 showValue(collection[index]);
15 cout << endl;
16 return 0;
17 }
18
19 /**************************************
20 * showValue *
21 * This function displays the integer *
22 * value passed to its num parameter. *
23 **************************************/
24 void showValue(int num)
25 {
26 cout << num << " ";
27 }

Program Output
5 10 15 20 25 30 35 40

Arrays as Function Arguments 537

void showValues (int nums[], int size)
{

for (int index = 0; index < size; index++)
cout << nums[index] << " ";

cout << endl;
}

Notice that along with the array containing the values, the size of the array is also passed
to showValues. This is so it will know how many values there are to process.

Notice also that there is no size declarator inside the brackets of nums. This is because
nums is not actually an array—it’s a special variable that accepts the address of an array.
When an entire array is passed to a function, it is not passed by value. Imagine the CPU
time and memory that would be necessary if a copy of a 10,000-element array were
created each time it was passed to a function! Instead, only the starting memory address of
the array is passed. This is similar to passing a variable to a function by reference, except
that in this case no & is used. Program 8-15 illustrates how function showValues receives
the address of an entire array so it can access and display the contents of all its elements.

Program 8-15

1 // This program shows how to pass an entire array to a function.
2 #include <iostream>
3 using namespace std;
4
5 void showValues(int intArray[], int size); // Function prototype
6
7 int main()
8 {
9 const int ARRAY_SIZE = 8;
10 int collection[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
11
12 cout << "The array contains the values\n";
13 showValues(collection, ARRAY_SIZE);
14 return 0;
15 }
16
17 /***
18 * showValues *
19 * This function displays the contents of an integer array *
20 * when passed the array's address and its size as arguments.*
21 ***/
22 void showValues (int nums[], int size)
23 {
24 for (int index = 0; index < size; index++)
25 cout << nums[index] << " ";
26 cout << endl;
27 }

Program Output
The array contains the values
5 10 15 20 25 30 35 40

538 Chapter 8 Arrays

Look closely at the showValues prototype in line 5 and function header in line 22. In both
cases a pair of braces follows the first parameter name. This lets the program know that
this parameter accepts the address of an array. If the function prototype had not used
parameter names, it would have looked like this:

void showValues(int [], int);

This would still have indicated that the first showValues parameter receives the address of
an integer array and the second parameter receives a single integer value.

Look also at how the showValues function is called in line 13 of the program with the
following statement:

showValues(collection, ARRAY_SIZE);

The first argument is the name of the array being passed to the function. Remember, in
C++ the name of an array without brackets and a subscript is actually the beginning
address of the array. In this function call, the address of the collection array is being
passed to the function. The second argument is the size of the array.

In the showValues function, the beginning address of the collection array is copied into
the nums parameter variable. The nums variable is then used to reference the collection
array. Figure 8-13 illustrates the relationship between the collection array and the nums
parameter variable. When nums[0] is displayed, it is actually the contents of collection[0]
that appears on the screen.

The nums parameter variable in the showValues function can accept the address of any
integer array and can use it to reference that array. So, we can use the showValues
function to display the contents of any integer array by passing the name of the array
and its size as arguments. Program 8-16 uses this function to display the contents of
two different arrays. Notice that they do not have to be the same size. Notice also the
use of the typedef statement in this program. It makes the name arrayType an alias
for an array of integers. This name is then used in the showValues prototype and
function header, instead of using int[], to indicate that the first parameter receives the
starting address of an int array.

Figure 8-13

NOTE: Although nums is not a reference variable, it works like one.

collection array of eight integers

nums[0]
references
collection[0]

nums[1]
references
collection[1]

nums[2]
references
collection[2]

... and so forth

5 10 15 20 25 30 35 40

Arrays as Function Arguments 539

Notice that when set1 and set2 are declared in lines 14 and 15, no size declarator is used.
We could have used one, but recall that a size declarator is not required when an
initialization list is used.

Recall also, from Chapter 6, that when a reference variable is used as a parameter, it gives
the function access to the original argument. Any changes made to the reference variable
are actually performed on the argument referenced by the variable. Array parameters work
very much like reference variables. They give the function direct access to the original
array. Any changes made to the array parameter are actually made to the original array
used as the argument. The function doubleArray in Program 8-17 uses this capability to
double the contents of each element in the array.

Program 8-16

1 // This program demonstrates passing different arrays to a function.
2 #include <iostream>
3 using namespace std;
4
5 // Declare arrayType to be an alias for an array of ints
6 typedef int arrayType[];
7
8 void showValues(arrayType, int); // Function prototype
9
10 int main()
11 {
12 const int SIZE1 = 8;
13 const int SIZE2 = 5;
14 int set1[] = {5, 10, 15, 20, 25, 30, 35, 40};
15 int set2[] = {2, 4, 6, 8, 10};
16
17 cout << "Here are the values stored in array set1: ";
18 showValues(set1, SIZE1); // Pass set 1 to showValues
19
20 cout << "Here are the values stored in array set2: ";
21 showValues(set2, SIZE2); // Pass set 2 to showValues
22 return 0;
23 }
24
25 /***
26 * showValues *
27 * This function displays the contents of an integer array *
28 * when passed the array's address and its size as arguments.*
29 ***/
30 void showValues (arrayType nums, int size)
31 {
32 for (int index = 0; index < size; index++)
33 cout << nums[index] << " ";
34 cout << endl;
35 }

Program Output
Here are the values stored in array set1: 5 10 15 20 25 30 35 40
Here are the values stored in array set2: 2 4 6 8 10

540 Chapter 8 Arrays

Program 8-17

1 // This program uses a function to double the value of
2 // each element of an array.
3 #include <iostream>
4 using namespace std;
5
6 // Declare arrayType to be an alias for an array of ints
7 typedef int arrayType[];
8
9 // Function prototypes
10 void doubleArray(arrayType, int);
11 void showValues (arrayType, int);
12
13 int main()
14 {
15 const int ARRAY_SIZE = 7;
16 arrayType set = {1, 2, 3, 4, 5, 6, 7};
17
18 // Display the original values
19 cout << "The arrays values are:\n";
20 showValues(set, ARRAY_SIZE);
21
22 // Double the values in the array
23 doubleArray(set, ARRAY_SIZE);
24
25 // Display the new values
26 cout << "\nAfter calling doubleArray, the values are:\n";
27 showValues(set, ARRAY_SIZE);
28 cout << endl;
29 return 0;
30 }
31
32 /***
33 * doubleArray *
34 * This function doubles the value of each element *
35 * in the array whose address is passed to it. *
36 ***/
37 void doubleArray(arrayType nums, int size)
38 {
39 for (int index = 0; index < size; index++)
40 nums[index] *= 2;
41 }
42
43 /***
44 * showValues *
45 * This function displays the contents of an int array *
46 * when passed the array's address and size as arguments.*
47 ***/
48 void showValues (arrayType nums, int size)
49 {
50 for (int index = 0; index < size; index++)
51 cout << nums[index] << " ";
52 cout << endl;
53 }

(program continues)

Arrays as Function Arguments 541

Notice that in line 16 of Program 8-17 the set array is defined to be type arrayType
rather than int set[] or int set[ARRAY_SIZE], although it could be defined either of
these ways also. As in Program 8-16, it is not necessary to indicate the size of the array
because it is initialized with an initialization list at the time it is created.

Notice also that in the typedef statement in line 7, the showValues prototype in line 11,
and the showValues function header in line 48, there is no &. Remember, when you pass
an array to a function you do not use an &.

Using const Array Parameters
Sometimes you want a function to be able to modify the contents of an array that is passed
to it as an argument, but other times you don't. In Program 8-17, for example, we needed
the doubleArray function to be able to change the values in the array, but we did not want
the showValues function to change them. You can prevent a function that should not
change an array passed to it from accidentally making changes to it by using the const key
word. Here is what the showValues prototype and function header would look like with a
const array parameter:

void showValues(const arrayType, int) // Function prototype
void showValues(const arrayType nums, int size) // Function header

Nothing in the call to the function or in the function code changes when you use a const
array parameter. Only the function prototype and header are affected. When an array
parameter is declared as const, the function is not allowed to make changes to the array’s
contents. If a statement in the function attempts to modify the array, an error will occur at
compile time. As a precaution, it is a good idea to always use a const array parameter in
any function that is not intended to modify its array argument.

Program Output
The array values are:
1 2 3 4 5 6 7

After calling doubleArray, the values are:
2 4 6 8 10 12 14

NOTE: In C++ when a regular variable is passed to a function and an & precedes its
name, it means that the function is receiving a reference to the memory address where a
variable is stored. An array name, however, is already a memory address. That is, instead
of holding a value, it holds the starting address of where the array is located in memory.
Therefore, an & should not be used with it.

Program 8-17 (continued)

542 Chapter 8 Arrays

Some Useful Array Functions
Section 8.5 introduced you to algorithms such as summing an array and finding the highest
and lowest values in an array. Now we can write general-purpose functions that perform
these operations. Program 8-18, which is a modification of Program 8-10, uses the functions
sumArray, getHighest, and getLowest. Because none of these functions should make
changes to the array, they all have const array parameters.

Program 8-18

1 // This program passes an array filled with sales data
2 // to functions which find and return its total, highest,
3 // and lowest values. The functions should not change the
4 // array, so they each use a const array parameter.
5 #include <iostream>
6 #include <iomanip>
7 using namespace std;
8
9 // Function prototypes
10 double sumArray (const double[], int);
11 double getHighest(const double[], int);
12 double getLowest (const double[], int);
13
14 int main()
15 {
16 const int NUM_DAYS = 5; // Number of days
17 double sales[NUM_DAYS], // Holds the daily sales amounts
18 total, // Holds the week's total sales
19 average, // Holds the average daily sales
20 highest, // Holds the highest daily sales
21 lowest; // Holds the lowest daily sales
22
23 // Get the sales data
24 cout << "Enter the sales for this week.\n";
25 for (int day = 0; day < NUM_DAYS; day++)
26 { cout << "Day " << (day+1) <<": ";
27 cin >> sales[day];
28 }
29
30 // Get total sales and compute average sales
31 total = sumArray(sales, NUM_DAYS);
32 average = total / NUM_DAYS;
33
34 // Get highest and lowest sales amounts
35 highest = getHighest(sales, NUM_DAYS);
36 lowest = getLowest(sales, NUM_DAYS);
37
38 // Display results
39 cout << fixed << showpoint << setprecision(2) << endl;
40 cout << "The total sales are $"
41 << setw(9) << total << endl;
42 cout << "The average sales amount is $"
43 << setw(9) << average << endl;

(program continues)

Arrays as Function Arguments 543

44 cout << "The highest sales amount is $"
45 << setw(9) << highest << endl;
46 cout << "The lowest sales amount is $"
47 << setw(9) << lowest << endl;
48 return 0;
49 }
50
51 /**
52 * sumArray *
53 * This function computes and returns the sum of the *
54 * values in the array whose address is passed to it. *
55 **/
56 double sumArray(const double array[], int size)
57 {
58 double total = 0.0; // Accumulator
59
60 for (int count = 0; count < size; count++)
61 total += array[count];
62 return total;
63 }
64
65 /**
66 * getHighest *
67 * This function finds and returns the largest value *
68 * in the array whose address is passed to it. *
69 **/
70 double getHighest(const double array[], int size)
71 {
72 double highest = array[0];
73
74 for (int count = 1; count < size; count++)
75 { if (array[count] > highest)
76 highest = array[count];
77 }
78 return highest;
79 }
80
81 /**
82 * getLowest *
83 * This function finds and returns the smallest value *
84 * in the array whose address is passed to it. *
85 **/
86 double getLowest(const double array[], int size)
87 {
88 double lowest = array[0];
89
90 for (int count = 1; count < size; count++)
91 { if (array[count] < lowest)
92 lowest = array[count];
93 }
94 return lowest;
95 }

(program continues)

Program 8-18 (continued)

544 Chapter 8 Arrays

Checkpoint

8.15 Write a typedef statement that makes the name TenInts an alias for an array that
holds 10 integers.

8.16 When an array name is passed to a function, what is actually being passed?

8.17 What is the output of the following program? (You may need to consult the ASCII
table in Appendix A.)

#include <iostream>
using namespace std;

// Function prototypes
void fillArray(char [], int)
void showArray(const char [], int)

int main ()
{ char prodCode[8] = {'0', '0', '0', '0', '0', '0', '0', '0'};

fillArray(prodCode,8);
showArray(prodCode,8);
return 0;

}

// Definition of function fillArray
// (Hint: 65 is the ASCII code for 'A'.)
void fillArray(char arr[], int size)
{ char code = 65;

for (int k = 0; k < size; code++, k++)
arr[k] = code;

}

// Definition of function showArray
void showArray(const char codes[], int size)
{ for (int k = 0; k < size; k++)

cout << codes[k];
}

Program Output with Example Input Shown in Bold
Enter the sales for this week.
Day 1: 2698.72[Enter]
Day 2: 3757.29[Enter]
Day 3: 1109.67[Enter]
Day 4: 2498.65[Enter]
Day 5: 1489.87[Enter]
The total sales are $ 11554.20
The average sales amount is $ 2310.84
The highest sales amount is $ 3757.29
The lowest sales amount is $ 1109.67

Program 8-18 (continued)

Two-Dimensional Arrays 545

8.18 The following program skeleton, when completed, will ask the user to enter 10
integers, which are stored in an array. The function avgArray, which you must
write, should calculate and return the average of the numbers entered.

#include <iostream>
using namespace std;

// Write the avgArray function prototype here.
// It should have a const array parameter.

int main()
{

const int SIZE = 10;
int userNums[SIZE];

cout << "Enter 10 numbers: ";
for (int count = 0; count < SIZE; count++)
{

cout << "#" << (count + 1) << " ";
cin >> userNums[count];

}
cout << "The average of those numbers is ";
cout << avgArray(userNums, SIZE) << endl;
return 0;

}

// Write the avgArray function here.

8.9 Two-Dimensional Arrays

CONCEPT: A two-dimensional array is like several identical arrays put together. It is
useful for storing multiple sets of data.

An array is useful for storing and working with a set of data. Sometimes, though, it’s necessary
to work with multiple sets of data. For example, in a grade-averaging program a teacher might
record all of one student’s test scores in an array of doubles. If the teacher has 30 students,
that means 30 arrays of doubles will be needed to record the scores for the entire class. Instead
of defining 30 individual arrays, however, it would be better to define a two-dimensional array.

The arrays that you have studied so far are called one-dimensional arrays because they can
only hold one set of data. Two-dimensional arrays, which are also called 2D arrays, can
hold multiple sets of data. It’s best to think of a two-dimensional array as a table having
rows and columns of elements, as shown in Figure 8-14. This figure shows an array of test
scores that has three rows and four columns. Notice that the three rows are numbered 0
through 2 and the four columns are numbered 0 through 3. There are a total of 12 elements
in the array.

VideoNote

Two-
Dimensional
Arrays

546 Chapter 8 Arrays

To define a two-dimensional array, two size declarators are required. The first one is for the
number of rows and the second one is for the number of columns. Here is an example
definition of a two-dimensional array with three rows and four columns:

Notice that each number is enclosed in its own set of brackets.

For processing the information in a two-dimensional array, each element has two
subscripts, one for its row and another for its column. In the score array, the elements in
row 0 are referenced as

score[0][0]
score[0][1]
score[0][2]
score[0][3]

The elements in row 1 are

score[1][0]
score[1][1]
score[1][2]
score[1][3]

And the elements in row 2 are

score[2][0]
score[2][1]
score[2][2]
score[2][3]

The subscripted references are used in a program just like the references to elements in a
one-dimensional array. For example, the following statement assigns the value 92.25 to the
element at row 2, column 1 of the score array:

score[2][1] = 92.25;

And the following statement displays the element at row 0, column 2:

cout << score[0][2];

Programs that cycle through each element of a two-dimensional array usually do so with
nested loops. Program 8-19 shows an example.

Figure 8-14

Column 0

Row 0

Row 1

Row 2

Column 1

score[0][0]

score[1][0]

score[2][0]

score[0][1]

score[1][1]

score[2][1]

Column 2

score[0][2]

score[1][2]

score[2][2]

Column 3

score[0][3]

score[1][3]

score[2][3]

Rows Columns

double score[3][4];

Two-Dimensional Arrays 547

Program 8-19

1 // This program uses a two-dimensional array. The
2 // data stored in the array is read in from a file.
3 #include <iostream>
4 #include <fstream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 const int NUM_DIVS = 3: // Number of divisions
11 const int NUM_QTRS = 4: // Number of quarters
12 double sales[NUM_DIVS][NUM_QTRS]; // 2D array with 3 rows & 4 columns
13 double totalSales = 0; // Accumulates total sales
14 int div, qtr; // Loop counters
15 ifstream datafile; // Used to read data from a file
16
17 datafile.open("sales2.dat");
18 if (!datafile)
19 cout << "Error opening data file.\n";
20 else
21 {
22 cout << fixed << showpoint << setprecision(2);
23 cout << "Quarterly Sales by Division\n\n";
24
25 // Nested loops are used to fill the array with quarterly
26 // sales figures for each division and to display the data
27 for (div = 0; div < NUM_DIVS; div++)
28 { for (qtr = 0; qtr < NUM_QTRS; qtr++)
29 {
30 cout << "Division " << (div + 1)
31 << ", Quarter " << (qtr + 1) << ": $";
32 datafile >> sales[div][qtr];
33 cout << sales[div][qtr] << endl;
34 }
35 cout << endl; // Print blank line
36 }
37 datafile.close();
38
39 // Nested loops are used to add all the elements
40 for (div = 0; div < NUM_DIVS; div++)
41 { for (qtr = 0; qtr < NUM_QTRS; qtr++)
42 totalSales += sales[div][qtr];
43 }
44 // Display the total
45 cout << "The total sales for the company are: $";
46 cout << totalSales << endl;
47 }
48 return 0;
49 }

(program continues)

548 Chapter 8 Arrays

As with one-dimensional arrays, two-dimensional arrays can be initialized when they are
created. When initializing a two-dimensional array, it helps to enclose each row’s
initialization list in a set of braces. Here is an example:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};

The same statement could also be written as

int hours[3][2] = {{8, 5},
 {7, 9},
 {6, 3}};

In either case, the values are assigned to hours in the following manner:

hours[0][0] is set to 8
hours[0][1] is set to 5
hours[1][0] is set to 7
hours[1][1] is set to 9
hours[2][0] is set to 6
hours[2][1] is set to 3

Figure 8-15 illustrates the initialization.

Program Output
Quarterly Sales by Division

Division 1, Quarter 1: $31569.45
Division 1, Quarter 2: $29654.23
Division 1, Quarter 3: $32982.54
Division 1, Quarter 4: $39651.21

Division 2, Quarter 1: $56321.02
Division 2, Quarter 2: $54128.63
Division 2, Quarter 3: $41235.85
Division 2, Quarter 4: $54652.33

Division 3, Quarter 1: $29654.35
Division 3, Quarter 2: $28963.32
Division 3, Quarter 3: $25353.55
Division 3, Quarter 4: $32615.88

The total sales for the company are: $456782.34

Figure 8-15

Program 8-19 (continued)

Column 0

Row 0

Row 1

Row 2

Column 1

8

7

6

5

9

3

Two-Dimensional Arrays 549

The extra braces that enclose each row’s initialization list are optional. The following
statements both perform the same initialization:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};
int hours[3][2] = {8, 5, 7, 9, 6, 3};

Because the extra braces visually separate each row, however, it’s a good idea to use them.
In addition, the braces give you the ability to leave out initializers within a row without
omitting the initializers for the rows that follow it. For instance, look at the following
array definition:

int table[3][2] = {{1}, {3, 4}, {5}};

table[0][0] is initialized to 1, table[1][0] is initialized to 3, table[1][1] is initialized
to 4, and table[2][0] is initialized to 5. The uninitialized elements (in this case
table[0][1] and table[2][1]) are automatically set to zero.

Passing Two-Dimensional Arrays to Functions
Program 8-20 illustrates how to pass a two-dimensional array to a function. When a
two-dimensional array is passed to a function, the parameter type must contain a size
declarator for the number of columns. C++ needs this information to correctly
translate a subscripted array reference, such as table[2][1], to the address in memory
where that element is stored. Here is the header for the function showArray, from
Program 8-20:

void showArray(const int array[][NUM_COLS], int numRows)

The showArray function can accept any two-dimensional integer array, as long as it has
four columns. In Program 8-20, the contents of two separate arrays are displayed by this
function.

Program 8-20

1 // This program demonstrates how to pass
2 // a two-dimensional array to a function.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 const int NUM_COLS = 4; // Number of columns in each array
8 const int TBL1_ROWS = 3; // Number of rows in table1
9 const int TBL2_ROWS = 4; // Number of rows in table2
10
11 void showArray(const int [][NUM_COLS], int); // Function prototype
12
13 int main()
14 {
15 int table1[TBL1_ROWS][NUM_COLS] = { {1, 2, 3, 4},
16 {5, 6, 7, 8},
17 {9, 10, 11, 12} };
18

(program continues)

550 Chapter 8 Arrays

C++ requires the columns to be specified in the function prototype and header because of
the way two-dimensional arrays are stored in memory. One row actually follows another,
as shown in Figure 8-16.

19 int table2[TBL2_ROWS][NUM_COLS] = { { 10, 20, 30, 40},
20 { 50, 60, 70, 80},
21 { 90, 100, 110, 120},
22 {130, 140, 150, 160} };
23
24 cout << "The contents of table1 are:\n";
25 showArray(table1, TBL1_ROWS);
26 cout << "\nThe contents of table2 are:\n";
27 showArray(table2, TBL2_ROWS);
28 return 0;
29 }
30
31 /**
32 * showArray *
33 * This function displays the contents of a 2-D integer array. *
34 * Its first parameter receives the address of the array, which *
35 * has NUM_COLS columns. The second parameter receives the *
36 * number of rows in the array. *
37 ***/
38 void showArray(int const array[][NUM_COLS], int numRows)
39 {
40 for (int row = 0; row < numRows; row++)
41 { for (int col = 0; col < NUM_COLS; col++)
42 {
43 cout << setw(5) << array[row][col] << " ";
44 }
45 cout << endl;
46 }
47 }

Program Output
The contents of table1 are:
 1 2 3 4
 5 6 7 8
 9 10 11 12

The contents of table2 are:
 10 20 30 40
 50 60 70 80
 90 100 110 120
 130 140 150 160

Figure 8-16

Program 8-20 (continued)

row 1 row 2 row 3

Two-Dimensional Arrays 551

When the compiler generates code for accessing the elements of a two-dimensional array, it
needs to know how many bytes separate the rows in memory. The number of columns is a
critical factor in this calculation.

This required column information can also be provided with a typedef statement. Here is
how a typedef declaration for a two-dimensional array might look:

typedef int intTable[][4];

This statement makes intTable an alias for a two-dimensional array with any number of
rows and four columns. If this typedef statement had been included in Program 8-20, the
prototype for the showArray function could then have been written as

void showArray(intTable, int);

and its function header could have been written as

void showArray(intTable array, int numRows)

Summing All the Elements of a Two-Dimensional Array
In Program 8-19 we summed all the data in a two-dimensional array by using a nested loop
and adding the contents of each array element to an accumulator. You will recall that the
code to sum the array elements looked like this:

for (div = 0; div < NUM_DIVS; div++)
{ for (qtr = 0; qtr < NUM_QTRS; qtr++)
 totalSales += sales[div][qtr];
}

NUM_DIVS was the number of rows in the array and NUM_QTRS was the number of columns.
The outer loop iterates once for each row in the array and the inner loop iterates once for
each column in the row.

Summing the Rows of a Two-Dimensional Array
Sometimes, however, you need to calculate separately the sum of each row in a two-
dimensional array. For example, suppose a two-dimensional array is used to hold a set of
test scores for a group of students. Each row in the array is a set of scores for one
student. To sum the scores for each student, you again use a pair of nested loops. The
inner loop is used to add all the scores in a row, that is, all the scores for one student.
The outer loop is executed once for each student. But now the accumulator must be set
back to 0 for each row, before you begin accumulating its values. Also the sum of the
row needs to be stored somewhere or displayed before beginning a new row. Here is an
example.

const int NUM_STUDENTS = 3; // Number of students
const int NUM_SCORES = 5; // Number of test scores
double total; // Accumulator
double average; // Holds a given student's average
double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},
 {82, 73, 77, 82, 89}};

552 Chapter 8 Arrays

// Sum each student’s test scores so his or her
// average can be calculated and displayed
for (int row = 0; row < NUM_STUDENTS; row ++)
{

// Reset accumulator to 0 for this student
total = 0;

// Sum a row
for (int col = 0; col < NUM_SCORES; col++)

total += scores[row][col];

// Compute and display the average for this student
average = total / NUM_SCORES;
cout << "Score average for student "

<< (row + 1) << " is " << average << endl;
}

Summing the Columns of a Two-Dimensional Array
Sometimes you may need to calculate the sum of each column in a two-dimensional
array. Using the array of test scores from the previous example, suppose you wish to
calculate the class average for each of the tests, rather that for each student. To do this,
you must calculate the average of each column in the array. As in the previous
example, this is accomplished with a set of nested loops. However, now the order of
the two loops is reversed. The inner loop is used to add all the scores in a column, that
is, all the scores for one test. The outer loop is executed once for each test. The
following code illustrates this.

const int NUM_STUDENTS = 3; // Number of students
const int NUM_SCORES = 5; // Number of test scores
double total; // Accumulator
double average; // Holds average score on a given test
double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},
 {82, 73, 77, 82, 89}};

// Calculate and display the class
// average for each test
for (int col = 0; col < NUM_SCORES; col++)
{

// Reset accumulator to 0 for this test
total = 0;

// Sum a column
for (int row = 0; row < NUM_STUDENTS; row++)

 total += scores[row][col];
// Compute and display the class average for this test
average = total / NUM_STUDENTS;
cout << "Class average for test " << (col + 1)
 << " is " << average << endl;

}

Arrays with Three or More Dimensions 553

8.10 Arrays with Three or More Dimensions

CONCEPT: C++ permits arrays to have multiple dimensions.

C++ allows you to create arrays with virtually any number of dimensions. Here is an
example of a three-dimensional (3D) array definition:

double seat[3][5][8];

This array can be thought of as three sets of five rows, with each row having eight
elements. The array might be used, for example, to store the price of seats in an auditorium
that has three sections of seats, with five rows of eight seats in each section.

Figure 8-17 illustrates the concept of a three-dimensional array as “pages” of two-
dimensional arrays.

Arrays with more than three dimensions are difficult to visualize but can be useful in some
programming problems.

When writing functions that accept multidimensional arrays as arguments, you must
explicitely state all but the first dimension in the parameter list. If the seat array, defined
here, were passed to a displaySeats function, its prototype and function header might
look like the following:

// Function prototype
void displaySeats(double [][5][8], int);

// Function header
void displaySeats(double array[][5][8], int numGroups);

As with one-dimensional and two-dimensional arrays, the parameter lists can be simplified
if a typedef statement is used to create an alias for the array type. This is demonstrated in
Program 8-21, which uses the seat array to store theater seat prices. The information to
populate the array is read in from a file. The information on number of sections, number of
rows in a section, and number of seats in a row is stored in global constants, rather than
being passed to the functions.

Figure 8-17

0

1

2

3

4

0 1 2 3 4 5 6 7 0

1

2

554 Chapter 8 Arrays

Program 8-21

1 // This program stores and displays theater seat prices.
2 // It demonstrates how to pass a 3-dimensional array to a function.
3 // The data is read in from a file.
4 #include <iostream>
5 #include <fstream>
6 #include <iomanip>
7 using namespace std;
8
9 const int NUM_SECTIONS = 3,
10 ROWS_IN_SECTION = 5,
11 SEATS_IN_ROW = 8;
12
13 typedef double seatTable[][ROWS_IN_SECTION][SEATS_IN_ROW];
14
15 // Function prototypes
16 void fillArray(seatTable);
17 void showArray(const seatTable);
18
19 int main()
20 {
21 // Define 3-D array to hold seat prices
22 double seats[NUM_SECTIONS][ROWS_IN_SECTION][SEATS_IN_ROW];
23
24 fillArray(seats);
25 showArray(seats);
26 return 0;
27 }
28
29 /***
30 * fillArray *
31 * This function receives the address of a 3-D array *
32 * and fills it with data read in from a file. *
33 ***/
34 void fillArray(seatTable array)
35 {
36 ifstream dataIn;
37 dataIn.open("seats.dat");
38
39 if (!dataIn)
40 cout << "Error opening file.\n";
41 else
42 { for (int section = 0; section < NUM_SECTIONS; section++)
43 for (int row = 0; row < ROWS_IN_SECTION; row++)
44 for (int seat = 0; seat < SEATS_IN_ROW; seat++)
45 dataIn >> array[section][row][seat];
46
47 dataIn.close();
48 }
49 }
50

(program continues)

Arrays with Three or More Dimensions 555

Checkpoint

8.19 Define a two-dimensional array of ints named grades. It should have 30 rows and
10 columns.

8.20 How many elements are in the following array?

double sales[6][4];

51 /***
52 * showArray *
53 * This function displays the contents of the 3-D *
54 * array of doubles whose address is passed to it. *
55 ***/
56 void showArray(const seatTable array)
57 {
58 cout << fixed << showpoint << setprecision(2);
59
60 for (int section = 0; section < NUM_SECTIONS; section++)
61 {
62 cout << "\n\nSection" << (section+1);
63 for (int row = 0; row < ROWS_IN_SECTION; row++)
64 {
65 cout << "\nRow " << (row+1) << ": ";
66 for (int seat = 0; seat < SEATS_IN_ROW; seat++)
67 cout << setw(7) << array[section][row][seat];
68 }
69 }
70 cout << endl;
71 }

Program Output
Section1
Row 1: 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00
Row 2: 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Row 3: 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Row 4: 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Row 5: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00

Section2
Row 1: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Row 2: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Row 3: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Row 4: 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Row 5: 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Section3
Row 1: 8.00 8.00 10.00 10.00 10.00 10.00 8.00 8.00
Row 2: 8.00 8.00 10.00 10.00 10.00 10.00 8.00 8.00
Row 3: 5.00 5.00 8.00 8.00 8.00 8.00 5.00 5.00
Row 4: 5.00 5.00 8.00 8.00 8.00 8.00 5.00 5.00
Row 5: 5.00 5.00 8.00 8.00 8.00 8.00 5.00 5.00

Program 8-21 (continued)

556 Chapter 8 Arrays

8.21 Write a statement that assigns the value 56893.12 to the first column of the first
row of the sales array defined in question 8.20.

8.22 Write a statement that displays the contents of the last column of the last row of the
sales array defined in question 8.20.

8.23 Define a two-dimensional array named settings large enough to hold the table of
information below. Initialize the array with the values in the table.

8.24 Fill in the empty table below so it shows the contents of the following array:

int table[3][4] = {{2, 3}, {7, 9, 2}, {1}};

8.25 Write a function called displayArray7. The function should accept a two-
dimensional array as an argument and display its contents on the screen. The
function should work with any of the following arrays:

int hours[5][7];
int stamps[8][7];
int autos[12][7];

8.26 A DVD rental store keeps DVDs on 50 racks with 10 shelves each. Each shelf
holds 25 DVDs. Define a 3D array to represent this storage system.

8.11 Vectors

CONCEPT: The Standard Template Library includes a data type called a vector. It is
similar to a one-dimensional array, but has some advantages compared to a
standard array.

The Standard Template Library (STL) is a collection of programmer-defined data types and
algorithms that are available for you to use in your C++ programs. These data types and
algorithms are not part of the C++ language, but were created in addition to the built-in data
types. If you plan to continue your studies in the field of computer science, you should
become familiar with the STL. This section introduces one of the STL data types, the vector.

NOTE: To use vectors your program header must indicate that you are using
namespace std, since vectors are contained within that namespace. Many older
compilers do not allow namespaces or support the STL.

 12 24 32 21 42

 14 67 87 65 90

 19 1 24 12 8

Vectors 557

The data types that are defined in the STL are commonly called containers. They are
called containers because they store and organize data. There are two types of
containers in the STL: sequence containers and associative containers. A sequence
container organizes data in a sequential fashion, similar to an array. Associative
containers organize data with keys, which allow rapid, random access to elements
stored in the container.

The vector data type is a sequence container that is like a one-dimensional array in the
following ways:

• A vector holds a sequence of values, or elements.
• A vector stores its elements in contiguous memory locations.
• You can use the array subscript operator [] to access individual elements in the vector.

However, a vector offers several advantages over arrays. Here are just a few:

• You do not have to declare the number of elements that the vector will have.
• If you add a value to a vector that is already full, the vector will automatically

increase its size to accommodate the new value.
• Vectors can report the number of elements they contain.

Defining a Vector
To use vectors in your program, you must include the vector header file with the following
statement:

#include <vector>

To create a vector object you must use a statement whose syntax is somewhat different
from the syntax used in defining a regular variable or array. Here is an example:

vector<int> numbers;

This statement defines numbers as a vector of ints. Notice that the data type is enclosed in
angled brackets, immediately after the word vector. Because a vector expands in size as
you add values to it, there is no need to declare a size. However, you can declare a starting
size, if you prefer. Here is an example:

vector<int> numbers(10);

This statement defines numbers as a vector of 10 ints, but this is only a starting size. Its
size will expand if you add more than 10 values to it.

When you specify a starting size for a vector, you may also specify an initialization value.
The initialization value is copied to each element. Here is an example:

vector<int> numbers(10, 2);

In this statement, numbers is defined as a vector of 10 ints. Each element in numbers is
initialized to the value 2.

NOTE: Notice that if you specify a starting size for a vector, the size declarator is
enclosed in parentheses, not square brackets.

558 Chapter 8 Arrays

You may also initialize a vector with the values in another vector. For example, if set1 is
a vector of ints that already has values in it, the following statement will create a new
vector, named set2, which is an exact copy of set1.

vector<int> set2(set1);

After this statement executes, the vector set2 will have the same number of elements and
hold the same set of values as set1.

Table 8-2 summarizes the vector definition procedures we have discussed.

Storing and Retrieving Values in a Vector
To store a value in an element that already exists in a vector, you may use the array subscript
operator []. Program 8-22, which is a modification of Program 8-13, illustrates this.

Table 8-2 Example Vector Definitions

Definition Format Description

vector<double> values2(values1); Defines values2 as a vector of doubles. All the
elements of values1, which is also a vector of doubles,
are copied to value2.

vector<int> scores(15); Defines scores as a vector of 15 ints.

vector<char> letters(25, 'A'); Defines letters as a vector of 25 characters. Each
element is initialized with 'A'.

vector<string> names; Defines names as an empty vector of string objects.

Program 8-22

1 // This program stores employee hours worked and hourly pay rates
2 // in vectors.
3 #include <iostream>
4 #include <iomanip>
5 #include <vector> // Needed to use vectors
6 using namespace std;
7
8 int main()
9 {
10 const int NUM_EMPS = 5; // Number of employees
11 vector <int> hours(NUM_EMPS); // Define a vector of integers
12 vector <double> payRate(NUM_EMPS); // Define a vector of doubles
13 double grossPay;
14 int index; // Loop counter
15
16 // Get employee work data
17 cout << "Enter the hours worked and hourly pay rates of "
18 << NUM_EMPS << " employees. \n";
19

(program continues)

Vectors 559

Notice that Program 8-22 uses the following statements in lines 11 and 12 to define two
vectors:

vector<int> hours(NUM_EMPS); // Define a vector of integers
vector<double> payRate(NUM_EMPS); // Define a vector of doubles

Because the named constant NUM_EMPS equals 5, both vectors are defined with the starting
size 5. The program uses the following loop in lines 20 through 26 to store a value in each
element of both vectors:

20 for (index = 0; index < NUM_EMPS; index++)
21 {
22 cout << "Hours worked by employee #" << (index + 1) << ": ";
23 cin >> hours[index];
24 cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
25 cin >> payRate[index];
26 }
27 // Display each employee’s gross pay
28 cout << "\nHere is the gross pay for each employee:\n";
29 cout << fixed << showpoint << setprecision(2);
30 for (index = 0; index < NUM_EMPS; index++)
31 {
32 grossPay = hours[index] * payRate[index];
33 cout << "Employee #" << (index + 1);
34 cout << ": $" << setw(7) << grossPay << endl;
35 }
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Enter the hours worked and hourly pay rates of 5 employees.
Hours worked by employee #1: 10[Enter]
Hourly pay rate for employee #1: 9.75[Enter]
Hours worked by employee #2: 15[Enter]
Hourly pay rate for employee #2: 8.62[Enter]
Hours worked by employee #3: 20[Enter]
Hourly pay rate for employee #3: 10.50[Enter]
Hours worked by employee #4: 40[Enter]
Hourly pay rate for employee #4: 18.75[Enter]
Hours worked by employee #5: 40[Enter]
Hourly pay rate for employee #5: 15.65[Enter]

Here is the gross pay for each employee:
Employee #1: $ 97.50
Employee #2: $ 129.30
Employee #3: $ 210.00
Employee #4: $ 750.00
Employee #5: $ 626.00

Program 8-22 (continued)

560 Chapter 8 Arrays

for (index = 0; index < NUM_EMPS; index++)
{

cout << "Hours worked by employee #" << (index + 1) << ": ";
cin >> hours[index];
cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
cin >> payRate[index];

}

Because the values entered by the user are being stored in vector elements that already
exist, the program uses the array subscript operator [], as shown in the following
statements which appear in lines 23 and 25:

cin >> hours[index];
cin >> payRate[index];

Using the push_back Member Function
You cannot, however, use the [] operator to access a vector element that does not yet exist.
To store a value in a vector that does not have a starting size, or that is already full, you
should use the push_back member function. This function accepts a value as an argument,
and stores it in a new element placed at the end of the vector. (It “pushes” the value at the
“back” of the vector.) Here is an example that uses the push_back function to add an
element to a vector of ints named numbers.

numbers.push_back(25);

This statement creates a new element holding 25 and places it at the end of numbers. If
numbers previously had no elements, the new element becomes its single element.

Program 8-23 is a modification of Program 8-22. This version, however, allows the user to
specify the number of employees. The two vectors, hours and payRate, are defined
without starting sizes. Because these vectors have no starting elements, the push_back
member function is used to store values in them.

Program 8-23

1 // This program stores employee hours worked and hourly pay rates
2 // in two vectors. It demonstrates the use of the push_back member
3 // function to add new elements to the vectors.
4 #include <iostream>
5 #include <iomanip>
6 #include <vector> // Needed to use vectors
7 using namespace std;
8
9 int main()
10 {
11 vector<int> hours; // hours is an empty integer vector
12 vector<double> payRate; // payRate is an empty double vector
13 double grossPay;
14 int numEmployees; // Number of employees
15 int index; // Loop counter
16
17 // Get the number of employees
18 cout << "How many employees do you have? ";
19 cin >> numEmployees;
20

(program continues)

Vectors 561

Notice that the Program 8-23 loop in lines 40 through 45, which calculates and displays
each employee’s gross pay, uses the [] operator to access the elements of the hours and
payRate vectors. This is possible because the first loop in lines 25 through 36 already used
the push_back member function to create the elements in the two vectors.

21 // Input the payroll data
22 cout << "Enter the hours worked and hourly pay rates of the "
23 << numEmployees << " employees. \n";
24
25 for (index = 0; index < numEmployees; index++)
26 {
27 int tempHours; // Number of hours entered
28 double tempRate; // Pay rate entered
29
30 cout << "Hours worked by employee #" << (index + 1) << ": ";
31 cin >> tempHours;
32 hours.push_back(tempHours); // Add an element to hours
33 cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
34 cin >> tempRate;
35 payRate.push_back(tempRate); // Add an element to payRate
36 }
37 // Display each employee's gross pay
38 cout << "\nHere is the gross pay for each employee:\n";
39 cout << fixed << showpoint << setprecision(2);
40 for (index = 0; index < numEmployees; index++)
41 {
42 grossPay = hours[index] * payRate[index];
43 cout << "Employee #" << (index + 1);
44 cout << ": $" << setw(7) << grossPay << endl;
45 }
46 return 0;
47 }

Program Output with Example Input Shown in Bold
How many employees do you have? 3[Enter]
Enter the hours worked by 3 employees and their hourly rates.
Hours worked by employee #1: 40[Enter]
Hourly pay rate for employee #1: 12.63[Enter]
Hours worked by employee #2: 25[Enter]
Hourly pay rate for employee #2: 10.35[Enter]
Hours worked by employee #3: 45[Enter]
Hourly pay rate for employee #3: 22.65[Enter]

Here is the gross pay for each employee:
Employee #1: $ 505.20
Employee #2: $ 258.75
Employee #3: $1019.25

Program 8-23 (continued)

562 Chapter 8 Arrays

Determining the Size of a Vector
Unlike arrays, vectors can report the number of elements they contain. This is accomplished
with the size member function. Here is an example of a statement that uses the size
member function:

numValues = set.size();

In this statement, assume that numValues is an int and set is a vector. After the statement
executes, numValues will contain the number of elements in set.

The size member function is especially useful when you are writing functions that accept
vectors as arguments. For example, look at the following code for the showValues
function:

void showValues(vector<int> vect)
{

for (int count = 0; count < vect.size(); count++)
cout << vect[count] << endl;

}

Because the vector can report its size, this function does not need a second argument
indicating the number of elements in the vector. Program 8-24 demonstrates this
function.

Program 8-24

1 // This program demonstrates the vector size member function.
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5
6 // Function prototype
7 void showValues(vector<int>);
8
9 int main()
10 {
11 vector<int> values;
12
13 // Store a series of numbers in the vector
14 for (int count = 0; count < 7; count++)
15 values.push_back(count * 2);
16
17 // Display the numbers
18 showValues(values);
19
20 return 0;
21 }
22

(program continues)

Vectors 563

Removing Elements from a Vector
To remove the last element from a vector you can use the pop_back member function. The
following statement removes the last element from a vector named collection.

collection.pop_back();

Program 8-25 demonstrates the pop_back function.

23 /***
24 * showValues *
25 * This function accepts an int vector as its sole argument, and *
26 * displays the value stored in each of the vector's elements. *
27 ***/
28 void showValues(vector<int> vect)
29 {
30 for (int count = 0; count < vect.size(); count++)
31 cout << vect[count] << " ";
32 cout << endl;
33 }

Program Output
0 2 4 6 8 10 12

Program 8-25

1 // This program demonstrates the vector size,
2 // push_back, and pop_back member functions.
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6
7 int main()
8 {
9 vector<int> values;
10
11 // Store values in the vector
12 values.push_back(1);
13 values.push_back(2);
14 values.push_back(3);
15 cout << "The size of values is " << values.size() << endl;
16
17 // Remove a value from the vector
18 cout << "Popping a value from the vector...\n";
19 values.pop_back();
20 cout << "The size of values is now " << values.size() << endl;
21

(program continues)

Program 8-24 (continued)

564 Chapter 8 Arrays

Clearing a Vector
To completely clear the contents of a vector, use the clear member function, as shown in the
following example:

numbers.clear();

After this statement executes, numbers will be cleared of all its elements. Program 8-26
demonstrates the function.

22 // Now remove another value from the vector
23 cout << "Popping a value from the vector...\n";
24 values.pop_back();
25 cout << "The size of values is now " << values.size() << endl;
26
27 // Remove the last value from the vector
28 cout << "Popping a value from the vector...\n";
29 values.pop_back();
30 cout << "The size of values is now " << values.size() << endl;
31 return 0;
32 }

Program Output
The size of values is 3
Popping a value from the vector...
The size of values is now 2
Popping a value from the vector...
The size of values is now 1
Popping a value from the vector...
The size of values is now 0

NOTE: The pop_back function is a void function that does not return the value
being removed from the vector. The following line of code will not work:

cout << "The value being removed from the vector is "
 << values.pop_back() << endl; // Error!

Program 8-26

1 // This program demonstrates the vector clear member function.
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5

(program continues)

Program 8-25 (continued)

Vectors 565

Detecting an Empty Vector
To determine if a vector is empty, use the empty member function. The function returns true
if the vector is empty, and false if the vector has elements stored in it. Assuming set is a
vector, here is an example of its use:

if (set.empty())
cout << "No values in set.\n";

Program 8-27 uses a function named avgVector, which demonstrates the empty member
function.

6 int main()
7 {
8 vector<int> values(100);
9
10 cout << "The values vector has "
11 << values.size() << " elements.\n";
12 cout << "I will call the clear member function...\n";
13 values.clear();
14 cout << "Now the values vector has "
15 << values.size() << " elements.\n";
16 return 0;
17 }

Program Output
The values vector has 100 elements.
I will call the clear member function...
Now the values vector has 0 elements.

Program 8-27

1 // This program demonstrates the vector empty member function.
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5
6 // Function prototype
7 double avgVector(vector<int>);
8
9 int main()
10 {
11 vector<int> values; // Define a vector to hold int values
12 int numValues; // Number of values to be averaged
13 double average; // Average of the stored values
14
15 // Get the number of values to average
16 cout << "How many values do you wish to average? ";
17 cin >> numValues;
18

(program continues)

Program 8-26 (continued)

566 Chapter 8 Arrays

19 // Get the values and store them in a vector
20 for (int count = 0; count < numValues; count++)
21 { int tempValue;
22
23 cout << "Enter an integer value: ";
24 cin >> tempValue;
25 values.push_back(tempValue);
26 }
27 // Get the average of the values and display it
28 average = avgVector(values);
29 cout << "Average: " << average << endl;
30 return 0;
31 }
32
33 /**
34 * avgVector *
35 * This function accepts an int vector as its argument. If *
36 * the vector contains values, the function returns the *
37 * average of those values. Otherwise, an error message is *
38 * displayed and the function returns 0.0. *
39 **/
40 double avgVector(vector<int> vect)
41 {
42 int total = 0; // Accumulator
43 double avg = 0.0;
44
45 if (vect.empty()) // Determine if the vector is empty
46 cout << "No values to average.\n";
47 else
48 { for (int count = 0; count < vect.size(); count++)
49 total += vect[count];
50 avg = static_cast<double>(total)/vect.size();
51 }
52 return avg;
53 }

Program Output with Example Input Shown in Bold
How many values do you wish to average? 4[Enter]
Enter an integer value: 12[Enter]
Enter an integer value: 3[Enter]
Enter an integer value: 7[Enter]
Enter an integer value: 9[Enter]
Average: 7.75

Program Output with Different Example Input Shown in Bold
How many values do you wish to average? 0[Enter]
No values to average.
Average: 0

Program 8-27 (continued)

Vectors 567

Summary of Vector Member Functions
Table 8-3 provides a summary of the vector member functions we have discussed, as well as
some additional ones.

Table 8-3 Vector Member Functions

Member Function Description

at(position) Returns the value of the element located at position in the vector.
Example:

x = vect.at(5); // Assigns the value of vect[5] to x.

capacity() Returns the maximum number of elements that may be stored in the
vector without additional memory being allocated. (This is not the same
value as returned by the size member function).
Example:

x = vect.capacity(); // Assigns the capacity of vect to x.

clear() Clears a vector of all its elements.
Example:

vect.clear(); // Removes all the elements from vect.

empty() Returns true if the vector is empty. Otherwise, it returns false.
Example:

if (vect.empty(); // If the vector is empty
cout << "The vector is empty."; // the message is displayed.

pop_back() Removes the last element from the vector.
Example:

vect.pop_back(); // Removes the last element of vect, thus
 // reducing its size by 1.

push_back(value) Stores a value in the last element of the vector. If the vector is full or
empty, a new element is created.
Example:

vect.push_back(7); // Stores 7 in the last element of vect.

reverse() Reverses the order of the elements in the vector (the last element becomes
the first element, and the first element becomes the last element).
Example:

vect.reverse(); // Reverses the order of the element in vect.

resize(n)

resize(n, value)

Resizes a vector to have n elements, where n is greater than the vector’s
current size. If the optional value argument is included, each of the new
elements will be initialized with that value.
Example where vect currently has 4 elements:

vect.resize(6,99); // Adds two elements to the end of the vector,
 // each initialized to 99.

size() Returns the number of elements in the vector.
Example:

numElements = vect.size();

swap(vector2) Swaps the contents of the vector with the contents of vector2.
Example:

vect1.swap(vect2); // Swaps the contents of vect1 and vect2.

568 Chapter 8 Arrays

Checkpoint

8.27 What header file must you #include in order to define vector objects?

8.28 Write definition statements for the following three vector objects: frogs (an empty
vector of ints), lizards (a vector of 20 doubles), and toads (a vector of 100
chars, with each element initialized to 'Z').

8.29 Define gators to be an empty vector of ints and snakes to be a 10-element vector
of doubles. Then write a statement that stores the value 27 in gators and a
statement that stores the value 12.897 in element 4 of snakes.

8.12 Arrays of Objects*

CONCEPT: Elements of arrays can be class objects.

Earlier in this chapter you learned that all the elements in an array must be of the same
data type. So far we have only used arrays of simple data types, like int arrays and
string arrays. However, arrays can also hold more complex data types, such as
programmer-defined structures or objects. All that is required is that each element hold a
structure of the same type or an object of the same class.

Let’s look at arrays of objects. You define an array of objects the same way you define any
array. If, for example, a class named Circle has been defined, here is how you would
create an array that can hold four Circle objects:

 Circle circle[4];

The four objects are circle[0], circle[1], circle[2], and circle[3].

Notice that the name of the class is Circle, with a capital C. The name of the array is
circle, with a lowercase c. You will recall from Chapter 7, that the convention is to begin
the name of a class with a capital letter and the name of a variable or object with a lowercase
letter. Calling a class function for one of these objects is just like calling a class function for
any other object, except that a subscript must be included to identify which of the objects in
the array is being referenced. For example, the following statement would call the findArea
function of circle[2].

circle[2].findArea();

Program 8-28 illustrates these ideas by creating and using an array of Circle class objects.
Here is the definition of the Circle class it uses. It is a variation of the Circle class
introduced in Chapter 7.

* This section should be skipped if Chapter 7 has not yet been covered.

Arrays of Objects 569

Program 8-28 creates an array of four Circle objects in line 12, then uses a loop in lines
15 through 20 to call the setRadius method for each object. A second loop is used in lines
26 through 29 to call the findArea method for each object and display the result.

Circle.h

1 // This header file contains the Circle class declaration.
2 #ifndef CIRCLE_H
3 #define CIRCLE_H
4 #include <cmath>
5
6 class Circle
7 { private:
8 double radius; // Circle radius
9 int centerX, centerY; // Center coordinates
10
11 public:
12 Circle() // Default constructor
13 { radius = 1.0; // accepts no arguments
14 centerX = centerY = 0;
15 }
16
17 Circle(double r) // Constructor 2
18 { radius = r; // accepts 1 argument
19 centerX = centerY = 0;
20 }
21
22 Circle(double r, int x, int y) // Constructor 3
23 { radius = r; // accepts 3 arguments
24 centerX = x;
25 centerY = y;
26 }
27
28 void setRadius(double r)
29 { radius = r;
30 }
31
32 int getXcoord()
33 { return centerX;
34 }
35
36 int getYcoord()
37 { return centerY;
38 }
39
40 double findArea()
41 { return 3.14 * pow(radius, 2);
42 }
43 }; // End Circle class declaration
44 #endif

570 Chapter 8 Arrays

Program 8-28

1 // This program uses an array of objects.
2 // The objects are instances of the Circle class.
3 #include <iostream>
4 #include <iomanip>
5 #include "Circle.h" // Circle class declaration file
6 using namespace std;
7
8 const int NUM_CIRCLES = 4;
9
10 int main()
11 {
12 Circle circle[NUM_CIRCLES]; // Define an array of Circle objects
13
14 // Use a loop to initialize the radius of each object
15 for (int index = 0; index < NUM_CIRCLES; index++)
16 { double r;
17 cout << "Enter the radius for circle " << (index+1) << ": ";
18 cin >> r;
19 circle[index].setRadius(r);
20 }
21
22 // Use a loop to get and print out the area of each object
23 cout << fixed << showpoint << setprecision(2);
24 cout << "\nHere are the areas of the " << NUM_CIRCLES
25 << " circles.\n";
26 for (int index = 0; index < NUM_CIRCLES; index++)
27 { cout << "circle " << (index+1) << setw(8)
28 << circle[index].findArea() << endl;
29 }
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter the radius for circle 1: 0[Enter]
Enter the radius for circle 2: 2[Enter]
Enter the radius for circle 3: 2.5[Enter]
Enter the radius for circle 4: 10[Enter]

Here are the areas of the 4 circles.
circle 1 0.00
circle 2 12.56
circle 3 19.63
circle 4 314.00

NOTE: Whenever an array of objects is created with no constructor arguments, the
default constructor, if one exists, runs for every object in the array. This occurred in
Program 8-28.

Arrays of Objects 571

When the array of Circle objects was first created, the default constructor executed for each
object in the array and assigned its radius the value 1.0. We never saw this because the call
made to the setRadius member function of each object replaced its 1.0 with the new value
passed to setRadius. If we commented out lines 15 through 20 of Program 8-28, no calls
would be made to setRadius. So every object in the array would still have a radius of 1.0
when the loop on lines 26 through 29 gets and prints the area. The output would look like this:

Here are the areas of the 4 circles.
circle 1 3.14
circle 2 3.14
circle 3 3.14
circle 4 3.14

This version of Program 8-28 can be found in the Chapter 8 folder on the book’s companion
website with the name pr8-28B.cpp.

It is also possible to create an array of objects and have another constructor called for
each object. To do this you must use an initialization list. The following array definition
and initialization list creates four Circle objects and initializes them to the same four
values that were input in the original Program 8-28 sample run.

Circle circle[NUM_CIRCLES] = {0.0, 2.0, 2.5, 10.0};

This invokes the constructor that accepts one double argument and sets the radii shown here.

Object radius

circle[0] 0.0
circle[1] 2.0
circle[2] 2.5
circle[3] 10.0

If the initialization list had been shorter than the number of objects, any remaining objects
would have been initialized by the default constructor. For example, the following
statement invokes the constructor that accepts one double argument for the first three
objects and causes the default constructor to run for the fourth object. The fourth object is
assigned a default radius of 1.0.

Circle circle[NUM_CIRCLES] = {0.0, 2.0, 2.5};

This is illustrated in Program 8-29.

Program 8-29

1 // This program demonstrates how an overloaded constructor
2 // that accepts an argument can be invoked for multiple objects
3 // when an array of objects is created.
4 #include <iostream>
5 #include <iomanip>
6 #include "Circle.h" // Circle class declaration file
7 using namespace std;
8
9 const int NUM_CIRCLES = 4;
10

(program continues)

572 Chapter 8 Arrays

To use a constructor that requires more than one argument, the initializer must take the
form of a function call. For example, look at the following definition statement. It invokes
the 3-argument constructor for each of three Circle objects.

Circle circle[3] = { Circle(4.0, 2, 1),
Circle(2.0, 1, 3),
Circle(2.5, 5, -1) };

circle[0] will have its radius variable set to 4.0, its centerX variable set to 2, and its
centerY variable set to 1. circle[1] will have its radius variable set to 2.0, its centerX
variable set to 1, and its centerY variable set to 3. circle[2] will have its radius variable
set to 2.5, its centerX variable set to 5, and its centerY variable set to −1.

It isn’t necessary to call the same constructor for each object in an array. For example, look
at the following statement:

Circle circle[3] = { 4.0,
Circle(2.0, 1, 3),
2.5 };

This statement invokes the 1-argument constructor for circle[0] and circle[2] and the
3-argument constructor for circle[1].

11 int main()
12 {
13 // Define an array of 4 Circle objects. Use an initialization list
14 // to call the 1-argument constructor for the first 3 objects.
15 // The default constructor will be called for the final object.
16 Circle circle[NUM_CIRCLES] = {0.0, 2.0, 2.5};
17
18 // Display the area of each object
19 cout << fixed << showpoint << setprecision(2);
20 cout << "\nHere are the areas of the " << NUM_CIRCLES
21 << " circles.\n";
22
23 for (int index = 0; index < NUM_CIRCLES; index++)
24 { cout << "circle " << (index+1) << setw(8)
25 << circle[index].findArea() << endl;
26 }
27 return 0;
28 }

Program Output
Here are the areas of the 4 circles.
circle 1 0.00
circle 2 12.56
circle 3 19.63
circle 4 3.14

Program 8-29 (continued)

Arrays of Objects 573

In summary, there are seven key points to remember about arrays of objects.

1. The elements of arrays can be objects.
2. If you do not use an initialization list when an array of objects is created, the default

constructor will be invoked for each object in the array.
3. It is not necessary that all objects in the array use the same constructor.
4. If you do use an initialization list when an array of objects is created, the correct

constructor will be called for each object, depending on the number and type of
arguments used.

5. If a constructor requires more than one argument, the initializer must take the form
of a constructor function call.

6. If there are fewer initializer calls in the list than there are objects in the array, the
default constructor will be called for all the remaining objects.

7. It is best to always provide a default constructor; but if there is none you must be
sure to furnish an initializer for every object in the array.

These seven statements also apply to arrays of structures, which we will look at more
closely in the next few pages.

Checkpoint

8.30 True or false: The default constructor is the only constructor that may be called for
objects in an array of objects.

8.31 True or false: All elements in an array of objects must use the same constructor.

8.32 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Tank
{
private:

int gallons;
public:

Tank()
 { gallons = 50; }
Tank(int gal)
 { gallons = gal; }
int getGallons()
 { return gallons; }

};

int main ()
{

Tank storage[3] = { 10, 20 };

for (int index = 0; index < 3; index++)
cout << storage[index].getGallons() << endl;

return 0;
}

574 Chapter 8 Arrays

8.33 Complete the following program so it defines an array of 10 Yard objects. The
program should use a loop to ask the user for the length and width of each yard.
Then it should use a second loop to display the length and width of each yard. To
do this you will need to add two member functions to the Yard class.

#include <iostream>
using namespace std;

class Yard
{
private:

int length, width;
public:

Yard()
{ length = 0; width = 0; }

void setLength(int l)
 { length = l; }
void setWidth(int w)
 { width = w; }

};

int main ()
{

// Finish this program.
}

Arrays of Structures
As mentioned earlier in this section, array elements can also be structures. This is
useful when you want to store a collection of records that hold multiple data fields, but
you aren’t using objects. Program 8-13, which we saw earlier in this chapter, showed
how related information of different data types can be stored in parallel arrays. These
are two or more arrays with a relationship established between them through their
subscripts. Because structures can hold multiple items of varying data types, a single
array of structures can be used in place of several arrays of regular variables.

An array of structures is defined like any other array. Assume the following structure
declaration exists in a program:

struct BookInfo
{

string title;
string author;
string publisher;
double price;

};

The following statement defines an array, bookList, which has 20 elements. Each element
is a BookInfo structure.

BookInfo bookList[20];

Each element of the array may be accessed through a subscript. For example, bookList[0]
is the first structure in the array, bookList[1] is the second, and so forth. Because members

Arrays of Objects 575

of structures are public by default, you do not need to use a function, as you do with class
objects, to access them. You can access a member of any element by simply placing the dot
operator and member name after the subscript. For example, the following expression refers
to the title member of bookList[5]:

bookList[5].title

The following loop steps through the array, displaying the information stored in each
element:

for (int index = 0; index < 20; index++)
{

cout << bookList[index].title << endl;
cout << bookList[index].author << endl;
cout << bookList[index].publisher << endl;
cout << bookList[index].price << endl << endl;

}

Because the members title, author, and publisher are string objects the individual
characters making up the string can be accessed as well. The following statement displays
the first character of the title member of bookList[10]:

cout << bookList[10].title[0];

And the following statement stores the character ‘t’ in the fourth position of the publisher
member of bookList[2]:

bookList[2].publisher[3] = 't';

Program 8-30 is a modification of Program 8-13 which calculates and displays payroll
information for a set of employees. The original program used two parallel arrays to hold the
hours and pay rates of the employees. This modified version uses a single array of structures.

Program 8-30

1 // This program uses an array of structures to hold payroll data.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 struct PayInfo
7 {
8 int hours; // Hours worked
9 double payRate; // Hourly pay rate
10 };
11
12 int main ()
13 {
14 const int NUM_EMPS = 3; // Number of employees
15 int index;
16 PayInfo workers[NUM_EMPS]; // Define an array of structures
17 double grossPay;
18
19 // Get payroll data
20 cout << "Enter the hours worked and hourly pay rates of "
21 << NUM_EMPS << " employees.";

(program continues)

576 Chapter 8 Arrays

You can initialize an array of structures the same way you initialize an array of class
objects, with a constructor. Here is the structure declaration from Program 8-30 modified
to include a constructor. It accepts two arguments, but also has default values in case a
structure variable is created without passing any values to the constructor.

struct PayInfo
{

int hours; // Hours worked
double payRate; // Hourly pay rate

PayInfo(int h = 0, double p = 0.0) // Constructor
{ hours = h;

payRate = p;
}

};

22 for (index = 0; index < NUM_EMPS; index++)
23 {
24 cout << "\n Hours worked by employee #" << (index + 1);
25 cout << ": ";
26 cin >> workers[index].hours;
27 cout << "Hourly pay rate for employee #";
28 cout << (index + 1) << ": ";
29 cin >> workers[index].payRate;
30 }
31
32 // Display each employee’s gross pay
33 cout << "\nHere is the gross pay for each employee:\n";
34 cout << fixed << showpoint << setprecision(2);
35 for (index = 0; index < NUM_EMPS; index++)
36 {
37 grossPay = workers[index].hours * workers[index].payRate;
38 cout << "Employee #" << (index + 1);
39 cout << ": $" << setw(7) << grossPay << endl;
40 }
41 return 0;
42 }

Program Output with Example Input Shown in Bold
Enter the hours worked and hourly pay rates of 3 employees.
Hours worked by employee #1: 10[Enter]
Hourly pay rate for employee #1: 9.75[Enter]

Hours worked by employee #2: 20[Enter]
Hourly pay rate for employee #2: 10.00[Enter]

Hours worked by employee #3: 40[Enter]
Hourly pay rate for employee #3: 20.00[Enter]

Here is the gross pay for each employee:
Employee #1: $ 97.50
Employee #2: $ 200.00
Employee #3: $ 800.00

Program 8-30 (continued)

Arrays of Objects 577

Using this structure declaration, the array in Program 8-30 could now be initialized as follows:

PayInfo workers[NUM_EMPS] = { PayInfo(10, 9.75),
PayInfo(20, 10.00),
PayInfo(40, 20.00) };

Notice that the syntax for initializing members in an array of structures is the same as for
initializing members in an array of objects. It is different from the syntax presented in Chapter
7 for initializing a single structure.

Checkpoint

For questions 8.34–8.38, assume the Product structure is declared as follows:

struct Product
{

string description; // Product description
int partNum; // Part number
double cost; // Product cost

};

8.34 Add two constructors to the Product structure declaration. The first should be a
default constructor that sets the description member to the null string and the
partNum and cost members to zero. The second constructor should have three
parameters: a string, an int, and a double. It should copy the values of the
arguments into the description, partNum, and cost members.

8.35 Write a definition for an array named items that can hold 100 Product structures.

8.36 Write statements that store the following information in the first element of the
items array you defined in question 8.35.

Description: Claw Hammer
Part Number: 547
Part Cost: $8.29

8.37 Write a loop that displays the contents of the entire items array you created in
question 8.35.

8.38 Write the definition for an array of five Product structures, initializing the first
three elements with the following information:

Description Part Number Cost
————————————————————————————
Screwdriver 621 $ 1.72
Socket set 892 18.97
Claw hammer 547 8.29

8.39 Write a structure declaration called Measurement, with the following members:

miles, an int
hours, a double

8.40 Write a structure declaration called Destination, with the following members:

city, a string object
travelTime, a Measurement structure (declared in Checkpoint 8.39)

578 Chapter 8 Arrays

8.41 Define an array of 20 Destination structures (see Checkpoint 8.40). Write statements
that store the following information in the fifth array element:

City: Tupelo
Miles: 375
Hours: 7.5

8.13 National Commerce Bank Case Study
The National Commerce Bank has hired you as a contract programmer. Your first
assignment is to write a function that will be used by the bank’s automated teller machines
(ATMs) to validate a customer’s personal identification number (PIN).

Your function will be incorporated into a larger program that asks the customer to input
his or her PIN on the ATM’s numeric keypad. (PINs are four-digit numbers. The program
stores each digit in an element of an int array.) The program also retrieves a copy of the
customer’s actual PIN from a database. (The PINs are also stored in the database as four
element arrays.) If these two numbers match, then the customer’s identity is validated.
Your function should compare the two arrays and determine whether they contain the
same numbers.

Here are the specifications your function must meet.

Parameters The function should accept three arguments. The first is an array holding
the digits entered by the customer. The second is an array holding the digits
of the customer’s correct PIN, retrieved from the bank’s database. The final
argument indicates the number of digits in a PIN. This is set in the
program to 4. However, by passing this argument to the function it makes
the program easier to update in the future if the bank decides to change the
PIN size.

Return value The function should return a Boolean true value if the two arrays are
identical. Otherwise, it should return false.

Here is the pseudocode for the function:

For each element in the first array
 Compare the element with the corresponding one in the 2nd array
 If the two elements contain different values

 Return false
 End If

End For // If we made it this far the values are the same
Return true

You have only been asked to write a function that performs the comparison between the
customer’s input and the PIN that was retrieved from the database, however, code must
also be written to test it. Program 8-31 is a complete program that includes both the
function and a test driver.

National Commerce Bank Case Study 579

Program 8-31

1 // This program tests a function that compares the contents of two arrays.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 bool testPIN(const int set1[], const int set2[], int size);
7
8 int main()
9 {
10 const int NUM_DIGITS = 4;
11 int pin1[NUM_DIGITS] = {2, 4, 1, 8}; // Base set of values
12
13 int pin2[NUM_DIGITS] = {2, 4, 6, 8}; // One element is
14 // different from PIN1.
15 int pin3[NUM_DIGITS] = {1, 2, 3, 4}; // All elements are
16 // different from PIN1.
17 if (testPIN(pin1, pin2, NUM_DIGITS))
18 cout << "ERROR: pin1 and pin2 are reported to be the same.\n";
19 else
20 cout << "SUCCESS: pin1 and pin2 are correctly identified "
21 << "as different.\n";
22
23 if (testPIN(pin1, pin3, NUM_DIGITS))
24 cout << "ERROR: pin1 and pin3 are reported to be the same.\n";
25 else
26 cout << "SUCCESS: pin1 and pin3 are correctly identified "
27 << "as different.\n";
28
29 if (testPIN(pin1, pin1, NUM_DIGITS))
30 cout << "SUCCESS: pin1 and pin1 are correctly reported "
31 << "to be the same.\n";
32 else
33 cout << "ERROR: pin1 and pin1 are erroneously identified "
34 << "as different.\n";
35 return 0;
36 }
37
38 /***
39 * testPIN *
40 * This Boolean function accepts and compares the values stored in *
41 * two int arrays. If they both have exactly the same set of values, *
42 * true is returned. If there are any differences, false is returned.*
43 ***/
44 bool testPIN(const int custPIN[], const int databasePIN[], int size)
45 {
46 for (int index = 0; index < size; index++)
47 {
48 if (custPIN[index] != databasePIN[index])
49 return false; // We've found two different values
50 }
51 return true; // If we make it this far,
52 // all values are the same
53 }

(program continues)

580 Chapter 8 Arrays

Additional Case Studies
The following additional case studies, which contain applications of material introduced in
Chapter 8, can be found in the Chapter 8 folder of the book’s companion website.

Set Intersection Case Study
In algebra, the intersection of two sets is defined as a new set that contains those values
common to the two original sets. This case study, which utilizes three one-dimensional
arrays, finds and displays the intersection of two sets.

Creating an Abstract Array Data Type—Part 1
The lack of bounds checking in C++ can lead to problems. This object-oriented case study
develops a simple integer list class with array-like characteristics that provides bounds
checking.

8.14 Tying It All Together: Rock, Paper, Scissors

Now that you have learned to use arrays, you can create more advanced computer games, like
Rock, Paper, Scissors. You have probably played this game before. Here is how it works.
Simultaneously, two players form their hand to represent one of three objects. A fist represents
a rock. A flat palm represents a sheet of paper. Two extended fingers represent a pair of
scissors. If the two players choose the same object, the round is a tie. Otherwise, someone wins
the round. Rock beats scissors because it can break a pair of scissors. Scissors beats paper
because it can cut a sheet of paper. Paper beats rock because it can wrap itself around the rock.

In this section we will create a program that lets a user play a game of Rock, Paper, Scissors
with the computer. Notice how in line 9 of the Rock, Paper, Scissors program shown here,
the strings holding the names of the choices are stored in an array. In line 28 the program
randomly generates a 1, 2, or 3 for the computer’s choice. Then, in lines 31 and 32, the
human player’s choice is entered:

cout << "Pick 1 (rock), 2 (paper), or 3 (scissors): ";
cin >> playerChoice;

Notice how, for both the computer and the player, the choice number matches the array
element holding the name of the object they chose. Therefore, the choice number can be
used as a subscript to get the string to be displayed. With this ability, the program can
easily display information for each round of the game about who chose what, what beats
what, and who wins that round.

Try running the program to see if you can beat the computer.

Program Output
SUCCESS: pin1 and pin2 are correctly identified as different.
SUCCESS: pin1 and pin3 are correctly identified as different.
SUCCESS: pin1 and pin1 are correctly reported to be the same.

Program 8-31 (continued)

581Tying It All Together: Rock, Paper, Scissors

Program 8-32

1 // This program lets the user play a game of rock, paper, scissors
2 // with the computer. The computer's choices are randomly generated.
3 #include <iostream>
4 #include <ctime>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8
9 const string name[4] = {" ", "rock", "paper", "scissors"};
10
11 int main()
12 {
13 int computerChoice,
14 playerChoice,
15 computerPoints = 0, // Point accumulators
16 playerPoints = 0;
17
18 srand(time(NULL)); // Give the random generator
19 // a seed to start with
20 playerPoints = 0;
21 computerPoints = 0;
22
23 cout << "Let's play Rock-Paper-Scissors!\n";
24 cout << "The first player to score 5 points wins.\n\n";
25
26 do
27 { // Generate a random number 1 to 3 to simulate computer choice
28 computerChoice = 1 + rand() % 3;
29
30 // Get player's choice
31 cout << "Pick 1 (rock), 2 (paper), or 3 (scissors): ";
32 cin >> playerChoice;
33
34 if (computerChoice == playerChoice) // Tie
35 { cout << "I chose " << name[computerChoice]
36 << " too, so we tied.\n\n";
37 }
38 else if ((playerChoice == 1 && computerChoice == 2) || // Computer
39 (playerChoice == 2 && computerChoice == 3) || // wins
40 (playerChoice == 3 && computerChoice == 1))
41 { cout << "I chose " << name[computerChoice] << ", so I win! "
42 << name[computerChoice] << " beats "
43 << name[playerChoice] << ".\n\n";
44 computerPoints++;
45 } // Player
46 else // wins
47 { cout << "I chose " << name[computerChoice] << ", so you win! "
48 << name[playerChoice] << " beats "
49 << name[computerChoice] << ".\n\n";
50 playerPoints++;
51 }
52 } while (playerPoints < 5 && computerPoints < 5);

(program continues)

582 Chapter 8 Arrays

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The _________ indicates the number of elements, or values, an array can hold.

2. The size declarator must be a(n) _________ with a value greater than _________.

3. Each element of an array is accessed and indexed by a number known as a(n) _________.

4. Subscript numbering in C++ always starts at _________.

5. The number inside the brackets of an array definition is the _________, but the
number inside an array’s brackets in an assignment statement, or any other statement
that works with the contents of the array, is the _________.

6. C++ has no array _________ checking, which means you can inadvertently store data
past the end of an array.

7. Starting values for the elements of an array may be specified with a(n) _________ list.

8. If a numeric array is partially initialized, the uninitialized elements will bet set to
_________.

9. If the size declarator of an array definition is omitted, C++ counts the number of items
in the _________ to determine how large the array should be.

10. To allow an array of structures or an array of objects to be initialized, the struct or
class declaration should include a(n) _________.

11. By using the same _________ for multiple arrays, you can build relationships between
the data stored in the arrays. These arrays are referred to as parallel arrays.

12. You cannot use the _________ operator to copy data from one array to another in a
single statement.

13. Arrays are never passed to functions by _________ because there would be too much
overhead in copying all the elements.

14. To pass an array to a function, pass the _________ of the array.

15. A(n) _________ array is like several arrays of the same type put together.

53
54 cout << "Let's see how you did :\n"
55 << "You won " << playerPoints << " points and I won "
56 << computerPoints << " points.\n";
57
58 if (playerPoints == 5)
59 cout << "Congratulations! You're the champ!\n";
60 else
61 cout << "Hurray for me! I'm the champ!\n";
62
63 return 0;
64 }

Program 8-32 (continued)

Review Questions and Exercises 583

16. It’s best to think of a two-dimensional array as having _________ and _________.

17. To define a two-dimensional array, _________ size declarators are required.

18. When initializing a two-dimensional array, it helps to enclose each row’s initialization
list in _________.

19. When a two-dimensional array is passed to a function, the number of _________ must
be specified.

20. To print out all elements of a two-dimensional array you would normally use a(n)
_________ loop.

21. Look at the following array definition.

int values[10];

A) How many elements does the array have?
B) What is the subscript of the first element in the array?
C) What is the subscript of the last element in the array?
D) If an int uses four bytes of memory, how much memory does the array use?

22. Given the following array definition:

int values[5] = { 4, 7, 6, 8, 2 };

What does the following statement display?

cout << values[4] << " " << (values[2] + values[3])
 << " " << ++values[1] << endl;

23. Look at the following array definition.

int numbers[5] = { 1, 2, 3 };

A) What value is stored in numbers[2]?
B) What value is stored in numbers[4]?

24. Assume that array1 and array2 are both 25-element integer arrays. Indicate whether
each of the following statements is legal or illegal.

A) array1 = array2;
B) cout << array1;
C) cin >> array2;

25. When you pass an array name as an argument to a function, what is actually being
passed?

26. How do you establish a parallel relationship between two or more arrays?

27. Look at the following array definition.

double sales[8][10];

A) How many rows does the array have?
B) How many columns does the array have?
C) How many elements does the array have?
D) Write a statement that stores 3.52 in the last column of the last row in the

array.

584 Chapter 8 Arrays

Use the following Car structure declaration to answer questions 28–30.

struct Car
{

string make,
 model;
int year;
double cost;

// Constructors
Car()
{ make = model = ""; year = cost = 0; }

Car(string mk, string md, int yr, double c)
{ make = mk; model = md; year = yr; cost = c; }

};

28. Define an array named collection that holds 25 Car structures.

29. Define an array named forSale that holds 35 Car structures. Initialize the first three
elements with the following data:

Make Model Year Cost
Ford Taurus 2006 $21,000
Honda Accord 2004 $11,000
Jeep Wrangler 2007 $24,000

30. Write a loop that will step through the array you defined in question 29, displaying
the contents of each element.

Algorithm Workbench

31. The arrays array1 and array2 each hold 25 integer elements. Write code that copies
the values in array1 to array2.

32. The following code totals the values in each of two arrays described in question 31.
Will the code print the correct total for both arrays? Why or why not?

int total = 0; // Accumulator
int count; // Loop counter

// Calculate and display the total of the first array.
for (count = 0; count <= 25; count++)

total += array1[count];

cout << "The total for array1 is " << total << endl;

// Calculate and display the total of the second array.
for (count = 0; count <= 25; count++)

total += array2[count];

cout << "The total for array2 is " << total << endl;

33. In a program you need to store the identification numbers of 10 employees (as ints)
and their weekly gross pay (as doubles).

A) Define two arrays that may be used in parallel to store the 10 employee
identification numbers and 10 weekly gross pay amounts.

B) Write a loop that uses these arrays to print each employee’s identification number
and weekly gross pay.

Review Questions and Exercises 585

34. Revise your answer for question 33 to define and use an array of Payroll structures,
instead of two parallel arrays. A Payroll structure should hold an employee ID and
weekly gross pay amount.

35. In a program you need to store the names and populations of 12 countries. Create an
appropriate array to store this information and then write the code needed to read the
information into the array from a file named pop.dat.

36. A weather analysis program uses the following array to store the temperature for each
hour of the day on each day of a week.

int temp[7][24];

Each row represents a day (0 = Sunday, 1 = Monday, etc.) and each column represents
a time (0 = midnight, 1 = 1 a.m., … , 12 = noon, 13 = 1 p.m., etc.).

A) Write code to find Tuesday’s average temperature.
B) Write code to find the average weekly noon temperature.

Find the Errors

37. Each of the following definitions has errors. Locate as many as you can.

A) int size;
double values[size];

B) int collection[-20];
C) int hours[3] = 8, 12, 16;

38. Each of the following definitions has errors. Locate as many as you can.

A) int numbers[8] = {1, 2, , 4, , 5};
B) double ratings[];
C) values[3] = {6, 8.2, 'A'};

39. Each of the following functions contains errors. Locate as many as you can.

A) void showValues(int nums)
{

for (int count = 0; count < 8; count++)
cout << nums[count];

}
B) void showValues(int nums[4][])

{
for (rows = 0; rows < 4; rows++)

for (cols = 0; cols < 5; cols++)
cout << nums[rows][cols];

}

Soft Skills

Diagrams are an important means of clarifying many programming concepts. You have
seen them used throughout this book to illustrate such things as how the flow of
control works for various programming constructs, how a program is broken into
modules and those modules related, how data is stored in memory, and how data is
organized.

586 Chapter 8 Arrays

40. Here is a set of declarations that define how the data for a set of poker hands is
organized. Create a neat diagram that illustrates this organization. The diagram in
Section 7.12 of Chapter 7 on nested structures might give you an idea of how to
begin.

struct CardStruct
{ int face;

char suit; // ‘s’, ‘h’, ‘d’, or ‘c’
};

struct PlayerStruct
{ int playerNum;

CardStruct card[5];
}

PlayerStruct player[4];

Programming Challenges
Programming Challenges 1–7 allow you to practice working with arrays without using
classes or structures. Most of the problems beginning with Programming Challenge 8 use
arrays with classes or structures.

1. Perfect Scores

Write a modular program that accepts up to 20 integer test scores in the range of 0 to
100 from the user and stores them in an array. Then main should report how many
perfect scores were entered (i.e., scores of 100), using a value-returning countPerfect
function to help it.

2. Roman Numeral Converter

Write a program that displays the roman numeral equivalent of any decimal number
between 1 and 20 that the user enters. The roman numerals should be stored in an
array of strings and the decimal number that the user enters should be used to locate
the array element holding the roman numeral equivalent. The program should have a
loop that allows the user to continue entering numbers until an end sentinel of 0 is
entered.

3. Chips and Salsa

Write a program that lets a maker of chips and salsa keep track of their sales for five
different types of salsa they produce: mild, medium, sweet, hot, and zesty. It should use
two parallel five-element arrays: an array of strings that holds the five salsa names and
an array of integers that holds the number of jars sold during the past month for each
salsa type. The salsa names should be stored using an initialization list at the time the
name array is created. The program should prompt the user to enter the number of jars
sold for each type. Once this sales data has been entered, the program should produce
a report that displays sales for each salsa type, total sales, and the names of the highest
selling and lowest selling products.

VideoNote

Solving the
Chips and Salsa
Problem

Review Questions and Exercises 587

4. Monkey Business

A local zoo wants to keep track of how many pounds of food each of its three monkeys eats
each day during a typical week. Write a program that stores this information in a two-
dimensional 3 × 7 array, where each row represents a different monkey and each column
represents a different day of the week. The program should first have the user input the data
for each monkey. Then it should create a report that includes the following information:

• Average amount of food eaten per day by the whole family of monkeys.
• The least amount of food eaten during the week by any one monkey.
• The greatest amount of food eaten during the week by any one monkey.

5. Rain or Shine

An amateur meteorologist wants to keep track of weather conditions during the past year’s
three month summer season and has designated each day as either rainy (‘R’), cloudy (‘C’),
or sunny (‘S’). Write a program that stores this information in a 3 × 30 array of characters,
where the row indicates the month (0 = June, 1 = July, 2 = August) and the column
indicates the day of the month. Note that data is not being collected for the 31st of any
month. The program should begin by reading the weather data in from a file. Then it
should create a report that displays for each month and for the whole three-month period,
how many days were rainy, how many were cloudy, and how many were sunny. It should
also report which of the three months had the largest number of rainy days. Data for the
program can be found in the RainOrShine.dat file.

6. Lottery

Write a program that simulates a lottery. The program should have an array of 5 integers
named winningDigits, with a randomly generated number in the range of 0 through 9
for each element in the array. The program should ask the user to enter 5 digits and should
store them in a second integer array named player. The program must compare the
corresponding elements in the two arrays and count how many digits match. For example,
the following shows the winningDigits array and the Player array with sample numbers
stored in each. There are two matching digits, elements 2 and 4.

WinningDigits 7 4 9 1 3

 player 4 2 9 7 3

Once the user has entered a set of numbers, the program should display the winning digits
and the player’s digits and tell how many digits matched.

7. Rainfall Statistics

Write a modular program that analyzes a year’s worth of rainfall data. In addition to
main, the program should have a getData function that accepts the total rainfall for
each of 12 months from the user and stores it in a double array. It should also have four
value-returning functions that compute and return to main the totalRainfall,
averageRainfall, driestMonth, and wettestMonth. These last two functions return
the number of the month with the lowest and highest rainfall amounts, not the amount
of rain that fell those months. Notice that this month number can be used to obtain the
amount of rain that fell those months. This information should be used either by main or
by a displayReport function called by main to print a summary rainfall report similar
to the following:

588 Chapter 8 Arrays

 2010 Rain Report for Neversnows County

Total rainfall: 23.19 inches
Average monthly rainfall: 1.93 inches
The least rain fell in January with 0.24 inches.
The most rain fell in April with 4.29 inches.

8. Chips and Salsa Version 2

Revise Programming Challenge 3 to use an array of Product objects instead of two
parallel arrays. The Product class will need member variables to hold a product name and
a quantity.

9. Stats Class and Rainfall Statistics

Create a Stats class whose member data includes an array capable of storing 30 double
data values, and whose member functions include total, average, lowest, and highest
functions for returning information about the data to the client program. These are general
versions of the same functions you created for Programming Challenge 7, but now they
belong to the Stats class, not the application program. In addition to these functions, the
Stats class should have a Boolean storeValue function that accepts a double value from
the client program and stores it in the array. It is the job of this function to keep track of
how many values are currently in the array, so it will know where to put the next value it
receives and will know how many values there are to process when it is carrying out its
other functions. It is also the job of this function to make sure that no more than 30 values
are accepted. If the storeValue function is able to successfully store the value sent to it, it
should return true to the client program. However, if the client program tries to store a
thirty-first value, the function should not store the value and should return false to the
client program.

The client program should create and use a Stats object to carry out the same rainfall
analysis requested by Programming Challenge 7. Notice that the Stats object does no I/O.
All input and output is done by the client program.

10. Stats Class and Track Statistics

Write a client program that uses the Stats class you created for Programming Challenge 9
to store and analyze “best” 100-yard dash times for each of the 15 runners on a track
team. As in Programming Challenge 8, all I/O is done by the client program. In addition to
main, the client program should have two other functions: a getData function to accept
input from the user and send it to the Stats object and a createReport function that
creates and displays a report similar to the one shown here,

 Tulsa Tigers Track Team

Average 100 yard-dash time: 11.16 seconds
Slowest runner: Jack 13.09 seconds
Fastest runner: Will 10.82 seconds

Review Questions and Exercises 589

11. Character Converter Class

Create a CharConverter class that performs various operations on strings. It should have
the following two public member functions to start with. Your instructor may ask you to
add additional functions to the class.

• The uppercase member function accepts a string and returns a copy of it with all
lowercase letters converted to uppercase. If a character is already uppercase, or is not
a letter, it should be left alone.

• The properWords member function accepts a string of words separated by spaces
and returns a copy of it with the first letter of each word converted to uppercase.

Write a simple program that uses the class. It should prompt the user to input a string.
Then it should call the properWords function and display the resulting string. Finally, it
should call the uppercase function and display this resulting string. The program
should loop to allow additional strings to be converted and displayed until the user
chooses to quit.

12. Driver’s License Exam

The State Department of Motor Vehicles (DMV) has asked you to write a program that
grades the written portion of the driver’s license exam, which has 20 multiple choice
questions. Here are the correct answers:

To do this you should create a TestGrader class. The class will have an answers array of 20
characters, which holds the correct test answers. It will have two public member functions that
enable user programs to interact with the class: setKey and grade. The setKey function
receives a 20-character string holding the correct answers and copies this information into its
answers array. The grade function receives a 20-character array holding the test taker’s
answers and compares each of their answers to the correct one. An applicant must correctly
answer 15 or more of the 20 questions to pass the exam. After “grading” the exam, the grade
function should create and return to the user a string that includes the following information:

• a message indicating whether the applicant passed or failed the exam
• the number of right answers and the number of wrong answers
• a list of the question numbers for all incorrectly answered questions.

The client program that creates and uses a TestGrader object should first make a single
call to setKey, passing it a string containing the 20 correct answers. Once this is done it
should allow a test taker’s 20 answers to be entered, making sure only answers of A–D
are accepted, and store them in a 20-character array. Then it should call the grade
function to grade the exam and should display the string the function returns. The
program should loop to allow additional tests to be entered and graded until the user
indicates a desire to quit.

1. B 5. C 9. C 13. D 17. C

2. D 6. A 10. D 14. A 18. B

3. A 7. B 11. B 15. D 19. D

4. A 8. A 12. C 16. C 20. A

590 Chapter 8 Arrays

13. Array of Payroll Objects

Design a PayRoll class that has data members for an employee’s hourly pay rate and
number of hours worked. Write a program with an array of seven PayRoll objects. The
program should read the number of hours each employee worked and their hourly pay
rate from a file and call class functions to store this information in the appropriate
objects. It should then call a class function, once for each object, to return the employee’s
gross pay, so this information can be displayed. Sample data to test this program can be
found in the payroll.dat file.

14. Drink Machine Simulator

Create a class that simulates and manages a soft drink machine. Information on each drink
type should be stored in a structure that has data members to hold the drink name, the
drink price, and the number of drinks of that type currently in the machine.

The class should have an array of five of these structures, initialized with the following data.

The class should have two public member functions, displayChoices (which displays a
menu of drink names and prices) and buyDrink (which handles a sale). The class should
also have at least two private member functions, inputMoney, which is called by buyDrink
to accept, validate, and return (to buyDrink) the amount of money input, and
dailyReport, which is called by the destructor to report how many of each drink type
remain in the machine at the end of the day and how much money was collected. You may
want to use additional functions to make the program more modular.

The client program that uses the class should have a main processing loop which calls the
displayChoices class member function and allows the patron to either pick a drink or
quit the program. If the patron selects a drink, the buyDrink class member function is
called to handle the actual sale. This function should be passed the patron’s drink choice.
Here is what the buyDrink function should do:

• Call the inputMoney function, passing it the patron’s drink choice.
• If the patron no longer wishes to make the purchase, return all input money.
• If the machine is out of the requested soda, display an appropriate “sold out”

message and return all input money.
• If the machine has the soda and enough money was entered, complete the sale by

updating the quantity on hand and money collected information, calculating any
change due to be returned to the patron, and delivering the soda. This last action can
be simulated by printing an appropriate “here is your beverage” message.

Input Validation: Only accept valid menu choices. Do not deliver a beverage if the
money inserted is less than the price of the selected drink.

Drink Name Cost Number in Machine

Cola 1.00 20

Root beer 1.00 20

Orange soda 1.00 20

Grape soda 1.00 20

Bottled water 1.50 20

Review Questions and Exercises 591

15. Bin Manager Class

Design and write an object-oriented program for managing inventory bins in a warehouse.
To do this you will use two classes: InvBin and BinManager. The InvBin class holds
information about a single bin. The BinManager class will own and manage an array of
InvBin objects. Here is a skeleton of what the InvBin and BinManager class declarations
should look like:

class InvBin
{

private:
 string description; // Item name
 int qty; // Quantity of items
 // in this bin

public:
InvBin (string d = "empty", int q = 0) // 2-parameter constructor
{ description = d; qty = q; } // with default values

 // It will also have the following public member functions. They
 // will be used by the BinManager class, not the client program.
 void setDescription(string d)
 string getDescription()
 void setQty(int q)
 int getQty()

};

class BinManager
{

private:
 InvBin bin[30]; // Array of InvBin objects
 int numBins; // Number of bins
 // currently in use

public:
 BinManager() // Default constructor
 { numBins = 0; }

 BinManager(int size, string d[], int q[]) // 3-parameter constructor
 { // Receives number of bins in use and parallel arrays of item names
 // and quantities. Uses this info. to store values in the elements
 // of the bin array. Remember, these elements are InvBin objects.
 }

 // The class will also have the following public member functions:
 string getDescription(int index) // Returns name of one item
 int getQuantity(int index) // Returns qty of one item
 bool addParts(int binIndex, int q) // These return true if the
 bool removeParts(int binIndex, int q) // action was done and false
 // if it could not be done—
 // see validation information

};

592 Chapter 8 Arrays

Client Program

Once you have created these two classes, write a menu-driven client program that uses a
BinManager object to manage its warehouse bins. It should initialize it to use 9 of the bins,
holding the following item descriptions and quantities. The bin index where the item will
be stored is also show here.

The modular client program should have functions to display a menu, get and validate the
user’s choice, and carry out the necessary activities to handle that choice. This includes adding
items to a bin, removing items from a bin, and displaying a report of all bins. Think about
what calls the displayReport client function will need to make to the BinManager object to
create this report. When the user chooses the “Quit” option from the menu, the program
should call its displayReport function one last time to display the final bin information. All
I/O should be done in the client class. The BinManager class only accepts information, keeps
the array of InvBin objects up to date, and returns information to the client program.

Input Validation in the BinManager class: The class functions should not accept
numbers less than 1 for the number of parts being added or removed from a bin.
They should also not allow the user to remove more items from a bin than it
currently holds.

Group Projects

16. Tic-Tac-Toe Game

Write a modular program that allows two players to play a game of tic-tac-toe. Use a two-
dimensional char array with 3 rows and 3 columns as the game board. Each element of
the array should be initialized with an asterisk (*). The program should display the initial
board configuration and then start a loop that does the following:

• Allow player 1 to select a location on the board for an X by entering a row and column
number. Then redisplay the board with an X replacing the * in the chosen location.

• If there is no winner yet and the board is not yet full, allow player 2 to select a
location on the board for an O by entering a row and column number. Then
redisplay the board with an O replacing the * in the chosen location.

The loop should continue until a player has won or a tie has occurred, then display a
message indicating who won, or reporting that a tie occurred.

• Player 1 wins when there are three Xs in a row, a column, or a diagonal on the game
board.

• Player 2 wins when there are three Os in a row, a column, or a diagonal on the game
board.

• A tie occurs when all of the locations on the board are full, but there is no winner.

Input Validation: Only allow legal moves to be entered. The row must be 1, 2, or 3.
The column must be 1, 2, or 3. The (row, column) position entered must currently be
empty (i.e., still have an asterisk in it).

1. regular pliers 25 2. n. nose pliers 5 3. screwdriver 25

4. p. head screw driver 6 5. wrench-large 7 6. wrench-small 18

7. drill 51 8. cordless drill 16 9. hand saw 12

Review Questions and Exercises 593

17. Theater Ticket Sales

Create a TicketManager class and a program that uses it to sell tickets for a single
performance theater production. This project is intended to be designed and written by a
team of 2–4 students. Here are some suggestions:

• One student might design and write the client program that uses the class, while other
team members design and write the TicketManager class and all of its functions.

• Each student should be given about the same workload.
• The class design and the names, parameters, and return types of each function should

be decided in advance.
• The project can be implemented either as a multi-file program, or all the functions

can be cut and pasted into a single file.

Here are the specifications:

• The theater’s auditorium has 15 rows, with 30 seats in each row. To represent the seats,
the TicketManager class should have a two-dimensional array of SeatStructures.
Each of these structures should have data members to keep track of the seat’s price
and whether or not it is available or already sold.

• The seat prices should be read in from the SeatPrices.dat file. It contains 15 values
representing the price for each row. All seats in a given row are the same price, but different
rows have different prices. The seat availability information should be read in from the
SeatAvailability.dat file. It contains 450 characters (15 rows with 30 characters each),
indicating which seats have been sold ('*') and which are available ('#'). Initially all seats
are available. However, once the program runs and the file is updated, some of the seats
will have been sold. The obvious function to read in the data from these files and set up the
array is the constructor that runs when the TicketManager object is first created.

• The client program should be a menu-driven program that provides the user with a
menu of box office options, accepts and validates user inputs, and calls appropriate
class functions to carry out desired tasks. The menu should have options to display
the seating chart, request tickets, print a sales report, and exit the program.

• When the user selects the display seats menu option, a TicketManager function should
be called that creates and returns a string holding a chart, similar to the one shown here.
It should indicate which seats are already sold (*) and which are still available for
purchase (#). The client program should then display the string.

Seats
123456789012345678901234567890

Row 1 ***###***###*########*****####
Row 2 ####*************####*******##
Row 3 **###**********########****###
Row 4 **######**************##******
Row 5 ********#####*********########
Row 6 ##############************####
Row 7 #######************###########
Row 8 ************##****############
Row 9 #########*****############****
Row 10 #####*************############
Row 11 #**********#################**
Row 12 #############********########*
Row 13 ###***********########**######
Row 14 ##############################
Row 15 ##############################

594 Chapter 8 Arrays

• When the user selects the request tickets menu option, the program should prompt
for the number of seats the patron wants, the desired row number, and the desired
starting seat number. A TicketManager ticket request function should then be called
and passed this information so that it can handle the ticket request. If any of the
requested seats do not exist, or are not available, an appropriate message should be
returned to be displayed by the client program. If the seats exist and are available, a
string should be created and returned that lists the number of requested seats, the price
per seat in the requested row, and the total price for the seats. Then the user program
should ask if the patron wishes to purchase these seats.

• If the patron indicates they do want to buy the requested seats, a TicketManager
purchase tickets module should be called to handle the actual sale. This module must
be able to accept money, ensure that it is sufficient to continue with the sale, and if it
is, mark the seat(s) as sold, and create and return a string that includes a ticket for
each seat sold (with the correct row, seat number, and price on it).

• When the user selects the sales report menu option, a TicketManager report module
should be called. This module must create and return a string holding a report that
tells how many seats have been sold, how many are still available, and how much
money has been collected so far for the sold seats. Think about how your team will
either calculate or collect and store this information so that it will be available when
it is needed for the report.

• When the day of ticket sales is over and the quit menu choice is selected, the program
needs to be able to write the updated seat availability data back out to the file. The
obvious place to do this is in the TicketManager destructor.

595

C
H

A
P

T
E

R

9 Searching, Sorting, and
Algorithm Analysis

9.1 Introduction to Search Algorithms

CONCEPT: A search algorithm is a method of locating a specific item in a collection of
data.

It’s very common for programs not only to store and process data stored in arrays, but to
search arrays for specific items. This section will show you two methods of searching an
array: the linear search and the binary search. Each has its advantages and disadvantages.

The Linear Search
The linear search is a very simple algorithm. Sometimes called a sequential search, it uses a
loop to sequentially step through an array, starting with the first element. It compares each
element with the value being searched for, and stops when either the value is found or the
end of the array is encountered. If the value being searched for is not in the array, the
algorithm will search to the end of the array.

TOPICS

9.1 Introduction to Search Algorithms
9.2 Searching an Array of Objects
9.3 Introduction to Sorting Algorithms
9.4 Sorting an Array of Objects

9.5 Sorting and Searching Vectors
9.6 Introduction to Analysis of Algorithms
9.7 Case Studies
9.8 Tying It All Together: Secret Messages

596 Chapter 9 Searching, Sorting, and Algorithm Analysis

Here is the pseudocode for a function that performs the linear search:

Set found to false
Set position to -1
Set index to 0
While index < number of elements and found is false

If list[index] is equal to search value
found = true
position = index

End If
Add 1 to index

End While
Return position

The function searchList, which follows, is an example of C++ code used to perform a linear
search on an integer array. The array list, which has a maximum of size elements, is
searched for an occurrence of the number stored in value. If the number is found, its array
subscript is returned. Otherwise, –1 is returned, indicating the value did not appear in the
array.

int searchList(const int list[], int size, int value)
{

int index = 0; // Used as a subscript to search array
int position = -1; // Used to record position of search value
bool found = false; // Flag to indicate if the value was found

while (index < size && !found)
{

if (list[index] == value) // If the value is found
{

 found = true; // Set the flag
 position = index; // Record the value's subscript

}
index++; // Go to the next element

}
return position; // Return the position, or -1

}

Program 9-1 is a complete program that uses the searchList function. It searches the five-
element tests array to find a score of 100.

NOTE: The reason –1 is chosen to indicate that the search value was not found in the
array is that –1 is not a valid subscript. Any other nonvalid subscript value could also
have been used to signal this.

Program 9-1

1 // This program demonstrates the searchList function,
2 // which performs a linear search on an integer array.
3 #include <iostream>
4 using namespace std;
5

(program continues)

Introduction to Search Algorithms 597

6 // Function prototype
7 int searchList(const int [], int, int);
8
9 const int SIZE = 5;
10
11 int main()
12 {
13 int tests[SIZE] = {87, 75, 98, 100, 82};
14 int results; // Holds the search results
15
16 // Search the array for the value 100
17 results = searchList(tests, SIZE, 100);
18
19 // If searchList returned -1, 100 was not found
20 if (results == -1)
21 cout << "You did not earn 100 points on any test.\n";
22 else
23 { // Otherwise results contains the subscript of
24 // the first 100 found in the array
25 cout << "You earned 100 points on test ";
26 cout << (results + 1) << ".\n";
27 }
28 return 0;
29 }
30
31 /***
32 * searchList *
33 * This function performs a linear search on an integer array. *
34 * The list array, which has size elements, is searched for *
35 * the number stored in value. If the number is found, its array *
36 * subscript is returned. Otherwise, -1 is returned. *
37 ***/
38 int searchList(const int list[], int size, int value)
39 {
40 int index = 0; // Used as a subscript to search array
41 int position = -1; // Used to record position of search value
42 bool found = false; // Flag to indicate if the value was found
43
44 while (index < size && !found)
45 {
46 if (list[index] == value) // If the value is found
47 {
48 found = true; // Set the flag
49 position = index; // Record the value's subscript
50 }
51 index++; // Go to the next element
52 }
53 return position; // Return the position, or -1
54 }

Program Output
You earned 100 points on test 4.

Program 9-1 (continued)

598 Chapter 9 Searching, Sorting, and Algorithm Analysis

Inefficiency of the Linear Search

The advantage of the linear search is its simplicity. It is very easy to understand and
implement. Furthermore, it doesn’t require the data in the array to be stored in any
particular order. Its disadvantage, however, is its inefficiency. If the array being searched
contained 20,000 elements, the algorithm would have to look at all 20,000 elements in
order to find a value stored in the last element or to determine that a desired element was
not in the array.

In a typical case, an item is just as likely to be found near the beginning of the array as near
the end. On average, for an array of N items, the linear search will locate an item in N/2
attempts. If an array has 20,000 elements, the linear search will make a comparison with
10,000 of them on average. This is assuming, of course, that the search item is consistently
found in the array. (N/2 is the average number of comparisons. The maximum number of
comparisons is always N.)

When the linear search fails to locate an item, it must make a comparison with every
element in the array. As the number of failed search attempts increases, so does the average
number of comparisons. When it can be avoided the linear search should not be used on
large arrays if speed is important.

The Binary Search
The binary search is a clever algorithm that is much more efficient than the linear search.
Its only requirement is that the values in the array be in order. Instead of testing the array’s
first element, this algorithm starts with the element in the middle. If that element happens
to contain the desired value, then the search is over. Otherwise, the value in the middle
element is either greater than or less than the value being searched for. If it is greater than
the desired value then the value (if it is in the list) will be found somewhere in the first half
of the array. If it is less than the desired value then the value (again, if it is in the list) will be
found somewhere in the last half of the array. In either case, half of the array’s elements
have been eliminated from further searching.

If the desired value wasn’t found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the
array is to be searched, the algorithm immediately tests its middle element. If the desired
value isn’t found there, the search is narrowed to the quarter of the array that resides
before or after that element. This process continues until the value being searched for is
either found or there are no more elements to test.

Here is the pseudocode for a function that performs a binary search on an array whose
elements are stored in ascending order.

Set first to 0
Set last to the last subscript in the array
Set found to false
Set position to -1

VideoNote

Performing a
Binary Search

Introduction to Search Algorithms 599

While found is not true and first is less than or equal to last
Set middle to the subscript halfway between first and last
If array[middle] equals the desired value

 Set found to true
 Set position to middle

Else If array[middle] is greater than the desired value
 Set last to middle - 1

Else
 Set first to middle + 1

End If
End While
Return position

This algorithm uses three index variables: first, last, and middle. The first and last
variables mark the boundaries of the portion of the array currently being searched. They
are initialized with the subscripts of the array’s first and last elements. The subscript of the
element approximately halfway between first and last is calculated and stored in the
middle variable. If there is no precisely central element, the integer division used to
calculate middle will select the element immediately preceding the midpoint. If the element
in the middle of the array does not contain the search value, the first or last variables
are adjusted so that only the top or bottom half of the array is searched during the next
iteration. This cuts the portion of the array being searched in half each time the loop fails
to locate the search value.

The function binarySearch in the following example C++ code is used to perform a
binary search on an integer array. The first parameter, array, which has size elements,
is searched for an occurrence of the number stored in value. If the number is found, its
array subscript is returned. Otherwise, –1 is returned indicating the value did not appear
in the array.

int binarySearch(const int array[], int size, int value)
{

int first = 0, // First array element
 last = size - 1, // Last array element
 middle, // Midpoint of search
 position = -1; // Position of search value
bool found = false; // Flag

while (!found && first <= last)
{
 middle = (first + last) / 2; // Calculate midpoint
 if (array[middle] == value) // If value is found at mid
 {

 found = true;
 position = middle;

 }
 else if (array[middle] > value) // If value is in lower half

 last = middle - 1;
 else

first = middle + 1; // If value is in upper half
}
return position;

}

600 Chapter 9 Searching, Sorting, and Algorithm Analysis

Program 9-2 is a complete program using the binarySearch function. It searches an array
of employee ID numbers for a specific value.

Program 9-2

1 // This program performs a binary search on an integer
2 // array whose elements are in ascending order.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 int binarySearch(const int [], int, int);
8
9 const int SIZE = 20;
10
11 int main()
12 {
13 // Create an array of ID numbers sorted in ascending order
14 int IDnums[SIZE] = {101, 142, 147, 189, 199, 207, 222,
15 234, 289, 296, 310, 319, 388, 394,
16 417, 429, 447, 521, 536, 600 };
17
18 int empID, // Holds the ID to search for
19 results; // Holds the search results
20
21 // Get an employee ID to search for
22 cout << "Enter the employee ID you wish to search for: ";
23 cin >> empID;
24
25 // Search for the ID
26 results = binarySearch(IDnums, SIZE, empID);
27
28 // If binarySearch returned -1, the ID was not found
29 if (results == -1)
30 cout << "That number does not exist in the array.\n";
31 else
32 { // Otherwise results contains the subscript of
33 // the specified employee ID in the array
34 cout << "ID " << empID << " was found in element "
35 << results << " of the array.\n";
36 }
37 return 0;
38 }
39

(program continues)

Introduction to Search Algorithms 601

The Efficiency of the Binary Search

Obviously, the binary search is much more efficient than the linear search. Every time
it makes a comparison and fails to find the desired item, it eliminates half of the
remaining portion of the array that must be searched. For example, consider an array
with 20,000 elements. If the binary search fails to find an item on the first attempt, the
number of elements that remains to be searched is 10,000. If the item is not found on
the second attempt, the number of elements that remains to be searched is 5,000. This
process continues until the binary search locates the desired value or determines that
it is not in the array. With 20,000 elements in the array, this takes a maximum of
15 comparisons. (Compare this to the linear search, which would make an average of
10,000 comparisons!)

40 /***
41 * binarySearch *
42 * This function performs a binary search on an integer array *
43 * with size elements whose values are stored in ascending *
44 * order. The array is searched for the number stored in the *
45 * value parameter. If the number is found, its array subscript *
46 * is returned. Otherwise, -1 is returned. *
47 ***/
48 int binarySearch(const int array[], int size, int value)
49 {
50 int first = 0, // First array element
51 last = size - 1, // Last array element
52 middle, // Midpoint of search
53 position = -1; // Position of search value
54 bool found = false; // Flag
55
56 while (!found && first <= last)
57 {
58 middle = (first + last) / 2; // Calculate midpoint
59 if (array[middle] == value) // If value is found at mid
60 {
61 found = true;
62 position = middle;
63 }
64 else if (array[middle] > value) // If value is in lower half
65 last = middle - 1;
66 else
67 first = middle + 1; // If value is in upper half
68 }
69 return position;
70 }

Program Output with Example Input Shown in Bold
Enter the employee ID you wish to search for: 199[Enter]
ID 199 was found in element 4 of the array.

Program 9-2 (continued)

602 Chapter 9 Searching, Sorting, and Algorithm Analysis

Powers of 2 are used to calculate the maximum number of comparisons the binary search
will make on an array of any size. (A power of 2 is 2 raised to some integer exponent.)
Simply find the smallest power of 2 that is greater than the number of elements in the
array. That will tell you the maximum number of comparisons needed to find an element,
or to determine that it is not present. For example, a maximum of 16 comparisons will
be made to find an item in an array of 50,000 elements (216 = 65,536), and a maximum
of 20 comparisons will be made to find an item in an array of 1,000,000 elements
(220 = 1,048,576).

9.2 Searching an Array of Objects

CONCEPT: Linear and binary searches can also be used to search for a specific entry in
an array of objects or structures.

In Programs 9-1 and 9-2 we searched for a particular value in an array of integers. We can
just as easily search through an array holding values of some other data type, such as
double or string. We can even search an array of objects or structures. In this case,
however, the search value is not the entire object or structure we are looking for, but rather
a value in a particular member variable of that object or structure. The member variable
being examined by the search is sometimes called the key field, and the particular value
being looked for is called the search key.

Assume we have a class named Inventory that includes the following member variables

string itemCode;
string description;
double price;

as well as methods to set and get the value of each of these. Assume also that we have set up
an array of Inventory objects. We might want to search for a particular object in the array,
say the object whose itemCode is K33, so that we can then call the getPrice method for
that object. Program 9-3 illustrates how to do this. It searches the array of Inventory
objects using a search function similar to the searchList function we used earlier in this
chapter. However, it has been modified to work with an array of Inventory objects.

Program 9-3

1 // This program searches an array of Inventory objects to get
2 // the price of a particular object. It demonstrates how to
3 // perform a linear search using an array of objects.
4 #include <iostream>
5 #include <string>
6 using namespace std;
7
8 // Inventory class declaration
9 class Inventory
10 { private:
11 string itemCode;
12 string description;
13 double price;
14

(program continues)

Searching an Array of Objects 603

15 public:
16 Inventory() // Default constructor
17 { itemCode = "XXX"; description = " "; price = 0.0; }
18
19 Inventory(string c, string d, double p) // 3 argument constructor
20 { itemCode = c;
21 description = d;
22 price = p;
23 }
24
25 // Add methods setCode, setDescription, and setPrice here.
26
27 // Get functions to retrieve member variable values
28 string getCode() const
29 { string code = itemCode;
30 return code;
31 }
32
33 string getDescription() const
34 { string d = description;
35 return d;
36 }
37
38 double getPrice() const
39 { return price;
40 }
41
42 }; // End Inventory class declaration
43
44 // Program that uses the Inventory class
45
46 // Function prototype
47 int search(const Inventory[], int, string);
48
49 /***
50 * main *
51 ***/
52 int main()
53 {
54 const int SIZE = 6;
55
56 // Create and initialize the array of Inventory objects
57 Inventory silverware[SIZE] =
58 { Inventory("S15", "soup spoon", 2.35),
59 Inventory("S12", "teaspoon", 2.19),
60 Inventory("F15", "dinner fork", 3.19),
61 Inventory("F09", "salad fork" , 2.25),
62 Inventory("K33", "knife", 2.35),
63 Inventory("K41", "steak knife", 4.15) };
64
65 string desiredCode; // The itemCode to search for
66 int pos; // Position of desired object in the array
67 char doAgain; // Look up another price (Y/N)?

(program continues)

Program 9-3 (continued)

604 Chapter 9 Searching, Sorting, and Algorithm Analysis

68
69 do
70 { // Get the itemCode to search for
71 cout << "\nEnter an item code: ";
72 cin >> desiredCode;
73
74 // Search for the object
75 pos = search(silverware, SIZE, desiredCode);
76
77 // If pos = -1, the code was not found
78 if (pos == -1)
79 cout << "That code does not exist in the array\n";
80 else
81 { // The object was found, so use pos to get the
82 // description and price
83 cout << "This " << silverware[pos].getDescription()
84 << " costs $" << silverware[pos].getPrice() << endl;
85 }
86
87 // Does the user want to look up another price?
88 cout << "\nLook up another price (Y/N)? ";
89 cin >> doAgain;
90
91 } while (doAgain == 'Y' || doAgain == 'y');
92 return 0;
93 }// End main
94
95 /**
96 * search *
97 * This function performs a linear search on an array of *
98 * Inventory objects, using itemCode as the key field. *
99 * If the desired code is found, its array subscript is *
100 * returned. Otherwise, -1 is returned. *
101 **/
102 int search(const Inventory object[], int size, string value)
103 {
104 int index = 0; // Used as a subscript to search array
105 int position = -1; // Used to record position of search value
106 bool found = false; // Flag to indicate if the value was found
107
108 while (index < size && !found)
109 {
110 if (object[index].getCode() == value) // If the value is found
111 {
112 found = true; // Set the flag
113 position = index; // Record the value's subscript
114 }
115 index++; // Go to the next element
116 }
117 return position; // Return the position, or -1
118 }// End search

(program continues)

Program 9-3 (continued)

Introduction to Sorting Algorithms 605

Recall from Chapter 7 that when an object is passed to a function as a constant reference,
any of the object’s member functions that the receiving function will call must also be
defined with the key word const. This is also the case when an array of objects is passed to
a function. In Program 9-3 the search function uses a const array parameter to receive
the array of Inventory objects in order to safeguard it from any changes being made to it.
Therefore, the Inventory class member functions it calls are also declared to be const.

Checkpoint

9.1 Describe the difference between the linear search and the binary search.

9.2 On average, with an array of 20,000 elements, how many comparisons will the
linear search perform? (Assume the items being search for are consistently found
in the array.)

9.3 With an array of 20,000 elements, what is the maximum number of comparisons
the binary search will perform?

9.4 If a linear search is performed on an array, and it is known that some items are searched
for more frequently than others, how can the contents of the array be reordered to
improve the average performance of the search?

9.3 Introduction to Sorting Algorithms

CONCEPT: Sorting algorithms are used to arrange data into some order.

Often the data in an array must be sorted in some order. Customer lists, for instance, are
commonly sorted in alphabetical order. Student grades might be sorted from highest to
lowest. Mailing label records could be sorted by ZIP code. To sort the data in an array, the
programmer must use an appropriate sorting algorithm. A sorting algorithm is a technique
for scanning through an array and rearranging its contents in some specific order. This
section will introduce two simple sorting algorithms: the bubble sort and the selection sort.

The Bubble Sort
The bubble sort is an easy way to arrange data in ascending or descending order. Sorting data
in ascending order means placing the values in order from lowest to highest. Sorting in
descending order means placing them in order from highest to lowest. Bubble sort works by
comparing each element in the array with its neighbor and swapping them if they are not in
the desired order. Let’s see how it arranges the following array’s elements in ascending order:

Program Output with Example Input Shown in Bold
Enter an item code: F15[Enter]
This dinner fork costs $3.19

Look up another price (Y/N)? n[Enter]

 7 2 3 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Program 9-3 (continued)

VideoNote

Sorting a Set
of Data

606 Chapter 9 Searching, Sorting, and Algorithm Analysis

The bubble sort starts by comparing the first two elements in the array. If element 0 is
greater than element 1, they are exchanged. After the exchange, the array appears as

This process is repeated with elements 1 and 2. If element 1 is greater than element 2, they
are exchanged. The array now appears as

Next, elements 2 and 3 are compared. However, in this array, these two elements are
already in the proper order (element 2 is less than element 3), so no exchange takes place.

As the cycle continues, elements 3 and 4 are compared. Once again, because they are already in
the proper order, no exchange is necessary. When elements 4 and 5 are compared, however, an
exchange must take place because element 4 is greater than element 5. The array now appears as

At this point, the entire array has been scanned. This is called the first pass of the sort. Notice
that the largest value is now correctly placed in the last array element. However, the rest of
the array is not yet sorted. So the sort starts over again with elements 0 and 1. Because they
are in the proper order, no exchange takes place. Elements 1 and 2 are compared next, but
once again, no exchange takes place. This continues until elements 3 and 4 are compared.
Because element 3 is greater than element 4, they are exchanged. The array now appears as

Notice that this second pass over the array elements has placed the second largest number
in the next to the last array element. This process will continue, with the sort repeatedly
passing through the array and placing at least one number in order on each pass, until the
array is fully sorted. Ultimately, the array will appear as

Here is the bubble sort in pseudocode. Notice that it uses a pair of nested loops. The
outer loop, a do-while loop, iterates once for each pass of the sort. The inner loop, a
for loop, holds the code that does all the comparisons and needed swaps during a pass.
If two elements are exchanged, the swap flag variable is set to true. The outer loop continues
iterating, causing additional passes to be made, until it finds the swap flag false, meaning
that no elements were swapped on the previous pass. This indicates that the array is now
fully sorted.

 2 7 3 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 2 3 7 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 2 3 7 8 1 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 2 3 7 1 8 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 3 7 8 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Introduction to Sorting Algorithms 607

Do
Set swap flag to false
For count = 0 to the next-to-last array subscript
 If array[count] is greater than array[count + 1]

 Swap the contents of array[count] and array[count + 1]
 Set swap flag to true

 End If
End For

While the swap flag is true // A swap ocurred on the previous pass.

The following C++ code implements the bubble sort as a function. The parameter array
references an integer array to be sorted. The parameter size contains the number of
elements in array.

void sortArray(int array[], int size)
{

int temp;
bool swap;

do
{ swap = false;

for (int count = 0; count < (size - 1); count++)
{

if (array[count] > array[count + 1])
{

temp = array[count];
array[count] = array[count + 1];
array[count + 1] = temp;
swap = true;

}
}

} while (swap); // Loop again if a swap occurred on this pass.
}

Let’s look more closely at the for loop that handles the comparisons and exchanges during
a pass. Here is its starting line:

for (int count = 0; count < (size - 1); count++)

The variable count holds the array subscripts. It starts at zero and is incremented as long
as it is less than size - 1. The value of size is the number of elements in the array, and
count stops just short of reaching this value because the following line compares each
element with the one after it:

if (array[count] > array[count + 1])

When array[count] is the next-to-last element, it will be compared to the last element. If
the for loop were allowed to increment count past size - 1, the last element in the array
would be compared to a value outside the array.

608 Chapter 9 Searching, Sorting, and Algorithm Analysis

Here is the if statement in its entirety:

if (array[count] > array[count + 1])
{

temp = array[count];
array[count] = array[count + 1];
array[count + 1] = temp;
swap = true;

}

If array[count] is greater than array[count + 1], the two elements must be
exchanged. First, the contents of array[count] is copied into the variable temp. Then
the contents of array[count + 1] is copied into array[count]. The exchange is made
complete when temp (which holds the previous contents of array[count]) is copied to
array[count + 1]. Last, the swap flag variable is set to true. This indicates that an
exchange has been made.

Program 9-4 demonstrates the bubble sort function in a complete program.

Program 9-4

1 // This program uses the bubble sort algorithm to sort an array
2 // of integers in ascending order.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void sortArray(int [], int);
8 void showArray(const int [], int);
9
10 int main()
11 {
12 const int SIZE = 6;
13
14 // Array of unsorted values
15 int values[SIZE] = {7, 2, 3, 8, 9, 1};
16
17 // Display the values
18 cout << "The unsorted values are:\n";
19 showArray(values, SIZE);
20
21 // Sort the values
22 sortArray(values, SIZE);
23
24 // Display them again
25 cout << "The sorted values are:\n";
26 showArray(values, SIZE);
27 return 0;
28 }
29

(program continues)

Introduction to Sorting Algorithms 609

The Selection Sort
The bubble sort is inefficient for large arrays because repeated data swaps are often
required to place a single item in its correct position. The selection sort, like the bubble
sort, places just one item in its correct position on each pass. However, it usually performs
fewer exchanges because it moves items immediately to their correct position in the array.

30 /**
31 * sortArray *
32 * This function performs an ascending-order bubble sort on *
33 * array. The parameter size holds the number of elements *
34 * in the array. *
35 **/
36 void sortArray(int array[], int size)
37 {
38 int temp;
39 bool swap;
40
41 do
42 { swap = false;
43 for (int count = 0; count < (size - 1); count++)
44 {
45 if (array[count] > array[count + 1])
46 {
47 temp = array[count];
48 array[count] = array[count + 1];
49 array[count + 1] = temp;
50 swap = true;
51 }
52 }
53 } while (swap); // Loop again if a swap occurred on this pass.
54 }
55
56 /***
57 * showArray *
58 * This function displays the contents of array. The *
59 * parameter size holds the number of elements in the array. *
60 ***/
61 void showArray(const int array[], int size)
62 {
63 for (int count = 0; count < size; count++)
64 cout << array[count] << " ";
65 cout << endl;
66 }

Program Output
The unsorted values are:
7 2 3 8 9 1
The sorted values are:
1 2 3 7 8 9

Program 9-4 (continued)

610 Chapter 9 Searching, Sorting, and Algorithm Analysis

Like any sort, it can be modified to sort in either ascending or descending order. An ascending
sort works like this: The smallest value in the array is located and moved to element 0.
Then the next smallest value is located and moved to element 1. This process continues
until all of the elements have been placed in their proper order.

Let’s see how the selection sort works when arranging the elements of the following array:

The selection sort scans the array, starting at element 0, and locates the element with the
smallest value. The contents of this element are then swapped with the contents of element
0. In this example, the 1 stored in element 5 is the smallest value, so it is swapped with the
5 stored in element 0. This completes the first pass and the array now appears as

The algorithm then repeats the process, but because element 0 already contains the smallest
value in the array, it can be left out of the procedure. For the second pass, the algorithm begins
the scan at element 1. It locates the smallest value in the unsorted part of the array, which is the
2 in element 2. Therefore, element 2 is exchanged with element 1. The array now appears as

Once again the process is repeated, but this time the scan begins at element 2. The
algorithm will find that element 5 contains the next smallest value and will exchange this
element’s contents with that of element 2, causing the array to appear as

Next, the scanning begins at element 3. Its contents is exchanged with that of element 5,
causing the array to appear as

At this point there are only two elements left to sort. The algorithm finds that the value in
element 5 is smaller than that of element 4, so the two are swapped. This puts the array in
its final arrangement:

 5 7 2 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 7 2 8 9 5

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 7 8 9 5

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 5 8 9 7

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 5 7 9 8

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 5 7 8 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Introduction to Sorting Algorithms 611

Here is the selection sort algorithm in pseudocode:

For startScan = 0 to the next-to-last array subscript
 Set index to startScan
 Set minIndex to startScan
 Set minValue to array[startScan]
 For index = (startScan + 1) to the last subscript in the array
 If array[index] is less than minValue
 Set minValue to array[index]
 Set minIndex to index
 End If
 Increment index
 End For
 Set array[minIndex] to array[startScan]
 Set array[startScan] to minValue
End For

The following function uses the selection sort to arrange the values in an integer array in
ascending order. It accepts two arguments. The first parameter, array, receives the array to
be sorted and the second, size, indicates how many values are stored in the array.

void selectionSort(int array[], int size)
{

 int startScan, minIndex, minValue;

 for (startScan = 0; startScan < (size - 1); startScan++)
 {

 minIndex = startScan;
 minValue = array[startScan];

 for (int index = startScan + 1; index < size; index++)
 {

 if (array[index] < minValue)
 {

 minValue = array[index];
 minIndex = index;

 }
 }
 array[minIndex] = array[startScan];
 array[startScan] = minValue;

 }
}

As with bubble sort, selection sort uses a pair of nested loops, in this case two for loops.
The inner loop sequences through the array, starting at array[startScan + 1], searching
for the element with the smallest value. When the element is found, its subscript is stored in
the variable minIndex, and its value is stored in minValue. The outer loop then exchanges
the contents of this element with array[startScan] and increments startScan. This
procedure repeats until the contents of every element have been moved to their proper
location. For N pieces of data this requires N-1 passes.

612 Chapter 9 Searching, Sorting, and Algorithm Analysis

Program 9-5 demonstrates the selection sort function in a complete program.

Program 9-5

1 // This program uses the selection sort algorithm to sort
2 // an array in ascending order.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void selectionSort(int [], int);
8 void showArray(const int [], int);
9
10 int main()
11 {
12 const int SIZE = 6;
13
14 // Array of unsorted values
15 int values[SIZE] = {5, 7, 2, 8, 9, 1};
16
17 // Display the values
18 cout << "The unsorted values are\n";
19 showArray(values, SIZE);
20
21 // Sort the array
22 selectionSort(values, SIZE);
23
24 // Display the values again
25 cout << "The sorted values are\n";
26 showArray(values, SIZE);
27 return 0;
28 }
29
30 /**
31 * selectionSort *
32 * This function performs an ascending-order selection sort *
33 * on array. The parameter size holds the number of elements *
34 * in the array. *
35 **/
36 void selectionSort(int array[], int size)
37 {
38 int startScan, minIndex, minValue;
39

(program continues)

Introduction to Sorting Algorithms 613

Checkpoint

9.5 True or false: Any sort can be modified to sort in either ascending or descending
order.

9.6 What one line of code would need to be modified in the bubble sort to make it sort
in descending, rather than ascending order? How would the revised line be written?

9.7 After one pass of bubble sort, which value is in order?

9.8 After one pass of selection sort, which value is in order?

9.9 Which sort usually requires fewer data values to be swapped, bubble sort or
selection sort?

40 for (startScan = 0; startScan < (size - 1); startScan++)
41 {
42 minIndex = startScan;
43 minValue = array[startScan];
44 for(int index = startScan + 1; index < size; index++)
45 {
46 if (array[index] < minValue)
47 {
48 minValue = array[index];
49 minIndex = index;
50 }
51 }
52 array[minIndex] = array[startScan];
53 array[startScan] = minValue;
54 }
55 }
56
57 /***
58 * showArray *
59 * This function displays the contents of array. The *
60 * parameter size holds the number of elements in the array. *
61 ***/
62 void showArray(const int array[], int size)
63 {
64 for (int count = 0; count < size; count++)
65 cout << array[count] << " ";
66 cout << endl;
67 }

Program Output
The unsorted values are
5 7 2 8 9 1
The sorted values are
1 2 5 7 8 9

Program 9-5 (continued)

614 Chapter 9 Searching, Sorting, and Algorithm Analysis

9.4 Sorting an Array of Objects

CONCEPT: Sorting algorithms can also be used to order elements in an array of objects
or structures.

Programs 9-4 and 9-5 illustrated how to sort an array of integers using bubble sort and
selection sort. These sorts could just as easily be used to sort array elements of any other
data type. Program 9-6 uses a bubble sort to sort Inventory objects, using the Inventory
class introduced earlier in this chapter. When sorting objects or structures, one must decide
which data item to sort on. For example, we could arrange Inventory objects in order by
itemCode, by description, or by price. To determine if two elements are out of order
and should be swapped, we compare only the values in the data member we are sorting on.
However, if the two array elements are found to be out of order, we swap the entire two
elements. This is illustrated in Program 9-6.

Program 9-6

1 // This program uses bubble sort to sort an array of objects.
2 // It places Inventory objects in ascending order by their itemCode.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 // Inventory class declaration
9 class Inventory
10 { private:
11 string itemCode;
12 string description;
13 double price;
14
15 public:
16 Inventory() // Default constructor
17 { itemCode = "XXX"; description = " "; price = 0.0; }
18
19 Inventory(string c, string d, double p) // 3 argument constructor
20 { itemCode = c;
21 description = d;
22 price = p;
23 }
24
25 // Add methods setCode, setDescription, and setPrice here.
26
27 // Get functions to retrieve member variable values
28 string getCode() const
29 { string code = itemCode;
30 return code;
31 }
32

(program continues)

Sorting an Array of Objects 615

33 string getDescription() const
34 { string d = description;
35 return d;
36 }
37
38 double getPrice() const
39 { return price;
40 }
41
42 }; // End Inventory class declaration
43
44 // Program that uses the Inventory class
45
46 // Function prototype
47 void displayInventory(const Inventory[], int);
48 void bubbleSort(Inventory[], int);
49
50 /***
51 * main *
52 ***/
53 int main()
54 {
55 const int SIZE = 6;
56
57 // Create and initialize the array of Inventory objects
58 Inventory silverware[SIZE] =
59 { Inventory("S15", "soup spoon", 2.35),
60 Inventory("S12", "teaspoon", 2.19),
61 Inventory("F15", "dinner fork", 3.19),
62 Inventory("F09", "salad fork" , 2.25),
63 Inventory("K33", "knife", 2.35),
64 Inventory("K41", "steak knife", 4.15) };
65
66 // Display the inventory
67 cout << "Here is the original data\n";
68 displayInventory(silverware, SIZE);
69
70 // Sort the objects by their itemCode
71 bubbleSort(silverware, SIZE);
72
73 // Display the inventory again
74 cout << "\nHere is the sorted data\n";
75 displayInventory(silverware, SIZE);
76
77 return 0;
78 } //End main
79

(program continues)

Program 9-6 (continued)

616 Chapter 9 Searching, Sorting, and Algorithm Analysis

80 /***
81 * displayInventory *
82 * This function displays the entire array. *
83 ***/
84 void displayInventory(const Inventory object[], int size)
85 {
86 for (int index = 0; index < size; index++)
87 { cout << setw(5) << left << object[index].getCode()
88 << setw(13) << left << object[index].getDescription()
89 << "$" << right << object[index].getPrice() << endl;
90 }
91 }// End displayInventory
92
93 /**
94 * bubbleSort *
95 * This function performs a bubble sort on Inventory *
96 * objects, arranging them in ascending itemCode order. *
97 **/
98 void bubbleSort(Inventory array[], int size)
99 {
100 Inventory temp; // Holds an Inventory object
101 bool swap;
102
103 do
104 { swap = false;
105 for (int count = 0; count < (size - 1); count++)
106 {
107 if (array[count].getCode() > array[count + 1].getCode())
108 {
109 temp = array[count];
110 array[count] = array[count + 1];
111 array[count + 1] = temp;
112 swap = true;
113 }
114 }
115 } while (swap);
116 }// End bubbleSort

Program Output
Here is the original data
S15 soup spoon $2.35
S12 teaspoon $2.19
F15 dinner fork $3.19
F09 salad fork $2.25
K33 knife $2.35
K41 steak knife $4.15

Here is the sorted data
F09 salad fork $2.25
F15 dinner fork $3.19
K33 knife $2.35
K41 steak knife $4.15
S12 teaspoon $2.19
S15 soup spoon $2.35

Program 9-6 (continued)

Sorting and Searching Vectors 617

Let’s take a closer look at the bubbleSort function. Line 107 contains the code that
compares the objects stored in two array elements. Notice that only the itemCode values
of the objects are compared and that these values are retrieved by using each object’s
getCode method.

Next look at lines 109 through 111 where the actual swap takes place when two objects are
out of order. Notice that the entire objects are swapped and that an entire object can be moved
in a single statement. It isn’t necessary to move each of the member variables one by one.

Finally, notice in line 100 that temp is defined as an Inventory object. Because it will be
used to temporarily hold an array element during each swap, and because the array elements
in this case are Inventory objects, temp must also be defined as an Inventory object.

9.5 Sorting and Searching Vectors

CONCEPT: The sorting and searching algorithms you have studied in this chapter can
be applied to STL vectors as well as to arrays.

In the previous chapter you learned about the vector class that is part of the Standard
Template Library (STL). Once you have properly defined an STL vector and populated
it with values, you may sort and search the vector with the algorithms presented in this
chapter. Simply substitute the vector syntax for the array syntax when necessary.

Program 9-7 modifies Program 9-4 to use a STL vector instead of an array.

Program 9-7

1 // This program uses the bubble sort algorithm to sort
2 // a vector of integers in ascending order.
3 #include <iostream>
4 #include <vector> // Needed to use vectors
5 using namespace std;
6
7 // Function prototypes
8 void displayVector(vector<int>);
9 void sortVector(vector<int> &);
10
11 int main()
12 {
13 const int SIZE = 6;
14
15 // Create a vector to hold a set of unsorted integers
16 vector<int> values(SIZE);
17
18 // Prompt the user to enter the values to be stored.
19 cout << "Please enter " << SIZE << " integers separated by spaces.\n";
20
21 for (int i = 0; i < SIZE; i++)
22 cin >> values[i];
23

(program continues)

618 Chapter 9 Searching, Sorting, and Algorithm Analysis

24 // Display the values
25 cout << "\nThe unsorted values entered are:\n";
26 displayVector(values);
27
28 // Sort the values
29 sortVector(values);
30
31 // Display them again
32 cout << "The sorted values are:\n";
33 displayVector(values);
34 return 0;
35 }
36
37 /**
38 * sortVector *
39 * This function performs an ascending-order bubble sort on *
40 * numbers, a vector of integers. *
41 **/
42 void sortVector(vector<int> &numbers)
43 { int temp;
44 bool swap;
45
46 do
47 { swap = false;
48 for (unsigned count = 0; count < numbers.size()-1; count++)
49 {
50 if (numbers[count] > numbers[count + 1])
51 {
52 temp = numbers[count];
53 numbers[count] = numbers[count + 1];
54 numbers[count + 1] = temp;
55 swap = true;
56 }
57 }
58 } while (swap);
59 }
60
61 /***
62 * displayVector *
63 * This function displays the contents of numbers, a *
64 * vector of integers. *
65 ***/
66 void displayVector(vector<int> numbers)
67 {
68 for (unsigned count = 0; count < numbers.size(); count++)
69 cout << numbers[count] << " ";
70 cout << endl;
71 }

Program 9-7 (continued)

Introduction to Analysis of Algorithms 619

Notice the similarities and differences between Program 9-7 and Program 9-4. The code in
Program 9-7 that sorts vectors is almost identical to the code in Program 9-4 that sorts
arrays. The differences lie in some details of initialization and argument passing.

First, notice that in Program 9-4 the array data is provided in an initialization list when the
array is created, but in Program 9-7 the data to be stored in the vector is input by the user.
This is done because vectors do not accept initialization lists. Second, notice that in Program
9-7 the vector is passed by reference to the sortVector function. This is necessary because,
unlike arrays, vectors are passed by value unless the programmer uses a reference variable
as a parameter. Finally, notice that in Program 9-7 we don’t have to pass the size of the
vector to the functions that work with it because the vector’s size member function can tell
us how many elements it holds. You may have noticed that the loop control variables in lines
48 and 68 of Program 9-7 are declared to be unsigned. This is because they are compared to
the value returned by the size function, and it returns an unsigned value. Some compilers
complain if an int variable is compared to an unsigned value.

9.6 Introduction to Analysis of Algorithms

CONCEPT: We can estimate the efficiency of an algorithm by counting the number of
steps it requires to solve a problem.

An algorithm is a mechanical step-by-step procedure for solving a problem and is the basic
strategy used in designing a program. There is often more than one algorithm that can be used to
solve a given problem. For example, we saw earlier in this chapter that the problem of searching
a sorted array can be solved by two different methods: sequential search and binary search.

How can we decide which of two algorithms for solving a problem is better? To answer this
question, we need to establish criteria for judging the “goodness” or efficiency of an algorithm.
The two criteria most often used are space and time. The space criterion refers to the amount
of memory the algorithm requires to solve the problem, while the time criterion refers to the
length of execution time. In this chapter, we will use the time criterion to evaluate the efficiency
of algorithms.

One possibility for comparing two algorithms is to code them and then time the execution
of the resulting C++ programs. This experimental approach can yield useful information,
but it has the following shortcomings:

• It measures the efficiency of programs rather than algorithms.

Program Output With Example Input Shown in Bold
Please enter 6 integers separated by spaces.
9 4 8 6 3 1[Enter]

The unsorted values entered are:
9 4 8 6 3 1
The sorted values are:
1 3 4 6 8 9

Program 9-7 (continued)

620 Chapter 9 Searching, Sorting, and Algorithm Analysis

• The results depend on the programming language used to code the algorithms, and
on the quality of the compiler used to generate machine code. The programs may run
faster or slower if they are coded in a different language, or compiled by a different
compiler.

• The results depend on how the operating system executes programs, and on the
nature of the hardware on which the programs are executing. The execution times
may be different if we run the programs on a different computer and a different
operating system.

• The results apply only to those inputs that were part of the execution runs and may
not be representative of the performance of the algorithms using a different set of
inputs.

A better approach is to count the number of basic steps an algorithm requires to
process an input of a given size. To make sense of this approach, we need more precise
definitions of what we mean by computational problem, problem input, input size, and
basic step.

Computational Problems and Basic Steps
A computational problem is a problem to be solved using an algorithm. Such a problem
is a collection of instances, with each instance specified by input data given in some
prescribed format. For example, if the problem P is to sort an array of integers, then an
instance of P is a specific integer array to be sorted. The size of an instance refers to the
amount of memory needed to hold the input data. The input size is usually given as a
number that allows us to infer the total number of bits occupied by the input data. If the
number of bits occupied by each entry of the array is fixed, say at 64 bits, then the length
of the array is a good measure of input size. In contrast, the length of the array is not a
good measure of input size if the size of array elements can vary and there is no fixed upper
bound on the size of these elements.

A step executed by an algorithm is a basic step (also called a basic operation) if the
algorithm can execute the step in time bounded by a constant regardless of the size of the
input. In sorting an array of integers, the step

Swap the elements in positions k and k+1

is basic because the time required to swap two array elements remains constant even if the
length of the array increases. In contrast, a step such as

Find the largest element of the array

is not basic because the time required to complete the step depends on the length of the
array. Intuitively, a basic step is one that could conceivably be built into the hardware of
some physical computer.

The definition of a basic step does not specify the size of the constant that bounds the time
required to execute the step. Ignoring the exact value of these constants reflects the reality
that the same operation may be executed with different speeds on different hardware, and
that an operation that can be executed with one hardware instruction on one computer
may require several hardware instructions on another computer. A consequence of this
definition is that we can count any constant number of basic steps as one basic step. For
example, an algorithm that executes 5n basic steps can accurately be described as
executing n basic steps.

Introduction to Analysis of Algorithms 621

It is important to realize that ordinary arithmetic and logic operations such as addition and
comparison are not basic unless a constant bound is put on the size of the numbers being
added or compared. The size of the bound does not matter as long as the bound is
constant. It may be 32, 64, 128, 1024 bits, or even larger, and these operations will still be
basic. In the following discussion, we assume that all the numbers used in our algorithms
as inputs, outputs, or computed intermediate results are bounded in size. This allows us to
consider operations on them as basic.

It only makes sense to describe an algorithm after we have described the problem it is
supposed to solve. A computational problem is described by stating what the input will
look like, how big it is, and what output the algorithm solving the problem is supposed to
produce. These must be described clearly, so there is no ambiguity, and generally, so the
algorithm can work with any data set that fits the description.

Let’s look at an example. Suppose the problem P is to sum all the integer values in a one-
dimensional array. We could describe the problem by saying that the input data is an array
of n integer values and that the output to be produced is the integer sum of these values.
Formally, this is written as follows:

INPUT: an integer array a[] of size n
SIZE OF INPUT: The number n of array entries
OUTPUT: An integer sum representing the sum total of the values stored in the array

Notice that the word INPUT used this way does not mean a set of data entered by the user,
but rather means the form of the data used by the algorithm solving the problem. Likewise,
the word OUTPUT used this way does not mean something displayed on the computer
screen by a program. It means the result created by the algorithm that solves the problem.
Because we have assumed all the array entries are of some fixed size, such as 32 or 64 bits,
the number n of elements in the array is a good measure of input size.

Once a computational problem has been described, there can be many different
algorithms designed to solve it. Some, of course, are better than others, as we will soon
see. Here is one possible algorithm for solving the computational problem just described.
Notice that it is expressed in pseudocode, rather than in C++ or any other particular
programming language.

Algorithm 1:
1: sum = 0
2: k = 0 //array index
3: While k < n do
4: sum = sum + a[k]
5: k = k + 1
6: End While

Complexity of Algorithms
We can measure the complexity of an algorithm that solves a computational problem
by determining the number of basic steps it requires for an input of size n. Let’s count
the number of steps required by Algorithm 1. The algorithm consists of two statements
on lines 1 and 2 that are each executed once and two statements inside a loop on lines
4 and 5 that will execute once each time the loop iterates. Recall that because the
statements on lines 1 and 2 perform basic operations they can be grouped together and
counted as one basic operation. Let’s call this operation A.

622 Chapter 9 Searching, Sorting, and Algorithm Analysis

Also, because both statements in the loop execute in constant time, independently of
the size of n, they are also basic operations. Since the loop body contains only basic
operations, the amount of time the algorithm takes to execute a single iteration of the
loop is also constant, and not dependent on the size of n. This allows us to count each
loop iteration as a single basic operation. Let’s call this operation B.

Operation A executes only one time, regardless of how big n is. Operation B executes
once each time the loop iterates. Because the loop iterates n times, operation B is executed
n times. Thus, the total number of operations performed is 1 + n. When n = 10, for
example, 11 operations are performed. When n = 1000, 1001 operations are performed.
When n = 10,000 the number of operations performed is 10,001. Notice that as n
becomes large, the 1 becomes insignificant and the number of operations performed is
approximately n. We thus say that the algorithm requires execution time proportional to
n to process an input set of size n.

There is another way we could look at Algorithm 1 and determine how many operations it
requires. The crucial operation in summing the values in an array is the addition of each
value to the variable accumulating the sum. This occurs in line 4, and there are as many
additions of array values as there are loop iterations.

Thus, we could get the same result by just counting additions of array elements. It turns
out that for most algorithms, it is sufficient to identify and count only one or two basic
operations that are in some way crucial to the problem being solved. For example, in many
array searching and sorting algorithms, it is sufficient to just count the number of
comparisons between array elements.

The array-summing algorithm just considered is particularly simple to analyze because it
performs the same amount of work for all input sets of a given size.

This is not the case with all algorithms. Consider the linear search algorithm introduced
earlier in this chapter. It searches through an array of values, looking for one that matches
a search key. Let’s call the key X. The input to the algorithm is the array of n values and the
key value X. The output of the algorithm is the subscript of the array location where the
value was located or, if it is not found, the determination that the loop control variable has
become larger than the subscript of the last array element. Formally, the problem can be
stated like this:

INPUT: An integer array a[] of size n, and an integer X
SIZE OF INPUT: The number n of array entries
OUTPUT: An integer k in the range 0 � k ≤ n – 1 such that a[k] = X, or k = n

Algorithm 2, shown here, uses the linear search algorithm to solve the problem.

Algorithm 2:
1: k = 0
2: While k < n and a[k] ≠ X do
3: k = k + 1
4: End While

This algorithm starts at one end and searches sequentially through the array. The
algorithm stops as soon as it encounters X, but will search the entire array if X is not in the
array. The algorithm may stop after making only one comparison (X is found in the first
entry examined), or it may not stop until it has made n comparisons (X is found in the last

Introduction to Analysis of Algorithms 623

place examined or is not in the array). In fact, the algorithm may perform m comparisons
where m is any value from 1 to n. In cases where an algorithm may perform different
amounts of work for different inputs of the same size, it is common to measure the
efficiency of the algorithm by the work done on an input of size n that requires the most
work. This is called measuring the algorithm by its worst-case complexity function.

Worst-Case Complexity of Algorithms
The worst-case complexity function f(n) of an algorithm is the number of steps it performs
on an input of size n that requires the most work. It gives an indication of the longest time
the algorithm will ever take to solve an instance of size n and is a good measure of
efficiency to use when we are looking for a performance guarantee.

Let’s determine the worst-case complexity of binary search, which was introduced earlier
in this chapter. This algorithm is used to locate an item X in an array sorted in ascending
order. The worst case occurs when X is not found in the array. In this case, as we will see,
the algorithm performs L + 1 steps, where L is the number of loop iterations.

Here is the binary search algorithm to search an array of n elements.

Algorithm 3:
 1: first = 0
 2: last = n - 1 // n - 1 is the subscript of the last element.
 3: found = false
 4: position = -1
 5: While found is not true and first <= last
 6: middle = (first + last) / 2
 7: If a[middle] = X
 8: found = true
 9: position = middle
10: Else if a[middle] > X
11: last = middle - 1
12: Else
13: first = middle + 1
14: End If
15: End While
16: // When the loop terminates, position holds the subscript
17: // where the value matching X was found, or holds –1 if
18: // the value was not found.

The algorithm consists of some initialization of variables followed by a loop. The
initialization requires constant time and can therefore be considered to be one basic
operation. Likewise, each iteration of the loop is a basic step because increasing the number
of entries in the array does not increase the amount of time required by a single iteration of
the loop. This shows that the number of steps required by binary search is L + 1. Now L is
approximately equal to the integer part of log2n, the logarithm of n to the base 2. To see
this, notice that the size of the array to be searched is initially n, and each iteration reduces
the size of the remaining portion of the array by approximately one half. Because each
loop iteration performs at most two comparisons, binary search performs a total of 2 log2n
comparisons. We can summarize our findings as follows:

In the worst case, binary search requires time proportional to log2n.

624 Chapter 9 Searching, Sorting, and Algorithm Analysis

Let’s look at one more algorithm to determine its worst-case complexity. The computational
problem to be solved is to arrange a set of n integers into ascending order.

INPUT: An array a[] of n integers
SIZE OF INPUT: The number n of array entries
OUTPUT: The array a[] rearranged so that a[0] � a[1] � . . . � a[n �1]

The algorithm we will use is a modification of the selection sort algorithm introduced
earlier in this chapter. This version scans for the largest element (instead of the smallest)
and moves it to the end in each pass.

Algorithm 4:
1: For (k = n-1; k ≥ 1; k --)
2: // a[0..k] is what remains to be sorted
3: Determine position p of largest entry in a[0..k]
4: Swap a[p] with a[k]
5: End For

To analyze the complexity of this algorithm, let’s begin by determining the number of array
entry comparisons it makes when sorting an array of n entries. These comparisons occur in
step 3. Step 3 is clearly not a basic step, as it requires time proportional to k, and k varies
with each iteration of the loop. To better see what is going on, let’s restate step 3 using
operations that are basic.

INPUT: array a[0..k] of k + 1 entries
SIZE OF INPUT: number k + 1 of array entries
3.0: p = 0 //Position of largest value in unsorted part of the array
3.1: For (m = 1; m ≤ k; m ++)
3.2: If a[m] > a[p] Then
3.3: p = m
3.4: End if
3.5: End For

We can see that the loop in lines 3.1 through 3.5 iterates k times and on line 3.2 makes one
comparison each time it iterates. Therefore this algorithm requires k comparisons between
array entries.

Now returning to the main sorting algorithm, we observe that there will be n �1 iterations
of the loop that starts at line 1 and ends at line 5, one iteration for each value of k in the
range n �1 to 1. On the first iteration, k equals n �1, so step 3, as we learned from the
analysis of lines 3.0 through 3.5, performs n �1 comparisons between array elements. On
the second iteration, k equals n �2, so step 3 performs n �2 comparisons. This continues
until, on the final iteration, k equals 1, and step 3 performs 1 comparison. Here is what it
looks like:

k = n �1: step 3 performs n �1 comparisons
k = n �2: step 3 performs n �2 comparisons
. .
k = 1: step 3 performs 1 comparison

Generalizing, we can thus say that for every value of k from n �1 to 1, on the kth
iteration, the step on line 3 will perform k comparisons.

Introduction to Analysis of Algorithms 625

Thus the total number of comparisons performed by this simple sorting algorithm is given
by the expression

1 + 2 + 3 + . . . + (n �1) = (n �1)n/2

For large n, this expression is very close to n2 / 2. So we say that:

In the worst case, selection sort requires time proportional to n2.

Average-Case Complexity
The worst-case complexity does not, however, give a good indication of how an algorithm
will perform in practical situations where inputs that yield worst-case performance are
rare. Often we are more interested in determining the complexity of the typical, or average
case. The average-case complexity function can be used when we know the relative
frequencies with which different inputs are likely to occur in practice. The average-case
complexity function uses these frequencies to form a weighted average of the number of
steps performed on each input. Unfortunately, although it yields a good measure of the
expected performance of an algorithm, accurate estimates of input frequencies may be
difficult to obtain.

Asymptotic Complexity and the Big O Notation
We can compare two algorithms F and G for solving a problem by comparing their
complexity functions. More specifically, if f(n) and g(n) are the complexity functions for
the two algorithms, we can compare the algorithms against each other by looking at
what happens to the ratio f(n)/g(n) when n gets large. This is easiest to understand if
this ratio tends to some limit. Let us consider some specific examples. Throughout, we
assume that f(n) � 1 and g(n) � 1 for all (n) � 1.

• f(n) = 3n2+ 5n and g(n) = n2. In this case

 → 3 as n → ∞

That is, the value of f(n)/g(n) gets closer and closer to 3 as n gets large. What this means is
that for very large input sizes F performs three times as many basic operations as G.
However, because the two algorithms differ in performance only by a constant factor, we
consider them to be equivalent in efficiency.

• f(n) = 3n2+ 5n and g(n) = 100n. In this case

 → ∞ as n → ∞

Here, the ratio f(n)/g(n) gets larger and larger as n gets large. This means F does a lot
more work than G on large input sizes. This makes G the better algorithm for large
inputs.

f n()
g n()
----------- 3n2 5n+

n2
--------------------- 3 5

n
---+= =

f n()
g n()
----------- 3n2 5n+

100n
--------------------- 3n

100
--------- 5

100
---------+= =

626 Chapter 9 Searching, Sorting, and Algorithm Analysis

• f(n) = 3n2+ 5n and g(n) = n3. In this case

 → 0 as n → ∞

This means that for large inputs the algorithm G is doing a lot more work than F, making
F the more efficient algorithm.

In general, we can compare two complexity functions f(n) and g(n) by looking at what
happens to f(n)/g(n) as n gets large. Although thinking in terms of a limit of this ratio is
helpful in comparing the two algorithms, we cannot assume that such a limit will always
exist. It turns out that a limit does not have to exist for us to gain useful information from
this ratio. We can usefully compare the two complexity functions if we can find a positive
constant K such that

 � K for all n � 1

If this can be done, it means that the algorithm F is no worse than K times G for large
problems. In this case, we say that f(n) is in O(g(n)), pronounced “f is in Big O of g.” The
condition that defines f(n) is in O(g(n)) is often written like this

f(n) � Kg(n) whenever n � 1.

Showing that f(n) is in O(g(n)) is usually straightforward. You look at the ratio f(n)/g(n)
and try to find a positive constant K that makes f(n)/g(n) � K for all n � 1. For example,
to show that 3n2 + 5n is in O(n2), look at the ratio

and notice that 5/n will be at most 5 for all n � 1. So 3 + 5/n � 8. Therefore for K = 8,
f(n) / g(n) � K.

To show that f(n) is not in O(g(n)), you have to show that there is no way to find a positive
K that will satisfy f(n) / g(n) � K for all n � 1. For example, the function 3n2 + 5n is not in
O(n) because there is no constant K that satisfies

 = 3n + 5 � K for all n � 1.

Although defined for functions, the “Big O” notation and terminology is also used to
characterize algorithms and computational problems. Thus, we say that an algorithm F is
in O(g(n)) for some function g(n) if the worst-case complexity function f(n) of F is in Big O
of g(n). Accordingly, sequential search of an array is in O(n) whereas binary search is in
O(log2 n).

Similarly, a computational problem is said to be in O(g(n)) if there exists an algorithm for
the problem whose worst-case complexity function is in O(g(n)). Thus, the problem of
sorting an array is in O(n2), whereas the problem of searching a sorted array is in O(log2 n).

If g(n) is a function, O(g(n)) can be regarded as a family of functions that grow no faster
than g(n). These families are called complexity classes, and a few of them are important
enough to merit specific names. We list them here in order of their rate of growth.

f n()
g n()
----------- 3n2 5n+

n3
--------------------- 3

n2
----- 5

n2
-----+= =

f n()
g n()

3n2 5n+

n2
--------------------- 3 5

n
---+=

3n2 5n+
n

Case Studies 627

1. O(1): A function f(n) is in this class if there is a constant K � 0 such that f(n) � K for
all n � 1. An algorithm whose worst-case complexity function is in this class is said
to run in constant time.

2. O(log2 n): Algorithms in this class run in logarithmic time. Because log n grows much
slower than n, a huge increase in the size of the problem results in only a small
increase in the running time of the algorithm. This complexity is characteristic of
search problems that eliminate half of the search space with each basic operation.
The binary search algorithm is in this class.

3. O(n): Algorithms in this class run in linear time. Any increase in the size of the
problem results in a proportionate increase in the running time of the algorithm. This
complexity is characteristic of algorithms like sequential search that make a single
pass, or a constant number of passes, over their input.

4. O(n log2 n): This class is called “n log n” time. An increase in the size of the problem results
in a slight increase in the running time of the algorithm. The average case complexity of
Quicksort, a sorting algorithm you will learn about in Chapter 14, is in this class.

5. O(n2): This class is called quadratic time. This performance is characteristic of
algorithms that make multiple passes over the input data using two nested loops. An
increase in the size of the problem causes a much greater increase in the running time
of the algorithm. The worst-case complexity functions of bubble sort, selection sort,
and Quicksort all lie in this class.

Checkpoint

9.10 What is a basic operation?

9.11 What is the worst-case complexity function of an algorithm?

9.12 One algorithm needs 10n basic operations to process an input of size n, and another
algorithm needs 25n basic operations to process the same input. Which of the two
algorithms is more efficient? Or are they equally efficient?

9.13 What does it mean to say that f(n) is in O(g(n))?

9.14 Show that 100n3 + 50n2 + 75 is in O(20n3) by finding a positive K that satisfies the
equation (100n3 + 50n2 + 75) / 20n3 ≤ K.

9.15 Assuming g(n) ≥ 1 for all n ≥ 1, show that every function in O(g(n) + 100) is also in
O(g(n)).

9.7 Case Studies
The following case studies, which contain applications of material introduced in Chapter 9,
can be found on the book’s companion website.

Demetris Leadership Center—Parts 1 & 2
Chapter 9 included programs illustrating how to search and sort arrays, including arrays of
objects. These two case studies illustrate how to search and sort arrays of structures. Both
studies develop programs for DLC, Inc., a fictional company that publishes books, DVDs, and
audio CDs. DLC’s inventory data, used by both programs, is stored in an array of structures.

Creating an Abstract Array Data Type—Part 2
The IntList class, begun as a case study in Chapter 8, is extended to include array
searching and sorting capabilities.

628 Chapter 9 Searching, Sorting, and Algorithm Analysis

9.8 Tying It All Together: Secret Messages

Now that you know how to search through an array to locate a desired item, we can write
a program to encode and decode secret messages. We will use a simple substitution cipher.
This means that for each character in a message, a different character will be substituted.
For example, if we substitute f for c, t for a, and x for t, then the word cat would be
written ftx. Can you guess what this message says?

*>P;HMAyJHyJH9|[3Lf

You’ll know if you run the message through the program decoder.

For this program we’ll create a CodeMaker class that has encode and decode functions.
When a CodeMaker object is created, the constructor will open the code.dat file that
contains the character substitutions to be used. This file is located, along with the
program source code file, in the Chapter 9 folder on the book’s companion website. Be
sure to place it in the project directory so the program can open and use it. There is one
substitution character for each of the printable ASCII characters, which are represented
by the decimal numbers 32 through 126. The program will read in these characters and
store them in a one-dimensional array of characters, using the ASCII code of the original
character, minus 32, as the index for the stored substitution character. So, for example,
the substitution for ASCII character 32, a blank, will be stored in array element 0. The
substitution for ASCII character 33, an exclamation point, will be in array element 1,
and so forth.

The code will be hard to break because even the blank space will be represented by another
character. So someone trying to read the code will not know where one word ends and the
next one begins.

When the encode method is called, it is passed a string holding the message to be encoded.
The method simply uses the ASCII code of each character in the string to compute the
array index where its replacement character is located. Once each character in the string
has been replaced, the string is returned.

When the decode method is called, it is passed a string holding an encoded message to be
turned back into its original, or plain text, form. However, this method cannot compute an
index to reverse the code. Instead, for each character in the string, it must do a search of
the array to locate it. When the character is found, its array subscript can be used to
compute the ASCII value of the original character. Once each character in the encoded
string has been translated back to its original form, the string is returned.

In addition to creating the CodeMaker class, we will also write a client program that does
the following:

• Creates a CodeMaker object.
• Has the user input a message and store it as a string.
• Calls the encode function, passing it the string.
• Displays the returned encoded string.
• Calls the decode function, passing it the encoded string.
• Displays the returned decoded string. This should equal the original message.

629

Program 9-8 does all of this.

Program 9-8

1 // This program encodes and decodes secret messages.
2 #include <iostream>
3 #include <fstream>
4 #include <string>
5 using namespace std;
6
7 class CodeMaker
8 {
9 private:
10 int size;
11 char codeChar[94]; // Array to hold the substitutions
12 // for the 94 printable ASCII chars
13 int findIt(char[], int, char);
14
15 public:
16 CodeMaker();
17 string encode(string);
18 string decode(string);
19 };
20
21 // Member function implementation section
22
23 /***
24 * CodeMaker::CodeMaker - the Constructor *
25 * This method reads the substitution characters in *
26 * from a file and stores them it the codeChar array.*
27 * It also sets member variable size. *
28 ***/
29 CodeMaker::CodeMaker()
30 {
31 size = 94;
32 ifstream inFile;
33 inFile.open("code.dat"); // Open the file
34
35 for (int ascii = 32; ascii < 127; ascii++) // Read in data
36 inFile >> codeChar[ascii - 32];
37 inFile.close(); // Close the file
38 }
39
40 /***
41 * CodeMaker::encode *
42 * This method encodes and returns a clear text string.*
43 ***/
44 string CodeMaker::encode(string s)
45 {
46 int ascii;
47 char newChar;
48 string newString = ""; // Will hold the encoded string
49

(program continues)

Tying It All Together: Secret Messages

630 Chapter 9 Searching, Sorting, and Algorithm Analysis

50 for (unsigned pos = 0; pos < s.length(); pos++)
51 {
52 // Get the original character's ASCII code
53 ascii = s[pos];
54
55 // Get the new replacement character
56 newChar = codeChar[ascii - 32];
57
58 // Concatenate it onto the end of the new string
59 newString += newChar;
60 }
61 return newString;
62 }
63
64 /***
65 * CodeMaker::decode *
66 * This method converts an encoded string back to *
67 * clear text and returns it. *
68 ***/
69 string CodeMaker::decode(string s)
70 {
71 int index;
72 char nextChar;
73 char originalChar;
74 string decodedText = "";
75
76 for (unsigned pos = 0; pos < s.length(); pos++)
77 {
78 // Get the next character from the string
79 nextChar = s[pos];
80
81 // Call findIt to find it in the array and return its index
82 index = findIt(codeChar, size, nextChar);
83
84 // Get the original character by computing its ASCII code
85 originalChar = index + 32;
86
87 // Concatenate this character onto the end of the
88 // decoded text string being constructed
89 decodedText += originalChar;
90 }
91 return decodedText;
92 }
93
94 /**
95 * CodeMaker::findIt *
96 * This method performs a linear search on *
97 * a character array looking for value. *
98 **/

(program continues)

Program 9-8 (continued)

631Tying It All Together: Secret Messages

99 int CodeMaker::findIt (char A[], int size, char value)
100 {
101 int index = 0;
102 int position = -1;
103 bool found = false;
104
105 while (index < size && !found)
106 {
107 if (A[index] == value) // If the value is found
108 { found = true; // Set the flag
109 position = index; // Record the value's subscript
110 }
111 index++; // Go to the next element
112 }
113 return position; // Return the position, or -1
114 }
115
116 /**
117 * main *
118 * The client "program" that uses the CodeMaker class.*
119 **/
120 int main()
121 {
122 string originalText, secretCode, finalText;
123 CodeMaker myCoder;
124
125 // Get text from the user
126 cout << "Enter the message to be encoded.\n";
127 getline(cin, originalText);
128
129 // Send the text to be encoded and display the result
130 secretCode = myCoder.encode(originalText);
131 cout << "\nHere is the encoded message\n" << secretCode << endl;
132
133 // Send the encoded text back to be decoded
134 // and display the result
135 finalText = myCoder.decode(secretCode);
136 cout << "\nHere is the decoded message\n" << finalText << endl;
137
138 return 0;
139 }

Program Output with Example Input Shown in Bold
Enter the message to be encoded.
I can write a secret message.[Enter]

Here is the encoded message.
xH43DHP|yL[H3HJ[4|[LH=[JJ39[f

Here is the decoded message.
I can write a secret message.

Program 9-8 (continued)

632 Chapter 9 Searching, Sorting, and Algorithm Analysis

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The _________ search algorithm steps sequentially through an array, comparing each
item with the search value.

2. The _________ search algorithm repeatedly divides the portion of an array being
searched in half.

3. The _________ search algorithm is adequate for small arrays but not large arrays.

4. The _________ search algorithm requires that the array’s contents be sorted.

5. The average number of comparisons performed by linear search to find an item in an
array of N elements is _________.

6. The maximum number of comparisons performed by linear search to find an item in
an array of N elements is _________.

7. A linear search will find the value it is looking for with just one comparison if that
value is stored in the _________ array element.

8. A binary search will find the value it is looking for with just one comparison if that
value is stored in the _________ array element.

9. In a binary search, after three comparisons have been made, only ________ of the
array will be left to search.

10. The maximum number of comparisons that a binary search function will make when
searching for a value in a 2,000-element array is ________.

11. If an array is sorted in ________ order, the values are stored from lowest to highest.

12. If an array is sorted in ________ order, the values are stored from highest to lowest.

13. Bubble sort places ________ number(s) in place on each pass through the data.

14. Selection sort places ________ number(s) in place on each pass through the data.

15. To sort N numbers, bubble sort continues making passes through the array until
________.

16. To sort N numbers, selection sort makes ________ passes through the data.

17. Why is selection sort more efficient than bubble sort on large arrays?

18. Which sort, bubble sort or selection sort, would require fewer passes to sort a set of
data that is already in the desired order?

19. Complete the following table by calculating the average and maximum number of
comparisons the linear search will perform, and the maximum number of comparisons
the binary search will perform.

Array Size
50
Elements

500
Elements

10,000
Elements

100,000
Elements

10,000,000
Elements

Linear Search
(Average Comparisons)

Linear Search
(Maximum Comparisons)

Binary Search
(Maximum Comparisons)

Review Questions and Exercises 633

Algorithm Workbench

20. Assume that empName and empID are two parallel arrays of size numEmp that hold
employee data. Write a pseudocode algorithm that sorts the empID array in ascending
ID number order (using any sort you wish), such that the two arrays remain parallel.
That is, after sorting, for all indexes in the arrays, empName[index] must still be the
name of the employee whose ID is in empID[index].

21. Assume an array of structures is in order by the customerID field of the record, where
customer IDs go from 101 to 500.

A) Write the most efficient pseudocode algorithm you can to find the record with a
specific customerID if every single customer ID from 101 to 500 is used and the
array has 400 elements.

B) Write the most efficient pseudocode algorithm you can to find a record with a
customer ID near the end of the IDs, say 494, if not every single customer ID in
the range of 101 to 500 is used and the array size is only 300.

Soft Skills

Deciding how to organize and access data is an important part of designing a program.
You are already familiar with many structures and methods that allow you to organize
data. These include one-dimensional arrays, vectors, multidimensional arrays, parallel
arrays, structures, classes, arrays of structures, and arrays of class objects. You are also
now familiar with some techniques for arranging (i.e., sorting) data and for locating (i.e.,
searching for) data items.

22. Team up with two to three other students and jointly decide how you would organize,
order, and locate the data used in the following application. Be prepared to present
your group’s design to the rest of the class.

The program to be developed is a menu-driven program that will keep track of
parking tickets issued by the village that is hiring you. When a ticket is issued the
program must be able to accept and store the following information: ticket number,
officer number, vehicle license plate state and number, location, violation code (this
indicates which parking law was violated), and date and time written. The program
must store information on the amount of the fine associated with each violation code.
When a ticket is paid the program must be able to accept and store the information
that it has been paid, the amount of the payment, and the date the payment was
received. The program must be able to accept inquiries such as displaying the entire
ticket record when a ticket number is entered. The program must also be able to
produce the following reports:

• A list of all tickets issued on a specific date, ordered by ticket number
• A list of all tickets for which payment was received on a specific date and the total

amount of money collected that day
• A report of all tickets issued in a one-month period, ordered by officer number,

with a count of how many tickets each officer wrote
• A report of all tickets that have not yet been paid, or for which payment received

was less than payment due, ordered by vehicle license number

634 Chapter 9 Searching, Sorting, and Algorithm Analysis

Programming Challenges
These programming challenges can all be written either with or without the use of classes.
Your instructor will tell you which approach you should use.

1. Charge Account Validation

Write a program that lets the user enter a charge account number. The program should
determine if the number is valid by checking for it in the following list:

5658845 4520125 7895122 8777541 8451277 1302850
8080152 4562555 5552012 5050552 7825877 1250255
1005231 6545231 3852085 7576651 7881200 4581002

Initialize a one-dimensional array with these values. Then use a simple linear search to
locate the number entered by the user. If the user enters a number that is in the array, the
program should display a message saying the number is valid. If the user enters a number
not in the array, the program should display a message indicating it is invalid.

2. Lottery Winners

A lottery ticket buyer purchases ten tickets a week, always playing the same ten five-digit
“lucky” combinations. Write a program that initializes an array with these numbers and
then lets the player enter this week’s winning five-digit number. The program should
perform a linear search through the list of the player’s numbers and report whether or not
one of the tickets is a winner this week. Here are the numbers:

13579 26791 26792 33445 55555
62483 77777 79422 85647 93121

3. Lottery Winners Modification

Modify the program you wrote for Programming Challenge 2 (Lottery Winners) so it
performs a binary search instead of a linear search.

4. Annual Rainfall Report

Write a program that displays the name of each month in a year and its rainfall amount,
sorted in order of rainfall from highest to lowest. The program should use an array of
structures, where each structure holds the name of a month and its rainfall amount. Use a
constructor to set the month names. Make the program modular by calling on different
functions to input the rainfall amounts, to sort the data, and to display the data.

5. Hit the Slopes

Write a program that can be used by a ski resort to keep track of local snow conditions
for one week. It should have a seven-element array of structures, where each structure
holds a date and the number of inches of snow in the base on that date. The program
should have the user input the name of the month, the starting and ending date of the
seven-day period being measured, and then the seven base snow depths. The program
should then sort the data in ascending order by base depth and display the results. Here
is a sample report.

VideoNote

Solving the
Lottery Winners
Problem

Review Questions and Exercises 635

Snow Report December 12 – 18
Date Base
 13 42.3
 12 42.5
 14 42.8
 15 43.1
 18 43.1
 16 43.4
 17 43.8

6. String Selection Sort

Modify the selectionSort function presented in this chapter so it sorts an array of
strings instead of an array of ints. Test the function with a driver program. Use Program 9-9
as a skeleton to complete.

7. Binary String Search

Modify the binarySearch function presented in this chapter so it searches an array of
strings instead of an array of ints. Test the function with a driver program. Use Program 9-8
as a skeleton to complete. (The array must be sorted before the binary search will work.)

8. Search Benchmarks

Write a program that has an array of at least 20 integers. It should call a function that uses
the linear search algorithm to locate one of the values. The function should keep a count of
the number of comparisons it makes until it finds the value. The program then should call
a function that uses the binary search algorithm to locate the same value. It should also
keep count of the number of comparisons it makes. Display these values on the screen.

9. Sorting Benchmarks

Write a program that uses two identical arrays of at least 20 integers. It should call a
function that uses the bubble sort algorithm to sort one of the arrays in ascending order.
The function should count the number of exchanges it makes. The program should then
call a function that uses the selection sort algorithm to sort the other array. It should also
count the number of exchanges it makes. Display these values on the screen.

Program 9-9

 // Include needed header files here.

 int main()
 {
 const int SIZE = 20;

 string name[SIZE] =
 {"Collins, Bill", "Smith, Bart", "Michalski, Joe", "Griffin, Jim",
 "Sanchez, Manny", "Rubin, Sarah", "Taylor, Tyrone", "Johnson, Jill",
 "Allison, Jeff", "Moreno, Juan", "Wolfe, Bill", "Whitman, Jean",
 "Moretti, Bella", "Wu, Hong", "Patel, Renee", "Harrison, Rose",
 "Smith, Cathy", "Conroy, Pat", "Kelly, Sean", "Holland, Beth"};

 // Insert your code to complete this program.
 }

636 Chapter 9 Searching, Sorting, and Algorithm Analysis

10. Sorting Orders

Write a program that uses two identical arrays of eight integers. It should display the contents
of the first array, then call a function to sort it using an ascending order bubble sort, modified
to print out the array contents after each pass of the sort. Next the program should display the
contents of the second array, then call a function to sort it using an ascending order selection
sort, modified to print out the array contents after each pass of the sort.

11. Ascending Circles

Program 8-28 from Chapter 8 creates an array of four Circle objects, then displays the
area of each object. Using a copy of that program as a starting point, modify it to create an
array of eight Circle objects initialized with the following radii: 2.5, 4.0, 1.0, 3.0, 6.0,
5.5, 3.5, 2.0. Then use a bubble sort to arrange the objects in ascending order of radius size
before displaying the area of each object.

12. Modified Bin Manager Class

Modify the BinManager class you wrote for Programming Challenge 15 in Chapter 8 to
overload its getQuantity, addParts, and removeParts functions as shown here:

bool addParts(string itemDescription, int q);
bool removeParts(string itemDescription, int q)
int getQuantity(string itemDescription);

These new functions allow parts to be added, parts to be removed, and the quantity in
stock for a particular item to be retrieved by using an item description, rather than a bin
number, as an argument. In addition to writing the three overloaded functions, you will
need to create a private BinManager class function that uses the item description as a
search key to locate the index of the desired bin.

Test the new class functions with the same client program you wrote for Programming
Challenge 15 in Chapter 8, modifying it to call the new functions. Be sure to use some
descriptions that match bins in the array and some that do not.

As you did in the previous Bin Manager program, if an add or remove operation is
successfully carried out, make the function return true. If it cannot be done—for example,
because the string passed to it does not match any item description in the array—make the
function return false. If the getQuantity function cannot locate any item whose
description matches the one passed to it, make it return −1.

13. Using Files—String Selection Sort Modification

Modify the program you wrote for Programming Challenge 6 so it reads in the 20 strings
from a file. The data can be found in the names.dat file.

14. Using Vectors—String Selection Sort Modification

Modify the program you wrote for Programming Challenge 13 so it stores the names in a
vector of strings, rather than in an array of strings. Create the vector without specifying a
size and then use the push_back member function to add an element holding each string to
the vector as it is read in from a file. Instead of assuming there are always 20 strings, read
in the strings and add them to the vector until there is no data left in the file. The data can
be found in the names.dat file.

637

C
H

A
P

T
E

R

10 Pointers

10.1 Pointers and the Address Operator

CONCEPT: Every variable is assigned a memory location whose address can be retrieved
using the address operator &. The address of a memory location is called a
pointer.

Every variable in an executing program is allocated a section of memory large enough to
hold a value of that variable’s type. Current C++ compilers that run on PCs usually
allocate a single byte to variables of type char, two bytes to variables of type short, four
bytes to variables of type float and long, and 8 bytes to variables of type double.

TOPICS

10.1 Pointers and the Address Operator
10.2 Pointer Variables
10.3 The Relationship Between Arrays

and Pointers
10.4 Pointer Arithmetic
10.5 Initializing Pointers
10.6 Comparing Pointers
10.7 Pointers as Function Parameters
10.8 Pointers to Constants and Constant

Pointers
10.9 Focus on Software Engineering:

Dynamic Memory Allocation

10.10 Focus on Software Engineering:
Returning Pointers from Functions

10.11 Pointers to Class Objects and
Structures

10.12 Focus on Software Engineering:
Selecting Members of Objects

10.13 United Cause Relief Agency
Case Study

10.14 Tying It All Together: Pardon Me, Do
You Have the Time?

638 Chapter 10 Pointers

Each byte of memory has a unique address. A variable’s address is the address of the
first byte allocated to that variable. Suppose that the following variables are defined in a
program:

char letter;
short number;
float amount;

Figure 10-1 illustrates how they might be arranged in memory and shows their addresses.

In Figure 10-1, the variable letter is shown at address 1200, number is at address 1201,
and amount is at address 1203.

The addresses of the variables shown in Figure 10.1 are somewhat arbitrary and are used
for illustrative purposes only. In fact, most compilers allocate space in such a way that
individual variables are always assigned even addresses. This is because current computer
hardware can access data that resides at even addresses faster than data that resides at odd
addresses.

C++ has an address operator & that can be used to retrieve the address of any variable. To
use it, place it before the variable whose address you want. Here is an expression that
returns the address of the variable amount:

&amount

And here is a statement that displays the variable’s address to the screen:

cout << long(&amount);

By default, C++ prints addresses in hexadecimal. Here we have used a function-style cast to
long to make the address print in the usual decimal format. Program 10-1 demonstrates
the use of the address operator to display addresses of variables.

Figure 10-1

Program 10-1

1 // This program uses the & operator to determine a
2 // variable's address.
3 #include <iostream>
4 using namespace std;
5
6 char letter;
7 short number;
8 float amount

(program continues)

letter

1200

number

1201

amount

1203

Pointer Variables 639

The value &amount specifies the location of the variable amount in the computer’s
memory: in a sense, it points to amount. A value that represents the address of a memory
location, or holds the address of some variable, is called a pointer.

10.2 Pointer Variables

CONCEPT: A pointer variable is a variable that holds addresses of memory locations.

Like other data values, memory addresses, or pointer values, can be stored in variables of
the appropriate type. A variable that stores an address is called a pointer variable, but is
often simply referred to as just a pointer. The definition of a pointer variable, say ptr, must
specify the type of data that ptr will point to. Here is an example:

int *ptr;

The asterisk before the variable name indicates that ptr is a pointer variable, and the int
data type indicates that ptr can only be used to point to, or hold addresses of, integer
variables. This definition is read as “ptr is a pointer to int.” It is also useful to think of
*ptr as the “variable that ptr points to.” With this view, the definition of ptr just given can
be read as “the variable that ptr points to has type int.” Because the asterisk (*) allows you
to pass from a pointer to the variable being pointed to, it is called the indirection operator.

9 double profit;
10 char ch;
11
12 int main()
13 {
14 // Print address of each variable
15 // The cast to long makes addresses print in decimal
16 // rather than in hexadecimal
17 cout << "Address of letter is: "
18 << long(&letter) << endl;
19 cout << "Address of number is: "
20 << long(&number) << endl;
21 cout << "Address of amount is: "
22 << long(&amount) << endl;
23 cout << "Address of profit is: "
24 << long(&profit) << endl;
25 cout << "Address of ch is: "
26 << long(&ch) << endl;
27 return 0;
28 }

Program Output
Address of letter is: 4468752
Address of number is: 4468754
Address of amount is: 4468756
Address of profit is: 4468760
Address of ch is: 4468768

Program 10-1 (continued)

VideoNote

Pointer
Variables

640 Chapter 10 Pointers

Some programmers prefer to declare pointers with the asterisk next to the type name,
rather than the variable name. For example, the declaration shown above could be
written as:

int* ptr;

This style of declaration might visually reinforce the fact that ptr’s data type is not int,
but pointer-to-int. Both declaration styles are correct.

Program 10-2 demonstrates a very simple usage of a pointer: storing and printing the
address of another variable.

In Program 10-2, two variables are defined: x and ptr. The variable x is an int, while ptr
is a pointer to an int. The variable x is initialized with 25, while ptr is assigned the
address of x with the following statement:

ptr = &x;

Figure 10-2 illustrates the relationship between ptr and x.

As shown in Figure 10-2, the variable x is located at memory address 0x7e00 and contains
the number 25, while the pointer ptr contains the address 0x7e00. In essence, ptr
“points” to the variable x.

Program 10-2

1 // This program stores the address of a variable in a pointer.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int x = 25; // int variable
8 int *ptr; // Pointer variable, can point to an int
9
10 ptr = &x; // Store the address of x in ptr
11 cout << "The value in x is " << x << endl;
12 cout << "The address of x is " << ptr << endl;
13 return 0;
14 }

Program Output
The value in x is 25
The address of x is 0x7e00

Figure 10-2

x

25
ptr

0x7e00 Address of x: 0x7e00

Pointer Variables 641

You can use a pointer to indirectly access and modify the variable being pointed to.
In Program 10-2, for instance, ptr could be used to change the contents of the
variable x. When the indirection operator is placed in front of a pointer variable
name, it dereferences the pointer. When you are working with a dereferenced pointer,
you are actually working with the value the pointer is pointing to. This is
demonstrated in Program 10-3.

Every time the expression *ptr appears in Program 10-3, the program indirectly uses the
variable x. The following cout statement displays the value in x twice:

cout << x << " " << *ptr << endl;

And the following statement stores 100 in x:

*ptr = 100;

With the indirection operator, ptr can be used to indirectly access the variable it
is pointing to. Program 10-4 demonstrates that pointers can point to different
variables.

Program 10-3

1 // This program demonstrates the use of the indirection
2 // operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 25; // int variable
9 int *ptr; // Pointer variable, can point to an int
10
11 ptr = &x; // Store the address of x in ptr
12
13 // Use both x and ptr to display the value in x
14 cout << "Here is the value in x, printed twice:\n";
15 cout << x << " " << *ptr << endl;
16
17 // Assign 100 to the location pointed to by ptr
18 // This will actually assign 100 to x.
19 *ptr = 100;
20
21 // Use both x and ptr to display the value in x
22 cout << "Once again, here is the value in x:\n";
23 cout << x << " " << *ptr << endl;
24 return 0;
25 }

Program Output
Here is the value in x, printed twice:
25 25
Once again, here is the value in x:
100 100

642 Chapter 10 Pointers

Program 10-4

1 // This program demonstrates the ability of a pointer to
2 // point to different variables.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 25, y = 50, z = 75; // Three int variables
9 int *ptr; // Pointer variable
10
11 // Display the contents of x, y, and z
12 cout << "Here are the values of x, y, and z:\n";
13 cout << x << " " << y << " " << z << endl;
14
15 // Use the pointer to manipulate x, y, and z
16
17 ptr = &x; // Store the address of x in ptr
18 *ptr *= 2; // Multiply value in x by 2
19
20 ptr = &y; // Store the address of y in ptr
21 *ptr *= 2; // Multiply value in y by 2
22
23 ptr = &z; // Store the address of z in ptr
24 *ptr *= 2; // Multiply value in z by 2
25
26 // Display the contents of x, y, and z
27 cout << "Once again, here are the values "
28 << "of x, y, and z:\n";
29 cout << x << " " << y << " " << z << endl;
30 return 0;
31 }

Program Output
Here are the values of x, y, and z:
25 50 75
Once again, here are the values of x, y, and z:
50 100 150

NOTE: So far you’ve seen three different uses of the asterisk in C++:

• As the multiplication operator, in statements such as

distance = speed * time;

• In the definition of a pointer variable, such as

int *ptr;

• As the indirection operator, in statements such as

*ptr = 100;

The Relationship Between Arrays and Pointers 643

10.3 The Relationship Between Arrays and Pointers

CONCEPT: Array names can be used as pointer constants, and pointers can be used as
array names.

You learned earlier that an array name, without brackets and a subscript, actually
represents the starting address of the array. This means that an array name is really a
pointer. Program 10-5 illustrates this by showing an array name being used with the
indirection operator.

Because numbers works like a pointer to the starting address of the array in Program 10-5,
the first element is retrieved when numbers is dereferenced. So, how could the entire
contents of an array be retrieved using the indirection operator? Remember, array elements
are stored together in memory, as illustrated in Figure 10-3.

It makes sense that if numbers is the address of numbers[0], values could be added to
numbers to get the addresses of the other elements in the array. It’s important to know,
however, that pointers do not work like regular variables when used in mathematical
statements. In C++, when you add a value to a pointer, you are actually adding that value
times the size of the data type being referenced by the pointer. In other words, if you add

Program 10-5

1 // This program shows an array name being dereferenced with the *
2 // operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 short numbers[] = {10, 20, 30, 40, 50};
9
10 cout << "The first element of the array is ";
11 cout << *numbers << endl;
12 return 0;
13 }

Program Output
The first element of the array is 10

Figure 10-3

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

numbers

644 Chapter 10 Pointers

one to numbers, you are actually adding 1 * sizeof(short) to numbers. If you add two
to numbers, the result is numbers + 2 * sizeof(short), and so forth. On a PC, this
means the following are true, because short integers typically use 2 bytes:

*(numbers + 1) is the value at address numbers + 1 * 2
*(numbers + 2) is the value at address numbers + 2 * 2
*(numbers + 3) is the value at address numbers + 3 * 2

and so forth.

This automatic conversion means that an element in an array can be retrieved by using its
subscript or by adding its subscript to a pointer to the array. If the expression *numbers,
which is the same as *(numbers + 0), retrieves the first element in the array, then
*(numbers + 1) retrieves the second element. Likewise, *(numbers + 2) retrieves the third
element, and so forth. Figure 10-4 shows the equivalence of subscript notation and pointer
notation.

Program 10-6 shows the entire contents of the array being accessed, using pointer notation.

Figure 10-4

NOTE: The parentheses are critical when adding values to pointers. The * operator
has precedence over the + operator, so the expression *numbers + 1 is not equivalent to
*(numbers + 1). The expression *numbers + 1 adds one to the contents of the first
element of the array, while *(numbers + 1) adds one to the address in numbers, then
dereferences it.

Program 10-6

1 // This program processes an array using pointer notation.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int SIZE = 5; // Size of the array
8 int numbers[SIZE]; // Array of integers
9
10 // Get values to store in the array
11 // Use pointer notation instead of subscripts
12 cout << "Enter " << SIZE << " numbers: ";
13 for (int count = 0; count < SIZE; count++)
14 cin >> *(numbers + count);
15

(program continues)

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

*numbers *(numbers+1) *(numbers+2) *(numbers+3) *(numbers+4)

The Relationship Between Arrays and Pointers 645

When working with arrays, remember the following rule:

array[index] is equivalent to *(array + index)

To demonstrate just how close the relationship is between array names and pointers, look
at Program 10-7. It defines an array of doubles and a double pointer, which is assigned
the starting address of the array. Not only is pointer notation then used with the array
name, but subscript notation is used with the pointer!

16 // Display the values in the array
17 // Use pointer notation instead of subscripts
18 cout << "Here are the numbers you entered:\n";
19 for (int count = 0; count < SIZE; count++)
20 cout << *(numbers + count) << " ";
21 cout << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
Enter 5 numbers: 5 10 15 20 25[Enter]
Here are the numbers you entered:
5 10 15 20 25

WARNING! Remember that C++ performs no bounds checking with arrays. When
stepping through an array with a pointer, it’s possible to give the pointer an address outside
of the array.

Program 10-7

1 // This program uses subscript notation with a pointer
2 // variable and pointer notation with an array name.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int NUM_COINS = 5;
10 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
11 double *doublePtr; // Pointer to a double
12
13 // Assign the address of the coins array to doublePtr
14 doublePtr = coins;
15
16 // Display the contents of the coins array
17 // Use subscripts with the pointer!
18 cout << setprecision(2);
19 cout << "Here are the values in the coins array:\n";
20 for (int count = 0; count < NUM_COINS; count++)
21 cout << doublePtr[count] << " ";
22

(program continues)

Program 10-6 (continued)

646 Chapter 10 Pointers

Notice that the address operator is not needed when an array’s address is assigned to a
pointer. Since the name of an array is already an address, use of the & operator would be
incorrect. You can, however, use the address operator to get the address of an individual
element in an array. For instance, &numbers[1] gets the address of numbers[1]. This
technique is used in Program 10-8.

23 // Display the contents of the coins array again, but
24 // this time use pointer notation with the array name!
25 cout << "\nAnd here they are again:\n";
26 for (int count = 0; count < NUM_COINS; count++)
27 cout << *(coins + count) << " ";
28 cout << endl;
29 return 0;
30 }

Program Output
Here are the values in the coins array:
0.05 0.1 0.25 0.5 1
And here they are again:
0.05 0.1 0.25 0.5 1

Program 10-8

1 // This program uses the address of each element in the array.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 const int NUM_COINS = 5;
9 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
10 double *doublePtr; // Pointer to a double
11
12 // Use the pointer to display the values in the array
13 cout << setprecision(2);
14 cout << "Here are the values in the coins array:\n";
15 for (int count = 0; count < NUM_COINS; count++)
16 {
17 doublePtr = &coins[count];
18 cout << *doublePtr << " ";
19 }
20 cout << endl;
21 return 0;
22 }

Program Output
Here are the values in the coins array:
0.05 0.1 0.25 0.5 1

Program 10-7 (continued)

Pointer Arithmetic 647

The only difference between array names and pointer variables is that you cannot change
the address an array name points to. For example, given the following definitions:

double readings[20], totals[20];
double *dptr;

These statements are legal:

dptr = readings; // Make dptr point to readings
dptr = totals; // Make dptr point to totals

But these are illegal:

readings = totals; // ILLEGAL! Cannot change readings
totals = dptr; // ILLEGAL! Cannot change totals

Array names are pointer constants. You can’t make them point to anything but the array
they represent.

10.4 Pointer Arithmetic

CONCEPT: Some mathematical operations may be performed on pointers.

The contents of pointer variables may be changed with mathematical statements that
perform addition or subtraction. This is demonstrated in Program 10-9. The first loop
increments the pointer variable, stepping it through each element of the array. The second
loop decrements the pointer, stepping it through the array backwards.

Program 10-9

1 // This program uses a pointer to display
2 // the contents of an array.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 8;
9 int set[] = {5, 10, 15, 20, 25, 30, 35, 40};
10 int *numPtr; // Pointer
11
12 // Make numPtr point to the set array
13 numPtr = set;
14
15 // Use the pointer to display the array elements
16 cout << "The numbers in set are:\n";
17 for (int index = 0; index < SIZE; index++)
18 {
19 cout << *numPtr << " ";
20 numPtr++;
21 }
22

(program continues)

648 Chapter 10 Pointers

Not all arithmetic operations may be performed on pointers. For example, you cannot use
multipication or division with pointers. The following operations are allowable:

• The ++ and -- operators may be used to increment or decrement a pointer variable.
• An integer may be added to or subtracted from a pointer variable. This may be

performed with the + and - operators, or the += and -= operators.
• A pointer may be subtracted from another pointer.

10.5 Initializing Pointers

CONCEPT: Pointers may be initialized with the address of an existing object.

Remember that a pointer is designed to point to an object of a specific data type. When a
pointer is initialized with an address, it must be the address of an object the pointer can point
to. For instance, the following definition of pint is legal because myValue is an integer:

int myValue;
int *pint = &myValue;

The following is also legal because ages is an array of integers:

int ages[20];
int *pint = ages;

But the following definition of pint is illegal because myFloat is not an int:

float myFloat;
int *pint = &myFloat; // Illegal!

23 // Display the array elements in reverse order
24 cout << "\nThe numbers in set backwards are:\n";
25 for (int index = 0; index < SIZE; index++)
26 {
27 numPtr--;
28 cout << *numPtr << " ";
29 }
30 return 0;
31 }

Program Output
The numbers in set are:
5 10 15 20 25 30 35 40
The numbers in set backwards are:
40 35 30 25 20 15 10 5

NOTE: Because numPtr is a pointer, the increment operator adds the size of one
integer to numPtr, so it points to the next element in the array. Likewise, the decrement
operator subtracts the size of one integer from the pointer.

Program 10-9 (continued)

Initializing Pointers 649

Pointers may be defined in the same statement as other variables of the same type. The
following declaration defines an integer variable, myValue, and then defines a pointer,
pint, which is initialized with the address of myValue:

int myValue, *pint = &myValue;

And the following definition defines an array, readings, and a pointer, marker, which is
initialized with the address of the first element in the array:

double readings[50], *marker = readings;

Of course, a pointer can only be initialized with the address of an object that has already
been defined. The following is illegal because pint is being initialized with the address of
an object that does not exist yet:

int *pint = &myValue; // Illegal!
int myValue;

In most computers, memory at address 0 is inaccessible to user programs because it is
occupied by operating system data structures. This fact allows programmers to signify that
a pointer variable does not point to a memory location accessible to the program by
initializing the pointer to 0. For example, if ptrToint is a pointer to int, and ptrTofloat
is a pointer to float, we can indicate that neither of them points to a legitimate address by
assigning 0 to both:

int *ptrToint = 0;
float *ptrTofloat = 0;

Many header files, including iostream, fstream, and cstdlib, define a constant named
NULL whose value is zero. Thus, assuming one of these header files has been included, the
code can be written as

int *ptrToint = NULL;
float *ptrTofloat = NULL;

A pointer whose value is the address 0 is often called a null pointer.

Checkpoint

10.1 Write a statement that displays the address of the variable count.

10.2 Write a statement defining a variable dPtr. The variable should be a pointer to a
double.

10.3 List three uses of the * symbol in C++.

10.4 What is the output of the following program?

#include <iostream>
using namespace std;
int main()
{

int x = 50, y = 60, z = 70;
int *ptr;

cout << x << " " << y << " " << z << endl;
ptr = &x;

650 Chapter 10 Pointers

*ptr *= 10;
ptr = &y;
*ptr *= 5;
ptr = &z;
*ptr *= 2;
cout << x << " " << y << " " << z << endl;
return 0;

}

10.5 Rewrite the following loop so it uses pointer notation (with the indirection
operator) instead of subscript notation.

for (int x = 0; x < 100; x++)
 cout << array[x] << endl;

10.6 Assume ptr is a pointer to an int and holds the address 12000. On a system with
4-byte integers, what address will be in ptr after the following statement?

ptr += 10;

10.7 Assume pint is a pointer variable. For each of the following statements,
determine whether the statement is valid or invalid. For those that are invalid,
explain why.

A) pint++;
B) --pint;
C) pint /= 2;
D) pint *= 4;
E) pint += x; // Assume x is an int.

10.8 For each of the following variable definitions, determine whether the statement is
valid or invalid. For those that are invalid, explain why.

A) int ivar;
int *iptr = &ivar;

B) int ivar, *iptr = &ivar;
C) float fvar;

int *iptr = &fvar;
D) int nums[50], *iptr = nums;
E) int *iptr = &ivar;

int ivar;

10.6 Comparing Pointers

CONCEPT: C++’s relational operators may be used to compare pointer values.

Pointers may be compared by using any of C++’s relational operators:

> < == != >= <=

If one address comes before another address in memory, the first address is considered “less
than” the second. In an array, all the elements are stored in consecutive memory locations,

Comparing Pointers 651

so the address of element 1 is greater than the address of element 0. This is illustrated in
Figure 10-5.

Because the addresses grow larger for each subsequent element in the array, the following
boolean expressions are all true:

&array[1] > &array[0]
array < &array[4]
array == &array[0]
&array[2] != &array[3]

The capability of comparing addresses gives you another way to be sure a pointer does not
go beyond the boundaries of an array. Program 10-10 initializes the pointer numPtr with
the starting address of the array set. The pointer numPtr is then stepped through the array
set until the address it contains is equal to the address of the last element of the array.
Then the pointer is stepped backwards through the array until it points to the first element.

Figure 10-5

NOTE: Comparing two pointers is not the same as comparing the values the two
pointers point to. For example, the following if statement compares the addresses
stored in the pointer variables ptr1 and ptr2:

if (ptr1 < ptr2)

The following statement, however, compares the values that ptr1 and ptr2 point to:

if (*ptr1 < *ptr2)

Program 10-10

1 // This program uses a pointer to display the contents
2 // of an integer array. It illustrates the comparison of
3 // pointers.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 const int SIZE = 8;
10 int set[] = {5, 10, 15, 20, 25, 30, 35, 40};
11 int *numPtr = set; // Make numPtr point to set
12
13 cout << "The numbers in set are:\n";
14 cout << *numPtr << " "; // Display first element

(program continues)

array[0] array[1] array[2] array[3] array[4]

0x5A00
(Addresses)

0x5A04 0x5A08 0x5A0C 0x5A10

An array of five integers

652 Chapter 10 Pointers

Most comparisons involving pointers compare a pointer to 0 (NULL) to determine whether
the pointer points to a legitimate address. For example, assuming that ptrToInt has been
defined as a pointer to int, the code

if (ptrToInt != 0)
cout << *ptrToInt;

else
cout << "null pointer";

prints the integer pointed to by the pointer only after checking that the pointer is not 0.
Many programmers, when checking to see if the value of a pointer such as ptrToInt is
different from 0, omit the comparison to 0 and simply write

if (ptrToInt)
cout << *ptrToInt;

else
cout << "null pointer";

The two ways of writing the test turn out to be equivalent because when

ptrToInt != 0

is true, the value ptrToInt is nonzero, and nonzero values are interpreted as being true. This
means that the expressions ptrToInt != 0 and ptrToInt have the same truth value.

15 while (numPtr < &set[SIZE-1])
16 {
17 // Advance numPtr to the next element
18 numPtr++;
19 // Display the value pointed to by numPtr
20 cout << *numPtr << " ";
21 }
22
23 // Display the numbers in reverse order
24 cout << "\nThe numbers in set backwards are:\n";
25 cout << *numPtr << " "; // Display last element
26 while (numPtr > set)
27 {
28 // Move backward to the previous element
29 numPtr--;
30 // Display the value pointed to by numPtr
31 cout << *numPtr << " ";
32 }
33 return 0;
34 }

Program Output
The numbers in set are:
5 10 15 20 25 30 35 40
The numbers in set backwards are:
40 35 30 25 20 15 10 5

Program 10-10 (continued)

Pointers as Function Parameters 653

10.7 Pointers as Function Parameters

CONCEPT: A pointer can be used as a function parameter. It gives the function access to
the original argument, much like a reference parameter does.

In Chapter 6 you were introduced to the concept of reference variables being used as
function parameters. A reference variable acts as an alias to the original variable used as an
argument. This gives the function access to the original argument variable, allowing it to
change the variable’s contents. When a variable is passed into a reference parameter, the
argument is said to be passed by reference.

An alternative to passing an argument by reference is to use a pointer variable as the
parameter. Admittedly, reference variables are much easier to work with than pointers.
Reference variables hide all the “mechanics” of dereferencing and indirection. You should
still learn to use pointers as function arguments, however, because some tasks, especially
when dealing with C-strings, are best done with pointers.* Also, the C++ library has many
functions that use pointers as parameters.

Here is the definition of a function that uses a pointer parameter:

void doubleValue(int *val)
{

*val *= 2;
}

The purpose of this function is to double the variable pointed to by val with the following
statement:

*val *= 2;

When val is dereferenced, the *= operator works on the variable pointed to by val. This
statement multiplies the original variable, whose address is stored in val, by two. Of
course, when the function is called, the address of the variable that is to be doubled must
be used as the argument, not the variable itself.

Here is an example of a call to the doubleValue function:

doubleValue(&number);

This statement uses the address operator (&) to pass the address of number into the val
parameter. After the function executes, the contents of number will have been multiplied by
two.

The use of this function is illustrated in Program 10-11.

* It is also important to learn the technique in case you ever have to write a C program. In C, the only way to get the effect of
pass by reference is to use a pointer.

654 Chapter 10 Pointers

Program 10-11

1 // This program uses two functions that accept
2 // addresses of variables as arguments.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void getNumber(int *);
8 void doubleValue(int *);
9
10 int main()
11 {
12 int number;
13
14 // Call getNumber and pass the address of number
15 getNumber(&number);
16
17 // Call doubleValue and pass the address of number
18 doubleValue(&number);
19
20 // Display the value in number
21 cout << "That value doubled is " << number << endl;
22 return 0;
23 }
24
25 //**
26 // Definition of getNumber. The parameter, input, is a *
27 // pointer. This function asks the user for a number. *
28 // The value entered is stored in the variable *
29 // pointed to by input. *
30 //**
31
32 void getNumber(int *input)
33 {
34 cout << "Enter an integer number: ";
35 cin >> *input;
36 }
37
38 //**
39 // Definition of doubleValue. The parameter, val, is a *
40 // pointer. This function multiplies the variable *
41 // pointed to by val by two. *
42 //**
43
44 void doubleValue(int *val)
45 {
46 *val *= 2;
47 }

Program Output with Example Input Shown in Bold
Enter an integer number: 10[Enter]
That value doubled is 20

Pointers as Function Parameters 655

Program 10-11 has two functions that use pointers as parameters. Notice the function
prototypes:

void getNumber(int *);
void doubleValue(int *);

Each one uses the notation int * to indicate the parameter is a pointer to an int. As with
all other types of parameters, it isn’t necessary to specify the name of the variable in the
prototype. The * is required, though.

The getNumber function asks the user to enter an integer value. The following cin
statement stores the value entered by the user in memory:

cin >> *input;

The indirection operator causes the value entered by the user to be stored, not in input,
but in the variable pointed to by input.

When the getNumber function is called, the address of the number variable in function
main is passed as the argument. After the function executes, the value entered by the user is
stored in number. Next, the doubleValue function is called, with the address of number
passed as the argument. This causes number to be multiplied by two.

Pointer variables can also be used to accept array addresses as arguments. Either subscript
or pointer notation may then be used to work with the contents of the array. This is
demonstrated in Program 10-12.

WARNING! It’s critical that the indirection operator be used in the previous
statement. Without it, cin would store the value entered by the user in input, as if the
value were an address. If this happens, input will no longer point to the number
variable in function main. Subsequent use of the pointer will result in erroneous, if not
disastrous, results.

Program 10-12

1 // This program demonstrates that a pointer may be used as a
2 // parameter to accept the address of an array. Either subscript
3 // or pointer notation may be used.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 // Function prototypes
9 void getSales(double *sales, int size);
10 double totalSales(double *sales, int size);
11
12 int main()
13 {
14 const int QUARTERS = 4;
15 double sales[QUARTERS];
16

(program continues)

656 Chapter 10 Pointers

17 getSales(sales, QUARTERS);
18 cout << setprecision(2);
19 cout << fixed << showpoint;
20 cout << "The total sales for the year are $";
21 cout << totalSales(sales, QUARTERS) << endl;
22 return 0;
23 }
24
25 //***
26 // Definition of getSales. This function uses a pointer to accept *
27 // the address of an array of doubles. The number of elements in *
28 // in the array is passed as a separate integer parameter. The *
29 // The function asks the user to enter the sales figures for *
30 // four quarters, then stores those figures in the array using *
31 // subscript notation. *
32 //***
33 void getSales(double *array, int size)
34 {
35 for (int count = 0; count < size; count++)
36 {
37 cout << "Enter the sales figure for quarter ";
38 cout << (count + 1) << ": ";
39 cin >> array[count];
40 }
41 }
42
43 //***
44 // Definition of totalSales. This function uses a pointer to *
45 // accept the address of an array of doubles whose size is *
46 // is passed as a separate parameter. The function uses pointer *
47 // notation to sum the elements of the array. *
48 //***
49 double totalSales(double *array, int size)
50 {
51 double sum = 0.0;
52
53 for (int count = 0; count < size; count++)
54 {
55 sum += *array;
56 array++;
57 }
58 return sum;
59 }

Program Output with Example Input Shown in Bold
Enter the sales figure for quarter 1: 10263.98[Enter]
Enter the sales figure for quarter 2: 12369.69[Enter]
Enter the sales figure for quarter 3: 11542.13[Enter]
Enter the sales figure for quarter 4: 14792.06[Enter]
The total sales for the year are $48967.86

Program 10-12 (continued)

Pointers to Constants and Constant Pointers 657

Notice that in the getSales function in Program 10-12, even though the parameter array
is defined as a pointer, subscript notation is used in the cin statement:

cin >> array[count];

In the totalSales function, array is used with the indirection operator in the following
statement:

sum += *array;

And in the next statement, the address in array is incremented to point to the next element:

array++;

10.8 Pointers to Constants and Constant Pointers

CONCEPT: A pointer to a constant may not be used to change the value it points to; a
constant pointer may not be changed after it has been initialized.

Pointers to Constants
You have seen how an item’s address can be passed into a pointer parameter, and the pointer
can be used to modify the item that was passed as an argument. Sometimes it is necessary to
pass the address of a const item into a pointer. When this is the case, the pointer must be
defined as a pointer to a const item. For example, consider the following array definition:

const int SIZE = 6;
const double payRates[SIZE] = { 18.55, 17.45,

 12.85, 14.97,
 10.35, 18.89 };

In this code, payRates is an array of const doubles. This means that each element in the array
is a const double, and the compiler will not allow us to write code that changes the array’s
contents. If we want to pass the payRates array into a pointer parameter, the parameter must be
declared as a pointer to const double. The following function shows such an example:

void displayPayRates(const double *rates, int size)
{

// Set numeric output formatting
cout << setprecision(2) << fixed << showpoint;

// Display all the pay rates
for (int count = 0; count < size; count++)
{

cout << "Pay rate for employee " << (count + 1)
 << " is $" << *(rates + count) << endl;

}
}

NOTE: The two previous statements could be combined into the following statement:

sum += *array++;

The * operator will first dereference array, then the ++ operator will increment the
address in array.

658 Chapter 10 Pointers

In the function header, notice that the rates parameter is defined as a pointer to const
double. It should be noted that the word const is applied to the thing that rates points to,
not rates itself. This is illustrated in Figure 10-6.

Because rates is a pointer to a const, the compiler will not allow us to write code that
changes the thing that rates points to.

When passing the address of a constant into a pointer variable, the variable must be
defined as a pointer to a constant. If the word const has been left out of the definition of
the rates parameter, a compiler error would have resulted.

Passing a Non-Constant Argument into a Pointer
to a Constant
Although a constant’s address can be passed only to a pointer to const, a pointer to const
can also receive the address of a non-constant item. For example, look at Program 10-13.

Figure 10-6

Program 10-13

1 // This program demonstrates a pointer to const parameter
2 #include <iostream>
3 using namespace std;
4
5 void displayValues(const int *numbers, int size);
6
7 int main()
8 {
9 // Array sizes
10 const int SIZE = 6;
11
12 // Define an array of const ints
13 const int array1[SIZE] = { 1, 2, 3, 4, 5, 6 };
14
15 // Define an array of non-const ints
16 int array2[SIZE] = { 2, 4, 6, 8, 10, 12 };
17
18 // Display the contents of the const array
19 displayValues(array1, SIZE);
20

(program continues)

const double *rates

The asterisk indicates that
rates is a pointer.

This is what rates points to.

Pointers to Constants and Constant Pointers 659

Constant Pointers
In the previous section we discussed pointers to const. That is, pointers that point to
const data. You can also use the const key word to define a constant pointer. Here is the
difference between a pointer to const and a const pointer:

• A pointer to const points to a constant item. The data that the pointer points to
cannot change, but the pointer itself can change.

• With a const pointer, it is the pointer itself that is constant. Once the pointer is
initialized with an address, it cannot point to anything else.

The following code shows an example of a const pointer.

int value = 22;
int * const ptr = &value;

Notice in the definition of ptr the word const appears after the asterisk. This means that
ptr is a const pointer. This is illustrated in Figure 10-7. In the code, ptr is initialized with
the address of the value variable. Because ptr is a constant pointer, a compiler error will

21 // Display the contents of the non-const array
22 displayValues(array2, SIZE);
23 return 0;
24 }
25
26 //***
27 // The displayValues function uses a pointer to *
28 // parameter to display the contents of an array. *
29 //***
30
31 void displayValues(const int *numbers, int size)
32 {
33 // Display all the values
34 for (int count = 0; count < size; count++)
35 {
36 cout << *(numbers + count) << " ";
37 }
38 cout << endl;
39 }

Program Output
1 2 3 4 5 6
2 4 6 8 10 12

NOTE: When writing a function that uses a pointer parameter, and the function is not
intended to change the data the parameter points to, it is always a good idea to make
the parameter a pointer to const. Not only will this protect you from writing code in
the function that accidentally changes the argument, but the function will be able to
accept the addresses of both constant and non-constant arguments.

Program 10-13 (continued)

660 Chapter 10 Pointers

result if we write code that makes ptr point to anything else. An error will not result,
however, if we use ptr to change the contents of value. This is because value is not
constant, and ptr is not a pointer to const.

Constant pointers must be initialized with a starting value, as shown in the previous
example code. If a constant pointer is used as a function parameter, the parameter will be
initialized with the address that is passed as an argument into it and cannot be changed to
point to anything else while the function is executing. Here is an example that attempts to
violate this rule:

void setToZero(int * const ptr)
{

ptr = 0; // ERROR!! Cannot change the contents of ptr.
}

This function’s parameter, ptr, is a const pointer. It will not compile because we cannot
have code in the function that changes the contents of ptr. However, ptr does not point to
a const, so we can have code that changes the data that ptr points to. Here is an example
of the function that will compile:

void setToZero(int * const ptr)
{

*ptr = 0;
}

Although the parameter is const pointer, we can call the function multiple times with
different arguments. The following code will successfully pass the addresses of x, y, and z
to the setToZero function:

int x, y, z;
// Set x, y, and z to 0.
setToZero(&x);
setToZero(&y);
setToZero(&z);

Constant Pointers to Constants
So far, when using const with pointers we’ve seen pointers to constants and we’ve seen
constant pointers. You can also have constant pointers to constants. For example, look at
the following code:

Figure 10-7

int * const ptr

* const indicates that
ptr is a constant pointer.

This is what ptr points to.

661

int value = 22;
const int * const ptr = &value;

In this code ptr is a const pointer to a const int. Notice the word const appears before
int, indicating that ptr points to a const int, and it appears after the asterisk, indicating
that ptr is a constant pointer. This is illustrated in Figure 10-8.

In the code, ptr is initialized with the address of value. Because ptr is a const pointer, we
cannot write code that makes ptr point to anything else. Because ptr is a pointer to const,
we cannot use it to change the contents of value. The following code shows one more
example of a const pointer to a const. This is another version of the displayValues
function in Program 10-13.

void displayValues(const int * const numbers, int size)
{

// Display all the values.
for (int count = 0; count < size; count++)
{

cout << *(numbers + count) << " ";
}
cout << endl;

}

In this code, the parameter numbers is a const pointer to a const int. Although we can
call the function with different arguments, the function itself cannot change what numbers
points to, and it cannot use numbers to change the contents of an argument.

10.9 Focus on Software Engineering:
Dynamic Memory Allocation

CONCEPT: Variables may be created and destroyed while a program is running.

As long as you know how many variables you will need during the execution of a
program, you can define those variables up front. For example, a program to calculate
the area of a rectangle will need three variables: one for the rectangle’s length, one for
the rectangle’s width, and one to hold the area. If you are writing a program to compute

Figure 10-8

const int * const ptr

* const indicates that
ptr is a constant pointer.

This is what ptr points to.

Focus on Software Engineering: Dynamic Memory Allocation

662 Chapter 10 Pointers

the payroll for 30 employees, you’ll probably create an array of 30 elements to hold the
amount of pay for each person.

But what about those times when you don’t know how many variables you need? For
instance, suppose you want to write a test-averaging program that will average any number
of tests. Obviously the program would be very versatile, but how do you store the individual
test scores in memory if you don’t know how many variables to define? Quite simply, you
allow the program to create its own variables “on the fly.” This is called dynamic memory
allocation and is only possible through the use of pointers.

To dynamically allocate memory means that a program, while running, asks the computer
to set aside a chunk of unused memory large enough to hold a variable of a specific data
type. Let’s say a program needs to create an integer variable. It will make a request to the
computer that it allocate enough bytes to store an int. When the computer fills this
request, it finds and sets aside a chunk of unused memory large enough for the variable. It
then gives the program the starting address of the chunk of memory. The program can only
access the newly allocated memory through its address, so a pointer is required to use
those bytes.

The way a C++ program requests dynamically allocated memory is through the new
operator. Assume a program has a pointer to an int defined as

int *iptr;

Here is an example of how this pointer may be used with the new operator:

iptr = new int;

This statement is requesting that the computer allocate enough memory for a new int
variable. The operand of the new operator is the data type of the variable being created.
This is illustrated in Figure 10-9. Once the statement executes, iptr will contain the
address of the newly allocated memory. A value may be stored in this new variable by
dereferencing the pointer:

*iptr = 25;

Figure 10-9

Pool of unused memory

This chunk of memory starts
at address 0xA654

0xA654

iptr variable

663

Any other operation may be performed on the new variable by simply using the
dereferenced pointer. Here are some example statements:

cout << *iptr; // Display the contents of the new variable.
cin >> *iptr; // Let the user input a value.
total += *iptr; // Use the new variable in a computation.

Although these statements illustrate the use of the new operator, there’s little purpose in
dynamically allocating a single variable. A more practical use of the new operator is to
dynamically create an array. Here is an example of how a 100-element array of integers
may be allocated:

iptr = new int[100];

Once the array is created, the pointer may be used with subscript notation to access it. For
instance, the following loop could be used to store the value 1 in each element:

for (int count = 0; count < 100; count++)
iptr[count] = 1;

Every call to new allocates storage from a special area of the program’s memory called the
heap. If a program makes a lot of requests for dynamic memory, the heap will eventually
become depleted, and additional calls to new will fail. When this happens, the C++ runtime
system will throw a bad_alloc exception to notify the calling program that the requested
memory cannot be allocated. An exception is a mechanism for notifying a program that
something has gone drastically wrong with the operation that was being executed and that
the results of the operation cannot be trusted. The default action of an exception is to force
the executing program to terminate.

Older C++ compilers do not throw bad_alloc. Instead, they indicate memory-allocation
failure by returning the address 0 (NULL) from the call to new. Memory-allocation code
written for these compilers should check the returned address to make sure it is not 0 before
using it, as in the following code fragment:

// For older versions of C++
iptr = new int[100];
if (iptr == NULL)
{

cout << "Memory allocation error.";
exit(1);

}
// Rest of code to use the allocated array

A program that has finished using a dynamically allocated block of memory should free the
memory and return it to the heap to make it available for future use. This is accomplished
by calling the delete operator and passing it the address of the memory to be deallocated.
Here is an example of how delete is used to free up a single variable pointed to by iptr:

delete iptr;
iptr = 0;

If iptr points to a dynamically allocated array, a pair of square brackets must be placed
between delete and iptr:

delete [] iptr;
iptr = 0;

VideoNote

Dynamically
Allocating an
Array

Focus on Software Engineering: Dynamic Memory Allocation

664 Chapter 10 Pointers

Dangling Pointers and Memory Leaks
A pointer is said to be dangling if it is pointing to a memory location that has been freed by
a call to delete. When you access a dangling pointer, you are trying to use memory that
has already been freed and returned to the heap. In fact, such memory may already be
reallocated by another call to new. The use of dangling pointers can cause errors in your
program that are difficult to trace. You can avoid the use of dangling pointers by setting
pointers to 0 as soon as they are freed, as shown in the examples above.

A memory leak is said to occur in your program if after you have finished using a block of
memory allocated by new, you forget to free it via delete. The leaked block of memory
remains unavailable for use until the program terminates. Memory leaks are especially
serious when they occur in loops. They are even more serious in programs such as Web
servers and other network programs that are expected to run for months or even years
without being shut down. Over time, a Web server with a memory leak will exhaust all
memory in the computer on which it is running, requiring both it and the computer to be
shut down and restarted.

Program 10-14 demonstrates the use of new and delete. It asks for sales figures for any
number of days. The figures are stored in a dynamically allocated array and then totaled
and averaged.

WARNING! Only use pointers with delete that were previously used with new. If
you use a pointer with delete that does not reference dynamically allocated memory,
unexpected problems could result!

Program 10-14

1 // This program totals and averages the sales figures for
2 // any number of days. The figures are stored in a
3 // dynamically allocated array.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 double *sales, // To dynamically allocate an array
11 total = 0.0, // Accumulator
12 average; // To hold average sales
13 int numDays; // To hold number of days of sales
14
15 // Get number of days of sales
16 cout << "How many days of sales figures do you wish ";
17 cout << "to process? ";
18 cin >> numDays;
19
20 // Dynamically allocate an array large enough
21 // to hold that many days of sales amounts
22 sales = new double[numDays]; // Allocate memory
23

(program continues)

665

The statement in line 23 dynamically allocates memory for an array of doubles, using the
value in numDays as the number of elements. The new operator returns the starting address
of the memory allocated, and this address is assigned to the sales pointer variable. The
sales variable is then used throughout the program to store the sales amounts in the array
and perform the necessary calculations. In line 48 the delete operator is used to free the
allocated memory.

Notice that in line 49 the value 0 is assigned to the sales pointer. It is good practice to
store 0 in a pointer variable after using delete on it. First, it prevents code from
inadvertently using the pointer to access the area of memory that was freed. Second, it

24 // Get the sales figures for each day
25 cout << "Enter the sales figures below.\n";
26 for (int count = 0; count < numDays; count++)
27 {
28 cout << "Day " << (count + 1) << ": ";
29 cin >> sales[count];
30 }
31
32 // Calculate the total sales
33 for (int count = 0; count < numDays; count++)
34 {
35 total += sales[count];
36 }
37
38 // Calculate the average sales per day
39 average = total / numDays;
40
41 // Display the results
42 cout << setprecision(2) << fixed << showpoint;
43 cout << "\n\nTotal Sales: $" << total << endl;
44 cout << "Average Sales: $" << average << endl;
45
46 // Free dynamically allocated memory
47 delete [] sales;
48 sales = 0;
49 return 0;
50 }

Program Output with Example Input Shown in Bold
How many days of sales figures do you wish to process? 5[Enter]
Enter the sales figures below.
Day 1: 898.63[Enter]
Day 2: 652.32[Enter]
Day 3: 741.85[Enter]
Day 4: 852.96[Enter]
Day 5: 921.37[Enter]

Total Sales: $4067.13
Average Sales: $813.43

Program 10-14 (continued)

Focus on Software Engineering: Dynamic Memory Allocation

666 Chapter 10 Pointers

prevents errors from occurring if delete is accidentally called on the pointer again. The
delete operator is designed to have no effect when used on a null pointer.

10.10 Focus on Software Engineering:
Returning Pointers from Functions

CONCEPT: Functions can return pointers, but you must be sure the item the pointer
references still exists.

It is often useful for a function to dynamically allocate storage for an object, fill the object
with data, and return its address. Consider a function that returns for a given positive
integer n the sequence of the first n integer squares. For example, if the function is passed
the value 4, it returns an array whose elements are 1, 4, 9, and 16.

When called, the function allocates an array of the given size, sets the elements of the array
to the required values, and returns the address of the base of the array.

int *squares(int n)
{

// Allocate an array of size n
int *sqarray = new int[n];

// Fill the array with squares
for (int k = 0; k < n; k++)

sqarray[k] = (k+1) * (k+1);

// Return base address of allocated array
return sqarray;

}

Program 10-15 shows another example. This program contains a function that returns a
pointer to an array of random numbers. The function accepts an integer size, dynamically
allocates an array of the given size, and then populates the array with random values. The
function uses the system clock to seed the random number generator. Notice that the array
containing the random numbers is only deleted after the function main is done with it.

Program 10-15

1 // This program demonstrates a function that returns
2 // a pointer.
3 #include <iostream>
4 #include <cstdlib> // For rand and srand
5 #include <ctime> // For the time function
6 using namespace std;
7
8 // Function prototype
9 int *getRandomNumbers(int);
10

(program continues)

667

11 int main()
12 {
13 int *numbers; // To point to the numbers
14
15 // Get an array of five random numbers
16 numbers = getRandomNumbers(5);
17
18 // Display the numbers
19 for (int count = 0; count < 5; count++)
20 cout << numbers[count] << endl;
21
22 // Free the memory
23 delete [] numbers;
24 numbers = 0;
25 return 0;
26 }
27
28 //**
29 // The getRandomNumbers function returns a pointer *
30 // to an array of random integers. The parameter *
31 // indicates the number of numbers requested. *
32 //**
33
34 int *getRandomNumbers(int size)
35 {
36 int *array; // Array to hold the numbers
37
38 // Return null if size is zero or negative
39 if (size <= 0)
40 return NULL;
41
42 // Dynamically allocate the array
43 array = new int[size];
44
45 // Seed the random number generator by passing
46 // the return value of time(0) to srand
47 srand(time(0));
48
49 // Populate the array with random numbers
50 for (int count = 0; count < size; count++)
51 array[count] = rand();
52
53 // Return a pointer to the array
54 return array;
55 }

Program Output with Example Input Shown in Bold
2712
9656
24493
12483
7633

Program 10-15 (continued)

Focus on Software Engineering: Returning Pointers from Functions

668 Chapter 10 Pointers

A function can safely return a pointer to dynamically allocated storage that has not yet
been deleted. In contrast, functions should not return pointers to local variables because
the storage for such variables is automatically deallocated upon return. Consider the
following function, which returns the address of a local array:

int *errSquares(int n)
{

// Assume n is less than 100, use local array
int array[100];

// Fill the array with squares
for (int k = 0; k < n; k++)

array[k] = (k+1) * (k+1);

// Return base address of local array
return array;

}

A call such as

int * arr = errSquares(5);

will return the address of an array that has already been deallocated. Trying to access an
element of such an array, as in

 cout << arr[0];

will result in a reference to non-existent storage and cause an error.

Checkpoint

10.9 Assuming array is an array of ints, which of the following program segments will
display “True” and which will display “False”?
A) if (array < &array[1])

cout << "True";
else

cout << "False";
B) if (&array[4] < &array[1])

cout << "True";
else

cout << "False";
C) if (array != &array[2])

cout << "True";
else

cout << "False";
D) if (array != &array[0])

cout << "True";
else

cout << "False";

NOTE: Storage for a static local variable is not deallocated upon return, so a function
returning a pointer to such a variable will not trigger the kind of error we are talking
about here. Such a function, however, may cause other types of errors whose discussion
is beyond the scope of this book.

669

10.10 Give an example of the proper way to call the following function in order to negate
the variable int num = 7;

void makeNegative(int *val)
{

if (*val > 0)
 *val = -(*val);

}

10.11 Complete the following program skeleton. When finished, the program should ask
the user for a length (in inches), convert that value to centimeters, and display the
result. You are to write the function convert. (Note: 1 inch = 2.54 cm. Do not
modify function main.)

#include <iostream>
#include <iomanip>
using namespace std;

// Write your function prototype here.

int main()
{

double measurement;

cout << "Enter a length in inches, and I will convert\n";
cout << "it to centimeters: ";
cin >> measurement;
convert(&measurement);
cout << setprecision(4);
cout << fixed << showpoint;
cout << "Value in centimeters: " << measurement << endl;
return 0;

}
//
// Write the function convert here.
//

10.12 Look at the following array definition:

const int numbers[SIZE] = { 18, 17, 12, 14 };

Suppose we want to pass the array to the function processArray in the following
manner:

processArray(numbers, SIZE);

Which of the following function headers is the correct one for the processArray
function?
A) void processArray(const int *array, int size)
B) void processArray(int * const array, int size)

10.13 Assume ip is a pointer to an int. Write a statement that will dynamically allocate
an integer variable and store its address in ip, then write a statement that will free
the memory allocated in the statement you just wrote.

10.14 Assume ip is a pointer to an int. Write a statement that will dynamically allocate
an array of 500 integers and store its address in ip, then write a statement that will
free the memory allocated in the statement you just wrote.

Focus on Software Engineering: Returning Pointers from Functions

670 Chapter 10 Pointers

10.15 What is a null pointer?

10.16 Give an example of a function that correctly returns a pointer.

10.17 Give an example of a function that incorrectly returns a pointer.

10.11 Pointers to Class Objects and Structures

CONCEPT: Pointers and dynamic memory allocation can be used with class objects and
structures.

Declaring a pointer to a class is the same as declaring any other pointer type. For example,
if Rectangle is defined as

class Rectangle
{

int width, height;
};

you can declare a pointer to Rectangle and create a Rectangle object by writing

Rectangle *pRect; // Pointer to Rectangle
Rectangle rect; // Rectangle object

and you can assign the address of rect to pRect as follows:

pRect = ▭

Now suppose that you want to access the members of the Rectangle object through the
pointer pRect. Because *pRect is just another way of accessing rect, you might think
that the expression

*pRect.width

will access rect.width, but this is not so. The reason is that the dot selector has higher
priority than the * operator, so *pRect.width is equivalent to *(pRrect.width). This
last expression is a type error. To get it right, you must use parentheses to force the
indirection operator * to be applied first, as shown here:

(*pRect).width

The following statements will correctly set the dimensions of the rectangle to 10 and 20.

(*pRect).width = 10;
(*pRect).height = 20;

The combined use of parentheses, the indirection operator, and the dot selector to access
members of class objects via pointers can result in expressions that are hard to read. To solve
this problem, C++ provides the structure pointer operator -> to use when you want to access
a member of a class object through a pointer. It consists of a hyphen -- and a greater-than
symbol > written next to each other to look like an arrow. Using this operator, you can set
the dimensions of the rectangle with these statements:

pRect->width = 10;
pRect->height = 20;

Pointers to Class Objects and Structures 671

Member functions of class objects can be called through a pointer. In particular, if ptr is a
pointer to an object that has a member function fun(), then the function can be called
with either one of these two (equivalent) expressions:

(*ptr).fun();
ptr->fun();

Dynamic Allocation of Class Objects
Dynamically allocated class objects are used in programs that build and manage advanced
data structures such as lists (studied in Chapter 17) and binary trees (studied in Chapter 19).
The new operator is used to allocate such objects in the same way that it is used to allocate
variables of other types. For example, the following statements allocate a single
Rectangle object and set its dimensions

pRect = new Rectangle;
pRect->width = 10;
pRect->height = 3;

If Rectangle has a constructor that takes two integer parameters, then you can
simultaneously allocate the object and invoke the constructor like this:

pRect = new Rectangle(10, 30);

Program 10-16 illustrates these concepts.

Program 10-16

1 // This program uses pointers to dynamically allocate
2 // structures and class objects.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 // Person class
8 class Person
9 {
10 private:
11 string name;
12 int age;
13 public:
14 Person(string name1, int age1)
15 {
16 name = name1;
17 age = age1;
18 }
19 int getAge() { return age; }
20 string getName(){ return name; }
21 };
22
23 // Rectangle structure
24 struct Rectangle
25 {

(program continues)

672 Chapter 10 Pointers

Pointers to Class Objects as Function Parameters
Pointers to structures and class variables can be passed to functions as parameters. The
function receiving the pointer can then use it to access or modify members of the structure.
This is shown in Program 10-17.

26 int width, height;
27 };
28
29 int main()
30 {
31 Rectangle *pRect; // Pointer to Rectangle
32 Person *pPerson; // Pointer to Person
33
34 // Create a rectangle object and access it through a pointer
35 Rectangle rect;
36 pRect = ▭
37 (*pRect).height = 12;
38 pRect->width = 10;
39 cout << "Area of the first rectangle is "
40 << pRect->width * pRect->height;
41
42 // Allocate a Rectangle object and access it through a pointer
43 pRect = new Rectangle;
44 pRect->height = 6;
45 pRect->width = 5;
46 cout << "\nArea of the second rectangle is "
47 << pRect->width * pRect->height;
48
49 // Allocate a Person object and call its methods through a pointer
50 pPerson = new Person("Miguel E. Gonzalez", 23);
51 cout << "\n\nThe person's name is " << pPerson->getName();
52 cout << "\nThe person's age is " << pPerson->getAge() << endl;
53
54 return 0;
55 }

Program Output
Area of the first rectangle is 120
Area of the second rectangle is 30

The person's name is Miguel E. Gonzalez
The person's age is 23

Program 10-17

1 // This program illustrates pointers to class objects
2 // and structures as parameters of functions.
3 #include <iostream>
4 #include <string>

(program continues)

Program 10-16 (continued)

Pointers to Class Objects and Structures 673

5 using namespace std;
6
7 // Person class
8 class Person
9 {
10 private:
11 string name;
12 int age;
13 public:
14 Person(string name1, int age1)
15 {
16 name = name1;
17 age = age1;
18 }
19 int getAge() { return age; }
20 string getName(){ return name; }
21 };
22
23 // Rectangle structure
24 struct Rectangle
25 {
26 int width, height;
27 };
28
29 // Prototypes
30 void magnify(Rectangle *pRect, int mfactor);
31 int lengthOfName(Person *p);
32 void output(Rectangle *pRect);
33
34 int main()
35 {
36 // Create, then magnify a Rectangle by a factor of 3
37 Rectangle rect;
38 rect.width = 4;
39 rect.height = 2;
40 cout << "Initial size of rectangle is ";
41 output(&rect);
42 magnify(&rect, 3);
43 cout << "Size of Rectangle after magnification is ";
44 output(&rect);
45
46 // Create a Person and find the length of the person's name
47 Person *pPerson = new Person("Susan Wu", 32);
48 cout << "The name " << pPerson->getName()
49 << " has length " << lengthOfName(pPerson) << endl;
50
51 return 0;
52 }
53
54 //***
55 // Output the dimensions of a rectangle *
56 //***

(program continues)

Program 10-17 (continued)

674 Chapter 10 Pointers

Stopping Memory Leaks
It is important for programs that use dynamically allocated memory to ensure that each
call to new is eventually followed by a call to delete that frees the allocated memory and
returns it to the heap. A program that fails to do this will suffer from memory leaks, a
condition in which the program loses track of dynamically allocated storage and therefore
never calls delete to free the memory. There are two rules of the thumb that can be used
to avoid memory leaks:

• The function that invokes new to allocate storage should also be the function that
invokes delete to deallocate the storage.

• A class that needs to dynamically allocate storage should invoke new in its constructors
and invoke the corresponding delete in its destructor. Because the destructor is
automatically called by the system whenever an object is deleted or goes out of scope, a
delete statement placed in a destructor will always be called.

By following these rules, you will always be able to find the delete operation that
corresponds to a given call to new, thereby verifying that a particular call to new does not

57 void output(Rectangle *pRect)
58 {
59 cout << "width: " << pRect->width << " height: "
60 << pRect->height << endl;
61 }
62
63 //**
64 // Returns the number of characters in a person's name *
65 //**
66 int lengthOfName(Person *p)
67 {
68 string name = p->getName();
69 return name.length();
70 }
71
72 //**
73 // Stretch the width and height of a rectangle by *
74 // a specified factor *
75 //**
76 void magnify(Rectangle *pRect, int factor)
77 {
78 pRect->width = pRect->width * factor;
79 pRect->height = pRect->height * factor;
80 }
81

Program Output
Initial size of rectangle is width: 4 height: 2
Size of Rectangle after magnification is width: 12 height: 6
The name Susan Wu has length 8

Program 10-17 (continued)

Pointers to Class Objects and Structures 675

result in a memory leak. Program 10-18 is an example of a program that follows these
rules. Note that the Squares class allocates dynamic memory in its constructor and has a
delete statement in its destructor. The program is garnished with output statements in
strategic places to show when the new and delete operators in constructors and
destructors are called.

Program 10-18

1 // This program illustrates the use of constructors
2 // and destructors in the allocation and deallocation of memory.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 class Squares
8 {
9 private:
10 int length; // How long is the sequence
11 int *sq; // Dynamically allocated array
12 public:
13 // Constructor allocates storage for sequence
14 // of squares and creates the sequence
15 Squares(int len)
16 {
17 length = len;
18 sq = new int[length];
19 for (int k = 0; k < length; k++)
20 {
21 sq[k] = (k+1)*(k+1);
22 }
23 // Trace
24 cout << "Construct an object of size " << length << endl;
25 }
26 // Print the sequence
27 void print()
28 {
29 for (int k = 0; k < length; k++)
30 cout << sq[k] << " ";
31 cout << endl;
32 }
33 // Destructor deallocates storage
34 ~Squares()
35 {
36 delete [] sq;
37 // Trace
38 cout << "Destructor for object of size " << length << endl;
39 }
40 };
41
42 //***
43 // Outputs the sequence of squares in a *
44 // Squares object *
45 //***

(program continues)

676 Chapter 10 Pointers

Everything we have said in this section applies to structures as well.

10.12 Focus on Software Engineering:
Selecting Members of Objects

Sometimes structures and classes contain pointers as members. For example, the following
structure declaration has an int pointer member:

struct GradeInfo
{

string name; // Student name
int *testScores;// Dynamically allocated array
double average; // Test average

};

It’s important to remember that the structure pointer operator (->) is used to dereference
a pointer to a structure or class object, not a pointer that is a member of a structure or
class. If a program dereferences the testScores pointer in the structure in the example,

46 void outputSquares(Squares *sqPtr)
47 {
48 cout << "The list of squares is: ";
49 sqPtr->print();
50
51 }
52 int main()
53 {
54 Squares sqs(5);
55 cout << "The first 5 squares are: ";
56 sqs.print();
57
58 // Main allocates a Squares object
59 Squares *sqPtr = new Squares(3);
60 outputSquares(sqPtr);
61 // Main deallocates the Squares object
62 delete sqPtr;
63
64 return 0;
65 }

Program Output
Construct an object of size 5
The first 5 squares are: 1 4 9 16 25
Construct an object of size 3
The list of squares is: 1 4 9
Destructor for object of size 3
Destructor for object of size 5

Program 10-18 (continued)

677

the indirection operator must be used. For example, assuming the following variable has
been defined:

GradeInfo student1;

The following statement will display the value pointed to by the testScores member:

cout << *student1.testScores;

It’s still possible to define a pointer to a structure that contains a pointer member. For
instance, the following statement defines stPtr as a pointer to a GradeInfo structure:

GradeInfo *stPtr;

Assuming stPtr points to a valid GradeInfo variable, the following statement will display
the value pointed to by its testScores member:

cout << *stPtr->testScores;

In this statement, the * operator dereferences stPtr->testScores, while the -> operator
dereferences stPtr. It might help to remember that the expression

stPtr->testScores

is equivalent to

(*stPtr).testScores

So, the expression

*stPtr->testScores

is the same as

*(*stPtr).testScores

The awkwardness of this expression shows the necessity of the -> operator. Table 10-1 lists
some expressions using the *, ->, and . operators, and describes what each references. The
table is easier to understand if you remember that the operators -> and . for selecting
members of structures have higher precedence than the dereferencing operator *.

Table 10-1 Dereferencing Pointers to Structures

Expression Description

s->m s is a pointer to a structure variable or class object, and m is a member. This
expression accesses the m member of the structure or class object pointed to by s.

*a.p a is a structure variable or class object and p, a pointer, is a member of a. This
expression accesses the value pointed to by a.p.

(*s).m s is a pointer to a structure variable or class object, and m is a member. The *
operator dereferences s, causing the expression to access the m member of the object
*s. This expression is the same as
s->m.

*s->p s is a pointer to a structure variable or class object and p, a pointer, is a member of
the object pointed to by s. This expression accesses the value pointed to by s->p.

*(*s).p s is a pointer to a structure variable or class object and p, a pointer, is a member of
the object pointed to by s. This expression accesses the value pointed to by (*s).p.
This expression is the same as *s->p.

Focus on Software Engineering: Selecting Members of Objects

678 Chapter 10 Pointers

Checkpoint

Assume the following structure declaration exists for questions 10.18 through 10.20:

struct Rectangle
{

int length;
int width;

};

10.18 Write the definition of a pointer to a Rectangle structure.

10.19 Assume the pointer you defined in question 10.18 points to a valid Rectangle
structure. Write the statement that displays the structure’s members through the
pointer.

10.20 Assume rptr is a pointer to a Rectangle structure. Which of the expressions, A, B,
or C, is equivalent to the expression:

rptr->width

A) *rptr.width
B) (*rptr).width
C) rptr.(*width)

10.13 United Cause Relief Agency Case Study

CONCEPT: This case study demonstrates how an array of pointers can be used to
display the contents of a second array in sorted order, without sorting the
second array.

The United Cause, a charitable relief agency, solicits donations from businesses. The
local United Cause office received the following donations from the employees of CK
Graphics, Inc:

$5, $100, $5, $25, $10, $5, $25, $5, $5, $100, $10, $15, $10, $5, $10

The donations were received in the order they appear. The United Cause manager has
asked you to write a program that displays the donations in ascending order, as well as in
their original order.

You decide to create a class, DonationList, that will hold and process the donation data.
The class declaration is

class DonationList
{
private:

int numDonations;
double *donations;
double **arrPtr;
void selectSort();

United Cause Relief Agency Case Study 679

public:
DonationList(int num, double gifts[]);
~DonationList();
void show();
void showSorted();

};

Table 10-2 lists and describes the class’s member variables.

In this class, the donation values will be stored in their original order in a dynamically
allocated array of doubles. The donations member will point to the array. We will refer
to this array as the donations array. The following statement shows how the donations
member will be defined.

double *donations;

The arrPtr member will also point to a dynamically allocated array. Its array, however,
will be an array of pointers. The elements of the array are pointers to doubles. The following
statement shows how the arrPtr member will be declared.

double **arrPtr;

Since the arrPtr member will point to an array of pointers, it is a pointer-to-a-pointer.
That is why two asterisks appear in the declaration statement. The pointer that arrPtr
points to is a pointer to a double. Figure 10-10 illustrates arrPtr as a pointer to an array
of pointers-to-doubles.

Table 10-2 Description of Member Variables

Member Variable Description

numDonations An integer that will hold the number of donations received. This value will be
used to dynamically allocate arrays for holding and processing the donation
values.

donations A pointer that will point to a dynamically allocated array of doubles
containing the donation amounts.

arrPtr A pointer that will point to an array of pointers. The array of pointers will be
dynamically allocated. Each element of the array will point to an element of
the donations array.

Figure 10-10

arrPtr double

double

double

double

double

680 Chapter 10 Pointers

We will refer to the array of pointers as the arrPtr array. Once the arrPtr array is
allocated in memory, its elements will be initialized so they point to the elements of the
donations array, as illustrated in Figure 10-11.

The elements of the arrPtr array will initially point to the elements of the donations
array in their natural order (as shown in Figure 10-11). In other words, arrPtr[0]
will point to donations[0], arrPtr[1] will point to donations[1], and so forth. In
that arrangement, the following statement would cause the contents of donations[5]
to be displayed:

cout << *(arrPtr[5]) << endl;

After the arrPtr array is sorted, however, arrPtr[0] will point to the smallest value in
the donations array, arrPtr[1] will point to the next-to-smallest value in the donations
array, and so forth. This is illustrated in Figure 10-12.

This technique gives us access to the elements of the donations array in a sorted order
without actually disturbing the contents of the donations array itself.

Table 10-3 lists the class’s member functions.

Figure 10-11

Figure 10-12

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

United Cause Relief Agency Case Study 681

Let’s look at each member function in more detail.

The Constructor
The constructor’s code is as follows:

DonationList::DonationList(int num, double gifts[])
{

numDonations = num;
if (num > 0)
{

// Allocate an array of doubles
donations = new double[num];
// Allocate an array of pointers-to-doubles.
arrPtr = new double*[num];
// Initialize the arrays
for (int count = 0; count < numDonations; count++)
{

donations[count] = gifts[count];
arrPtr[count] = &donations[count];

}
// Now sort the array of pointers
selectSort();

}
}

The num argument (which is copied to numDonations) holds the number of donations, and
the gifts array contains the list of donation values.

If the value in num is greater than 0, the constructor allocates and initializes the elements of
the donations and arrPtr arrays. The elements of the gifts array are copied to the

Table 10-3 Description of Member Functions

Member Function Description

Constructor The constructor accepts as arguments an integer, which indicates the number
of donations received, and an array of doubles, which holds the list of
donation values. When the constructor is finished, the donations member
will point to a dynamically allocated array holding the list of donation values
(in their original order), and the arrPtr member will point to a dynamically
allocated array of pointers. The elements of the arrPtr array will point, in
ascending order, to the elements of the donations array.

Destructor Deletes the storage that was allocated by the constructor.

selectSort This function, which performs an ascending-order selection sort on arrPtr,
is called by the constructor. Before the sort, arrPtr [0]points to donations [0],
arrPtr [1] points to donations [1], and so forth. After the sort, arrPtr will
point to the elements of the donations array in ascending order.

show Displays the contents of the donations array. (This function displays the
donations in their original order.)

showSorted Displays the contents of what each element of the arrPtr array points to.
(This function displays the contents of the donations array in sorted order.)

682 Chapter 10 Pointers

elements of the donations array, and the elements of the arrPtr array are set to point to
the elements of the donations array.

The selectSort Member Function
The selectSort function is a modified version of the selection sort algorithm. The only
difference is that this function sorts an array of pointers. Instead of sorting on the contents
of the array’s elements, the array is sorted on the contents of what its elements point to.
Here is the pseudocode.

For scan is set to the values 0 up to (but not including) the next-
to-last subscript in arrPtr

Set minIndex variable to scan
Set minElem pointer to arrPtr[scan]
For index variable is set to the values from (scan + 1) through
the next-to-last subscript in arrPtr

If *(arrPtr[index]) is less than *minElem
Set minElem to arrPtr[index]
Set minIndex to index

End If
End For
Set arrPtr[minIndex] to arrPtr[scan]
Set arrPtr[scan] to minElem

End For

Here is the C++ code for the function:

void DonationList::selectSort()
{

int minIndex;
double *minElem;

for (int scan = 0; scan < (numDonations - 1); scan++)
{

minIndex = scan;
minElem = arrPtr[scan];
for(int index = scan + 1; index < numDonations; index++)
{

if (*(arrPtr[index]) < *minElem)
{

minElem = arrPtr[index];
minIndex = index;

}
}
arrPtr[minIndex] = arrPtr[scan];
arrPtr[scan] = minElem;

 }
}

The show Member Function
The show member function simply displays the contents of the donations array sequentially.
Here is its pseudocode:

United Cause Relief Agency Case Study 683

For every element in donations Array
Display the element's contents

End For

Here is the function’s actual C++ code:

void DonationList::show()
{

for (int count = 0; count < numDonations; count++)
cout << donations[count] << " ";

cout << endl;
}

The showSorted Member Function
The showSorted function displays the values pointed to by the elements of the arrPtr
array. Here is its pseudocode:

For every element in the arrPtr array
Dereference the element and display what it points to

End For

Here is the function’s C++ code:

void DonationList::showSorted()
{

for (int count = 0; count < numDonations; count++)
cout << *(arrPtr[count]) << " ";

cout << endl;
}

The Entire Class Listing
The class in its entirety is shown here.

Contents of donlist.h
1 #ifndef DONLIST_H
2 #define DONLIST_H
3
4 class DonationList
5 {
6 private:
7 int numDonations;
8 double *donations;
9 double **arrPtr;
10 void selectSort();
11 public:
12 DonationList(int num, double gifts[]);
13 ~DonationList();
14 void show();
15 void showSorted();
16 };
17 #endif

684 Chapter 10 Pointers

Contents of donlist.cpp
1 #include <iostream> //needed for cout
2 #include "donlist.h"
3 using namespace std;
4
5 //**
6 // Constructor. *
7 // The argument passed to num indicates the number of *
8 // elements in array passed to gifts. The gifts array *
9 // holds the list of donation values. The constructor *
10 // allocates the donations and arrPtr arrays. The gifts *
11 // array is copied to the donations array. The elements *
12 // of the arrPtr array are made to point to the elements *
13 // of the donations array, and then sorted in ascending *
14 // order by the selectSort function. *
15 //**
16 DonationList::DonationList(int num, double gifts[])
17 {
18 numDonations = num;
19 if (num > 0)
20 {
21 // Allocate an array of doubles
22 donations = new double[num];
23 // Allocate an array of pointers-to-doubles
24 arrPtr = new double*[num];
25 // Initialize the arrays
26 for (int count = 0; count < numDonations; count++)
27 {
28 donations[count] = gifts[count];
29 arrPtr[count] = &donations[count];
30 }
31 // Now, sort the array of pointers
32 selectSort();
33 }
34 }
35
36 //**
37 // Destructor frees the memory allocated by the constructor*
38 //**
39 DonationList::~DonationList()
40 {
41 if (numDonations > 0)
42 {
43 delete [] donations;
44 donations = 0;
45 delete [] arrPtr;
46 arrPtr = 0;
47 }
48 }
49
50 //**
51 // The selecSort function performs a selection sort on the *

United Cause Relief Agency Case Study 685

Implementing the Class
Program 10-19 shows how the class is used. The funds array is initialized with the 15
donation values.

52 // arrPtr array of pointers. The array is sorted on the *
53 // values its elements point to. *
54 //**
55 void DonationList::selectSort()
56 {
57 int minIndex;
58 double *minElem;
59
60 for (int scan = 0; scan < (numDonations - 1); scan++)
61 {
62 minIndex = scan;
63 minElem = arrPtr[scan];
64 for(int index = scan + 1; index < numDonations; index++)
65 {
66 if (*(arrPtr[index]) < *minElem)
67 {
68 minElem = arrPtr[index];
69 minIndex = index;
70 }
71 }
72 arrPtr[minIndex] = arrPtr[scan];
73 arrPtr[scan] = minElem;
74 }
75 }
76
77 //***
78 // The show function uses cout to display the donations *
79 // array in sequential order. *
80 //***
81 void DonationList::show()
82 {
83 for (int count = 0; count < numDonations; count++)
84 cout << donations[count] << " ";
85 cout << endl;
86 }
87
88 //***
89 // The showSorted function uses cout to display the values*
90 // pointed to by the elements of the arrPtr array. Since *
91 // arrPtr is sorted, this function displays the elements *
92 // of the donations array in ascending order. *
93 //***
94 void DonationList::showSorted()
95 {
96 for (int count = 0; count < numDonations; count++)
97 cout << *(arrPtr[count]) << " ";
98 cout << endl;
99 }

686 Chapter 10 Pointers

When the ckGraphics object is defined, the value 15 is passed to the constructor’s num
parameter, and the funds array is passed to the gifts parameter. The showSorted
member function is called to display the donation values in ascending order (by using the
arrPtr array to display them), and the show member function is called to display the
values in their original order.

10.14 Tying It All Together: Pardon Me, Do You Have the Time?

Professor Susan Gonzalez wants to have her students take some of their tests online
and has asked you to write a program to administer the tests. For each student, the
program must record the student’s starting time, the student’s answer for each
question, and the student’s ending time. Before you write the program, you want to
make sure that you can write code to accurately capture a student’s start and end time.
You decide to write a short program that experiments with the C++ library functions
for telling time.

C++ libraries provide a number of data types and functions that can be used to determine the
current calendar time. By convention, many computers mark calendar time by the number of
seconds that have elapsed since a point in time that has come to be known among computer
scientists as the epoch. In case you want to know, the epoch is midnight January 1, 1970.

Program 10-19

1 // This program shows the donations made to the United Cause
2 // by the employees of CK Graphics, Inc. It displays
3 // the donations in order from lowest to highest
4 // and in the original order they were received.
5 #include <iostream>
6 #include "donlist.h"
7 using namespace std;
8
9 int main()
10 {
11 double funds[] = {5, 100, 5, 25, 10,
12 5, 25, 5, 5, 100,
13 10, 15, 10, 5, 10 };
14 DonationList ckGraphics(15, funds);
15 cout << "The donations sorted in ascending order are:\n";
16 ckGraphics.showSorted();
17 cout << "The donations in their original order are:\n";
18 ckGraphics.show();
19 return 0;
20 }

Program Output
The donations sorted in ascending order are:
5 5 5 5 5 5 10 10 10 10 15 25 25 100 100
The donations in their original order are:
5 100 5 25 10 5 25 5 5 100 10 15 10 5 10

687Tying It All Together: Pardon Me, Do You Have the Time?

The C++ data type time_t is used to represent the number of seconds since the epoch. The
library function

time_t time (time_t * epSecs);

takes as parameter a pointer to a time_t object that will hold the value representing the
current time. Program 10-20 illustrates the use of this function.

Somewhat redundantly, the value stored in the parameter epSecs is also returned by the
time function. This allows the programmer to pass NULL for the parameter to time() and
use the returned value instead. The following program is equivalent to Program 10-20.

As useful as time() is, it does not solve all time-related problems. First, Professor Gonzalez
would much prefer that chronological times be stated in a form such as

Friday June 6, 2009, 4:29PM

Program 10-20

1 // This program illustrates the use of the time function.
2 #include <iostream>
3 #include <ctime> // Needed to use the time functions and types
4 using namespace std;
5
6 int main()
7 {
8 time_t epSeconds;
9 time(&epSeconds);
10 cout << "The number of seconds since the epoch is "
11 << epSeconds << endl;
12 return 0;
13 }

Program Output
The number of seconds since the epoch is 1247930628

Program 10-21

1 // This program illustrates the use of the time function.
2 #include <iostream>
3 #include <ctime> // Needed to use the time functions and types
4 using namespace std;
5
6 int main()
7 {
8 time_t epSeconds;
9 epSeconds = time(NULL);
10 cout << "Number of seconds since the epoch is "
11 << epSeconds << endl;
12 return 0;
13 }

Program Output
Number of seconds since the epoch is 1247930807

688 Chapter 10 PointersChapter 10 Pointers

instead of as so many seconds after the epoch. Second, she wants the program to take
differences in time zones into account and always give the correct local time. The C++
function

tm * localtime(const time_t *eps)

is exactly what is needed: it takes a time_t value, converts it into a structure of type tm,
and returns the address of that structure. The members of tm are integers and have the
meanings shown here:

int tm_min; // Minutes after the hour (0..59)
int tm_hour; // Hours after midnight (0..23)
int tm_mday; // Day of the month (1..31)
int tm_mon; // Month since January (0..11)
int tm_year; // Years since 1900
int tm_wday; // Weekday (Sunday=0, Monday=1, .. Saturday=6)

The following is an example of how to use time() in conjunction with localtime() to
print the number of the current month:

time_t epSecs; // Seconds since epoch
tm *pCalendarTime; // Pointer to calendar time
// Get seconds since epoch
epSecs = time(NULL);
// Convert to local time
pCalendarTime = localtime(&epSecs);
// Print number of current month
cout << pCalendarTime->tm_mon;

The following program determines and prints the day of the week, month, and year of the
time of its execution:

Program 10-22

1 // This program prints "today's" date
2 #include <iostream>
3 #include <ctime>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 time_t epSeconds; // Seconds since epoch
10 tm *pCalendarTime; // Pointer to calendar time
11 // Array of weekday names
12 string wDay[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
13 "Thursday", "Friday", "Saturday"
14 };
15 // Array of month names
16 string month[] = {"January", "February", "March", "April",
17 "May", "June", "July", "August", "September",
18 "October", "November", "December"
19 };
20

(program continues)

689Review Questions and Exercises

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. Each byte in memory is assigned a unique __________.

2. The __________ operator can be used to determine a variable’s address.

3. __________ variables are designed to hold addresses.

4. The __________ operator can be used to work with the variable a pointer points to.

5. Array names can be used as __________ and vice versa.

6. Creating variables while a program is running is called __________.

7. The __________ operator is used to dynamically allocate memory.

8. If the new operator cannot allocate the amount of memory requested, it throws
__________.

9. A pointer that contains the address 0 is called a(n) __________ pointer.

10. When a program is finished with a chunk of dynamically allocated memory, it should
free it with the __________ operator.

11. You should only use the delete operator to deallocate memory that was dynamically
acquired with the __________ operator.

12. What does the indirection operator do?

13. Look at the following code.

int x = 7;
int *ptr = &x;

What will be displayed if you send the expression *iptr to cout? What happens if
you send the expression ptr to cout?

21 epSeconds = time(NULL); // Seconds since epoch
22 pCalendarTime = localtime(&epSeconds); // Convert to local time
23
24 // Print day of month and day of week
25 cout << "Today is " << wDay[pCalendarTime->tm_wday]
26 << " " << month[pCalendarTime->tm_mon]
27 << " " << pCalendarTime->tm_mday
28 << ", " << 1900 + pCalendarTime->tm_year << endl;
29
30 return 0;
31 }

Program Output
Today is Friday September 20, 2013

Program 10-22 (continued)

690 Chapter 10 Pointers

14. Name two different uses for the C++ operator *.

15. Which arithmetic operations can be applied to pointers?

16. Assuming that ptr is a pointer to an int, what happens when you add 4 to it?

17. Look at the following array definition.

int numbers [] = {2, 4, 6, 8, 10};

What will the following statement display?

cout << *(numbers + 3) << endl;

18. What is the purpose of the new operator?

19. What happens when a program uses the new operator to allocate a block of memory,
but the amount of requested memory isn’t available? How do programs written with
older compilers handle this?

20. Under what circumstances can you successfully return a pointer from a function?

21. What is the purpose of the delete operator?

22. What is the difference between a pointer to a constant and a constant pointer?

23. Show C++ code for defining a variable ptr that is a pointer to a constant int.

24. Show C++ code for defining a variable ptr that is a constant pointer to int.

C++ Language Elements

25. Consider the function

void change(int *p)
{

*p = 20;
}

Show how to call the change function so that it sets the integer variable

int i;

to 20.

26. Consider the function

void modify(int & x)
{

x = 10;
}

Show how to call the modify function so that it sets the integer

int i;

to 10.

Algorithm Workbench

27. Write a function whose prototype is

void exchange(int *p, int *q);

that takes two pointers to integer variables and exchanges the values in those variables.

Review Questions and Exercises 691

28. Write a function

void switchEnds(int *array, int size);

that is passed the address of the beginning of an array and the size of the array. The
function swaps the values in the first and last entries of the array.

Predict the Output

29. Given the variable initializations

int a[5] = {0, 10, 20, 30, 40};
int k = 3;
int *p = a + 1;

determine the output from each of the following statements:

A) cout << a[k];
B) cout << *(a + k);
C) cout << *a;
D) cout << a[*a];
E) cout << a[*a + 2];
F) cout << *p;
G) cout << p[0];
H) cout << p[1];

Find the Error

30. Each of the following declarations and program segments has errors. Locate as many
as you can.

A) int ptr*;
B) int x, *ptr;

&x = ptr;
C) int x, *ptr;

*ptr = &x;
D) int x, *ptr;

ptr = &x;
ptr = 100; // Store 100 in x
cout << x << endl;

E) int numbers[] = {10, 20, 30, 40, 50};
cout << "The third element in the array is ";
cout << *numbers + 3 << endl;

F) int values[20], *iptr;
iptr = values;
iptr *= 2;

G) double level;
int dPtr = &level;

H) int *iptr = &ivalue;
int ivalue;

I) void doubleVal(int val)
{

*val *= 2;
}

692 Chapter 10 Pointers

J) int *pint;
new pint;

K) int *pint;
pint = new int;
pint = 100;

L) int *pint;
pint = new int[100]; // Allocate memory
 .
 .
Process the array
 .
 .
delete pint;// Free memory

M) int *getNum()
{
 int wholeNum;

 cout << "Enter a number: ";
 cin >> wholeNum;
 return &wholeNum;
}

Soft Skills

31. Suppose that you are a manager of a programming team. To facilitate project
development and maintenance, you have decided to establish some programming and
coding guidelines. Make a list of pointer-related programming guidelines you think
will improve program readability and decrease pointer-related bugs.

Programming Challenges

1. Test Scores #1

Write a program that dynamically allocates an array large enough to hold a user-defined
number of test scores. Once all the scores are entered, the array should be passed to a
function that sorts them in ascending order. Another function should be called that
calculates the average score. The program should display the sorted list of scores and
averages with appropriate headings. Use pointer notation rather than array notation
whenever possible.

Input Validation: Do not accept negative numbers for test scores.

2. Test Scores #2

Modify the program of Programming Challenge 1 to allow the user to enter name–score
pairs. For each student taking a test, the user types a string representing the name of the
student, followed by an integer representing the student’s score. Modify both the sorting
and average-calculating functions so they take arrays of structures, with each structure
containing the name and score of a single student. In traversing the arrays, use pointers
rather than array indices.

Review Questions and Exercises 693

3. Money Money Money #1

Modify Program 10-19 (the United Cause case study program) so it can be used with any
set of donations. The program should dynamically allocate the donations array and ask
the user to input its values.

4. Money Money Money #2

Modify Program 10-19 (the United Cause case study program) so the arrPtr array is
sorted in descending order instead of ascending order.

5. Pie a la Mode

In statistics the mode of a set of values is the value that occurs most often. Write a
program that determines how many pieces of pie most people eat in a year. Set up an
integer array that can hold responses from 30 people. For each person, enter the number
of pieces they say they eat in a year. Then write a function that finds the mode of these 30
values. This will be the number of pie slices eaten by the most people. The function that
finds and returns the mode should accept two arguments, an array of integers, and a
value indicating how many elements are in the array.

6. Median Function

In statistics the median of a set of values is the value that lies in the middle when the values
are arranged in sorted order. If the set has an even number of values, then the median is
taken to be the average of the two middle values. Write a function that determines the
median of a sorted array. The function should take an array of numbers and an integer
indicating the size of the array and return the median of the values in the array. You may
assume the array is already sorted. Use pointer notation whenever possible.

7. Movie Statistics

Write a program that can be used to gather statistical data about the number of movies
college students see in a month. The program should ask the user how many students
were surveyed and dynamically allocate an array of that size. The program should then
allow the user to enter the number of movies each student has seen. The program should
then calculate the average, median, and mode of the values entered.

8. Days in Current Month

Write a program that can determine the number of days in a month for a specified month
and year. The program should allow a user to enter two integers representing a month
and a year, and it should determine how many days are in the specified month. The
integers 1 through 12 will be used to identify the months of January through December.
The user indicates the end of input by entering 0 0 for the month and year. At that point,
the program prints the number of days in the current month and terminates.

Use the following criteria to identify leap years:

1. A year Y is divisible by 100. Then Y is a leap year if and if only it is divisible by 400.
For example, 2000 is a leap year but 2100 is not.

2. A year Y is not divisible by 100. Then Y is a leap year if and if only it is divisible by 4.
For example, 2008 is a leap year but 2009 is not.

VideoNote

Solving the
Days in Current
Month Problem

694 Chapter 10 Pointers

Here is sample run of the program:

Enter month and year: 2 2008[Enter]
29 days
Enter month and year: 0 0[Enter]

The current month, September 2009, has 30 days.

9. Age

Write a program that asks for the user’s name and year of birth, greets the user by name,
and declares the user’s age in years. Users are assumed to be born between the years
1800 and 2099, and should enter the year of birth in one of the three formats 18XX,
19XX, or 20XX. A typical output should be “Hello Caroline, you are 23 years old.”

695

C
H

A
P

T
E

R
C

H
A

P
T

E
R

11 More About Classes and
Object-Oriented Programming

11.1 The this Pointer and Constant Member Functions

CONCEPT: By default, the compiler provides each member function of a class with an
implicit parameter that points to the object through which the member
function is called. The implicit parameter is called this. A constant
member function is one that does not modify the object through which it is
called.

The this Pointer
Consider the class

class Example
{

int x;
public:

Example(int a){ x = a;}
void setValue(int);
int getValue();

};

TOPICS

11.1 The this Pointer and Constant
Member Functions

11.2 Static Members
11.3 Friends of Classes
11.4 Memberwise Assignment
11.5 Copy Constructors
11.6 Operator Overloading
11.7 Type Conversion Operators
11.8 Convert Constructors

11.9 Aggregation and Composition
11.10 Inheritance
11.11 Protected Members and Class

Access
11.12 Constructors, Destructors, and

Inheritance
11.13 Overriding Base Class Functions
11.14 Tying It All Together: Putting Data on

the World Wide Web

696 Chapter 11 More About Classes and Object-Oriented Programming

with the member function

int Example::getValue()
{

return x;
}

that simply returns the value in an object of the class. As an example, the getValue
function might be invoked in a program such as

int main()
{

Example ob1(10), ob2(20);
cout << ob1.getValue() << " " << ob2.getValue();
return 0;

}

in which case the program would print out the values 10 20.

You learned in an earlier chapter that the different objects of a structure or class type are
called instances of that class, and that each instance of a class has its own copy of the data
members listed in the class. These data members, called instance members because they
belong to instances of the class, can have different values in different objects. Thus in the
preceding example, the instance member x in the ob1 object has a value of 10 while x in
ob2 has a value of 20.

Now consider again the code for the member function

int Example::getValue()
{

return x;
}

This function is supposed to return the x member of some object of the Example class, but
how does it know which object to use? What happens is that by default, the compiler
provides each member function of every class with an implicit parameter that is a pointer
to an object of the class. Thus for example, the getValue function is equipped with a
single parameter of type pointer to Example. Similarly, the member function

void Example::setValue(int a)
{

x = a;
}

although written by the programmer to take a single parameter of type int, in reality has
two parameters: an pointer to an object of the class Example, and the

int a

parameter specified by the programmer. In all cases, the actual parameter for the implicit
object parameter is the address of the object through which the member function is being
called. Thus in the call

ob1.getValue()

the implicit parameter passed to getValue is the address of ob1, whereas in the call

ob2.setValue(78)

the implicit parameter passed to setValue is &ob2.

The this Pointer and Constant Member Functions 697

The implicit pointer passed by the compiler to a member function can be accessed by code
inside that function by using the reserved key word this. So for example, a member function
of the Example class could access the object through which it is called by using the expression

*this

and it could also access any of the members of that object through the same pointer.
Program 11-1 illustrates these concepts. It modifies the Example class to include a
member function that uses the this pointer to print the address of the object through
which it is called as well as the value of the instance member x in the same object.

Program 11-1

Contents of ThisExample.h
1 class Example
2 {
3 int x;
4 public:
5 Example(int a){ x = a;}
6 void setValue(int);
7 void printAddressAndValue();
8 };

Contents of ThisExample.cpp
1 #include "ThisExample.h"
2 #include <iostream>
3 using namespace std;
4
5 //***
6 // Set value of object. *
7 //***
8 void Example::setValue(int a)
9 {
10 x = a;
11 }
12 //***
13 // Print address and value. *
14 //***
15 void Example::printAddressAndValue()
16 {
17 cout << "The object at address " << this << " has "
18 << "value " << (*this).x << endl;
19 }

Contents of main program, pr11-1.cpp
1 // This program illustrates the this pointer.
2 #include <iostream>
3 #include "ThisExample.h"
4 using namespace std;
5
6 int main()
7 {
8 Example ob1(10), ob2(20);
9

(program continues)

698 Chapter 11 More About Classes and Object-Oriented Programming

As an example of a common use of the this pointer, consider the member function

void Example::setValue(int a)
{

x = a;
}

It is natural to name the parameter to be used to set the value of the member x using an
identifier that makes its connection to x explicit, perhaps xValue or even x itself.
However, a formal parameter of a member function with the same identifier as a member
of the class will hide the class member, making it inaccessible inside the function. The
this pointer can be used to qualify the name of the class member and make it visible
again. Here is the setValue member function rewritten in this manner:

void Example::setValue(int x)
{

this->x = x;
}

Recall from Chapter 10 that the notation this->x is equivalent to (*this).x.

Constant Member Functions
A parameter that is passed to a function by reference or through a pointer may be modified
by that function. The const key word is used with a parameter to prevent the called function
from modifying it. For example, a function declared as

void fun(const string *str);

takes a pointer to a string object as a parameter, but will not be able to modify the object.
There is a similar mechanism that can be used to protect the implicit parameter *this
from being modified by a member function. When placed right after the parameter list in
the definition of a member function, the const key word serves as an indication to the
compiler that the member function should not be allowed to modify its object. If the
member function is defined outside the class, both the in-class declaration and the
definition must have the const. Here is an example

10 // Print the addresses of the two objects
11 cout << "Addresses of objects are " << &ob1
12 << " and " << &ob2 << endl;
13
14 // Print the addresses and values from within
15 // the member function
16 ob1.printAddressAndValue();
17 ob2.printAddressAndValue();
18
19 return 0;
20 }

Program Output
Addresses of objects are 0x241ff5c and 0x241ff58
The object at address 0x241ff5c has value 10
The object at address 0x241ff58 has value 20

Program 11-1 (continued)

The this Pointer and Constant Member Functions 699

class ConstExample
{

int x;
public:

ConstExample(int a){ x = a;}
void setValue(int);
int getValue() const;

};

The definition of the getValue function would be

int ConstExample::getValue() const
{

return x;
}

A function with a constant parameter x cannot turn around and pass x as a non-constant
parameter to another function. In other words, a function that promises not to modify x
may not pass x to another function unless that second function also promises not to
modify x . This can sometimes occur in ways that are not obvious. The following program
uses a function with a constant parameter to print the first element of an array. It does not
compile because it is not consistent in its use of const.

#include <iostream>
using namespace std;

class K
{
public:
 void output() // Missing const!
 {
 cout << "Output of a K object" << endl;
 }
};

void outputFirst(const K arr[])
{
 arr[0].output();
}

int main(int argc, char** argv)
{
 K arr[] = { K() };
 outputFirst(arr);
 return 0;
}
The program does not compile because the compiler cannot guarantee that an element of
the const array will not be modified when passed as the implicit this parameter to the
output member function:

arr[0].output();

700 Chapter 11 More About Classes and Object-Oriented Programming

You can get the program to compile by making output() a const member function to
signify that it has a constant this parameter:

class K
{
public:
 void output() const
 {
 cout << "Output of a K object" << endl;
 }
};

11.2 Static Members

CONCEPT: If a member variable is declared static, all objects of that class have access
to that variable. If a member function is declared static, it may be called
before any instances of the class are defined.

Each class object (an instance of a class) has its own copy of the class’s member variables.
An object’s member variables are separate and distinct from the member variables of other
objects of the same class. For example, consider the following declaration:

class Widget
{

private:
double price;
int quantity;

public:
Widget(double p, int q)

 { price = p; quantity = q; }
double getPrice() const

 { return price; }
int getQuantity() const

 { return quantity; }
};

Assume that in a program, two separate instances of the Widget class are created by the
following declaration:

Widget w1(14.50, 100), w2(12.75, 500);

This statement creates w1 and w2, two distinct objects. Each has its own price and
quantity member variables. This is illustrated by Figure 11-1.

Figure 11-1

w2 Object

50012.75

price quantity

w1 Object

10014.50

price quantity

Static Members 701

When the getQuantity member function of either instance is called, it returns the value
stored in the calling object’s quantity variable. Based on the values initially stored in the
objects, the statement

cout << w1.getQuantity() << " " << w2.getQuantity();

will cause 100 500 to be displayed.

Static Member Variables
It’s possible to create a member variable that is shared by all the objects of the same class. To
create such a member, simply place the key word static in front of the variable declaration,
as shown in the following class:

class StatDemo
{
 private:
 static int x;
 int y;
 public:
 void setx(int a) const { x = a; }
 void sety(int b) const { y = b; }
 int getx() { return x; }
 int gety() { return y; }
};

Next, place a separate definition of the variable outside the class, such as:

int StatDemo::x;

In this example, the member variable x will be shared by all objects of the StatDemo class.
When one class object puts a value in x, it will appear in all other StatDemo objects. For
example, assume the following statements appear in a program:

StatDemo obj1, obj2;
obj1.setx(5);
obj1.sety(10);
obj2.sety(20);
cout << "x: " << obj1.getx() << " " << obj2.getx() << endl;
cout << "y: " << obj1.gety() << " " << obj2.gety() << endl;

The cout statements shown will display

x: 5 5
y: 10 20

The value 5 is stored in the static member variable x by the object obj1. Since obj1 and obj2
share the variable x, the value 5 shows up in both objects. This is illustrated by Figure 11-2.

Figure 11-2

obj1

Static Member x

Both obj1 and obj2 share the static member x

Member y

10

obj2

Member y

20

5

702 Chapter 11 More About Classes and Object-Oriented Programming

A more practical use of a static member variable is demonstrated in Program 11-2. The
Budget class is used to gather the budget requests for all the divisions of a company. The class
uses a static member, corpBudget, to hold the amount of the overall corporate budget. When
the member function addBudget is called, its argument is added to the current contents of
corpBudget. By the time the program is finished, corpBudget will contain the total of all the
values placed there by all the Budget class objects.

Program 11-2

Contents of budget.h
1 #ifndef BUDGET_H
2 #define BUDGET_H
3
4 class Budget
5 {
6 private:
7 static double corpBudget;
8 double divBudget;
9 public:
10 Budget() { divBudget = 0; }
11 void addBudget(double b)
12 { divBudget += b; corpBudget += divBudget; }
13 double getDivBudget() const { return divBudget; }
14 double getCorpBudget() const { return corpBudget; }
15 };
16 #endif

Contents of main program, pr11-2.cpp
1 // This program demonstrates a static class member variable.
2 #include <iostream>
3 #include <iomanip>
4 #include "budget.h" // For Budget class declaration
5 using namespace std;
6
7 // Definition of the static member of the Budget class
8 double Budget::corpBudget = 0;
9
10 int main()
11 {
12 const int N_DIVISIONS = 4;
13 Budget divisions[N_DIVISIONS];
14
15 // Get the budget request for each division
16 for (int count = 0; count < N_DIVISIONS; count++)
17 {
18 double bud;
19
20 cout << "Enter the budget request for division ";
21 cout << (count + 1) << ": ";
22 cin >> bud;
23 divisions[count].addBudget(bud);
24 }
25

(program continues)

Static Members 703

In general, we can divide the member variables and functions of a class into two groups:
instance members and static members. An instance member is one whose use must be
associated with a particular instance of the class. In particular, an instance variable of a
class must be accessed through a specific instance of its class, and an instance member
function must be called through a specific instance of its class.

In contrast, the use of a static member variable, or the call of a static member function, does not
need to be associated with any instance. Only the class of the static member needs to be specified.

Static Member Functions
A member function of a class can be declared static by prefixing its declaration with the
key word static. Here is the general form:

static <return type><function name>(<parameter list>)

26 // Display the budget request for each division
27 cout << setprecision(2);
28 cout << showpoint << fixed;
29 cout << "\nHere are the division budget requests:\n";
30 for (int count = 0; count < N_DIVISIONS; count++)
31 {
32 cout << "Division " << (count + 1) << "\t$ ";
33 cout << divisions[count].getDivBudget() << endl;
34 }
35
36 // Display the total budget request
37 cout << "Total Budget Requests:\t$ ";
38 cout << divisions[0].getCorpBudget() << endl;
39
40 return 0;
41 }

Program Output with Example Input Shown in Bold
Enter the budget request for division 1: 102000[Enter]
Enter the budget request for division 2: 201000[Enter]
Enter the budget request for division 3: 570000[Enter]
Enter the budget request for division 4: 100100[Enter]

Here are the division budget requests:
Division 1 $ 102000.00
Division 2 $ 201000.00
Division 3 $ 570000.00
Division 4 $ 100100.00
Total Budget Requests: $ 973100.00

NOTE: Static member variables furnish a good example of the distinction between C++
declarations and C++ definitions. A declaration provides information about the existence and
type of a variable or function. A definition provides all the information contained in a
declaration, and in addition, causes memory to be allocated for the variable or function being
defined. Static member variables must be declared inside the class and defined outside of it.

Program 11-2 (continued)

704 Chapter 11 More About Classes and Object-Oriented Programming

Static member functions are normally used to work with static member variables of the
class. In fact, member functions that do not access any nonstatic members of their class,
such as getCorpBudget() in Program 11-2, should be made static.

Program 11-3, a modification of Program 11-2, demonstrates this. It asks the user to enter
the main office’s budget request before any division requests are entered. The Budget class
has been modified to include a static member function named mainOffice. This function
adds its argument to the static corpBudget variable and is called before any instance of the
Budget class is defined. The getCorpBudget() function has also been made static.

Program 11-3

Contents of budget2.h
1 #ifndef BUDGET_H
2 #define BUDGET_H
3
4 class Budget
5 {
6 private:
7 static double corpBudget;
8 double divBudget;
9 public:
10 Budget() { divBudget = 0; }
11 void addBudget(double b)
12 { divBudget += b; corpBudget += divBudget; }
13 double getDivBudget() const { return divBudget; }
14 static double getCorpBudget() { return corpBudget; }
15 static void mainOffice(double);
16 };
17 #endif

Contents of budget2.cpp
1 #include "budget2.h"
2
3 // Definition of the static member of Budget class.
4 double Budget::corpBudget = 0;
5
6 //**
7 // Definition of static member function mainOffice *
8 // This function adds the main office's budget request to *
9 // the corpBudget variable. *
10 //**
11 void Budget::mainOffice(double budReq)
12 {
13 corpBudget += budReq;
14 }

Contents of main program, pr11-3.cpp
1 // This program demonstrates a static class member function.
2 #include <iostream>
3 #include <iomanip>
4 #include "budget2.h" // For Budget class declaration
5 using namespace std;
6

(program continues)

Static Members 705

7 int main()
8 {
9 const int N_DIVISIONS = 4;
10
11 // Get the budget requests for each division
12 cout << "Enter the main office's budget request: ";
13 double amount;
14 cin >> amount;
15 // Call the static member function of the Budget class
16 Budget::mainOffice(amount);
17 // Create instances of the Budget class
18 Budget divisions[N_DIVISIONS];
19 for (int count = 0; count < N_DIVISIONS; count++)
20 {
21 double bud;
22
23 cout << "Enter the budget request for division ";
24 cout << (count + 1) << ": ";
25 cin >> bud;
26 divisions[count].addBudget(bud);
27 }
28
29 // Display the budget for each division
30 cout << setprecision(2);
31 cout<< showpoint << fixed;
32 cout << "\nHere are the division budget requests:\n";
33 for (int count = 0; count < N_DIVISIONS; count++)
34 {
35 cout << "\tDivision " << (count + 1) << "\t$ ";
36 cout << divisions[count].getDivBudget() << endl;
37 }
38
39 // Print total budget requests
40 cout << "Total Requests (including main office): $ ";
41 cout << Budget::getCorpBudget() << endl;
42 return 0;
43 }

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 400000[Enter]
Enter the budget request for division 1: 102000[Enter]
Enter the budget request for division 2: 210000[Enter]
Enter the budget request for division 3: 240000[Enter]
Enter the budget request for division 4: 105000[Enter]

Here are the division budget requests:
 Division 1 $ 102000.00
 Division 2 $ 210000.00
 Division 3 $ 240000.00
 Division 4 $ 105000.00
Total Requests (including main office): $ 1057000.00

Program 11-3 (continued)

706 Chapter 11 More About Classes and Object-Oriented Programming

Notice the statement that calls the static function mainOffice:

Budget::mainOffice(amount);

Calls to static member functions are normally made by connecting the function name
to the class name with the scope resolution operator. If objects of the class have been
defined, static member functions can also be called by connecting their names to the
object with the dot operator. Thus the last output statement of Program 11-3 could be
written as

cout << divisions[0].getCorpBudget() << endl;

The this pointer cannot be used in a static member function, because static member
functions are not called through any instance of their class. Moreover, a static member
function cannot access an instance member of its class unless it specifies what instance the
member belongs to. For example, in the class

class StatAccess
{

private:
int x;

public:
static void output()

{
cout << x; // Incorrect access of non-static member

}
StatAccess(int x) { this->x = x; }

};

The attempt to access x in the statement cout << x is incorrect because it is tantamount
to an implicit use of the this pointer, which the static function output does not have. In
contrast, in the following modified example of the same class, the static member function
print correctly accesses the nonstatic member x because it qualifies it with the name of a
class object passed to it as a parameter.

class StatAccess
{

private:
int x;

public:
static void print(StatAccess a)
{

cout << a.x;
}

StatAccess(int x) { this->x = x; }
};

An advantage of static member functions is they can be called before any instances of the
class have been created. This allows them to be used to perform complex initialization
tasks that have to be done before objects of the class have been created.

Friends of Classes 707

11.3 Friends of Classes

CONCEPT: A friend is a function that is not a member of a class, but has access to the
private members of the class.

Private members are hidden from all parts of the program outside the class, and accessing
them requires a call to a public member function. Sometimes you will want to create an
exception to that rule. A friend function is a function that is not a member of a class, but
that has access to the class’s private members. In other words, a friend function is treated
as if it were a member of the class. A friend function can be a regular stand-alone function,
or it can be a member of another class. (In fact, an entire class can be declared a friend of
another class.)

In order for a function or class to become a friend of another class, it must be declared as
such by the class granting it access. Classes keep a “list” of their friends, and only the
external functions or classes whose names appears in the list are granted access. A function
is declared a friend by placing the key word friend in front of a prototype of the function.
Here is the general format:

friend <return type><function name>(<parameter type list>);

In the following declaration of the Budget class, the addBudget function of another class,
Aux, has been declared a friend:

class Budget
{
private:

static double corpBudget;
double divBudget;

public:
Budget() { divBudget = 0; }
void addBudget(double b)

{ divBudget += b; corpBudget += divBudget; }
double getDivBudget() const { return divBudget; }
static double getCorpBudget() { return corpBudget; }
static void mainOffice(double);
friend void Aux::addBudget(double); // A friend

};

Let’s assume another class Aux represents a division’s auxiliary office, perhaps in another
country. The auxiliary office makes a separate budget request, which must be added to the
overall corporate budget. The friend declaration of the Aux::addBudget function tells the
compiler that the function is to be granted access to Budget’s private members. The
function takes an argument of type double representing an amount to be added to the
corporate budget:

class Aux
{
private:

double auxBudget;

708 Chapter 11 More About Classes and Object-Oriented Programming

public:
Aux() { auxBudget = 0; }
void addBudget(double);
double getDivBudget() { return auxBudget; }

};

And here is the definition of the Aux addBudget member function:

void Aux::addBudget(double b)
{

auxBudget += b;
Budget::corpBudget += auxBudget;

}

The parameter b is added to the corporate budget, which is accessed by using the expression
Budget::corpBudget. Program 11-4 demonstrates the classes in a complete program.

Program 11-4

Contents of auxil.h
1 #ifndef AUXIL_H
2 #define AUXIL_H
3
4 // Aux class declaration.
5 class Aux
6 {
7 private:
8 double auxBudget;
9 public:
10 Aux() { auxBudget = 0; }
11 void addBudget(double);
12 double getDivBudget() const { return auxBudget; }
13 };
14 #endif

Contents of budget3.h
1 #ifndef BUDGET3_H
2 #define BUDGET3_H
3 #include "auxil.h" // For Aux class declaration
4
5 // Budget class declaration.
6 class Budget
7 {
8 private:
9 static double corpBudget;
10 double divBudget;
11 public:
12 Budget() { divBudget = 0; }
13 void addBudget(double b)
14 { divBudget += b; corpBudget += divBudget; }
15 double getDivBudget() const { return divBudget; }
16 static double getCorpBudget() { return corpBudget; }
17 static void mainOffice(double);
18 friend void Aux::addBudget(double);
19 };
20 #endif

(program continues)

Friends of Classes 709

Contents of budget3.cpp
1 #include "budget3.h"
2
3 // Definition of static member.
4 double Budget::corpBudget = 0;
5
6 //**
7 // Definition of static member function mainOffice *
8 // This function adds the main office's budget request to *
9 // the corpBudget variable. *
10 //**
11 void Budget::mainOffice(double budReq)
12 {
13 corpBudget += budReq;
14 }

Contents of auxil.cpp
1 #include "auxil.h"
2 #include "budget3.h"
3
4 //***
5 // Definition of member function addBudget *
6 // This function is declared a friend by the Budget class *
7 // It adds the value of argument b to the static corpBudget *
8 // member variable of the Budget class. *
9 //***
10
11 void Aux::addBudget(double b)
12 {
13 auxBudget += b;
14 Budget::corpBudget += auxBudget;
15 }

Contents of main program pr11-4.cpp
1 // This program demonstrates a static class member variable.
2 #include <iostream>
3 #include <iomanip>
4 #include "budget3.h"
5 using namespace std;
6
7 int main()
8 {
9 const int N_DIVISIONS = 4;
10
11 // Get the budget requests for the divisions and
12 // offices
13 cout << "Enter the main office's budget request: ";
14 double amount;
15 cin >> amount;
16 Budget::mainOffice(amount);
17

(program continues)

Program 11-4 (continued)

710 Chapter 11 More About Classes and Object-Oriented Programming

18 // Create the division and auxiliary offices
19 Budget divisions[N_DIVISIONS];
20 Aux auxOffices[N_DIVISIONS];
21
22 cout << "\nEnter the budget requests for the divisions and "
23 << "\ntheir auxiliary offices as prompted:\n";
24 for (int count = 0; count < N_DIVISIONS; count++)
25 {
26 double bud;
27 cout << "Division " << (count + 1) << ": ";
28 cin >> bud;
29 divisions[count].addBudget(bud);
30 cout << "Division " << (count + 1) << "'s auxiliary office: ";
31 cin >> bud;
32 auxOffices[count].addBudget(bud);
33 }
34
35 // Print the budgets
36 cout << setprecision(2);
37 cout << showpoint << fixed;
38 cout << "Here are the division budget requests:\n";
39 for (int count = 0; count < N_DIVISIONS; count++)
40 {
41 cout << "\tDivision: " << (count + 1) << "\t\t\t$ ";
42 cout << setw(7);
43 cout << divisions[count].getDivBudget() << endl;
44 cout << "\tAuxiliary Office of Division " << (count+1);
45 cout << "\t$ ";
46 cout << auxOffices[count].getDivBudget() << endl;
47 }
48 // Print total requests
49 cout << "\tTotal Requests (including main office): $ ";
50 cout << Budget::getCorpBudget() << endl;
51 return 0;
52 }

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 100000[Enter]

Enter the budget requests for the divisions and
their auxiliary offices as prompted:
Division 1: 100000[Enter]
Division 1's auxiliary office: 500000[Enter]
Division 2: 200000[Enter]
Division 2's auxiliary office: 40000[Enter]
Division 3: 300000[Enter]
Division 3's auxiliary office: 700000[Enter]
Division 4: 400000[Enter]
Division 4's auxiliary office: 650000[Enter]

(program output continues)

Program 11-4 (continued)

Friends of Classes 711

Checkpoint

11.1 What is the difference between an instance member variable and a static member
variable?

11.2 Static member variables are declared inside the class declaration. Where are static
member variables defined?

11.3 Does a static member variable come into existence in memory before, at the same
time as, or after any instances of its class?

11.4 What limitation does a static member function have?

11.5 What action is possible with a static member function that isn’t possible with an
instance member function?

11.6 If class X declares function f as a friend, does function f become a member of
class X?

11.7 Suppose that class Y is a friend of class X, meaning that the member functions of
class Y have access to all the members of class X. Should the friend key word appear
in class Y’s declaration or in class X’s declaration?

Here are the division budget requests:
 Division: 1 $ 100000.00
 Auxiliary Office of Division 1 $ 50000.00
 Division: 2 $ 200000.00
 Auxiliary Office of Division 2 $ 40000.00
 Division: 3 $ 300000.00
 Auxiliary Office of Division 3 $ 70000.00
 Division: 4 $ 400000.00
 Auxiliary Office of Division 4 $ 65000.00
 Total Requests (including main office): $ 1325000.00

NOTE: As mentioned before, it is possible to make an entire class a friend of another
class. The Budget class could make the Aux class its friend with the following
declaration:

friend class Aux;

This may not be a good idea, however. Every member function of Aux (including ones
that may be added later) would have access to the private members of Budget. The best
practice is to declare as friends only those functions that must have access to the private
members of the class.

Program 11-4 (continued)

712 Chapter 11 More About Classes and Object-Oriented Programming

11.4 Memberwise Assignment

CONCEPT: The = operator may be used to assign one object to another, or to initialize
one object with another object’s data. By default, each member of one
object is copied to its counterpart in the other object.

Like other variables (except arrays), objects may be assigned to each other using the =
operator. As an example, consider Program 11-5, which uses a Rectangle class similar to
the one discussed in Chapter 7:

Program 11-5

1 // This program demonstrates object assignment.
2 #include <iostream>
3 using namespace std;
4
5 class Rectangle
6 {
7 private:
8 double width, length;
9 public:
10 Rectangle(double width, double length)
11 {
12 this->width = width;
13 this->length = length;
14 }
15 double getWidth() const { return width; }
16 double getLength() const { return length; }
17 void output() const
18 {
19 cout << "Width is " << width << ", "
20 << "Length is " << length << endl;
21 }
22 };
23
24 int main()
25 {
26 // Set up two rectangle objects
27 Rectangle box1(10, 20), box2(5, 10);
28
29 // Display the rectangle objects
30 cout << "Before the assignment:\n";
31 cout << "Box 1 data:\t"; box1.output();
32 cout << "Box 2 data:\t"; box2.output();
33
34 // Assignment
35 box2 = box1;
36
37 // Display the rectangle objects
38 cout << "\nAfter the assignment:\n";

(program continues)

Copy Constructors 713

As you can see, the statement

box2 = box1

copied the width and length variables of box1 directly into the width and length
variables of box2.

Memberwise assignment also occurs when one object is initialized with another object’s
values. Remember the difference between assignment and initialization: assignment
occurs between two objects that already exist, and initialization happens to an object
being created. Consider the following program segment:

Rectangle box1(10, 50);
Rectangle box2 = box1;

The second statement defines a Rectangle object box2 and initializes it to the values
stored in box1. Because memberwise assignment takes place, the box2 object will contain
the same values as the box1 object.

11.5 Copy Constructors

CONCEPT: A copy constructor is a special constructor that is called whenever a new
object is created and initialized with the data of another object of the same
class.

Many times it makes sense to create an object and have it start out with its data being the
same as that of another, previously created object. For example, if Mary and Joan live in
the same house and an address object for Mary has already been created, it makes sense
to initialize Joan’s address object to a copy of Mary’s. In particular, suppose we have the
following class to represent addresses:

class Address
{
private:
 string street;

39 cout << "Box 1 data:\t"; box1.output();
40 cout << "Box 2 data:\t"; box2.output();
41 return 0;
42 }

Program Output
Before the assignment:
Box 1 data: Width is 10, Length is 20
Box 2 data: Width is 5, Length is 10

After the assignment:
Box 1 data: Width is 10, Length is 20
Box 2 data: Width is 10, Length is 20

Program 11-5 (continued)

714 Chapter 11 More About Classes and Object-Oriented Programming

public:
 Address() { street = ""; }
 Address(string st) { setStreet(st); }
 void setStreet(string st) { street = st; }
 string getStreet() const { return street; }
};

We could then create Mary’s address and then initialize Joan’s address to a copy of Mary’s
using the following code:

Address mary("123 Main St");
Address joan = mary;

Recall that a constructor must execute whenever an object is being created. When an object
is created and initialized with another object of the same class, the compiler automatically
calls a special constructor, called a copy constructor, to perform the initialization using the
existing object’s data. This copy constructor can be specified by the programmer, as we will
shortly show.

The Default Copy Constructor
If the programmer does not specify a copy constructor for the class, then the compiler
automatically calls a default copy constructor. This default copy constructor simply copies
the data of the existing object to the new object using memberwise assignment.

Most of the time, the default copy constructor provides the kind of behavior that we want.
For example, if after initializing Joan’s address with Mary’s, Joan later moves out and gets
her own place, we can change Joan’s address without affecting Mary’s. This is illustrated in
Program 11-6.

Program 11-6

1 // This program demonstrates the operation of the
2 // default copy constructor.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 class Address
8 {
9 private:
10 string street;
11 public:
12 Address() { street = ""; }
13 Address(string st) { setStreet(st); }
14 void setStreet(string st) { street = st; }
15 string getStreet() const { return street; }
16 };
17
18 int main()
19 {
20 // Mary and Joan live at same address

(program continues)

Copy Constructors 715

Deficiencies of Default Copy Constructors
There are times, however, when the behavior of the default copy constructor is not what
we expect. Consider a class

class NumberArray
{
private:
 double *aPtr;
 int arraySize;
public:
 NumberArray(int size, double value);
 // ~NumberArray(){ if (arraySize > 0) delete [] aPtr;}
 void print() const;
 void setValue(double value);
};

that encapsulates an array of numbers of type double (in practice there may be other
members of the class as well). To allow flexibility for different size arrays, the class
contains a pointer to the array instead of directly containing the array itself. The
constructor of the class, whose code is shown below, allocates an array of a specified size,
then sets all the entries of the array to a given value. The class has member functions for
printing the array and for setting the entries of the array to a given (possibly different)
value. The class’s destructor uses the delete [] statement to deallocate the array (see
Chapter 10) but is currently commented out to avoid problems caused by the default copy
constructor. We shall shortly point out the specific nature of these problems.

Program 11-7 creates an object of the class, creates and initializes a second object with the
data of the first, and then changes the array in the second object. As shown by the output
of the program, changing the second object’s data changes the data in the first object. In
many cases, this is undesirable and leads to bugs.

21 Address mary("123 Main St");
22 Address joan = mary;
23 cout << "Mary lives at " << mary.getStreet() << endl;
24 cout << "Joan lives at " << joan.getStreet() << endl;
25
26 // Now Joan moves out
27 joan.setStreet("1600 Pennsylvania Ave");
28 cout << "Now Mary lives at " << mary.getStreet() << endl;
29 cout << "Now Joan lives at " << joan.getStreet() << endl;
30
31 return 0;
32 }

Program Output
Mary lives at 123 Main St
Joan lives at 123 Main St
Now Mary lives at 123 Main St
Now Joan lives at 1600 Pennsylvania Ave

Program 11-6 (continued)

716 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-7

Contents of NumberArray.h
1 #include <iostream>
2 using namespace std;
3
4 class NumberArray
5 {
6 private:
7 double *aPtr;
8 int arraySize;
9 public:
10 NumberArray(int size, double value);
11 // ~NumberArray(){ if (arraySize > 0) delete [] aPtr;}
12 // Commented out to avoid problems with the
13 // default copy constructor
14 void print() const;
15 void setValue(double value);
16 };

Contents of NumberArray.cpp
1 #include <iostream>
2 #include "NumberArray.h"
3 using namespace std;
4
5 //***
6 //Constructor allocates an array of the *
7 //given size and sets all its entries to the *
8 //given value. *
9 //***
10 NumberArray::NumberArray(int size, double value)
11 {
12 arraySize = size;
13 aPtr = new double[arraySize];
14 setValue(value);
15 }
16
17 //***
18 //Sets all the entries of the array to the same value. *
19 //***
20 void NumberArray::setValue(double value)
21 {
22 for(int index = 0; index < arraySize; index++)
23 aPtr[index] = value;
24 }
25
26 //***************************************
27 //Prints all the entries of the array. *
28 //***************************************
29 void NumberArray::print()
30 {
31 for(int index = 0; index < arraySize; index++)
32 cout << aPtr[index] << " ";
33 }

(program continues)

Copy Constructors 717

The reason changing the data in one object changes the other object is that the
memberwise assignment performed by the default copy constructor copies the value of the
pointer in the first object to the pointer in the second object, leaving both pointers pointing
to the same data. Thus when one of the objects changes its data through its pointer, it
affects the other object as well. This is illustrated in Figure 11-3.

Contents of Pr11-7.cpp
1 // This program demonstrates the deficiencies of
2 // the default copy constructor.
3 #include <iostream>
4 #include <iomanip>
5 #include "NumberArray.h"
6 using namespace std;
7
8 int main()
9 {
10 // Create an object
11 NumberArray first(3, 10.5);
12
13 // Make a copy of the object
14 NumberArray second = first;
15
16 // Display the values of the two objects
17 cout << setprecision(2) << fixed << showpoint;
18 cout << "Value stored in first object is ";
19 first.print();
20 cout << endl << "Value stored in second object is ";
21 second.print();
22 cout << endl << "Only the value in second object "
23 << "will be changed." << endl;
24
25 // Now change the value stored in the second object
26 second.setValue(20.5);
27
28 // Display the values stored in the two objects
29 cout << "Value stored in first object is ";
30 first.print();
31 cout << endl << "Value stored in second object is ";
32 second.print();
33
34 return 0;
35 }

Program Output
Value stored in first object is 10.50 10.50 10.50
Value stored in second object is 10.50 10.50 10.50
Only the value in second object will be changed.
Value stored in first object is 20.50 20.50 20.50
Value stored in second object is 20.50 20.50 20.50

Program 11-7 (continued)

718 Chapter 11 More About Classes and Object-Oriented Programming

The fact that the two pointers point to the same memory location will also cause problems
when the destructors for the two objects try to deallocate the same memory (that is why
the destructor code in the above class is commented out). In general, classes with pointer
members will not behave correctly under the default copy constructor provided by the
compiler. They must be provided with a copy constructor written by the programmer.

Programmer-Defined Copy Constructors
A programmer can define a copy constructor for a class. A programmer-defined copy constructor
must have a single parameter that is a reference to the same class. Thus in the case of the previous
example, the prototype for the copy constructor would be

NumberArray::NumberArray(NumberArray &obj)

This copy constructor avoids the problems of the default copy constructor by allocating
separate memory for the pointer of the new object before doing the copy:

NumberArray::NumberArray(NumberArray &obj)
{

arraySize = obj.arraySize;
aPtr = new double[arraySize];
for(int index = 0; index < arraySize; index++)

aPtr[index] = obj.aPtr[index];
}

Program 11-8 demonstrates the use of the NumberArray class modified to have a copy
constructor. The class declaration is in the NumberArray2.h file, with the implementations
of its member functions being given in NumberArray2.cpp.

Figure 11-3

Program 11-8

Contents of NumberArray2.h
1 #include <iostream>
2 using namespace std;
3
4 class NumberArray
5 {
6 private:
7 double *aPtr;
8 int arraySize;
9 public:
10 NumberArray(NumberArray &);
11 NumberArray(int size, double value);

(program continues)

first

second

10.5 10.5 10.5aPtr

aPtr

Copy Constructors 719

12 ~NumberArray() { if (arraySize > 0) delete [] aPtr; }
13 void print() const;
14 void setValue(double value);
15 };

Contents of NumberArray2.cpp
1 #include <iostream>
2 #include "NumberArray2.h"
3 using namespace std;
4
5 //***
6 //Copy constructor allocates a new *
7 //array and copies into it the entries *
8 //of the array in the other object. *
9 //***
10 NumberArray::NumberArray(NumberArray &obj)
11 {
12 arraySize = obj.arraySize;
13 aPtr = new double[arraySize];
14 for(int index = 0; index < arraySize; index++)
15 aPtr[index] = obj.aPtr[index];
16 }
17
18 //***
19 //Constructor allocates an array of the *
20 //given size and sets all its entries to the *
21 //given value. *
22 //***
23 NumberArray::NumberArray(int size, double value)
24 {
25 arraySize = size;
26 aPtr = new double[arraySize];
27 setValue(value);
28 }
29
30 //**
31 //Sets all the entries of the array to the same value. *
32 //**
33 void NumberArray::setValue(double value)
34 {
35 for(int index = 0; index < arraySize; index++)
36 aPtr[index] = value;
37 }
38
39 //**************************************
40 //Prints all the entries of the array. *
41 //**************************************
42 void NumberArray::print() const
43 {
44 for(int index = 0; index < arraySize; index++)
45 cout << aPtr[index] << " ";
46 }

(program continues)

Program 11-8 (continued)

720 Chapter 11 More About Classes and Object-Oriented Programming

The copy constructor is also automatically called by the compiler to create a copy of an
object whenever an object is being passed by value in a function call. It is for this reason
that the parameter to the copy constructor must be passed by reference; if it was passed by
value when the constructor was called, then the constructor would immediately have to be

Contents of Pr11-8.cpp
1 // This program demonstrates the use of copy constructors.
2 #include <iostream>
3 #include <iomanip>
4 #include "NumberArray2.h"
5
6 using namespace std;
7
8 int main()
9 {
10 NumberArray first(3, 10.5);
11
12 //Make second a copy of first object
13 NumberArray second = first;
14
15 // Display the values of the two objects
16 cout << setprecision(2) << fixed << showpoint;
17 cout << "Value stored in first object is ";
18 first.print();
19 cout << "\nValue stored in second object is ";
20 second.print();
21 cout << "\nOnly the value in second object will "
22 << "be changed.\n";
23
24 //Now change value stored in second object
25 second.setValue(20.5);
26
27 // Display the values stored in the two objects
28 cout << "Value stored in first object is ";
29 first.print();
30 cout << endl << "Value stored in second object is ";
31 second.print();
32 return 0;
33 }

Program Output
Value stored in first object is 10.50 10.50 10.50
Value stored in second object is 10.50 10.50 10.50
Only the value in second object will be changed.
Value stored in first object is 10.50 10.50 10.50
Value stored in second object is 20.50 20.50 20.50

NOTE: A copy constructor must have a single parameter that is a reference to the same
class. Forgetting the & that identifies reference parameters will result in compiler errors.

Program 11-8 (continued)

Copy Constructors 721

called again to create the copy to be passed by value, leading to an endless chain of calls to
the constructor.

The copy constructor is also called to create a copy of an object to be returned from a
function.

Using const Parameters
Because copy constructors are required to use reference parameters, they have access to
their argument’s data. Since the purpose of a copy constructor is to make a copy of the
argument, there is no reason the constructor should modify the argument’s data. With this
in mind, it’s a good idea to make a copy constructor’s parameter constant by specifying the
const key word in the parameter list. Here is an example:

NumberArray::NumberArray(const NumberArray &obj)
{

arraySize = obj.arraySize;
aPtr = new double[arraySize];
for(int index = 0; index < arraySize; index++)

aPtr[index] = obj.aPtr[index];
}

Invocation of Copy Constructors
Copy constructors are automatically called by the system whenever an object is being created
by initializing it with another object of the same class. For example, the copy constructor for
the Rectangle class is called for each of the following initialization statements:

Rectangle box(5, 10);
Rectangle b = box; // Initialization statement
Rectangle b1(box); // Initialization statement

Copy constructors are also automatically called when a function call receives a value
parameter of the class type. For example, for a function of the form

void fun(Rectangle rect)
{
}

a call such as

fun(box);

will cause the Rectangle copy constructor to be called. Finally, copy constructors are
automatically called whenever a function returns an object of the class by value. Thus, in
the function

Rectangle makeRectangle()
{
 Rectangle rect(12, 3);
 return rect;

}

the copy constructor will be called when the return statement is executed. This is because
the return statement must create a nonlocal copy of the object that will be available to

722 Chapter 11 More About Classes and Object-Oriented Programming

the caller after the function is done executing. To summarize, a class copy constructor is
called when

• A variable is being initialized from an object of the same class
• A function is called with a value parameter of the class
• A function is returning a value that is an object of the class

Checkpoint

11.8 Briefly describe what is meant by memberwise assignment.

11.9 Describe two scenarios in which memberwise assignment occurs.

11.10 Describe a situation in which memberwise assignment should not be used.

11.11 When is a copy constructor called?

11.12 How does the compiler know that a member function is a copy constructor?

11.13 What action is performed by a class’s default copy constructor?

11.6 Operator Overloading

CONCEPT: C++ allows you to redefine how standard operators work when used with
class objects.

Overloading the = Operator
As we have seen, copy constructors are designed to solve problems that arise when an
object containing a pointer is initialized with the data of another object of the same class
using memberwise assignment. Similar problems arise in object assignment. For example,
with the NumberArray class of the previous section, we may have a program that has
defined two objects of that class:

NumberArray first(3, 10.5);
NumberArray second(5, 20.5);

Now, because C++ allows the assignment operator to be used with class objects, we may
execute the statement

first = second;

if we want to set the first object to exactly the same value as the second. At this point, C++
will once again perform a memberwise copy from the second to the first object, leaving
pointers in both objects pointing to the same memory.

Because the default object assignment encounters the same problem as the default copy
constructor, we might think that a programmer-defined copy constructor can be used to
solve the problem caused by the default assignment, but this is not so. Copy constructors
only come into play when an object is being initialized at creation time. In particular, copy

NOTE: Copy constructors are not called when a parameter of the class is passed by
reference or through a pointer, nor are they called when a function returns a reference
or pointer to an object of the class.

VideoNote

Operator
Overloading

Operator Overloading 723

constructors are not called in an assignment. To see the difference between initialization and
assignment, suppose that the object first has already been created. Then the statement

NumberArray second = first; // copy constructor called

which creates second and initializes it with the value of first, is an initialization
and causes the copy constructor to be called to perform the initialization. However, the
statement

second = first; // copy constructor not called

which assumes that both objects have previously been created, is an assignment, and
therefore no constructor is invoked.

To address the problems that result from memberwise assignment of objects, we need to
modify the behavior of the assignment operator so that it does something other than
memberwise assignment when it is applied to objects of classes that have pointer members.
In effect we are supplying a different version of the assignment operator to be used for
objects of that class. In so doing, we say that we are overloading the assignment operator.

One way to overload the assignment operator for a given class is to define an operator
function called operator= as a member function of the class. To do this for the
NumberArray class, we would write the class declaration as follows:

class NumberArray
{
private:

double *aPtr;
int arraySize;

public:
void operator=(const NumberArray &right); // Overloaded operator
NumberArray(const NumberArray &);
NumberArray(int size, double value);
~NumberArray() { if (arraySize > 0) delete [] aPtr; }
void print() const;
void setValue(double value);

};

Let’s take a look at the function header, or prototype, before we look at how the operator
function itself is implemented. We break the header down into its main parts, as shown in
Figure 11-4.

The name of the function is operator=. Since the operator function is an instance member of
a class, it can only be called through an object of the class. The object of the class through
which it is called is considered the left operand of the assignment operator, while the parameter

Figure 11-4

Return
type

Function
name

Parameter for object
on the right side of operator

void operator=(const NumberArray &right)

724 Chapter 11 More About Classes and Object-Oriented Programming

passed to the function is considered the right operand of the assignment operator. To
illustrate, let us suppose that two objects, left and right, have been defined in a program:

NumberArray left(3,10.5);
NumberArray right(5, 20.5);

To assign the value of right to left, we call the member function operator= through the
left object, and pass it the right object as parameter:

left.operator=(right);

While you can call operator functions this way, the compiler will also let you use the more
conventional notation

left = right;

Let us now consider the implementation of the above operator function. The function
starts out by deleting memory allocated to pointers in the object being assigned to, then
makes a copy of the other object in pretty much the same way as the copy constructor for
the class. Here is the code for the function (we have used the name right for the object
that is the right parameter of the assignment, but any other name could have been used).

void NumberArray::operator=(const NumberArray &right)
{

if (arraySize > 0) delete [] aPtr;
arraySize = right.arraySize;
aPtr = new double[arraySize];
for (int index = 0; index < arraySize; index++)
 aPtr[index] = right.aPtr[index];

}

In general, the assignment operator should be overloaded whenever a nondefault copy
constructor is used. In particular, classes allocating dynamic memory to a pointer
member in any constructor should define both a copy constructor and an overloaded
assignment operator. In addition, they should also provide a destructor to deallocate the
storage allocated in the constructor.

The class NumberArray, with modifications to include both a copy constructor and an
overloaded assignment operator, is demonstrated in Program 11-9.

NOTE: Parameters to operator functions do not have to be passed by reference, nor do
they have to be declared const. In this example we have used a reference parameter for
efficiency reasons: Reference parameters avoid the overhead of copying the object being
passed as parameter. The const is used to protect the parameter from change.

Program 11-9

Contents of overload.h
1 #include <iostream>
2 using namespace std;
3
4 class NumberArray
5 {
6 private:

(program continues)

Operator Overloading 725

7 double *aPtr;
8 int arraySize;
9 public:
10 // Overloaded operator function
11 void operator=(const NumberArray &right);
12
13 // Constructors and other member functions
14 NumberArray(const NumberArray &);
15 NumberArray(int size, double value);
16 ~NumberArray() { if (arraySize > 0) delete [] aPtr; }
17 void print() const;
18 void setValue(double value);
19 };

Contents of overload.cpp
1 #include <iostream>
2 #include "overload.h"
3 using namespace std;
4
5 //***
6 //The overloaded operator function for assignment. *
7 //***
8 void NumberArray::operator=(const NumberArray &right)
9 {
10 if (arraySize > 0) delete [] aPtr;
11 arraySize = right.arraySize;
12 aPtr = new double[arraySize];
13 for (int index = 0; index < arraySize; index++)
14 aPtr[index] = right.aPtr[index];
15 }
16
17 //**
18 //Copy constructor. *
19 //**
20 NumberArray::NumberArray(const NumberArray &obj)
21 {
22 arraySize = obj.arraySize;
23 aPtr = new double[arraySize];
24 for(int index = 0; index < arraySize; index++)
25 aPtr[index] = obj.aPtr[index];
26 }
27
28 //**
29 //Constructor. *
30 //**
31 NumberArray::NumberArray(int size1, double value)
32 {
33 arraySize = size1;
34 aPtr = new double[arraySize];
35 setValue(value);
36 }
37

(program continues)

Program 11-9 (continued)

726 Chapter 11 More About Classes and Object-Oriented Programming

38 //**
39 //Sets the value stored in all entries of the array. *
40 //**
41 void NumberArray::setValue(double value)
42 {
43 for(int index = 0; index < arraySize; index++)
44 aPtr[index] = value;
45 }
46
47 //***************************************
48 //Print out all entries in the array. *
49 //***************************************
50 void NumberArray::print() const
51 {
52 for(int index = 0; index < arraySize; index++)
53 cout << aPtr[index] << " ";
54 }

Contents of Pr11-9.cpp
1 // This program demonstrates overloading of
2 // the assignment operator.
3 #include <iostream>
4 #include <iomanip>
5 #include "overload.h"
6 using namespace std;
7
8 int main()
9 {
10 NumberArray first(3, 10.5);
11 NumberArray second(5, 20.5);
12
13 // Display the values of the two objects
14 cout << setprecision(2) << fixed << showpoint;
15 cout << "First object's data is ";
16 first.print();
17 cout << endl << "Second object's data is ";
18 second.print();
19
20 // Call the overloaded operator
21 cout << "\nNow we will assign the second object "
22 << "to the first." << endl;
23 first = second;
24
25 // Display the new values of the two objects
26 cout << "First object's data is ";
27 first.print();
28 cout << endl << "The second object's data is ";
29 second.print();
30
31 return 0;
32 }

(program continues)

Program 11-9 (continued)

Operator Overloading 727

The = Operator’s Return Value
There is only one problem with the overloaded = operator shown in Program 11-8: It has a void
return type. C++’s built-in assignment operator allows multiple assignment statements such as

a = b = c;

Multiple assignment statements work because the built-in assignment operator is implemented
so that it returns the value of its left operand after the assignment has been performed. Thus in
this statement, the expression b = c causes c to be assigned to b and then returns the value of
b. The return value is then stored in a.

To make an overloaded assignment operator behave similarly, we must redefine the operator
function so that it also returns the value of its left operand after the assignment has been
performed. In particular, we need to declare the operator function to have a return type of
the same type as the class. This is shown in our final modification of the NumberArray class:

class NumberArray
{
private:
 double *aPtr;
 int arraySize;
public:
 NumberArray operator=(const NumberArray &right);
 NumberArray(const NumberArray &);
 NumberArray(int size, double value);
 ~NumberArray() { if (arraySize > 0) delete [] aPtr; }
 void print() const;
 void setValue(double value);
};

The only modification we need to make to the assignment operator function is to add a
statement at the very end returning the value of its left operand. Since the assignment is
equivalent to the statement

left.operator=(right);

returning the value of the left operand is accomplished by the operator function returning
the value of the object through which it is called. Recall that C++ makes available to each
call of a non-static member function, the address of the object through which the call is
being made, and that the address of that object is accessed through the pointer this. The
value of the object itself can be obtained and returned by dereferencing the this pointer:

return *this;

Program Output
First object's data is 10.50 10.50 10.50
Second object's data is 20.50 20.50 20.50 20.50 20.50
Now we will assign the second object to the first.
First object's data is 20.50 20.50 20.50 20.50 20.50
The second object's data is 20.50 20.50 20.50 20.50 20.50

Program 11-9 (continued)

728 Chapter 11 More About Classes and Object-Oriented Programming

The code for the modified assignment operator function is

NumberArray NumberArray::operator=(const NumberArray &right)
{
 if (arraySize > 0) delete [] aPtr;
 arraySize = right.arraySize;
 aPtr = new double[arraySize];
 for (int index = 0; index < arraySize; index++)
 aPtr[index] = right.aPtr[index];
 return *this;
}

Overloading Other Operators
C++ allows the programmer to overload other operators besides assignment. There are
many times when it is natural to overload some of C++’s built-in operators to make them
work with classes that the programmer has defined. For example, assume that a class
named Date exists, and that objects of the Date class hold the day, month, and year in
member variables. Suppose the Date class has a member function named add. The add
member function adds a number of days to the date and adjusts the member variables if
the date goes to another month or year. For example, the following statement adds five
days to the date stored in the today object:

today.add(5);

Although it might be obvious that the statement is adding five days to the date stored in today,
the use of an operator might be more intuitive. For example, look at the following statement:

today += 5;

This statement uses the standard += operator to add 5 to today. This behavior does not
happen automatically, however. The += operator must be overloaded for this action to
occur. In this section, you will learn to overload many of C++’s operators to perform
specialized operations on class objects.

Some General Issues of Operator Overloading
Now that you have had an introduction to operator overloading, let’s look at some of the
general issues involved in this programming technique.

First, you can change an operator’s entire meaning, if that’s what you wish to do. There is
nothing to prevent you from changing the = symbol from an assignment operator to a
“display” operator. For instance, the following class does just that:

class Weird
{
private:

int value;

NOTE: You have already experienced the behavior of an overloaded operator. The /
operator performs two types of division: floating-point and integer. If one of operator’s
operands is a floating-point type, the result will be a floating-point value. If both of the
/ operator’s operands are integers, however, a different behavior occurs: the result is an
integer, and the fractional part is thrown away.

Operator Overloading 729

public:
Weird(int v)

{value = v; }
void operator=(const Weird &right)

{ cout << right.value << endl; }
};

Although the operator= function overloads the assignment operator, the function doesn’t
perform an assignment. All the overloaded operator does is display the contents of
right.value. Consider the following program segment:

Weird a(5), b(10);
a = b;

Although the statement a = b looks like an assignment statement, it actually causes the
contents of b’s value member to be displayed on the screen:

10

Another operator overloading issue is that you cannot change the number of operands
taken by an operator. The = symbol must always be a binary operator. Likewise, ++ and --
must always be unary operators.

The last issue is that although you may overload most of the C++ operators, you
cannot overload all of them. Table 11-1 shows all of the C++ operators that may be
overloaded.

The only operators that cannot be overloaded are

?: . .* :: sizeof

Approaches to Operator Overloading
There are two approaches you can take to overload an operator:

1. Make the overloaded operator a member function of the class. This allows the operator
function access to private members of the class. It also allows the function to use the
implicit this pointer parameter to access the calling object.

2. Make the overloaded member function a separate, stand-alone function. When overloaded
in this manner, the operator function must be declared a friend of the class to have access to
the private members of the class.

NOTE: Some of the operators in Table 11-1 are beyond the scope of this book and are
not covered.

Table 11-1 Operators That Can Be Overloaded

+ - * / % ^ & | ~ ! = <

> += -= *= /= %= ^= &= |= << >> >>=

<<= == != <= >= && || ++ -- ->* , ->

[] () new delete

730 Chapter 11 More About Classes and Object-Oriented Programming

Some operators, such as the stream input and output operators >> and <<, must be
overloaded as stand-alone functions. Other operators may be overloaded either as member
functions or stand-alone functions. Consider a class

class Length
{
private:
 int len_inches;
public:
 Length(int feet, int inches)
 {
 setLength(feet, inches);
 }
 Length(int inches) { len_inches = inches; }
 int getFeet() const { return len_inches / 12; }
 int getInches() const { return len_inches % 12; }
 void setLength(int feet, int inches)
 {
 len_inches = 12 *feet + inches;
 }

};

designed to represent length measurements. The class internally represents the length of an item
in inches, but allows its clients to specify measurements in feet and inches via a setLength()
function. The class also provides member functions getFeet() and getInches() to allow the
feet and inch components of a measurement to be separately retrieved.

Overloading the Arithmetic and Relational Operators
Clients of the class must be able to add and subtract measurements. In addition, they
should be able to compare two measurements to see if they are equal, or if one of them is
less or greater than the other. We will provide all these capabilities by overloading the
operators +, -, <, and == as stand-alone functions. We start by adding the following
declarations to the Length class:

friend Length operator+(Length a, Length b);
friend Length operator-(Length a, Length b);
friend bool operator<(Length a, Length b);
friend bool operator==(Length a, Length b);

To see how we arrive at these declarations, consider the addition and less-than operators.
Addition needs to take two Length objects a and b as parameters and produce a third
Length object that is the sum of a and b. Similarly, the less-than operator needs to take
two Length objects as parameters and return a Boolean value.

To see how to write the code that implements these functions, consider again the addition
operator. Given two input parameters a and b, it needs to return a Length object whose
len_inches member is the sum of the len_inches members of a and b. This can be done
by writing

Length operator+(Length a, Length b)
{
 Length result(a.len_inches + b.len_inches);
 return result;
}

Operator Overloading 731

or more succinctly:

Length operator+(Length a, Length b)
{
 return Length(a.len_inches + b.len_inches);
}

We can reason in a similar manner to work out the definitions of the operator functions -,
< , and ==. Here is a complete program showing the class and its overloaded operators and
illustrating their use.

Contents of Length.h
1 #ifndef _LENGTH_H
2 #define _LENGTH_H
3 #include <iostream>
4 using namespace std;
5
6 class Length
7 {
8 private:
9 int len_inches;
10 public:
11 Length(int feet, int inches)
12 {
13 setLength(feet, inches);
14 }
15 Length(int inches){ len_inches = inches; }
16 int getFeet() const { return len_inches / 12; }
17 int getInches() const { return len_inches % 12; }
18 void setLength(int feet, int inches)
19 {
20 len_inches = 12 *feet + inches;
21 }
22 friend Length operator+(Length a, Length b);
23 friend Length operator-(Length a, Length b);
24 friend bool operator< (Length a, Length b);
25 friend bool operator== (Length a, Length b);
26 };
27 #endif

Contents of Length.cpp
1 #include "Length.h"
2
3 //*************************************
4 // Overloaded operator + *
5 //*************************************
6 Length operator+(Length a, Length b)
7 {
8 return Length(a.len_inches + b.len_inches);
9 }
10
11 //*************************************
12 // Overloaded operator - *
13 //*************************************
14 Length operator-(Length a, Length b)
15 {

732 Chapter 11 More About Classes and Object-Oriented Programming

16 return Length(a.len_inches - b.len_inches);
17 }
18
19 //************************************
20 // Overloaded operator == *
21 //************************************
22 bool operator==(Length a, Length b)
23 {
24 return a.len_inches == b.len_inches;
25 }
26
27 //************************************
28 // Overloaded operator < *
29 //************************************
30 bool operator<(Length a, Length b)
31 {
32 return a.len_inches < b.len_inches;
33 }

Program 11-10

1 // This program demonstrates the Length class's overloaded
2 // +, -, ==, and < operators.
3 #include <iostream>
4 #include "Length.h"
5 using namespace std;
6
7 int main()
8 {
9 Length first(0), second(0), third(0);
10 int f, i;
11 cout << "Enter a distance in feet and inches: ";
12 cin >> f >> i;
13 first.setLength(f, i);
14 cout << "Enter another distance in feet and inches: ";
15 cin >> f >> i;
16 second.setLength(f, i);
17
18 // Test the + and - operators
19 third = first + second;
20 cout << "first + second = ";
21 cout << third.getFeet() << " feet, ";
22 cout << third.getInches() << " inches.\n";
23 third = first - second;
24 cout << "first - second = ";
25 cout << third.getFeet() << " feet, ";
26 cout << third.getInches() << " inches.\n";
27
28 // Test the relational operators
29 cout << "first == second = ";
30 if (first == second) cout << "true"; else cout << "false";
31 cout << "\n";

(program continues)

Operator Overloading 733

Choosing Between Stand-Alone and
Member-Function Operators
Given the stand-alone overloads we have written, the code

Length a(4, 2), b(1, 8), c(0);
c = a + b;

is interpreted by the compiler as being

Length a(4, 2), b(1, 8), c(0);
c = operator+(a, b);

The compiler allows the programmer to use the friendly infix notation. Internally, however,
it sees the operator as just an ordinary function whose name is operator+. This has an
implication that is not immediately obvious. The statement

c = 2 + a;

is equivalent to

c = operator+(2, b);

Both of these statements compile and execute correctly because the convert constructor of
the Length class is able to create a Length object out of the integer parameter 2. You will
learn about convert constructors in Section 11.8.

We could just as easily have overloaded the arithmetic and relational operators as member
functions. Here is how to do so for the addition operator. First, modify the in-class
declaration to make the operator a member function:

class Length
{
private:
 int len_inches;
public:
 // Modified declaration of operator+
 Length operator+(Length b);
 // Rest of class not shown
};

32 cout << "first < second = ";
33 if (first < second) cout << "true"; else cout << "false";
34 cout << "\n";
35
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches: 6 5[Enter]
Enter another distance in feet and inches: 3 10[Enter]
first + second = 10 feet, 3 inches.
first - second = 2 feet, 7 inches.
first == second = false
first < second = false

Program 11-10 (continued)

734 Chapter 11 More About Classes and Object-Oriented Programming

Notice that the operator is now declared as taking a single operator of type Length. This is
because as a member function, the operator is automatically passed a Length object
through the implicit parameter this. When we write

Length a(4, 2), b(1, 8), c(0);
c = a + b;

The compiler sees this as

Length a(4, 2), b(1, 8), c(0);
c = a.operator+(b);

When you write a + b, the left operand of the overloaded + operator becomes the object
through which the member function is called, and the right operand becomes the explicit
parameter. With these changes, the body of the operator is written as follows:

Length Length::operator+(Length b)
{
 return Length(this->len_inches + b.len_inches);
}

To sum up, the addition operator (as well as other arithmetic and relational operators) can
be overloaded equally well as member functions or as stand-alone functions. It is generally
better to overload binary operators that take parameters of the same type as stand-alone
functions. This is because, unlike stand-alone operator overloading, member-function
overloading introduces an artificial distinction between the two parameters by making the
left parameter implicit. This allows convert constructors to apply to the right parameter
but not to the left, creating situations where changing the order of parameters causes a
compiler error in an otherwise correct program:

Length a(4, 2), c(0);
c = a + 2; // Compiles, equivalent to c = a.operator+(2)
c = 2 + a; // Does not compile: equivalent to c = 2.operator+(a);

Overloading the Prefix ++ Operator
We want to overload the prefix operator for the Length class so that the expression ++b
increments the object b by adding 1 inch to its length and returns the resulting object. We
overload this operator as a member function. This makes its single parameter implicit, so
the overloaded operator needs no parameters. Here is the portion of the Length class that
shows the operator declaration:

class Length
{
private:
 int len_inches;
public:
 // Declaration of prefix ++
 Length operator++();
 // Rest of class not shown
};

Here is the implementation of the operator—it increases the number of inches by 1 and
returns the modified object:

Operator Overloading 735

Length Length::operator++()
{
 len_inches ++;
 return *this;
}

Given this overload, the user-friendly notation ++b is equivalent to the call
b.operator++(). Either notation may be used in your program.

Overloading the Postfix ++ Operator
The postfix increment operator b++ also increments the length of b, but differs from
the prefix version in that it returns the value that the object had prior to being
incremented. Overloading the postfix operator is only slightly different from
overloading the prefix version. Here is the function that overloads the postfix operator
for the Length class:

Length Length::operator++(int)
{
 Length temp = *this;
 len_inches ++;
 return temp;
}

The first difference you will notice is that the function has a dummy parameter of type int
that is never used in the body of the function. This is a convention that tells the compiler that
the increment operator is being overloaded in postfix mode. The second difference is the use
of a temporary local variable temp to capture the value of the object before it is incremented.
This value is saved and is later returned by the function.

Overloading the Stream Insertion and
Extraction Operators
Overloading the stream insertion operator << is convenient because it allows values of
objects to be converted into text and output to cout, to a file object, or to any object of a
class that derives from ostream. In the presence of appropriate overloads, the statements

Length b(4, 8), c(2, 5);
cout << b;
cout << b + c;

appear to the compiler as

Length b(4, 8), c(2, 5);
operator<<(cout, b);
operator(cout, b + c);

This equivalence has the following implications:

1. The overloaded operator << takes two parameters, the first of which is an ostream
object and the second of which is an object of the class for which the operator is being
overloaded. For the Length class, the prototype would be operator<<(ostream &strm,
Length a).

736 Chapter 11 More About Classes and Object-Oriented Programming

2. To allow expressions (such as b + c) in the second parameter, the second parameter
should be passed by value. The first parameter should be passed by reference because
ostream parameters should never be passed by value.

In addition, the stream insertion operator should return its stream parameter so that
several output expressions can be chained together, as in

Length b(4, 8), c(2, 5);
cout << b << ” ” << b + c;

Putting all of this together, we see that the stream insertion operator should be written as

ostream &operator<<(ostream& out, Length a)
{
 out << a.getFeet() << " feet, " << a.getInches() << " inches";
 return out;
}

Overloading the stream output operator is useful because it allows for the various fields of
a complex class to be labeled during output.

Overloading the stream input operator is similar, except that the class parameter signifying
the object to be read into must be passed by reference. Thus the header for the stream
input operator looks like this:

istream &operator>>(istream &in, Length &a);

The full implementation of this function can be found in lines 3–18 of the following listing
of Length1.cpp. At first glance, the function appears to be useful in that it relieves the
programmer of the necessity of issuing prompts for the different parts of the object when
the user is entering data at the screen and keyboard. Notice, however, that the prompts
become an irritating distraction if the operator is being used to read Length objects from a
non-keyboard source such as a file or network connection.

Contents of Length1.h
1 #ifndef _LENGTH1_H
2 #define _LENGTH1_H
3 #include <iostream>
4 using namespace std;
5
6 class Length
7 {
8 private:
9 int len_inches;
10 public:
11 Length(int feet, int inches)
12 {
13 setLength(feet, inches);
14 }
15 Length(int inches){ len_inches = inches; }
16 int getFeet() const { return len_inches / 12; }
17 int getInches() const { return len_inches % 12; }
18 void setLength(int feet, int inches)

Operator Overloading 737

19 {
20 len_inches = 12 *feet + inches;
21 }
22 // Overloaded arithmetic and relational operators
23 friend Length operator+(Length a, Length b);
24 friend Length operator-(Length a, Length b);
25 friend bool operator<(Length a, Length b);
26 friend bool operator==(Length a, Length b);
27 Length operator++();
28 Length operator++(int);
29
30 // Overloaded stream input and output operators
31 friend ostream &operator<<(ostream &out, Length a);
32 friend istream &operator>>(istream &in, Length &a);
33 };
34 #endif

Contents of Length1.cpp
1 #include "Length1.h"
2
3 //**
4 // Overloaded stream extraction operator >> *
5 //**
6 istream &operator>>(istream &in, Length &a)
7 {
8 // Prompt for and read the object data
9 int feet, inches;
10 cout << "Enter feet: ";
11 in >> feet;
12 cout << "Enter inches: ";
13 in >> inches;
14
15 // Modify the object a with the data and return
16 a.setLength(feet, inches);
17 return in;
18 }
19
20 //***
21 // Overloaded stream insertion operator << *
22 //***
23 ostream &operator<<(ostream& out, Length a)
24 {
25 out << a.getFeet() << " feet, " << a.getInches() << " inches";
26 return out;
27 }
28
29 //***********************************
30 // Overloaded prefix ++ operator *
31 //***********************************
32 Length Length::operator++()
33 {
34 len_inches ++;
35 return *this;
36 }

738 Chapter 11 More About Classes and Object-Oriented Programming

37
38 //***********************************
39 // Overloaded postfix ++ operator *
40 //***********************************
41 Length Length::operator++(int)
42 {
43 Length temp = *this;
44 len_inches ++;
45 return temp;
46 }
47
48 //*************************************
49 // Overloaded operator - *
50 //*************************************
51 Length operator+(Length a, Length b)
52 {
53 return Length(a.len_inches + b.len_inches);
54 }
55
56 //*************************************
57 // Overloaded operator - *
58 //*************************************
59 Length operator-(Length a, Length b)
60 {
61 return Length(a.len_inches - b.len_inches);
62 }
63
64 //************************************
65 // Overloaded operator == *
66 //************************************
67 bool operator==(Length a, Length b)
68 {
69 return a.len_inches == b.len_inches;
70 }
71
72 //************************************
73 // Overloaded operator < *
74 //************************************
75 bool operator<(Length a, Length b)
76 {
77 return a.len_inches < b.len_inches;
78 }

Program 11-11

1 // This program demonstrates the Length class's overloaded
2 // prefix ++, postfix ++, and stream operators.
3 #include <iostream>
4 #include "Length1.h"
5 using namespace std;
6
7 int main()

(program continues)

Operator Overloading 739

Overloading the [] Operator
In addition to the traditional operators, C++ allows you to change the way the [] symbols
work. This gives you the ability to write classes that have array-like behaviors. For example,
the string class overloads the [] operator so you can access the individual characters stored in
string class objects. Assume the following definition exists in a program:

string name = "William";

The first character in the string, W, is stored at name[0], so the following statement will
display W on the screen.

cout << name[0];

8 {
9 Length first(0), second(1, 9), c(0);
10
11 cout << "Demonstrating prefix ++ operator and output operator.\n";
12 for (int count = 0; count < 4; count++)
13 {
14 first = ++second;
15 cout << "First: " << first << ". Second: " << second << ".\n";
16 }
17 cout << "\nDemonstrating postfix ++ operator and output operator.\n";
18 for (int count = 0; count < 4; count++)
19 {
20 first = second++;
21 cout << "First: " << first << ". Second: " << second << ".\n";
22 }
23
24 cout << "\nDemonstrating input and output operators.\n";
25 cin >> c;
26 cout << "You entered " << c << "." << endl;
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Demonstrating prefix ++ operator and output operator.
First: 1 feet, 10 inches. Second: 1 feet, 10 inches.
First: 1 feet, 11 inches. Second: 1 feet, 11 inches.
First: 2 feet, 0 inches. Second: 2 feet, 0 inches.
First: 2 feet, 1 inches. Second: 2 feet, 1 inches.

Demonstrating postfix ++ operator and output operator.
First: 2 feet, 1 inches. Second: 2 feet, 2 inches.
First: 2 feet, 2 inches. Second: 2 feet, 3 inches.
First: 2 feet, 3 inches. Second: 2 feet, 4 inches.
First: 2 feet, 4 inches. Second: 2 feet, 5 inches.

Demonstrating input and output operators.
Enter feet: 3[Enter]
Enter inches: 4[Enter]
You entered 3 feet, 4 inches.

Program 11-11 (continued)

740 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-12 further demonstrates the string class’s overloaded [] operator.

You can use the overloaded[]operator to create an array class, like the following one.
The class behaves like a regular array but performs the bounds checking that C++ lacks. It
also has several other enhancements over regular integer arrays.

class IntArray
{

private:
int *aptr;
int arraySize;
void subError(); // Handles subscripts out of range

public:
IntArray(int); // Constructor
IntArray(const intArray &); // Copy constructor
~IntArray(); // Destructor
int size() const

 { return arraySize; }
int &operator[](int) const; // Overloaded [] operator

};

Before focusing on the overloaded operator, let’s look at the constructors and the
destructor. The code for the first constructor is

Program 11-12

1 // This program demonstrates the string class's
2 // overloaded [] operator.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string name = "William";
10
11 cout << "Here are the letters in your name: \n";
12 for (int x=0; x < name.length(); x++)
13 cout << name[x] << ' ';
14 cout << "\nEnter a character and press Enter: ";
15 cin >> name[2];
16 cout << "Now, here are the letters in your name:\n";
17 for (int x=0; x < name.length(); x++)
18 cout << name[x] << ' ';
19
20 return 0;
21 }

Program Output with Output Shown in Bold
Here are the letters in your name:
W i l l i a m
Enter a character and press Enter: x[Enter]
Now, here are the letters in your name:
W i x l i a m

Operator Overloading 741

IntArray::IntArray(int s)
{

arraySize = s;
aptr = new int [s];
for (int count = 0; count < size; count++)

*(aptr + count) = 0;
}

When an instance of the class is defined, the number of elements the array is to have is
passed into the constructor’s parameter s. This value is copied to the arraySize member,
then used to dynamically allocate enough memory for the array. The constructor’s final
step is to store zeros in all of the array’s elements:

for (int count = 0; count < size; count++)
*(aptr + count) = 0;

The class also has a copy constructor, which is used when a class object is initialized with
another object’s data:

IntArray::IntArray(const IntArray &obj)
{

arraySize = obj.arraySize;
aptr = new int [arraySize];
for(int count = 0; count < arraySize; count++)

*(aptr + count) = *(obj.aptr + count);
}

A reference to the initializing object is passed into the parameter obj. Once the memory is
successfully allocated for the array, the constructor copies all the values in obj’s array into
the calling object’s array.

The destructor simply frees the memory allocated by the class’s constructors. First, however,
it checks the value in arraySize to be sure the array has at least one element:

IntArray::~IntArray()
{

if (arraySize > 0)
 delete [] aptr;

}

The [] operator is overloaded similarly to other operators. Here is the definition of the
operator[] function for the IntArray class:

int &IntArray::operator[](int sub) const
{

if (sub < 0 || sub >= arraySize)
subError();

return aptr[sub];
}

The operator[] function can only have a single parameter. The one shown here uses an
integer parameter. This parameter holds the value placed inside the brackets in an
expression. For example, if table is an IntArray object, the number 12 will be passed
into the sub parameter in the following statement:

cout << table[12];

742 Chapter 11 More About Classes and Object-Oriented Programming

Inside the function, the value in the sub parameter is tested by the following if statement:

if (sub < 0 || sub >= arraySize)
subError();

This statement determines whether sub is within the range of the array’s subscripts. If sub
is less than zero or greater than or equal to arraySize, it’s not a valid subscript, so the
subError function is called. If sub is within range, the function uses it as an offset into the
array and returns a reference to the value stored at that location.

One critically important aspect of the function shown is its return type. It’s crucial that the
function not simply return an integer, but a reference to an integer. The reason for this is
that expressions such as the following must be possible:

table[5] = 27;

Remember, the built-in = operator requires the object on its left to be an lvalue. An lvalue
must represent a modifiable memory location, such as a variable. The integer return value
of a function is not an lvalue. If the operator[] function merely returns an integer, it
cannot be used to create expressions placed on the left side of an assignment operator.

A reference to an integer, however, is an lvalue. If the operator[] function returns a
reference, the statement above causes the operator[] function to be called with 5 being
passed as its argument. Assuming 5 is within range, the function returns a reference to the
integer stored at (aptr + 5). In essence, the statement is equivalent to

*(aptr + 5) = 27;

Because the operator[] function returns actual integers stored in the array, it is not
necessary for math or relational operators to be overloaded. Even the stream operators <<
and >> will work just as they are with the IntArray class.

Here is the complete listing of intarray.h and intarray.cpp:

Contents of intarray.h
1 #ifndef INTARRAY_H
2 #define INTARRAY_H
3 #include <iostream>
4 using namespace std;
5
6 class IntArray
7 {
8 private:
9 int *aptr;
10 int arraySize;
11 void subError() const; // Handles subscripts out of range
12 public:
13 IntArray(int); // Constructor
14 IntArray(const IntArray &); // Copy constructor
15 ~IntArray(); // Destructor
16 int size() const { return arraySize; }
17 int &operator[](int) const; // Overloaded [] operator
18 };
19 #endif

Operator Overloading 743

Contents of intarray.cpp
1 #include "intarray.h"
2 #include <cstdlib>
3 //**
4 // Constructor for IntArray class. Sets the size of *
5 // the array and allocates memory for it. *
6 //**
7 IntArray::IntArray(int s)
8 {
9 arraySize = s;
10 aptr = new int [s];
11 for (int count = 0; count < arraySize; count++)
12 *(aptr + count) = 0;
13 }
14
15 //**
16 // Copy constructor for IntArray class. *
17 //**
18 IntArray::IntArray(const IntArray &obj)
19 {
20 arraySize = obj.arraySize;
21 aptr = new int [arraySize];
22 for(int count = 0; count < arraySize; count++)
23 *(aptr + count) = *(obj.aptr + count);
24 }
25
26 //**
27 // Destructor for IntArray class. *
28 //**
29 IntArray::~IntArray()
30 {
31 if (arraySize > 0)
32 delete [] aptr;
33 }
34
35 //***
36 // subError function. Displays an error message and *
37 // exits the program when a subscript is out of range.*
38 //***
39 void IntArray::subError() const
40 {
41 cout << "ERROR: Subscript out of range.\n";
42 exit(0);
43 }
44
45 //**
46 // Overloaded [] operator. The argument is a subscript *
47 // This function returns a reference to the element *
48 // in the array indexed by the subscript. *
49 //**
50 int &IntArray::operator[](int sub) const

744 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-13 demonstrates how the class works.

51 {
52 if (sub < 0 || sub >= arraySize)
53 subError();
54 return aptr[sub];
55 }

Program 11-13

1 // This program demonstrates a class that behaves
2 // like an array.
3 #include <iostream>
4 #include "intarray.h"
5 using namespace std;
6
7 int main()
8 {
9 IntArray table(10);
10
11 // Store values in the array
12 for (int x = 0; x < table.size(); x++)
13 table[x] = (x * 2);
14
15 // Display the values in the array
16 for (int x = 0; x < table.size(); x++)
17 cout << table[x] << " ";
18 cout << endl;
19
20 // Use the built-in + operator on array elements
21 for (int x = 0; x < table.size(); x++)
22 table[x] = table[x] + 5;
23
24 // Display the values in the array
25 for (int x = 0; x < table.size(); x++)
26 cout << table[x] << " ";
27 cout << endl;
28
29 // Use the built-in ++ operator on array elements
30 for (int x = 0; x < table.size(); x++)
31 table[x]++;
32
33 // Display the values in the array
34 for (int x = 0; x < table.size(); x++)
35 cout << table[x] << " ";
36
37 cout << endl;
38 return 0;
39 }

Program Output
0 2 4 6 8 10 12 14 16 18
5 7 9 11 13 15 17 19 21 23
6 8 10 12 14 16 18 20 22 24

Operator Overloading 745

Program 11-14 demonstrates the IntArray class’s bounds-checking capability.

Checkpoint

11.14 Assume there is a class named Pet. Write the prototype for a member function of
Pet that overloads the = operator.

11.15 Assume that dog and cat are instances of the Pet class, which has overloaded the =
operator. Rewrite the following statement so it appears in function call notation
instead of operator notation:

 dog = cat;

11.16 What is the disadvantage of an overloaded = operator returning void?

11.17 Describe the purpose of the this pointer.

11.18 The this pointer is automatically passed to what type of functions?

11.19 Assume there is a class named Animal, which overloads the = and + operators. In
the following statement, assume cat, tiger, and wildcat are all instances of the
Animal class:

 wildcat = cat + tiger;

Program 11-14

1 // This program demonstrates the bounds-checking
2 // capabilities of the IntArray class.
3 #include <iostream>
4 #include "intarray.h"
5 using namespace std;
6
7 int main()
8 {
9 IntArray table(10);
10
11 // Store values in the array
12 for (int x = 0; x < table.size(); x++)
13 table[x] = x;
14
15 // Display the values in the array
16 for (int x = 0; x < table.size(); x++)
17 cout << table[x] << " ";
18 cout << endl;
19
20 cout << "Attempting to store outside the array bounds:\n";
21 table[table.size()] = 0;
22
23 return 0;
24 }

Program Output
0 1 2 3 4 5 6 7 8 9
Attempting to store outside the array bounds:
ERROR: Subscript out of range.

746 Chapter 11 More About Classes and Object-Oriented Programming

Of the three objects, wildcat, cat, and tiger, which is calling the operator+
function? Which object is passed as an argument into the function?

11.20 What does the use of a dummy parameter in a unary operator function indicate to
the compiler?

11.21 Describe the values that should be returned from functions that overload relational
operators.

11.22 What is the advantage of overloading the << and >> operators?

11.23 What type of object should an overloaded << operator function return?

11.24 What type of object should an overloaded >> operator function return?

11.25 If an overloaded << or >> operator accesses a private member of a class, what must
be done in that class’s declaration?

11.26 Assume the class NumList has overloaded the [] operator. In the expression below,
list1 is an instance of the NumList class:

list1[25]

Rewrite this expression to explicitly call the function that overloads the [] operator.

11.27 When overloading a binary operator such as + or - as an instance member function
of a class, what object is passed into the operator function’s parameter?

11.28 Explain why overloaded prefix and postfix ++ and -- operator functions should
return a value.

11.29 How does C++ tell the difference between an overloaded prefix and postfix ++ or --
operator function?

11.30 Overload the function call operator () (int i, int j) for the IntArray class
of Program 11-13 to return the sum of all array entries in positions i through j.

11.7 Type Conversion Operators

CONCEPT: Special operator functions may be written to convert a class object to any
other type.

As you’ve already seen, operator functions allow classes to work more like built-in
data types. Another capability that operator functions can give classes is automatic type
conversion.

Data type conversion happens “behind the scenes” with the built-in data types. For
instance, suppose a program uses the following variables:

int i;
double d;

The following statement automatically converts the value in i to a double and stores it in d:

d = i;

Likewise, the following statement converts the value in d to an integer (truncating the
fractional part) and stores it in i:

i = d;

Type Conversion Operators 747

The same functionality can also be given to class objects. For example, assuming distance
is a Length object and d is a double, the following statement would conveniently store
distance into a floating-point number stored in d, if Length is properly written:

d = distance;

To be able to use a statement such as this, an operator function must be written to perform
the conversion. Here is an operator function for converting a Length object to a double:

Length::operator double() const
{

return len_inches /12 + (len_inches %12) / 12.0;
}

This function computes the real decimal equivalent of a length measurement in feet. For
example, a measurement of 4 feet 6 inches would be converted to the real number 4.5.

Program 11-15 demonstrates a modified version of the Length class with both a double
and an int conversion operator. The int operator simply returns the number of inches of
the Length object.

NOTE: No return type is specified in the function header because the return type is
inferred from the name of the operator function. Also, because the function is a member
function, it operates on the calling object and requires no other parameters.

Contents of Length2.h
1 #ifndef _LENGTH1_H
2 #define _LENGTH1_H
3 #include <iostream>
4 using namespace std;
5
6 class Length
7 {
8 private:
9 int len_inches;
10 public:
11 Length(int feet, int inches)
12 {
13 setLength(feet, inches);
14 }
15 Length(int inches){ len_inches = inches; }
16 int getFeet() const { return len_inches / 12; }
17 int getInches() const { return len_inches % 12; }
18 void setLength(int feet, int inches)
19 {
20 len_inches = 12 *feet + inches;
21 }
22 // Type conversion operators
23 operator double() const;
24 operator int() const { return len_inches; }
25
26 // Overloaded stream output operator
27 friend ostream &operator<<(ostream &out, Length a);
28 };
29 #endif

748 Chapter 11 More About Classes and Object-Oriented Programming

Contents of Length2.cpp
1 #include "Length2.h"
2
3 //***
4 // Operator double converts Length to a double *
5 //***
6 Length::operator double() const
7 {
8 return len_inches /12 + (len_inches %12) / 12.0;
9 }
10
11 //***
12 // Overloaded stream insertion operator << *
13 //***
14 ostream &operator<<(ostream& out, Length a)
15 {
16 out << a.getFeet() << " feet, " << a.getInches() << " inches";
17 return out;
18 }

Program 11-15

1 // This program demonstrates the type conversion operators for
2 // the Length class.
3 #include "Length2.h"
4
5 #include <iostream>
6 #include <string>
7 using namespace std;
8
9 int main()
10 {
11 Length distance(0);
12 double feet;
13 int inches;
14 distance.setLength(4, 6);
15 cout << "The Length object is " << distance << "." << endl;
16
17 // Convert and print
18 feet = distance;
19 inches = distance;
20 cout << "The Length object measures " << feet << " feet." << endl;
21 cout << "The Length object measures " << inches << " inches."
22 << endl;
23 return 0;
24 }

Program Output
The Length object is 4 feet, 6 inches.
The Length object measures 4.5 feet.
The Length object measures 54 inches.

Convert Constructors 749

11.8 Convert Constructors

CONCEPT: In addition to providing a means for the creation of objects, convert
constructors provide a way for the compiler to convert a value of a given
type to an object of the class.

A constructor that takes a single parameter of a type other than its class type can be
regarded as converting its parameter into an object of its class. Such a constructor is called
a convert constructor.

In addition to the function of creating objects of its class, a convert constructor provides
the compiler with a way of performing implicit type conversions. Such type conversions
will be performed by the compiler whenever a value of the constructor’s parameter type is
given where a value of the class type is expected.

As a simple example, consider the class

class IntClass
{
private:

int value;
public:

// Convert constructor from int
IntClass(int intValue)
{

value = intValue;
}
int getValue() const { return value; }

};

Since the constructor IntClass(int) takes a single parameter of a type other than
IntClass, it is a convert constructor.

Convert constructors are automatically invoked by the compiler whenever the context
demands a class object but a value of constructor’s parameter type is provided. This occurs
in four different contexts:

1. An object of the class is initialized with a value of the convert constructor’s parameter
type: for example

IntClass intObject = 23;

2. An object of the class is assigned a value of the convert constructor’s parameter type:
for example

intObject = 24;

3. A function expecting a value parameter of the class type is instead passed a value of
the constructor’s parameter type. For example, we may define a function

void printValue(IntClass x)
{

cout << x.getValue();
}

750 Chapter 11 More About Classes and Object-Oriented Programming

and then pass it an int when we call it:

printValue(25);

The compiler will use the convert constructor to convert the integer 25 into an object
of the IntClass class and will then pass the object to the function. The compiler will
not invoke the convert constructor if the formal parameter is a pointer or a reference
to an IntClass object: convert constructors are only invoked when the formal
parameter uses pass by value.

4. A function that declares a return value of the class type actually returns a value of
the convert constructor’s parameter type. For example, the compiler will accept the
following function:

IntClass f(int intValue)
{

return intValue;
}

Note that the function returns a value of type integer, even though IntClass is
declared as its return type. Again, the compiler will implicitly call the convert
constructor to convert the integer intValue to an IntClass object. It is this object
which is returned from the function.

The following program illustrates the action of convert constructors.

Contents of Convert.h
1 #include <iostream>
2 using namespace std;
3
4 class IntClass
5 {
6 private:
7 int value;
8 public:
9 // Convert constructor from int
10 IntClass(int intValue)
11 {
12 value = intValue;
13 }
14 int getValue() const { return value; }
15 };

Contents of Convert.cpp
1 #include "Convert.h"
2 //***
3 // This function returns an int even though *
4 // an IntClass object is declared as the *
5 // return type. *
6 //***
7 IntClass f(int intValue)
8 {
9 return intValue;
10 }
11

Convert Constructors 751

You should consider the use of a convert constructor whenever it makes sense to have
automatic conversions from some type to the class type. A practical example of the use of

12 //***
13 // Prints the int value inside an IntClass *
14 // object. *
15 //***
16 void printValue(IntClass x)
17 {
18 cout << x.getValue();
19 }

Program 11-16

1 // This program demonstrates the action of
2 // convert constructors.
3 #include "Convert.h"
4
5 // Function prototypes.
6 void printValue(IntClass);
7 IntClass f(int);
8
9 int main()
10 {
11 // Initialize with an int
12 IntClass intObject = 23;
13 cout << "The value is " << intObject.getValue() << endl;
14
15 // Assign an int
16 intObject = 24;
17 cout << "The value is " << intObject.getValue() << endl;
18
19 // Pass an int to a function expecting IntClass
20 cout << "The value is ";
21 printValue(25);
22 cout << endl;
23
24 // Demonstrate conversion on a return
25 intObject = f(26);
26 cout << "The value is ";
27 printValue(intObject);
28
29 return 0;
30 }

Program Output
The value is 23
The value is 24
The value is 25
The value is 26

752 Chapter 11 More About Classes and Object-Oriented Programming

convert constructors can be found in the C++ string class. That class provides a convert
constructor from C-strings:

class string
{

// Only the convert constructor is shown
public:

string(char *);
};

The presence of this convert constructor allows programmers to pass C-strings to
functions that expect string object parameters, assign C-strings to string objects, and
use C-strings as initial values of string objects:

string str = "Hello";
str = "Hello There!";

In a way, convert constructors work in a way that is the opposite of the type conversion
operators covered in a previous section: whereas type conversion operators convert an
object to a value of another type, convert constructors convert a value of a given type to an
object of the class.

Checkpoint

11.31 What are the benefits of having operator functions that perform object conversion?

11.32 Why is it not necessary to specify a return type for an operator function that
performs data type conversion?

11.33 Assume that there is a class named BlackBox. Write a prototype for a member
function that converts BlackBox to int.

11.34 Assume there are two classes, Big and Small.Write a prototype for the convert
constructor that converts objects of type Small to objects of type Big.

11.9 Aggregation and Composition

CONCEPT: Class aggregation occurs when an object of one class owns an object of
another class. Class composition is a form of aggregation where the owner
class controls the lifetime of objects of the owned class.

In Chapter 7, you learned that a class can contain members that are themselves objects of
other classes. When a class C contains a member that is an object of another class D, every
object of C will have inside it an object of the class D. This creates a has-a relationship
between C and D. In this type of relationship, every instance of C has, or owns, an instance
of the class D. In C++, such ownership usually occurs as result of C having a member of
type D, but it can also occur as result of C having a pointer to an object of D. The term
aggregation is often broadly used to describe situations in which objects of one class own
objects of other classes.

Member Initialization Lists
Consider the following Person and Date classes.

VideoNote

Aggregation
and
Composition

Aggregation and Composition 753

class Date
{

string month;
int day, year;

public:
Date(string m, int d, int y)
{

month = m;
day = d;
year = y;

}
};

class Person
{

String name;
Date dateOfBirth;

public:
Person(string name, string month, int day, int year)
{

// Pass month, day and year to the
// dateOfBirth constructor
this->name = name;

}
};

The Person constructor receives parameters month, day, and year that it needs to pass to
the Date constructor of its dateOfBirth member. C++ provides a special notation, called
a member initialization list, that allows constructors of classes to pass arguments to
constructors of member objects. A member initialization list is a list of comma-separated
calls to member object constructors. It is prefixed with a colon and is placed just after the
header, but before the body, of the constructor of the containing class:

class Person
{

String name;
Date dateOfBirth;

public:
Person(string name, string month, int day, int year):
dateOfBirth(month, day, year) // Member initialization list
{

this->name = name;
}

};

Notice the colon at the end of the constructor header, and notice that in invoking the
constructor of the contained Date object, it is the name of the object (dateOfBirth) rather
than the class of the object (Date) that is used. This allows constructors of different objects
of the same class to be invoked in the same initialization list.

Although the member initialization list is usually used to invoke constructors on member
objects, it can be used to initialize member variables of any type. Thus, the Person and
Date class can be written as follows:

class Date
{

string month;
int day, year;

754 Chapter 11 More About Classes and Object-Oriented Programming

public:
Date(string m, int d, int y):
month(m), day(d), year(y) // Member Initialization list
{
}

};

class Person
{

String name;
Date dateOfBirth;

public:
Person(string name, string month, int day, int year):
name(name),
dateOfBirth(month, day, year)
{
}

};

Notice that the bodies of the Date and Person constructors are now empty. This is
because the assignment of values to member variables normally performed there is now
accomplished by the initialization lists. Many programmers prefer the use of member
initialization lists to assignment inside of the body of the constructor because it allows the
compiler to generate more efficient code in certain situations. When using member
initialization lists, it is good programming practice to list the members in the initialization
list in the same order that they are declared in the class.

Finally, notice the occurrence of name(name) in the initialization list of the Person
constructor. The compiler is able to determine that the first occurrence of name refers to the
member variable, and that its second occurrence refers to the parameter.

Aggregation Through Pointers
Now let’s suppose that in addition to having a date of birth, each person has a country of
residence. A country has a name, and possibly many other attributes:

class Country
{

string name;
// Additional fields

};

Because many people will “have” the same country, the has-a relationship between Person
and Country should not be implemented by embedding an instance of the Country class
inside every Person object. Because many people share the same country of residence,
implementing the has-a relation by containment will result in unnecessary duplication of
data and waste memory. In addition, it would require many Person objects to be updated
whenever a country has a change in any of its data. Using a pointer to implement the has-a
relation avoids these problems. Here is a version of the Person class, modified to include a
pointer to the country of residence:

class Person
{

string name;
Date dateOfBirth;
Country *pCountry; // Pointer to country of residence

Aggregation and Composition 755

public:
Person(string name, string month, int day, int year, Country *pC):
dateOfBirth(month, day, year), name(name), pCountry(pC)
{
}

};

Aggregation, Composition, and Object Lifetimes
Composition is a term used to describe special cases of aggregation in which the lifetime of
the owned object coincides with the lifetime of its owner. A good example of composition
is when a class C contains a member that is an object of another class D. The contained D
object is created at the same time that the C object is created and is destroyed when the
containing C object is destroyed or goes out of scope. Another example of composition is
when a class C contains a pointer to a D object, and the D object is created by the C
constructor and destroyed by the C destructor.

The following program features modified versions of the above classes designed to
illustrate aggregation, composition, and object lifetimes. Each class has a constructor to
announce the creation of its objects and a destructor to announce their demise. The Person
class has a static member

int Person::uniquePersonID;

that is used to generate numbers assigned to Person objects as they are created. These numbers
serve as a sort of universal personal identification number, much as social security numbers are
used to identify people in the United States. The numbers are stored in a personID field of the
Person and Date classes and are used to identify objects being created or destroyed. Each
dateOfBirth object carries the same personID number as the Person object that contains it.

Program 11-17

1 // This program illustrates aggregation, composition
2 // and object lifetimes.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 class Date
8 {
9 string month;
10 int day, year;
11 int personID; // ID of person whose birthday this is
12 public:
13 Date(string m, int d, int y, int id):
14 month(m), day(d), year(y), personID(id)
15 {
16 cout << "Date-Of-Birth object for person "
17 << personID << " has been created.\n";
18 }
19 ~Date()

(program continues)

756 Chapter 11 More About Classes and Object-Oriented Programming

20 {
21 cout << "Date-Of-Birth object for person "
22 << personID << " has been destroyed.\n";
23 }
24 };
25
26 class Country
27 {
28 string name;
29 public:
30 Country(string name) : name(name)
31 {
32 cout << "A Country object has been created.\n";
33 }
34 ~Country()
35 {
36 cout << "A Country object has been destroyed.\n";
37 }
38 };
39
40 class Person
41 {
42 string name;
43 Date dateOfBirth;
44 int personID; // Person identification number (PID)
45 Country *pCountry;
46 public:
47 Person(string name, string month, int day, int year, Country *pC):
48 name(name),
49 dateOfBirth(month, day, year, Person::uniquePersonID),
50 personID(Person::uniquePersonID),
51 pCountry(pC)
52 {
53 cout << "Person object "
54 << personID << " has been created.\n";
55 Person::uniquePersonID ++;
56 }
57 ~Person()
58 {
59 cout << "Person object "
60 << personID << " has been destroyed.\n";
61 }
62 static int uniquePersonID; // Used to generate PIDs
63 };
64
65 // Define the static class variable
66 int Person::uniquePersonID = 1;
67
68 int main()
69 {
70 // Create a Country object

(program continues)

Program 11-17 (continued)

Aggregation and Composition 757

The relationship between the dateOfBirth objects and the Person objects that contain
them is an example of composition. As you can see from the program output, those Date
objects are created at the same time, and die at the same time, as the Person objects that
own them. Aggregation in its more general form is exemplified by the has-a relationship
between Person and Country.

By looking at the print member function, you can see an example of how the member
functions of the enclosing class can access the member functions of the contained class.

The Has-A Relation
When one class contains an instance of a second class, the first class is said to sustain a
has-a relation to the second. For example, the Acquaintance class has-a Date class
in the form of its dob member, while the Date class has-a string object in the form
of its month member. The has-a relation is important in modeling relationships among
classes and objects during the design of an object-oriented system. Another important
relation between classes in a program is the is-a relation, which we will discuss in a later
section after we have discussed the concept of inheritance. Thus object composition
realizes the has-a relation, while, as we will see later, inheritance is a way of realizing
the is-a relation.

71 Country usa("USA");
72 // Create a Person object
73 Person *p = new Person("Peter Lee", "January", 1, 1985, &usa);
74 // Create another Person object
75 Person p1("Eva Gustafson", "May", 15, 1992, &usa);
76 cout << "Now there are two people.\n";
77 // Delete the first person
78 delete p;
79 cout << "Now there is only one.\n";
80 // The second person will go out of scope when main returns
81 return 0;
82 }

Program Output
A Country object has been created.
Date-Of-Birth object for person 1 has been created.
Person object 1 has been created.
Date-Of-Birth object for person 2 has been created.
Person object 2 has been created.
Now there are two people.
Person object 1 has been destroyed.
Date-Of-Birth object for person 1 has been destroyed.
Now there is only one.
Person object 2 has been destroyed.
Date-Of-Birth object for person 2 has been destroyed.
A Country object has been destroyed.

Program 11-17 (continued)

758 Chapter 11 More About Classes and Object-Oriented Programming

11.10 Inheritance

Generalization and Specialization
In the real world you can find many objects that are specialized versions of other more
general objects. For example, the term “insect” describes a very general type of creature with
numerous characteristics. Because grasshoppers and bumblebees are insects, they have all the
general characteristics of an insect. In addition, they have special characteristics of their own.
For example, the grasshopper has its jumping ability, and the bumblebee has its stinger.
Grasshoppers and bumblebees are specialized versions of an insect. This is illustrated in
Figure 11-5.

Inheritance and the Is-a Relationship
When one object is a specialized version of another object, there is an is-a relationship
between them. For example, a grasshopper is an insect. Here are a few other examples of
the is-a relationship.

• A poodle is a dog.
• A car is a vehicle.
• A rectangle is a shape.

When an is-a relationship exists between objects, it means that the specialized object has
all of the characteristics of the general object, plus additional characteristics that make it
special. In object-oriented programming, inheritance is used to create an is-a relationship
between classes.

Inheritance involves a base class and a derived class. The base class is the general class and
the derived class is the specialized class. The derived class is based on, or derived from, the
base class. You can think of the base class as the parent and the derived class as the child.
This is illustrated in Figure 11-6.

Figure 11-5

Insect
All insects have

certain characteristics.

In addition to the common
insect characteristics, the
 bumblebee has its own

characteristics such as the
ability to sting.

In addition to the common
insect characteristics, the
 grasshopper has its own

characteristics such as the
ability to jump.

Inheritance 759

The derived class inherits the member variables and member functions of the base class
without any of them being rewritten. Furthermore, new member variables and functions
may be added to the derived class to make it more specialized than the base class. To take
a specific example, consider a college or university environment where there are both
students and faculty personnel. Suppose that we have a class Person with a name data
member and member functions for working with the name member:

class Person{
private:

string name;
public:

Person(){ setName(""); }
Person(string pName) { setName(pName);}
void setName(string pName) { name = pName; }
string getName() const { return name;}

};

Assuming the enumerated types

enum Discipline {
ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE

};
enum Classification {

FRESHMAN, SOPHOMORE, JUNIOR, SENIOR
};

to define the range of disciplines in which studies are offered and the classification of students,
we can define both the Student and Faculty classes as classes that inherit from the Person
class. This makes sense because a Student is a Person, and a Faculty member is also
a Person.

To define a class by inheritance, we need to specify the base class plus the additional
members that the derived class adds to the base class. Let’s say that in addition to
having all the characteristics of a Person, a Student must declare a major in some
discipline and have an academic advisor who is a Person. The Student class can be
defined as follows:

class Student : public Person
{
private:

Discipline major;
Person *advisor;

Figure 11-6

Insect class

Grasshopper class

Base class
(parent)

Derived class
(child)

members

members

760 Chapter 11 More About Classes and Object-Oriented Programming

public:
void setMajor(Discipline d) { major = d; }
Discipline getMajor() const { return major; }
void setAdvisor(Person *p) { advisor = p; }
Person *getAdvisor() const { return advisor; }

};

We assume that many different students may have the same advisor. Having each Student
object store a copy of the advisor data would lead to unnecessary duplication and would
force us to update each student object whenever the advisor data is updated. The Student
object stores a pointer to the advisor to avoid these and other problems.

The first part of the first line of the class declaration specifies Student as the name of the
class being defined and specifies the existing class Person as its base class:

The key word public that precedes the name of the base class is the base class access
specification. It affects how the members of the base class will be accessed by the member
functions of the derived class, and by code outside of the two classes. We will discuss the
base class access specification in greater detail in a later section.

A class can be used as the base class for more than one derived class. In particular, a
Faculty class can also be derived from the Person class as follows:

class Faculty : public Person
{
private:
 Discipline department;
public:
 void setDepartment(Discipline d) { department = d; }
 Discipline getDepartment() const { return department; }
};

Thus a Faculty object is a Person object that has a home department in some discipline. It
is also important to note that each object of the derived class will contain all members of the
base class. This is illustrated by Figure 11-7 in the case of the Student and Person classes.

Figure 11-7

Derived class Base class

class Student : public Person

string name
Person()
Person(string)
void setname(string)
string getName()

Class Person

Members:

string name
Person()
Person(string)
void setname(string)
string getName()

Class Student

Members inherited from Person:

Discipline major
Person *advisor

New Members added by Student:

Inheritance 761

Program 11-18 demonstrates the creation and use of an object of a derived class by creating
a Faculty object. The program uses arrays of strings that map values of enumerated types to
strings to enable printing of values of enumerated types in the form of strings. The included
“inheritance.h” file contains declarations of the Person, Student, and Faculty classes,
as well as the enumerated types Discipline and Classification.

Program 11-18

1 // This program demonstrates the creation and use
2 // of objects of derived classes.
3 #include <iostream>
4 #include "inheritance.h"
5
6 using namespace std;

(program continues)

Contents of Inheritance.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 class Person
8 {
9 private:
10 string name;
11 public:
12 Person() { setName(""); }
13 Person(string pName) { setName(pName); }
14 void setName(string pName) { name = pName; }
15 string getName() const { return name; }
16 };
17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;
23 public:
24 void setMajor(Discipline d) { major = d; }
25 Discipline getMajor() const { return major; }
26 void setAdvisor(Person *p) { advisor = p; }
27 Person *getAdvisor() const { return advisor; }
28 };
29
30 class Faculty:public Person
31 {
32 private:
33 Discipline department;
34 public:
35 void setDepartment(Discipline d) { department = d; }
36 Discipline getDepartment() { return department; }
37 };

762 Chapter 11 More About Classes and Object-Oriented Programming

Superclasses and Subclasses
We can think of a class as describing the set of all objects that have certain characteristics. An
object of a derived class inherits all the characteristics of the base class, so it can be regarded
as belonging to the base class. Thus objects of the derived class are just specialized objects of
the base class. For this reason, the derived class is often called a subclass of the base class,
and the base class is called a superclass of the derived class.

Multiple Inheritance
C++ supports multiple inheritance, in which a derived class simultaneously derives from two
or more base classes. Although interesting, multiple inheritance can lead to programs that are
very difficult to understand, and is rarely useful in practice. You can find a discussion of it in
Appendix H on the book’s companion website.

7
8 // These arrays of string are used to print the
9 // enumerated types.
10 const string dName[] = {
11 "Archeology", "Biology", "Computer Science"
12 };
13
14 const string cName[] = {
15 "Freshman", "Sophomore", "Junior", "Senior"
16 };
17
18 int main()
19 {
20 // Create a Faculty object
21 Faculty prof;
22
23 // Use a Person member function
24 prof.setName("Indiana Jones");
25
26 // Use a Faculty member function
27 prof.setDepartment(ARCHEOLOGY);
28 cout << "Professor " << prof.getName()
29 << " teaches in the " << "Department of ";
30
31 // Get department as an enumerated type
32 Discipline dept = prof.getDepartment();
33
34 // Print out the department in string form
35 cout << dName[dept] << endl;
36
37 return 0;
38 }

Program Output
Professor Indiana Jones teaches in the Department of Archeology

Program 11-18 (continued)

Protected Members and Class Access 763

Appendix F on the book’s companion website shows how to represent inheritance
using UML.

11.11 Protected Members and Class Access

CONCEPT: Protected members of a base class are like private members, except they
may be accessed by derived classes. The base class access specification
determines how private, protected, and public base class members are
accessed when they are inherited by the derived class.

Until now you have used two access specifications within a class: private and public.
C++ provides a third access specification, protected. Protected members of a base class
are like private members, except they may be accessed by member functions of a derived
class. Protected members are inaccessible to all other code in the program.*

Let us suppose we want to add to the Faculty class a constructor that takes as parameter
the name and department of a professor. The best way to accomplish this is to have the
constructor call the setName() member function inherited from the Person class. To
illustrate the use of protected members, however, we will change the access specification of
the name field of the Person class to protected and have the Faculty constructor access
it directly. We make similar changes to the Student class, adding a constructor that takes
parameters and sets the protected member name. The resulting code is stored in the
inheritance1.h file:

* Friend functions and friend classes have access to both private and protected members.

Contents of Inheritance1.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { Freshman, Sophomore, Junior, Senior };
6
7 class Person
8 {
9 protected:
10 string name;
11 public:
12 Person() { setName("");}
13 Person(string pName) { setName(pName);}
14 void setName(string pName) { name = pName; }
15 string getName() const { return name; }
16 };
17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;

764 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-19 demonstrates the use of these classes.

23 public:
24 // Constructor
25 Student(string sname, Discipline d, Person *adv);
26
27 void setMajor(Discipline d) { major = d; }
28 Discipline getMajor() const {return major; }
29 void setAdvisor(Person *p){advisor = p;}
30 Person *getAdvisor() const { return advisor; }
31 };
32
33 class Faculty:public Person
34 {
35 private:
36 Discipline department;
37 public:
38 // Constructor
39 Faculty(string fname, Discipline d)
40 {
41 // Access the protected base class member
42 name = fname;
43 department = d;
44 }
45 // Other member functions
46 void setDepartment(Discipline d) { department = d; }
47 Discipline getDepartment() const { return department; }
48 };

Contents of inheritance1.cpp
1 #include "inheritance1.h"
2 //***
3 // Constructor for the Student class. *
4 //***
5 Student::Student(string sname, Discipline d, Person *adv)
6 {
7 // Access the protected member name
8 name = sname;
9
10 // Access the other members
11 major = d;
12 advisor = adv;
13 }

Program 11-19

1 //This program demonstrates the use of
2 //objects of derived classes.
3 #include "inheritance1.h"
4 #include <iostream>
5 using namespace std;
6
7 // These arrays of string are used to print
8 // values of enumerated types

(program continues)

Protected Members and Class Access 765

Although our example does not show it, member functions of a base class can be declared
protected as well. Protected member functions can be called by member functions of
derived classes, and by friend functions and friend classes.

Base Access Specifications
In addition to public, C++ permits the use of protected and private as base access specifications,
as illustrated in the following (incompletely specified) examples

class Cat : protected Feline
{

};

class Dog : private Canine
{

};

Be careful not to confuse base access specification with member access specification.
Member access specification determines the type of access for members defined in the class,
whereas base access specification determines the type of access for inherited members.
Table 11-2 and Figure 11-8 show the interplay between member access specification in the
base class and base class specification that determines access to the inherited member.

9 const string dName[] =
10 {"Archeology", "Biology", "Computer Science"};
11
12 const string cName[] =
13 {"Freshman", "Sophomore", "Junior", "Senior"};
14
15 int main()
16 {
17 // Create Faculty and Student objects
18 Faculty prof("Indiana Jones", ARCHEOLOGY);
19 Student st("Sean Bolster", ARCHEOLOGY, &prof);
20 cout << "Professor " << prof.getName() << " teaches "
21 << dName[prof.getDepartment()] << "." << endl;
22
23 // Get student's advisor
24 Person *pAdvisor = st.getAdvisor();
25 cout << st.getName() <<"\'s advisor is "
26 << pAdvisor->getName() << ".";
27
28 return 0;
29 }

Program Output
Professor Indiana Jones teaches Archeology.
Sean Bolster's advisor is Indiana Jones.

Program 11-19 (continued)

766 Chapter 11 More About Classes and Object-Oriented Programming

Checkpoint

11.35 What type of relationship between classes is realized by inheritance?

11.36 Why does it make sense to think of a base class as a superclass of its derived class?

11.37 What is a base class access specification?

Table 11-2 Base Class Access Specifications

Base Class Access
Specification How Members of the Base Class Appear in the Derived Class

private • Private members of the base class are inaccessible to the derived class.

• Protected members of the base class become private members of the
derived class.

• Public members of the base class become private members of the derived
class.

protected • Private members of the base class are inaccessible to the derived class.

• Protected members of the base class become protected members of the
derived class.

• Public members of the base class become protected members of the
derived class.

public • Private members of the base class are inaccessible to the derived class.

• Protected members of the base class become protected members of the
derived class.

• Public members of the base class become public members of the derived
class.

Figure 11-8

private: x
protected: y
public: z

private: x
protected: y
public: z

private: x
protected: y
public: z

x is inaccessible.
private: y
private: z

x is inaccessible.
protected: y
protected: z

x is inaccessible.
protected: y
public: z

private
base class

protected
base class

public
base class

How base class
members appear

in the derived classBase class members

Protected Members and Class Access 767

11.38 Think of an example of two classes where one class is a special case of the other,
and write declarations for both classes, with the special case being written as a
derived class.

11.39 What is the difference between private members and protected members?

11.40 What is the difference between member access specification and base class access
specification?

11.41 Suppose a program has the following class declaration:

class CheckPoint
{

private:
int a;

protected:
int b;
int c;
void setA(int x) { a = x;}

public:
void setB(int y) { b = y;}
void setC(int z) { c = z;}

};

Answer the following questions.

A) Suppose another class, Quiz, is derived from the CheckPoint class. Here is the
first line of its declaration:

 class Quiz : private CheckPoint

Indicate whether each member of the CheckPoint class is private, protected,
public, or inaccessible:

a
b
c
setA
setB
setC

B) Suppose the Quiz class, derived from the CheckPoint class, is declared as

class Quiz : protected Checkpoint

Indicate whether each member of the CheckPoint class is private, protected,
public, or inaccessible:

a
b
c
setA
setB
setC

C) Suppose the Quiz class, derived from the CheckPoint class, is declared as

class Quiz : public Checkpoint

768 Chapter 11 More About Classes and Object-Oriented Programming

Indicate whether each member of the CheckPoint class is private, protected,
public, or inaccessible:

a
b
c
setA
setB
setC

D) Suppose the Quiz class, derived from the CheckPoint class, is declared as

class Quiz : Checkpoint

Is the CheckPoint class a private, public, or protected base class?

11.12 Constructors, Destructors, and Inheritance

CONCEPT: When an object of a derived class is being instantiated, the base class
constructor is called before the derived class constructor. When the object is
destroyed, the derived class destructor is called before the base class
destructor.

Recall that constructors are automatically called by the compiler whenever an object of a
class is being created. Because every object of a derived class can be regarded as having an
object of the base class embedded within it, the creation of a derived class object involves
the creation of the embedded base class object. The compiler will always call the base class
constructor before it calls the derived class constructor. This order is reversed upon
destruction of a derived class object; the destructor in the derived class is called before the
destructor in the base class. This order permits the derived class constructors and
destructors to use data or member functions of the base class in doing their work.

Program 11-20 illustrates this behavior in a simple program.

Program 11-20

1 // This program demonstrates the order in which base and
2 // derived class constructors and destructors are called.
3 // For the sake of simplicity, all the class declarations
4 // are in this file.
5 #include <iostream>
6 using namespace std;
7
8 // Base class
9 class BaseDemo
10 {
11 public:
12 BaseDemo() // Constructor
13 { cout << "This is the BaseDemo constructor.\n"; }
14 ~BaseDemo() // Destructor
15 { cout << "This is the BaseDemo destructor.\n"; }
16 };

(program continues)

Constructors, Destructors, and Inheritance 769

Passing Arguments to Base Class Constructors
As already mentioned, the compiler will automatically call a base class constructor before
executing the derived class constructor. The compiler’s default action is to call the default
constructor in the base class. Some classes, however, may not have a default constructor.
Also, the programmer may want to specify which of several base class constructors should
be called during the creation of a derived class object.

In these cases, the programmer must explicitly specify which base class constructor should
be called by the compiler. This is done by specifying the arguments to the selected base
class constructor in the definition of the derived class constructor.

The syntax for passing arguments to base class constructors is simple: the header for
the derived class constructor is followed by a colon, an indication of which base class
constructor to call, and the arguments to be passed. To illustrate, we will modify the
constructor for the Faculty class so that it invokes a constructor in the Person class.

The constructor in its previous form was

Faculty(string fname, Discipline d)
{

name = fname;
department = d;

}

17
18 // Derived class
19 class DeriDemo : public BaseDemo
20 {
21 public:
22 DeriDemo() // Constructor
23 { cout << "This is the DeriDemo constructor.\n"; }
24 ~DeriDemo() // Destructor
25 { cout << "This is the DeriDemo destructor.\n"; }
26 };
27
28 int main()
29 {
30 cout << "We will now create a DeriDemo object.\n";
31 DeriDemo object;
32 cout << "The program is now going to end.\n";
33 return 0;
34 }

Program Output
We will now create a DeriDemo object.
This is the BaseDemo constructor.
This is the DeriDemo constructor.
The program is now going to end.
This is the DeriDemo destructor.
This is the BaseDemo destructor.

Program 11-20 (continued)

770 Chapter 11 More About Classes and Object-Oriented Programming

It now becomes

Faculty(string fname, Discipline d) : Person(fname)
{

department = d;
}

Notice that one of the arguments passed to the derived class constructor is passed to the
base class constructor. In general, the argument passed to the base class constructor may be
any expression and may involve any variables that are in scope at the point of the call to
the derived class constructor. For example, a string literal, or even a global string variable,
could have been passed as the argument to the Person constructor. If for example, it was
desired that the name of a faculty member default to that of the ubiquitous “Dr. Staff,” the
following constructor would be just what we want:

Faculty(Discipline d) : Person("Staff")
{

department = d;
}

In general, the base class constructor may take any number of parameters.

Contents of inheritance2.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 class Person
8 {
9 protected:
10 string name;
11 public:
12 Person() {setName(""); }
13 Person(string pName) { setName(pName); }
14 void setName(string pName) { name = pName; }
15 string getName() const { return name; }
16 };
17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;
23 public:
24 // Constructor
25 Student(string sname, Discipline d, Person *adv);
26
27 void setMajor(Discipline d) { major = d; }
28 Discipline getMajor() const { return major; }
29 void setAdvisor(Person *p) { advisor = p; }
30 Person *getAdvisor() const { return advisor; }

Constructors, Destructors, and Inheritance 771

The new constructors are demonstrated in Program 11-21App on the book’s companion
website, which is virtually the same as Program 11-19. The only difference is that Program
11-21App includes inheritance2.h rather than inheritance1.h, and must be compiled
and linked with inheritance2.cpp. It can be found in the file Pr11-21App.cpp on the
book’s companion website.

It is important to remember that the arguments to the base class constructor must be specified
in the definition of the derived class constructor, and not in its declaration. In the case of the
Student class, the declaration of the constructor occurs at line 25 of the inheritance.h file.
The corresponding definition starts at line 5 of the inheritance.cpp file, and specifies the
argument to pass to the Person superclass in line 6.

Checkpoint

11.42 What is the reason that base class constructors are called before derived class
constructors?

11.43 Why do you think the arguments to a base class constructor are specified in the
definition of the derived class constructor rather than in the declaration?

11.44 Passing arguments to base classes constructors solves the problem of selecting a
base class constructor in inheritance. Can the same problem arise with
composition? That is, might there be a case where a constructor of a class might
have to pass arguments to the constructor of a contained class? If so, guess the

31 };
32
33 class Faculty:public Person
34 {
35 private:
36 Discipline department;
37 public:
38 // Constructor
39 Faculty(string fname, Discipline d) : Person(fname)
40 {
41 department = d;
42 }
43
44 void setDepartment(Discipline d) { department = d; }
45 Discipline getDepartment() const { return department; }
46 };

Contents of inheritance2.cpp
1 #include "inheritance2.h"
2 //***
3 // Constructor for the Student class. *
4 //***
5 Student::Student(string sname, Discipline d, Person *adv)
6 : Person(sname) // Base constructor initialization
7 {
8 major = d;
9 advisor = adv;
10 }

772 Chapter 11 More About Classes and Object-Oriented Programming

syntax that would be used to pass the parameters, and construct a simple example
to verify your guess.

11.45 What will the following program display?

#include <iostream>
using namespace std;
class Base
{
 public:
 Base() { cout << "Entering the base.\n"; }
 ~Base() { cout << "Leaving the base.\n"; }
};

class Camp : public Base
{
public:

Camp() { cout << "Entering the camp.\n"; }
~Camp() { cout << "Leaving the camp.\n"; }

};
int main()
{

Camp outpost;
return 0;

}

11.46 What will the following program display?

#include <iostream>
#include <string>
using namespace std;

class Base
{
public:

Base(){cout << "Entering the base.\n";}
Base(string str)
{

cout << "This base is " << str << ".\n";
}
~Base() {cout << "Leaving the base.\n";}

};
class Camp : public Base
{
public:

Camp(){cout << "Entering the camp.\n";}
Camp(string str1, string str2) : Base(str1)
{

cout << "The camp is " << str2 << ".\n";
}

};

int main()
{

Camp outpost("secure", "secluded");
return 0;

}

Overriding Base Class Functions 773

Overriding Base
Class Functions

11.13 Overriding Base Class Functions

CONCEPT: A derived class can override a member function of its base class by defining
a derived class member function with the same name and parameter list.

It is often useful for a derived class to define its own version of a member function
inherited from its base class. This may be done to specialize the member function to the
needs of the derived class. When this happens, the base class member function is said to be
overridden, or redefined, by the derived class.

As a simple example, suppose that we want to have a class Tfaculty that will allow us
to associate with each member of the faculty a title such as “Dr.”, “Professor”, or
“Dean.” To accomplish this, we derive the new class from the Faculty class by adding
a title data member, an appropriate constructor, a member function to set the title,
and then overriding the inherited getName() member function to return a “titled”
name.

class TFaculty: public Faculty
{
private:
 string title;
public:
 // This Constructor allows the specification of a title
 TFaculty(string fname, Discipline d, string title)
 : Faculty(fname, d)
 {
 setTitle(title);
 }

 void setTitle(string title) { this->title = title; }

 // Override the getName function
 string getName() const { return title + " " + name; }
};

Program 11-21 illustrates the use of this class and its overridden member function. It uses
the files inheritance3.h and inheritance3.cpp. The inheritance3.h file is just
inheritance2.h with the class declaration of TFaculty added, and inheritance3.cpp
is the same as inheritance2.cpp. Code listings of inheritance2.h and inheritance2.cpp
can be found at the end of Section 11.12. Copies of all these files are included on the book’s
companion website.

Program 11-21

1 // This program illustrates member function overriding.
2 #include "inheritance3.h"
3 #include <iostream>
4 using namespace std;
5

(program continues)

VideoNote

774 Chapter 11 More About Classes and Object-Oriented Programming

Choosing Between Base and Derived Class Versions
of an Overriden Function
An object of a derived class that has overridden a base class member function contains
more than one version of the member function. The compiler will determine which of the
several versions to call by using type information in the expression used to make the call to
the member function. For example, in Program 11-21, there are two calls to getName():

1. The call prof.getName() returns Dr. Indiana Jones because the function is
called through prof, which has type TFaculty. The compiler calls the TFaculty
version getName().

2. The call pAdvisor->getName() returns Indiana Jones without the “Dr.” because
the function is called through the pointer pAdvisor, which is a pointer to Person.
The compiler calls the Person version of getName().

The Difference Between Overloading and Overriding
Both overloading and overriding involve the definition of different functions with the same
name. There are differences between the two concepts, however. Overriding can only be
done in the context of inheritance and refers to the defining of a member function by a

6 // These arrays of string are used to output
7 // values of enumerated types
8 const string dName[] =
9 { "Archeology", "Biology", "Computer Science" };
10
11 const string cName[] =
12 { "Freshman", "Sophomore", "Junior", "Senior" };
13
14 int main()
15 {
16 // New constructor allows specification of title
17 TFaculty prof("Indiana Jones", ARCHEOLOGY, "Dr.");
18 Student st("Sean Bolster", ARCHEOLOGY, &prof);
19
20 // Use the new TFaculty version of getName
21 cout << prof.getName() << " teaches "
22 << dName[prof.getDepartment()] << "." << endl;
23
24 // This call uses the Person version of getName
25 Person *pAdvisor = st.getAdvisor();
26 cout << st.getName() <<"\'s advisor is "
27 << pAdvisor->getName() << ".";
28
29 return 0;
30 }

Program Output
Dr. Indiana Jones teaches Archeology.
Sean Bolster's advisor is Indiana Jones.

Program 11-21 (continued)

775

derived class when the base class already has a member function of the same name and
parameter list. Overloading refers to the definition of different functions within the same
class with the same name and different parameter lists. Overloading can also refer to the
definition of different functions with different parameter lists at the global level.

Gaining Access to an Overridden Member Function
If a derived class overrides a base class member function, member functions of the derived
class that would have otherwise called the overridden base class member function will now
call the version in the derived class. It is occasionally useful to be able to call the
overridden version. In fact, the new member function of the derived class may want to call
the base class member function that it is overriding. This is done by using the scope
resolution operator to specify the class of the overridden member function being accessed.
For example, a member function of TFaculty that is to call the getName function of
Person can do so in this fashion:

Person::getName();

Thus, a better version of the TFaculty class is the following. Note that the overriding
function does not need to access any protected members of Person, but instead calls the
public member function getName.

class TFaculty : public Faculty
{
private:

string title;
public:

TFaculty(string fname, Discipline d, string title)
: Faculty(fname, d)
{

setTitle(title);
}
void setTitle(string title) { this->title = title; }
// Override getName() by calling Person::getName
string getName() const
{

return title + " " + Person::getName();
}

};

Code for the program demonstrating this can be found in files Pr11-22App.cpp,
inheritance4.h, and inheritance4.cpp on the book’s companion website.

11.14 Tying It All Together: Putting Data on
the World Wide Web

The ability to generate output formatted in HTML (Hypertext Markup Language) is
important to programs that interact with users via the World Wide Web. These applications
include Web servers and Web-based E-commerce applications such as Amazon and eBay.
Often the information displayed by these programs must be formatted using HTML tables.

Tying It All Together: Putting Data on the World Wide Web

776 Chapter 11 More About Classes and Object-Oriented Programming

HTML tables are quite simple. They consist of rows of cells where each cell holds a unit of
information referred to as table data. The information comprising the table is marked with
HTML tags as shown in Table 11-3.

The <table> tag normally causes a browser to display tables with no borders. To display
tables with borders, the border attribute can be used. For example, the data table shown
in Table 11-4 can be displayed using the following HTML markup, identified here as the
contents of a file named table.html. The file can be found on the book’s companion
website.

Table 11-3 HTML Tags for Formatting Tables

<table> Marks the beginning of the table

</table> Marks the end of the table

<tr> Marks the beginning of a row in the table

</tr> Marks the end of a row in the table

<td> Marks the beginning of data in a single cell of the table

</td> Marks the end of data in a single cell of the table

<th> Marks the beginning of the header for a single column of the table

</th> Marks the end of the header for a single column of the table

Table 11-4 Sample Input Data for the HTML Table Program

Name Address Phone

Mike Sane 1215 Mills St 630-555-1293

Natasha Upenski 513 Briarcliff Ln 412-555-1004

Contents of table.html
<table border = "1">
 <tr>
 <th> Name </th>
 <th> Address </th>
 <th> Phone </th>
 </tr>
 <tr>
 <td> Mike Sane </td>
 <td> 1215 Mills St </td>
 <td> 630-728-1293 </td>
 </tr>
 <tr>
 <td> Natasha Upenski </td>
 <td> 513 Briarcliff Ln </td>
 <td> 412-672-1004 </td>
 </tr>
</table>

Chapter 11 More About Classes and Object-Oriented Programming

777

If you use Microsoft Windows, you can display this table in your browser by double-clicking
on the file table.html in Windows Explorer, or by using Open in the File menu of your
browser.

Let’s write a program that converts a two-dimensional array of strings into an HTML table
capable of being displayed in a Web browser. The centerpiece of our program is an
HTMLTable class with two member variables

vector<string> headers;
vector<vector<string> > rows;

that represent the headers and the rows of the table. The headers constitute a single
vector of strings, while the rows of the table are represented by a vector of vectors. Note
the blank character between the closing > > characters at the end of the definition of a
vector of vectors: it is needed to avoid confusion with the >> operator. The HTMLTable
class has a member function setHeaders() for setting the headers and a member
function addRow() for adding rows to the table. The class also has an overloaded stream
output operator

ostream & operator <<(ostream &out, HTMLTable hTable);

that is used to convert the table data stored in the headers and rows vectors into HTML
markup and write that markup onto an output stream. If the stream receiving the markup
is a file, you can open the file in a browser for viewing. Alternatively, if your system has
established a default browser for opening files with an .html extension, you can use the
C++ library function

system("file_location.html");

to make the operating system open the HTML file using the default browser. This, of
course, assumes that the HTML markup is stored in a file named "file_location.html."

We learned in this chapter that a derived class object can be used wherever a base class
object is expected. We use this fact to allow for more flexibility in the data that is passed as
parameters to functions. We build this flexibility into an overloaded stream output
operator and into a convert constructor for a class derived from the STL vector class. The
overloaded stream output operator is able to write the standard output object cout
because cout is an ostream object. It is also able to write to an ofstream object because
ofstream inherits from ostream.

C++ programmers often face a dilemma: Although vectors are preferable to arrays in many
ways, arrays are more convenient to initialize. The solution we adopt is to use vectors as
parameters to functions, but use arrays for initialization. To bridge the gap, we write a
StringVector class that has a convert constructor that takes an array of strings as
parameter. Because StringVector derives from a vector of string, it can be used
wherever a vector of string is expected. At the same time, its convert constructor allows
for the use of arrays of strings, as shown in lines 91–100 of Program 11-22.

Tying It All Together: Putting Data on the World Wide Web

778 Chapter 11 More About Classes and Object-Oriented ProgrammingChapter 11 More About Classes and Object-Oriented Programming

Program 11-22

1 // This program demonstrates the use of classes
2 // to put tabular data on the World Wide Web.
3 #include <iostream>
4 #include <fstream>
5 #include <string>
6 #include <vector>
7 using namespace std;
8
9 // This is a convenience class used to convert
10 // an array of strings into a vector of strings.
11 // The array of strings must be (sentinel)-terminated
12 // by a string of length 0.
13
14 class StringVector : public vector<string>
15 {
16 public:
17 StringVector(string s[])
18 {
19 int k = 0;
20 while (s[k].length() != 0)
21 {
22 this->push_back(s[k]);
23 k++;
24 }
25 }
26 };
27
28 // This class allows a 2-dimensional table expressed as
29 // a vectors of vector of strings to be transformed into
30 // HTML form.
31
32 class HTMLTable
33 {
34 private:
35 vector<string> headers;
36 vector<vector<string> > rows;
37 // Helper method for writing an HTML row in a table
38 void writeRow(ostream &out, string tag, vector<string> row);
39 public:
40 // Set headers for the table columns
41 void setHeaders(const vector<string> &headers)
42 { this->headers = headers; }
43 // Add rows to the table
44 void addRow(const vector<string> &row)
45 { rows.push_back(row); }
46 // Write the table into HTML form onto an output stream
47 friend ostream & operator<<(ostream & out, HTMLTable htmlTable);
48 };
49

(program continues)

779Tying It All Together: Putting Data on the World Wide Web

50 //**
51 // Writes a row of the table, using the given tag for the table *
52 // data. The tag may be td for table data or th for table header. *
53 //**
54 void HTMLTable::writeRow(ostream &out, string tag, vector<string> row)
55 {
56 out << "<tr>\n";
57 for (unsigned int k = 0; k < headers.size(); k++)
58 {
59 out << "<" << tag << "> "
60 << row[k] << " </" << tag << "> ";
61 }
62 out << "\n</tr>\n";
63 }
64
65 //**
66 // Overloaded stream output operator << *
67 //**
68 ostream & operator<<(ostream &out, HTMLTable htmlTable)
69 {
70 out << "<table border = \"1\">\n";
71 // Write the headers
72 htmlTable.writeRow(out, "th", htmlTable.headers);
73 // Write the rows of the table
74 for (unsigned int r = 0; r < htmlTable.rows.size(); r++)
75 {
76 htmlTable.writeRow(out, "td", htmlTable.rows[r]);
77 }
78 // Write end tag for table
79 out << "</table>\n";
80 return out;
81 }
82
83 int main()
84 {
85 // Hard-coded data for table column headers
86 // The arrays must have empty string sentinels
87 string headers [] = {"Name", "Address", "Phone", ""};
88
89 // Hard-coded data for the two rows of the table
90 // The arrays must have empty string sentinels
91 string person1 [] =
92 {"Mike Sane", "1215 Mills St", "630-728-1293", ""};
93 string person2 [] =
94 {"Natasha Upenski", "513 Briarcliff Ln", "412-672-1004", ""};
95
96 // Create the HTML table object and set its members
97 HTMLTable hTable;
98 hTable.setHeaders(StringVector(headers));

(program continues)

Program 11-22 (continued)

780 Chapter 11 More About Classes and Object-Oriented ProgrammingChapter 11 More About Classes and Object-Oriented Programming

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. If a member variable is declared __________, all objects of that class share that variable.

2. Static member variables are defined __________ the class.

3. A(n) __________ member function cannot access any nonstatic member variables in
its own class.

4. A static member function may be called __________ any instances of its class are
defined.

5. A(n) __________ function is not a member of a class, but has access to the private
members of the class.

6. A(n) __________ tells the compiler that a specific class will be declared later in the
program.

7. __________ is the default behavior when an object is assigned the value of another
object of the same class.

8. A(n)__________ is a special constructor, called whenever a new object is initialized
with another object’s data.

9. __________ is a special built-in pointer that is automatically passed as a hidden
argument to all nonstatic member functions.

99 hTable.addRow(StringVector(person1));
100 hTable.addRow(StringVector(person2));
101
102 // Open a file and write the HTML code to the file
103 ofstream outFile("c:\\temp\\table.html");
104 outFile << hTable;
105 outFile.close();
106
107 // Write the same HTML code to the screen for ease of viewing
108 cout << hTable;
109 // Use the default browser to view generated HTML table
110 system("c:\\temp\\table.html");
111
112 return 0;
113 }

Program Output as Displayed in Browser

Program 11-22 (continued)

Review Questions and Exercises 781

10. An operator may be __________ to work with a specific class.

11. When the __________ operator is overloaded, its function must have a dummy
parameter.

12. Making an instance of one class a member of another class is called __________.

13. Object composition is useful for creating a(n) __________ relationship between two
classes.

14. A constructor that takes a single parameter of a type different from the class type is a
__________ constructor.

15. The class Stuff has both a copy constructor and an overloaded = operator.
Assume that blob and clump are both instances of the Stuff class. For each of
the statements, indicate whether the copy constructor or the overloaded =
operator will be called.

Stuff blob = clump;
clump = blob;
blob.operator=(clump);
showValues(blob); // Blob is passed by value.

16. Explain the programming steps necessary to make a class’s member variable static.

17. Explain the programming steps necessary to make a class’s member function static.

18. Consider the following class declaration:

class Thing
{

private:
 int x;
 int y;
 static int z;
public:
 Thing()
 { x = y = z; }
 static void putThing(int a)
 { z = a; }

};
int Thing:: z = 0:

Assume a program containing the class declaration defines three Thing objects with
the following statement:

Thing one, two, three;

A) How many separate instances of the x member exist?
B) How many separate instances of the y member exist?
C) How many separate instances of the z member exist?
D) What value will be stored in the x and y members of each object?
E) Write a statement that will call the putThing member function before the Thing

objects are defined.

19. Describe the difference between making a class a member of another class (object
composition) and making a class a friend of another class.

20. What is the purpose of a forward declaration of a class?

782 Chapter 11 More About Classes and Object-Oriented Programming

21. Explain why memberwise assignment can cause problems with a class that contains a
pointer member.

22. Explain why a class’s copy constructor is called when an object of that class is passed
by value into a function.

23. Explain why the parameter of a copy constructor must be a reference.

24. Assume a class named Bird exists. Write the header for a member function that
overloads the = operator for that class.

25. Assume a class named Dollars exists. Write the headers for member functions that
overload the prefix and postfix ++ operators for that class.

26. Assume a class named Yen exists. Write the header for a member function that
overloads the < operator for that class.

27. Assume a class named Length exists. Write the header for a member function that
overloads the stream insertion << operator for that class.

28. Assume a class named Collection exists. Write the header for a member function
that overloads the [] operator for that class.

29. Explain why a programmer would want to overload operators rather than use regular
member functions to perform similar operations.

Find the Error

30. Each of the following class declarations has errors. Locate as many as you can.

A) class Box
{
 private:
 double width;
 double length;
 double height;
 public:
 Box(double w, l, h)
 { width = w; length = l; height = h; }
 Box(Box b) // Copy constructor
 { width = b.width;
 length = b.length;
 height = b.height; }

 ... Other member functions follow ...
};

B) class Circle

{
 private:
 double diameter;
 int centerX;
 int centerY;
 public:
 Circle(double d, int x, int y)
 { diameter = d; centerX = x; centerY = y; }
 // Overloaded = operator
 void Circle=(Circle &right)

Review Questions and Exercises 783

 { diameter = right.diameter;
 centerX = right.centerX;
 centerY = right.centerY; }

 ... Other member functions follow ...
};

C) class Point
 {
 private:
 int xCoord;
 int yCoord;
 public:
 Point (int x, int y)
 { xCoord = x; yCoord = y; }
 // Overloaded + operator
 void operator+(const &Point Right)
 { xCoord += right.xCoord;
 yCoord += right.yCoord;
 }

 ... Other member functions follow ...
};

D) class Box
 {
 private:
 double width;
 double length;
 double height;
 public:
 Box(double w, l, h)
 { width = w; length = l; height = h; }
 // Overloaded prefix ++ operator
 void operator++()
 { ++width; ++length; }
 // Overloaded postfix ++ operator
 void operator++()
 {width++; length++; }

 ... Other member functions follow ...
 };

E) class Yard
 {
 private:
 double length;
 public:
 Yard(double l)
 { length = l; }
 // double conversion function
 void operator double()
 { return length; }

 ... Other member functions follow ...
 };

784 Chapter 11 More About Classes and Object-Oriented Programming

Fill-in-the-Blank

31. A derived class inherits the __________ of its base class.

32. The base class named in the following line of code is __________ .

class Pet : public Dog

33. The derived class named in the following line of code is __________ .

class Pet : public Dog

34. In the following line of code, the class access specification for the base class is
__________.

class Pet : public Dog

35. In the following line of code, the class access specification for the base class is
__________.

class Pet : Fish

36. Protected members of a base class are like __________ members, except they may be
accessed by derived classes.

37. Complete the following table by filling in private, protected, public, or inaccessible in
the right-hand column:

38. Complete the following table by filling in private, protected, public, or inaccessible in
the right-hand column:

39. Complete the following table by filling in private, protected, public, or inaccessible in
the right-hand column:

In a private base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

In a protected base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

In a public base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

Review Questions and Exercises 785

40. When both a base class and a derived class have constructors, the base class’s
constructor is called __________ (first/last).

41. When both a base class and a derived class have destructors, the base class’s
destructor is called __________ (first/last).

42. An overridden base class function may be called by a function in a derived class by
using the __________ operator.

Find the Errors

43. Each of the following class declarations and/or member function definitions has
errors. Find as many as you can.

A) class Car, public Vehicle
{
 public:
 Car();
 ~Car();
 protected:
 int passengers;
}

B) class Truck, public : Vehicle, public
{
 private:
 double cargoWeight;
 public:
 Truck();
 ~Truck();
};

Soft Skills

44. Your company’s software is a market leader, but is proving difficult to maintain
because it was written in C without using object-oriented concepts. Customers have
identified problems with the software that must be fixed immediately and have
pointed out features in competitors’ products that they want you to support. The best
solution will require a complete OOP redesign and subsequent implementation, but
will take three years. Write a memo to company management outlining your
recommendation for the course of action the company should pursue.

Programming Challenges

1. Check Writing

Design a class Numbers that can be used to translate whole dollar amounts in the range 0
through 9999 into an English description of the number. For example, the number 713
would be translated into the string seven hundred thirteen, and 8203 would be translated
into eight thousand two hundred three.

The class should have a single integer member variable

int number;

786 Chapter 11 More About Classes and Object-Oriented Programming

and a collection of static string members that specify how to translate key dollar amounts
into the desired format. For example, you might use static strings such as

string lessThan20[] =
 {"zero", "one", …, "eighteen", "nineteen" };

string hundred = "hundred";
string thousand = "thousand";

The class should have a constructor that accepts a nonnegative integer and uses it to initialize
the Numbers object. It should have a member function print() that prints the English
description of the Numbers object. Demonstrate the class by writing a main program that asks
the user to enter a number in the proper range and then prints out its English description.

2. Day of the Year

Assuming that a year has 365 days, write a class named DayOfYear that takes an integer
representing a day of the year and translates it to a string consisting of the month followed
by day of the month. For example,

Day 2 would be January 2

Day 32 would be February 1

Day 365 would be December 31.

The constructor for the class should take as parameter an integer representing the day of
the year, and the class should have a member function print() that prints the day in the
month-day format. The class should have an integer member variable to represent the day
and should have static member variables of type string to assist in the translation from
the integer format to the month–day format.

Test your class by inputting various integers representing days and printing out their
representation in the month–day format.

3. Day of the Year Modification

Modify the DayOfYear class, written in an earlier Programming Challenge, to add a
constructor that takes two parameters: a string representing a month and an integer in the
range 0 through 31 representing the day of the month. The constructor should then initialize
the integer member of the class to represent the day specified by the month and day of month
parameters. The constructor should terminate the program with an appropriate error
message if the number entered for a day is outside the range of days for the month given.

Add the following overloaded operators:

++ prefix and postfix increment operators. These operators should modify the DayOfYear
object so that it represents the next day. If the day is already the end of the year, the
new value of the object will represent the first day of the year.

-- prefix and postfix decrement operators. These operators should modify the DayOfYear
object so that it represents the previous day. If the day is already the first day of the
year, the new value of the object will represent the last day of the year.

4. Number of Days Worked

Design a class called NumDays. The class’s purpose is to store a value that represents a
number of work hours and convert it to a number of days. For example, 8 hours would

VideoNote

Solving the
Number of
Days Worked
Problem

Review Questions and Exercises 787

be converted to 1 day, 12 hours would be converted to 1.5 days, and 18 hours would be
converted to 2.25 days. The class should have a constructor that accepts a number of
hours, as well as member functions for storing and retrieving the hours and days. The class
should also have the following overloaded operators:

• The addition operator +. The number of hours in the sum of two objects is the sum
of the number of hours in the individual objects.

• The subtraction operator -. The number of hours in the difference of two objects X
and Y is the number of hours in X minus the number of hours in Y.

• Prefix and postfix increment operators ++. The number of hours in an object is
incremented by 1.

• Prefix and postfix decrement operators --. The number of hours in an object is
decremented by 1.

5. Palindrome Testing

A palindrome is a string that reads the same backward as forward. For example, the words
mom, dad, madam and radar are all palindromes. Write a class Pstring that is derived
from the STL string class. The Pstring class adds a member function

bool isPalindrome()

that determines whether the string is a palindrome. Include a constructor that takes an STL
string object as parameter and passes it to the string base class constructor. Test your
class by having a main program that asks the user to enter a string. The program uses the
string to initialize a Pstring object and then calls isPalindrome() to determine whether
the string entered is a palindrome.

You may find it useful to use the subscript operator [] of the string class: if str is a string
object and k is an integer, then str[k] returns the character at position k in the string.

6. String Encryption

Write a class EncryptableString that is derived from the STL string class. The
Encryptable string class adds a member function

void encrypt()

That encrypts the string contained in the object by replacing each letter with its successor
in the ASCII ordering. For example, the string baa would be encrypted to cbb. Assume that
all characters that are part of an EncryptableString object are letters a, .., z and A, .., Z,
and that the successor of z is a and the successor of Z is A. Test your class with a program
that asks the user to enter strings that are then encrypted and printed.

7. Corporate Sales

A corporation has six divisions, each responsible for sales to different geographic
locations. Design a DivSales class that keeps sales data for a division, with the following
members:

• An array with four elements for holding four quarters of sales figures for the division
• A private static variable for holding the total corporate sales for all divisions for the

entire year.

788 Chapter 11 More About Classes and Object-Oriented Programming

• A member function that takes four arguments, each assumed to be the sales for a
quarter. The value of the arguments should be copied into the array that holds the
sales data. The total of the four arguments should be added to the static variable that
holds the total yearly corporate sales.

• A function that takes an integer argument within the range of 0 to 3. The argument is
to be used as a subscript into the division quarterly sales array. The function should
return the value of the array element with that subscript.

Write a program that creates an array of six DivSales objects. The program should ask
the user to enter the sales for four quarters for each division. After the data is entered, the
program should display a table showing the division sales for each quarter. The program
should then display the total corporate sales for the year.

8. Rational Arithmetic I

A rational number is a quotient of two integers. For example, 12/5, 12/–4, –3/4, and 4/6
are all rational numbers. A rational number is said to be in reduced form if its denominator
is positive and its numerator and denominator have no common divisor other than 1. For
example, the reduced forms of the rational numbers given above are 12/5, –3/1, –3/4,
and 2/3.

Write a class called Rational with a constructor Rational(int, int) that takes two
integers, a numerator and a denominator, and stores those two values in reduced form in
corresponding private members. The class should have a private member function void
reduce() that is used to accomplish the transformation to reduced form. The class should
have an overloaded insertion operator << that will be used for output of objects of the
class.

9. Rational Arithmetic II

Modify the class Rational of Programming Challenge 8 to add overloaded operators +, -, *,
and / to be used for addition, subtraction, multiplication, and division. Test the class by reading
and processing from the keyboard (or from a file) a series of rational expressions such as

2 / 3 + 2 / 8
2 / 3 * – 2 / 8
2 / 3 – 2/ 8
2 / 3 / 2 / 8

To facilitate parsing of the input, you may assume that numbers and arithmetic operators
are separated by whitespace.

10. HTML Table of Names and Scores

Write a class whose constructor takes a vector of Student objects, where the each
Student has a name of type string and a score of type int. The class internally stores the
data passed to it in its constructor. The class should have an overloaded output operator
that outputs its data in the form of an HTML table. Make up suitable input and use it to
test your class.

789

C
H

A
P

T
E

R

12 More on C-Strings
and the string Class

12.1 C-Strings

CONCEPT: A C-string is a sequence of characters stored in consecutive memory
locations and terminated by a null character.

In C++, a C-string is a sequence of characters stored in consecutive memory locations and
terminated by a null character. Recall that the null character is the character whose ASCII
code is 0. In a program, the null character is usually written ‘\0’. It is also common to use
the integer 0 or the constant NULL to denote the null character in a program. Thus, all of
the following statements store the null character into a character variable:

char ch1, ch2, ch3;
ch1 = '\0';
ch2 = 0;
ch3 = NULL;

TOPICS

12.1 C-Strings
12.2 Library Functions for Working

with C-Strings
12.3 Conversions Between Numbers and

Strings
12.4 Writing Your Own C-String Handling

Functions

12.5 More About the C++ string Class
12.6 Creating Your Own String Class
12.7 Advanced Software Enterprises

Case Study
12.8 Tying It All Together: Program

Execution Environments

790 Chapter 12 More on C-Strings and the string Class

Because an array is a sequence of consecutive memory locations that store values of the
same type, a C-string is really a null-terminated array of characters. C-strings can appear in
a program in one of three forms:

• “Hard-coded’’ string literals
• Programmer-defined arrays of character
• Pointers to character

Regardless of which one of the three forms a C-string appears in a program, a C-string is
always a null-terminated array of characters and is represented in the program by a pointer
to the first character in the array. In other words, the type of a C-string is

char *

that is, the type of a C-string is pointer to char.

String Literals
String literals, also called string constants, are written directly into the program as a
sequence of characters enclosed in double quotes: For example,

"What is your name?"
"Bailey"

are both string literals.

When the compiler encounters a string literal such as "Bailey", it allocates an array of
seven characters, stores the six characters of "Bailey" in the first six entries of the array,
and then stores the null character in the last entry, as shown in Figure 12-1. The compiler
then treats the address of the first character of the array (which has type char *) as the
value of the string literal.

Program 12-1 illustrates the fact that a string literal is regarded by the compiler as a value
of type const char *. The key word const indicates that the compiler does not expect
the programmer to alter the contents of the string literal.

Figure 12-1

Program 12-1

1 //This program demonstrates that string literals
2 //are pointers to char.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

(program continues)

B a i l e y \0

C-Strings 791

The first two assignments of Program 12-1 show that string literals are pointers to char by
assigning them to variables of type char *. The pointers p and q then hold the addresses of
the two string literals. By casting the pointers to int, we can see where in memory the
string literals are stored. Notice that in this case, the compiler has stored all string literals
in the program in consecutive memory locations.

Programmer-Defined Arrays of Character
String literals can only hold C-strings that are hard-coded into the program. To have a
C-string whose characters are read from the keyboard or a file, you must explicitly define
an array to hold the characters of the C-string. In doing this, you should make sure that
you allocate an additional entry in the array for the terminating null character. For
example, if your C-string will be at most 19 characters long, you will need to allocate an
array of 20 characters, as in

const int SIZE = 20;
char company[SIZE];

As in the case of literals, the compiler will represent the C-string by the address of the first
character of the string, in this case, the array identifier. Recall from Chapter 8 that an array

8 // Define variables that are pointers to char
9 const char *p, *q;
10
11 // Assign string literals to the pointers to char
12 p = "Hello ";
13 q = "Bailey";
14
15 // Print the pointers as C-strings!
16 cout << p << q << endl;
17
18 // Print the pointers as C-strings and as addresses
19 cout << p << " is stored at " << int(p) << endl;
20 cout << q << " is stored at " << int(q) << endl;
21
22 // A string literal can be treated as a pointer!
23 cout << "String literal stored at " << int("literal");
24 return 0;
25 }

Program Output
Hello Bailey
Hello is stored at 4206692
Bailey is stored at 4206699
String literal stored at 4206721

Program 12-1 (continued)

792 Chapter 12 More on C-Strings and the string Class

identifier without the brackets is interpreted by the compiler to be the address of the first
entry of the array.

A C-string defined as an array can be given its value by initializing it with a string literal,
by reading characters into it from the keyboard or a file, or by copying characters into the
array one character at a time. Here are some examples of initialization:

const int SIZE = 20;
char company[SIZE] = “Robotic Systems, inc.”;
char corporation[] = “C. K. Graphics”;

When initializing an array with a string literal in this manner, the size of the array in the
array definition is optional. If not specified, the compiler will set the size to one more than
the number of characters in the initializing literal string (thus allowing room for the null
terminator).

As described in Chapter 3, C-strings defined as arrays can be read and written using the
various objects, operators, and member functions of the input and output stream classes. A
C-string stored as a programmer-defined array can be processed using standard subscript
notation. Program 12-2 is an example. It outputs a string one character at a time, and
stops when it finds the null terminator. It uses the getline member function, covered in
Chapter 3, to read the string to be output.

Program 12-2

1 // This program cycles through a character array, displaying
2 // each element until a null terminator is encountered.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int LENGTH = 80; // Maximum length for string
9 char line[LENGTH]; // Array of char
10
11 // Read a string into the character array
12 cout << "Enter a sentence of no more than "
13 << LENGTH-1 << " characters:\n";
14 cin.getline(line, LENGTH);
15 cout << "The sentence you entered is:\n";
16
17 // Loop through the array printing each character
18 for(int index = 0; line[index] != '\0'; index++)
19 {
20 cout << line[index];
21 }
22 return 0;
23 }

Program Output with Example Input Shown in Bold
Enter a sentence of no more than 79 characters:
C++ is challenging but fun![Enter]
The sentence you entered is:
C++ is challenging but fun!

C-Strings 793

Pointers to char
As we have seen, C-strings can be represented as string literals or as arrays of characters.
Both of these methods allocate an array and then use the address of the array as a pointer
to char to actually represent the string. The difference between the two is that in the first
case, the array used to store the string is allocated implicitly by the compiler, whereas in the
second, the array is explicitly allocated by the programmer.

The third method of representing a C-string uses a pointer to char to point to a C-string
whose storage has already been allocated by one of the other two methods. Here are some
examples of using C-strings in this way:

char name[] = "John Q. Public";
char *p;
p = name; // Point to an existing C-string
cout << p << endl; // Print
p = "Jane Doe"; // Point to another C-string
cout << p << endl; // Print

A major advantage in using a pointer variable to represent a C-string is the ability to make
the pointer point to different C-strings.

Another way to use a pointer to a char as a C-string is to define the pointer and then set it
to point to dynamically allocated storage returned by the new operator. This is illustrated
in Program 12-3.

Program 12-3

1 // This program illustrates dynamic allocation
2 // of storage for C-strings.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int NAME_LENGTH = 50; // Maximum length
9 char *pname; // Address of array
10
11 // Allocate the array
12 pname = new char[NAME_LENGTH];
13
14 // Read a string
15 cout << "Enter your name: ";
16 cin.getline(pname, NAME_LENGTH);
17
18 // Display the string
19 cout << "Hello " << pname;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
Enter your name: George[Enter]
Hello George

794 Chapter 12 More on C-Strings and the string Class

A common mistake when using pointers to char as C-strings is using the pointer when it
does not point to a properly allocated C-string. For example, the code

char *pname;
cout << "Enter your name: ";
cin >> pname;

is erroneous because the program tries to read a string into the memory location pointed to
by pname, when pname has not been properly initialized.

12.2 Library Functions for Working with C-Strings

CONCEPT: The C++ library provides many functions for working with C-strings.

The C++ library provides many functions that can be used to work with C-strings. There
are functions for determining the length of a string, for concatenating two strings, for
comparing two strings, and for searching for the occurrence of one string within another.
You must include the cstring header file to use these functions.

The strlen Function
The strlen function is passed a C-string as its argument and returns the length of the
string. This is the number of characters up to, but not including, the null terminator. For
example, in the code segment

char str[] = "Hello";
int length = strlen(str);

the variable length will have the number 5 stored in it.

The length of a string should not be confused with the size of the array holding it. Remember,
the only information passed to strlen is the beginning of the C-string. It doesn’t know
where the array ends, so it looks for the null terminator to indicate the end of the string.

Passing C-String Arguments
Because C-strings are pointers to char, C-string handling functions take parameters that
are arrays of char, or equivalently, pointers to char. The C-string can be passed to the
function in any one of the three forms that a C-string can take:

• A string literal
• The name of an array that stores the C-string
• A pointer variable holding the address of the C-string

The strcat Function
Another example of a C-string handling function is strcat. The strcat function takes
two strings as parameters and concatenates them, returning a single string that consists of
all the characters of the first string followed by the characters of the second string. Here is
an example of its use:

Library Functions for Working with C-Strings 795

const int SIZE = 13;
char string1[SIZE] = "Hello ";
char string2[] = "World!";
cout << string1 << endl;
cout << string2 << endl;
strcat(string1, string2);
cout << string1 << endl;

These statements will produce the following output:

Hello
World!
Hello World!

The strcat function copies the contents of string2 to the end of string1. In this example,
string1 contains the string “Hello ” before the call to strcat. After the call, it contains
the string “Hello World!”. Figure 12-2 shows the contents of both arrays before and after
the function call.

Notice the last character in string1 (before the null terminator) is a space. The strcat
function doesn’t insert a space, so it’s the programmer’s responsibility to make sure one is
already there, if needed. It’s also the programmer’s responsibility to make sure the array holding
string1 is large enough to hold string1 plus string2 plus a null terminator. Here is a
program segment that uses the sizeof operator to test an array’s size before strcat is called:

if (sizeof(string1) >= (strlen(string1) + strlen(string2) + 1))
 strcat(string1, string2);

else
 cout << "String1 is not large enough for both strings.\n";

Figure 12-2

WARNING! If the array holding the first string isn’t large enough to hold both
strings, strcat will overflow the boundaries of the array.

H e l l o \0

W o r l d ! \0

H e l l o o r l d ! \0W

W o r l d ! \0

string1

string2

string1

string2

Before the call to strcat (string1, string2):

After the call to strcat (string1, string2):

796 Chapter 12 More on C-Strings and the string Class

The strcpy Function
Recall from Chapter 8 that one array cannot be assigned to another with the = operator.
Each individual element must be assigned, usually inside a loop. The strcpy function,
which you have already encountered in Chapter 3, can be used to copy one string to
another. Here is an example of its use:

const int SIZE = 20;
char name[SIZE];
strcpy(name, "Albert Einstein");

The strcpy function’s arguments are both C-strings. The second C-string is copied to the
address specified by the first C-string argument.

If anything is already stored in the location referenced by the first argument, it is
overwritten, as shown in the following program segment:

char string1[] = “Hello ”;
cout << string1 << endl;
strcpy(string1, “World!”);
cout << string1;

Here is the output:

Hello
World!

Comparing C-Strings
The assignment and relational operators work with the C++ string class because they
have been overloaded to work with that class. However, just as the assignment operator
cannot be used to assign to C-strings, the relational operators <=, <, >, >=, !=, and ==
cannot be used to compare C-strings. This is because when used with C-strings, these
operators compare the addresses at which the C-strings are stored instead of comparing
the actual sequence of characters that comprise the C-strings. Program 12-4 shows the
incorrect result of trying to compare C-strings using the equality operator.

WARNING! Being true to C++’s nature, strcpy performs no bounds checking. The
array specified by the first argument will be overflowed if it isn’t large enough to hold
the string specified by the second argument.

Program 12-4

1 // This program illustrates that you cannot compare
2 // C-strings with relational operators. Although it
3 // appears to test the strings for equality, that is
4 // not what happens.
5 #include <iostream>
6 using namespace std;
7

(program continues)

Library Functions for Working with C-Strings 797

Although two identical strings may be entered, Program 12-4 will always report that they
are not equal. This is because the expression

firstString == secondString

used in the if statement compares the memory addresses of the two arrays instead of
comparing the strings of characters stored at those addresses. Because these addresses are
different, the comparison yields a result of false. In fact, in C++, even the comparison

 "abc" == "abc"

will usually yield a result of false. This is because most compilers do not check to see if a
string literal has been encountered before and will store the two strings at different memory
addresses. The compiler will then compare the two different addresses, giving a value of
false for the result.

The strcmp Function
To properly compare C-strings, you should use the library function strcmp. This function
takes two C-strings as parameters and returns an integer that indicates how the two strings
compare to each other. Its prototype,

int strcmp(char *string1, char *string2);

8 int main()
9 {
10 // Two arrays for holding two strings
11 const int LENGTH = 40;
12 char firstString[LENGTH], secondString[LENGTH];
13
14 // Read two strings
15 cout << "Enter a string: ";
16 cin.getline(firstString, LENGTH);
17 cout << "Enter another string: ";
18 cin.getline(secondString, LENGTH);
19
20 // Attempt to compare the two strings using ==
21 if (firstString == secondString)
22 cout << "You entered the same string twice.\n";
23 else
24 cout << "The strings are not the same.\n";
25
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Enter a string: Alfonso[Enter]
Enter another string: Alfonso[Enter]
The strings are not the same.

Program 12-4 (continued)

798 Chapter 12 More on C-Strings and the string Class

indicates that the function takes two C-strings as parameters (recall that char * is the type
of C-string) and returns an integer result. The value of the result is set according to the
following convention:

• The result is zero if the two strings are equal on a character by character basis
• The result is negative if string1 comes before string2 in alphabetical order
• The result is positive if string1 comes after string2 in alphabetical order

Here is an example of the use of strcmp to determine if two strings are equal:

if (strcmp(string1, string2) == 0)
 cout << "The strings are equal";

else
 cout << "The strings are not equal";

Program 12-4, which incorrectly tested two C-strings with a relational operator, can be
correctly rewritten with the strcmp function, as shown in Program 12-5.

The function strcmp is case sensitive when it compares strings. If the user enters “Dog”
and “dog” in Program 12-5, it will report they are not the same. Some compilers provide

Program 12-5

1 // This program correctly tests two C-strings for
2 // equality with the strcmp function.
3 #include <iostream>
4 #include <cstring>
5 using namespace std;
6
7 int main()
8 {
9 // Two arrays for two strings
10 const int LENGTH = 40;
11 char firstString[LENGTH], secondString[LENGTH];
12
13 // Read two strings
14 cout << "Enter a string: ";
15 cin.getline(firstString, LENGTH);
16 cout << "Enter another string: ";
17 cin.getline(secondString, LENGTH);
18
19 // Compare the strings for equality with strcmp
20 if (strcmp(firstString, secondString) == 0)
21 cout << "You entered the same string twice.\n";
22 else
23 cout << "The strings are not the same.\n";
24
25 return 0;
26 }

Program Output with Example Input Shown in Bold
Enter a string: Alfonso[Enter]
Enter another string: Alfonso[Enter]
You entered the same string twice.

Library Functions for Working with C-Strings 799

nonstandard versions of strcmp that perform case-insensitive comparisons. Such functions
work identically to strcmp except the case of the characters is ignored.

Program 12-6 is a more practical example of how strcmp can be used. It asks the user to
enter the number of the computer part they wish to purchase. The part number contains
digits, letters, and a hyphen, so it must be stored as a string. Once the user enters the part
number, the program displays its price.

Program 12-6

1 // This program uses strcmp to compare the string entered
2 // by the user with the valid part numbers.
3 #include <iostream>
4 #include <cstring>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 // Price of items
11 const double A_PRICE = 49.0, B_PRICE = 69.95;
12
13 // Character array for part number
14 const int PART_LENGTH = 8;
15 char partNum[PART_LENGTH];
16
17 // Instruct the user to enter a part number
18 cout << "The computer part numbers are:\n";
19 cout << "\tBlu-ray Disk Drive, part number S147-29A\n";
20 cout << "\tWireless Router, part number S147-29B\n";
21 cout << "Enter the part number of the item you\n";
22 cout << "wish to purchase: ";
23
24 // Read a part number of at most 8 characters
25 cin >> setw(9);
26 cin >> partNum;
27
28 // Determine what user entered using strcmp
29 // and print its price
30 cout << showpoint << fixed << setprecision(2);
31 if (strcmp(partNum, "S147-29A") == 0)
32 cout << "The price is $" << A_PRICE << endl;
33 else if (strcmp(partNum, "S147-29B") == 0)
34 cout << "The price is $" << B_PRICE << endl;
35 else
36 cout << partNum << " is not a valid part number.\n";
37
38 return 0;
39 }

(program continues)

800 Chapter 12 More on C-Strings and the string Class

Using ! with strcmp
Some programmers prefer to use the logical NOT operator with strcmp when testing
strings for equality. Since 0 is considered logically false, the ! operator converts that
value to true. The expression !strcmp(string1, string2) will return true when both
strings are the same and false when they are different. The two following statements have
exactly the same effect when executed.

if(strcmp(str1, str2) == 0) cout << “equal”;
if(!strcmp(str1, str2)) cout << “equal”;

Sorting Strings
Because strcmp returns information on the relative alphabetic order of the two strings
being compared, it can be used to sort lists of C-strings. Program 12-7 is a simple
illustration of this: it asks the user to enter two names, which are then printed in ascending
alphabetic order.

Program Output with Example Input Shown in Bold
The computer part numbers are:

Blu-ray Disk Drive, part number S147-29A
Wireless Router, part number S147-29B

Enter the part number of the item you
wish to purchase: S147-29A[Enter]
The price is $49.00

Program 12-7

1 // This program uses the return value of strcmp to
2 // alphabetically order two strings entered by the user.
3 #include <iostream>
4 #include <cstring>
5 using namespace std;
6
7 int main()
8 {
9 // Two arrays to hold two strings
10 const int NAME_LENGTH = 30;
11 char name1[NAME_LENGTH], name2[NAME_LENGTH];
12
13 // Read two strings
14 cout << "Enter a name (last name first): ";
15 cin.getline(name1, NAME_LENGTH);
16 cout << "Enter another name: ";
17 cin.getline(name2, NAME_LENGTH);
18

(program continues)

Program 12-6 (continued)

Library Functions for Working with C-Strings 801

Table 12-1 summarizes the string-handling functions discussed here, as well as others. (All
the functions listed require the cstring header file.)

19 // Print the two strings in alphabetical order
20 cout << "Here are the names sorted alphabetically:\n";
21 if (strcmp(name1, name2) < 0)
22 cout << name1 << endl << name2 << endl;
23 else if (strcmp(name1, name2) > 0)
24 cout << name2 << endl << name1 << endl;
25 else
26 cout << "You entered the same name twice!\n";
27
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Enter a name (last name first): Smith, Richard[Enter]
Enter another name: Jones, John[Enter]
Here are the names sorted alphabetically:
Jones, John
Smith, Richard

Table 12-1 (See your C++ reference manual for more information on these functions.)

Function Description

strlen Accepts a C-string as an argument. Returns the length of the C-string (not including
the null terminator). Example Usage: len = strlen(name);

strcat Accepts two C-strings as arguments. The function appends the contents of the second
string to the first C-string. (The first string is altered, the second string is left
unchanged.)
Example Usage: strcat(string1, string2);

strcpy Accepts two C-strings as arguments. The function copies the second C-string to the
first C-string. The second C-string is left unchanged.
Example Usage: strcpy(string1, string2);

strncpy Copies at most n characters of string2 to string1. If string2 has fewer than n
characters, then string1 is padded with ‘\0’ characters until a total of n characters
have been written to it. If string2 has n or more characters, then the first n
characters are copied and string1 is not null-terminated.
Example Usage: strncpy(string1, string2, n);

strcmp Accepts two C-string arguments. If string1 and string2 are the same, this function
returns 0. If string2 is alphabetically greater than string1, it returns a negative
number. If string2 is alphabetically less than string1, it returns a positive number.
Example Usage: if (strcmp(string1, string2))

strstr Searches for the first occurrence of string2 in string1. If an occurrence of string2
is found, the function returns a pointer to it. Otherwise, it returns a NULL pointer
(address 0).
Example Usage: cout << strstr(string1, string2);

Program 12-7 (continued)

802 Chapter 12 More on C-Strings and the string Class

The strstr Function
The last function in Table 12-1 is strstr, which searches for a string inside of a string.
For instance, it could be used to search for the string “seven” inside the larger string
“Four score and seven years ago.” The function’s first argument is the string to be
searched, and the second argument is the string to look for. If the function finds the
second string inside the first, it returns the address of the occurrence of the second string
within the first string. Otherwise it returns the address 0, or the NULL address. Here is an
example:

char array[] = "Four score and seven years ago";
char *strPtr;
cout << array << endl;
strPtr = strstr(array, "seven"); // search for "seven"
cout << strPtr << endl;

In the preceding program segment strstr will locate the string “seven” inside the string
“Four score and seven years ago.” It will return the address of the first character in
“seven”, which will be stored in the pointer variable strPtr. If run as part of a complete
program, the segment will display the following:

Four score and seven years ago
seven years ago

The strstr function can be useful in any program that must locate information inside one
or more strings. Program 12-8, for example, stores a database of product numbers and
descriptions in an array of C-strings. It allows the user to look up a product description by
entering all or part of its product number.

Program 12-8

1 // This program uses the strstr function to search an array
2 // of strings for a name.
3 #include <iostream>
4 #include <cstring> // For strstr
5 using namespace std;
6
7 int main()
8 {
9 const int N_ITEMS = 5, // Maximum number of items
10 S_LENGTH = 31; // maximum length of description
11
12 // Array of product descriptions
13 char prods[N_ITEMS][S_LENGTH] = {"TV327 31 inch Television",
14 "CD257 CD Player",
15 "TA677 Answering Machine",
16 "CS109 Car Stereo",
17 "PC955 Personal Computer"};
18
19

(program continues)

Library Functions for Working with C-Strings 803

In Program 12–8, the loop in lines 29–36 cycles through each C-string in the array calling
the following statement:

strPtr = strstr(prods[index], lookUp);

The strstr function searches the string referenced by prods[index] for the name entered
by the user, which is stored in lookUp. If lookUp is found inside prods[index], the

20 char lookUp[S_LENGTH]; // For user input
21 char *strPtr = NULL; // Result from strstr
22
23 // Get user input
24 cout << "\tProduct Database\n\n";
25 cout << "Enter a product number to search for: ";
26 cin.getline(lookUp, S_LENGTH);
27
28 // Search for the string
29 int index = 0;
30 while(index < N_ITEMS)
31 {
32 strPtr = strstr(prods[index], lookUp);
33 if (strPtr != NULL)
34 break;
35 index++;
36 }
37
38 // Output the result of the search
39 if (strPtr == NULL)
40 cout << "No matching product was found.\n";
41 else
42 cout << prods[index] << endl;
43
44 return 0;
45 }

Program Output with Example Input Shown in Bold
Product Database

Enter a product to search for: CD257[Enter]
CD257 CD Player

Program Output with Other Example Input Shown in Bold
Product Database

Enter a product to search for: CS[Enter]
CS109 Car Stereo

Program Output with Other Example Input Shown in Bold
Product Database

Enter a product to search for: AB[Enter]
No matching product was found.

Program 12-8 (continued)

804 Chapter 12 More on C-Strings and the string Class

function returns its address. In that case, the following if statement causes the loop to
terminate:

if (strPtr != NULL)
 break;

Outside the loop, the following if-else statement determines if the string entered by the
user was found in the array. If not, it informs the user that no matching product was
found. Otherwise, the product number and description are displayed:

if (strPtr == NULL)
cout << "No matching product was found.\n";

else
cout << prods[index] << endl;

Checkpoint

12.1 Write a short description of each of the following functions:
A) strlen
B) strcat
C) strcpy
D) strncpy
E) strcmp
F) strstr

12.2 What will the following program segment display?

char dog[] = "Fido";
cout << strlen(dog) << endl;

12.3 Assume the constant SIZE has value 16. What will the following program segment
display?

char string1[SIZE] = "Have a ";
char string2[] = "nice day";
strcat(string1, string2);
cout << string1 << endl;
cout << string2 << endl;

12.4 Write a statement that will copy the string “Beethoven” to the array composer.

12.5 When complete, the following program skeleton will search for the string
“Windy” in the array place. If place contains “Windy” the program will
display the message “Windy found.” Otherwise it will display “Windy not
found.”

#include <iostream>
// include any other necessary header files
int main()
{

char place[] = "The Windy City";
// Complete the program. It should search the array place
// for the string "Windy" and display the message "Windy
// found" if it finds the string. Otherwise, it should
// display the message "Windy not found."

}

Conversions Between Numbers and Strings 805

12.6 Indicate whether the following strcmp function calls will return 0, a negative number,
or a positive number. Refer to the ASCII table in Appendix A if necessary.

A) strcmp("ABC", "abc");
B) strcmp("Jill", "Jim");
C) strcmp("123", "ABC");
D) strcmp("Sammy", "Sally");

12.7 Complete the if statements in the following program skeleton.

#include <iostream>
using namespace std;

int main()
{

const int LENGTH = 20;
char iceCream[LENGTH];
cout << "What flavor of ice cream do you like best? ";
cout << "Chocolate, Vanilla, or Pralines and Pecan? ";
cin.getline(iceCream, LENGTH);
cout << "Here is the number of fat grams for a half ";
cout << "cup serving:\n";
//
// Finish the following if-else statement
// so the program will select the ice cream entered
// by the user
//
if (/* insert your code here */)

cout << "Chocolate: 9 fat grams.\n";
else if (/* insert your code here */)

cout << "Vanilla: 10 fat grams.\n";
else if (/* insert your code here */)

cout << "Pralines and Pecan: 14 fat grams.\n";
else

cout << "That's not one of our flavors!\n";
return 0;

}

12.3 Conversions Between Numbers and Strings

CONCEPT: The C++ libraries provide classes that can be used to convert a string
representation of a number to numeric form and vice versa.

There is a difference between a number that is stored as a string and one stored as a
numeric value. The string “2679” isn’t a number: it is a sequence of ASCII codes of the
characters that form the individual digits of the number 2679. Because the string “2679” is
not a number, the compiler will not allow arithmetic operations such as addition,
multiplication, and division to be applied to it. Strings that represent numbers must first be
converted to numeric form before they can be used with arithmetic operators.

806 Chapter 12 More on C-Strings and the string Class

String representations of numbers arise naturally in computing, most often during input
and output of numbers. When a user enters a number at a keyboard, the number is entered
in its string form as a sequence of characters (digits) typed by the user. In C++, such a
number is usually read via the stream extraction operator >>. This operator automatically
performs conversions as needed before storing into a variable of numeric type. During
output, the reverse conversion from numeric to string is performed by the stream output
operator <<.

There are times when a string such as “2679” that is already stored in memory as a C-string
or string object needs to be converted to numeric form. There are also times when a
number already stored in numeric form in memory needs to be converted into its string
representation. C++ has two classes, ostringstream and istringstream, that can be
used to perform string/numeric conversions. The class ostringstream is a subclass of
ostream (the class that cout belongs to) and uses the stream insertion operator << to
convert numeric values to string. Objects of type ostringstream work the same way that
cout and file objects do, except that instead of writing to the screen or to a file,
ostringstream writes its data to a string object contained inside it. Each time you use <<
on the ostringstream object, it performs any numeric-to-string conversions necessary
and appends the result to the end of its string. In addition to supporting all the member
functions and operators of the ostream class, ostringstream objects support the str
member functions shown in Table 12-2.

The istringstream class derives from istream. It contains a string object inside it
that functions as an input stream that can be “read” from. The input stream can be
set by the istringstream constructor when the object is created, or can be set by
calling the str(string s) function after the object has been created. The stream
extraction operator >> reads from the enclosed string and converts from string to
numeric where necessary. Member functions of istringstream are also listed in
Table 12-2. You must include the sstream header file in your programs to use these
classes.

Table 12-2 Member Functions of ostringstream and istringstream Classes

Member Function Description

istringstream(string s) Constructor for istringstream: sets the initial value of the
input stream for the object.
Example: istringstream istr("50 64 28");

ostringstream(string s) Constructor for ostringstream: sets the initial value of the
output stream for the object.
Example: ostringstream ostr("50 64 28");

string str() Returns the string contained in the ostringstream or
istringstream object.
Example: string is = istr.str();

string os = ostr.str();

void str(string &s) Sets the string that serves as the input or output stream for the
object.
Example: ostr.str("50 64 28");

istr.str("50 64 28");

VideoNote

Converting
Strings to
Numbers

Conversions Between Numbers and Strings 807

Program 12-9 demonstrates the use of these classes.

Notice that these classes have the full power of ostream and istream objects, including
the ability to convert numbers to string using different bases such as octal and hexadecimal.
Although these classes are the preferred way to convert between numeric and string forms,

Program 12-9

1 // This program illustrates the use of sstream objects.
2 #include <sstream>
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string str = "John 20 50"; // String to read from
10 const char *cstr = "Amy 30 42"; // Cstring to read from
11 istringstream istr1(str); // istr1 will read from str
12 istringstream istr2; // istr2 will read from cstr
13 ostringstream ostr; // The ostringstream object
14
15 string name;
16 int score1, score2, average_score;
17
18 // Read name and scores and compute average then write to ostr
19 istr1 >> name >> score1 >> score2;
20 average_score = (score1 + score2)/2;
21 ostr << name << " has average score " << average_score << "\n";
22
23 // Set istr2 to read from the C string and repeat the above
24 istr2.str(cstr);
25 istr2 >> name >> score1 >> score2;
26 average_score = (score1 + score2)/2;
27 ostr << name << " has average score " << average_score << "\n";
28
29 // Switch to hexadecimal output on ostr
30 ostr << hex;
31
32 // Write Amy's scores in hexadecimal
33 ostr << name << "'s scores in hexadecimal are: " << score1
34 << " and " << score2 << "\n";
35
36 // Extract the string from ostr and print it to the screen
37 cout << ostr.str();
38
39 return 0;
40 }

Program Output
John has average score 35
Amy has average score 36
Amy's scores in hexadecimal are: 1e and 2a

808 Chapter 12 More on C-Strings and the string Class

you should also be aware of the C++ library functions shown in Table 12-3. These
functions work on C-strings only.

The atoi function converts a string to an integer. It accepts a C-string argument and
returns the converted integer value. Here is an example of how to use it:

int num;
num = atoi("1000");

In these statements, atoi converts the string “1000” into the integer 1000. Once the
variable num is assigned this value, it can be used in mathematical operations or any task
requiring a numeric value.

The atol function works just like atoi, except the return value is a long integer. Here is
an example:

long bigNum;
bigNum = atol("500000");

As expected, the atof function accepts a C-string argument and converts it to a double.
The numeric double value is returned, as shown here:

double fnum;
fnum = atof("12.67");

Table 12-3 (See your C++ reference manual for more information on these functions.)

Function Description

 atoi Accepts a C-string as an argument. The function converts the C-string to an integer
and returns that value.
Example Usage: num = atoi("4569");

atol Accepts a C-string as an argument. The function converts the C-string to a long
integer and returns that value.
Example Usage: lnum = atol("500000");

atof Accepts a C-string as an argument. The function converts the C-string to a double and
returns that value. Use this function to convert a C-string to a float or double.
Example Usage: fnum = atof("3.14159");

itoa Converts an integer to a C-string. The first argument, value, is the integer. The result
will be stored at the location pointed to by the second argument, string. The third
argument, base, is an integer. It specifies the numbering system that the converted
integer should be expressed in (8 = octal, 10 = decimal, 16 = hexadecimal, etc.).
Example Usage: itoa(value, string, base);

NOTE: The atoi function as well as the others discussed in this section require that
the cstdlib header file be included.

NOTE: If a string that cannot be converted to a numeric value is passed to any of these
functions, the function’s behavior is undefined by C++. Many compilers, however, will
perform the conversion process until an invalid character is encountered. For example,
atoi("123x5") might return the integer 123. It is possible that these functions will
return 0 if they cannot successfully convert their argument.

Conversions Between Numbers and Strings 809

The itoa function is similar to atoi, but it works in reverse. It converts a numeric integer
into a string representation of the integer. The itoa function accepts three arguments: the
integer value to be converted, a pointer to the location in memory where the string is to be
stored, and a number that represents the base of the converted value. Here is an example:

const int SIZE = 15;
char numArray[SIZE];
itoa(1200, numArray, 10);
cout << numArray << endl;

This program segment converts the integer value 1200 to a string. The string is stored in
the array numArray. The third argument, 10, means the number should be written in
decimal, or base 10 notation. The output of the cout statement is

1200

Now let’s look at Program 12-10, which uses a string-to-number conversion function,
atoi. It allows the user to enter a series of values, or the letters Q or q to quit. The average
of the numbers is then calculated and displayed.

WARNING! As always, C++ performs no array bounds checking. Make sure the array
whose address is passed to itoa is large enough to hold the converted number, including
the null terminator.

Program 12-10

1 // This program demonstrates the strcmp and atoi functions.
2 #include <iostream>
3 #include <cstring> // For strcmp
4 #include <cstdlib> // For atoi
5 using namespace std;
6
7 int main()
8 {
9 // Array used to read numbers in string form
10 const int LENGTH = 20;
11 char input[LENGTH];
12
13 int total = 0; // Running total
14 count = 0; // Number of numbers read
15 double average; // Average
16
17 // Read numbers and computer total of numbers
18 cout << "This program will average a series of numbers.\n";
19 cout << "Enter the first number or Q to quit: ";
20 cin.getline(input, LENGTH);
21 while((strcmp(input,"Q")!= 0)&&(strcmp(input,"q")!= 0))
22 {
23 // Keep a running total
24 total += atoi(input);
25
26 // Keep track of how many numbers are entered
27 count++;
28

(program continues)

810 Chapter 12 More on C-Strings and the string Class

Recall that strcmp compares two C-strings. If they are identical, it returns 0. Otherwise a
nonzero value is returned. The following while statement uses strcmp to determine if the
string in input is either “Q” or “q”.

while ((strcmp(input, "Q") != 0)&&(strcmp(input, "q") != 0))

If the user hasn’t entered “Q” or “q” the program uses atoi to convert the string in input
to an integer and adds its value to total with the following statement:

total += atoi(input); // Keep a running total

The user is then asked for the next number. When all the numbers are entered, the user
terminates the loop by entering “Q” or “q”. If one or more numbers are entered, their
average is displayed.

Checkpoint

12.8 Write a short description of each of the following functions.
A) atoi
B) atol
C) atof
D) itoa

12.9 Write a statement that will convert the C-string “10” to an integer and store the
result in the variable num.

12.10 Write a statement that will convert the C-string “100000” to a long and store the
result in the variable num.

29 // Are there more?
30 cout << "Enter the next number or Q to quit: ";
31 cin.getline(input,LENGTH);}
32 }
33
34 // Compute and print average
35 if (count != 0)
36 {
37 average = double(total) / count;
38 cout << "average: " << average << endl;
39 }
40
41 return 0;
42 }

Program Output with Example Input Shown in Bold
This program will average a series of numbers.
Enter the first number or Q to quit: 74[Enter]
Enter the next number or Q to quit: 98[Enter]
Enter the next number or Q to quit: 23[Enter]
Enter the next number or Q to quit: 54[Enter]
Enter the next number or Q to quit: Q[Enter]
Average: 62.25

Program 12-10 (continued)

Writing Your Own C-String Handling Functions 811

Writing a
C-String
Handling
Function

12.11 Write a statement that will convert the string “7.2389” to a double and store the
result in the variable num.

12.12 Write a statement that will convert the integer 127 to a string, stored in base 10
notation in the array value.

12.4 Writing Your Own C-String Handling Functions

CONCEPT: You can design your own specialized functions for manipulating strings.

By being able to pass arrays as arguments, you can write your own functions for
processing C-strings. For example, Program 12-11 uses a function to copy a C-string from
one array to another.

Program 12-11

1 // This program uses a function to copy
2 // a string into an array.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 void stringCopy(char [], const char []);
8
9 int main()
10 {
11 // Define two arrays of char
12 const int S_LENGTH = 30;
13 char dest[S_LENGTH], source[S_LENGTH];
14
15 // Read a string into a source array
16 cout << "Enter a string with no more than "
17 << S_LENGTH - 1 << " characters:\n";
18 cin.getline(source, S_LENGTH);
19
20 // Copy it into a destination array and print
21 stringCopy(dest, source);
22 cout << "The string you entered is:\n" << dest << endl;
23 return 0;
24 }
25
26 //**
27 // Definition of the stringCopy function. *
28 // This function accepts two character arrays as *
29 // arguments. The function assumes the two arrays *
30 // contain C-strings. The contents of the second *
31 // array are copied to the first array. *
32 //**

(program continues)

VideoNote

812 Chapter 12 More on C-Strings and the string Class

Notice the function stringCopy in Program 12-11 does not accept an argument indicating
the size of the arrays. It simply copies the characters from the source string to the destination
until it encounters a null terminator in the source string. When the null terminator is found,
the loop has reached the end of the C-string. The last statement in the function assigns a null
terminator (the '\0' character) to the end of string2, so it is properly terminated.

Program 12-12 uses another C-string handling function: nameSlice. The program asks
the user to enter his or her first and last names, separated by a space. The function searches
the string for the space and replaces it with a null terminator. In effect, this cuts off the last
name of the string.

33 void stringCopy(char destStr[], const char sourceStr[])
34 {
35 int index = 0;
36
37 // Copy one character at a time till we come to
38 // the null terminator
39 while (sourceStr[index] != '\0')
40 {
41 destStr[index] = sourceStr[index];
42 index++;
43 }
44 destStr[index] = '\0';
45 }

Program Output with Example Input Shown in Bold
Enter a string with no more than 29 characters:
Thank goodness it’s Friday![Enter]
The string you entered is:
Thank goodness it's Friday!

WARNING! Since the stringCopy function doesn’t know the size of the destination
array, it’s the programmer’s responsibility to make sure the destination array is large
enough to hold the source string array.

Program 12-12

1 // This program uses the function nameSlice
2 // to "cut" off the last name of a string that
3 // contains the user's first and last names.
4 #include <iostream>
5 using namespace std;
6
7 void nameSlice(char []); // Function prototype
8
9 int main()
10 {
11
12 // Define array of char to hold name
13 const int NAME_LENGTH = 41;

(program continues)

Program 12-11 (continued)

Writing Your Own C-String Handling Functions 813

The following loop in nameSlice starts at the first character in the array and scans the
string, searching for either a space or a null terminator:

while (userName[k] != ' ' && userName[k] != '\0')
k++;

If the character in userName[k] isn’t a space or the null terminator, k is incremented,
and the next character is examined. With the example input “Jimmy Jones,” the loop
finds the space separating “Jimmy” and “Jones” at userName[5]. When the loop stops,
k is set to 5. This is illustrated in Figure 12-3.

14 char name[NAME_LENGTH];
15
16 // Get user's first and last names
17 cout << "Enter your first and last names, separated ";
18 cout << "by a space:\n";
19 cin.getline(name, NAME_LENGTH);
20
21 // Slice off the last name and print what is left
22 nameSlice(name);
23 cout << "Your first name is: " << name << endl;
24 return 0;
25 }
26
27 //***
28 // Definition of function nameSlice. This function *
29 // accepts a character array as its argument. It *
30 // scans the array looking for a space. When it finds *
31 // one, it replaces it with a null terminator. *
32 //***
33 void nameSlice(char userName[])
34 {
35 // Look for the end of the first name, indicated
36 // by a space or a null terminator
37 int k = 0;
38 while (userName[k] != ' ' && userName[k] != '\0')
39 k++;
40
41 // Insert null terminator
42 if (userName[k] == ' ')
43 userName[k] = '\0';
44 }

Program Output with Example Input Shown in Bold
Enter your first and last names, separated by a space:
Jimmy Jones[Enter]
Your first name is: Jimmy

NOTE: The loop stops if it encounters a null terminator so it will not go beyond the
boundary of the array if the user didn’t enter a space.

Program 12-12 (continued)

814 Chapter 12 More on C-Strings and the string Class

Once the loop has finished, userName[k] will either contain a space or a null terminator. If
it contains a space, the following if statement, whose action is illustrated in Figure 12-4,
replaces it with a null terminator:

if (userName[k] == ' ')
userName[k] = '\0';

The new null terminator now becomes the end of the string.

Using Pointers to Pass C-String Arguments
Pointers are extremely useful for writing functions that process C-strings. If the starting
address of a string is passed into a pointer parameter variable, it can be assumed that all
the characters, from that address up to the byte that holds the null terminator are part of
the string. (It isn’t necessary to know the length of the array that holds the string.)

Program 12-13 demonstrates a function, countChars, that uses a pointer to count the
number of times a specific character appears in a C-string.

Figure 12-3

Figure 12-4

Program 12-13

1 // This program demonstrates a function, countChars,
2 // that counts the number of times a specific
3 // character appears in a string.
4 #include <iostream>
5 using namespace std;
6
7 // Function prototype
8 int countChars(const char *, char);
9

(program continues)

J i m m y o n e s \0 J

0 1 2 3 4 5 7 8 9 10 11 12 6

The loop stops when k reaches 5 because userName[5] contains a space

Subscripts

J i m m y \0 o n e s \0J

0 1 2 3 4 5 7 8 9 10 11 126

The space is replaced with a null terminator. This now becomes the end of the string.

Subscripts

Writing Your Own C-String Handling Functions 815

In the function countChars, strPtr points to the C-string that is to be searched and ch
contains the character to look for. The while loop repeats as long the character strPtr
points to is not the null terminator:

while (*strPtr != '\0')

10 int main()
11 {
12 // Define array to hold the string
13 const int S_LENGTH = 51;
14 char userString[S_LENGTH];
15
16 char letter; // User input
17
18 // Read the string and the letter to count
19 cout << "Enter a string (up to "
20 << S_LENGTH-1 << " characters): ";
21 cin.getline(userString, S_LENGTH);
22 cout << "Enter a character and I will tell you how many\n;
23 cout << "times it appears in the string: ";
24 cin >> letter;
25
26 // Output the results of the letter count
27 cout << letter << " appears ";
28 cout << countChars(userString, letter) << " times.\n";
29 return 0;
30 }
31
32 //***
33 // Definition of countChars. The parameter strPtr is *
34 // a pointer that points to a string. The parameter *
35 // ch is a character that the function searches for *
36 // in the string. The function returns the number of *
37 // times the character appears in the string. *
38 //***
39 int countChars(const char *strPtr, char ch)
40 {
41 int count = 0;
42 while (*strPtr != '\0')
43 {
44 if (*strPtr == ch)
45 count++;
46 strPtr++;
47 }
48 return count;
49 }

Program Output with Example Input Shown in Bold
Enter a string (up to 50 characters): Starting Out With C++[Enter]
Enter a character and I will tell you how many
times it appears in the string: t[Enter]
t appears 4 times.

Program 12-13 (continued)

816 Chapter 12 More on C-Strings and the string Class

Inside the loop, the following if statement compares the character that strPtr points to
with the character in ch:

if (*strPtr == ch)

If the two are equal, the variable count is incremented. (count keeps a running total of the
number of times the character appears.) The last statement in the loop is

strPtr++;

This statement increments the address in strPtr. This causes strPtr to point to the next
character in the string. Then the loop starts over. When strPtr finally reaches the null
terminator, the loop terminates and the function returns the value in count.

Checkpoint

12.13 What is the output of the following program?

#include <iostream>
using namespace std;

// Function prototype
void mess(char []);

int main()
{

char stuff[] = "Tom Talbert Tried Trains";

cout << stuff << endl;
mess(stuff);
cout << stuff << endl;
return 0;

}

// Definition of function mess
void mess(char str[])
{

int step = 0;

while (str[step] != '\0')
{

if (str[step] == 'T')
str[step] = 'D';

step++;
}

}

12.5 More About the C++ string Class
From an ease-of-programming point of view, the standard library string class offers
several advantages over C-strings. As you have seen throughout this text, the string class
has several member functions and overloaded operators. These simplify tasks, such as

More About the C++ string Class 817

locating a character or string within a string, that are difficult and tedious to perform with
C-strings. In this section we review some basic operations with strings, then discuss more
of the string class’s member functions.

Any program using the string class must #include the string header file. String objects
may then be created using any of several constructors. Program 12-14 demonstrates two
string class constructors: the default constructor, and, the convert constructor that converts
a C-string into a string object.

Other examples of the use of string constructors are given in Table 12-4.

Program 12-14

1 // This program demonstrates some C++ string class constructors.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 int main()
7 {
8 string greeting; // Default constructor
9 string name("William Smith"); // Convert constructor
10
11 greeting = "Hello ";
12 cout << greeting << name << endl;
13 return 0;
14 }
15

Program Output
Hello William Smith

Table 12-4 String Constructors

Definition Description

string() Default constructor: Creates an empty string.
Example: string str();

string(const char *s) Convert constructor: creates a string object from a
C-string s.
Example: string name("William Smith");

string(const string &s) Copy constructor: creates a new string from an
existing string s.
Example: string name1(name);

string(const char *s, int n) Creates a string initialized to the first n characters of
the C-string s.

string(int n, char ch) Creates a string object by concatenating n copies of the
character ch.

string(const string &s, int p,
int n)

Creates a string by taking the substring of s that starts
at position p and is n characters long.

818 Chapter 12 More on C-Strings and the string Class

Notice in Program 12-14 the use of the = operator to assign a value to the string
object. The string class overloads several operators, which are described in Table
12-5.

The string class also has several member functions. For example, the size function
returns the length of the string. Table 12-6 lists many of the string class member
functions and their overloaded variations. In some cases, the arguments passed to a
member function may be such that the operation being requested is impossible. In those
cases, the member function will signal the occurrence of an error by throwing an
exception. Exceptions are discussed in Chapter 16.

Table 12-5 String Class Operators

Overloaded Operator Description

>> Extracts characters from a stream and inserts them into the string.
Characters are copied until a whitespace or the end of the input is
encountered.

<< Inserts the string into a stream.

= Assigns the string on the right to the string object on the left.

+= Appends a copy of the string on the right to the string object on the left.

+ Returns a string that is the concatenation of the two string operands.

[] Implements array-subscript notation, as in name[x]. A reference to the
character in the x position is returned.

Relational Operators Each of the relational operators are implemented:

< > <= >= == !=

Table 12-6 string Class Member Functions

Member Function Example Description

theString.append(str); Appends str to theString. The argument str can be a
string object or character array.

theString.append(str, p, n); n number of characters from str, starting at position p,
are appended to theString. An exception is thrown if
the substring of str that begins at p has fewer than
n characters.

theString.append(str, n); The first n characters of the C-string str are appended to
theString.

theString.append(n, ch); Appends n copies of character ch to theString.

theString.assign(str); Assigns str to theString. The parameter str can be a
string object or a C-string.

theString.assign(str, p, n); n number of characters from str, starting at position p,
are assigned to theString. An exception is thrown if the
substring of str the begins at p has fewer than n
characters.

(table continues)

More About the C++ string Class 819

theString.assign(str, n); The first n characters of the C-string str are assigned to
theString.

theString.assign(n, ch); Assigns n copies of the character ch to theString.

theString.at(p); Returns the character at position p in the string.

theString.begin(); Returns an iterator pointing to the first character in the
string. (For more information on iterators, see Chapter 16.)

theString.capacity(); Returns the size of the storage allocated for the string.

theString.clear(); Clears the string by deleting all the characters stored in it.

theString.compare(str); Compare theString to str in the manner of the strcmp.
The str argument may be another string object, or may
be a C-string.

theString.copy(str, p, n); Copies the substring of length n that begins at position p
of theString into the character array str. An exception
is thrown if theString has fewer than n characters after
the given position p.

theString.c_str(): Returns the C-string value of the string object.

theString.data(); Returns a character array containing a null terminated
string, as stored in theString.

theString.empty(); Returns true if theString is empty.

theString.end(); Returns an iterator pointing to the last character of the
string in theString. (For more information on iterators,
see Chapter 16.)

theString.erase(p, n); Erases n characters from theString, beginning at
position p.

theString.find(str, p); Returns the first position at or beyond position p where
the string str is found in theString. The parameter str
may be a string object or a C-string. If str is not found,
the static member string::npos of thestring class is
returned.

theString.find(ch, p); Returns the first position at or beyond position p where
the character ch is found in theString. Returns
string::npos if the character is not found.

theString.insert(p, str); Inserts a copy of str into theString, beginning at
position p. The argument str may be a string object or a
character array.

theString.insert(p, n, ch); Inserts the character ch, n times into theString at
position p.

theString.length(); Returns the length of the string in theString.
(table continues)

Table 12-6 string Class Member Functions (continued)

Member Function Example Description

820 Chapter 12 More on C-Strings and the string Class

12.6 Creating Your Own String Class

CONCEPT: This section demonstrates some of the programming techniques used to
create the C++ string class.

The C++ string class automatically handles many of the tedious tasks involved in using
strings, such as dynamic memory allocation and bounds checking. It also overloads
operators such as + and = and offers many member functions that ease the job of working
with strings. In this section, we create a string data type with much of the functionality of
the C++ class. In the process, we see examples of copy constructors and overloaded
operators in full action, as well as examples of programming techniques that are useful in
the solution of many problems.

The MyString Class
The MyString class defined in this section is an abstract data type for handling strings. It
has many of the advantages possessed by the C++ string class provided by the Standard
Template Library:

• Memory is dynamically allocated for any string stored in a MyString object. The
programmer using this class doesn’t need to be concerned with how large to make
an array.

• Strings may be assigned to a MyString object with the = operator. The programmer
using this class does not have to call the strcpy function.

• One string may be concatenated to another with the += operator. This eliminates the
need for the strcat function.

• Strings may be tested for equality with the == operator. The programmer using this
class doesn’t have to call the strcmp function.

theString.replace(p, n, str); Replaces the n characters in theString beginning at
position p with the characters in string object str.

theString.resize(n, ch); Changes the size of the allocation in theString to n. If n
is less than the current size of the string, the string is
truncated to n characters. If n is greater, the string is
expanded and the character ch is appended at the end
enough times to fill the new spaces.

theString.size(); Returns the length of the string in theString.

theString.substr(p, n); Returns a copy of a substring. The substring is n
characters long and begins at position p of theString.

theString.swap(str); Swaps the contents of theString with str.

Table 12-6 string Class Member Functions (continued)

Member Function Example Description

Creating Your Own String Class 821

The following program listings show the class implementation.

Contents of mystring.h
1 #ifndef MYSTRING_H
2 #define MYSTRING_H
3
4 #include <iostream>
5 #include <cstring> // For string library functions
6 #include <cstdlib> // For exit() function
7 using namespace std;
8 const int SIZE = 256;
9 class MyString {
10 private:
11 char *str;
12 int len;
13 public:
14 // Constructors
15 MyString() { str = new char[1]; str[0] = ‘\0’; len = 0; }
16 MyString(char *);
17 MyString(const MyString &);
18
19 // Destructor
20 ~MyString() { if (len != 0) delete [] str; }
21
22 // Various member functions and operators
23 int length() const { return len; }
24 char *data() { return str; };
25 MyString operator+=(MyString);
26 MyString operator=(MyString);
27
28 // Various overloaded operators
29 friend bool operator==(MyString, MyString);
30 friend bool operator!=(MyString, MyString);
31 friend bool operator>(MyString, MyString);
32 friend bool operator<(MyString, MyString);
33 friend bool operator>=(MyString, MyString);
34 friend bool operator<=(MyString, MyString);
35 friend ostream & operator<<(ostream &, MyString);
36 friend istream & operator>>(istream &, MyString &);
37 };
38 #endif

Contents of mystring.CPP
1 #include "mystring.h"
2
3 //**
4 // Constructor to initialize the str member *
5 // with a C-string constant. *
6 //**
7 MyString::MyString(const char *sptr)
8 {
9 len = strlen(sptr);
10 str = new char[len + 1];
11 strcpy(str, sptr);
12 }

822 Chapter 12 More on C-Strings and the string Class

13
14 //***
15 // Copy constructor. *
16 //***
17 MyString::MyString(const MyString &right)
18 {
19 str = new char[right.len + 1];
20 strcpy(str, right.str);
21 len = right.len;
22 }
23
24 //**
25 // Overloaded = operator. *
26 //**
27 MyString MyString::operator=(MyString right)
28 {
29 if (len != 0) delete [] str;
30 str = new char[right.len + 1];
31 strcpy(str, right.str);
32 len = right.len;
33 return *this;
34 }
35
36 //**
37 // Overloaded += operator. *
38 // Concatenates the str member of right to the *
39 // str member of the calling object. *
40 // Returns the calling object. *
41 //**
42 MyString MyString::operator+=(MyString right)
43 {
44 char *temp = str;
45 str = new char[len + right.len + 1];
46 strcpy(str, temp);
47 strcat(str, right.str);
48 if (len != 0) delete [] temp;
49 len += right.len;
50 return *this;
51 }
52
53 //***
54 // Overloaded == operator. *
55 //***
56 bool operator==(MyString left, MyString right)
57 {
58 return strcmp(left.str, right.str) == 0;
59 }
60
61 //***
62 // Overloaded != operator. *
63 //***
64 bool operator!=(MyString left, MyString right)
65 {
66 return strcmp(left.str, right.str) != 0;
67 }

Creating Your Own String Class 823

68
69 //**
70 // Overloaded > operator. *
71 //**
72 bool operator>(MyString left, MyString right)
73 {
74 return (strcmp(left.str, right.str) > 0);
75 }
76
77 //**
78 // Overloaded < operator. *
79 //**
80 bool operator<(MyString left, MyString right)
81 {
82 return (strcmp(left.str, right.str) < 0);
83 }
84
85 //***
86 // Overloaded >= operator. *
87 //***
88 bool operator>=(MyString left, MyString right)
89 {
90 return (strcmp(left.str, right.str) >= 0);
91 }
92
93 //***
94 // Overloaded <= operator. *
95 //***
96 bool operator<=(MyString left, MyString right)
97 {
98 return (strcmp(left.str, right.str) <= 0);
99 }
100
101 //***
102 // Overloaded stream insertion operator (<<). *
103 //***
104 ostream &operator<<(ostream &strm, MyString obj)
105 {
106 strm << obj.str;
107 return strm;
108 }
109
110 //***
111 // Overloaded stream extraction operator (>>). *
112 //***
113 istream &operator>>(istream &strm, MyString &obj)
114 {
115 // Read the string
116 char buffer[SIZE];
117 strm.getline(buffer, SIZE);
118 // Invoke the convert constructor and overloaded assignment
119 obj = buffer;
120 return strm;
121 }

824 Chapter 12 More on C-Strings and the string Class

Constructors and Destructors
Because the MyString class has a pointer that is used to dynamically allocate memory, it
requires a programmer-defined copy constructor, assignment operator, and destructor. In
addition to the copy constructor, there is a default constructor that initializes a MyString
object to an empty string and a convert constructor that allows C-strings to be used in
place of MyString objects in assignment statements. The convert constructor also allows
C-strings to be passed to functions and operators that would otherwise require MyString
objects as parameters. An example of this is line 119 in the MyString.cpp file, where in
the statement

obj = buffer;

obj is a MyString object being assigned the value of the C-string variable buffer.

The Overloaded = Operator
The overloaded assignment operator is invoked whenever one MyString object is being
assigned to another, as in

MyString x("Hello");
MyString y;
y = x;

It is also called whenever a C-string is assigned to a MyString object, as in

MyString x;
x = "hello";

In this second example, the convert constructor will automatically be called to convert the
C-string "hello" to a MyString object, which is then assigned to the object x.

The Overloaded += Operator
This operator concatenates the Mystring object on its right to the object on its left. The
right operand may be a MyString object, or it may be a C-string:

MyString x("Hello ");
x += "World";

The Overloaded Relational Operators ==, !=, <, <=, >, >=
These operators are overloaded as nonmember functions to preserve the symmetry
between the left and right operands and to allow the convert constructor to be called
when a C-string is passed for the left operand (parameter). These functions return a
Boolean value that is exactly the Boolean value that is obtained when the contained
C-strings are passed to strcmp and the result is compared to 0. As an example, here
is code for operator < :

bool operator<(MyString left, MyString right)
{
 return (strcmp(left.str, right.str) < 0);
}

Creating Your Own String Class 825

Program 12-15 demonstrates the use of the += operator and various other features of the
MyString class.

Program 12-16 shows how MyString’s relational operators can be used to compare strings
with the same ease that numeric data types are compared.

Program 12-15

1 // This program demonstrates the MyString class. Be sure to
2 // compile this program with mystring.cpp.
3 #include <iostream>
4 #include "mystring.h"
5 using namespace std;
6
7 int main()
8 {
9 MyString object1("This"), object2("is");
10 MyString object3("a test.");
11 MyString object4 = object1; // Call copy constructor
12 MyString object5("is only a test.");
13 char string1[] = "a test.";
14
15 cout << "Object1: " << object1 << endl;
16 cout << "Object2: " << object2 << endl;
17 cout << "Object3: " << object3 << endl;
18 cout << "Object4: " << object4 << endl;
19 cout << "Object5: " << object5 << endl;
20 cout << "String1: " << string1 << endl;
21 object1 += " ";
22 object1 += object2;
23 object1 += " ";
24 object1 += object3;
25 object1 += " ";
26 object1 += object4;
27 object1 += " ";
28 object1 += object5;
29 cout << "object1: " << object1 << endl;
30 return 0;
31 }

Program Output
Object1: This
Object2: is
Object3: a test.
Object4: This
Object5: is only a test.
String1: a test.
object1: This is a test. This is only a test.

826 Chapter 12 More on C-Strings and the string Class

Program 12-16

1 // This program demonstrates the MyString class. Be sure to
2 // compile this program with mystring.cpp.
3 #include <iostream>
4 #include "mystring.h"
5 using namespace std;
6
7 int main()
8 {
9 MyString name1("Billy"), name2("Sue");
10 MyString name3("Joe");
11 MyString string1("ABC"), string2("DEF");
12
13 cout << "name1: " << name1.getValue() << endl;
14 cout << "name2: " << name2.getValue() << endl;
15 cout << "name3: " << name3.getValue() << endl;
16 cout << "string1: " << string1.getValue() << endl;
17 cout << "string2: " << string2.getValue() << endl;
18 if (name1 == name2)
19 cout << "name1 is equal to name2.\n";
20 else
21 cout << "name1 is not equal to name2.\n";
22 if (name3 == "Joe")
23 cout << "name3 is equal to Joe.\n";
24 else
25 cout << "name3 is not equal to Joe.\n";
26 if (string1 > string2)
27 cout << "string1 is greater than string2.\n";
28 else
29 cout << "string1 is not greater than string2.\n";
30 if (string1 < string2)
31 cout << "string1 is less than string2.\n";
32 else
33 cout << "string1 is not less than string2.\n";
34 if (string1 >= string2)
35 cout << "string1 is greater than or equal to "
36 << "string2.\n";
37 else
38 cout << "string1 is not greater than or equal to "
39 << "string2.\n";
40 if (string1 >= "ABC")
41 cout << "string1 is greater than or equal to "
42 << "ABC.\n";
43 else
44 cout << "string1 is not greater than or equal to "
45 << "ABC.\n";
46 if (string1 <= string2)
47 cout << "string1 is less than or equal to "
48 << "string2.\n";
49 else
50 cout << "string1 is not less than or equal to "
51 << "string2.\n";
52 if (string2 <= "DEF")

(program continues)

Advanced Software Enterprises Case Study 827

12.7 Advanced Software Enterprises Case Study
You are a summer intern at Advanced Software Enterprises, and your boss has asked you
to develop a function that can format string representations of dollar amounts. Specifically,
he wants you to add commas and a dollar sign ($) at appropriate places in the string. For
example, when the function is given the string object or C-string with a value of
“1084567.89”, it should return the string “$1,084,567.89”.

After reviewing the String class members listed in Table 12-6 and giving the problem
some thought, you decide to use the find method. This will let you find the index of the
decimal point in the input string. Beginning at that point, you can back up in the string,
inserting a comma at every third location. You then finish it off by inserting a $ sign at the
beginning. In no time at all, you have the solution and the demonstration program shown
in the listing for Program 12-17.

53 cout << "string2 is less than or equal to "
54 << "DEF.\n";
55 else
56 cout << "string2 is not less than or equal to "
57 << "DEF.\n";
58 return 0;
59 }

Program Output
name1: Billy
name2: Sue
name3: Joe
string1: ABC
string2: DEF
name1 is not equal to name2.
name3 is equal to Joe.
string1 is not greater than string2.
string1 is less than string2.
string1 is not greater than or equal to string2.
string1 is greater than or equal to ABC.
string1 is less than or equal to string2.
string2 is less than or equal to DEF.

Program 12-17

1 // This program demonstrates the use of the string find
2 // and insert member functions.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 string dollarFormat(string); // Prototype
8

(program continues)

Program 12-16 (continued)

828 Chapter 12 More on C-Strings and the string Class

12.8 Tying It All Together: Program Execution Environments

Most operating systems provide every executing program with an execution environment
consisting of a set of strings of the form

name=value

The name part of this equation is called an environment variable, and the value part is used
to specify a string value for that particular environment variable. As an example, look at
this partial listing of the execution environment of a C++ program running on one of the
authors’ machines:

 1 COMPUTERNAME=GCM-RED
 2 ComSpec=C:\Windows\system32\cmd.exe

9 int main(void)
10 {
11 string input; // User input
12
13 // Get the dollar amount from the user
14 cout << "Enter a dollar amount in the form nnnnn.nn : ";
15 cin >> input;
16
17 // Display the formatted dollar amount
18 cout << "Formatted amount: " << dollarFormat(input) << endl;
19 return 0;
20 }
21
22 //**
23 // Returns a $-formatted version of the input string *
24 //**
25 string dollarFormat(string original)
26 {
27 string formatted = original;
28 int dp = formatted.find('.'); // Position of decimal point
29 int pos = dp; // Search for comma position
30 while (pos > 3)
31 {
32 pos = pos - 3;
33 formatted.insert(pos, ",");
34 }
35 formatted.insert(0, "$");
36 return formatted;
37 }

Program Output with Example Input Shown in Bold
Enter a dollar amount in the form nnnnn.nn : 1084567.89[Enter]
Here is the amount formatted: $1,084,567.89

Program 12-17 (continued)

Tying It All Together: Program Execution Environments 829

 3 HOMEDRIVE=C:
 4 HOMEPATH=\Users\gcm
 5 LOGONSERVER=\\GCM-RED
 6 NUMBER_OF_PROCESSORS=4
 7 OS=Windows_NT
 8 SESSIONNAME=Console
 9 SystemDrive=C:
10 SystemRoot=C:\Windows
11 USERDOMAIN=gcm-Red
12 USERNAME=gcm
13 windir=C:\Windows

In line 1, COMPUTERNAME is the environment variable and GCM-VISTA1 is the associated
value.

A program that examines its execution environment can obtain information about the user
currently logged in and about the machine on which it is running. Depending on the
operating system, the program can also gather information about the network to which the
machine is connected. For example, by examining the above listing, we can tell that the
user’s login name is gcm (line 12), that the user’s home folder is \Users\gcm (line 4), and
that the machine’s operating system is a version of Microsoft Windows (line 7).
Furthermore, we can tell that the computer has four central processing units (line 6) and
that the network name of the machine is GCM-RED (line 1).

The operating system stores the program’s environment as an array of pointers to C-strings.
To mark the end of the array, the system sets the last entry in the array to 0. It then passes
the base address of this array to the program. When the program starts executing, the C++
runtime system sets a variable

char **environ;

to point to the beginning of the environment array.

Basically, the environ variable is a global variable defined in library code that is linked
with the executable code of your program. In C++, a function can access a global variable
defined in a separate file by declaring the variable and prefixing the declaration with the
key word extern. This means that you can gain access to the environment by including
this declaration in your program:

extern char ** environ;

In Chapter 10 you learned that if environ is a pointer to the beginning of an array of
items, you can use the notation

environ[k]

to access the various components of that array. By starting a variable k at 0 and repeatedly
incrementing k, you can step through the array and examine each environment string, as
shown in Program 12-18.

830 Chapter 12 More on C-Strings and the string Class

The output from this program will vary depending on the user running the program and
the machine on which the program is running. It will be similar to what is shown at the
beginning of this section.

Review Questions and Exercises

Fill-in-the-Blank

1. A(n) _________ is represented in memory as an array of characters with a null
terminator.

2. The _________ statement is required before the C-string library functions can be used
in a program.

3. A(n) _________ is written in your program as a sequence of characters surrounded by
double quotes.

4. The type _________ is used by the compiler as the type of a string literal.

5. The _________ is used to mark the end of a C-string.

6. The _________ class can be used to read input from an in-memory string object.

7. The _________ class can be used to write output to an in-memory string object.

8. The _________ function returns the length of a string.

9. To _________ two strings means to append one string to the other.

10. The _________ function concatenates two strings.

11. The _________ function copies one string to another.

12. The _________ function searches for a string inside of another one.

13. The _________ function compares two strings.

Program 12-18

1 // This program prints its environment variables.
2 #include <iostream>
3 using namespace std;
4
5 int main(int argc, char** argv)
6 {
7 extern char **environ; // Needed to access the environment
8
9 int k = 0;
10 while(environ[k] != 0) // Is it last C-string in environment?
11 {
12 // Print the string
13 cout << environ[k] << "\n";
14 k++;
15 }
16 return 0;
17 }

Review Questions and Exercises 831

14. The _________ function copies, at most, n number of characters from one string to another.

15. The _________ function returns the value of a string converted to an integer.

16. The _________ function returns the value of a string converted to a long integer.

17. The _________ function returns the value of a string converted to a double.

18. The _________ function converts an integer to a string.

Algorithm Workbench

19. Write a function whose prototype is

char lastChar(const char *str)

that takes a nonempty C-string as parameter and returns the last character in the
string. For example, the call lastChar("abc") will return the character c.

Predict the Output

20. #include <iostream>
using namespace std;
int main()
{
 cout << ("hello")[1];
 return 0;
}

21. #include <iostream>
using namespace std;
int main()
{
 cout << *("hello");
 return 0;
}

22. #include <iostream>
using namespace std;
int main()
{
 cout << *("C++ is fun" + 5);
 return 0;
}

23. #include <iostream>
#include <string>
using namespace std;
int main()
{
 cout << string("fantastic").size();
 return 0;
}

24. #include <iostream>
#include <cstring>
using namespace std;
int main()
{
 cout << strcmp("a", "b");
 return 0;
}

832 Chapter 12 More on C-Strings and the string Class

25. #include <iostream>
using namespace std;
int main()
{
 if ("a" == "a")

 cout << "equal";
 else

 cout << "not equal";
 return 0;

}
26. #include <iostream>

#include <string>
using namespace std;
int main()
{
 string s(5, 'a');
 s.append(3, 'b');
 s.insert(6, "xyz");
 cout << s;
 return 0;

}
27. #include <iostream>

#include <cstring>
using namespace std;
int main()
{
 char name[20] = "abracadabra";
 strcpy(name+4, "sion");
 cout << name;
 return 0;
}

28. #include <iostream>
#include <cstring>
using namespace std;
int main()
{
 char name[20] = "John ";
 *name = '\0';
 strcat(name, "Smith");
 cout << name;
 return 0;
}

Find the Errors

29. Each of the following programs or program segments has errors. Find as many as you
can.

A) char string[] = "Stop";
if (isupper(string) == "STOP")

exit(0);

B) char numeric[5];
int x = 123;
numeric = atoi(x);

C) char string1[] = "Billy";
char string2[] = " Bob Jones";
strcat(string1, string2);

D) char x = 'a', y = 'a';
if (strcmp(x, y) == 0)

 exit(0);

Review Questions and Exercises 833

Soft Skills

30. You are a member of a standardization committee for a new C++ standard, and there
is a proposal on the table to drop C-strings from the language and support only the
C++ string class. State whether you would oppose or support the proposal and
explain why.

Programming Challenges

1. Word Counter

Write a function that accepts a C-string as an argument and returns the number of words
contained in the string. For instance, if the string argument is “Four score and seven years
ago” the function should return the number 6. Demonstrate the function in a program that
asks the user to input a string and then passes it to the function. The number of words in
the string should be displayed on the screen.

2. Average Number of Letters

Modify the program you wrote for problem 1 (Word Counter), so it also displays the
average number of letters in each word.

3. Sentence Capitalizer

Write a function that accepts a C-string as an argument and capitalizes the first character of
each sentence in the string. For instance, if the string argument is “hello. my name is Joe.
what is your name?” the function should manipulate the string so it contains “Hello. My
name is Joe. What is your name?” Demonstrate the function in a program that asks the
user to input a string and then passes it to the function. The modified string should be
displayed on the screen.

4. Vowels and Consonants

Write a function that accepts a C-string as its argument. The function should count the
number of vowels appearing in the string and return that number.

Write another function that accepts a C-string as its argument. This function should count
the number of consonants appearing in the string and return that number.

Demonstrate the two functions in a program that performs the following steps:
1. The user is asked to enter a string.
2. The program displays the following menu:

A) Count the number of vowels in the string
B) Count the number of consonants in the string
C) Count both the vowels and consonants in the string
D) Enter another string
E) Exit the program

3. The program performs the operation selected by the user and repeats until the user
selects E, to exit the program.

834 Chapter 12 More on C-Strings and the string Class

5. Name Arranger

Write a program that asks for the user’s first, middle, and last names. The names should be
stored in three different character arrays. The program should then store in a fourth array
the name arranged in the following manner: the last name followed by a comma and a
space, followed by the first name and a space, followed by the middle name. For example,
if the user entered “Carol Lynn Smith”, it should store “Smith, Carol Lynn” in the
fourth array. Display the contents of the fourth array on the screen.

6. Sum of Digits in a String

Write a program that asks the user to enter a series of single-digit numbers with nothing
separating them. Read the input as a C-string or a string object. The program should
display the sum of all the single-digit numbers in the string. For example, if the user enters
2514, the program should display 12, which is the sum of 2, 5, 1, and 4. The program
should also display the highest and lowest digits in the string.

7. Most Frequent Character

Write a function that accepts either a pointer to a C-string, or a string object, as its
argument. The function should return the character that appears most frequently in the
string. Demonstrate the function in a complete program.

8. replaceSubstring Function

Write a function named replaceSubstring. The function should accept three C-string or
string object arguments. Let’s call them string1, string2, and string3. It should
search string1 for all occurrences of string2. When it finds an occurrence of string2, it
should replace it with string3. For example, suppose the three arguments have the
following values:

string1: "the dog jumped over the fence"
string2: "the"
string3: "that"

With these three arguments, the function would return a string object with the value
“that dog jumped over that fence”. Demonstrate the function in a complete program.

9. Case Manipulator

Write a program with three functions: upper, lower, and flip. The upper function
should accept a C-string as an argument. It should step through all the characters in the
string, converting each to uppercase. The lower function, too, should accept a pointer to
a C-string as an argument. It should step through all the characters in the string,
converting each to lowercase. Like upper and lower, flip should also accept a C-string.
As it steps through the string, it should test each character to determine whether it is
upper- or lowercase. If a character is uppercase, it should be converted to lowercase. If a
character is lowercase, it should be converted to uppercase.

Test the functions by asking for a string in function main, then passing it to them in the
following order: flip, lower, and upper.

VideoNote

Solving
the Case
Manipulator
Problem

Review Questions and Exercises 835

10. Password Verifier

Imagine you are developing a software package that requires users to enter their own
passwords. Your software requires that user’s passwords meet the following criteria:

• The password should be at least six characters long.
• The password should contain at least one uppercase and at least one lowercase letter.
• The password should have at least one digit.

Write a program that asks for a password and then verifies that it meets the stated criteria.
If it doesn’t, the program should display a message telling the user why.

11. Phone Number List

Write a program that has an array of at least 10 string objects that hold people’s names
and phone numbers. You may make up your own strings or use the following:

"Becky Warren, 678-1223"
"Joe Looney, 586-0097"
"Geri Palmer, 223-8787"
"Lynn Presnell, 887-1212"
"Holly Gaddis, 223-8878"
"Sam Wiggins, 486-0998"
"Bob Kain, 586-8712"
"Tim Haynes, 586-7676"
"Warren Gaddis, 223-9037"
"Jean James, 678-4939"
"Ron Palmer, 486-2783"

The program should ask the user to enter a name or partial name to search for in the
array. Any entries in the array that match the string entered should be displayed. For
example, if the user enters “Palmer” the program should display the following names
from the list:

Geri Palmer, 223-8787
Ron Palmer, 486-2783

12. Check Writer

Write a program that displays a simulated paycheck. The program should ask the user to
enter the date, the payee’s name, and the amount of the check. It should then display a
simulated check with the dollar amount spelled out, as shown here:

 Date: 12/24/2012

Pay to the Order of: John Phillips $1920.85

One thousand nine hundred twenty and 85 cents

You may assume the amount is no greater than $10000. Be sure to format the numeric
value of the check in fixed-point notation with two decimal places of precision. Be sure the
decimal place always displays, even when the number is zero or has no fractional part. Use
either C-strings or string class objects in this program.

836 Chapter 12 More on C-Strings and the string Class

13. Digit Sums of Squares and Cubes

If you add up all the digits in 468, you get 4 + 6 + 8 = 18. The square and cube of 468 are
219024 and 102503232, respectively. Interestingly, if you add up the digits of the square
or cube, you get 18 again. Are there other integers that share this property? Write a
program that lists all positive integers k less than 1000 such that the three numbers k, k2,
and k3 have digits that add up to the same number.

14. Dollar Amount Formatter

Modify Program 12-17 by adding a function

string dollarFormat(double amount)

that takes a dollar amount in numeric form and returns a string formatted in currency
notation, with a $ sign and commas inserted at the appropriate locations. Test your
function using suitable inputs.

15. Word Separator

Write a program that accepts as input a sentence in which all of the words are run together, but
the first character of each word is uppercase. Convert the sentence to a string in which the words
are separated by spaces and only the first word starts with an uppercase letter. For example the
string “StopAndSmellTheRoses.” would be converted to “Stop and smell the roses.”

16. Pig Latin

Write a program that reads a sentence as input and converts each word to “Pig Latin.” In
one version, to convert a word to Pig Latin you remove the first letter and place that letter
at the end of the word. Then you append the string “ay” to the word. Here is an example:

English: I SLEPT MOST OF THE NIGHT

Pig Latin: IAY LEPTSAY OSTMAY FOAY HETAY IGHTNAY

17. I before e except after c

A friend of yours who is an educator is conducting research into the effectiveness of teaching
the spelling rule “I before e except after c” to students. She wishes to analyze writing samples
from two groups of students, only one of which was taught the rule. Write a program that will
take a file containing a writing sample and print a list of all words in the file that contain at
least one of the strings “ie” or “ei”. Write two versions of the program: one version should use
the strstr function on C-strings, the other version should use only string class methods.

18. User Name

Write a program that queries its environment, determines the user’s login name, and then greets
the user by name. For example, if the login name of the user is gcm, then the program prints

Hello, gcm

when it is executed.

837

C
H

A
P

T
E

R

13 Advanced File
and I/O Operations

13.1 Input and Output Streams

CONCEPT: ifstream objects are used for file input, ofstream objects are used for file
output, and fstream objects are used for both input and output.

An input stream is a sequence from which data can be read; an output stream is a sequence
to which data can be written; and an input-output stream is a sequence of data that allows
both reading and writing. The keyboard is the standard example of an input stream, and
the monitor screen is the standard example of an output stream.

C++ provides various classes for working with streams. These include istream and
ostream for standard input and output; ifstream, ofstream, and fstream for file IO;
and istringstream and ostringstream for reading and writing strings. To read from
the keyboard, you use cin, which is a predefined object of the istream class. To write to
the screen, you use cout, a predefined object of the ostream class. In Chapter 5 you
learned how to use an ifstream object to read a file and how to use an ofstream object
to write to a disk file. In Chapter 12, you learned how to read and write in-memory string
objects through the use of istringstream and ostringstream objects. In this chapter we
will discuss the fstream class, which allows a file to be used for both input and output. We
will also cover additional material related to output formatting, error testing, binary files,
random access files, and data serialization.

TOPICS

13.1 Input and Output Streams
13.2 More Detailed Error Testing
13.3 Member Functions for Reading and

Writing Files
13.4 Binary Files
13.5 Creating Records with Structures
13.6 Random-Access Files

13.7 Opening a File for Both Input
and Output

13.8 Online Friendship Connections Case
Study: Object Serialization

13.9 Tying It All Together: File Merging and
Color-Coded HTML

838 Chapter 13 Advanced File and I/O Operations

The File Stream Classes
The ifstream, ofstream, and fstream classes are very similar. All three have a default
constructor that allows instances of the class to be created:

ifstream inFile;
ofstream outFile;
fstream inOutFile;

These classes have an open member function that is used to open a disk file and
connect it to the stream object so the program can read or write the file. They also have
a close member function that is used to sever the connection when the program is
done using the file:

void open(const char *filename);
void close();

Open files use resources in the operating system, so it is important to close files as soon
as you are done using them. Also, data that your program writes to the file stream object
is often buffered within the operating system and is not immediately written to disk.
When you close the file, the operating system writes this data to the disk in a process
known as flushing the buffer. Closing the file will ensure that buffered data is not lost in
the event of a power failure or some other circumstances that causes your program to
terminate abnormally.

The fstream class combines in itself the capabilities of both ifstream and ofstream.
Therefore, fstream has every member function and operator possessed by those two
classes. In particular, you can use the extraction operator >> and the insertion operator <<
to read and write data on fstream objects.

By default, ifstream objects open files for input, ofstream objects open files for output,
and fstream objects open files for both input and output. Program 13-1 gives a simple
(albeit not very useful) example of using an fstream object to open a file for both reading
and writing. It opens the file, reads and prints its contents, and then writes the word
“Hello” at the end of the file. If you start with an empty file named “inout.txt,” repeated
execution of this program will result in the word “Hello” being added to the file each time
the program is run.

Program 13-1

1 //This program demonstrates reading and writing
2 //a file through an fstream object.
3 #include <iostream>
4 #include <fstream>
5 #include <string>
6 using namespace std;
7
8 int main()
9 {
10 fstream inOutFile;
11 string word; // Used to read a word from the file

(program continues)

Input and Output Streams 839

In Program 13-1, the loop of lines 22–25 terminates only when the extraction operator
fails to read the next word at the end of the file. File stream objects set a number of error
flags whenever an input or output operation fails. Once an error flag is set, the stream will
not allow further operations to be performed on it until the error flags have been cleared.
The call to the clear function in line 28 clears these flags, allowing the statements in lines
31 and 32 to succeed.

File Open Modes
The open member function has an optional second parameter that specifies a file
open mode:

void open(const char *filename, ios::openmode mode);

A file open mode is a setting that determines how the file can be used. The type openmode
is defined in a stream-related class called ios. Values of this type are static constant
members of the ios class. Each such value represents a flag or an option that can be set
when the file is opened. Table 13-1 lists the mode flags together with their meanings.

12
13 // Open the file
14 inOutFile.open("inout.txt");
15 if (inOutFile.fail())
16 {
17 cout << "The file was not found." << endl;
18 return 1;
19 }
20
21 // Read and print every word already in the file
22 while (inOutFile >> word)
23 {
24 cout << word << endl;
25 }
26
27 // Clear end of file flag to allow additional file operations
28 inOutFile.clear();
29
30 // Write a word to the file and close the file
31 inOutFile << "Hello" << endl;
32 inOutFile.close();
33
34 return 0;
35 }

Program Output (Sample)
Hello
Hello
Hello

Program 13-1 (continued)

840 Chapter 13 Advanced File and I/O Operations

The binary or operator | can be used to combine the effect of two or more flags. For
example, the open mode

ios::in | ios::out | ios::ate

causes the file to be opened for both input and output, with output initially taking place at
the end of the file. Here is an example of opening three files for input, output, and input-
output using fstream:

fstream inFile, outFile, inOutFile;
inFile.open("in.txt", ios::in);
outFile.open("out.txt", ios::out);
outFile.open("inout.txt", ios::in | ios::out);

Using Constructors to Open Files
Each of the three stream classes ifstream, ofstream, and fstream has a constructor that
takes the name of a file and a file mode and opens the file when the object is created. This
allows you to create the stream object and open the file in a single statement:

fstream outFile("inout.txt", ios::in | ios::out);

Output Formatting and I/O Manipulators
The I/O manipulators you learned about in Chapter 3 can be used on stream objects. In
particular, the manipulators

Table 13-1 File Mode Flags

File Mode Flag Meaning

ios::app Append: output will always take place at the
end of the file.

ios::ate At end: output will initially take place at the end
of the file.

ios::binary Binary: data read or written to the file is in
binary form.

ios::in Input: the file will allow input operations. If the
file does not exist, the open will fail.

ios::out Output: the file will allow output operations. If
the file does not exist, an empty file of the given
name is created.

ios::trunc Truncate: if the file being opened exists, its
contents are discarded and its size is truncated
to zero.

NOTE: When used by itself, the ios::out flag causes the contents of an existing file to
be deleted, the assumption being that the programmer wants to overwrite the file. If
ios::out is combined with ios::app, the contents of the existing file are preserved,
and all new data is appended to the end of the file.

Input and Output Streams 841

setw(n) fixed
showpoint setprecision(n)
left right

can be used on fstream, ofstream, and ostringstream objects. To illustrate, consider
the need for a function that takes an argument of type double representing the price of an
item in dollars and returns a string that starts with the dollar sign $ and represents the
value of the price to two decimal places. For example, an amount of 12.5 passed as
parameter would result in the function returning the string $12.50. We can easily write
this function using our knowledge of ostringstream gained from Chapter 12:

string dollarFormat(double amount)
{
 // Create ostringstream object
 ostringstream outStr;

 // Set up format information and write to outStr.
 outStr << showpoint << fixed << setprecision(2);
 outStr << '$' << amount;

 // Extract and return the string inside outStr.
 return outStr.str();
}

Program 13-2 uses the dollarFormat function to write a neatly formatted table of prices.
The prices are given in a two dimensional array. The program formats each price and
prints a table of all prices, with each price being right-justified in a column of width 10.

Program 13-2

1 // This program demonstrates the use of an ostringstream
2 // object to do sophisticated formatting.
3 #include <iostream>
4 #include <iomanip>
5 #include <sstream>
6 using namespace std;
7
8 string dollarFormat(double); // Function Prototype
9
10 int main()
11 {
12 const int ROWS = 3, COLS = 2;
13 double amount[ROWS][COLS] = {184.45, 7, 59.13,
14 64.32, 7.29, 1289};
15
16 // Format table of dollar amounts right justified
17 // in columns of width 10
18 cout << right;
19 for (int row = 0; row< ROWS; row++)
20 {
21 for (int column = 0; column < COLS; column++)
22 {
23 cout << setw(10)
24 << dollarFormat(amount[row][column]);

(program continues)

842 Chapter 13 Advanced File and I/O Operations

Table 13-2 shows a list of I/O manipulators that can be used with C++ stream objects and
gives a brief description of their meanings.

25 }
26 cout << endl;
27 }
28 return 0;
29 }
30
31 //**
32 // formats a dollar amount *
33 //**
34 string dollarFormat(double amount)
35 {
36 // Create ostringstream object
37 ostringstream outStr;
38
39 // Set up format information and write to outStr.
40 outStr << showpoint << fixed << setprecision(2);
41 outStr << '$' << amount;
42
43 // Extract and return the string inside outStr.
44 return outStr.str();
45 }

Program Output
 $184.45 $7.00
 $59.13 $64.32
 $7.29 $1289.00

Table 13-2 I/O Manipulators

Manipulator Description

dec Displays subsequent numbers in decimal format.

endl Writes new line and flushes output stream.

fixed Uses fixed notation for floating-point numbers.

flush Flushes output stream.

hex Inputs or outputs in hexadecimal.

left Left justifies output.

oct Inputs or outputs in octal.

right Right justifies output.

scientific Uses scientific notation for floating-point numbers.

setfill(ch) Makes ch the fill character.

setprecision(n) Sets floating-point precision to n.

setw(n) Set width of output field to n.
(table continues)

Program 13-2 (continued)

Input and Output Streams 843

You have already encountered some of these manipulators in Chapter 3. The oct, dec, and
hex manipulators can be used with both input and output streams; they allow numbers to be
read or written using the octal, decimal, or hexadecimal number systems. Program 13-3
demonstrates how to use cin and cout to read and write decimal, hexadecimal, and octal
values.

showbase Show the base when printing numbers.

noshowbase Do not show the base when printing numbers.

showpoint Forces decimal point and trailing zeros to be displayed.

noshowpoint Prints no trailing zeros and drops decimal point if possible.

showpos Prints a + with nonnegative numbers.

noshowpos Prints no + with nonnegative numbers.

Program 13-3

1 //This program demonstrates input and output of numbers
2 //using the octal, decimal, and hexadecimal number systems.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int a, b;
10 // Read two decimals and print hex and octal equivalents
11 cout << "Enter two decimal numbers: ";
12 cin >> a >> b;
13 cout << "The numbers in decimal: " << a << '\t' << b << endl;
14 cout << "The numbers in hexadecimal: " << hex
15 << showbase << a << '\t' << b << endl;
16 cout << "The numbers in octal: " << oct
17 << a << '\t' << b << endl;
18
19 // Read some hexadecimals and print their decimal equivalents
20 cout << "Enter two hexadecimal numbers: ";
21 cin >> hex >> a >> b;
22 cout << "You entered decimal " << dec
23 << a << '\t' << b << endl;
24
25 // Read some octals and print their decimal equivalents
26 cout << "Enter two octal numbers: ";
27 cin >> oct >> a >> b;
28 cout << "You entered decimal " << dec
29 << a << '\t' << b << endl;
30
31 return 0;
32 }

(program continues)

Table 13-2 I/O Manipulators (continued)

Manipulator Description

844 Chapter 13 Advanced File and I/O Operations

Recall that when a program writes data to an open file, the data does not go directly to
the file. Instead, the data is stored in an output buffer associated with the file and is
later transferred to the file in a process known as flushing the buffer. Usually the buffer
is only flushed if it is full or when the file is closed. The endl and flush manipulators
allow the programmer to flush the buffer at any time, hence forcing transfer of
buffered data to the file. For example, the following statement flushes the buffer of an
output stream:

outFile << flush;

The scientific manipulator causes floating-point numbers to be written out in scientific
notation, that is, in the form d.dddEdd. The fill character is the character that is written
when a printed number does not fill the entire field it is printed in. By default, the fill
character is a blank. The programmer can specify a different fill character by using the
setfill manipulator. For example,

outFile << setfill('%');

will make the percent character (%) the fill character.

Checkpoint

13.1 Name three different C++ classes that can be used to create input streams.

13.2 Name three different C++ classes that can be used to create output streams.

13.3 What is the purpose of the second parameter to the file stream member function
open?

13.4 Why is it important for a program to close an open file as soon as it is done
using the file? Give two reasons.

13.5 Which file open flag causes all output to take place at the end of the file?

13.6 Which file open flag causes the contents of an existing file to be discarded and
the file size reduced to zero?

13.7 What happens if ios::out is used by itself to open a file that does not exist?

13.8 What happens if ios::out is used by itself to open an existing file?

13.9 Write a sequence of C++ statements that reads in two numbers entered in octal
format and separated by whitespace and prints their sum in octal.

Program Output With Sample Input Shown in Bold
Enter two decimal numbers: 23 45[Enter]
The numbers in decimal: 23 45
The numbers in hexadecimal: 0x17 0x2d
The numbers in octal: 027 055
Enter two hexadecimal numbers: 17 2d[Enter]
You entered decimal 23 45
Enter two octal numbers: 27 55
You entered decimal 23 45

Program 13-3 (continued)

More Detailed Error Testing 845

13.10 Write a sequence of C++ statements that reads in two hexadecimal numbers and
prints the sum of the numbers twice, once in decimal and the second time in
hexadecimal.

13.11 Show how to use the constructor of the fstream class to open a file for input
without having to call the open function.

13.12 Consider two parallel arrays of the same size, one containing strings and the second
containing integers. Write C++ statements to output the information in the two arrays
as a table of names and numbers. The first column of the table will contain the names
left-justified in a field of 20, and the second column will contain the integers right-
justified in a field of 10. Here is an example of the data when the size of the array is 2.

 const int SIZE = 2;
 string names[SIZE] = {"Catherine", "Bill"};
 int numbers[SIZE] = {12, 2005};

13.2 More Detailed Error Testing

CONCEPT: All stream objects have error state bits that indicate the condition of the
stream.

All stream objects contain a set of bits that act as flags. These flags indicate the current
state of the stream. Table 13-3 lists these bits.

These bits can be tested by the member functions listed in Table 13-4. One of the functions
listed in the table, clear(), can be used to set a status bit.

Table 13-3 Files Condition Bit Flags

Bit Description

ios::eofbit Set when the end of an input stream is encountered.

ios::failbit Set when an attempted operation has failed.

ios::hardfail Set when an unrecoverable error has occurred.

ios::badbit Set when an invalid operation has been attempted.

ios::goodbit Set when all the flags above are not set. Indicates the stream is in good
condition.

Table 13-4 Member Functions That Report on the Bit Flags

Function Description

eof() Returns true (nonzero) if the eofbit flag is set; otherwise returns false.

fail() Returns true (nonzero) if the failbit or hardfail flags are set; otherwise
returns false.

bad() Returns true (nonzero) if the badbit flag is set; otherwise returns false.

good() Returns true (nonzero) if the goodbit flag is set; otherwise returns false.

clear() When called with no arguments, clears all the flags listed above. Can also be
called with a specific flag as an argument.

846 Chapter 13 Advanced File and I/O Operations

The function showState, shown here, accepts a file stream reference as its argument. It
shows the state of the file by displaying the return values of the eof(), fail(), bad(), and
good() member functions:

void showState(fstream &file)
{

cout << "File Status:\n";
cout << " eof bit: " << file.eof() << endl;
cout << " fail bit: " << file.fail() << endl;
cout << " bad bit: " << file.bad() << endl;
cout << " good bit: " << file.good() << endl;
file.clear(); // Clear any bad bits

}

Program 13-4 uses the showState function to display testFile’s status after various
operations. First, the file is created and the integer value 10 is stored in it. The file is then
closed and reopened for input. The integer is read from the file, and then a second read
operation is performed. Since there is only one item in the file, the second read operation
will result in an error.

Program 13-4

1 // This program demonstrates the return value of
2 // the stream object error testing member functions.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 // Function prototype
8 void showState(fstream &);
9
10 int main()
11 {
12 // Open a file, write a number, and show file status
13 fstream testFile("stuff.dat", ios::out);
14 if (testFile.fail())
15 {
16 cout << "cannot open the file.\n";
17 return 0;
18 }
19 int num = 10;
20 cout << "Writing to the file.\n";
21 testFile << num;
22 showState(testFile);
23 testFile.close();
24
25 // Open the same file, read the number, show status
26 testFile.open("stuff.dat", ios::in);
27 if (testFile.fail())
28 {
29 cout << "cannot open the file.\n";
30 return 0 ;
31 }

(program continues)

More Detailed Error Testing 847

32 cout << "Reading from the file.\n";
33 testFile >> num;
34 showState(testFile);
35
36 // Attempt an invalid read, and show status
37 cout << "Forcing a bad read operation.\n";
38 testFile >> num;
39 showState(testFile);
40
41 // Close file and quit
42 testFile.close();
43 return 0;
44 }
45
46 //***
47 // Definition of function showState. This function uses *
48 // an fstream reference as its parameter. The return *
49 // values of the eof(), fail(), bad(), and good() member *
50 // functions is displayed. The clear() function is called *
51 // before the function returns. *
52 //***
53 void showState(fstream &file)
54 {
55 cout << "File Status:\n";
56 cout << " eof bit: " << file.eof() << endl;
57 cout << " fail bit: " << file.fail() << endl;
58 cout << " bad bit: " << file.bad() << endl;
59 cout << " good bit: " << file.good() << endl;
60 file.clear(); // Clear any bad bits.
61 }

Program Screen Output
Writing to the file.
File Status:
 eof bit: 0
 fail bit: 0
 bad bit: 0
 good bit: 1
Reading from the file.
File Status:
 eof bit: 1
 fail bit: 0
 bad bit: 0
 good bit: 0
Forcing a bad read operation.
File Status:
 eof bit: 1
 fail bit: 1
 bad bit: 0
 good bit: 0

Program 13-4 (continued)

848 Chapter 13 Advanced File and I/O Operations

For the purpose of error testing, a stream object behaves as a Boolean expression that is
true when no error flags are set and is false otherwise. To check whether the last operation
performed on a stream dataFile succeeded, you can write

if (dataFile)
{
 cout << "Success!";
}

To check whether the operation failed due to some error, you can call the fail() member
function, or alternatively, you can write

if (!dataFile)
{
 cout << "Failure!";
}

13.3 Member Functions for Reading and Writing Files

CONCEPT: File stream objects have member functions for more specialized file reading
and writing.

If whitespace characters are part of the information in a file, a problem arises when the file
is read by the >> operator. Since the operator considers whitespace characters as delimiters,
it does not read them. For example, consider the file murphy.txt that contains the
following information:

Jayne Murphy
47 Jones Circle
Almond, NC 28702

Figure 13-1 shows the way the information is recorded in the file.

The problem that arises from the use of the >> operator is evident in the output of
Program 13-5.

Figure 13-1

J a y n e u r p h y \n 4 7M

J o n e s C i r c l e \n A

l m o n d , N C 2 8 7 0

2 \n <EOF>

Member Functions for Reading and Writing Files 849

The getline function
One way to get around the problem in Program 13-5 is to use a function that reads an
entire line of text. There is a global function that is part of the string library that you can
use for this purpose:

istream& getline (istream& is, string& str, char delim = ‘\n’);

This function reads a line of text from a stream is and stores it into a string variable
str. The function has an optional parameter delim that marks the end of the line to be

Program 13-5

1 // This program shows the behavior of the >> operator
2 // on files that contain spaces as part of the information.
3 // The program reads the contents of the file and transfers
4 // those contents to standard output.
5 #include <iostream>
6 #include <string>
7 #include <fstream>
8 using namespace std;
9
10 int main()
11 {
12 // variables needed to read file
13 fstream file;
14 string input;
15
16 // Open the file
17 file.open("murphy.txt", ios::in);
18 if (!file)
19 {
20 cout << "File open error!" << endl;
21 return 0;
22 }
23
24 // Read the file and echo to screen
25 file >> input;
26 while (!file.fail())
27 {
28 cout << input;
29 file >> input;
30 }
31
32 // Close the file
33 file.close();
34 return 0;
35 }

Program Screen Output
JayneMurphy47JonesCircleAlmond,NC28702

850 Chapter 13 Advanced File and I/O Operations

read. The delimiting character is removed from the stream and discarded. If getline
is called without the third parameter, the delimiter is assumed to be the end of line
character ‘\n’.

The first parameter, is, must be an object of the class istream. It can also be any object of
the classes istringstream, ifstream, or fstream (if an fstream object is passed, it must
have been opened for input). The value returned is a reference to the input stream that was
just read. This allows the return value to be tested to ascertain the success or failure of the
call as in this code fragment:

string str;
if (getline(inputstream, str))
{
 // A line was read and stored in str
 cout << str << endl;
}
else
{
 // An error occurred or we reached end of file
}

Alternatively, you can ignore the return value and test the stream in a statement after the
call:

string str;
getline(inputstream, str);
if (inputstream)
{
 // A line was read and stored in str
 cout << str << endl;
}
else
{
 // An error occurred or we reached end of file
}

Program 13-6 is a modification of Program 13-5 that uses the getline function to read
the file line by line, thereby preserving the whitespace between words.

Program 13-6

1 // This program uses the getline function to read
2 // a line of information from the file.
3 #include <iostream>
4 #include <string>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 // Variables needed for file input

(program continues)

Member Functions for Reading and Writing Files 851

Because the third argument of the getline function was left out in Program 13-6, its
default value is \n. Sometimes you might want to specify another delimiter. For example,
consider a file that contains multiple names and addresses internally formatted in the
following manner:

Contents of addresses.txt
Jayne Murphy$47 Jones Circle$Almond, NC 28702\n$Bobbie Smith$
217 Halifax Drive$Canton, NC 28716\n$Bill Hammet$PO Box 121$
Springfield, NC 28357\n$

Think of this file as consisting of three records. A record is a complete set of information
about a single item. Also, the records in the file are made of three fields. The first field is the
person’s name. The second field is the person’s street address or PO box number. The third
field contains the person’s city, state, and ZIP code. Notice that each field ends with a $
character, and each record ends with a \n character. Program 13-7 demonstrates how a
getline function can be used to detect the $ characters.

11 fstream nameFile;
12 string input;
13
14 // Open the file
15 nameFile.open("murphy.txt", ios::in);
16 if (!nameFile)
17 {
18 cout << "File open error!" << endl;
19 return 0;
20 }
21
22 // Read first line of the file
23 getline(nameFile, input);
24 while (nameFile)
25 {
26 // If successful, print line and read another line
27 cout << input << endl;
28 getline(nameFile, input);
29 }
30
31 // Close the file
32 nameFile.close();
33 return 0;
34 }

Program Screen Output
Jayne Murphy
47 Jones Circle
Almond, NC 28702

Program 13-6 (continued)

852 Chapter 13 Advanced File and I/O Operations

Notice that the \n characters, which mark the end of each record, are also part of the
output. They cause an extra blank line to be printed on the screen, separating the
records.

Program 13-7

1 // This file demonstrates the getline function with a
2 // user-specified delimiter.
3 #include <iostream>
4 #include <string>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 // Variable needed to read file
11 string input;
12
13 // Open the file
14 fstream dataFile("addresses.txt", ios::in);
15 if (!dataFile)
16 {
17 cout << "Error opening file.";
18 return 0;
19 }
20
21 // Read lines terminated by '$' sign and output
22 getline(dataFile, input, '$');
23 while (!dataFile.fail())
24 {
25 cout << input << endl;
26 getline(dataFile, input, '$');
27 }
28
29 // Close the file.
30 dataFile.close();
31 return 0;
32 }

Program Output
Jayne Murphy
47 Jones Circle
Almond, NC 28702

Bobbie Smith
217 Halifax Drive
Canton, NC 28716

Bill Hammet
PO Box 121
Springfield, NC 28357

Member Functions for Reading and Writing Files 853

The get Family of Member Functions
Each of the input classes ifstream , fstream , and istringstream has a family of get
member functions that can be used to read single characters:

int get();
istream& get(char& c);

The first version reads a single character. If successful, returns an integer code
representing the character that was read. If unsuccessful, it sets the error codes on
the stream and returns the special value EOF. The following program uses the get
function to copy a file to the screen. The loop of lines 27–32 terminates when get()
returns EOF.

NOTE: When using a printable character such as $ to delimit information in a file, be
sure to select a character that will not actually appear in the information itself. Since it’s
doubtful that anyone’s name or address contains a $ character, it’s an acceptable
delimiter. If the file contained dollar amounts, however, another delimiter would have
been chosen.

Program 13-8

1 // This program demonstrates the use of the get member
2 // functions of the istream class
3 #include <iostream>
4 #include <string>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 // Variables needed to read file one character at a time
11 string fileName;
12 fstream file;
13 char ch; // character read from the file
14
15 // Get file name and open file
16 cout << "Enter a file name: ";
17 cin >> fileName;
18
19 file.open(fileName.c_str(), ios::in);
20 if (!file)
21 {
22 cout << fileName << " could not be opened.\n";
23 return 1;
24 }
25

(program continues)

VideoNote

The get
Family of
Member
Functions

854 Chapter 13 Advanced File and I/O Operations

Program 13-8 will display the contents of any file. Because the get function does not skip
whitespaces, all the characters will be shown exactly as they appear in the file.

The second version of get takes a reference to a character variable to read into and returns
the stream that was read from. If you use this version of the function, you must test the
stream to determine whether the operation was successful. The behavior of Program 13-8
will not change if you replace lines 27–32 with following code:

The peek Member Function
The peek member function is similar to get, but there is an important difference. When
the get function is called, it returns the next character available from the input stream and
removes that character from the stream. In contrast, the peek function returns a copy of
the next character available without removing it from the stream. Thus get()reads a
character from the file, but peek() just “looks” at the next character without actually
reading it. To see the difference, suppose that a newly opened file contains the string
"abc". Then the sequence of statements

char ch = inFile.get(); // Read a character
cout << ch; // Output the character
ch = inFile.get(); // Read another character
cout << ch; // Output the character

will print the two characters "ab" on the screen. However, the statements

char ch = inFile.peek(); // Return the next character without reading it
cout << ch; // Output the character
ch = inFile.get(); // Now read the next character
cout << ch; // Output the character

will print the two characters "aa" on the screen.

26 // Read file one character at a time and echo to screen
27 ch = file.get();
28 while (ch != EOF)
29 {
30 cout << ch;
31 ch = file.get();
32 }
33
34 // Close file
35 file.close();
36 return 0;
37 }

27 file.get(ch);
28 while (!file.fail())
29 {
30 cout << ch;
31 file.get(ch);
32 }

Program 13-8 (continued)

Member Functions for Reading and Writing Files 855

The peek function is useful when you need to know what kind of data you are about to
read before you actually read it, so you can decide on the best input method to use. If the
data is numeric, it is best read with the stream extraction operator >>, but if the data is a
non-numeric sequence of characters, then it should be read with get or getline. The
following program uses the peek function in making a modified copy of a file by
incrementing the value of each integer number appearing in the file by one.

Program 13-9

1 // This program demonstrates the peek member function.
2 #include <iostream>
3 #include <string>
4 #include <fstream>
5 using namespace std;
6
7 int main()
8 {
9 // Variables needed to read characters and numbers
10 char ch;
11 int number;
12
13 // Variables for file handling
14 string fileName;
15 fstream inFile, outFile;
16
17 // Open the file to be modified
18 cout << "Enter a file name: ";
19 cin >> fileName;
20 inFile.open(fileName.c_str(), ios::in);
21 if (!inFile)
22 {
23 cout << "Cannot open file " << fileName;
24 return 1;
25 }
26 // Open the file to receive the modified copy
27 outFile.open("modified.txt", ios::out);
28 if (!outFile)
29 {
30 cout << "Cannot open the output file.";
31 return 2;
32 }
33 // Copy the input file one character at a time
34 // except numbers in the input file must have 1
35 // added to them
36
37 // Peek at the first character
38 ch = inFile.peek();
39 while (ch != EOF)
40 {
41 // Examine current character
42 if (isdigit(ch))
43 {

(program continues)

856 Chapter 13 Advanced File and I/O Operations

The program cannot tell beforehand whether the next character to be read is a digit that
starts a number (in which case the entire number should be read using the stream extraction
operator >>) or just an ordinary nondigit character (in which case the character should be
read using a call to the get() member function). The program therefore uses peek()to
examine characters without actually reading them (lines 38 and 55). If a character is a
digit, the extraction operator is called to read the number that starts with that character
(lines 44–46). Otherwise, the character is read using a call to get()(lines 50–52) and
copied to the target file.

The put Member Function
Each of the output stream classes ofstream, fstream, and ostringstream has a member
function

ostream& put(int c);

that takes the integer code of a character and writes the corresponding character to the
stream. You can think of put as the output stream counterpart to the input stream get
functions. As an example, the following simple program prints AB on the screen.

44 // Numbers should be read with >>
45 inFile >> number;
46 outFile << number + 1;
47 }
48 else
49 {
50 // Just a simple character, read it and copy it
51 ch = inFile.get();
52 outFile << ch;
53 }
54 // Peek at the next character from input file
55 ch = inFile.peek();
56 }
57 // Close the files
58 inFile.close();
59 outFile.close();
60 return 0;
61 }

Sample Input File
Amy is 23 years old. Robert is 50 years old. The
difference between their ages is 27 years. Amy was born
in 1986.

Program Ouput for the Given Sample Input File
Amy is 24 years old. Robert is 51 years old. The
difference between their ages is 28 years. Amy was born
in 1987.

Program 13-9 (continued)

Member Functions for Reading and Writing Files 857

Rewinding a File
Many times it is useful to open a file, process all the data in it, rewind the file back to the
beginning, and process it again, perhaps in a slightly different fashion. For example, a
user may ask the program to search a database for all records of a certain kind, and
when those are found, the user may want to search the database for all records of some
other kind.

File stream classes offer a number of different member functions that can be used to move
around in a file. One such method is the

seekg(offset, place);

member function of the input stream classes (the file “seeks” to a certain place in the file;
the ‘g’ is for “get” and denotes that the function works on an input stream, because we
“get” data from an input stream). The new location in the file to seek to is given by the two
parameters: the new location is at an offset of offset bytes from the starting point given
by place. The offset parameter is a long integer, while place can be one of three values
defined in the ios class. The starting place may be the beginning of the file, the current
place in the file, or the end of the file. These places are indicated by the constants ios:beg,
ios::cur, and ios::end, respectively.

More information on moving around in files will be given in a later section. Here we are
interested in moving to the beginning of the file. To move to the beginning of a file, use
the call

seekg(0L, ios::beg);

to move 0 bytes relative to the beginning of the file.

Program 13-10 illustrates how to rewind a file. It creates a file, writes some text to it, and
closes the file. The file is then opened for input, read once to the end, rewound, and then
read again.

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 char ch = 'A';
6 cout.put(ch);
7 cout.put(ch + 1);
8 }

NOTE: If you are already at the end of the file, you must clear the end of file flag before
calling this function. Thus, to move to the beginning of a file stream dataIn that you
have just read to the end, you need the two statements

dataIn.clear();
dataIn.seekg(0L, ios::beg);

VideoNote

Rewinding a
File

858 Chapter 13 Advanced File and I/O Operations

Program 13-10

1 // Program shows how to rewind a file. It writes a
2 // text file and opens it for reading, then rewinds
3 // it to the beginning and reads it again.
4 #include <iostream>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 // Variables needed to read or write file one
11 // character at a time
12 char ch;
13 fstream ioFile("rewind.txt", ios::out);
14
15 // Open file
16 if (!ioFile)
17 {
18 cout << "Error in trying to create file";
19 return 0;
20 }
21
22 // Write to file and close
23 ioFile << "All good dogs " << endl
24 << "growl, bark, and eat." << endl;
25 ioFile.close();
26
27 // Open the file
28 ioFile.open("rewind.txt", ios::in);
29 if (!ioFile)
30 {
31 cout << "Error in trying to open file";
32 return 0;
33 }
34
35 // Read the file and echo to screen
36 ioFile.get(ch);
37 while (!ioFile.fail())
38 {
39 cout.put(ch);
40 ioFile.get(ch);
41 }
42
43 // Rewind the file
44 ioFile.clear();
45 ioFile.seekg(0, ios::beg);
46
47 // Read file again and echo to screen
48 ioFile.get(ch);
49 while (!ioFile.fail())
50 {
51 cout.put(ch);
52 ioFile.get(ch);

(program continues)

Member Functions for Reading and Writing Files 859

Checkpoint

13.13 Make the required changes to the following program so it writes its output to
the file output.txt instead of to the screen.

#include <iostream>
using namespace std;

int main()
{

cout << "Today is the first day\n";
cout << "of the rest of your life.\n";
return 0;

}

13.14 Describe the purpose of the eof member function.

13.15 Assume the file input.txt contains the following characters:

What will the following program display on the screen?

#include <iostream>
#include <string>
#include <fstream>
using namespace std;

int main()
{

fstream inFile("input.txt", ios::in);
string item;
inFile >> item;
while (!inFile.fail())
{

cout << item << endl;
inFile >> item;

}
return 0;

}

53 }
54 return 0;
55 }

Program Output
All good dogs
growl, bark, and eat.
All good dogs
growl, bark, and eat.

Program 13-10 (continued)

R u n S p t r u n \n S eo

e S p o t r u n \n <EOF>

860 Chapter 13 Advanced File and I/O Operations

13.16 Describe the difference between reading a file with the >> operator and with the
getline function.

13.17 Describe the difference between the getline function and the get member
functions.

13.18 Describe the purpose of the put member function.

13.19 What will be stored in the file out.dat after the following program runs?

#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;

int main()
{

const int SIZE = 5;
ofstream outFile("out.dat");
double nums[] = {100.279, 1.719, 8.602, 7.777, 5.099};
outFile << setprecision(2);
for (int count = 0; count < SIZE; count++)
{

outFile << setw(8) << nums[count];
}
outFile.close();
return 0;

}

13.20 The following program skeleton, when complete, will allow the user to store
names and telephone numbers in a file. Complete the program.

#include <iostream>
#include <fstream>
#include <cctype> // Needed for toupper
using namespace std;

int main()
{

// Define a file stream object here and use
// the file stream to open the file phones.dat
string name, phone;
char add;
cout << "This program allows you to add names and phone\n";
cout << "numbers to phones.dat.\n";
do
{

cout << "Do you wish to add an entry? ";
cin >> add;
if (toupper(add) == 'Y')
{

// Write code here that asks the user for a name
// and phone number, then stores it in the file

}

Binary Files 861

} while (toupper(add) == 'Y');
// Don't forget to close the file.
return 0;

}

13.4 Binary Files

CONCEPT: Values of numeric data types such as int and double must be formatted
for output before being written to text files. No such formatting takes place
when numbers are written to binary files.

A short integer number such as 1297 has both a string representation “1297” (shown in Figure
13-2) and a binary numeric representation (shown in Figure 13-3). Both representations can
be viewed as sequences of bytes. The string representation depends on the type of encoding
used to represent individual characters and is 4 bytes long when the ASCII encoding is
used. The number of bytes in the binary numeric representation depends on the type of the
number and is 2 bytes long when the number is a short int. The conversion of string
representation to numeric is called parsing, while the reverse conversion from numeric to
string is called formatting.

Although people find it natural to work with numbers in their string representation,
computer hardware is better adapted to processing numbers in their binary form. This is
why numbers must be parsed when input from the keyboard or from a file that has been
edited by a person. It is also the reason why numbers must be formatted when being
output in a form that will be viewed by humans. There are times, however, when a
program is outputting data to a file that will only be read by other programs and will never
be viewed by humans. In those cases, formatting of numeric data during output and the
parsing of numbers during input can be omitted. When data is written in unformatted
form, it is said to be written in binary, and files written in this way are called binary files. In
contrast, files that hold formatted data are called text files.

As a convenience to programmers, the stream insertion operator << provides automatic
formatting of numbers during output. Likewise, the stream extraction operator >>
provides parsing of numeric input. For example, consider the following program fragment:

ofstream file("num.dat");
short x = 1297;
file << x;

The last statement writes the contents of x to the file. When the number is written, however,
it is stored as the characters '1', '2', '9', and '7'. This is illustrated in Figure 13-2.

Figure 13-2

'1'

1297 expressed in ASCII

'2' '9' '7' <EOF>

49 50 57 55 <EOF>

862 Chapter 13 Advanced File and I/O Operations

The number 1297 isn’t stored in memory (in the variable x) in the fashion depicted in
Figure 13-2, however. It is formatted as a binary number, occupying 2 bytes on a
typical PC. Figure 13-3 shows how the number is represented in memory, using binary
or hexadecimal.

The unformatted representation of the number shown in Figure 13-3 is the way the “raw”
data is stored in memory. Information can be stored in a file in its pure, binary format. The
first step is to open the file in binary mode. This is accomplished by using the ios::binary
flag. Here is an example:

file.open("stuff.dat", ios::out | ios::binary);

Notice the ios::out and ios::binary flags are joined in the statement with the |
operator. This causes the file to be opened in both output and binary modes.

The write member function of the ostream and ofstream classes can be used to write
binary data to a file or other output stream. To call this function, you specify the address of
a buffer containing an array of bytes to be written and an integer indicating how many
bytes are to be written:

write(addressOfBuffer, numberOfBytes);

The write member function does not distinguish between integers, floats, or some other
type in the buffer; it just treats the buffer as an array of bytes. Because C++ does not
support a pointer to a byte, the prototype of write specifies that the address of a buffer be
a pointer to a char:

write(char *addressOfBuffer, int numberOfBytes);

This means that when we call write, we need to tell the compiler to interpret the
address of the buffer as a pointer to char. We do this by using a special form of type
casting called a reinterpret_cast. Briefly, reinterpret_cast is used to force the
compiler to interpret the bits of one type as if they defined a value of a different type.
Here is an example of using reinterpet_cast to convert a pointer to a double into a
pointer to a char.

double d = 45.9;
double *pd = &d;

Figure 13-3

NOTE: By default, files are opened in text mode.

00000101

1297 as a short integer, in binary

1297 as a short integer, in hexadecimal

00010001

05 11

Binary Files 863

char *pChar;
// convert pointer to double to pointer to char
pChar = reinterpret_cast<char *>(pd);

In general, to convert a value to some target type, use the expression

reinterpret_cast<TargetType>(value);

Here are examples of using write to write a double and an array of double to a file.

double dl = 45.9;
double dArray[3] = { 12.3, 45.8, 19.0 };
ofstream outFile("stuff.dat", ios::binary);
outFile.write(reinterpret_cast<char *>(&dl), sizeof(d1));
outFile.write(reinterpret_cast<char *>(dArray),

sizeOf(dArray));

Notice that in writing a single variable such as dl, we treat the variable itself as the buffer
and pass its address (in this case the address is &dl). However, in using an array as the
buffer, we just pass the array because the array is already an address.

If the data we are writing happens to be character data, there is no need to use the cast.
Here are some examples of writing character data.

char ch = 'X';
char charArray[5] = "Hello";
outFile.write(&ch, sizeof(ch));
outFile.write(charArray, sizeof(charArray));

There is a read member function in the istream and ifstream classes that can be used to
read binary data written by write. It takes as parameters the address of a buffer in which
the bytes read are to be stored, and the number of bytes to read:

read(addressOfBuffer, numberOfBytes)

The address of the buffer must be interpreted as a pointer to char using reinterpret_cast.
You can find out if the specified number of bytes was successfully read by calling the fail()
member function on the input stream.

Program 13-11 demonstrates the use of write and read. The program initializes an
array of integers and then stores the number of array entries in the array using the
statements

int buffer[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int size = sizeof(buffer)/sizeof(buffer[0]);

Recall that the sizeof operator can be used on variables to determine the number of bytes
occupied by the variable. Here sizeof(buffer) returns the number of bytes allocated to
the array by the initialization statement, and sizeof(buffer[0]) returns the number of
bytes occupied by a single array entry. By dividing the former by the latter, we obtain the
number of array entries, which we then store in size.

864 Chapter 13 Advanced File and I/O Operations

Program 13-11

1 //This program uses the write and read functions.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 int main()
7 {
8 // File object used to access file
9 fstream file("nums.dat", ios::out | ios::binary);
10 if (!file)
11 {
12 cout << "Error opening file.";
13 return 0;
14 }
15
16 // Integer data to write to binary file
17 int buffer[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
18 int size = sizeof(buffer)/sizeof(buffer[0]);
19
20 // Write the data and close the file
21 cout << "Now writing the data to the file.\n";
22 file.write(reinterpret_cast<char *>(buffer),
23 sizeof(buffer));
24 file.close();
25
26 // Open the file and use a binary read to read
27 // contents of the file into an array
28 file.open("nums.dat", ios::in);
29 if (!file)
30 {
31 cout << "Error opening file.";
32 return 0;
33 }
34
35 cout << "Now reading the data back into memory.\n";
36 file.read(reinterpret_cast<char *>(buffer),
37 sizeof(buffer));
38
39 // Write out the array entries
40 for (int count = 0; count < size ; count++)
41 cout << buffer[count] << " ";
42
43 // Close the file
44 file.close();
45 return 0;
46 }

Program Screen Output
Now writing the data to the file.
Now reading the data back into memory.
1 2 3 4 5 6 7 8 9 10

Creating Records with Structures 865

13.5 Creating Records with Structures

CONCEPT: Structures may be used to store fixed-length records to a file.

Earlier in this chapter the concept of fields and records was introduced. A field is an
individual piece of information pertaining to a single item. A record is made up of fields
and is a complete set of information about a single item. For example, a set of fields might
be a person’s name, age, address, and phone number. Together, all those fields that pertain
to one person make up a record.

In C++, structures provide a convenient way to organize information into fields and
records. For example, the following structure declaration could be used to create a record
containing information about a person.

const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
struct Info
{

char name[NAME_SIZE];
int age;
char address1[ADDR_SIZE];
char address2[ADDR_SIZE];
char phone[PHONE_SIZE];

};

Besides providing an organizational structure for information, structures also package
information into a single unit. For example, assume the structure variable person is
declared as

Info person;

Once the members (or fields) of person are filled with information, the entire variable may
be written to a file using the write function:

file.write(reinterpret_cast<char*>(&person), sizeof(person));

The first argument is the address of the person variable. The reinterpret_cast<char*>
cast operator is necessary because write expects the first argument to be a pointer to a
char. When you pass the address of anything other than a char to the write function, you
must make it look like a pointer to a char with the cast operator. The second argument is
the sizeof operator. It tells write how many bytes to write to the file. Program 13-12
demonstrates this technique.

Program 13-12 allows you to build a file by filling the members of the person variable, then
writing the variable to the file. To read a C-string into an array, the program first reads a
string object using the getline function, and then uses strcpy to move the C-string into a
character array. Program 13-13 opens the file and reads each record into the person
variable, then displays the information on the screen.

NOTE: Since structures can contain a mixture of data types, you should always use the
ios::binary mode when opening a file to store them.

866 Chapter 13 Advanced File and I/O Operations

Program 13-12

1 //This program demonstrates the use of a structure variable
2 //to store a record of information to a file.
3 #include <iostream>
4 #include <fstream>
5 #include <cstring>
6 #include <cctype> // for toupper
7 using namespace std;
8
9 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
10 struct Info
11 {
12 char name[NAME_SIZE];
13 int age;
14 char address1[ADDR_SIZE];
15 char address2[ADDR_SIZE];
16 char phone[PHONE_SIZE];
17 };
18
19 int main() {
20 Info person; // Store information about a person
21 char response; // User response
22
23 string input; // Used to read strings
24
25 // Create file object and open file
26 fstream people("people.dat", ios::out | ios::binary);
27 if (!people)
28 {
29 cout << "Error opening file. Program aborting.\n";
30 return 0;
31 }
32
33 // Keep getting information from user and writing it
34 // to the file in binary mode
35 do
36 {
37 cout << "Enter person information:\n";
38 cout << "Name: ";
39 getline(cin, input);
40 strcpy(person.name, input.c_str());
41 cout << "Age: ";
42 cin >> person.age;
43 cin.ignore(); // Skip over remaining newline
44 cout << "Address line 1: ";
45 getline(cin, input);
46 strcpy(person.address1, input.c_str());
47 cout << "Address line 2: ";
48 getline(cin, input);
49 strcpy(person.address2, input.c_str());
50 cout << "Phone: ";
51 getline(cin, input);

(program continues)

Creating Records with Structures 867

52 strcpy(person.phone, input.c_str());
53 people.write(reinterpret_cast<char *>(&person),
54 sizeof(person));
55 cout << "Do you want to enter another record? ";
56 cin >> response;
57 cin.ignore();
58 } while (toupper(response) == 'Y');
59
60 // Close file
61 people.close();
62 return 0;
63 }

Program Screen Output with Example Input Shown in Bold
Enter person information:
Name: Charlie Baxter[Enter]
Age: 42[Enter]
Address line 1: 67 Kennedy Bvd.[Enter]
Address line 2: Perth, SC 38754[Enter]
Phone: (803)555-1234[Enter]
Do you want to enter another record? Y[Enter]
Enter person information:
Name: Merideth Murney[Enter]
Age: 22[Enter]
Address line 1: 487 Lindsay Lane[Enter]
Address line 2: Hazelwood, NC 28737[Enter]
Phone: (704)453-9999[Enter]
Do you want to enter another record? N[Enter]

Program 13-13

1 // This program demonstrates the use of a structure
2 // variable to read a record of information from a file.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
8 struct Info
9 {
10 char name[NAME_SIZE];
11 int age;
12 char address1[ADDR_SIZE];
13 char address2[ADDR_SIZE];
14 char phone[PHONE_SIZE];
15 };
16
17 int main()
18 {

(program continues)

Program 13-12 (continued)

868 Chapter 13 Advanced File and I/O Operations

19 Info person; // Store person information
20 char response; // User response
21
22 // Create file object and open file for binary reading
23 fstream people("people.dat", ios::in | ios::binary);
24 if (!people)
25 {
26 cout << "Error opening file. Program aborting.\n";
27 return 0;
28 }
29
30 // Label the output
31 cout << "Here are the people in the file:\n\n";
32
33 // Read one structure at a time and echo to screen
34 people.read(reinterpret_cast<char *>(&person),
35 sizeof (person));
36 while (!people.eof())
37 {
38 cout << "Name: ";
39 cout << person.name << endl;
40 cout << "Age: ";
41 cout << person.age << endl;
42 cout << "Address line 1: ";
43 cout << person.address1 << endl;
44 cout << "Address line 2: ";
45 cout << person.address2 << endl;
46 cout << "Phone: ";
47 cout << person.phone << endl;
48 cout << "\nStrike any key to see the next record.\n";
49 cin.get(response);
50 people.read(reinterpret_cast<char *>(&person),
51 sizeof(person));
52 }
53 cout << "That's all the information in the file!\n";
54 people.close();
55 return 0;
56 }

Program Screen Output (Using the same file created by Program 13-12 as input)
Here are the people in the file:

Name: Charlie Baxter
Age: 42
Address line 1: 67 Kennedy Bvd.
Address line 2: Perth, SC 38754
Phone: (803)555-1234

(program output continues)

Program 13-13 (continued)

Creating Records with Structures 869

Checkpoint

13.21 Write a short program that opens two files data1.txt and data2.txt and then
creates a third file data3.txt that consists of all the characters in data1.txt
followed by all the characters in data2.txt.

13.22 How would the number 479 be stored in a text file? (Show the character and
ASCII code representation.)

13.23 Describe the differences between the write member function and the <<
operator.

13.24 What are the purposes of the two arguments needed for the write member
function?

13.25 What are the purposes of the two arguments needed for the read member
function?

13.26 Describe the relationship between fields and records.

13.27 Assume the following structure declaration, variable, and file stream object
definition exist in a program:

const int NAME_SIZE = 51;
struct Data
{

char customer[NAME_SIZE];
int num;
double balance;

};
Data cust;
fstream file("stuff", ios::out | ios::binary);

Write a statement that uses the write member function to store the contents of cust
in the file.

Strike any key to see the next record.
Name: Merideth Murney
Age: 22
Address line 1: 487 Lindsay Lane
Address line 2: Hazelwood, NC 28737
Phone: (704)453-9999

Strike any key to see the next record.
That's all the information in the file!

NOTE: Structures containing pointers cannot be correctly stored to disk using the
techniques of this section. This is because if the structure is read into memory on a
subsequent run of the program, it cannot be guaranteed that all program variables will
be at the same memory locations. Because string class objects contain implicit
pointers, they cannot be a part of a structure that has to be stored.

Program 13-13 (continued)

870 Chapter 13 Advanced File and I/O Operations

13.6 Random-Access Files

CONCEPT: Random access means nonsequentially accessing information in a file.

All of the programs created so far in this chapter have performed sequential file access.
When a file is opened, the position where reading and/or writing will occur is at the file’s
beginning (unless the ios::app mode is used, which causes data to be written to the end
of the file). If the file is opened for output, bytes are written to it one after the other. If
the file is opened for input, data is read beginning at the first byte. As the reading or
writing continues, the file stream object’s read/write position advances sequentially
through the file’s contents.

The problem with sequential file access is that in order to read a specific byte from the file,
all the bytes that precede it must be read first. For instance, if a program needs information
stored at the 100th byte of a file, it will have to read the first 99 bytes to reach it. If you’ve
ever searched for a song on a cassette tape, you understand sequential access. To find a
song, you have to listen to all the songs that come before it, or fast-forward over them.
There is no way to immediately jump to that particular song.

Although sequential file access is useful in many circumstances, it can slow a program
down tremendously. If the file is very large, locating information buried deep inside it can
take a long time. Alternatively, C++ allows a program to perform random file access. In
random file access, a program may immediately jump to any byte in the file without first
reading the preceding bytes. The difference between sequential and random file access is
like the difference between a cassette tape and a compact disc. When listening to a CD,
there is no need to listen to or fast-forward over unwanted songs. You simply jump to the
track that you want to listen to. This is illustrated in Figure 13-4.

The seekp and seekg Member Functions
File stream objects have two member functions that are used to move the read/write position
to any byte in the file. They are seekp and seekg. The seekp function is used with files
opened for output and seekg is used with files opened for input. (It makes sense if you
remember that “p” stands for “put” and “g” stands for “get.” seekp is used with files that
you put information into, and seekg is used with files you get information out of.)

Figure 13-4

Sequential Access

Random Access

Random-Access Files 871

Here is an example of seekp’s usage:

file.seekp(20L, ios::beg);

The first argument is a long integer representing an offset into the file. This is the number
of the byte you wish to move to. In this example, 20L is used. (Remember, the L suffix
forces the compiler to treat the number as a long integer.) This statement moves the file’s
write position to byte number 20. (All numbering starts at 0, so byte number 20 is actually
the 21st byte.)

The second argument is called the mode flag, and it designates where to calculate the offset
from. The flag ios::beg means the offset is calculated from the beginning of the file.
Alternatively, the offset can be calculated from the end of the file or the current position in
the file. Table 13-5 lists the flags for all three of the random-access modes.

Table 13-6 shows examples of seekp and seekg using the various mode flags.

Notice that some of the examples in Table 13-6 use a negative offset. Negative offsets
result in the read or write position being moved backward in the file, while positive offsets
result in a forward movement.

Assume the file letters.txt contains the following data:

abcdefghijklmnopqrstuvwxyz

Table 13-5 File Positioning Flags

Mode Flag Description

ios::beg The offset is calculated from the beginning of the file.

ios::end The offset is calculated from the end of the file.

ios::cur The offset is calculated from the current position.

Table 13-6 File Seek Operations

Statement How It Affects the Read/Write Position

file.seekp(32L, ios::beg); Sets the write position to the 33rd byte (byte 32) from the
beginning of the file.

file.seekp(-10L, ios::end); Sets the write position to the 11th byte (byte 10) from the
end of the file.

file.seekp(120L, ios::cur); Sets the write position to the 121st byte (byte 120) from
the current position.

file.seekg(2L, ios::beg); Sets the read position to the 3rd byte (byte 2) from the
beginning of the file.

file.seekg(-100L, ios::end); Sets the read position to the 101st byte (byte 100) from the
end of the file.

file.seekg(40L, ios::cur); Sets the read position to the 41st byte (byte 40) from the
current position.

file.seekg(0L, ios::end); Sets the read position to the end of the file.

872 Chapter 13 Advanced File and I/O Operations

Program 13-14 uses the seekg function to jump around to different locations in the file,
retrieving a character after each stop.

Program 13-15 shows another example of the seekg function. It opens the people.dat
file created by Program 13-12. The file contains two records. Program 13-15 displays
record 1 (the second record) first, then displays record 0.

Program 13-14

1 // This program demonstrates the seekg function.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 int main()
7 {
8 // Variable to access file
9 char ch;
10
11 // Open the file for reading
12 fstream file("letters.txt", ios::in);
13 if (!file)
14 {
15 cout << "Error opening file.";
16 return 0;
17 }
18
19 // Get fifth byte from beginning of alphabet file
20 file.seekg(5L, ios::beg);
21 file.get(ch);
22 cout << "Byte 5 from beginning: " << ch << endl;
23
24 // Get tenth byte from end of alphabet file
25 file.seekg(-10L, ios::end);
26 file.get(ch);
27 cout << "Byte 10 from end: " << ch << endl;
28
29 // Go forward three bytes from current position
30 file.seekg(3L, ios::cur);
31 file.get(ch);
32 cout << "Byte 3 from current: " << ch << endl;
33
34 // Close file
35 file.close();
36 return 0;
37 }

Program Screen Output
Byte 5 from beginning: f
Byte 10 from end: q
Byte 3 from current: u

Random-Access Files 873

Program 13-15

1 // This program demonstrates the use of a structure
2 // variable to read a record of information from a file.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
8
9 // Declare a structure for the record
10 struct Info
11 {
12 char name[NAME_SIZE];
13 int age;
14 char address1[ADDR_SIZE];
15 char address2[ADDR_SIZE];
16 char phone[PHONE_SIZE];
17 };
18
19 // Function Prototypes
20 long byteNum(int);
21 void showRec(Info);
22
23 int main()
24 {
25 // Person information
26 Info person;
27
28 // Create file object and open the file
29 fstream people("people.dat", ios::in | ios::binary);
30 if (!people)
31 {
32 cout << "Error opening file. Program aborting.\n";
33 return 0;
34 }
35
36 // Skip forward and read record 1 in the file
37 cout << "Here is record 1:\n";
38 people.seekg(byteNum(1), ios::beg);
39 people.read(reinterpret_cast<char *>(&person),
40 sizeof(person));
41 showRec(person);
42
43 // Skip backwards and read record 0 in the file
44 cout << "\nHere is record 0:\n";
45 people.seekg(byteNum(0), ios::beg);
46 people.read(reinterpret_cast<char *>(&person),
47 sizeof(person));
48 showRec(person);
49
50 // Close the file
51 people.close();

(program continues)

874 Chapter 13 Advanced File and I/O Operations

The program has two important functions other than main. The first, byteNum, takes a
record number as its argument and returns that record’s starting byte. It calculates the
record’s starting byte by multiplying the record number by the size of the Info
structure. This returns the offset of that record from the beginning of the file. The

52 return 0;
53 }
54
55
56 //**
57 // Definition of function byteNum. Accepts an integer as *
58 // its argument. Returns the byte number in the file of the *
59 // record whose number is passed as the argument. *
60 //**
61 long byteNum(int recNum)
62 {
63 return sizeof(Info) * recNum;
64 }
65
66 //**
67 // Definition of function showRec. Accepts an Info structure *
68 // as its argument, and displays the structure's contents. *
69 //**
70 void showRec(Info record)
71 {
72 cout << "Name: ";
73 cout << record.name << endl;
74 cout << "Age: ";
75 cout << record.age << endl;
76 cout << "Address line 1: ";
77 cout << record.address1 << endl;
78 cout << "Address line 2: ";
79 cout << record.address2 << endl;
80 cout << "Phone: ";
81 cout << record.phone << endl;
82 }

Program Screen Output (Using the same file created by Program 13-12 as input)
Here is record 1:
Name: Merideth Murney
Age: 22
Address line 1: 487 Lindsay Lane
Address line 2: Hazelwood, NC 28737
Phone: (704)453-9999

Here is record 0:
Name: Charlie Baxter
Age: 42
Address line 1: 67 Kennedy Bvd.
Address line 2: Perth, SC 38754
Phone: (803)555-1234

Program 13-15 (continued)

Random-Access Files 875

second function, showRec, accepts an Info structure as its argument and displays its
contents on the screen.

The tellp and tellg Member Functions
File stream objects have two more member functions that may be used for random file
access: tellp and tellg. Their purpose is to return, as a long integer, the current byte
number of a file’s read and write position. As you can guess, tellp is used to return the
write position and tellg is used to return the read position. Assuming pos is a long
integer, here is an example of the functions’ usage:

pos = outFile.tellp();
pos = inFile.tellg();

Program 13-16 demonstrates the tellg function. It opens the letters.txt file, which
was also used in Program 13-14. The file contains the following characters:

abcdefghijklmnopqrstuvwxyz

Program 13-16

1 // This program demonstrates the tellg function.
2 #include <iostream>
3 #include <fstream>
4 #include <cctype> // For toupper
5 using namespace std;
6
7 int main()
8 {
9 // Variables used to read the file
10 long offset;
11 char ch;
12 char response; //User response
13
14 // Create the file object and open the file
15 fstream file("letters.txt", ios::in);
16 if (!file)
17 {
18 cout << "Error opening file.";
19 return 0;
20 }
21 // Work with the file
22 do
23 {
24 // Where in the file am I?
25 cout << "Currently at position "
26 << file.tellg() << endl;
27
28 // Get a file offset from the user.
29 cout << "Enter an offset from the "
30 << "beginning of the file: ";
31 cin >> offset;
32

(program continues)

876 Chapter 13 Advanced File and I/O Operations

13.7 Opening a File for Both Input and Output

CONCEPT: You may perform input and output on an fstream file without closing it
and reopening it.

There are times when you need to update data stored in a file. To do this, you need to open
the file, copy some of the data into memory, modify it, write the data back to the file, and
then close the file. A file can be opened for both input and output by combining the
ios::in and ios::out flags with the | operator:

fstream file("data.dat", ios::in | ios::out)

The same operation may be accomplished with the open member function:

file.open("data.dat", ios::in | ios::out);

You can also specify the ios::binary flag if binary data is to be written to the file. Here is
an example:

file.open("data.dat", ios::in | ios::out | ios::binary);

When an fstream file is opened with both the ios::in and ios::out flags, the file’s
current contents are preserved, and the read/write position is initially placed at the

33 // Read the character at the given offset
34 file.seekg(offset, ios::beg);
35 file.get(ch);
36 cout << "Character read: " << ch << endl;
37 cout << "Do it again? ";
38 cin >> response;
39 } while (toupper(response) == 'Y');
40 file.close();
41 return 0;
42 }

Program Output with Example Input Shown in Bold
Currently at position 0
Enter an offset from the beginning of the file: 5[Enter]
Character read: f
Do it again? y[Enter]
Currently at position 6
Enter an offset from the beginning of the file: 0[Enter]
Character read: a
Do it again? y[Enter]
Currently at position 1
Enter an offset from the beginning of the file: 20[Enter]
Character read: u
Do it again? n[Enter]

Program 13-16 (continued)

Opening a File for Both Input and Output 877

beginning of the file. If the file does not exist, it is created (unless the ios::nocreate is
also used).

Programs 13-17, 13-18, and 13-19 demonstrate many of the techniques we have
discussed. Program 13-17 sets up a file with five blank inventory records. Each record is
a structure with members for holding a part description, quantity on hand, and price.
Program 13-18 displays the contents of the file on the screen. Program 13-19 opens the
file in both input and output modes and allows the user to change the contents of a
specific record.

Program 13-17

1 // This program sets up a file of blank inventory records.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 const int DESC_SIZE = 31, NUM_RECORDS = 5;
7 // Declaration of Invtry structure.
8 struct Invtry
9 {
10 char desc[DESC_SIZE];
11 int qty;
12 double price;
13 };
14
15 int main()
16 {
17 // Variables needed to write the file
18 Invtry record = { "", 0, 0.0 };
19
20 // Create file object and open file
21 fstream inventory("invtry.dat", ios::out | ios::binary);
22 if (!inventory)
23 {
24 cout << "Error opening file.";
25 return 0;
26 }
27
28 // Now write the blank records
29 for (int count = 0; count < NUM_RECORDS; count++)
30 {
31 cout << "Now writing record " << count << endl;
32 inventory.write(reinterpret_cast<char *>(&record),
33 sizeof(record));
34 }
35
36 // Close the file
37 inventory.close();
38 return 0;
39 }

(program continues)

878 Chapter 13 Advanced File and I/O Operations

Program 13-18 simply displays the contents of the inventory file on the screen. It can be
used to verify that Program 13-17 successfully created the blank records and that Program
13-19 correctly modified the designated record.

Program Screen Output
Now writing record 0
Now writing record 1
Now writing record 2
Now writing record 3
Now writing record 4

Program 13-18

1 // This program displays the contents of the inventory file.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 const int DESC_SIZE = 31;
7
8 // Declaration of Invtry structure
9 struct Invtry
10 {
11 char desc[DESC_SIZE];
12 int qty;
13 double price;
14 };
15
16 int main()
17 {
18 // Buffer used for reading
19 Invtry record;
20
21 // Create and open the file for reading
22 fstream inventory("invtry.dat", ios::in | ios::binary);
23 if (!inventory)
24 {
25 cout << "Error in opening the file.";
26 return 0;
27 }
28
29 // Now read and display the records
30 inventory.read(reinterpret_cast<char *>(&record),
31 sizeof(record));
32 while (!inventory.eof())
33 {
34 cout << "Description: ";
35 cout << record.desc << endl;

(program continues)

Program 13-17 (continued)

Opening a File for Both Input and Output 879

Here is the screen output of Program 13-18 if it is run immediately after Program 13-17
sets up the file of blank records.

Program Screen Output
Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Program 13-19 allows the user to change the contents of an individual record in the
inventory file.

36 cout << "Quantity: ";
37 cout << record.qty << endl;
38 cout << "Price: ";
39 cout << record.price << endl << endl;
40 inventory.read(reinterpret_cast<char *>(&record),
41 sizeof(record));
42 }
43 inventory.close();
44 return 0;
45 }

Program 13-19

1 // This program allows the user to edit a specific
2 // record in the inventory file.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 const int DESC_SIZE = 31;
8 // Declaration of Invtry structure
9 struct Invtry
10 {

(program continues)

Program 13-18 (continued)

880 Chapter 13 Advanced File and I/O Operations

11 char desc[DESC_SIZE];
12 int qty;
13 double price;
14 };
15
16 int main()
17 {
18 // Variables needed to read the file
19 Invtry record;
20 long recNum;
21
22 // Open the file
23 fstream inventory("invtry.dat", ios::in | ios::out |
24 ios::binary);
25 if (!inventory)
26 {
27 cout << "Error opening file.";
28 return 0;
29 }
30
31 // Move to the desired record and read it into record
32 cout << "Which record do you want to edit?";
33 cin >> recNum;
34 inventory.seekg(recNum * sizeof(record), ios::beg);
35 inventory.read(reinterpret_cast<char *>(&record),
36 sizeof(record));
37
38 // Get new data from user and edit in-memory record
39 cout << "Description: ";
40 cout << record.desc << endl;
41 cout << "Quantity: ";
42 cout << record.qty << endl;
43 cout << "Price: ";
44 cout << record.price << endl;
45 cout << "Enter the new data:\n";
46 cout << "Description: ";
47 cin.ignore();
48 cin.getline(record.desc, DESC_SIZE);
49 cout << "Quantity: ";
50 cin >> record.qty;
51 cout << "Price: ";
52 cin >> record.price;
53
54 // Move to the right place in file and write the record
55 inventory.seekp(recNum * sizeof(record), ios::beg);
56 inventory.write(reinterpret_cast<char *>(&record),
57 sizeof(record));
58
59 // Close the file
60 inventory.close();
61 return 0;
62 }

(program continues)

Program 13-19 (continued)

881

Checkpoint

13.28 Describe the difference between the seekg and the seekp functions.

13.29 Describe the difference between the tellg and the tellp functions.

13.30 Describe the meaning of the following file access flags.

ios::beg
ios::end
ios::cur

13.31 What is the number of the first byte in a file?

13.32 Briefly describe what each of the following statements does.

file.seekp(100L, ios::beg);
file.seekp(-10L, ios::end);
file.seekg(-25L, ios::cur);
file.seekg(30L, ios::cur);

13.33 Describe the mode that each of the following statements causes a file to be
opened in.

file.open("info.dat", ios::in | ios::out);
file.open("info.dat", ios::in | ios::app);
file.open("info.dat", ios::in | ios::out | ios::ate);
file.open("info.dat", ios::in | ios::out | ios::binary);

13.8 Online Friendship Connections Case Study:
Object Serialization
Online Friendship Connections is an online service that helps people meet and make
new friends. People who want to join the club and use its services fill out a registration
form, stating their names, age, contact information, gender, hobbies, personal
interests, and other pertinent information about themselves. They also specify the
qualities they are looking for in a new friend. The service will then try to get two
people together if the personal information submitted indicates that there is a high
probability of a good match.

Program Screen Output with Example Input Shown in Bold
Which record do you want to edit? 2[Enter]
Description:
Quantity: 0
Price: 0.0
Enter the new data:
Description: Wrench[Enter]
Quantity: 10[Enter]
Price: 4.67[Enter]

Program 13-19 (continued)

Online Friendship Connections Case Study: Object Serialization

882 Chapter 13 Advanced File and I/O Operations

Object Serialization
Online Friendship Connections will store information about its members in files. Member
information will be manipulated by a C++ program and will be stored in objects of
appropriately designed classes. These objects may involve pointers to other objects,
forming a network of objects whose structure must somehow be preserved when the data
are stored to a file. This structure is then reconstructed when the data is read back from the
file at a later time. The process of transforming complex networks of objects
interconnected through pointers into a form that can be stored in a disk file (or on some
other medium outside of central memory) is called object serialization.

In this section, we will illustrate some of the techniques used in serializing objects by
looking at a simple case in which an object containing a C++ string object is serialized.
Recall that C++ strings are normally implemented using pointers to dynamically allocated
array of char.

Designing the Classes Needed by the Program
A simple class that stores a portion of the information submitted by members of Online
Friendship Connections might include a first name, middle initial, last name, and the age of
a member. In addition to the usual getter and setter functions, we need member functions
for serializing the object: that is, a member function that converts the object into data
stored in a file:

void store(ofstream &outFile);

We also need a member function for deserializing an object: that is, one that reads from a
file data previously placed there by store, recovers its structure, and sets the data
members of the object correctly:

void load(ifstream &inFile);

After adding a constructor and a display member function, we come up with the
following class:

Contents of serialization.h
1 #include <iostream>
2 #include <fstream>
3 #include <string>
4 using namespace std;
5
6 class Person
7 {
8 string fname, lname;
9 char mi;
10 int age;
11 public:
12 string getFname() const {return fname;}
13 string getLname() const {return lname;}
14 char getMi() const {return mi;}
15 int getAge() const {return age;}
16
17 void setFname(string name){fname = name;}

883

Determining a Serialization Scheme
We cannot just write the contents of a Person object to a disk file because the string
members contain pointers to arrays of characters which need to be stored so that the
string objects can be reconstructed at a later time when the object is deserialized.
Because strings have varying lengths, Person objects will occupy varying amounts of
space on the disk when they are deserialized. A simple but effective serialization scheme
is to first write all the members of the object that take up constant space, and then write
each member whose space requirement may vary on the disk, preceded by the number
of bytes that the member occupies. For the Person class, we can use the scheme shown
in Figure 13-5.

The code for the store function is then very straightforward and can be seen in the listing
of the file serialization.cpp. To design the load function, we note that we need to
reconstruct the fname and lname strings by first reading their data portions into an in-
memory buffer that is an array of character. To do this for fname, we first read the
number of bytes occupied by its data portion from the file:

int firstNameLength;
inFile.read(addr(&firstNameLength), sizeof(int));

18 void setLname(string name){lname = name;}
19 void setMi(char ch){mi = ch;}
20
21 // Read data from file
22 void load(ifstream &inFile);
23 // store data to file
24 void store(ofstream &outFile);
25
26 // Constructor
27 Person(string fname = "", char mi = 0,
28 string lname = "", int age = 0);
29
30 void display()
31 {
32 cout << fname << " " << mi << " " << lname << endl
33 << "Age : " << age << endl;
34 }
35 };

Figure 13-5

mi

age

fname.length()

fname.data()

lname.length()

lname.data()

Online Friendship Connections Case Study: Object Serialization

884 Chapter 13 Advanced File and I/O Operations

We must then read that many bytes into a buffer and null terminate the buffer to turn it
into a C-string:

inFile.read(buffer, firstNameLength);
buffer[firstNameLength] = '\0';

Finally, we convert the C-string to a string object by assigning it to the fname member. The
C++ string has a convert constructor that automatically converts C-strings to string objects
to make such assignments possible.

frame = buffer;

The buffer array is used as a temporary holding place. Making it an instance member of the
class would allocate space for it in every object and would waste a lot of memory. A better idea
to make it a static member of the class, so that the scratch space can be shared by all members
of the object. However, we note that it is only used by the load member function. For this
reason, we make it local static. That way, space for the buffer is allocated once instead of being
allocated anew for each call to load. Static local variables were described in Chapter 6.

The rest of the member functions needed to implement the Person class are shown in the
listing of the serialization.cpp file.

Contents of serialization.cpp
1 #include "serialization.h"
2
3 Person::Person(string fname, char mi,
4 string lname, int age)
5 {
6 this->fname = fname;
7 this->lname = lname;
8 this->mi = mi;
9 this->age = age;
10 }
11
12 //***
13 // Stores mi, age, then length of fname, *
14 // then data for fname, then length of lname, *
15 // then data for lname *
16 //***
17 void Person::store(ofstream &outFile)
18 {
19 outFile.write(&mi, sizeof(mi));
20 outFile.write(reinterpret_cast<char *>(&age),
21 sizeof(age));
22
23 // Write length and data for fname and lname
24 int firstNameLength = fname.length();
25 outFile.write(reinterpret_cast<char *>(&firstNameLength),
26 sizeof(int));
27 outFile.write(fname.data(), firstNameLength);
28 int lastNameLength = lname.length();
29 outFile.write(reinterpret_cast<char *>(&lastNameLength),
30 sizeof(int));
31 outFile.write(lname.data(), lastNameLength);
32 }
33

885

We need two separate programs to demonstrate the serialization capabilities of the Person
class. Program 13-20, which generates no screen output, creates an array of two objects,
serializes them, and writes them to a file.

34 //**
35 // Reads the data in the format written by *
36 // Person::store *
37 //**
38 void Person::load(ifstream &inFile)
39 {
40 const int BUFFER_SIZE = 256;
41 static char buffer[256]; //used to read names
42
43 inFile.read(&mi, sizeof(mi));
44 inFile.read(reinterpret_cast<char *>(&age), sizeof(age));
45
46 // First get length and data for fname
47 int firstNameLength;
48 inFile.read(reinterpret_cast<char *>(&firstNameLength),
49 sizeof(int));
50
51 // Read the data for fname into a local buffer
52 inFile.read(buffer, firstNameLength);
53
54 // Null terminate the buffer
55 buffer[firstNameLength] = '\0';
56 fname = buffer; //take advantage of convert constructor
57
58 // Do the same thing for length and data for lname
59 int lastNameLength;
60 inFile.read(reinterpret_cast<char *>(&lastNameLength),
61 sizeof(int));
62 inFile.read(buffer, lastNameLength);
63 buffer[lastNameLength] = '\0';
64 lname = buffer;
65 }

Program 13-20

1 // This program demonstrates object serialization.
2 #include "serialization.h"
3 int main()
4 {
5 // Array of objects to store in file
6 Person people[] =
7 { Person("Joseph", 'X', "Puff", 32),
8 Person("Louise", 'Y', "Me", 28)
9 };
10 // Open a file and store the array of people
11 ofstream outFile("MorePeople.dat", ios::binary);
12 if(!outFile)
13 {
14 cout << "The output file cannot be opened";

(program continues)

Online Friendship Connections Case Study: Object Serialization

886 Chapter 13 Advanced File and I/O Operations

Program 13-21 opens the file created by Program 13-20, deserializes the two objects in the
file, and displays them on the screen.

15 exit(1);
16 }
17
18 // Store the people data in the file
19 people[0].store(outFile);
20 people[1].store(outFile);
21 cout << "Data has been written to the file "
22 << " 'Morepeople.dat'";
23
24 // Close file
25 outFile.close();
26 return 0;
27 }

Program 13-21

1 //This program demonstrates object deserialization.
2 #include "serialization.h"
3 int main()
4 {
5 const int NUM_PEOPLE = 2;
6 Person people[NUM_PEOPLE];
7 // Open a file and load the array of people
8 ifstream inFile("MorePeople.dat", ios::binary);
9 if(!inFile)
10 {
11 cout << "The input file cannot be opened";
12 exit(1);
13 }
14
15 // Read the data from the file
16 for (int k = 0; k < NUM_PEOPLE; k++)
17 people[k].load(inFile);
18
19 // Display the data
20 for (int k = 0; k < NUM_PEOPLE; k++)
21 people[k].display();
22
23 // Close the file
24 inFile.close();
25 return 0;
26 }

Program Output
Joseph X Puff
Age : 32
Louise Y Me
Age : 28

Program 13-20 (continued)

Tying It All Together: File Merging and Color-Coded HTML 887

13.9 Tying It All Together: File Merging and
Color-Coded HTML

Suppose that you have two files, with each file containing a sorted list of names and each
name occurring on a line by itself, as illustrated in Table 13-7.

You want to merge the contents of the two files into one file in such a way that the merged
file is sorted in alphabetic order. You also want people to be able to tell at a glance which
of the two original files a given line in the merged file came from. One way to do this is to
color-code the original files and then display each line of the merged file in the color of the
originating file:

Abrams, Elaine
Avon, Martha
Bostrom, Andy
Gomez, Diane
Pistachio, Mary
Potus, Nicholas
Radon, Joseph
Rhodes, Peter
Williams, Nancy
Wilson, Zelda
Zazinski, Pete

To accomplish this, we code the output file in HTML and arrange for the browser to
display each line with the appropriate color. This can be done via what are called CSS
styles. We will use the HTML span elements to enclose a line and then color the content of
the span element using the CSS style attribute. For the two files shown above, our program
will produce the following output:

 Abrams, Elaine

 Avon, Martha

 Bostrom, Andy

 Gomez, Diane

 Pistachio, Mary

 Potus, Nicholas

 Radon, Joseph

Table 13-7

Black File Blue File

Abrams, Elaine
Bostrom, Andy
Potus, Nicholas
Radon, Joseph
Williams, Nancy

Avon, Martha
Gomez, Diane
Pistachio, Mary
Rhodes, Peter
Wilson, Zelda
Zazinski, Pete

888 Chapter 13 Advanced File and I/O Operations

 Rhodes, Peter

 Williams, Nancy

 Wilson, Zelda

 Zazinski, Pete

The
 HTML element signifies a line break.

Our solution to this problem will use a subclass of fstream that has a member function
for writing a string inside of an HTML span element. The span element will specify the
color the browser should use to display the string:

class ColorCodedStream : public fstream
{
public:
 void writeInColor(string str, string aColor)
 {
 *this << " ";
 *this << str << "
 ";
 *this << "\n";
 }
};

Our program will need to open two files for reading and a third file for writing. To avoid
repetition of code, we write a function

void openFile(fstream &file, string descr);

that takes a file object and a description ("black", "blue", or "output"), prompts the
user for the name of a file, and then opens the file. A file described as "black" or "blue" is
opened for input, while a file described as "output" is opened for output.

 Our program also uses the library function

getline(istream &in, string &str);

to read strings from the input file one line at a time. The program has two variables

string blackInput, blueInput

that are used to hold the line that was last read from the corresponding file. Because a read
may be unsuccessful, the program tests each file object for errors before using the input last
read from it. For example, the code

if (blackFile && !blueFile)
 {
 // Only blackInput is good
 outputFile.writeInColor(blackInput, "black");
 getline(blackFile, blackInput);
 }

determines that the last read from the black file was good while the read from the blue file
failed, so it processes the input from the black file. After the input from the black file has
been written out, the black file is read again to prepare for the next iteration of the loop.
When the program cannot read any more data from either file (this is checked at the top of
the loop that begins at line 39) the program terminates.

Tying It All Together: File Merging and Color-Coded HTML 889

Program 13-22

1 // This program demonstrates file merging and the use
2 // of CSS to determine text colors in HTML documents.
3 #include <stdlib.h>
4 #include <iostream>
5 #include <fstream>
6 #include <string>
7 using namespace std;
8
9 // This subclass of fstream adds the ability to
10 // write a string that is automatically embedded
11 // in an HTML span element with a color specification
12 // style
13 class ColorCodedStream : public fstream
14 {
15 public:
16 void writeInColor(string str, string aColor)
17 {
18 *this << " ";
19 *this << str << "
 ";
20 *this << "\n";
21 }
22 };
23
24 void openFile(fstream &file, string descr); // Prototype
25
26 int main()
27 {
28 ColorCodedStream outputFile;
29 fstream blackFile, blueFile;
30 openFile(blackFile, "black");
31 openFile(blueFile, "blue");
32 openFile(outputFile, "output");
33
34 string blackInput, blueInput;
35 // read the first line from each file
36 getline(blackFile, blackInput); // Read black file into buffer
37 getline(blueFile, blueInput); // Read blue file into buffer
38
39 while (blackFile || blueFile)
40 {
41 if (blackFile && blueFile)
42 {
43 // Both buffers have fresh data
44 if (blackInput <= blueInput)
45 {
46 outputFile.writeInColor(blackInput, "black");
47 getline(blackFile, blackInput);
48 }
49 else
50 {

(program continues)

890 Chapter 13 Advanced File and I/O Operations

The contents of the output file can be viewed in a browser.

51 outputFile.writeInColor(blueInput, "blue");
52 getline(blueFile, blueInput);
53 }
54 }
55 if (blackFile && !blueFile)
56 {
57 // Only blackInput is good
58 outputFile.writeInColor(blackInput, "black");
59 getline(blackFile, blackInput);
60 }
61 if (blueFile && !blackFile)
62 {
63 // Only blueInput is good
64 outputFile.writeInColor(blueInput, "blue");
65 getline(blueFile, blueInput);
66 }
67 }
68 return 0;
69 }
70 //**
71 // Opens a specified file for reading or writing. The descr argument *
72 // is used in prompting for the name of the file. *
73 //**
74 void openFile(fstream &file, string descr)
75 {
76 string fileName;
77 cout << "Enter the name of the " << descr << " file: ";
78 cin >> fileName;
79
80 // Determine whether the file should be opened for reading
81 // or writing based on the description (descr)
82 if (descr == "output")
83 file.open(fileName.data(), ios::out);
84 else
85 file.open(fileName.data(), ios::in);
86
87 // Check if file open was successful
88 if (!file)
89 {
90 cout << "Cannot open the file " << fileName;
91 exit(1);
92 }
93 }

Sample Program Interaction with User Input Shown in Bold
Enter the name of the black file: blackfile.txt[Enter]
Enter the name of the blue file: bluefile.txt[Enter]
Enter the name of the output file: mergedfile.html[Enter]

Program 13-22 (continued)

Review Questions and Exercises 891

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. All files are assigned a(n)__________ that is used for identification purposes by the
operating system and the user.

2. Before a file can be used, it must first be __________.

3. When a program is finished using a file, it should __________ it.

4. The __________ header file is required for file I/O operations.

5. The three file stream data types are __________, __________, and __________.

6. The __________ file stream data type is for output files.

7. The __________ file stream data type is for input files.

8. The __________ file stream data type is for output files, input files, or files that
perform both input and output.

9. Write a statement that defines a file stream object named people. The object will be
used for file output.

10. Write a statement that defines a file stream object named pets. The object will be
used for file input.

11. Write a statement that defines a file stream object named places. The object will be
used for both output and input.

12. Write two statements that use the people file stream object to open a file named
people.dat. (Show how to open the file with a member function and at definition.)
The file should be opened for output.

13. Write two statements that use the pets file stream object to open a file named
pets.dat. (Show how to open the file with a member function and at definition.) The
file should be opened for input.

14. Write two statements that use the places file stream object to open a file named
places.dat. (Show how to open the file with a member function and at definition.)
The file should be opened for both input and output.

15. If a file fails to open, the file stream object will be set to __________.

16. Write a program segment that defines a file stream object named employees. The file
should be opened for both input and output (in binary mode). If the file fails to open,
the program segment should display an error message.

17. The same formatting techniques used with __________ may also be used when writing
information to a file.

18. The __________ member function reports when the end of the file has been
encountered.

19. The __________ function reads a line of text from a file.

20. The __________ member function reads a single character from a file.

21. The __________ member function writes a single character to a file.

892 Chapter 13 Advanced File and I/O Operations

22. __________ files contain data that is unformatted and not necessarily stored as ASCII
text.

23. __________ files contain information formatted as ASCII text.

24. A record is a complete set of information about a single item and is made up
of __________.

25. In C++, __________ provide a convenient way to organize information into fields and
records.

26. The __________ member function writes “raw” binary data to a file.

27. The __________ member function reads “raw” binary data from a file.

28. The __________ operator is necessary if you pass anything other than a pointer to
char as the first argument of the two functions mentioned in questions 26 and 27.

29. In __________ file access, the contents of the file are read in the order they appear in
the file, from the file’s start to its end.

30. In __________ file access, the contents of a file may be read in any order.

31. The __________ member function moves a file’s read position to a specified byte in the
file.

32. The __________ member function moves a file’s write position to a specified byte in
the file.

33. The __________ member function returns a file’s current read position.

34. The __________ member function returns a file’s current write position.

35. The __________ mode flag causes an offset to be calculated from the beginning of a
file.

36. The __________ mode flag causes an offset to be calculated from the end of a file.

37. The __________ mode flag causes an offset to be calculated from the current position
in the file.

38. A negative offset causes the file’s read or write position to be moved __________ in the
file from the position specified by the mode.

Algorithm Workbench

39. Give a pseudocode algorithm for determining the length of a file: that is, the number
of bytes that are stored in the file.

40. Give a pseudocode algorithm for comparing two files to see if their contents are
identical.

41. Design a pseudocode algorithm for reversing the contents of a text file into another
file. Assume that the amount of memory is limited, so that you cannot read the
entire source file into memory before you start writing it to a second file in reverse
order.

42. Suppose that you have two text files that contain sequences of integers separated by
white space (blank space, tabs, and line breaks). The integers in both files appear in
sorted order, with smaller values near the beginning of the file and large values closer
to the end. Write a pseudocode algorithm that merges the two sequences into a single
sorted sequence that is written to a third file.

Review Questions and Exercises 893

Find the Error

43. Each of the following programs or program segments has errors. Find as many as you
can.

A) fstream file(ios::in | ios::out);
file.open("info.dat");
if (!file)
{

cout << "Could not open file.\n";
}

B) ofstream file;
file.open("info.dat", ios::in);
if (file)
{

cout << "Could not open file.\n";
}

C) fstream file("info.dat");
if (!file)
{

cout << "Could not open file.\n";
}

D) fstream dataFile("info.dat", ios:in | ios:binary);
int x = 5;
dataFile << x;

E) fstream dataFile("info.dat", ios:in);
int x;
while (dataFile.eof())
{

dataFile >> x;
cout << x << endl;

}
F) fstream dataFile("info.dat", ios:in);

char line[81];
dataFile.get(line);

G) fstream dataFile("info.dat", ios:in);
char stuff[81];
dataFile.get(stuff);

H) fstream dataFile("info.dat", ios:in);
char stuff[81] = "abcdefghijklmnopqrstuvwxyz";
dataFile.put(stuff);

I) fstream dataFile("info.dat", ios:out);
struct Date
{

int month;
int day;
int year;

};
Date dt = { 4, 2, 98 };
dataFile.write(&dt, sizeof(int));

J) fstream inFile("info.dat", ios:in);
int x;
inFile.seekp(5);
inFile >> x;

894 Chapter 13 Advanced File and I/O Operations

Soft Skills

44. Learning to look beyond the symptoms of a problem to identify the root cause is
an important skill. Bugs in a program are sometimes the result of careless
mistakes, but at other times, they reflect a fundamental misunderstanding of some
concept.

Suppose that a friend has been trying to determine why his file processing program is
not working correctly. You notice that he is passing file objects to functions by value.
In addition to simply telling your friend that file parameters need to be passed by
reference, what can you tell him that will help him understand why files need to be
passed by reference?

Suppose now that you need to demonstrate this bug to other people. Bugs usually
occur in the context of a larger program, which can make it difficult for a person
unfamiliar with the program to understand what is happening. Write a program that
is as short as possible, but still has the file-passing bug.

Programming Challenges

1. File Previewer

Write a program that asks the user for the name of a text file. The program should
display the first 10 lines of the file on the screen. If the file has fewer than 10 lines, the
entire file should be displayed along with a message indicating the entire file has been
displayed.

2. File Display Program

Write a program that asks the user for the name of a file. The program should display the
contents of the file on the screen. If the file’s contents won’t fit on a single screen, the program
should display 24 lines of output at a time, and then pause. Each time the program pauses, it
should wait for the user to type a key before the next 24 lines are displayed.

3. Punch Line

Write a program that reads and prints a joke and its punch line from two different files.
The first file contains a joke, but not its punch line. The second file has the punch line as its
last line, preceded by “garbage.” The main function of your program should open the two
files and then call two functions, passing each one the file it needs. The first function should
read and display each line in the file it is passed (the joke file). The second function should
display only the last line of the file it is passed (the punch line file). It should find this line
by seeking to the end of the file and then backing up to the beginning of the last line. Data
to test your program can be found in the joke.dat and punchline.dat files.

4. Tail of a File

Write a program that asks the user for the name of a text file. The program should display
the last 10 lines of the file on the screen (the “tail” of the file). If the file has less than 10
lines, the entire file is displayed, with a message that the entire file has been displayed. The
program should do this by seeking to the end of the file and then backing up to the tenth
line from the end.

Review Questions and Exercises 895

5. String Search

Write a program that asks the user for the name of a file and a string to search for. The
program will search the file for all occurrences of the specified string and display all lines
that contain the string. After all occurrences have been located, the program should report
the number of times the string appeared in the file.

6. Sentence Filter

A program that processes an input file and produces an output file is called a filter.
Write a program that asks the user for two file names. The first file will be opened for
input, and the second file will be opened for output. (It will be assumed that the first file
contains sentences that end with a period.) The program will read the contents of the
first file and change all the letters other than the first letter of sentences to lowercase.
First letter of sentences should be made uppercase. The revised contents should be
stored in the second file.

7. File Encryption Filter

File encryption is the science of writing the contents of a file in a secret code. Your
encryption program should work like a filter, reading the contents of one file, modifying
the information into a code, and then writing the coded contents out to a second file. The
second file will be a version of the first file, but written in a secret code.

Although there are complex encryption techniques, you should come up with a simple one
of your own. For example, you could read the first file one character at a time and add 10
to the ASCII code of each character before it is written to the second file.

8. File Decryption Filter

Write a program that decrypts the file produced by the program in Programming Challenge 7.
The decryption program should read the contents of the coded file, restore the information
to its original state, and write it to another file.

9. Letter Frequencies

The letter e is the most frequently used letter in English prose, and the letter z is the least
frequently used. A friend of yours doing a sociology experiment believes that this may not
necessarily be true of the writings of first-year college students. To test his theory, he asks
you to write a program that will take a text file and print, for each letter of the English
alphabet, the number of times the letter appears in the file.

Hint: Use an integer array of size 128, and use the ASCII values of letters to index into the
array to store and retrieve counts for the letters.

10. Put It Back

C++ input stream classes have two member functions, unget() and putback(), that can
be used to “undo” an operation performed by the get() function. Research these
functions on the Internet, and then use one of them to rewrite Program 13-9 without using
the peek() function.

VideoNote

Solving the File
Encryption
Filter Problem

896 Chapter 13 Advanced File and I/O Operations

11. Insertion Sort on a File I

Write a program that uses an initially empty file to store a sorted list of integers entered by
the user. The integers are stored in binary form. Each time the program is run, it opens the
file and outputs the list of stored integers onto the screen. The program then asks the user to
enter a new integer X. The program then looks at the integer at the end of the file. If that
integer is less or equal to X, the program stores X at the end of the file and closes the file.
Otherwise, the program starts at the end of the file and works toward the beginning, moving
each value in the file that is greater than X up by one until it reaches the position in the file
where X should be stored. The program then writes X at that position and closes the file.

12. Insertion Sort on a File II

Modify the program written for Programming Challenge 11 so that the file contains
records of people. Each record should contain an array of 10 characters to hold the name
of a person and an integer to hold the person’s age. The file should be sorted by alphabetic
order of the names.

13. Corporate Sales Data Output

Write a program that uses a structure to store the following information on a company
division:

Division name (such as East, West, North, or South)
Quarter (1, 2, 3, or 4)
Quarterly sales

The user should be asked for the four quarters’ sales figures for the East, West, North, and
South divisions. The information for each quarter for each division should be written to a file.

14. Corporate Sales Data Input

Write a program that reads the information in the file created by the program in
Programming Challenge 13. The program should calculate and display the following figures:

• Total corporate sales for each quarter
• Total yearly sales for each division
• Total yearly corporate sales
• Average quarterly sales for the divisions
• The highest and lowest quarters for the corporation

15. Inventory Program

Write a program that uses a structure to store the following inventory information in a file:

Item description
Quantity on hand
Wholesale cost
Retail cost
Date added to inventory

The program should have a menu that allows the user to perform the following tasks:

• Add new records to the file
• Display any record in the file
• Change any record in the file

Review Questions and Exercises 897

16. Inventory Screen Report

Write a program that reads the information in the file created by the program in
Programming Challenge 14. The program should calculate and display the following
information:

• The total wholesale value of the inventory
• The total retail value of the inventory
• The total quantity of all items in the inventory

Group Project

17. Customer Accounts

This program should be designed and written by a team of students. Here are some
suggestions:

• One student should design function main, which will call other program functions or
class member functions. The remainder of the functions will be designed by other
members of the team.

• The requirements of the program should be analyzed so each student is given about
the same workload.

Write a program that uses a structure to store the following information about a customer
account:

• Name
• Address
• City, state, and ZIP
• Telephone number
• Account balance
• Date of last payment

The structure should be used to store customer account records in a file. The program
should have a menu that lets the user perform the following operations:

• Enter new records into the file
• Search for a particular customer’s record and display it
• Search for a particular customer’s record and delete it
• Search for a particular customer’s record and change it
• Display the contents of the entire file

Input Validation: When the information for a new account is entered, be sure the user
enters data for all the fields. No negative account balances should be entered.

This page intentionally left blank

899

C
H

A
P

T
E

R

14 Recursion

14.1 Introduction to Recursion

CONCEPT: A recursive function is one that calls itself.

You have seen instances of functions calling other functions. Function A can call function
B, which can then call Function C. It’s also possible for a function to call itself. A function
that calls itself is a recursive function. Look at this message function:

void message()
{

cout << "This is a recursive function.\n";
message();

}

TOPICS

14.1 Introduction to Recursion
14.2 The Recursive Factorial Function
14.3 The Recursive gcd Function
14.4 Solving Recursively Defined Problems
14.5 A Recursive Binary Search Function
14.6 Focus on Problem Solving and

Program Design: The QuickSort
Algorithm

14.7 The Towers of Hanoi
14.8 Focus on Problem Solving: Exhaustive

and Enumeration Algorithms
14.9 Focus on Software Engineering:

Recursion versus Iteration
14.10 Tying It All Together: Infix and Prefix

Expressions

900 Chapter 14 Recursion

This function displays the string "This is a recursive function.\n", and then calls
itself. Each time it calls itself, the cycle is repeated. Can you see a problem with the
function? There’s no way to stop the recursive calls. This function is like an infinite loop
because there is no code to stop it from repeating.

To be useful, a recursive function must have a way of controlling the number of recursive
calls. The following is a modification of the message function. It passes an integer
argument that holds the number of times the function is to call itself.

void message(int times)
{

if (times > 0)
{

cout << "This is a recursive function.\n";
message(times - 1);

}
}

This function contains an if statement that controls the recursion. As long as the times
argument is greater than zero, it will display the message and call itself again. Each time it
calls itself, it passes times - 1 as the argument. For example, let’s say a program calls the
function with the following statement:

message(3);

The argument, 3, will cause the function to be called four times. The first time the function
is called, the if statement will display the message and call itself with 2 as the argument.
Figure 14-1 illustrates this.

The diagram in Figure 14-1 illustrates two separate calls of the message function. Each
time the function is called, a new instance of the times parameter is created in memory.
The first time the function is called, the times parameter is set to 3. When the function
calls itself, a new instance of times is created, and the value 2 is passed into it. This cycle
repeats until zero is passed to the function. This is illustrated in Figure 14-2.

As you can see from Figure 14-2, the function will be called four times, so the depth of
recursion is four. When the function reaches the fourth call, the times parameter will
be set to 0. At that point, the if statement will stop the recursive chain of calls, and the

Figure 14-1

3

2

message (3)

times = 3

message (2)

times = 2

Introduction to Recursion 901

fourth instance of the function will return. Control of the program will return from
the fourth instance of the function to the point in the third instance directly after the
recursive function call:

Because there are no more statements to be executed after the function call, the third
instance of the function returns control of the program back to the second instance. This
repeats until all instances of the function return. Program 14-1 demonstrates the recursive
message function, modified to show the value of the parameter to each call.

Figure 14-2

Program 14-1

1 // This program demonstrates a simple recursive function.
2 #include <iostream>
3 using namespace std;
4

(program continues)

3

2

message (3)

times = 3

message (2)

times = 2

1

message (1)

times = 1

0

message (0)

times = 0

if (times > 0)
{

cout << "This is a recursive function.\n";
message(times - 1);

}

 Control returns here.

902 Chapter 14 Recursion

To further illustrate the inner workings of this recursive function, let’s look at another
version of the program. In Program 14-2, a message is displayed each time the function is
entered, and another message is displayed just before the function returns.

Recursive functions work by breaking a complex problem down into subproblems of the
same type. This breaking down process stops when it reaches a base case, that is, a
subproblem that is simple enough to be solved directly. For example, in the recursive
message function of the preceding examples, the base case is when the parameter times is 0.

5 // Function prototype
6 void message(int);
7
8 int main()
9 {
10 message(3);
11 return 0;
12 }
13
14 //***
15 // Definition of function message. If the value in times *
16 // is greater than 0, the message is displayed and the *
17 // function is recursively called with the argument *
18 // times - 1. *
19 //***
20 void message(int times)
21 {
22 if (times > 0)
23 {
24 cout << "Message " << times << "\n";
25 message(times - 1);
26 }
27 }

Program Output
Message 3
Message 2
Message 1

Program 14-2

1 // This program demonstrates a simple recursive function.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 void message(int);

(program continues)

Program 14-1 (continued)

Introduction to Recursion 903

You should consider the use of recursion when there is a way to express the solution of a
problem in terms of solutions of simpler, or smaller, problems of the same type. As an
example, one can envision sorting a long list of names by splitting the list into two sublists
and assigning the two sublists to two different people to sort. Once the sublists are sorted,
they can be merged into a sorted version of the original list by a suitable collating process.
In this case, the problems of sorting the sublists are the simpler problems of the same type,
and the base cases occur when the sublists consist of a single name.

Let’s look at a simple example of recursion that performs a useful task. The function
frequency counts the number of times a specific character appears in a string.

int frequency(char ch, string inputString, int position)
{

if (position == inputString.length()) //base case
return 0;

if (inputString[position] == ch)

7
8 int main()
9 {
10 message(3);
11 return 0;
12 }
13
14 //***
15 // Definition of function message. If the value in times *
16 // is greater than 0, the message is displayed and the *
17 // function is recursively called with the argument *
18 // times - 1. *
19 //***
20 void message(int times)
21 {
22 cout << "Message " << times << ".\n";
23 if (times > 0)
24 {
25 message(times - 1);
26 }
27 cout << "Message " << times << " is returning.\n";
28 }

Program Output
Message 3.
Message 2.
Message 1.
Message 0.
Message 0 is returning.
Message 1 is returning.
Message 2 is returning.
Message 3 is returning.

Program 14-2 (continued)

904 Chapter 14 Recursion

return 1 + frequency(ch, inputString, position+1);
else

return frequency(ch, inputString, position+1);
}

The function’s parameters are

• ch: the character to be searched for and counted
• inputString: the string to be searched
• position: the starting subscript for the search

The first if statement determines whether the base case, that is, the end of the string, has
been reached:

if (position == inputString.length())
 return 0;

If the end of the string has been reached, the function returns 0, indicating there are no
more characters to count. Otherwise, the following if statement is executed:

if (inputString[position] == ch)
return 1 + frequency(ch, inputString, position+1);

else
return frequency(ch, inputString, position+1);

If inputString[position] is the search character, the function performs a recursive call.
The return statement returns 1 + the number of times the search character appears in the
string, starting at position + 1. If inputString[position] is not the search character, a
recursive call is made to search the remainder of the string. Program 14-3 demonstrates the
program.

Program 14-3

1 // This program demonstrates a recursive function for
2 // counting the number of times a character appears
3 // in a string.
4 #include <iostream>
5 #include <string>
6 using namespace std;
7
8 // Function prototype
9 int frequency(char ch, string inputString , int pos);
10
11 int main()
12 {
13 string inputString = "abcddddef";
14
15 cout << "The letter d appears "
16 << frequency('d', inputString, 0) << " times.\n";
17 return 0;
18 }

(program continues)

Introduction to Recursion 905

Direct and Indirect Recursion
The examples we have discussed so far show recursive functions that directly call
themselves. This is known as direct recursion. There is also the possibility of creating
indirect recursion in a program. This occurs when function A calls function B, which in
turn calls function A. There can even be several functions involved in the recursion.
For example, function A could call function B, which could call function C, which calls
function A.

Checkpoint

14.1 What is a recursive function’s base case?

14.2 What happens if a recursive function does not handle base cases correctly?

14.3 What will the following program display?

#include <iostream>
using namespace std;

// Function prototype
void showMe(int arg);

int main()
{

int num = 0;

showMe(num);
return 0;

}

19
20 //**
21 // Function frequency. This recursive function *
22 // counts the number of times the character *
23 // ch appears in inputString. The search begins *
24 // at index position in the string. *
25 //**
26 int frequency(char ch, string inputString, int position)
27 {
28 if (position == inputString.length()) //base case
29 return 0;
30 if (inputString[position] == ch)
31 return 1 + frequency(ch, inputString, position+1);
32 else
33 return frequency(ch, inputString, position+1);
34 }

Program Output
The letter d appears 4 times.

Program 14-3 (continued)

906 Chapter 14 Recursion

void showMe(int arg)
{

if (arg < 10)
 showMe(++arg);
else
 cout << arg << endl;

}

14.4 What is the difference between direct and indirect recursion?

14.2 The Recursive Factorial Function

CONCEPT: The recursive factorial function accepts an argument and calculates its
factorial. Its base case is when the argument is 0.

Let’s use an example from mathematics to examine an application of recursion. In
mathematics, the notation n! represents the factorial of the number n. The factorial of an
integer n is defined as

n! = 1 × 2 × 3 × … × n; if n > 0
= 1; if n = 0

The rule states that when n is greater than 0, its factorial is the product of all the positive
integers from 1 up to n. For instance, 6! can be calculated as 1 × 2 × 3 × 4 × 5 × 6. The rule
also specifies the base case: the factorial of 0 is 1.

We can define the factorial of a number using recursion as follows:

factorial(n)= n × factorial(n – 1) if n > 0
 = 1; if n = 0

The C++ implementation of this recursive definition is

int factorial(int num)
{

if (num == 0) // base case
return 1;

else
return num * factorial(num – 1);

}

Consider a program that displays the value of 3! with the following statement:

cout << factorial(3) << endl;

The first time the function is called, num is set to 3. The if statement will execute the
following line:

return num * factorial(num - 1);

Although this is a return statement, it does not immediately return. Before the return
value can be determined, the value of factorial(num - 1) must be determined. The
function is called recursively until the fourth call, in which the num parameter will be set to
zero. The diagram in Figure 14-3 illustrates the value of num and the return value during
each call of the function.

The Recursive Factorial Function 907

Program 14-4 demonstrates the factorial function.

Figure 14-3

Program 14-4

1 // This program demonstrates a recursive function
2 // to calculate the factorial of a number.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 int factorial(int);
8
9 int main()
10 {
11 int number;
12
13 cout << "Enter an integer value and I will display\n";
14 cout << "its factorial: ";
15 cin >> number;
16 cout << "The factorial of " << number << " is ";
17 cout << factorial(number) << endl;
18 return 0;
19 }
20

(program continues)

return num x 1 = 1 x 1 = 1

return 1

return num x 1 = 2 x 1 = 2

return num x 2 = 3 x 2 = 6

factorial (3)

num = 3

factorial (2)

num = 2

factorial (1)

num = 1

factorial (0)

num = 0

3

2

1

0

908 Chapter 14 Recursion

14.3 The Recursive gcd Function

CONCEPT: There is a recursive method for finding the greatest common divisor (gcd) of
two numbers.

Our next example of recursion is the calculation of the greatest common divisor, or gcd, of
two numbers. Using Euclid’s algorithm, the gcd of two positive integers, x and y, is

gcd(x, y) = y if y divides x with no remainder
 = gcd(y, remainder of x/y); otherwise

This definition states that the gcd of x and y is y if x/y has no remainder. Otherwise, the
answer is the gcd of y and the remainder of x/y. Program 14-5 shows the recursive C++
implementation:

21 //**
22 // Definition of factorial. A recursive function to *
23 // calculate the factorial of the parameter, num. *
24 //**
25 int factorial(int num)
26 {
27 if (num == 0) //base case
28 return 1;
29 else
30 return num * factorial(num - 1);
31 }

Program Output with Example Input
Enter an integer value and I will display
its factorial: 4
The factorial of 4 is 24

Program 14-5

1 // This program demonstrates a recursive function to
2 // calculate the greatest common divisor (gcd) of two
3 // numbers.
4 #include <iostream>
5 using namespace std;
6
7 // Function prototype
8 int gcd(int, int);
9
10 int main()
11 {
12 int num1, num2;
13

(program continues)

Program 14-4 (continued)

Solving Recursively Defined Problems 909

14.4 Solving Recursively Defined Problems

CONCEPT: Some problems naturally lend themselves to recursive solutions.

Some problems naturally lend themselves to recursive solutions. One well-known example
is the calculation of Fibonacci numbers. The Fibonacci numbers, named after the Italian
mathematician Leonardo Fibonacci (born circa 1170), form the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

Notice that after the second number, each number in the sequence is the sum of the two
previous numbers. The Fibonacci sequence can be defined as:

F0 = 0,
F1 = 1,
FN = FN – 1 + FN – 2 for all N ≥ 2.

It is clear that the problem of computing a Fibonacci number other than the first two can
be reduced to the problems of computing the two preceding Fibonacci numbers. Thus this
problem makes a good candidate for a recursive solution. The problems of computing the
first two Fibonacci numbers are the base cases. Here is the recursive C++ function for
computing the nth number in the Fibonacci sequence:

14 cout << "Enter two integers: ";
15 cin >> num1 >> num2;
16 cout << "The greatest common divisor of " << num1;
17 cout << " and " << num2 << " is ";
18 cout << gcd(num1, num2) << endl;
19 return 0;
20 }
21
22 //***
23 // Definition of gcd. This function uses recursion to *
24 // calculate the greatest common divisor of two integers, *
25 // passed into the parameters x and y. *
26 //***
27 int gcd(int x, int y)
28 {
29 if (x % y == 0) //base case
30 return y;
31 else
32 return gcd(y, x % y);
33 }

Program Output with Example Input Shown in Bold
Enter two integers: 49 28
The greatest common divisor of 49 and 28 is 7

Program 14-5 (continued)

910 Chapter 14 Recursion

int fib(int n)
{

if (n <= 0) // base case
return 0;

else if (n == 1) // base case
return 1;

else
return fib(n - 1) + fib(n - 2);

}

The function is demonstrated in Program 14-6, which displays the first 10 numbers in the
Fibonacci sequence.

Another such example is Ackermann’s function. A Programming Challenge at the end of
this chapter asks you to write a recursive function that calculates Ackermann’s function.

Program 14-6

1 // This program demonstrates a recursive function
2 // that calculates Fibonacci numbers.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 int fib(int);
8
9 int main()
10 {
11 cout << "The first 10 Fibonacci numbers are:\n";
12 for (int x = 0; x < 10; x++)
13 cout << fib(x) << " ";
14 cout << endl;
15 return 0;
16 }
17
18 //***
19 // Function fib. Accepts an int argument *
20 // in n. This function returns the nth *
21 // Fibonacci number. *
22 //***
23
24 int fib(int n)
25 {
26 if (n <= 0) //base case
27 return 0;
28 else if (n == 1) //base case
29 return 1;
30 else
31 return fib(n - 1) + fib(n - 2);
32 }

Program Output
The first 10 Fibonacci numbers are:
0 1 1 2 3 5 8 13 21 34

A Recursive Binary Search Function 911

14.5 A Recursive Binary Search Function

CONCEPT: The binary search algorithm can be defined as a recursive function.

In Chapter 9 you learned about the binary search algorithm and how it can be used to search a
sorted array for a given value. Let us look to see how the binary search algorithm can be
formulated using recursion. Suppose that we want to write the function so that it has prototype

int binarySearch(const int array[], int first, int last, int value)

where the parameter array is the array to be searched; the parameter first holds the
subscript of the first element in the search range (the portion of the array to be searched);
the parameter last holds the subscript of the last element in the search range; and the
parameter value holds the value to be searched for. The function will return the subscript
of value if it is found within the array, and will return –1 otherwise.

In order to use recursion, we need to find a way of breaking down the problem of
searching a range of a sorted array for a given value into smaller problems of the same
type. We start by comparing value to the middle element of the search range. If value is
equal to the middle element, we are done and we return the subscript of the middle
element. Otherwise, if value is smaller than the middle element, then we must search for it
in the lower half of the original range (a recursive call on a smaller problem of the same
type); but if value is larger than the middle element, we must search for it in the upper half
of the original range. Notice that every time we make a recursive call, the search range will
be smaller. The base case is when the search range is empty. Here is the function:

int binarySearch(const int array[], int first, int last, int value)
{
 int middle; // mid point of search

 if (first > last) // base case
 return -1;

 middle = (first + last) / 2;
 if (array[middle] == value)

 return middle;
 if (array[middle] < value)
 return binarySearch(array, middle+1,last,value);
 else
 return binarySearch(array, first,middle-1,value);
}

This function is demonstrated in Program 14-7.

Program 14-7

1 // This program demonstrates a recursive function that
2 // performs a binary search on an integer array.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype

(program continues)

VideoNote

Recursive
Binary Search

912 Chapter 14 Recursion

7 int binarySearch(const int [], int, int, int);
8
9 const int SIZE = 20;
10
11 int main()
12 {
13 int tests[SIZE] = { 101, 142, 147, 189, 199, 207, 222,
14 234, 289, 296, 310, 319, 388, 394,
15 417, 429, 447, 521, 536, 600};
16 int result; // Result of the search
17 int empID; // What to search for
18
19 cout << "Enter the Employee ID you wish to search for: ";
20 cin >> empID;
21 result = binarySearch(tests, 0, SIZE - 1, empID);
22 if (result == -1)
23 cout << "That number does not exist in the array.\n";
24 else
25 {
26 cout << "That ID is found at element " << result;
27 cout << " in the array\n";
28 }
29 return 0;
30 }
31
32 //**
33 // The binarySearch function performs a recursive binary *
34 // search on a range of elements of an integer array. The *
35 // parameter first holds the subscript of the range's *
36 // starting element, and last holds the subscript of the *
37 // ranges's last element. The parameter value holds the *
38 // the search value. If the search value is found, its *
39 // array subscript is returned. Otherwise, -1 is returned *
40 // indicating the value was not in the array. *
41 //**
42 int binarySearch(const int array[], int first, int last, int value)
43 {
44 int middle; // Mid point of search
45
46 if (first > last) // Base case
47 return -1;
48 middle = (first + last)/2;
49 if (array[middle]==value)
50 return middle;
51 if (array[middle]<value)
52 return binarySearch(array, middle+1,last,value);
53 else
54 return binarySearch(array, first,middle-1,value);
55 }

Program Output with Example Input Shown in Bold
Enter the Employee ID you wish to search for: 521 [Enter]
That ID is found at element 17 in the array

Program 14-7 (continued)

913

14.6 Focus on Problem Solving and Program Design:
The QuickSort Algorithm

CONCEPT: The QuickSort algorithm uses recursion to sort lists efficiently.

QuickSort is a recursive sorting algorithm that was invented in 1960 by C. A. R. Hoare. It is
very efficient and is often used to sort lists of items stored in arrays. QuickSort is usually
written as a recursive function with three parameters that define a portion of an array to be
sorted. The three parameters are an array arr containing a list of items, and two subscripts
start and end denoting the beginning and end of the segment of arr that is to be sorted. Let
us write arr[start . . end] for these three parameters. To sort the entire array, you call
QuickSort with start set to 0 and end set to the size of the array minus 1.

QuickSort works as follows. If start is greater than or equal to end, then the segment of
arr to be sorted has at most one element and is therefore already sorted. In this case,
QuickSort returns immediately. Otherwise, QuickSort partitions arr[start . . end] by
selecting one of the elements in arr[start . . end] to be a pivot element and then
rearranging arr[start . . end] so that all entries that are less than the pivot are to the left
of the pivot, and all entries greater than or equal to the pivot are to the right of the pivot.
In effect, the partition step rearranges arr[start . . end] so that it consists of a sublist 1,
the pivot element, and a sublist 2 as shown in Figure 14-4.

Depending on the value selected to be the pivot element, one or the other of the two sublists
may be empty. For example, if the pivot element happens to be the minimum array element,
there will be no array entries less than the pivot, and sublist 1 will be empty.

Notice that once the partition stage is completed and we have the situation shown in
Figure 14-4, the pivot element will be in the right place. By recursively applying the
QuickSort procedure to the two sublists, each of the sublists will be partitioned,
putting whatever element was selected to be the pivot for that sublist in its right place.
The process continues until the length of the sublists is at most one. At that point, the
original array will be sorted.

Let us assume that we have a function

int partition(int arr[], int start, int end)

which when called will

1. select a pivot element from arr[start . . end]

Figure 14-4

VideoNote

sublist 1
entries � pivot

sublist 2
entries � pivot

pivot endstart

QuickSort

Focus on Problem Solving and Program Design: The QuickSort Algorithm

914 Chapter 14 Recursion

2. rearrange arr[start . . end] into sublist 1, the pivot element, and sublist 2 (see
Figure 14-4) so that the pivot element is at position p and sublist 1 and sublist 2 are
respectively arr[start . . p-1] and arr[p+1 . . end],

3. return the position p of the pivot.

We can then implement QuickSort in C++ as follows:

void quickSort(int arr[], int start, int end)
{
 if (start < end)
 {
 // Partition the array and get the pivot point
 int p = partition(arr, start, end);

 // Sort the portion before the pivot point
 quickSort(arr, start, p - 1);

 // Sort the portion after the pivot point
 quickSort(arr, p + 1, end);
 }
}

Now let us consider the process of partitioning the array segment arr[start . . end]. The
partitioning algorithm selects arr[start] to be the pivot element and then builds the two
sublists on the left and right of the pivot element in stages. Initially, the portion of the array
that has been partitioned consists of just the pivot element by itself. In effect, the initial
situation will be as shown in Figure 14-4, with sublist 1 and sublist 2 being empty and all the
array entries that have not yet been added to the partitioned part lying to the right of sublist 2.

The main idea is to extend the partitioned portion of the array one element at a time by
considering the element X that is just to the right of sublist 2. If such an X is greater than
or equal to the pivot, it is added to the end of sublist 2 by leaving it where it is and moving
on to consider the next element. If X is less than the pivot element, it is added to the end of
sublist 1 by placing it just to the left of the pivot element. One way to do this is to store X in
a temporary location, move every element in sublist 2 up one position, move the pivot element
up one position, and then drop X into the array position just vacated by the pivot element.
This simplistic strategy moves too many array elements and does not result in an
efficient algorithm. Instead, we can put X to the left of the pivot more efficiently by
first exchanging X with the array item Y that is just to the right of the pivot element
and then exchanging X with the pivot element. The first exchange puts Y, which is greater
or equal to the pivot element, at the end of sublist 2 while putting X in a position that is
adjacent to the pivot. The second exchange then puts X to the left of the pivot. This is
repeated until the entire list has been partitioned. The code for the partition function is

int partition(int arr[], int start, int end)
{

// The pivot element is taken to be the element at
// the start of the subrange to be partitioned
int pivotValue = arr[start];
int pivotPosition = start;

// Rearrange the rest of the array elements to
// partition the subrange from start to end
for (int pos = start + 1; pos <= end; pos++)

915Focus on Problem Solving and Program Design: The QuickSort Algorithm

{
if (arr[pos] < pivotValue)
{

// arr[scan] is the "current" item
// Swap the current item with the item to the
// right of the pivot element
swap(arr[pivotPosition + 1], arr[pos]);
// Swap the current item with the pivot element
swap(arr[pivotPosition], arr[pivotPosition + 1]);
// Adjust the pivot position so it stays with the
// pivot element
pivotPosition ++;

}
}
return pivotPosition;

}

The swap function used in partition is part of the standard template library. You need to
include the algorithm header file to use it.

Program 14-8 demonstrates the QuickSort algorithm in action.

Program 14-8

1 // This program demonstrates the QuickSort algorithm.
2 #include <iostream>
3 #include <algorithm> //needed for swap function
4 using namespace std;
5
6 // Function prototypes
7 void quickSort(int [], int, int);
8 int partition(int [], int, int);
9
10 int main()
11 {
12 // Array to be sorted
13 const int SIZE = 10;
14 int array[SIZE] = {17, 53, 9, 2, 30, 1, 82, 64, 26, 5};
15
16 // Echo the array to be sorted
17 for (int k = 0; k < SIZE; k++)
18 cout << array[k] << " ";
19 cout << endl;
20
21 // Sort the array using Quicksort
22 quickSort(array, 0, SIZE-1);
23
24 // Print the sorted array
25 for (int k = 0; k < SIZE; k++)
26 cout << array[k] << " ";
27 cout << endl;
28
29 return 0;
30 }
31

(program continues)

916 Chapter 14 Recursion

32 //**
33 // quickSort uses the QuickSort algorithm to *
34 // sort arr from arr[start] through arr[end]. *
35 //**
36 void quickSort(int arr[], int start, int end)
37 {
38 if (start < end)
39 {
40 // Partition the array and get the pivot point
41 int p = partition(arr, start, end);
42
43 // Sort the portion before the pivot point
44 quickSort(arr, start, p - 1);
45
46 // Sort the portion after the pivot point
47 quickSort(arr, p + 1, end);
48 }
49 }
50
51 //***
52 // partition rearranges the entries in the array arr from *
53 // start to end so all values greater than or equal to the *
54 // pivot are on the right of the pivot and all values less *
55 // than are on the left of the pivot. *
56 //***
57 int partition(int arr[], int start, int end)
58 {
59 // The pivot element is taken to be the element at
60 // the start of the subrange to be partitioned
61 int pivotValue = arr[start];
62 int pivotPosition = start;
63
64 // Rearrange the rest of the array elements to
65 // partition the subrange from start to end
66 for (int pos = start + 1; pos <= end; pos++)
67 {
68 if (arr[pos] < pivotValue)
69 {
70 // arr[scan] is the "current" item.
71 // Swap the current item with the item to the
72 // right of the pivot element
73 swap(arr[pivotPosition + 1], arr[pos]);
74 // Swap the current item with the pivot element
75 swap(arr[pivotPosition], arr[pivotPosition + 1]);
76 // Adjust the pivot position so it stays with the
77 // pivot element
78 pivotPosition ++;
79 }
80 }
81 return pivotPosition;
82 }

Program Output
17 53 9 2 30 1 82 64 26 5
1 2 5 9 17 26 30 53 64 82

Program 14-8 (continued)

The Towers of Hanoi 917

14.7 The Towers of Hanoi

CONCEPT: There are problems that have simple recursive solutions, but which are
otherwise very difficult to solve.

The Towers of Hanoi is a game that is often used in computer science textbooks to
illustrate the power of recursion. The game uses three pegs and a set of disks of different
sizes with holes through their centers. The game begins with all of the disks stacked on the
first of the three pegs as shown in Figure 14-5.

The object of the game is to move all the disks from the first peg to the third, while abiding
by the following rules:

• All disks must rest on a peg except while being moved.
• Only one disk may be moved at a time.
• No disk may be placed on top of a smaller disk.

Let us look at some examples of how the game is played. The simplest case is when there is
only one disk: in this case, you solve the game in one move, by moving the disk from peg 1
to peg 3.

If you have two disks, you can solve the game with three moves:

1. Move a disk from peg 1 to peg 2 (it must be the top one.)
2. Move a disk from peg 1 to peg 3.
3. Move a disk from peg 2 to peg 3.

Notice that although the object of the game is to move the disks from peg 1 to peg 3, it is
necessary to use peg 2 as a temporary resting place for some of the disks. The complexity
of the solution increases rapidly as the number of disks to be moved increases. Moving
three disks requires seven moves as shown in Figure 14-6.

Figure 14-5 The pegs and disks in the Towers of Hanoi game

1 2 3

918 Chapter 14 Recursion

There is a charming legend associated with this game. According to this legend, there is a
group of monks in a temple in Hanoi who have a set of pegs with 64 disks. The monks are
busy moving the 64 disks, initially stacked on the first peg, to the third peg. When the
monks complete their task the world will come to an end.

Let us now return to the problem and consider its solution in the general case when we can
have any number of disks. The problem can be stated as:

Move n disks from peg 1 to peg 3 using peg 2 as a temporary peg.

It is very difficult to see how this problem can be solved using loops. Happily, it is not
difficult to envision a recursive solution: If we can (recursively) move n � 1 disks from peg 1
to peg 2 while using peg 3 as the temporary peg, then the largest disk will be left sitting
alone on peg 1. We can then move the large disk from peg 1 to peg 3 in one move. We can
then (recursively) move the n � 1 disks from peg 2 to peg 3, this time using peg 1 as the
temporary peg. This plan can be formulated in pseudocode as follows:

To move n disks from peg 1 to peg 3, using peg 2 as a temporary peg:
If n > 0 Then

Move n � 1 disks from peg 1 to peg 2, using peg 3 as a temporary peg.

Figure 14-6

First move: Move disk 1 to peg 3.Original setup.

1

1

2

3

2 3

Second move: Move disk 2 to peg 2. Third move: Move disk 1 to peg 2.

Fourth move: Move disk 3 to peg 3. Fifth move: Move disk 1 to peg 1.

Sixth move: Move disk 2 to peg 3. Seventh move: Move disk 1 to peg 3.

0 1

2 3

4 5

6 7

The Towers of Hanoi 919

Move a disk from peg 1 to peg 3.
Move n � 1 disks from peg 2 to peg 3, using peg 1 as a temporary peg.

End If

We will now write a function that implements this solution by printing a sequence of
moves that solves the game. We will also use names rather than numbers to describe the
pegs. The object of the function is then to move a stack of disks from a source peg (peg 1)
to a destination peg (peg 2) using a temporary peg (peg 3). Here is the code for the
function:

void moveDisks(int n, string source, string dest, string temp)
{

if (n > 0)
{

// Move n - 1 disks from source to temp
// using dest as the temporary peg
moveDisks(n - 1, source, temp, dest);

// Move a disk from source to dest
cout << "Move a disk from " << source

 << " to " << dest << endl;

// Move n - 1 disks from temp to dest
// using source as the temporary peg
moveDisks(n - 1, temp, dest, source);

}
}

The base case occurs when n = 0 and there are no disks to be moved. In this case the
function call returns without doing anything. The function is demonstrate7d in
Program 14-9.

Program 14-9

1 // This program displays a solution to the Towers of
2 // Hanoi game.
3
4 #include <iostream>
5 using namespace std;
6
7 // Function prototype
8 void moveDisks(int, string, string, string);
9
10 int main()
11 {
12 // Play the game with 3 disks
13 moveDisks(3, "peg 1", "peg 3", "peg 2");
14 cout << "All the disks have been moved!"
15
16 return 0;
17 }
18

(program continues)

920 Chapter 14 Recursion

14.8 Focus on Problem Solving:
Exhaustive and Enumeration Algorithms

CONCEPT: An enumeration algorithm is one that generates all possible combinations of
items of a certain type; an exhaustive algorithm is one that searches through
such a set of combinations to find the best one.

19 //***
20 // The moveDisks function displays disk moves used *
21 // to solve the Towers of Hanoi game. *
22 // The parameters are: *
23 // n : The number of disks to move. *
24 // source : The peg to move from. *
25 // dest : The peg to move to. *
26 // temp : The temporary peg. *
27 //***
28 void
29 moveDisks(int n, string source, string dest, string temp)
30 {
31 if (n > 0)
32 {
33 // Move n - 1 disks from source to temp
34 // using dest as the temporary peg
35 moveDisks(n - 1, source, temp, dest);
36
37 // Move a disk from source to dest
38 cout << "Move a disk from " << source
39 << " to " << dest << endl;
40
41 // Move n - 1 disks from temp to dest
42 // using source as the temporary peg
43 moveDisks(n - 1, temp, dest, source);
44 }
45 }

Program Output
Move a disk from peg 1 to peg 3
Move a disk from peg 1 to peg 2
Move a disk from peg 3 to peg 2
Move a disk from peg 1 to peg 3
Move a disk from peg 2 to peg 1
Move a disk from peg 2 to peg 3
Move a disk from peg 1 to peg 3
All the disks have been moved!

NOTE: You can find many animations on the World Wide Web and on YouTube. Type
“Towers of Hanoi Animation” into your favorite search engine.

Program 14-9 (continued)

921

Many problems can only be solved by examining all possible combinations of items of
a certain type and then choosing the best one. For example, consider the problem of
making change for $1.00 using the U.S. system of coins. A few of the solutions to this
problem are:

one dollar coin
two fifty-cent coins
four quarters
one fifty-cent coin and two quarters
three quarters, two dimes, and one nickel.

In fact, there are 293 ways to make change for $1.00, so we need to have a systematic
method for generating them. Suppose we want to make change for a given amount using
the fewest coins. A strategy for this problem that almost immediately suggests itself is to
give as many of the largest coin as possible, then as many of the second largest coin as
possible, and so on, until you have made change for the complete amount. It turns out that
for the U.S. system of coins, this procedure, which is called the greedy strategy, always
finds the best solution. However, the procedure does not work for other systems of coins.
For example, if there are only three coin sizes,

1, 20, 25

and one has to make change for 44 cents, the greedy strategy will give one quarter and 19
pennies, for a total of 20 coins. The best solution uses six coins: two twenty-cent pieces
and four pennies. In general, one would have to try all possible ways of making change to
determine the best one. An algorithm that searches through all possible combinations to
solve a problem is called an exhaustive algorithm; an algorithm that generates all possible
combinations is an enumeration algorithm.

Recursive techniques are often useful in exhaustive and enumeration algorithms. In this
section, we look at a recursive algorithm that counts the number of different ways to make
change for a given amount. With some modification, the algorithm can be adapted to keep
track of the different combinations and either enumerate the list of all such combinations
or report which combination is best. Although the algorithm works for any system that
includes a one-cent piece among its coins, we will assume the American system with the six
coin values: 1, 5, 10, 25, 50, and 100.

The main idea is this. Suppose we want to calculate the number of ways to make change
for 24 cents using coins in the set 1, 5, 10, 25, 50, 100. Since there is no way to make
change for 24 cents that uses coins in the set 25, 50, 100, the largest usable coin is a dime,
and we can just calculate the number of ways to make change for 24 cents using coins in
the set 1, 5, 10. Moreover, we cannot use more than two 10-cent pieces in making change
for 24 cents, so we only need to count the number of ways to make change that use zero,
one, or two 10-cent pieces and add them all together to get our answer. Table 14-1 lists
these possibilities, shows how each possibility can be decomposed into a smaller problem
of the same type, and shows the call to the recursive mkChange function that would be
invoked to solve the subproblem. The parameters for the mkChange function will be
explained shortly.

Focus on Problem Solving: Exhaustive and Enumeration Algorithms

922 Chapter 14 Recursion

We are now ready to present the implementation of the algorithm. The set of possible coin
values is given by an array

const int coinValues[] = {1, 5, 10, 25, 50, 100};

and the algorithm itself is embodied in the recursive function

int mkChange(amount, largestIndex)

where the first parameter is the amount to make change for, the second is the index of the
largest coin in the coinValues array to be used in making that amount, and the integer
returned is the number of combinations possible to make the specified amount of change
using the specified maximum coin value. Thus the call to make change for 24 cents using
coin values 1, 5 is

mkChange(24,1);

In this case, the second parameter 1 is the index of the largest coin to be used, that is the
index of the nickel in the coinValues array. Likewise, the call to make change for 14 cents
using the same coin values is

mkChange(14,1);

Program 14-10 implements this algorithm for the U.S. system of coins. It would work for
any other coin system by simply changing the coin set size and the values in the coinValues
array. The algorithm assumes that the coinValues array lists its values in increasing order.

Notice how the function handles the base case in lines 23–24. It returns 1 when the
amount equals 0, so that when the calling function deducts coins that equal the desired
amount exactly in line 34, nWays will be incremented by 1 in line 38. The function also
returns 1 when largestIndex equals 0 to indicate that any amount can be composed in
just 1 way using pennies (this wouldn’t necessarily be true if the smallest coin were not 1).

Table 14-1

number of ways to make
change for 24 cents using no
dimes

=
number of ways to make change
for 24 cents using coins in the
set 1, 5

= mkChange(24,1);

number of ways to make
change for 24 cents using one
dime

=
number of ways to make change
for 14 cents using coins in the
set 1, 5

= mkChange(14,1);

number of ways to make
change for 24 cents using two
dimes

=
number of ways to make change
for 4 cents using coins in the
set 1, 5

= mkChange(4,1);

Program 14-10

1 // This program demonstrates a recursive function that finds
2 // and counts all possible combinations of coin values to
3 // make a specified amount of change.
4
5 #include <iostream>
6 using namespace std;
7

(program continues)

923

8 const int COIN_SET_SIZE = 6;
9 const int coinValues[] = {1, 5, 10, 25, 50, 100};
10
11 //***
12 // This function returns the number of ways to make change *
13 // for an amount if we can only use coinValues in the array *
14 // positions 0 through largestIndex *
15 //***
16
17 int mkChange(int amount, int largestIndex)
18 {
19 // Don't use coin values bigger than amount
20 while(coinValues[largestIndex] > amount)
21 largestIndex--;
22
23 if (amount == 0 || largestIndex == 0)
24 return 1;
25
26 // Number of ways to make change for amount
27 int nWays = 0;
28 // Number of coins of largest index to use
29 int nCoins = 0 ;
30
31 while (nCoins <= amount/coinValues[largestIndex])
32 {
33 int amountLeft;
34 amountLeft = amount - nCoins * coinValues[largestIndex];
35
36 // Add the number of ways to make change with nCoins
37 // of the largest index
38 nWays = nWays + mkChange(amountLeft, largestIndex-1);
39
40 nCoins++;
41 }
42 return nWays;
43 }
44
45 int main()
46 {
47 // Display possible coin values
48 cout << "Here are the valid coin values, in cents: ";
49 for (int index = 0; index < COIN_SET_SIZE; index ++)
50 cout << coinValues[index] << " ";
51 cout << endl;
52
53 // Get input from user
54 int amount;
55 cout << "Enter the amount of cents to make change for: ";
56 cin >> amount;
57

(program continues)

Program 14-10 (continued)

Focus on Problem Solving: Exhaustive and Enumeration Algorithms

924 Chapter 14 Recursion

14.9 Focus on Software Engineering:
Recursion versus Iteration

CONCEPT: Recursion and iteration are equivalent in expressive power.

Recursion and iteration are equivalent in expressive power in the sense that whatever can
be done with one can also be done with the other. In any program, any recursive function
can be replaced with an equivalent function that uses loops and no recursion, and
conversely, any function that uses loops can be replaced with an equivalent recursive
function that uses no loops.

In general, programs that use recursion incur more overhead than equivalent programs
that use iteration. This is because recursion typically involves the making of several
function calls. For each such call, the machine must pass parameters to the call, keep track
of the return address, create the function’s local variables, and finally, destroy the local
variables when the fuction returns. Current computers are fast enough that for many
problems people would not notice this difference in efficiency between an algorithm that
uses recursion and one that does not. In such cases, it does not make much difference
whether one uses recursion or iteration.

There are, however, some recursive algorithms (like the one used to compute the Fibonacci
sequence) that in the course of solving a problem recompute solutions to the same
subproblems over and over again. Such algorithms tend to be extremely inefficient and
should always be avoided in favor of iteration.

In general, recursion should be used whenever the problem has a natural recursive solution
that does not unncessarily recompute solutions to subproblems and the equivalent solution
based on iteration either is not obvious or is difficult.

58 // Compute and display number of ways to make change
59 cout << "Number of possible combinations is "
60 << mkChange(amount, COIN_SET_SIZE-1)
61 << endl;
62 return 0;
63 }

Program Output with Example Input Shown in Bold
Here are the valid coin values, in cents: 1 5 10 25 50 100
Enter (as an integer) the amount of cents to make change for: 11[Enter]
Number of possible combinations: 4

Program 14-10 (continued)

925

14.10 Tying It All Together: Infix and Prefix Expressions

A binary operator is said to be infix if it is written between its operands, as in the
expression x + y. It is said to prefix if it is written before its operands, as in the
expression + x y. Finally, it is said to be postfix if it is written after its operands as in x y
+. An arithmetic expression consisting of numbers, variables, and operators is called
infix if it uses only infix operators, prefix if it uses only prefix operators, and postfix if
all of its operators are postfix. Table 14-2 shows the infix, prefix, and postfix forms of
five different expressions.

An infix expression with more than one operator can be evaluated in different ways
yielding different results. Consider the expression 2 + 5 *3. If we add before
multiplying, the result is 21, but if we multiply and then add, we get 17. Infix
expressions depend on elaborate rules of operator precedence to determine how the
expression is evaluated. In addition, parentheses must sometimes be used with infix
expressions to override the precedence rules.

Prefix and postfix expressions do not suffer from these drawbacks and need neither
parentheses nor rules of precedence. Instead, their operators are simply applied in the
order in which they are encountered. The omission of parentheses allows prefix and postfix
expressions to be stored in very compact forms, leading to savings in the amount of
memory used. Because algorithms that work with prefix and postfix expressions do not
need to process the parentheses or deal with precedence, they are often simpler.

Most programming languages, however, use infix expressions because that is what people
are accustomed to. Many compilers and interpreters internally translate infix expressions
to prefix or postfix so they can take advantage of the resulting efficiencies in storage and
processing.

It is useful, when working with prefix expressions, to know they can be defined recursively:

1. A simple variable such as x, or a number such as 23, is a prefix expression.
2. Any operator followed by two prefix expressions is a prefix expression.

Based on this recursive definition, we will develop a strategy for converting a fully
parenthesized infix expression to its prefix equivalent. First, note that an infix expression
that involves no operators (it is an identifier or a number) is already in prefix form, in
which case there is nothing to do. Otherwise, place the outermost operator of the fully
parenthesized infix expression before its operands and then recursively apply this strategy

Table 14-2

Infix Expression Prefix Expression Postfix Expression

2
x
x + 2
x + 23 * y
(x + 23) * y

2
x
+ x 2
+ x * 23 y
* + x 23 y

2
x
x 2 +
x 23 y * +
x 23 + y *

Tying It All Together: Infix and Prefix Expressions

926 Chapter 14 RecursionChapter 14 Recursion

to the subexpressions (the operands of the outermost operator). Continue this until all
subexpressions have been converted to prefix. Here is an example of this process:

1. Original infix expression is (x + 23)* y.
2. Place the outermost operator before its operands to give the result * (x + 23) y.
3. Recursively apply the same strategy to the inner subexpression x + 23 by placing +

before x and 23 to give the result * + x 23 y.
4. Recursively apply the strategy to x, 23, and y. However, these are all base cases so

they remain unchanged. The procedure terminates with the result * + x 23 y.

Having gained some practice working with prefix expressions, let’s write a program that
reads in prefix expressions, evaluates them, and prints the results. We assume that the
prefix expressions contain no variables.

We use a recursive strategy. The base case is when the prefix expression is a single number.
In that case, we just read the number and return its value. A prefix expression that is not a
single number must consist of an operator followed by two prefix expressions. To evaluate
such an expression, we read and store the operator, recursively evaluate the two prefix
expressions to get two results, and then apply the operator to the two results. The recursive
function prefixExpr() shown in Program 14-11 implements this strategy.

The prefixExpr() function uses the peek() member function of the istream class to
skip whitespace and locate the beginning of the prefix expression. The peek() function
returns the next available character from the stream without actually reading it and
removing it from the stream. We use peek() to ensure that we do not skip a character that
is part of the expression while we are skipping leading whitespace. We also use the peek()
function to check if the first non-space character is a digit: if it is, we know the prefix
expression is a number and we read it using the extraction operator in line 50:

exprStream >> number;

A non-space character that begins a prefix expression but is not a digit must be an
operator. In that case, we read the character using the get() member function in line 42:

ch = exprStream.get();

The main function of this program just reads one line at a time, transforms the string
retrieved into an istringstream object, and calls the prefixExpr() function. The user
can enter multiple infix expressions with each expression being entered on its own line.
The program terminates when the user enters a blank line.

Program 14-11

1 // This program evaluates prefix expressions.
2 #include <stdlib.h>
3 #include <string>
4 #include <sstream>
5 #include <iostream>
6 using namespace std;
7
8 int prefixExpr(istream &exprStream); //Prototype
9
10 int main()

(program continues)

927Tying It All Together: Infix and Prefix Expressions

11 {
12 string input;
13 cout << "Enter prefix expressions to evaluate.\n"
14 << "Press enter after each expression,\n"
15 << "and press enter on a blank line to quit.\n\n" ;
16 cout << "Enter a prefix expression to evaluate: ";
17 getline(cin, input);
18 while (input.size() != 0)
19 {
20 // Convert string to istringstream
21 istringstream exprStream(input);
22 // Evaluate the prefix expression
23 cout << prefixExpr(exprStream) << endl;
24 // Get next line of input
25 cout << "Enter a prefix expression to evaluate: ";
26 getline(cin, input);
27 }
28 return 0;
29 }
30
31 //***
32 // Takes an istream that contains a single prefix expression p *
33 // and returns the integer value of p *
34 //***
35 int prefixExpr(istream &exprStream)
36 {
37
38 // Peek at first non-space character in prefix expression
39 char ch = exprStream.peek();
40 while (isspace(ch))
41 {
42 ch = exprStream.get(); // Read the space character
43 ch = exprStream.peek(); // Peek again
44 }
45
46 if (isdigit(ch))
47 {
48 // The prefix expression is a single number
49 int number;
50 exprStream >> number;
51 return number;
52 }
53 else
54 {
55 // The prefix expression is an operator followed
56 // by two prefix expressions: Compute values of
57 // the prefix expressions
58
59 // Read the operator
60 ch = exprStream.get();
61

(program continues)

Program 14-11 (continued)

928 Chapter 14 RecursionChapter 14 Recursion

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. What type of recursive function do you think would be more difficult to debug;
one that uses direct recursion, or one that uses indirect recursion? Why?

2. Which repetition approach is less efficient; a loop or a recursive function? Why?

3. When should you choose a recursive algorithm over an iterative algorithm?

4. The __________ of recursion is the number of times a function calls itself.

5. __________ recursion is when a function explicitly calls itself.

6. __________ recursion is when function A calls function B, which in turn calls
function A.

62 // Recursively evaluate the two subexpressions
63 int value1 = prefixExpr(exprStream);
64 int value2 = prefixExpr(exprStream);
65
66 // Apply the operator
67 switch(ch)
68 {
69 case '+': return value1 + value2;
70 case '-': return value1 - value2;
71 case '*': return value1 * value2;
72 case '/': return value1 / value2;
73 default: cout << "Bad input expression";
74 exit(1);
75 }
76 }
77 }

Program Output with Example Input Shown in Bold
Enter prefix expressions to evaluate.
Press enter after each expression,
and press enter on a blank line to quit.

Enter a prefix expression to evaluate: 34[Enter]
34
Enter a prefix expression to evaluate: + 23 5[Enter]
28
Enter a prefix expression to evaluate: * +23 5 2[Enter]
56
Enter a prefix expression to evaluate:[Enter]

Program 14-11 (continued)

Review Questions and Exercises 929

Predict the Output

7. What is the output of the following programs?

A) #include <iostream>
using namespace std;

int function(int);
int main()
{
 int x = 10;

 cout << function(x) << endl;
 return 0;
}

int function(int num)
{
 if (num <= 0)
 return 0;
 else
 return function(num - 1) + num;
}

B) #include <iostream>
using namespace std;

void function(int);

int main()
{

int x = 10;

function(x);
return 0;

}

void function(int num)
{

if (num > 0)
{

for (int x = 0; x < num; x++)
cout << '*';

cout << endl;
function(num - 1);

}
}

C) #include <cstdlib>
#include <string>
#include <iostream>
using namespace std;
void function(string str, int pos);

int main(int argc, char** argv)

930 Chapter 14 Recursion

{
string names = "Adam and Eve";
function(names, 0);
return 0;

}
void function (string str, int pos)
{

if (pos < str.length())
{

function(str, pos+1);
cout << str[pos];

}
}

Soft Skills

8. Programming is communication; the programmer “explains” to a computer how
to carry out a task, with the explanation being the program. Can you think of any
cases where communication directed to people uses direct or indirect recursion?
Are there cases where such a use of recursion is indispensable?

Programming Challenges

1. Iterative Factorial

Write an iterative version (using a loop instead of recursion) of the factorial function
shown in this chapter. Demonstrate the use of the function in a program that prints the
factorial of a number entered by the user.

2. Recursive Conversion

Convert the following function to one that uses recursion.

void sign(int n)
{

while (n > 0)
{

cout << "No Parking\n";
n--;

}
}

Demonstrate the function with a driver program.

3. QuickSort Template

Create a template version of the quickSort algorithm that will work with any data
type that overloads the comparison operators. Demonstrate the template with a driver
function.

4. Recursive Array Sum

Write a function that accepts two arguments, an array of integers and a number indicating
the number of elements in the array. The function should recursively calculate the sum of

Review Questions and Exercises 931

all the numbers in the array. Demonstrate the use of the function in a program that asks
the user to enter an array of numbers and prints its sum.

5. Recursive Multiplication

Write a recursive function that accepts two arguments into the parameters x and y. The
function should return the value of x times y. Remember, multiplication can be performed
as repeated addition:

7 * 4 = 4 + 4 + 4 + 4 + 4 + 4 + 4

6. Recursive Member Test

Write a recursive Boolean function named isMember. The function should accept three
parameters: an array of integers, an integer indicating the number of elements in the
array, and an integer value to be searched for. The function should return true if the
value is found in the array, or false if the value is not found. Demonstrate the use of
the function in a program that asks the user to enter an array of numbers and a value
to be searched for.

7. String Reverser

Write a recursive function that accepts a string as its argument and prints the string in
reverse order. Demonstrate the function in a driver program.

8. Ackermann’s Function

Ackermann’s function is a recursive mathematical algorithm that can be used to test how
well a computer performs recursion. Write a function A(m, n) that solves Ackermann’s
function. Use the following logic in your function:

If m = 0 then return n + 1
If n = 0 then return A(m-1, 1)
Otherwise, return A(m-1, A(m, n-1))

Test your function in a driver program that displays the following values:

A(0, 0) A(0, 1) A(1, 1) A(1, 2) A(1, 3) A(2, 2) A(3, 2)

9. Prefix to Postfix

Write a program that reads prefix expressions and converts them to postfix. Each prefix
expression should be entered on a separate line. The program should keep reading prefix
expressions and converting them to postfix until a blank line is entered.

10. Prefix to Infix

Write a program that reads prefix expressions and converts them to infix. The infix
expressions should be fully parenthesized to show the order of application of the
operators. Each prefix expression should be entered on a separate line. The program
should keep reading prefix expressions and converting them to infix until a blank line
is entered.

VideoNote

Solving the
Recursive
Multiplication
Problem

932 Chapter 14 Recursion

11. Ancestral Trees

Assume the following arrays are globally defined.

const string people[] = {"Al", "Beth", "Bob", "Carol", "Chuck",
 "Candy", "Cain", "Debbie", "Doug",
 "Diane", "Dwayne", "Delores", "Dwight"
 };
const string mother[] = {"Beth", "Carol", "Charity", "Debbie",
 "Diane", "", "Delores"
 };
const string father[] = {"Bob", "Charley", "Cain", "Douglas",
 "Dwayne", "", "Dwight"
 };
const int mom[] = {1, 3, 5, 7, 9, -1, 11, -1, -1, -1, -1, -1, -1};
const int pop[] = {2, 4, 6, 8, 10, -1, 12, -1, -1, -1, -1, -1, -1};

The people array establishes a correspondence between a name and its position in the
array: Al is assigned the index 0, Beth is assigned the index 1, and so on. The mother and
father arrays specify parental information. Al, who has index 0, has Beth (mother[0])
for his mother and Bob (father[0]) for his father. Similarly, the mother and father of Beth
are Carol and Charley respectively. The mother and father of Candy (index 5) are not
known, so they are indicated by empty strings.

The mom and pop arrays give the same information in integer rather than string format.
Values of �1 denote unknown information. For example, the mother of the person at index
4 has index mom[4]= 9, and the father has index pop[4]= 10.

The ancestral lineage of a person is a list that begins with that person, and includes all of
his or her ancestors. For example, the ancestral lineage of Al (index 0) is given by the
people array, while the ancestral lineage of Cain (index 6) is Cain, Delores, Dwight.

Write a function void ancestors(int index) that prints a list of names that comprises
the ancestral lineage of the person with the given index.

933

C
H

A
P

T
E

R

15 Polymorphism and Virtual
Functions

15.1 Type Compatibility in Inheritance Hierarchies

CONCEPT: Objects of a derived class can be used wherever objects of a base class object
are expected.

Hierarchies of Inheritance
As you learned in Chapter 11, it often makes sense to create a new class based on an
existing class if the new class is a special version of the existing one. The derived class can
then itself serve as the base class for other classes, resulting in an inheritance hierarchy. For
example, in Chapter 11, we used the process of inheritance to create a hierarchy of several
classes: Person, Student, Faculty, and TFaculty. The relationship of inheritance is normally
depicted using rectangles to represent the classes and arrows pointing from the derived
class to the base class, as shown in Figure 15-1.

This hierarchy may of course be extended. For example, the Student class might itself be
used as a base class for two other derived classes, CStudent and RStudent. These last two
classes might be used to represent a type of student that commutes and another type of
student that is resident on campus.

TOPICS

15.1 Type Compatibility in
Inheritance Hierarchies

15.2 Polymorphism and Virtual
Member Functions

15.3 Abstract Base Classes and Pure
Virtual Functions

15.4 Focus on Object-Oriented
Programming: Composition
versus Inheritance

15.5 Secure Encryption Systems, Inc.,
Case Study

15.6 Tying It All Together: Let’s Move It

934 Chapter 15 Polymorphism and Virtual Functions

Type Compatibility in Inheritance
Certain type compatibility relationships hold among different classes in an inheritance
hierarchy. Because objects in an inheritance hierarchy are commonly accessed through
pointers, we state these rules in terms of pointers:

• A derived class pointer can always be assigned to a base class pointer. This means
that base class pointers can point to derived class objects.

• A type cast is required to perform the opposite assignment of a base class pointer to a
derived class pointer. An error may result at run time if the base class pointer does
not actually point to a derived class object.

Let us illustrate the use of these rules with a simple example.

class Base
{
public:

int i;
Base(int k){i = k;}

};
class Derived : public Base
{
public:

double d;
Derived(int k, double g) : Base(k){ d = g ;}

};

Base *pb = new Base(5);
Derived *pd = new Derived(6, 10.5);

The first rule says we can assign derived class pointers to base class pointers. Thus we can
write:

Base *pb1 = pd;
Base *pb2 = new Derived(7, 11.5);

Figure 15-1

Student

TFaculty

Faculty

Person

Type Compatibility in Inheritance Hierarchies 935

The second rule says we can assign a base class pointer to a derived class pointer if we use
a type cast. Thus we can write:

Derived *pd1 = static_cast<Derived *>(pb1);

This assignment leaves pd1, (which is a pointer to Derived) pointing to a Derived class
object, and allows subsequent accesses to Derived class members through pd1 to execute
correctly:

cout << pd1->d;

Consider now the scenario in which a Base class pointer pb pointing to a Base class object
is assigned to a Derived class pointer using a type cast.

pd = static_cast<Derived *>pb;

The statement compiles correctly, but when it is executed, it leaves a Derived class pointer
pointing to a Base class object. A subsequent access to Derived class members through pd
will cause a runtime error:

cout << pd->d; // Error

The error occurs because the Base class object pointed to by pd does not have a member d.

These types of compatibility rules hold even for deep inheritance hierarchies. For example,
if as in Figure 15-1 Person is a base class for Faculty which is in turn a base class for
TFaculty, then you can assign a TFaculty pointer to a Person pointer:

TFaculty *tF = new TFaculty(name, disc);
Person *p ;
p = tF;

The assignment in the reverse direction, however, requires a type cast:

tF = static_cast<TFaculty *>(p);

To give further illustration of these concepts, consider the following program which uses
modified versions of classes first encountered in Section 12 of Chapter 11.

Contents of Inheritance4.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 class Person
8 {
9 protected:
10 string name;
11 public:
12 Person() { setName(""); }
13 Person(string pName) { setName(pName); }
14 void setName(string pName) { name = pName; }
15 string getName() const { return name; }
16 };

936 Chapter 15 Polymorphism and Virtual Functions

17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;
23 public:
24
25 Student(string sname, Discipline d, Person *adv)
26 : Person(sname)
27 {
28 major = d;
29 advisor = adv;
30 }
31 void setMajor(Discipline d) { major = d; }
32 Discipline getMajor() const { return major; }
33 void setAdvisor(Person *p) { advisor = p; }
34 Person *getAdvisor() const { return advisor; }
35 };
36
37 class Faculty:public Person
38 {
39 private:
40 Discipline department;
41 public:
42 Faculty(string fname, Discipline d) : Person(fname)
43 {
44 department = d;
45 }
46 void setDepartment(Discipline d) { department = d; }
47 Discipline getDepartment() const { return department; }
48 };
49
50 class TFaculty : public Faculty
51 {
52 private:
53 string title;
54 public:
55 TFaculty(string fname, Discipline d, string title)
56 : Faculty(fname, d)
57 {
58 setTitle(title);
59 }
60 void setTitle(string title) { this->title = title; }
61
62 // Override getName()
63 string getName() const
64 {
65 return title + " " + Person::getName();
66 }
67 };

Type Compatibility in Inheritance Hierarchies 937

Here are other examples of assigning derived class pointers to base classes:

Person *ptp;
TFaculty *ptf;
// Pointer to Derived class is assigned to Base class
// pointer
ptp = new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr.");
// Assigning a base class pointer to a derived class
// pointer requires a typecast
ptf = static_cast<TFaculty *>(ptp);

In this section of code, the new operator returns a pointer to the derived class TFaculty,
which is assigned to the base class pointer ptp. The base class pointer ptp is then assigned
to ptf using a type cast.

These type compatibility rules apply in two other cases. A function that is declared as
taking a pointer to a base class will accept a pointer to a derived class object as an actual
parameter. Also, a function that declares a return type of a pointer to a particular class C
may actually return a pointer to on object of a class derived from C.

Using Type Casts with Base Class Pointers
We have seen that a pointer to a particular class C may actually be pointing an object of a
class derived from C. In this case, the class type of the pointer will be different from the
class type of the object, and C++ defaults to using the class of the pointer to determine
access to the members of the object. As an example, consider the statement

Person *pPerson = new Faculty("Donald Knuth", COMPUTER_SCIENCE);

Even though this assignment is legal, it does not make the pointer pPerson aware of
additional members of the Faculty class that are not in the Person class. Consequently,
an attempt to access members of the Faculty class through pPerson, such as

pPerson->setDepartment(BIOLOGY); // compiler error!

is rejected by the compiler. If we do know that pPerson actually points to a Faculty
object, we can use a type cast to get the compiler to accept the statement:

static_cast<Faculty *>(pPerson)->setDepartment(BIOLOGY);

The type cast informs the compiler that pPerson is actually pointing to a Faculty object
derived from the Person base class. Alternatively, we can first cast pPerson to a pointer to
Faculty, and then use the new pointer:

Faculty *pFaculty = static_cast<Faculty *>(pPerson);
pFaculty->setDepartment(BIOLOGY);

In general, a pointer to a base class that actually points to a derived class object must first
be appropriately cast before the additional features of the derived class can be used.

Recall from Chapter 11 that a derived class may override member functions that are
defined in its base class. When a pointer to a base class is being used to access a member
function that has been overridden by the derived class, the default C++ behavior is to use
the version of the function that is defined in the class of the pointer rather than in the class
of the object. For example, the code

Person *pP = new TFaculty("Indiana Jones", ARCHEOLOGY);

938 Chapter 15 Polymorphism and Virtual Functions

sets pP, which is a pointer to the base class Person, to point to a TFaculty object. Note that
TFaculty overrides the getName function defined in Person. In executing the statement

cout << pP->getName();

the compiler is not aware that the actual class type of the object is TFaculty. The compiler
sees the class type of the pointer and assumes that the class type of the object is the same as
that of the pointer. Therefore, it calls the version of getName defined in the Person class.
Program 15-1 illustrates these concepts.

Program 15-1

1 // This program demonstrates type compatibility within
2 // an inheritance hierarchy.
3 #include "inheritance4.h"
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 Person *pp;
10 Faculty *pf;
11 TFaculty *ptf;
12 ptf = new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr.");
13
14 // Calling getName through a pointer to TFaculty uses
15 // the version of getName in TFaculty
16 cout << "Get name through a pointer to TFaculty: ";
17 cout << ptf->getName() << endl;
18
19 // Assignment of derived to base needs no cast
20 pf = ptf;
21
22 // Calling getName through a pointer to Faculty uses the
23 // version of getName in Faculty
24 cout << "Get name through a pointer to Faculty: ";
25 cout << pf->getName() << endl;
26
27 // Assignment of derived to base needs no cast
28 pp = ptf;
29
30 // Derived class members can be accessed using a cast
31 cout << "Get name through a cast to pointer to TFaculty: ";
32 cout << static_cast<TFaculty *>(pp)->getName() << endl;
33
34 // Assigment from base to derived needs a cast
35 TFaculty *ptf1;
36 ptf1 = static_cast<TFaculty *>(pp);
37
38 // Access getName through a pointer to TFaculty
39 cout << "Get name through a pointer to TFaculty: ";
40 cout << ptf1->getName();
41
42 return 0;
43 }

(program continues)

Polymorphism and Virtual Member Functions 939

Polymorphism

15.2 Polymorphism and Virtual Member Functions

CONCEPT: Virtual functions allow the most specific version of a member function in an
inheritance hierarchy to be selected for execution. Virtual functions make
polymorphism possible.

A piece of code is said to be polymorphic if executing the code with different types of
data produces different behavior. For example, a function would be called polymorphic
if it executes differently when it is passed different types of parameters.

To illustrate polymorphism, consider the following program. The program creates an array
of (pointers to) Person objects of type Student, Faculty, and TFaculty. It then prints the
names in all the objects using the same code. Because an array can only hold elements of
one type, we must use an array of pointers to the base class.

Program Output
Get name through a pointer to TFaculty: Dr. Indiana Jones
Get name through a pointer to Faculty: Indiana Jones
Get name through a cast to pointer to TFaculty: Dr. Indiana Jones
Get name through a pointer to TFaculty: Dr. Indiana Jones

Program 15-2

1 // This exhibits the default non-polymorphic behavior of C++.
2 #include "inheritance4.h"
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // Create an array of pointers to Person objects
9 const int NUM_PEOPLE = 5;
10 Person *arr[NUM_PEOPLE] =
11 {
12 new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr."),
13 new Student("Thomas Cruise", COMPUTER_SCIENCE, NULL),
14 new Faculty("James Stock", BIOLOGY),
15 new TFaculty("Sharon Rock", BIOLOGY, "Professor"),
16 new TFaculty("Nicole Eweman", ARCHEOLOGY, "Dr.")
17 };
18 // Print the names of the Person objects
19 for (int k = 0; k < NUM_PEOPLE; k++)
20 {
21 cout << arr[k]->getName() << endl;
22 }
23 return 0;
24 }

(program continues)

Program 15-1 (continued)

VideoNote

940 Chapter 15 Polymorphism and Virtual Functions

Notice that the program calls the Person version of the getName function for all objects in
the array, even though the TFaculty objects have their own, more specialized version. This
code is obviously not polymorphic, for it executes the same member function for each
object, regardless of its type. In other words, it does not behave differently for different
types of objects.

To better understand what is happening, we need to take a closer look at each of the five
calls

arr[k]->getName()

used to retrieve the name to be printed. In each of these calls, a pointer arr[k] to the base
class Person is used to invoke the getName function in objects of different derived classes.
Some of these classes, like TFaculty, override getName to provide a more specialized
version of that function. When arr[k] is pointing to a TFaculty object, the compiler
must choose between the getName defined in Person, the class of the pointer, and the
getName defined in TFaculty, the class that the object actually belongs to. The default
C++ behavior is to use the class type of the pointer rather than that of the object to
determine which version of an overridden function to call.

The scenario of invoking a member function of a derived class object through a base class
pointer is a common occurrence in object-oriented programming. Let us say that we have a
base class B with a member function mfun() and a base class pointer ptr that is pointing
to an object of a derived class D.

class B
{
public:
 void mfun()
 {
 cout << "Base class version";
 }
};
class D : public B
{
public:
 void mfun()
 {
 cout << "Derived class version";
 }
};
Base *ptr = new D();

Program Output
Indiana Jones
Thomas Cruise
James Stock
Sharon Rock
Nicole Eweman

Program 15-2 (continued)

Polymorphism and Virtual Member Functions 941

We want to tell the compiler that whenever we write

ptr->mfun()

the compiler should select the more specialized version of mfun() in the derived class. We
can do this in C++ by declaring mfun() to be a virtual function in the base class. Virtual
functions are used in C++ to support polymorphic behavior. Thus, to achieve polymorphic
behavior for mfun() in the class B and all of its derived classes, we must modify the
definition of B as follows:

class B
{
public:
 virtual void mfun()
 {
 cout << "Base class version";
 }
};

The virtual characteristic is inherited: that is, if a member function of a derived class
overrides a virtual function in the base class, then that member function is automatically
virtual itself. Thus the declaration of mfun as virtual in B makes mfun virtual in D and in all
classes derived from D.

Although it is not necessary, many programmers tag all virtual functions with the key word
virtual to make it easer to identify them. This is good practice, and accordingly, the
definition of D should be written as follows:

class D : public B
{
public:
 virtual void mfun()
 {
 cout << "Derived class version";
 }
};

The following program is a modification of Program 15-2. In it, the getName function
of the Person class has been declared virtual. It includes the inheritance5.h file,
which is the just the inheritance4.h file modified to make the getName function in
the Person class virtual.

Program 15-3

Contents of Inheritance5.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 // The Person class is modified to make getName

(program continues)

942 Chapter 15 Polymorphism and Virtual Functions

8 // a virtual function
9 class Person{
10 protected:
11 string name;
12 public:
13 Person() { setName(""); }
14 Person(string pName) { setName(pName); }
15 void setName(string pName) { name = pName; }
16
17 // Virtual function
18 virtual string getName() const { return name; }
19 };
20
21 class Student:public Person
22 {
23 private:
24 Discipline major;
25 Person *advisor;
26 public:
27 Student(string sname, Discipline d, Person *adv)
28 : Person(sname)
29 {
30 major = d;
31 advisor = adv;
32 }
33 void setMajor(Discipline d) { major = d; }
34 Discipline getMajor() const { return major; }
35 void setAdvisor(Person *p) { advisor = p; }
36 Person *getAdvisor() const { return advisor; }
37 };
38
39 class Faculty:public Person
40 {
41 private:
42 Discipline department;
43 public:
44 Faculty(string fname, Discipline d) : Person(fname)
45 {
46 department = d;
47 }
48 void setDepartment(Discipline d) { department = d; }
49 Discipline getDepartment() const { return department; }
50 };
51
52 class TFaculty : public Faculty
53 {
54 private:
55 string title;
56 public:
57 TFaculty(string fname, Discipline d, string title)
58 : Faculty(fname, d)

(program continues)

Program 15-3 (continued)

Polymorphism and Virtual Member Functions 943

Dynamic and Static Binding
The compiler is said to bind the name of a function when it selects the code that should be
executed when the function name is invoked. In other words, the compiler binds the name
to a function definition when the function is called.

59 {
60 setTitle(title);
61 }
62
63 void setTitle(string title) { this->title = title; }
64
65 // Virtual function
66 virtual string getName() const
67 {
68 return title + " " + Person::getName();
69 }
70 };
71

Contents of Main Program, pr15-03.cpp
1 // This demonstrates the polymorphic behavior
2 // of classes with virtual functions.
3 #include "inheritance5.h"
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // Create an array of Person objects
10 const int NUM_PEOPLE = 5;
11 Person *arr[NUM_PEOPLE] =
12 {
13 new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr."),
14 new Student("Thomas Cruise", COMPUTER_SCIENCE, NULL),
15 new Faculty("James Stock", BIOLOGY),
16 new TFaculty("Sharon Rock", BIOLOGY, "Professor"),
17 new TFaculty("Nicole Eweman", ARCHEOLOGY, "Dr.")
18 };
19 // Print the names of the Person objects
20 for (int k = 0; k < NUM_PEOPLE; k++)
21 {
22 cout << arr[k]->getName() << endl;
23 }
24 return 0;
25 }

Program Output
Dr. Indiana Jones
Thomas Cruise
James Stock
Professor Sharon Rock
Dr. Nicole Eweman

Program 15-3 (continued)

944 Chapter 15 Polymorphism and Virtual Functions

Static binding happens at compile time and binds the name to a fixed function definition,
which is then executed each time the name is invoked. For example, in Program 15-2 of the
previous section, the compiler used static binding to bind getName in the statement

for (int k = 0; k < NUM_PEOPLE; k++)
{

cout << arr[k]->getName() << endl;
}

to the definition of getName in the Person class.

In static binding, the compiler uses type information available at compile time. If the code
is operating on objects of different classes within an inheritance hierarchy, the only type
information available to the compiler will be the base class pointer type used to access all
the objects. Consequently, static binding will always use the base class version of a member
function.

In contrast, dynamic binding occurs at run time. Dynamic binding works only if the compiler
can determine at run time the exact class that a subclass object belongs to. The compiler then
uses this run-time type information to call the version of the function defined in that class.
To make dynamic binding possible, the compiler stores run-time type information in every
object of a class with a virtual function. Dynamic binding always uses the version of the
member function in the actual class of the object, regardless of the class of the pointer used
to access the object.

More information on dynamic binding and run-time type information can be found in
Appendix K on the book’s companion website.

15.3 Abstract Base Classes and Pure Virtual Functions

CONCEPT: Abstract classes and pure virtual functions can be used to define an interface
that must be implemented by derived classes.

It is often convenient to have a base class for an inheritance hierarchy that defines a
member function that must be implemented in every derived class, but which cannot be
implemented by the base class itself because the details needed for a reasonable
implementation can only be found in the derived classes. If this is the case, the C++
language permits the programmer to declare the function a pure virtual function, that is, a
member function for which the class provides no implementation. The C++ way of
declaring a pure virtual function is to put the expression = 0 in the class declaration where
the body of the function would otherwise have gone. For example, if a member function
void draw() is being declared pure virtual, then its declaration in its class looks like

void draw() = 0;

A pure virtual function is sometimes called an abstract function, and a class with at least
one pure virtual function is called an abstract class. The C++ compiler will not allow you
to instantiate an abstract class. Abstract classes can only be subclassed: that is, you can
only use them as base classes from which to derive other classes.

Abstract Base Classes and Pure Virtual Functions 945

A class derived from an abstract class inherits all functions in the base class and will itself
be an abstract class unless it overrides all the abstract functions it inherits. The usefulness
of abstract classes lies in the fact that they define an interface that will then have to be
supported by objects of all classes derived from it.

You can think of an abstract class as a class which has no instances other than those that
belong to some subclass. There are many examples of abstract classes in real life. For
example, in the animal kingdom, the class “Animal” of all animals is an abstract class.
There are instances of animals that do not actually belong to some subclass. There are
animals that are dogs, or chickens, or foxes, but there no animals that are just animals.

Consider a graphics system that consists of a collection of shapes that must be drawn at
certain locations on the screen. Each shape object would have some member variables to
keep track of its position and a member function for drawing the shape at the right
position. The different shapes supported by the system might include rectangles,
hexagons, and others. Because a rectangle is a shape, and a hexagon is a shape, it makes
sense to have a Shape class and have both Rectangle and Hexagon be classes derived
from Shape. The Shape class will have a member function setPosition for setting the
position of the shape, as well as a member function draw for drawing the shape.
However, because Shape is an abstract class (there is no shape that is just a “shape,” it
must be a rectangle, a hexagon, a triangle, or other) the logic for drawing a particular
shape must be delegated to an appropriate subclass. Thus the draw() function cannot
have an implementation in the Shape class and must be made a pure virtual function.

Program 15-4 shows a Shape class with two derived classes: Rectangle and Hexagon.
The class declares a pure virtual function draw() that is implemented by its two
subclasses. The main function maintains a collection of Shape objects using an array of
pointers.

Program 15-4

1 // This program demonstrates abstract base
2 // classes and pure virtual functions.
3 #include <iostream>
4 using namespace std;
5
6 class Shape
7 {
8 protected:
9 int posX, posY;
10 public:
11 virtual void draw() const = 0;
12 void setPosition(int pX, int pY)
13 {
14 posX = pX;
15 posY = pY;
16 }
17 };
18
19 class Rectangle : public Shape
20 {

(program continues)

946 Chapter 15 Polymorphism and Virtual Functions

Program 15-4 affords another demonstration of dynamic binding and polymorphism.
Consider in particular the statement

shapeArray[j]->draw();

21 public:
22 virtual void draw() const
23 {
24 cout << "Drawing rectangle at " << posX << " "
25 << posY << endl;
26 }
27 };
28
29 class Hexagon : public Shape
30 {
31 public:
32 virtual void draw() const
33 {
34 cout << "Drawing hexagon at " << posX << " "
35 << posY << endl;
36 }
37 };
38
39 int main()
40 {
41 // Create array of pointers to Shapes of various types
42 const int NUM_SHAPES = 3;
43 Shape * shapeArray[] = { new Hexagon(),
44 new Rectangle(),
45 new Hexagon()
46 };
47 // Set positions of all the shapes
48 int posX = 5, posY = 15;
49 for (int k = 0; k < NUM_SHAPES; k++)
50 {
51 shapeArray[k]->setPosition(posX, posY);
52 posX += 10;
53 posY += 10;
54 };
55
56 // Draw all the shapes at their positions
57 for (int j = 0; j < NUM_SHAPES; j++)
58 {
59 shapeArray[j]->draw();
60 }
61 return 0;
62 }

Program Output
Drawing hexagon at 5 15
Drawing rectangle at 15 25
Drawing hexagon at 25 35

Program 15-4 (continued)

Abstract Base Classes and Pure Virtual Functions 947

which is executed a number of different times in the loop

for (int j = 0; j < NUM_SHAPES; j++)
{

shapeArray[j]->draw();
}

The first time the statement is executed, it invokes the draw function on a hexagon object,
while the second time, it invokes the draw function on a rectangle object. Because the two
draw functions are in different classes, they produce different behavior.

Remember the following points about abstract base classes and pure virtual functions:

• When a class contains a pure virtual function, it is an abstract base class.
• Abstract base classes cannot be instantiated.
• Pure virtual functions are declared with the = 0 notation, and have no body, or definition.
• Pure virtual functions must be overridden in derived classes that need to be instantiated.

Checkpoint

15.1 Explain the difference between static binding and dynamic binding.

15.2 Are virtual functions statically bound or dynamically bound?

15.3 What will the following program display?

#include <iostream>
using namespace std;
class First
{

protected:
int a;

public:
First(int x = 1) { a = x; }
int getVal() const { return a; }

};
class Second : public First
{

private:
int b;

public:
Second(int y = 5) { b = y; }
int getVal() const { return b; }

};
int main()
{

First object1;
Second object2;
cout << object1.getVal() << endl;
cout << object2.getVal() << endl;
return 0;

}

15.4 What will the following program display?

#include <iostream>
using namespace std;
class First

948 Chapter 15 Polymorphism and Virtual Functions

{
protected:

int a;
public:

First(int x = 1) { a = x; }
void twist() { a *= 2; }
int getVal() { twist(); return a; }

};
class Second : public First
{

private:
int b;

public:
Second(int y = 5) { b = y; }
void twist() { b *= 10; }

};
int main()
{

First object1;
Second object2;
cout << object1.getVal() << endl;
cout << object2.getVal() << endl;
return 0;

}

15.5 What will the following program display?

#include <iostream>
using namespace std;
class First
{

protected:
int a;

public:
First(int x = 1) { a = x; }
virtual void twist() { a *= 2; }
int getVal() { twist(); return a; }

};
class Second : public First
{

private:
int b;

public:
Second(int y = 5) { b = y; }
virtual void twist() { b *= 10; }

};
int main()
{

First object1;
Second object2;
cout << object1.getVal() << endl;
cout << object2.getVal() << endl;
return 0;

}

Abstract Base Classes and Pure Virtual Functions 949

15.6 What will the following program display?

#include <iostream>
using namespace std;
class Base
{

protected:
int baseVar;

public:
Base(int val = 2) { baseVar = val; }
int getVar() const { return baseVar; }

};
class Derived : public Base
{

private:
int deriVar;

public:
Derived(int val = 100) { deriVar = val; }
int getVar() const { return deriVar; }

};

int main()
{

Base *optr;
Derived object;

optr = &object;
cout << optr->getVar() << endl;
return 0;

}

15.7 How can you tell from looking at a class declaration that a virtual member function
is pure?

15.8 What makes an abstract class different from other classes?

15.9 Examine the following classes. The table lists the variables that are members of the
Third class (some are inherited). Complete the table by filling in the access specification
each member will have in the Third class. Write “inaccessible” if a member is
inaccessible to the Third class.

class First
{

private:
int a;

protected:
double b;

public:
long c;

};

class Second : protected First
{

private:
int d;

950 Chapter 15 Polymorphism and Virtual Functions

protected:
double e;

public:
long f;

};

class Third : public Second
{

private:
int g;

protected:
double h;

public:
long i;

}

15.4 Focus on Object-Oriented Programming:
Composition versus Inheritance

CONCEPT: Inheritance should model an “is -a” relation, rather than a “has -a” relation,
between the derived and base classes.

Class inheritance in an object-oriented language should be used to model the fact that the
type of the derived class is a special case of the type of the base class. Actually, a class can
be considered to be the set of all objects that can be created from it. Because the derived

Member
Variable

Access Specification
in Third class

a

b

c

d

e

f

g

h

i

VideoNote

Composition
versus
Inheritance

951

class is a special case of the base class, the set of objects that correspond to the derived
class will be a subset of the set of objects that correspond to the base class. Thus, every
object of the derived class is also an object of the base class. In other words, each derived
class object is a base class object.

Class composition occurs whenever a class contains an object of another class as one of its
member variables. Composition was discussed in Chapter 11, where it was pointed out
that composition models a has-a relation between classes.

Because a derived class inherits all the members of its base class, a derived class effectively
contains an object of its base class. Because of this, it is possible to use inheritance where a
correct design would call for composition. As an example, consider a program that needs
to represent data for a person, say the person’s name and street address. The street address
might consist of two lines:

123 Main Street
Hometown, 12345

Now suppose we had a class for representing a street address:

class StreetAddress
{

private:
string line1, line2;

public:
void setLine1(string);
void setLine2(string);
string getLine1();
string getLine2();

};

Because a person’s data has a name and a street address, the proper formulation of a class
to represent a person’s data would use composition in the following way:

class PersonData
{

private:
string name;
StreetAddress address;

public:
...

};

We have left off the rest of the class declaration for PersonData because we don’t need it
for our purposes.

It is possible to define this class using inheritance instead of composition. For example, we
could define a class PersonData1 as follows:

class PersonData1:public StreetAddress
{

private:
string name;

public:
...

};

Focus on Object-Oriented Programming: Composition versus Inheritance

952 Chapter 15 Polymorphism and Virtual Functions

While this new definition would compile correctly, it is conceptually the wrong thing to
do because it regards a person’s data as a special kind of StreetAddress, which it is not.
This type of conceptual error in design can result in a program that is confusing to
understand and difficult to maintain. It is a good design practice to prefer composition to
inheritance whenever possible. One reason is that inheritance breaks the encapsulation
of the base class by exposing the base class’s protected members to the methods of the
derived class.

Let us next consider an example where it makes sense to use inheritance rather than
composition. Suppose that we have a class Dog that represents the set of all dogs. Assuming
that each Dog object has a member variable weight of type double and a member function
void bark(), we might have the following class:

class Dog
{

protected:
double weight;

public:
Dog(double w)

{ weight = w; }
virtual void bark() const

{
 cout << "I am dog weighing "

 << weight << " pounds." << endl;
}

};

The class also has a constructor to allow Dog objects to be initialized. Note that we
have declared the bark() member function as virtual to allow it to be overridden in a
derived class.

Suppose that we need to have a class that represents the set of all sheep dogs. Since every
sheep dog is also a dog, it makes sense to derive the new SheepDog class from the Dog
class. That way, a SheepDog object will inherit every member of the Dog class. In addition
to having every characteristic that every dog has, a sheep dog can be expected to have
other characteristics peculiar to sheep dogs, for example, an integer member numberSheep
that indicates the maximum number of sheep the dog is trained to herd. In addition, a
sheep dog might have a way of barking different from that of a generic dog, perhaps one
adapted to the tending of sheep. This is accounted for by overriding the bark() member
function of the Dog class.

class SheepDog:public Dog
{

private:
int numberSheep;

public:
SheepDog(double w, int nSheep) : Dog(w)
{

numberSheep = nSheep;
}
void bark() const

 {
 cout << "I am a sheepdog weighing "

953Focus on Object-Oriented Programming: Composition versus Inheritance

 << weight << " pounds \n and guarding "
 << numberSheep << " sheep." << endl;
 }
};

To demonstrate this class, we will set up an array of dogs with some of the dogs in the
array being sheep dogs. To get around the fact that an array cannot hold two different
types, we will use an array of pointers to Dog. Recall from Section 15.1 that a pointer to a
base class (in this case, Dog) can point to any derived class object (in this case, SheepDog).
We can therefore create an array of pointers to Dog and have some of those pointers point
to Dog objects while others point to SheepDog objects:

Dog *kennel[3] = { new Dog(40.5),
 new SheepDog(45.3, 50),
 new Dog(24.7)
 };

Finally, we can use a loop to call the bark()member function of each Dog object in the
array.

for (int k = 0; k < 3; k++)
{

cout << k+1 << ": ";
kennel[k]->bark();

}

Because of polymorphism, and because the bark() function was declared virtual, the same
line of code inside the loop will call the original bark() function for a regular dog, but will
call the specialized bark() function for a sheep dog. The complete program is given in
Program 15-5.

Program 15-5

1 // This program demonstrates the is-a
2 // relation in inheritance.
3 #include <iostream>
4 using namespace std;
5
6 // Base class
7 class Dog
8 {
9 protected:
10 double weight;
11 public:
12 Dog(double w)
13 { weight = w; }
14 virtual void bark() const
15 {
16 cout << "I am a dog weighing "
17 << weight << " pounds." << endl;
18 }
19 };
20

(program continues)

954 Chapter 15 Polymorphism and Virtual Functions

Inheritance is a better choice than composition in this example, since to use composition
would be tantamount to saying that a sheep dog has a dog, instead of saying that a sheep
dog is a dog.

There is a third relationship between classes that some authors talk about: the uses
implementation of relation. Basically, one class uses the implementation of a second class if
it calls a member function of an object of the second class.

How can you know when to use inheritance and when to use composition? Suppose that
you have an existing class C1 and you need to write a definition for another class C2 that

21 // A SheepDog is a special type of Dog
22 class SheepDog:public Dog
23 {
24 int numberSheep;
25 public:
26 SheepDog(double w, int nSheep) : Dog(w)
27 {
28 numberSheep = nSheep;
29 }
30 void bark() const
31 {
32 cout << "I am a sheepdog weighing "
33 << weight << " pounds \n and guarding "
34 << numberSheep << " sheep." << endl;
35 }
36 };
37
38 int main()
39 {
40 // Create an array of dogs
41 const int NUM_DOGS = 3;
42 Dog *kennel[] = { new Dog(40.5),
43 new SheepDog(45.3, 50),
44 new Dog(24.7)
45 };
46
47 // Walk by each kennel and make the dog bark
48 for (int k = 0; k < NUM_DOGS; k++)
49 {
50 cout << k+1 << ": ";
51 kennel[k]->bark();
52 }
53 return 0;
54 }

Program Output
1: I am a dog weighing 40.5 pounds.
2: I am a sheepdog weighing 45.3 pounds
 and guarding 50 sheep.
3: I am a dog weighing 24.7 pounds.

Program 15-5 (continued)

Secure Encryption Systems, Inc., Case Study 955

will need the services of an associated C1 object. Should you derive C2 from C1, or should
you give C2 a member variable of type C1? In general, you should prefer composition to
inheritance. To help determine if inheritance may be appropriate, you might ask the
following questions:

• Is it natural to think of a C2 object as a special type of C1 object? If so, then you
should use inheritance.

• Will objects of class C2 need to be used in places where objects of class C1 are
used? For example, will they need to be passed to functions that take reference
parameters of type C1, or pointers to C1? If so, then you should make C2 a
derived class of C1.

15.5 Secure Encryption Systems, Inc., Case Study
Secure Encryption Systems is a recently founded consulting company that advises business
and corporations on how to protect their data from unauthorized access. The company is
interested in developing a framework that enables the rapid evaluation and testing of
different encryption and decryption algorithms to determine their effectiveness and the
level of security they offer.

In this section, we will consider the use of virtual functions and abstract classes to build
application frameworks. An application framework can be regarded as an application in
skeletal form: it only needs the user to specify the definition of a few functions to transform
the framework into a useful application.

Understanding the Problem
In Chapter 9’s Tying It All Together section you were introduced to the idea of encoding a
message so that it could only be read by someone possessing the right information to
decode it. More formally, encryption is the process of transforming a message, called plain
text, into cipher text, a form that disguises its true meaning. The encryption algorithm used
in Chapter 9 involved substituting a new character for each original character. There are
many other methods of encrypting text. For example, a simple encryption algorithm might
remove all punctuation and spacing from a message and then mix up all the letters in some
predetermined way. The message can later be “unmixed” to allow it to be read. For
example, the plain text message

attack at dawn

might be transformed into the cipher text

aadakntwctta

The “mixing” scheme is an example of an encryption key, while the “unmixing” scheme
would be a corresponding decryption key. Decryption is the process of reversing the
encryption transformation that has been performed on a message. Decryption is applied to
cipher text to yield the original plain text.

956 Chapter 15 Polymorphism and Virtual Functions

A Simple Encryption / Decryption Framework
To provide a framework for testing encryption and decryption algorithms, we will
implement a class that provides all the functionality needed to test such an algorithm, but
leaves the function that is used to transform the letters unspecified. The framework will be
realized as a class, and the transformation function will be a pure virtual member function
of the class. Specific encryption algorithms can then be easily tested by forming a derived
class of the framework class and overriding the virtual transformation function.

We use a really simple character transformation algorithm: it just shifts up the character by
one in the ASCII code: it does not even wrap around to the beginning of the alphabet when
it shifts the letters ‘z’ or ‘Z’. The major part of the program is the Encryption class:

class Encryption
{
 protected:
 ifstream inFile;
 ofstream outFile;
 public:
 Encryption(char *inFileName, char *outFileName);
 ~Encryption();
 // Pure virtual function
 virtual char transform(char ch) = 0;
 // Do the actual work
 void encrypt();
};

This class contains the file objects that will be used to access the input and output files.
The constructor is passed the names of the two files and does the work of opening the
files. The destructor closes the files. The encrypt function will read characters from
the input file, call the virtual function transform to transform the single character, and
write the character to the output file.

Because the transform function is pure virtual, the Encryption class is abstract and
cannot be instantiated. All a subclass of Encryption needs to do is implement a suitable
transform function and pass the file names as parameters to its base class constructor. The
complete program follows.

Application frameworks are used in many areas of software development to simplify the
creation of software. Most application frameworks rely heavily on virtual functions and
abstract classes.

Program 15-6

1 // This program demonstrates an application
2 // of pure virtual functions.
3 #include <iostream>
4 #include <fstream>

(program continues)

Secure Encryption Systems, Inc., Case Study 957

5 using namespace std;
6
7 class Encryption
8 {
9 protected:
10 ifstream inFile;
11 ofstream outFile;
12 public:
13 Encryption(char *inFileName, char *outFileName);
14 ~Encryption();
15 // Pure virtual function
16 virtual char transform(char ch) const = 0;
17 // Do the actual work
18 void encrypt();
19 };
20
21 //**
22 // Constructor opens the input and output file. *
23 //**
24 Encryption::Encryption(char *inFileName, char *outFileName)
25 {
26 inFile.open(inFileName);
27 outFile.open(outFileName);
28 if (!inFile)
29 {
30 cout << "The file " << inFileName
31 << " cannot be opened.";
32 exit(1);
33 }
34 if (!outFile)
35 {
36 cout << "The file " << outFileName
37 << " cannot be opened.";
38 exit(1);
39 }
40 }
41
42 //**
43 //Destructor closes files. *
44 //**
45 Encryption::~Encryption()
46 {
47 inFile.close();
48 outFile.close();
49 }
50

(program continues)

Program 15-6 (continued)

958 Chapter 15 Polymorphism and Virtual Functions

51 //***
52 //Encrypt function uses the virtual transform *
53 //member function to transform individual characters. *
54 //***
55 void Encryption::encrypt()
56 {
57 char ch;
58 char transCh;
59 inFile.get(ch);
60 while (!inFile.fail())
61 {
62 transCh = transform(ch);
63 outFile.put(transCh);
64 inFile.get(ch);
65 }
66 }
67
68 // The subclass simply overides the virtual
69 // transformation function
70 class SimpleEncryption : public Encryption
71 {
72 public:
73 char transform(char ch) const
74 {
75 return ch + 1;
76 }
77 SimpleEncryption(char *inFileName, char *outFileName)
78 : Encryption(inFileName, outFileName)
79 {
80 }
81 };
82
83 int main()
84 {
85 char inFileName[80], outFileName[80];
86 cout << "Enter name of file to encrypt: ";
87 cin >> inFileName;
88 cout << "Enter name of file to receive "
89 << "the encrypted text: ";
90 cin >> outFileName;
91 SimpleEncryption obfuscate(inFileName, outFileName);
92 obfuscate.encrypt();
93 return 0;
94 }

Program 15-6 (continued)

959

15.6 Tying It All Together: Let’s Move It

Video game programmers often have to maintain a collection of figures that are
simultaneously moving in various directions on the screen. Let’s devise a solution to a
simplifed version of this problem. We will maintain a collection of geometric shapes and
simultaneously animate those shapes. The functions used to directly access the screen and
manage the timer are peculiar to Microsoft Windows, but the principles used are very
general and are applicable to all operating systems.

We begin with a class that represents a shape that is able to move in any of eight different
directions, with each direction being specified by a pair of integer (X, Y) coordinates.
Upward or downward motion is indicated by a Y component of ±1, and likewise, motion
in a left or rightward direction is indicated by an X component of ±1. A value of 0 for an
X or Y coordinate indicates lack of motion in that direction. Thus, a value of (0, 1) for
(X, Y) indicates motion straight up, a value of (−1, 0) indicates motion to the left, and
(1, 1) is motion that is simultaneously downward and to the right. The Shape class can be
seen in lines 13–23 of the ShapeAnimator.h file.

The Shape class has a move() function that is pure virtual. This is because a shape is
moved by erasing it at its current position and redrawing it at a new position, and it is not
possible to know how to draw a shape without knowing what type of shape it is.

Our solution for representing the different shapes will use the five classes Shape,
ComplexShape, SimpleShape, Box, and Tent. These classes form the inheritance
hierarchy shown in Figure 15-2.

The SimpleShape class represents objects that can be drawn at a given position in a
specified color. Accordingly, it has member variables for representing position and color
and member functions for setting and accessing those values. The SimpleShape class
appears in lines 26–44 of the ShapeAnimator.h file. Notice that the SimpleShape class is
still abstract because it provides no implementation for the draw() method. The class does
implement the move() method, though. This is because the move() method works the
same way for all subclasses of SimpleShape: erase the shape at its current position,
compute its new position, and draw the shape at the new position. The draw() method,
however, works differently for each concrete subclass that implements it. Because draw()
is virtual, the move() method will always call the appropriate version of draw(), even
when the call to draw() is through a pointer to the abstract class Shape.

Figure 15-2

Box Tent

Shape

ComplexShape SimpleShape

Tying It All Together: Let’s Move It

960 Chapter 15 Polymorphism and Virtual Functions

The Box and Tent classes are the concrete classes at the tip of the inheritance hierarchy.
They define a specific concrete shape and implement the member function draw() that
draws the shape at its current position using the shape’s specified color. The Box class
defines a rectangular shape by specifying the position of its top left-hand corner together
with its width and height. The Tent class defines a triangle with a horizontal base whose
two other sides are equal in length and whose height is half the length of the base. A Tent
object is specified by giving the position of the left end point of its base together with the
length of the base. For example, a tent whose base has length 5 would look like this:

 *

The Box and Tent classes can be seen in Lines 46–66 of ShapeAnimator.h.

The ComplexShape class provides a mechanism for assembling a collection of simple shapes
to form a single shape that can be moved using a single command. The class maintains a
vector of pointers to Shape objects, and implements its move() method is by calling the
move() methods of all the Shape objects in its collection. Likewise, ComplexShape has a
setDirection() method that can be used to cause all of its constituent shapes to move in
the same direction. The class itself is found in lines 70–78 of the ShapeAnimator.h file, and
its move() method is implemented in lines 124–128 of ShapeAnimator.cpp.

Contents of SortAnimator.h
1 #include <iostream>
2 #include <string>
3 #include <vector>
4 #include <windows.h>
5 using namespace std;
6
7 // A global constant can be included in more than one cpp file.
8 // This is the handle to the output console.
9 const HANDLE outHandle = GetStdHandle(STD_OUTPUT_HANDLE);
10
11 // A shape has a direction and is able to move in that direction.
12 // The move is a virtual member function
13 class Shape
14 {
15 public:
16 virtual void setDirection(int drow, int dcol) const
17 {dRow = drow; dCol = dcol;}
18 void getDirection(int &drow, int &dcol)
19 {drow = dRow; dcol = dCol;}
20 virtual void move()= 0;
21 private:
22 int dRow, dCol; // Direction of motion
23 };
24
25 // A SimpleShape is drawn at a given position in a specified color
26 class SimpleShape : public Shape

961

27 {
28 public:
29 virtual void draw() const = 0;
30 void getPosition(int &row, int &col) const
31 {
32 row = rowPos; col = colPos;
33 }
34 void setPosition(int row, int col)
35 {
36 rowPos = row; colPos = col;
37 }
38 void setColor(int c){ color = c; }
39 int getColor() const {return color; }
40 virtual void move();
41 private:
42 int color;
43 int rowPos, colPos;
44 };
45
46 // A Box is a rectangular type of shape
47 class Box : public SimpleShape
48 {
49 public:
50 virtual void draw() const;
51 Box(int rowPos, int colPos, int width, int height);
52 private:
53 int width, height;
54 };
55
56 // A Tent is an isosceles triangle whose horizontal base has a
57 // given length and whose height is half the length of the base
58 // The position of the triangle is the left end point of the base
59 class Tent : public SimpleShape
60 {
61 public:
62 virtual void draw() const;
63 Tent(int baseRowPos, int baseColPos, int baseLength);
64 private:
65 int baseLength;
66 };
67
68 // A ComplexShape is made up of simpler shapes. It is represented
69 // as a vector of pointers to the simpler shapes that make it up
70 class ComplexShape : public Shape
71 {
72 public:
73 ComplexShape(Shape ** shapeCollection, int shapesCount);
74 virtual void move();
75 virtual void setDirection(int dRow, int dCol);
76 private:
77 vector<Shape *> shapes;
78 };

Tying It All Together: Let’s Move It

962 Chapter 15 Polymorphism and Virtual Functions

Contents of ShapeAnimator.cpp
1 #include "ShapeAnimator.h"
2
3 //***
4 // Moves a simple shape one step by erasing the shape *
5 // at its current position, changing its position, and then *
6 // redrawing the shape at its new position. *
7 //***
8 void SimpleShape::move()
9 {
10 int dRow, dCol; // Direction of motion
11 int savedColor = color;
12 color = 0; // Drawing in color 0 erases the shape
13 draw();
14 // Compute the new position for the shape by adding a step in
15 // the proper direction to the current position
16 getDirection(dRow, dCol);
17 rowPos += dRow;
18 colPos += dCol;
19 // Draw the shape at its new position in its specified color
20 color = savedColor;
21 draw();
22 }
23 //***********************************
24 // Draws a tent at its position *
25 //***********************************
26 void Tent:: draw() const
27 {
28 int rowPos, colPos;
29 COORD pos;
30 int currentLength = baseLength;
31 // Set the color attribute
32 SetConsoleTextAttribute(outHandle, getColor());
33 getPosition(rowPos, colPos);
34 pos.Y = rowPos; pos.X = colPos;
35
36 // Draw the lines that form the tent beginning with
37 // the base and moving up toward the point
38 for (int r = 0; r < (baseLength + 1)/2; r++)
39 {
40 SetConsoleCursorPosition(outHandle,pos);
41 // Draw a horizontal line of a given length
42 for (int k = 0; k < currentLength; k++)
43 {
44 cout << "*";
45 }
46 cout << endl;
47 pos.Y--;
48 pos.X ++;
49 currentLength -= 2;
50 }
51 // Restore normal attribute
52 SetConsoleTextAttribute(outHandle, 7);
53 }

963

54 //**********************************
55 // Draws a box shape *
56 //**********************************
57 void Box::draw() const
58 {
59 int rowPos, colPos;
60 COORD pos;
61
62 // Set the color attribute for the box
63 SetConsoleTextAttribute(outHandle, getColor());
64 getPosition(rowPos, colPos);
65 pos.X = colPos; pos.Y = rowPos;
66
67 // Draw the lines that make up the box
68 for (int r = 0; r < height; r++)
69 {
70 SetConsoleCursorPosition(outHandle, pos);
71 for (int c = 0; c < width; c++)
72 {
73 cout << "*";
74 }
75 cout << endl;
76 pos.Y++;
77 }
78 // Restore normal text attribute
79 SetConsoleTextAttribute(outHandle, 7);
80 }
81 //***
82 // Constructor sets the color, position, and *
83 // dimensions for a box shape, and draws *
84 // the box at its initial position *
85 //***
86 Box::Box(int rowPos, int colPos, int width, int height)
87 {
88 setColor(4);
89 setPosition(rowPos, colPos);
90 this->width = width;
91 this->height = height;
92 draw();
93 }
94 //***
95 // Constructor sets the color for a Tent shape, *
96 // sets the position of the tent as well as the *
97 // length of its base and draws it at its *
98 // initial position *
99 //***
100 Tent::Tent(int baseRowPos, int baseColPos, int baseLength)
101 {
102 setColor(2);
103 setPosition(baseRowPos, baseColPos);
104 this->baseLength = baseLength;
105 draw();
106 }

Tying It All Together: Let’s Move It

964 Chapter 15 Polymorphism and Virtual Functions

Program 15-7, which follows, illustrates the use of these classes. The program starts out by
creating two simple shapes, a tent and a box, in lines 7–8. The tent is created at the left
edge of the screen while the box is near the right edge. In lines 14–26, the program moves
the tent to the right at the same time that it is moving the box to the left, stopping the
motion when the two shapes are within a few coordinates of each other. Lines 27–39
create a complex shape out of the two simple shapes, and then moves the complex shape
diagonally downward and to the right. Finally, in lines 40–46, the program moves the box
horizontally to the right.

107 //**
108 // Constructor builds a complex shape by assembling a vector of *
109 // constituent shapes *
110 //**
111 ComplexShape::ComplexShape(Shape ** shapeCollection, int shapesCount)
112 {
113 Shape *p;
114 for (int k = 0; k < shapesCount; k++)
115 {
116 p = shapeCollection[k];
117 shapes.push_back(p);
118 }
119 }
120 //**************************************
121 // Moves a complex shape by moving the *
122 // constituent shapes *
123 //**************************************
124 void ComplexShape::move()
125 {
126 for (int k = 0; k < shapes.size(); k++)
127 shapes[k]->move();
128 }
129 //**
130 // Sets the direction of a complex shape by setting the *
131 // direction of all constituent shapes *
132 //**
133 void ComplexShape::setDirection(int dRow, int dCol)
134 {
135 // Set direction for the ComplexShape object so
136 // getDirection() will work correctly
137 Shape::setDirection(dRow, dCol);
138
139 // Set the directions for the constituent shapes so
140 // move() will work correctly
141 for (int k = 0; k < shapes.size(); k++)
142 shapes[k]->setDirection(dRow, dCol);
143 }

965Tying It All Together: Let’s Move It

Program 15-7

1 // This program illustrates the use of the various Shape
2 // classes and subclasses to do graphic animation.
3 #include "ShapeAnimator.h"
4 int main()
5 {
6 // Create a tent and a box
7 Tent tent(11, 5, 13);
8 Box box(5, 65, 4, 7);
9
10 // Draw the tent and the box
11 tent.draw();
12 box.draw();
13
14 // Set initial direction of motion for the two shapes
15 tent.setDirection(0, 1); // Tent moves horizontally to the right
16 box.setDirection(0, -1); // Box moves horizontally to the left
17
18 // Simultaneously move the tent and the box, this makes them
19 // move toward each other
20 for (int k = 0; k <= 20; k++)
21 {
22 Sleep(75);
23 tent.move();
24 box.move();
25 }
26
27 // Create a complex shape composed of the tent and the box
28 Shape *myShapes[] = {&tent, &box};
29 ComplexShape cS(myShapes, 2);
30
31 // Set direction for the complex shape and move the
32 // complex shape: this moves both the tent and the box
33 // diagonally to the right
34 cS.setDirection(1, 1);
35 for (int k = 0; k < 12; k++)
36 {
37 Sleep(75);
38 cS.move();
39 }
40 // Move the box by itself horizontally to the right
41 box.setDirection(0, 1);
42 for (int k = 0; k < 10; k ++)
43 {
44 Sleep(75);
45 box.move();
46 }
47 return 0;
48 }

966 Chapter 15 Polymorphism and Virtual Functions

Review Questions and Exercises

Fill-in-the-Blank

1. A class that cannot be instantiated is a(n) _________.

2. A member function of a class that is not implemented is called a(n) _________
function.

3. A class with at least one pure virtual member function is called a(n) _________ class.

4. In order to use dynamic binding, a member function of a class needs to be declared as
a(n) _________ function.

5. Static binding takes place at _________ time.

6. Dynamic binding takes place at _________ time.

7. The ability of code to execute differently depending on the type of data is called
_________.

8. A base class pointer needs a(n) _________ to be assigned to a derived class pointer.

9. The is-a relation between classes is best implemented using the mechanism of class
_________.

10. The has-a relation between classes is best implemented using the mechanism of class
_________.

11. If every C1 class object can be used as a C2 class object, the relationship between the
two classes should be implemented using _________.

12. A collection of abstract classes defining an application in skeletal form is called a(n)
_________.

C++ Language Elements

Suppose that the classes Dog and Cat derive from Animal, which in turn derives from
Creature. Suppose further that pDog, pCat, pAnimal, and pCreature are pointers to the
respective classes. Suppose that Animal and Creature are both abstract classes.

13. Will the statement

Animal a;

compile?

14. Will the statement

pAnimal = new Cat;

compile?

15. Will the statement

pCreature = new Dog;

compile?

16. Will the statement

pCat = new Animal;

compile?

Review Questions and Exercises 967

17. Rewrite the following two statements to get them to compile correctly.

pAnimal = new Dog;
pDog = pAnimal;

Algorithm Workbench

18. Write a C++ class that has an array of integers as a member variable, a pure virtual
member function

bool compare(int x, int y) = 0;

that compares its two parameters and returns a boolean value, and a member function

void sort()

that uses the comparison defined by the compare virtual function to sort the array.
The sort function will swap a pair of array elements a[k] and a[j] if

compare (a[k], a[j])

 returns true. Explain how you can use this class to produce classes that sort arrays in
ascending order and descending order.

Find the Errors

19. Find all errors in the following fragment of code.

class MyClass
{
public:
 virtual myFun() = 0;
 { cout << "Hello";}
};

Soft Skills

20. Suppose that you need to have a class that can sort an array in ascending order or
descending order upon request. If an array is already sorted in ascending or descending
order, you can easily sort it the other way by reversing it. Now suppose you have two
different classes that encapsulate arrays. One provides a member function to reverse its
array, while the other provides a member function to sort its array. Can you use multiple
inheritance to obtain a quick solution to your problem? Should you? Write a couple of
paragraphs explaining whether using multiple inheritance will or will not work to solve
this problem, and, if it can, whether this is a good way to solve the problem.

Programming Challenges

1. Analysis of Sorting Algorithms

Design a class AbstractSort that can be used to analyze the number of comparisons performed
by a sorting algorithm. The class should have a member function compare that is capable of
comparing two array elements, and a means of keeping track of the number of comparisons
performed. The class should be an abstract class with a pure virtual member function

void sort(int arr[], int size)

968 Chapter 15 Polymorphism and Virtual Functions

which, when overridden, will sort the array by calling the compare function to determine
the relative order of pairs of numbers. Create a subclass of AbstractSort that uses a
simple sorting algorithm to implement the sort function. The class should have a member
function that can be called after the sorting is done to retrieve the number of comparisons
performed.

2. Analysis of Quicksort

Create a subclass of the AbstractSort class of Programming Challenge 1 that uses the
Quicksort algorithm to implement the sort function.

3. Sequence Sum

A sequence of integers such as 1, 3, 5, 7, … can be represented by a function that takes a
nonnegative integer as parameter and returns the corresponding term of the sequence. For
example, the sequence of odd numbers just cited can be represented by the function

int odd(int k) {return 2 * k + 1;}

Write an abstract class AbstractSeq that has a pure virtual member function

virtual int fun(int k) = 0;

as a stand-in for an actual sequence, and two member functions

void printSeq(int k, int m);
int sumSeq(int k, int m)

that are passed two integer parameters k and m, where k < m. The function printSeq will
print all the terms fun(k) through fun(m) of the sequence, and likewise, the function
sumSeq will return the sum of those terms. Demonstrate your AbstractSeq class by
creating subclasses that you use to sum the terms of at least two different sequences.
Determine what kind of output best shows off the operation of these classes, and write a
program that produces that kind of output.

4. Flexible Encryption

Write a modification of the encryption program of Section 15.5 whose transform function
uses an integer key to transform the character passed to it. The function transforms the
character by adding the key to it. The key should be represented as a member of the
Encryption class, and the class should be modified so that it has a member function that
sets the encryption key. When the program runs, the main function should ask the user for
the input file, the output file, and an encryption key.

Show that with these modifications, the same program can be used for both encryption and
decryption.

5. File Filter

A file filter reads an input file, transforms it in some way, and writes the results to an
output file. Write an abstract file filter class that defines a pure virtual function for
transforming a character. Create one subclass of your file filter class that performs
encryption, another that transforms a file to all uppercase, and another that creates an
unchanged copy of the original file.

VideoNote

Solving the
Sequence Sum
Problem

Review Questions and Exercises 969

The class should have a member function

void doFilter(ifstream &in, ofstream &out)

that is called to perform the actual filtering. The member function for transforming a single
character should have the prototype

char transform(char ch)

The encryption class should have a constructor that takes an integer as an argument and
uses it as the encrytion key.

6. File Double Spacer

Create a subclass of the abstract filter class of Programming Challenge 5 that double spaces
a file: that is, it inserts a blank line between any two lines of the file.

7. Bumper Shapes

Write a program that creates two rectangular shapes and then animates them. The two
shapes should start on opposite ends of the screen and then move toward each other. When
they meet in the middle of the screen, each shape reverses course and moves toward the edge
of the screen. The two shapes keep oscillating and bouncing off of each other in the middle of
the screen. The program terminates when the shapes meet each other in the middle for the
tenth time.

8. Bow Tie

In this chapter’s Tying It All Together we defined a tent to be a certain type of triangular
shape. Define a wedge to be a tent that has been rotated 90 degrees clockwise, and a
reverse wedge to be a tent rotated 90 degrees counterclockwise. Write a program that
creates a wedge and a reverse wedge at the left and right edges of the screen, respectively,
and then moves them toward each other until they meet in the middle. The two shapes
should form a bow tie when they meet.

This page intentionally left blank

971

C
H

A
P

T
E

R

16

16.1 Exceptions

CONCEPT: Exceptions are used to signal errors or unexpected events that occur while a
program is running.

Error testing is usually a straightforward process involving if statements or other control
mechanisms. For example, the following code segment will trap a division-by-zero error
before it occurs:

if (denominator == 0)
cout << "ERROR: Cannot divide by zero.\n";

else
quotient = numerator / denominator;

But what if similar code is part of a function that returns the quotient as in the following
example:

// An unreliable division function
double divide(double numerator, double denominator)

TOPICS

16.1 Exceptions
16.2 Function Templates
16.3 Class Templates
16.4 Class Templates and Inheritance

16.5 Introduction to the Standard
Template Library

16.6 Tying It All Together: Word
Transformers Game

Exceptions, Templates, and the
Standard Template Library (STL)

972 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

{
if (denominator == 0)
 {

 cout << "ERROR: Cannot divide by zero.\n";
 return 0;

 }
else
 return numerator / denominator;

}

Functions commonly signal error conditions by returning a predetermined value. In
this example, the function returns 0 when division by zero has been attempted. This is
unreliable, however, because 0 is a valid result of a division operation. Even though the
function displays an error message, the part of the program that calls the function will
not know when an error has occurred. Problems like these require more sophisticated
error-handling techniques.

Throwing an Exception
One way of handling complex error conditions is with exceptions. An exception is a value
or an object that signals an error. When the error occurs, an exception is said to be
“thrown” because control will pass to a part of the program that catches and handles that
type of error. For example, the following code shows the divide function, modified to
throw an exception when division by zero has been attempted.

double divide(double numerator, double denominator)
{

if (denominator == 0)
 throw string("ERROR: Cannot divide by zero.\n");

else
return numerator / denominator;

}

The following statement causes the exception to be thrown.

throw string("ERROR: Cannot divide by zero.\n");

The throw key word is followed by an argument, which can be any value. As you will see,
the type of the argument is used to determine the nature of the error. The function above
simply throws a string object containing a descriptive error message.

The line containing a throw statement is known as the throw point. When a throw statement
is executed, control is passed to another part of the program known as an exception handler.

Handling an Exception
To handle an exception, a program must have a try/catch construct. The general format of
the try/catch construct is

try
{

// code here calls functions or object member
// functions that might throw an exception.

}

VideoNote

Throwing and
Handling
Exceptions

Exceptions 973

catch(exception parameter)
{

// code here handles the exception
}
// Repeat as many catch blocks as needed.

The first part of the construct is the try block. This starts with the key word try and is
followed by a block of code executing any statements that might directly or indirectly
cause an exception to be thrown. The try block is immediately followed by one or
more catch blocks, which are the exception handlers. A catch block starts with the key
word catch, followed by a set of parentheses containing the declaration of an
exception parameter. For example, here is a try/catch construct that can be used with
the divide function:

try
{

quotient = divide(num1, num2);
cout << "The quotient is " << quotient << endl;

}
catch (string exceptionString)
{

cout << exceptionString;
}

Because the divide function throws an exception whose type is a string, there must be an
exception handler that catches a string. The catch block shown catches the error message
in the exceptionString parameter, then displays it with cout.

Now let’s look at an entire program to see how throw, try, and catch work together. In
the first sample run of Program 16-1, valid data is given. This shows how the program
should run with no errors. In the second sample run, a denominator of 0 is given. This
shows the result of the exception being thrown.

Program 16-1

1 // This program illustrates exception handling.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 // Function prototype
7 double divide(double, double);
8
9 int main()
10 {
11 int num1, num2;
12 double quotient;
13
14 cout << "Enter two numbers: ";
15 cin >> num1 >> num2;
16 try

(program continues)

974 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

As you can see from the second output screen, the exception caused the program to jump
out of the divide function and into the catch block. After the catch block has finished, the
program resumes with the first statement after the try/catch construct.

What If an Exception Is Not Caught?
There are two possible ways for a thrown exception to go uncaught. The first possibility is
for the program to contain no catch blocks with an exception parameter of the right data
type. The second possibility is for the exception to be thrown from outside a try block. In
either case, the exception will cause the entire program to abort execution.

Object-Oriented Exception Handling with Classes
Now that you have an idea of how the exception mechanism in C++ works, we will
examine an object-oriented approach to exception handling. Let’s begin by looking at the
IntRange class:

17 {
18 quotient = divide(num1, num2);
19 cout << "The quotient is " << quotient << endl;
20 }
21 catch (string exceptionString)
22 {
23 cout << exceptionString;
24 }
25 cout << "End of the program.\n";
26 return 0;
27 }
28
29 double divide(double numerator, double denominator)
30 {
31 if (denominator == 0)
32 throw string("ERROR: Cannot divide by zero.\n");
33 else
34 return numerator / denominator;
35 }

Program Output with Example Input Shown in Bold
Enter two numbers: 12 2[Enter]
The quotient is 6
End of the program.

Program Output with Example Input Shown in Bold
Enter two numbers: 12 0[Enter]
ERROR: Cannot divide by zero.
End of the program.

Program 16-1 (continued)

Exceptions 975

IntRange is a simple class whose member function, getInput, lets the user enter an
integer value. The value is compared against the member variables lower and upper
(which are initialized by the class constructor). If the value entered is less than lower or
greater than upper, an exception is thrown indicating the value is out of range.
Otherwise, the value is returned from the function.

Instead of throwing a string or some value of a primitive type, this function throws an
exception class. Notice the empty class declaration that appears in the public section:

class OutOfRange
{ }; // Empty class declaration

Notice that the class has no members. The only important part of this class is its name,
which will be used by the exception handling code. Look at the if statement in the
getinput function:

if (input < lower || input > upper)
throw OutOfRange();

Contents of IntRange.h
1 #ifndef INTRANGE_H
2 #define INTRANGE_H
3
4 #include <iostream>
5 using namespace std;
6
7 class IntRange
8 {
9 private:
10 int input; // For user input
11 int lower; // Lower limit of range
12 int upper; // Upper limit of range
13 public:
14 // Exception class
15 class OutOfRange
16 { }; // Empty class declaration
17 // Member functions
18 IntRange(int low, int high) // Constructor
19 {
20 lower = low;
21 upper = high;
22 }
23 int getInput()
24 {
25 cin >> input;
26 if (input < lower || input > upper)
27 throw OutOfRange();
28 return input;
29 }
30 };
31 #endif

976 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

The throw statement’s argument, OutOfRange(), causes an instance of the OutOfRange
class to be created and thrown as an exception. All that remains is for a catch block to
handle the exception. Here is an example:

catch (IntRange::OutOfRange)
{

cout << "That value is out of range.\n";
}

All that must appear inside the catch block’s parentheses is the name of the exception class.
The exception class is empty, so there is no need to declare an actual parameter. All the
catch block needs to know is the type of the exception.

Since the OutOfRange class is declared in the IntRange class, its name must be fully
qualified with the scope resolution operator. Program 16-2 shows the class at work in a
driver program.

Multiple Exceptions
The programs we have studied so far test only for a single type of error and throw only a
single type of exception. In many cases a program will need to test for several different

Program 16-2

1 // This program demonstrates the use of object-oriented
2 // exception handling.
3 #include <iostream>
4 #include "IntRange.h"
5 using namespace std;
6
7 int main()
8 {
9 IntRange range(5, 10);
10 int userValue;
11
12 cout << "Enter a value in the range 5 - 10: ";
13 try
14 {
15 userValue = range.getInput();
16 cout << "You entered " << userValue << endl;
17 }
18 catch (IntRange::OutOfRange)
19 {
20 cout << "That value is out of range.\n";
21 }
22 cout << "End of the program.\n";
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter a value in the range 5 - 10: 12[Enter]
That value is out of range.
End of the program.

Exceptions 977

types of errors and signal which one has occurred. C++ allows you to throw and catch
multiple exceptions. The only requirement is that each different exception be of a different
type. You then code a separate catch block for each type of exception that may be thrown
in the try block.

For example, suppose we wish to expand the IntRange class so it throws one type of
exception if the user enters a value that is too low, and another type if the user enters a
value that is too high. First, we declare two different exception classes, such as

// Exception classes
class TooLow

{ };
class TooHigh

{ };

An instance of the TooLow class will be thrown when the user enters a low value, and an
instance of the TooHigh class will be thrown when a high value is entered.

Next we modify the getInput member function to perform the two error tests and throw
the appropriate exception:

if (input < lower)
throw TooLow();

else if (input > upper)
throw TooHigh();

The entire modified class, which is named IntRange2, is shown here:

Contents of IntRange2.h
1 #ifndef INTRANGE2_H
2 #define INTRANGE2_H
3
4 #include <iostream>
5 using namespace std;
6
7 class IntRange2
8 {
9 private:
10 int input; // For user input
11 int lower; // Lower limit of range
12 int upper; // Upper limit of range
13 public:
14 // Exception classes
15 class TooLow
16 { };
17 class TooHigh
18 { };
19 // Member functions
20 IntRange2(int low, int high) // Constructor
21 {
22 lower = low;
23 upper = high;
24 }
25 int getInput()

978 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Program 16-3 is a simple driver that demonstrates this class.

Extracting Information from the Exception Class
Sometimes we might want an exception to pass information back to the exception handler.
For example, suppose we would like the IntRange class not only to signal when an invalid

26 {
27 cin >> input;
28 if (input < lower)
29 throw TooLow();
30 else if (input > upper)
31 throw TooHigh();
32 return input;
33 }
34 };
35 #endif

Program 16-3

1 // This program demonstrates the IntRange2 class.
2 #include <iostream>
3 #include "IntRange2.h"
4 using namespace std;
5
6 int main()
7 {
8 IntRange2 range(5, 10);
9 int userValue;
10
11 cout << "Enter a value in the range 5 - 10: ";
12 try
13 {
14 userValue = range.getInput();
15 cout << "You entered " << userValue << endl;
16 }
17 catch (IntRange2::TooLow)
18 {
19 cout << "That value is too low.\n";
20 }
21 catch (IntRange2::TooHigh)
22 {
23 cout << "That value is too high.\n";
24 }
25
26 cout << "End of the program.\n";
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter a value in the range 5 - 10: 3[Enter]
That value is too low.
End of the program.

Exceptions 979

value has been entered, but to pass the value back. This can be accomplished by giving the
exception class members in which information can be stored.

IntRange3, our next modification of the IntRange class, again uses a single exception
class: OutOfRange. This version of OutOfRange, however, has a member variable and a
constructor that initializes it:

// Exception class
class OutOfRange
{ public:

int value;
OutOfRange(int i)
{ value = i; }

};

When we throw this exception, we want to pass the value entered by the user to
OutOfRange’s constructor. This is done with the following statement:

throw OutOfRange(input);

This throw statement creates an instance of the OutOfRange class and passes a copy of the
input variable to the constructor. The constructor then stores this number in OutOfRange’s
member variable value. The class instance carries this member variable to the catch block
that intercepts the exception.

Back in the catch block, the value is extracted:

catch (IntRange3::OutOfRange ex)
{

cout << "That value " << ex.value
 << " is out of range.\n";

}

Notice that the catch block declares a parameter object named ex. This is necessary,
because the exception has a member variable that we want to examine. The entire
IntRange3 class is as follows, and Program 16-4 is a driver that demonstrates it.

Contents of IntRange3.h
1 #ifndef INTRANGE3_H
2 #define INTRANGE3_H
3
4 #include <iostream>
5 using namespace std;
6
7 class IntRange3
8 {
9 private:
10 int input; // For user input
11 int lower; // Lower limit of range
12 int upper; // Upper limit of range
13 public:
14 // Exception class
15 class OutOfRange
16 {
17 public:

980 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

18 int value;
19 OutOfRange(int i)
20 { value = i; }
21 };
22 // Member functions
23 IntRange3(int low, int high) // Constructor
24 {
25 lower = low;
26 upper = high;
27 }
28 int getInput()
29 {
30 cin >> input;
31 if (input < lower || input > upper)
32 throw OutOfRange(input);
33 return input;
34 }
35 };
36 #endif

Program 16-4

1 // This program demonstrates the IntRange3 class.
2 #include <iostream>
3 #include "IntRange3.h"
4 using namespace std;
5
6 int main()
7 {
8 IntRange3 range(5, 10);
9 int userValue;
10
11 cout << "Enter a value in the range 5 - 10: ";
12 try
13 {
14 userValue = range.getInput();
15 cout << "You entered " << userValue << endl;
16 }
17 catch (IntRange3::OutOfRange ex)
18 {
19 cout << "That value " << ex.value
20 << " is out of range.\n";
21 }
22 cout << "End of the program.\n";
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter a value in the range 5 - 10: 12[Enter]
That value 12 is out of range.
End of the program.

Exceptions 981

Handling the bad_alloc Exception Thrown by new
The new operator throws a system-defined exception of type bad_alloc if it is unable to
allocate the requested storage. For example, the following program attempts to allocate an
array of two integers using the new operator inside a try block. If the allocation fails, the
resulting bad_alloc exception is caught in the attached catch block and the program is
terminated with an appropriate error message. If the allocation succeeds, the program
proceeds on to print the two numbers 10 and 20. The bad_alloc type is defined in the
header file new, which must be included in programs that refer to it.

Unwinding the Stack
If an exception is thrown in a try block that has a catch block capable of handling the
exception, control transfers from the throw point to the catch block. Assuming that the
catch block executes to completion without throwing further exceptions, returning from
the function, or terminating the program, execution will continue at the first statement
after the sequence of catch blocks attached to the try block.

If the function does not contain a catch block capable of handling the exception, control passes
out of the function, and the exception is automatically rethrown at the point of the call in the
calling function. By this process, an exception can propagate backwards along the chain of
function calls until the exception is thrown out of a try block that has a catch block that can

Program 16-5

1 // This program demonstrates the use of the bad_alloc
2 // exception.
3 #include <iostream>
4 #include <cstdlib>
5 #include <new> // Needed to use bad_alloc
6 using namespace std;
7
8 int main()
9 {
10 int *p;
11 try
12 {
13 p = new int[2];
14 p[0] = 10;
15 p[1] = 20;
16 }
17 catch(bad_alloc)
18 {
19 cout << "Memory cannot be allocated.";
20 exit(1);
21 }
22 cout << p[0] << " " << p[1];
23 return 0;
24 }

Program Output
10 20

982 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

handle it. If no such try block is ever found, the exception will eventually be thrown out of the
main function, causing the program to be terminated. This process of propagating uncaught
exceptions from a function to its caller is called unwinding the stack of function calls.

Rethrowing an Exception
It is possible for try blocks to be nested. For example, look at this code segment:

void main()
{

try
{

doSomething();
}
catch(exception1)
{

Code to handle exception 1
}
catch(exception2)
{

Code to handle exception 2
}

}

In this try block the function doSomething is called. There are two catch blocks, one that
handles exception1, and another that handles exception2. If the doSomething function
contains a try block, then it is nested inside the one shown.

With nested try blocks, it is sometimes necessary for an inner exception handler to pass an
exception to an outer exception handler. Sometimes, both an inner and an outer catch block
must perform operations when a particular exception is thrown. These situations require
that the inner catch block rethrow the exception so the outer catch block can catch it.

A catch block can rethrow an exception with the throw; statement with no parameter. For
example, suppose the doSomething function (called in the try block above) executes code
that potentially can throw exception1 or exception3. Suppose we do not want to
handle the exception1 error in doSomething, but instead want to rethrow it to the outer
block. The following code segment illustrates how this is done.

void doSomething()
{

try
{

Code that can throw exceptions 1 and 3
}
catch(exception1)
{

throw; // Rethrow the exception
}
catch(exception3)
{

Code to handle exception 3
}

}

Function Templates 983

When the first catch block catches exception1, the throw; statement simply throws the
exception again. The catch block in the outer try/catch construct, in this case the one in the
main function, will then handle the exception.

Checkpoint

16.1 What is the difference between a try block and a catch block?

16.2 What happens if an exception is thrown, but not caught?

16.3 If multiple exceptions can be thrown, how does the catch block know which
exception to catch?

16.4 After the catch block has handled the exception, where does program execution
resume?

16.5 How can an exception pass information to the exception handler?

16.2 Function Templates

CONCEPT: A function template is a “generic” function that can work with different
data types. The programmer writes the specifications of the function, but
substitutes parameters for data types. When the compiler encounters a call
to the function, it generates code to handle the specific data type(s) used in
the call.

Overloaded functions make programming convenient because only one function name
must be remembered for a set of functions that perform similar operations. Each of the
functions, however, must still be written individually. For example, consider the following
overloaded square functions.

int square(int number)
{

return number * number;
}

double square(double number)
{

return number * number;
}

The only differences between these two functions are the data types of their return values
and their parameters. In situations like this, it is more convenient to write a function
template than an overloaded function. Function templates allow you to write a single
function definition that works with many different data types, instead of having to write
a separate function for each data type used.

A function template is not an actual function, but a “mold” the compiler uses to generate one
or more functions. When writing a function template, you do not have to specify actual types
for the parameters, return value, or local variables. Instead, you use a type parameter to specify
a generic data type. When the compiler encounters a call to the function, it examines the data
types of its arguments and generates the function code that will work with those data types.

984 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Here is a function template for the square function:

template <class T>
T square(T number)
{

return number * number;
}

The beginning of a function template is marked by a template prefix, which begins
with the key word template. Next is a set of angled brackets that contains one or
more generic data types used in the template. A generic data type starts with the key
word class, followed by a parameter name that stands for the data type. The example
just given only uses one, which is named T. (If there were more, they would be
separated by commas.) After this, the function definition is written as usual, except the
type parameters are substituted for the actual data type names. In the example the
function header reads

T square(T number)

T is the type parameter, or generic data type. The header defines square as a function that
returns a value of type T and uses a parameter, number, which is also of type T.

As mentioned before, the compiler examines each call to square and fills in the appropriate
data type for T. For example, the following call uses an int argument:

int y, x = 4;
y = square(x);

This code will cause the compiler to generate the function:

int square(int number)
{

return number * number;
}

while the statements

double y, d = 6.2
y = square(d);

will result in the generation of the function

double square(double number)
{

return number * number;
}

Program 16-6 demonstrates how this function template is used.

Program 16-6

1 // This program uses a function template.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;

(program continues)

VideoNote

Writing a
Function
Template

Function Templates 985

Since the compiler encountered two calls to square in Program 16-6, each with different
parameter types, it generated the code for two instances of the function: one with an int
parameter and int return type, the other with a double parameter and double return
type. This is illustrated in Figure 16-1.

5
6 // Template definition for square function
7 template <class T>
8 T square(T number)
9 {
10 return number * number;
11 }
12
13 int main()
14 {
15 cout << setprecision(5);
16
17 // Get an integer and compute its square
18 cout << "Enter an integer: ";
19 int iValue;
20 cin >> iValue;
21
22 // The compiler creates int square(int) at the first
23 // occurrence of a call to square with an int argument
24 cout << "The square is " << square(iValue);
25
26 // Get a double and compute its square
27 cout << "\nEnter a double: ";
28 double dValue;
29 cin >> dValue;
30
31 // The compiler creates double square(double)at the first
32 // occurrence of a call to square with a double argument
33 cout << "The square is " << square(dValue) << endl;
34
35 return 0;
36 }

Program Output with Example Input Shown in Bold
 Enter an integer: 3[Enter]
 The square is 9
 Enter a double: 8.3[Enter]
 The square is 68.89

NOTE: All type parameters defined in a function template must appear at least once in
the function parameter list.

Program 16-6 (continued)

986 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Notice in Program 16-6 that the template appears before all calls to square. As with regular
functions, the compiler must already know the template’s contents when it encounters a call
to the template function. Templates, therefore, should be placed near the top of the program
or in a header file.

The swap Function Template
In many applications, there is a need for swapping the contents of two variables of the same
type. For example, while sorting an array of integers, there would be a need for the function

void swap(int &a, int &b)
{

int temp = a;
a = b;
b = temp;

}

whereas while sorting an array string objects, there would be a need for the function

void swap(string &a, string &b)
{

string temp = a;
a = b;
b = temp;

}

Because the only difference in the coding of these two functions is the type of the variables
being swapped, the logic of both functions and all others like them can be captured with
one template function:

template<class T>
void swap(T &a, T &b)

Figure 16-1

NOTE: A function template is merely the specification of a function and by itself does
not cause memory to be used. An actual instance of the function is created in memory
when the compiler encounters a call to the template function.

Function calls
Function template

Template-generated function code

int x = 4, y;
y = square(x);

double x = 12.5, y;
y = square(x);

template <class T>
T square(T number)
{
 return number * number;
}

int square(int number)
{
 return number * number;
}

double square(double number)
{
 return number * number;
}

Function Templates 987

{
T temp = a;
a = b;
b = temp;

}

Such a template function is available in the libraries that come with standard C++ compilers.
The function is declared in the algorithm header file. Program 16-7 demonstrates the use of
this library template function to swap contents of pairs of variables.

Program 16-7

1 // This program demonstrates the use of the swap
2 // function template.
3 #include <iostream>
4 #include <string>
5 #include <algorithm> // Needed for swap
6 using namespace std;
7
8 int main()
9 {
10 // Get and swap two chars
11 char firstChar, secondChar;
12 cout << "Enter two characters: ";
13 cin >> firstChar >> secondChar;
14 swap(firstChar, secondChar);
15 cout << firstChar << " " << secondChar << endl;
16
17 // Get and swap two ints
18 int firstInt, secondInt;
19 cout << "Enter two integers: ";
20 cin >> firstInt >> secondInt;
21 swap(firstInt, secondInt);
22 cout << firstInt << " " << secondInt << endl;
23
24 // Get and swap two strings
25 cout << "Enter two strings: ";
26 string firstString, secondString;
27 cin >> firstString >> secondString;
28 swap(firstString, secondString);
29 cout << firstString << " " << secondString << endl;
30 return 0;
31 }

Program Output With Example Input Shown in Bold
Enter two characters: a b[Enter]
b a
Enter two integers: 12 45[Enter]
45 12
Enter two strings: Ronald Reagan[Enter]
Reagan Ronald

988 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Using Operators in Function Templates
The square function template shown earlier in this section applies the operator * to its
parameter. The square template will work correctly as long as the type of the parameter
passed to it supports the * operator. For example, it works for numeric types such as int,
long, and double, because all these types have a multiplication operator *. In addition,
the square template will work with any user-defined class type that overloads the operator
*. Errors will result if square is used with types that do not support the operator *.

Always remember that templates will only work with types that support the operations used by
the template. For example, a class can only be used with a template that applies the relational
operators such as <, <=, and != to its type parameter if the class overloads those operators.

For example, because the string class overloads all the relational operators, it can be used
with template functions that compute the minimum of an array of items. Program 16-8
illustrates this.

Program 16-8

1 // This program illustrates the use of function templates.
2 #include <string>
3 #include <iostream>
4 using namespace std;
5
6 // Template for minimum of an array
7 template <class T>
8 T minimum(T arr[], int size)
9 {
10 T smallest = arr[0];
11 for (int k = 1; k < size; k++)
12 {
13 if (arr[k] < smallest)
14 smallest = arr[k];
15 }
16 return smallest;
17 }
18
19 int main()
20 {
21 // The compiler creates int minimum(int [], int)
22 // when you pass an array of int
23 int arr1[] = {40, 20, 35};
24 cout << "The minimum number is " << minimum(arr1, 3)
25 << endl;
26
27 // The compiler creates string minimum(string [], int)
28 // when you pass an array of string
29 string arr2[] = {"Zoe", "Snoopy", "Bob", "Waldorf"};
30 cout << "The minimum string is " << minimum(arr2, 4)
31 << endl;
32
33 return 0;
34 }

(program continues)

Function Templates 989

Function Templates with Multiple Types
More than one generic type may be used in a function template. Here is an example of a
function that takes as parameters a list of three values of any printable type, prints out the
list in order, and then prints out the list in reverse. The type parameters for the template
function are represented using the identifiers T1, T2 and T3.

Overloading with Function Templates
Function templates may be overloaded. As with regular functions, function templates are
overloaded by having different parameter lists. For example, there are two overloaded

Program Output
The minimum number is 20
The minimum string is Bob

Program 16-9

1 // This program illustrates the use of function templates
2 // with multiple types.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 // Template function
8 template <class T1, class T2, class T3>
9 void echoAndReverse(T1 a1, T2 a2, T3 a3)
10 {
11 cout << "Original order is: "
12 << a1 << " " << a2 << " " << a3 << endl;
13 cout << "Reversed order is: "
14 << a3 << " " << a2 << " " << a1 << endl;
15 }
16
17 int main()
18 {
19 echoAndReverse("Computer", 'A', 18);
20 echoAndReverse("One", 4, "All");
21 return 0;
22 }

Program Output
Original order is: Computer A 18
Reversed order is: 18 A Computer
Original order is: One 4 All
Reversed order is: All 4 One

NOTE: Each type parameter declared in the template prefix must be used somewhere
in the template definition.

Program 16-8 (continued)

990 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

versions of the sum function in Program 16-10. The first version accepts two arguments,
and the second version accepts three.

There are other ways to perform overloading with function templates as well. For example,
a program might contain a regular (non-template) version of a function as well as a template
version. As long as each has a different parameter list, they can coexist as overloaded functions.

Defining Template Functions
In defining template functions, it may be helpful to start by writing a non-template version of
the function, and then converting it to a template after it has been tested. The conversion is
then achieved by prefixing the function definition with an appropriate template header, say

template <class T>

and then systematically replacing the relevant type with the generic type T. We followed a
similar procedure in defining the template for the swap function.

Program 16-10

1 // This program demonstrates an overloaded function template.
2 #include <iostream>
3 using namespace std;
4
5 template <class T>
6 T sum(T val1, T val2)
7 {
8 return val1 + val2;
9 }
10
11 template <class T>
12 T sum(T val1, T val2, T val3)
13 {
14 return val1 + val2 + val3;
15 }
16
17 int main()
18 {
19 double num1, num2, num3;
20
21 cout << "Enter two values: ";
22 cin >> num1 >> num2;
23 cout << "Their sum is " << sum(num1, num2) << endl;
24 cout << "Enter three values: ";
25 cin >> num1 >> num2 >> num3;
26 cout << "Their sum is " << sum(num1, num2, num3) << endl;
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter two values: 12.5 6.9[Enter]
Their sum is 19.4
Enter three values: 45.76 98.32 10.51[Enter]
Their sum is 154.59

Class Templates 991

Checkpoint

16.6 When does the compiler actually generate code for a function template?

16.7 The function

int minPosition(int arr[], int size)

takes an array of integers of the given size and returns the index of the smallest
element of the array. Define a template that works like this function, but permits
as parameter arrays of any type that can be compared using the less-than operator <.

16.8 What must you be sure of when passing a class object to a function template that
uses an operator, such as * or >?

16.9 What is a good method for writing a function template?

16.3 Class Templates

CONCEPT: Templates may also be used to create generic classes and abstract data types.

Function templates are used whenever we need several different functions with the same
problem-solving logic, but which differ only in the types of the parameters they work
with. Class templates can be used whenever we need several classes that only differ in the
types of some of their data members, or in the types of the parameters of their member
functions.

Declaring a class template is similar to declaring a function template: you write the class
using identifiers such as T, T1, T2 (or whatever other identifier you choose) as generic types,
and then prefix the class declaration with an appropriately written template header. For
example, suppose that we wish to define a class similar to the NumberArray class studied
in Chapter 11, that represents an array of a generic type, and adds an overloaded operator
[] that performs bounds checking. Calling our class SimpleVector, and putting in the
appropriate data members and constructors, we arrive at the template:

template <class T>
class SimpleVector
{
private:

T *aptr;
int arraySize;
void subError() const; // Handles subscripts out of range

public:
SimpleVector()
 { aptr = 0; arraySize = 0;} // Default Constructor
SimpleVector(int); // Constructor
SimpleVector(const SimpleVector &); // Copy constructor
~SimpleVector(); // Destructor
int size() const
 { return arraySize; }
T &operator[](int); // Overloaded [] operator
void print() const; // Output array

};

992 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

This class template will store elements of type T in a dynamically generated array. This
explains why the pointer aptr, which will point to the base of this array, is declared to
be of type T*, a pointer to T. Likewise, the overloaded array subscription operator returns
a value of type T. Notice, however, that the size member function and the member
arraySize that represents the number of elements stored in the array are both of type
int. This makes sense because the number of elements in an array is always an integer,
regardless of the type of element the array stores.

You can think of the SimpleVector template as a generic pattern that can be specialized to
create classes of SimpleVector that hold double, long, string, or any other type that
you can define. The rule is that you form the name of such an actual class by appending a
list of the actual types, enclosed in angled brackets, to the name of the class template:

• SimpleVector<double> is the name of a class that stores arrays of double.
• SimpleVector<string> is the name of a class that stores arrays of string.
• SimpleVector<char> is the name of a class that stores arrays of char.

Let us look at some examples of defining objects:

SimpleVector<int> iTable1;
SimpleVector<double> dTable1;
SimpleVector<double> dTable2(10);

The first two statements use default constructors to create iTable1 and dTable1, which
are respectively arrays of int and double of size 0. The last statement uses the convert
constructor to create an array of 10 elements of type double.

Defining a member function of a template class inside the class is straightforward: an
example is furnished by the definition of the default constructor in the SimpleVector
class. To define a member function outside the class, you must prefix the definition of the
member function with a template header that specifies the list of type parameters, and then
within the definition, use the name of the class template followed by a list of the type
parameters in angled brackets whenever you need the name of the class.

Let us use the operator [] function to illustrate the definition of a member function
outside the class.

template <class T>
T &SimpleVector<T>::operator[](int sub)
{

if (sub < 0 || sub >= arraySize)
subError();

return aptr[sub];
}

In this definition, the name of the class is needed just before the scope resolution operator,
so we have SimpleVector<T> at that place. As another example, consider the definition of
the convert constructor:

template <class T>
SimpleVector<T>::SimpleVector(int s)
{

arraySize = s;
aptr = new T [s];
for (int count = 0; count < arraySize; count++)
 aptr[count] = T();

}

Class Templates 993

Here, we need to have SimpleVector<T> before the scope resolution operator, but
only SimpleVector, without the <T>, after. This is because what is needed after the scope
resolution operator is not the name of the class, but the name of a member function, which
in this case happens to be a constructor.

There is an exception to the rule of attaching the list of type parameters to the name of
template class. The list, and the angled brackets that enclose it, can be omitted whenever the
name of the class is within the scope of the template class. Thus the list can be omitted when
the name of a class is being used anywhere within the class itself, or within the local scope of a
member function that is being defined outside of the class. For example, the copy constructor

template <class T>
SimpleVector<T>::SimpleVector(const SimpleVector &obj)
{

arraySize = obj.arraySize;
aptr = new T [arraySize];
for(int count = 0; count < arraySize; count++)

aptr[count] = obj[count];
}

does not need to append the <T> to the SimpleVector that denotes the type of its argument.

The convert constructor for SimpleVector assumes that the type parameter T has a
default constructor T() when it executes the assignment aptr[count] = T();. If T is a
primitive type, the C++ compiler will use the default value of 0 in place of T(). For
example, if T were int, the assignment is equivalent to aptr[count] = int(); and a
value of 0 will be stored in aptr[count].

The code for the SimpleVector template is listed in the SimpleVector.h file.

Contents of SimpleVector.h
1 #ifndef SIMPLEVECTOR_H
2 #define SIMPLEVECTOR_H
3
4 #include <iostream>
5 #include <cstdlib>
6 using namespace std;
7
8 template <class T>
9 class SimpleVector
10 {
11 private:
12 T *aptr;
13 int arraySize;
14 void subError() const; // Handles subscripts out of range
15 public:
16 SimpleVector(int); // Constructor
17 SimpleVector(const SimpleVector &); // Copy constructor
18 ~SimpleVector(); // Destructor
19 int size() const
20 { return arraySize; }
21 T &operator[](int); // Overloaded [] operator
22 void print() const; // Output array
23 };
24

994 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

25 //***
26 // Constructor for SimpleVector class. Sets the size *
27 // of the array and allocates memory for it. *
28 //***
29 template <class T>
30 SimpleVector<T>::SimpleVector(int s)
31 {
32 arraySize = s;
33 aptr = new T [s];
34 for (int count = 0; count < arraySize; count++)
35 aptr[count] = T();
36 }
37 //**
38 // Copy Constructor for SimpleVector class. *
39 //**
40 template <class T>
41 SimpleVector<T>::SimpleVector(const SimpleVector &obj)
42 {
43 arraySize = obj.arraySize;
44 aptr = new T [arraySize];
45 for(int count = 0; count < arraySize; count++)
46 aptr[count] = obj[count];
47 }
48 //***
49 // Destructor for SimpleVector class. *
50 //***
51 template <class T>
52 SimpleVector<T>::~SimpleVector()
53 {
54 if (arraySize > 0)
55 delete [] aptr;
56 }
57
58 //**
59 // subError function. Displays an error message and *
60 // terminates the program when a subscript is out of *
61 // range. *
62 //**
63 template <class T>
64 void SimpleVector<T>::subError() const
65 {
66 cout << "ERROR: Subscript out of range.\n";
67 exit(0);
68 }
69 //***
70 // Overloaded [] operator. The argument is a subscript. *
71 // This function returns a reference to the element *
72 // in the array indexed by the subscript. *
73 //***
74 template <class T>
75 T &SimpleVector<T>::operator[](int sub)
76 {
77 if (sub < 0 || sub >= arraySize)
78 subError();

Class Templates 995

Program 16-11 demonstrates the SimpleVector template.

79 return aptr[sub];
80 }
81 //**
82 // prints all the entries in the array. *
83 //**
84 template <class T>
85 void SimpleVector<T>::print() const
86 {
87 for (int k = 0; k < arraySize; k++)
88 cout << aptr[k] << " ";
89 cout << endl;
90 }
91 #endif

Program 16-11

1 // This program demonstrates the SimpleVector template.
2 #include <iostream>
3 #include "SimpleVector.h"
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 10;
9
10 SimpleVector<int> intTable(SIZE);
11 SimpleVector<double> doubleTable(SIZE);
12
13 // Store values in the arrays
14 for (int x = 0; x < SIZE; x++)
15 {
16 intTable[x] = (x * 2);
17 doubleTable[x] = (x * 2.14);
18 }
19
20 // Display the values in the arrays
21 cout << "These values are in intTable:\n";
22 intTable.print();
23 cout << "These values are in doubleTable:\n";
24
25 doubleTable.print();
26
27 // Use the built-in + operator on array elements
28 for (int x = 0; x < SIZE; x++)
29 {
30 intTable[x] = intTable[x] + 5;
31 doubleTable[x] = doubleTable[x] + 1.5;
32 }
33 // Display the values in the array
34 cout << "These values are in intTable:\n";
35 intTable.print();

(program continues)

996 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

16.4 Class Templates and Inheritance
Inheritance can be applied to class templates. For example, in the following template,
SearchableVector is derived from the SimpleVector class.

36 cout << "These values are in doubleTable:\n";
37 doubleTable.print();
38
39 // Use the built-in ++ operator on array elements
40 for (int x = 0; x < SIZE; x++)
41 {
42 intTable[x]++;
43 doubleTable[x]++;
44 }
45 // Display the values in the array
46 cout << "These values are in intTable:\n";
47 intTable.print();
48 cout << "These values are in the doubleTable:\n";
49 doubleTable.print();
50 cout << endl;
51 return 0;
52 }

Program Output
These values are in intTable:
0 2 4 6 8 10 12 14 16 18
These values are in doubleTable:
0 2.14 4.28 6.42 8.56 10.7 12.84 14.98 17.12 19.26
These values are in intTable:
5 7 9 11 13 15 17 19 21 23
These values are in doubleTable:
1.5 3.64 5.78 7.92 10.06 12.2 14.34 16.48 18.62 20.76
These values are in intTable:
6 8 10 12 14 16 18 20 22 24
These values are in the doubleTable:
2.5 4.64 6.78 8.92 11.06 13.2 15.34 17.48 19.62 21.76

NOTE: The file that contains the template code has been included in the file that
contains the driver code to avoid the complexities of linking separately compiled files
that use templates.

Contents of SearchVect.h
1 #ifndef SEARCHABLEVECTOR_H
2 #define SEARCHABLEVECTOR_H
3

Program 16-11 (continued)

Class Templates and Inheritance 997

Let us use this example to take a closer look at the derivation of a class from a template
base class. First, we have to indicate to the compiler that we are defining a new class
template based on an another, already existing class template:

template <class T>
class SearchableVector : public SimpleVector<T>
{

// Members of the class will go here
};

4 #include "SimpleVector.h"
5
6 template <class T>
7 class SearchableVector : public SimpleVector<T>
8 {
9 public:
10 // Constructor
11 SearchableVector(int s) : SimpleVector<T>(s)
12 { }
13 // Copy constructor
14 SearchableVector(SearchableVector &);
15 // Additional constructor
16 SearchableVector(SimpleVector<T> &obj):
17 SimpleVector<T>(obj)
18 { }
19 int findItem(T);
20 };
21
22 //**
23 // Definition of the copy constructor. *
24 //**
25 template <class T>
26 SearchableVector<T>::
27 SearchableVector(SearchableVector &obj) :
28 SimpleVector<T>(obj)
29 {
30 }
31
32 //**
33 // findItem takes a parameter of type T *
34 // and searches for it within the array. *
35 //**
36 template <class T>
37 int SearchableVector<T>::findItem(T item)
38 {
39 for (int count = 0; count < this->size(); count++)
40 {
41 if (this->operator[](count) == item)
42 return count;
43 }
44 return -1;
45 }
46 #endif

998 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Here the new class template being defined is SearchableVector, while the existing base
class template is SimpleVector<T>. The class has three constructors. The first constructor,
shown here,

SearchableVector(int size) : SimpleVector<T>(size){ }

is designed to dynamically allocate an array of size elements of type T, which it does by
invoking the base class constructor and passing it the parameter size. This constructor
will create an array of the specified size with all elements initialized to default values of
type T. The class has another constructor,

SearchableVector(SimpleVector<T> &obj): SimpleVector<T>(obj){ }

which takes as parameter a base class object, a copy of which is to be searched. The
constructor simply passes its parameter to the base class copy constructor. The remaining
constructor is the copy constructor for the SearchableVector class,

SearchableVector(SearchableVector<T> &obj): SimpleVector<T>(obj){ }

Because the initialization of a SearchableVector is the same as that of a SimpleVector,
the SearchableVector copy constructor simply passes its argument to the copy
constructor of its base class. The member function findItem takes an item of type T as its
argument and returns the position of the item within the array. If the item is not found in
the array, a value of –1 is returned.

Program 16-12 demonstrates the class by storing values in two SearchableVector objects
and then searching for a specific value in each.

Program 16-12

1 // This program demonstrates the SearchableVector template.
2 #include <iostream>
3 #include "searchvect.h"
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 10;
9 SearchableVector<int> intTable(SIZE);
10 SearchableVector<double> doubleTable(SIZE);
11
12 // Store values in the vectors
13 for (int x = 0; x < SIZE; x++)
14 {
15 intTable[x] = (x * 2);
16 doubleTable[x] = (x * 2.14);
17 }
18 // Display the values in the vectors
19 cout << "These values are in intTable:\n";
20 for (int x = 0; x < SIZE; x++)
21 cout << intTable[x] << " ";

(program continues)

Class Templates and Inheritance 999

The SearchableVector class demonstrates that a class template may be derived from
another class template. In addition, class templates may be derived from ordinary classes,
and ordinary classes may be derived from class templates.

Checkpoint

16.10 Suppose your program uses a class template named List, which is defined as
template<class T>
class List
{

// Members are declared here…
};

22 cout << endl;
23 cout << "These values are in doubleTable:\n";
24 for (int x = 0; x < SIZE; x++)
25 cout << doubleTable[x] << " ";
26 cout << endl;
27
28 // Now search for values in the vectors
29 int result;
30 cout << "Searching for 6 in intTable.\n";
31 result = intTable.findItem(6);
32 if (result == -1)
33 cout << "6 was not found in intTable.\n";
34 else
35 cout << "6 was found at subscript "
36 << result << endl;
37
38 cout << "Searching for 12.84 in doubleTable.\n";
39 result = doubleTable.findItem(12.84);
40 if (result == -1)
41 cout << "12.84 was not found in doubleTable.\n";
42 else
43 cout << "12.84 was found at subscript "
44 << result << endl;
45 return 0;
46 }

Program Output
These values are in intTable:
0 2 4 6 8 10 12 14 16 18
These values are in doubleTable:
0 2.14 4.28 6.42 8.56 10.7 12.84 14.98 17.12 19.26
Searching for 6 in intTable.
6 was found at subscript 3
Searching for 12.84 in doubleTable.
12.84 was found at subscript 6

Program 16-12 (continued)

1000 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Give an example of how you would use int as the data type in the declaration of a
List object. (Assume the class has a default constructor.)

16.11 In the following Rectangle class declaration, the width, length, and area
members are of type double. Rewrite the class as a template that will accept any
numeric type for these members.

class Rectangle
{

private:
 double width;
 double length;
 double area;
public:
 void setData(double w, double l)

 { width = w; length = l;}
 void calcArea()

 { area = width * length; }
 double getWidth()

 { return width; }
 double getLength()

 { return length; }
 double getArea()

 { return area; }
};

16.5 Introduction to the Standard Template Library

CONCEPT: The Standard Template Library contains many templates for useful
algorithms and data structures.

In addition to its run-time library, which you have used throughout this book, C++ also
provides a library of templates. The Standard Template Library (or STL) contains
numerous templates for implementing data types and algorithms.

The most important data structures in the STL are the containers and iterators. A
container is a class that stores data and organizes it in some fashion. An iterator is an
object that works like a pointer and allows access to items stored in containers.

Sequential Containers
There are two types of container classes in the STL: sequential containers and associative
containers. Sequential containers store items in the form of sequences, meaning that there
is a natural way to order the items by their position within the container. An array is an
example of a sequential container. The STL provides the three sequential containers shown
in Table 16-1.

Introduction to the Standard Template Library 1001

Because a sequential container organizes the items it stores as a sequence, it can be said
to have a front and a back. A container is said to provide random access to its contents
if it is possible to specify a position of an item within the container and then jump
directly to that item without first having to go through all the items that precede it in
the container.

Positions used in random access are usually specified by giving an integer specifying the
position of the desired item within the container. The integer may specify a position
relative to the beginning of the container, the end of the container, or relative to some
other position. Arrays and vectors are examples of sequential containers that provide
random access.

Associative Containers
Sequential containers use the position of an item within the sequence to access their data.
In contrast, associative containers associate a key with each item stored, and then use the
key to retrieve the stored item. A telephone book is an example of an associative container;
the values stored are telephone numbers, and each telephone number is associated with a
name. The name can later be used as a key to look up, or retrieve, the telephone number.
The STL provides four associative containers, as shown in Table 16-2.

Table 16-1 STL Sequential Containers

Container Name Description

vector A sequence of items implemented as an array that can automatically grow as
needed during program execution. Items can be efficiently added and
removed from the vector at its end. Insertions and removals from the middle
or beginning of the vector are not as efficient.

deque A sequence of items that has a front and back: items can be efficiently added
or removed from the front and back. Insertions and removals in the middle
of a deque are not as efficient.

list A sequence of items that allows quick additions and removals from any
position.

Table 16-2 STL Associative Containers

Container Name Description

set Stores a set of keys. No duplicate values are allowed.

multiset Stores a set of keys. Duplicates are allowed.

map Maps a set of keys to data elements. Each key is associated with a unique
data element, and duplicate keys are not permitted.

multimap Maps a set of keys to data elements. The same key may be associated with
multiple values.

1002 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

A map is a container that requires each value stored to be associated with a key. Each key
may be associated with only one value; once a key is used, no other value with the same
key may be added to the map. A multimap is like a map, except a key may be associated
with multiple values.

A set is like a map in which only keys are stored, with no associated values. No item may
be stored twice in a set: that is, duplicates are not permitted. A multi set is like a set in
which duplicates are permitted.

Iterators
Iterators are objects that behave like pointers. They are used to access items stored in
containers. A typical iterator is an object of a class declared inside a container class. The
iterator overloads pointer operators such as the increment operator ++ , the decrement
operator --, and the dereferencing operator * in order to provide pointer-like behavior.

Each STL container object provides member functions begin() and end() that return the
beginning and ending iterators for the object. The begin() iterator points to the item at the
beginning of the container if the container is nonempty, while the end() iterator points to
just past the end of the container. More details on the use of these iterators will be given later.

Table 16-3 shows the different types of iterators available for use with various STL
containers.

The Use of Iterators
Let us consider the use of iterators, including begin() and end(), to access items stored in
an STL container.

Because an iterator is an object of an inner class called iterator that is defined inside a
container class, the use of the scope resolution operator is necessary to obtain an iterator
for a given container. For example, to define an iterator object iter that will work with a
class of type vector<int>, we write:

vector<int>::iterator iter;

To define an iterator for a vector of int and have it initialized to the beginning of the
container vect, we write:

vector<int> vect;
vector<int>::iterator iter = vect.begin();

Table 16-3 Iterator Types

Iterator Type Description

Forward Can only move forward in a container (uses the ++ operator).

Bidirectional Can move forward or backward in a container (uses the ++ and -- operators).

Random-access Can move forward and backward, and can jump to a specific data element in a
container.

Input Can be used with cin to read information from an input device or a file.

Output Can be used with cout to write information to an output device or a file.

VideoNote

Iterators

Introduction to the Standard Template Library 1003

Once an iterator is defined and made to point to the beginning of the container, the items in
the container at the position of the iterator can be accessed by dereferencing the iterator. An
iterator can be made to move to the next item in the container by incrementing it, and if the
iterator is bidirectional, it can be made to move to the previous element by decrementing it.
For example, the statements

cout << *iter;
iter++;

print the value of an element in the container and then move the iterator to the next element.

Because the end iterator does not point to a legitimate element, an iterator whose value is
end() should not be dereferenced. Program 16-13 illustrates the use of iterators with
vector containers.

Notice in Program 16-13 the inclusion of the vector header file, which is required for the
vector container. The vector container is one of the simplest types of containers in the
STL. In the following chapters, you will see examples using other types of containers.

The vector Container
Table 16-4 lists a selection of member functions of the vector class template. Some of these
accept iterators as parameters, and some of them return iterators as results.

Program 16-13

1 // This program provides a simple demonstration of the
2 // vector STL template.
3 #include <iostream>
4 #include <vector> // Needed to use vectors
5 using namespace std;
6
7 int main()
8 {
9 vector<int> vect; // Create a vector of int
10
11 for (int x = 0; x < 10; x++)
12 vect.push_back(x*x);
13
14 // Print everything using iterators
15 vector<int>::iterator iter = vect.begin();
16 while (iter != vect.end())
17 {
18 cout << *iter << " ";
19 iter ++;
20 }
21 return 0;
22 }

Program Output
0 1 4 9 16 25 36 49 64 81

1004 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Table 16-4 Selected Member Functions of the Vector Class

Member Function Description

at(position) Returns the value of the element located at position in the vector.
Example:
 x = vect.at(5);
This statement assigns the value of the element in position 5 of vect to x.

back() Returns a reference to the last element in the vector.
Example:
 cout << vect.back() << endl;

begin() Returns an iterator pointing to the vector's first element.
Example:
 iter = vect.begin();

capacity() Returns the maximum number of elements that may be stored in the vector
without additional memory being allocated. (This is not the same value as
returned by the size member function).
Example:
 x = vect.capacity();
This statement assigns the capacity of vect to x.

clear() Clears a vector of all its elements.
Example:
 vect.clear();
This statement removes all the elements from vect.

empty() Returns true if the vector is empty. Otherwise, it returns false.
Example:
 if (vect.empty())
 cout << "The vector is empty.";

end() Returns an iterator pointing to just after the last element of the vector.
Example:
 iter = vect.end();

erase(iter) Causes the vector element pointed to by the iterator iter to be removed.
Example:
 vect.erase(iter);

erase(iter1,
iter2)

Removes all vector elements in the range specified by the iterators iter1
and iter2.
Example:
 vect.erase(iter1, iter2);

front() Returns a reference to the vector's first element.
Example:
 cout << vector.front() << endl;

insert(iter,
value)

Inserts an element into the vector.
Example:
 vect.insert(iter, x);
This statement inserts the value x just before the element pointed to by the
iterator iter.

(table continues)

Introduction to the Standard Template Library 1005

Algorithms
The algorithms provided by the STL are implemented as function templates and perform
various operations on elements of containers. There are many algorithms in the STL;
Table 16-5 lists a few of them. (The table gives only general descriptions.)

insert(iter, n,
value)

Inserts n copies of value into the vector, starting just before the position
pointed to by the iterator iter.
Example:
 vect.insert(iter, 7, x);
This statement inserts 7 copies of the value x just before the element pointed
to by the iterator iter.

pop_back() Removes the last element from the vector.
Example:
 vect.pop_back();
This statement removes the last element of vect, thus reducing its size by
one.

push_back(value) Stores value as the new last element of the vector. If the vector is already
filled to capacity, it is automatically resized.
Example:
 vect.push_back(7);
This statement stores 7 as the new last element of vect.

reverse() Reverses the order of the elements in the vector (the last element becomes
the first element, and the first element becomes the last element.)
Example:
 vect.reverse();.

resize(n)
resize(n, value)

Resizes a vector to have n elements, where n is greater than the vector’s
current size. If the optional value argument is included, each of the new
elements will be initialized with that value.
Example where vect currently has 4 elements:
 vect.resize(6,99);
adds two elements to the end of the vector, each initialized to 99.

size() Returns the number of elements in the vector.
Example:
 cout << vector.size() << endl;

swap(vector2) Swaps the contents of the vector with the contents of vector2.
Example:
 vect1.swap(vect2);
The statement above swaps the contents of vect1 and vect2.

Table 16-4 Selected Member Functions of the Vector Class (continued)

Member Function Description

1006 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Table 16-5 STL Algorithms

Algorithm Description

binary_search Performs a binary search for an object and returns true if the object is found,
false if not.
Example:
 binary_search(iter1, iter2, value);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The statement performs a binary
search on the range of elements, searching for value. The binary_search
function returns true if the element was found and false if the element was
not found.

count Returns the number of times a value appears in a range.
Example:
 number = count(iter1, iter2, value);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The statement returns the number of
times value appears in the range of elements.

for_each Executes a function for each element in a container.
Example:
 for_each(iter1, iter2, func);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The third argument, func, is the
name of a function. The statement calls the function func for each element in
the range, passing the element as an argument.

find Finds the first object in a container that matches a value and returns an
iterator to it.
Example:
 iter3 = find(iter1, iter2, value);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The statement searches the range of
elements for value. If value is found, the function returns an iterator to the
element containing it, otherwise, it returns the iterator iter2.

max_element Returns an iterator to the largest object in a range.
 Example:
 iter3 = max_element(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The statement returns an iterator to
the element containing the largest value in the range.

(table continues)

Introduction to the Standard Template Library 1007

Program 16-14 demonstrates the use of the random_shuffle, sort, and binary_search
algorithm templates.

min_element Returns an iterator to the smallest object in a range.
Example:
 iter3 = min_element(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The statement returns an iterator to
the element containing the smallest value in the range.

random_shuffle Randomly shuffles the elements of a container.
Example:
 random_shuffle(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The statement randomly reorders the
elements in the range.

sort Sorts a range of elements.
Example:
 sort(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range, and iter2 points to
just after the last element in the range.) The statement sorts the elements in
the range in ascending order.

NOTE: The STL algorithms require the inclusion of the algorithm header file.

Program 16-14

1 // This program provides a simple demonstration of the
2 // STL algorithms.
3
4 #include <iostream>
5 #include <vector> // Include the vector header
6 #include <algorithm> // Required for STL algorithms
7 using namespace std;
8
9 int main()
10 {
11 vector<int> vect; // Define a vector object
12
13 // Use push_back to push values into the vector

(program continues)

Table 16-5 STL Algorithms (continued)

Algorithm Description

1008 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

14 for (int x = 0; x < 10; x++)
15 vect.push_back(x*x);
16
17 // Display the vector's elements
18 cout << "The collection has " << vect.size()
19 << " elements. Here they are:\n";
20 for (int x = 0; x < vect.size(); x++)
21 cout << vect[x] << " ";
22 cout << endl;
23
24 // Randomly shuffle the vector's contents
25 random_shuffle(vect.begin(), vect.end());
26
27 // Display the vector's elements
28 cout << "The elements have been shuffled:\n";
29 for (int x = 0; x < vect.size(); x++)
30 cout << vect[x] << " ";
31 cout << endl;
32
33 // Now sort them
34 sort(vect.begin(), vect.end());
35
36 // Display the vector's elements again
37 cout << "The elements have been sorted:\n";
38 for (int x = 0; x < vect.size(); x++)
39 cout << vect[x] << " ";
40 cout << endl;
41
42 // Now search for an element
43 int val = 49;
44 if (binary_search(vect.begin(), vect.end(), val))
45 cout << "The value " << val
46 << " was found in the vector.\n";
47 else
48 cout << "The value " << val
49 << " was not found in the vector.\n";
50 return 0;
51 }

Program Output
The collection has 10 elements. Here they are:
0 1 4 9 16 25 36 49 64 81
The elements have been shuffled:
64 1 81 4 0 25 49 9 16 36
The elements have been sorted:
0 1 4 9 16 25 36 49 64 81
The value 49 was found in the vector.

NOTE: Your run of this program will generate a different random shuffle.

Program 16-14 (continued)

Introduction to the Standard Template Library 1009

The random_shuffle function rearranges the elements of a container. In Program 16-14,
it is called in the following manner:

random_shuffle(vect.begin(), vect.end());

The function takes two arguments, which together represent a range of elements within
a container. The first argument is an iterator to the first element in the range. In this
case, vect.begin() is used. The second argument is an iterator to just after the last
element in the range. Here we have used vect.end(). These arguments tell
random_shuffle to rearrange all the elements from the beginning to the end of the
vect container.

The sort algorithm also takes iterators to a range of elements. Here is the function call
that appears in Program 16-14:

sort(vect.begin(), vect.end());

All the elements within the range are sorted in ascending order.

The binary_search algorithm searches a range of elements for a value. If the value is
found, the function returns true. Otherwise, it returns false. For example, the following
function call searches all the elements in vect for the value 7.

binary_search(vect.begin(), vect.end(), 7)

Program 16-15 demonstrates the count algorithm.

Program 16-15

1 // This program demonstrates the STL count algorithm.
2 #include <iostream>
3 #include <vector> // Needed to declare the vector
4 #include <algorithm> // Needed for the for_each algorithm
5 using namespace std;
6
7 int main()
8 {
9 vector<int> values;
10 vector<int>::iterator iter;
11
12 // Store some values in the vector
13 values.push_back(1);
14 values.push_back(2);
15 values.push_back(2);
16 values.push_back(3);
17 values.push_back(3);
18 values.push_back(3);
19
20 // Display the values in the vector
21 cout << "The values in the vector are:\n";
22 for (iter = values.begin(); iter != values.end(); iter++)
23 cout << *iter << " ";
24 cout << endl << endl;
25

(program continues)

1010 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Program 16-16 demonstrates the max_element and min_element algorithms.

26 // Display the count of each number
27 cout << "The number of 1s in the vector is ";
28 cout << count(values.begin(), values.end(), 1) << endl;
29 cout << "The number of 2s in the vector is ";
30 cout << count(values.begin(), values.end(), 2) << endl;
31 cout << "The number of 3s in the vector is ";
32 cout << count(values.begin(), values.end(), 3) << endl;
33 return 0;
34 }

Program Output
The values in the vector are:
1 2 2 3 3 3

The number of 1s in the vector is 1
The number of 2s in the vector is 2
The number of 3s in the vector is 3

Program 16-16

1 // This program demonstrates the STL max_element
2 // and min_element algorithms.
3 #include <iostream>
4 #include <vector> // Needed to declare the vector
5 #include <algorithm> // Needed for the algorithms
6 using namespace std;
7
8 int main()
9 {
10 vector<int> numbers;
11 vector<int>::iterator iter;
12
13 // Store some numbers in the vector
14 for (int x = 0; x < 10; x++)
15 numbers.push_back(x);
16
17 // Shuffle things up just for fun
18 random_shuffle(numbers.begin(), numbers.end());
19
20 // Display the numbers in the vector
21 cout << "The numbers in the vector are:\n";
22 for (iter = numbers.begin(); iter != numbers.end(); iter++)
23 cout << *iter << " ";
24 cout << endl;
25
26 // Find the largest value in the vector
27 iter = max_element(numbers.begin(), numbers.end());
28 cout << "The largest value in the vector is "
29 << *iter << endl;

(program continues)

Program 16-15 (continued)

Introduction to the Standard Template Library 1011

Program 16-17 demonstrates the find algorithm.

30
31 // Find the smallest value in the vector
32 iter = min_element(numbers.begin(), numbers.end());
33 cout << "The smallest value in the vector is "
34 << *iter << endl;
35
36 return 0;
37 }

Program Output
The values in the vector are:
8 1 9 2 0 5 7 3 4 6
The largest value in the vector is 9
The smallest value in the vector is 0

Program 16-17

1 // This program demonstrates the STL find algorithm.
2 #include <iostream>
3 #include <vector> // Needed to declare the vector
4 #include <algorithm> // Needed for the find algorithm
5 using namespace std;
6
7 int main()
8 {
9 vector<int> numbers;
10 vector<int>::iterator iter;
11
12 // Store some numbers in the vector
13 for (int x = 0; x < 10; x++)
14 numbers.push_back(x);
15
16 // Display the numbers in the vector
17 cout << "The numbers in the vector are:\n";
18 for (iter = numbers.begin(); iter != numbers.end(); iter++)
19 cout << *iter << " ";
20 cout << endl << endl;
21
22 // Find 7 in the vector
23 iter = find(numbers.begin(), numbers.end(), 7);
24 cout << "The value searched for is " << *iter << endl;
25 return 0;
26 }

Program Output
The numbers in the vector are:
0 1 2 3 4 5 6 7 8 9

The value searched for is 7

Program 16-16 (continued)

1012 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Program 16-18 demonstrates the for_each algorithm.

Program 16-18

1 // This program demonstrates the for_each find algorithm.
2
3 #include <iostream>
4 #include <vector> // Needed to declare the vector
5 #include <algorithm> // Needed for the for_each algorithm
6 using namespace std;
7
8 // Function prototype
9 void doubleValue(int &);
10
11 int main()
12 {
13 vector<int> numbers;
14 vector<int>::iterator iter;
15
16 // Store some numbers in the vector
17 for (int x = 0; x < 10; x++)
18 numbers.push_back(x);
19
20 // Display the numbers in the vector
21 cout << "The numbers in the vector are:\n";
22 for (iter = numbers.begin(); iter != numbers.end(); iter++)
23 cout << *iter << " ";
24 cout << endl;
25
26 // Double the values in the vector
27 for_each(numbers.begin(), numbers.end(), doubleValue);
28
29 // Display the numbers in the vector again
30 cout << "Now the numbers in the vector are:\n";
31 for (iter = numbers.begin(); iter != numbers.end(); iter++)
32 cout << *iter << " ";
33 cout << endl;
34 return 0;
35 }
36
37 //**
38 // Function doubleValue. This function accepts an int *
39 // reference as its argument. The value of the argument *
40 // is doubled. *
41 //**
42 void doubleValue(int &val)
43 {
44 val *= 2;
45 }

Program Output
The numbers in the vector are:
0 1 2 3 4 5 6 7 8 9
Now the numbers in the vector are:
0 2 4 6 8 10 12 14 16 18

1013

In Program 16-18, the following statement calls for_each:

for_each(numbers.begin(), numbers.end(), doubleValue);

The first and second arguments specify a range of elements. In this case, the range is the
entire vector. The third argument is the name of a function. The for_each algorithm calls
the function once for each element in the range, passing the element as an argument to the
function.

The programs in this section give you a brief introduction to using the STL by demonstrating
simple operations on a vector. In the remaining chapters you will be given specific examples
of how to use other STL containers, iterators, and algorithms.

16.6 Tying It All Together: Word Transformers Game

A software entrepreneur is designing an educational word game for children. A child playing
the game is given two words and must determine if it is possible to rearrange the letters in the
first word to form the second. What the program does next depends on the relation between
the two words and on the correctness of the player’s answer.

When given two words, the child may claim that transformation of the first word into
the second is possible. In this case, the program asks the child to demonstrate the
correctness of the answer by typing a sequence of words starting with the first and
ending with the second. Such a sequence is an acceptable proof sequence if each word
is obtained from its predecessor by swapping a single pair of adjacent letters. For
example, the sequence

tops, tosp, tsop, stop, sotp, sopt, spot

proves that the word tops can be transformed into spot. If the proof sequence is accepted, the
child earns a point and play proceeds to the next round with a fresh pair of words.

A proof sequence is rejected if a word cannot be obtained from its predecessor by swapping an
adjacent pair of letters, or if the first word in the sequence is not the first word of the pair of
words being tested, or if the last word is not the second word in the given pair. When a
sequence is rejected, play proceeds to the next round, but the child earns no points.

The child may observe that transformation is not possible. If the child’s answer is correct,
he or she receives a point and play proceeds to the next round. If the child’s answer is
incorrect and the transformation is indeed possible, the child receives no points. In this
case, however, the program displays a correct proof sequence before moving on to the
next round of the game.

A program at the heart of this game must perform several tasks.

1. The program must be able to determine if one of a given pair of words can be transformed
into another.

2. The program must be able to determine if one word results from another by swapping an
adjacent pair of letters.

3. The program must be able to produce a proof sequence when transformation of one
word into another is possible.

Tying It All Together: Word Transformers Game

1014 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

How can we write a program for producing proof sequences for a pair of words? One
idea is to start with the first word as the current word. Then, swap an adjacent pair of
letters to obtain a new current word. Repeating this strategy will generate a sequence of
words. If the current word ever turns out to be the target word, we know we have a
proof sequence.

Although the approach we have just outlined is easy to think of, it is difficult to implement. An
alternative approach involves sorting. If a transformation between the two words is possible,
sorting them will yield the same word. If in addition, we use a sorting method that works by
swapping adjacent letters, the sorting process will yield a proof sequence from each of the
original words to the same word. For example, sorting tops and spot yields the same word opst
with the corresponding sequences

tops, otps, opts, opst

and

spot, psot, post, opst.

Notice that the second sequence is a sequence from opst to spot in reverse. By concatenating
this last sequence to the first and eliminating the duplicate entry in the middle, we obtain the
proof sequence from tops to spot:

tops, otps, opts, opst, spot, psot, post, spot

Let us consider some details related to the implementation of this plan. Rather than keep a list
of intermediate words generated during the sort, we can keep a list of swaps or transpositions
performed by the sort. We do this by storing the index i for each pair (i, i+1) of positions of
characters swapped by the transposition. Our program uses the well known Bubblesort sorting
algorithm. A function

sort(char str[], int size, vector<int> &tranpose)

is used to sort an array of characters of a given size while saving the list of transpositions
performed on the array during the sort. Once both words have been sorted, the resulting two
lists of transpositions will be applied to a copy of the first word as previously described, and the
words resulting from the application of each transposition will be printed. This strategy is
implemented in the following program.

Program 16-19

1 // This program solves the word transformation puzzle.
2 #include <iostream>
3 #include <string>
4 #include <vector>
5 #include <algorithm>
6 using namespace std;
7
8 // Prototype
9 void sort(char str[], int size, vector<int>& transpositions);
10
11 int main()

(program continues)

1015Tying It All Together: Word Transformers Game

12 {
13 // The two words and a copy of the first word
14 char str1[] = "spot";
15 char str1Copy[] = "spot";
16 char str2[] = "stop";
17
18 // These vectors hold the list of transpositions
19 vector<int> transpose;
20 vector<int> reverse_transpose;
21
22 // Sort the two words
23 cout << "The first word is " << str1 << endl
24 << "The second word is " << str2 << endl;
25 sort(str1, 4, transpose);
26 sort(str2, 4, reverse_transpose);
27
28 // Apply the first list of transpositions
29 cout << "The transformation steps are: " << endl;
30 cout << str1Copy << " ";
31 for (int k = 0; k < transpose.size(); k++)
32 {
33 int index = transpose[k];
34 swap(str1Copy[index], str1Copy[index + 1]);
35 cout << str1Copy << " ";
36 }
37 // Apply the second list of transpositions in reverse order
38 for (int k = reverse_transpose.size()-1; k >=0 ; k--)
39 {
40 int index = reverse_transpose[k];
41 swap(str1Copy[index], str1Copy[index + 1]);
42 cout << str1Copy << " ";
43 }
44 cout << endl;
45 return 0;
46 }
47
48 //***
49 // This is a version of Bubblesort that saves a list of all *
50 // transpositions that are needed to sort the list *
51 //***
52 void sort(char str[], int size, vector<int>& transpositions)
53 {
54 // Last index of portion yet to be sorted
55 int upperBound = size-1;
56
57 while (upperBound > 0)
58 {
59 for (int k = 0; k < upperBound; k++)
60 {
61 if (str[k] > str[k+1])

(program continues)

Program 16-19 (continued)

1016 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Review Questions and Exercises

Fill-in-the-Blank

1. The line containing a throw statement is known as the __________.

2. The __________ block should enclose code that directly or indirectly might cause an
exception to be thrown.

3. The __________ block handles an exception.

4. When writing function or class templates, you use a(n) __________ to specify a
generic data type.

5. The beginning of a template is marked by a(n) __________.

6. When declaring objects of class templates, the __________ you wish to pass into the
type parameter must be specified.

7. A(n)__________ container organizes data in a sequential fashion similar to an array.

8. A(n)__________ container uses keys to rapidly access elements.

9. __________ are pointer-like objects used to access information stored in a container.

C++ Language Elements

10. Modify the SimpleVector template presented in this chapter to include an overloaded
assignment operator.

Algorithm Workbench

11. Write a function template that takes a generic array of a given size as a parameter and
reverses the order of the elements in the array. The first parameter of the function
should be the array, the second parameter should be the size of the array.

12. Write a function template that is capable of adding any two numeric values and
returning the result.

62 {
63 // Save the swap index
64 transpositions.push_back(k);
65 swap(str[k], str[k+1]);
66 }
67 }
68 upperBound--;
69 }
70 }

Program Output
The first word is spot
The second word is stop
The transformation steps are:
spot psot post opst ospt sopt sotp stop

Program 16-19 (continued)

Review Questions and Exercises 1017

13. Describe what will happen if you call the function of question 11 and pass it an array
of char.

14. Describe what will happen if you call the function of question 11 and pass it an array
of string.

Find the Error

15. Each of the following declarations or code segments has errors. Locate as many as possible.

A) catch
{

quotient = divide(num1, num2);
cout << "The quotient is " << quotient << endl;

}
try (string exceptionString)
{

cout << exceptionString;
}

B) try
{

quotient = divide(num1, num2);
}
cout << "The quotient is " << quotient << endl;
catch (string exceptionString)
{

cout << exceptionString;
}

C) template <class T>
T square(T number)
{

return T * T;
}

D) template <class T>
int square(int number)
{

return number * number;
}

E) template <class T1, class T2>
T1 sum(T1 x, T1 y)
{

return x + y;
}

F) Assume the following declaration appears in a program that uses the SimpleVector
class template presented in this chapter.

int <SimpleVector> array(25);

G) Assume the following statement appears in a program that has defined valueSet
as an object of the SimpleVector class presented in this chapter. Assume that
valueSet is a vector of ints, and has 20 elements.

cout << valueSet<int>[2] << endl;

1018 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Soft Skills

16. Suppose that you are part of a project team and it becomes clear to you that one of
the team members is not “pulling his weight.” What should you do if you are the
project leader? What should you do if you are not the project leader?

Programming Challenges

1. String Bound Exceptions

Write a class BCheckString that is derived from the STL string class. This new class will
have two member functions:

A) A BCheckString(string s) constructor that receives a string object passed by
value and passes it on to the base class constructor.

B) An char operator[](int k) function that throws a BoundsException object
if k is negative or is greater than or equal to the length of the string. If k is within
the bounds of the string, this function will return the character at position k in the
string.

You will need to write the definition of the BoundsException class. Test your class with a
main function that attempts to access characters that are within and outside the bounds of
a suitably initialized BCheckString object.

2. Arithmetic Exceptions

Write a function that accepts an integer parameter and returns its integer square root. The
function should throw an exception if it is passed an integer that is not a perfect square.
Demonstrate the function with a suitable driver program.

3. Min/Max Templates

Write templates for the two functions min and max. min should accept two arguments and
return the value of the argument that is the lesser of the two. max should accept two
arguments and return the value of the argument that is the greater of the two. Design a
simple driver program that demonstrates the templates with various data types.

4. Sequence Accumulation

Write a function

T accum(vector <T> v)

that forms and returns the “sum” of all items in the vector v passed to it. For example, if T is
a numeric type such as int or double, the numeric sum will be returned, and if T represents
the STL string type, then the result of concatenation is returned.

NOTE: For any type T, the expression T() yields the value or object created by the
default constructor. For example, T() yields the empty string object if T is the string
class. If T represents a numeric type such as int, then T() yields 0. Use this fact to
initialize your “accumulator.”

VideoNote

Solving the
Arithmetic
Exceptions
Problem

Review Questions and Exercises 1019

Test your function with a driver program that asks the user to enter 3 integers, uses accum
to compute the sum, and prints out the sum. The program than asks the user to enter
3 strings, uses accum to concatenate the strings, and prints the result.

5. Rotate Left

The two sets of output below show the results of successive circular rotations of a vector.
One set of data is for a vector of integers, and the second is for a vector of strings.

1 3 5 7
3 5 7 1
5 7 1 3
7 1 3 5

a b c d e
b c d e a
c d e a b
d e a b c
e a b c d

Write two template functions that can be used to rotate and output a vector of a generic
type:

void rotateLeft(vector <T>& v)
void output(vector <T> v)

The first function performs a single circular left rotation on a vector, and the second
prints out the vector passed to it as parameter. Write a suitable driver program that
will allow you to test the two functions by generating output similar to the above.
Verify that the program works with vectors whose element types are char, int,
double, and string.

6. Template Reversal

Write a template function that takes as parameter a vector of a generic type and
reverses the order of elements in the vector, and then add the function to the program
you wrote for Programming Challenge 5. Modify the driver program to test the new
function by reversing and outputting vectors whose element types are char, int, double,
and string.

7. SimpleVector Modification

Modify the SimpleVector class template, presented in this chapter, to include the
member functions push_back and pop_back. These functions should emulate the STL
vector class member functions of the same name. (See Table 16-4.) The push_back
function should throw an exception if the array is full. The push_back function should
accept an argument and insert its value at the end of the array. The pop_back function
should accept no argument and remove the last element from the array. Test the class
with a driver program.

8. SearchableVector Modification

Modify the SearchableVector class template, presented in this chapter, so it performs a
binary search instead of a linear search. Test the template in a driver program.

1020 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

9. SortableVector Class Template

Write a class template named SortableVector. The class should be derived from the
SimpleVector class presented in this chapter. It should have a member function that sorts
the array elements in ascending order. (Use the sorting algorithm of your choice.) Test the
template in a driver program.

10. Two-Dimensional Data

Suppose that data representing a list of people and places they would like to visit is stored
in a file as follows:

3
0 Paul
1 Peter
2 David

0 3 Chicago Boston Memphis
1 1 Boston
2 0

The first number n in the file indicates how many people there are in the list. Here n is 3, so
there are 3 people. Each person in the list is assigned a number in the range 0.. n � 1 that
is used to identify her. For each person, the file lists the numerical identifier of the person,
followed by the number of places the person wants to visit, followed by the names of
those places. For example, Boston is the only place that Peter cares to visit, while David
wants to visit no places.

Write a program that reads in this type of data from a file and stores it in appropriate STL
data structure. For example, you might use vectors, as well as vectors of vectors, to represent
this information. The program allows users to type in the name of a person whose list of
favorite destinations is to be printed out. The program prints an error message if the
person is not in the database.

11. Word Transformers Modification

Modify Program 16-19 so that it keeps lists of intermediate words during the two sorts
instead of keeping lists of swap indices.

1021

C
H

A
P

T
E

R

17 Linked Lists

17.1 Introduction to the Linked List ADT

CONCEPT: Dynamically allocated data structures may be linked together in memory to
form a chain.

A linked list is a series of connected nodes, where each node is a data structure. The nodes of
a linked list are usually dynamically allocated, used, and then deleted, allowing the linked list
to grow or shrink in size as the program runs. If new information needs to be added to a
linked list, the program simply allocates another node and inserts it into the series. If a
particular piece of information needs to be removed from the linked list, the program deletes
the node containing that information.

Advantages of Linked Lists over Arrays and Vectors
Although linked lists are more complex to code and manage than arrays, they have
some distinct advantages. First, a linked list can easily grow or shrink in size. In fact,
the programmer doesn’t need to know how many nodes will be in the list. They are simply
created in memory as they are needed.

One might argue that linked lists are not superior to vectors (found in the Standard Template
Library), because they too can expand or shrink. The advantage that linked lists have over
vectors, however, is the speed at which a node may be inserted into or deleted from the list.

TOPICS

17.1 Introduction to the Linked List ADT
17.2 Linked List Operations
17.3 A Linked List Template
17.4 Recursive Linked List Operations
17.5 Variations of the Linked List

17.6 The STL list Container
17.7 Reliable Software Systems, Inc.,

Case Study
17.8 Tying It All Together: More on Graphics

and Animation

1022 Chapter 17 Linked Lists

To insert a value into the middle of a vector requires all the elements after the insertion point
to be moved one position toward the vector’s end, thus making room for the new value.
Likewise, removing a value from a vector requires all the elements after the removal point to
be moved one position toward the vector’s beginning. When a node is inserted into or deleted
from a linked list, none of the other nodes have to be moved.

The Structure of Linked Lists
Each node in a linked list contains one or more members that hold data. (For example, the
data stored in the node may be an inventory record; or it may be a customer information
record consisting of the customer’s name, address, and telephone number.) In addition to
the data, each node contains a successor pointer that points to the next node in the list.
The makeup of a single node is illustrated in Figure 17-1.

The first node of a nonempty linked list is called the head of the list. To access the nodes in a
linked list, you need to have a pointer to the head of the list. Beginning with the head, you
can access the rest of the nodes in the list by following the successor pointers stored in each
node. The successor pointer in the last node is set to NULL to indicate the end of the list.

Because the pointer to the head of the list is used to locate the head of the list, we can think of
it as representing the list head. The same pointer can also be used to locate the entire list by
starting at the head and following the successor pointers, so it is also natural to think of it as
representing the entire list. Figure 17-2 illustrates a linked list of three nodes, showing the
pointer to the head, the three nodes of the list, and the NULL pointer that signifies the end of
the list.

C++ Representation of Linked Lists
To represent linked lists in C++, we need to have a data type that represents a single node in
the list. Looking at Figure 17-1, we see that it is natural to make this data type a structure
that contains the data to be stored, together with a pointer to another node of the same

Figure 17-1

Figure 17-2

NOTE: Figure 17-2 depicts the nodes in the linked list as being very close to each other,
neatly arranged in a row. In reality, the nodes may be scattered around various parts of
memory.

Data Members
Pointer

NULL

List Head

Introduction to the Linked List ADT 1023

type. Assuming that each node will store a single data item of type double, we can declare
the following type to hold the node:

struct ListNode
{

double value;
ListNode *next;

};

Here ListNode is the type of a node to be stored in the list, the structure member value is
the data portion of the node, and the structure member next, declared as a pointer to
ListNode, is the successor pointer that points to the next node.

The ListNode structure has an interesting property: it contains a pointer to a data structure
of the same type and thus can be said to be a type that contains a reference to itself. Such
types are called self-referential data types, or self-referential data structures.

Having declared a data type to represent a node, we can define an initially empty linked list
by defining a pointer to be used as the list head and initializing it to NULL:

 ListNode *head = NULL;

We can now create a linked list that consists of a single node storing 12.5 as follows:

head = new ListNode; // allocate new node
head->value = 12.5; // store the value
head->next = NULL; // signify end of list

Now let’s see how we can create a new node, store 13.5 in it, and make it the second node in
the list. We can use a second pointer to point to a newly allocated node into which the 13.5
will be stored:

ListNode *secondPtr = new ListNode;
secondPtr->value = 13.5;
secondPtr->next = NULL; // second node is end of list
head->next = secondPtr; // first node points to second

Note that we have now made the second node the end of the list by setting its successor
pointer, secondPtr->next, to NULL, and we have changed the successor pointer of the
list head to point to the second node. Program 17-1 illustrates the creation of a simple linked
list.

Program 17-1

1 // This program illustrates the creation
2 // of linked lists.
3 #include <iostream>
4 using namespace std;
5
6 struct ListNode
7 {
8 double value;
9 ListNode *next;
10 };
11

(program continues)

1024 Chapter 17 Linked Lists

Using Constructors to Initialize Nodes
Recall that C++ structures can have constructors. It is often convenient to provide the
structures that define the type for a list node with one or more constructors, to allow nodes
to be initialized as soon as they are created. Recall also that just like regular functions,
constructors can be defined with default parameters. It is very common to provide a
default parameter of NULL for the successor pointer of a node. Here is an alternative
definition of the ListNode structure:

struct ListNode
{

double value;
ListNode *next;
// Constructor
ListNode(double value1, ListNode *next1 = NULL)
{

value = value1;
next = next1;

}
};

With this declaration, a node can be created in two different ways:

1. by specifying just its value part and letting the successor pointer default to NULL, or
2. by specifying both the value part and a pointer to the node that is to follow this one

in the list.

12 int main()
13 {
14 ListNode *head;
15
16 // Create first node with 12.5
17 head = new ListNode; // Allocate new node
18 head->value = 12.5; // Store the value
19 head->next = NULL; // Signify end of list
20
21 // Create second node with 13.5
22 ListNode *secondPtr = new ListNode;
23 secondPtr->value = 13.5;
24 secondPtr->next = NULL; // Second node is end of list
25 head->next = secondPtr; // First node points to second
26
27 // Print the list
28 cout << "First item is " << head->value << endl;
29 cout << "Second item is " << head->next->value << endl;
30 return 0;
31 }

Program Output
First item is 12.5
Second item is 13.5

Program 17-1 (continued)

Introduction to the Linked List ADT 1025

The first method is useful when we are creating a node to put at the end of a linked list, while
the second method is useful when the newly created node is to be inserted at a place in the list
where it will have a successor.

Using this new declaration of a node, we can create the previous list of 12.5 followed
by 13.5 with much shorter code:

ListNode *secondPtr = new ListNode(13.5);
ListNode *head = new ListNode(12.5, secondPtr);

We can actually dispense with the second pointer and write the above code as:

ListNode *head = new ListNode(13.5);
head = new ListNode(12.5, head);

This code is equivalent to what precedes it because the assignment statement

head = new ListNode(12.5, head);

is evaluated from right to left: first the old value of head is used in the constructor, and then
the address returned from the new operator is assigned to head, becoming its new value.

Building a List
Using the constructor version of ListNode, it is very easy to create a list by reading values
from a file and adding each newly read value to the beginning of the list of values already
accumulated. For example, using numberList for the list head, and numberFile for the
input file object, the following code will read in numbers stored in a text file and arrange
them in a list:

ListNode *numberList = NULL;
double number;
while (numberFile >> number)
{

// Create a node to hold this number
numberList = new ListNode(number, numberList);

}

Traversing a List
The process of beginning at the head of a list and going through the entire list while doing
some processing at each node is called traversing the list. For example, we would have to
traverse a list if we needed to print the contents of every node in the list. To traverse a list,
say one whose list head pointer is numberList, we take another pointer ptr and point it to
the beginning of the list:

ListNode *ptr = numberList;

We can then process the node pointed to by ptr by working with the expression *ptr, or by
using the structure pointer operator ->. For example, if we needed to print the value at the
node, we could write the code

cout << ptr->value;

1026 Chapter 17 Linked Lists

Once the processing at the node is done, we move the pointer to the next node, if there is
one, by writing

ptr = ptr->next;

thus replacing the pointer to a node by the pointer to the successor of the node. Thus to print
an entire list we can use code such as

ListNode *ptr = numberList;
while (ptr != NULL)
{

cout << ptr->value << " "; // Process node
ptr = ptr->next; // Move to next node

}

Program 17-2 illustrates these techniques by reading a file of numbers, arranging the
numbers in a linked list, and then traversing the list to print the numbers on the screen.

Program 17-2

1 // This program illustrates the building
2 // and traversal of a linked list.
3
4 #include <iostream>
5 #include <fstream>
6 using namespace std;
7
8 struct ListNode
9 {
10 double value;
11 ListNode *next;
12 // Constructor
13 ListNode(double value1, ListNode *next1 = NULL)
14 {
15 value = value1;
16 next = next1;
17 }
18 };
19
20 int main()
21 {
22 double number; // Used to read the file
23 ListNode *numberList = NULL; // List of numbers
24
25 // Open the file
26 ifstream numberFile("numberFile.dat");
27 if (!numberFile)
28 {
29 cout << "Error in opening the file of numbers.";
30 exit(1);
31 }
32 // Read the file into a linked list
33 cout << "The contents of the file are: " << endl;
34 while (numberFile >> number)

(program continues)

Linked List Operations 1027

Checkpoint

17.1 Describe the two parts of a node.

17.2 What is a list head?

17.3 What signifies the end of a linked list?

17.4 What is a self-referential data structure?

17.2 Linked List Operations

CONCEPT: The basic linked list operations are adding an element to a list, removing an
element from the list, traversing the list, and destroying the list.

In this section we develop some simple list classes. The first of these, which we call
NumberList, will store values of type double. It is based on the ListNode structure defined
in the preceding section and is shown here.

35 {
36 cout << number << " ";
37 // Create a node to hold this number
38 numberList = new ListNode(number, numberList);
39 }
40 // Traverse the list while printing
41 cout << endl << "The contents of the list are: " << endl;
42 ListNode *ptr = numberList;
43 while (ptr != NULL)
44 {
45 cout << ptr->value << " "; // Process node
46 ptr = ptr->next; // Move to next node
47 }
48 return 0;
49 }

Program Output
The contents of the file are:
10 20 30 40
The contents of the list are:
40 30 20 10

Contents of NumberList.h
1 #include <iostream>
2 using namespace std;
3 class NumberList
4 {
5 protected:
6 // Declare a class for the list node
7 struct ListNode

Program 17-2 (continued)

1028 Chapter 17 Linked Lists

Because ListNode does not need to be accessed by any code outside of NumberList, we
have declared it inside the NumberList class. We have also declared ListNode in a protected
section to make it accessible to classes that may later be derived from NumberList.

Notice that the constructor initializes the head pointer to NULL, thereby indicating that the
list starts out empty. The class has an add function that takes a value and adds it to the end of
the list, as well as a displayList function that prints to the screen all values stored in the
list. A destructor function destroys the list by deleting all its nodes. With the exception of
remove(), all of these functions are defined in NumberList.cpp. The remove() function
will be added later.

8 {
9 double value;
10 ListNode *next;
11 ListNode(double value1, ListNode *next1 = NULL)
12 {
13 value = value1;
14 next = next1;
15 }
16 };
17 ListNode *head; // List head pointer
18 public:
19 NumberList() { head = NULL; } // Constructor
20 ~NumberList(); // Destructor
21 void add(double number);
22 void remove(double number);
23 void displayList() const;
24 };

Contents of NumberList.cpp
1 #include "NumberList.h"
2 using namespace std;
3
4 //***
5 // add adds a new element to the end of the list. *
6 //***
7 void NumberList::add(double number)
8 {
9 if (head == NULL)
10 head = new ListNode(number);
11 else
12 {
13 // The list is not empty
14 // Use nodePtr to traverse the list
15 ListNode *nodePtr = head;
16 while (nodePtr->next != NULL)
17 nodePtr = nodePtr->next;
18
19 // nodePtr->next is NULL so nodePtr points to the last node
20 // Create a new node and put it after the last node
21 nodePtr->next = new ListNode(number);
22 }
23 }
24

Linked List Operations 1029

Because the NumberList class contains pointers to dynamically allocated memory, it needs
to be equipped with both a copy constructor and an overloaded assignment operator before
it can safely be used in situations that require copies of lists to be made.

Adding an Element to the List
The add member function accepts as an argument a number of type double, creates a node
containing the number, and adds it to the end of the list. The basic idea is as follows. If the
list is empty, the newly created node becomes the only node in the list:

head = new ListNode(number);

If, on the other hand, the list is not empty, we take a pointer nodePtr, set it to the
beginning of the list, and walk it down the list until it points to the last node. We will know
it is pointing to the last node when nodePtr->next equals NULL. The code for starting the
pointer at the beginning of the list and walking it down to the end is

ListNode *nodePtr = head;
while (nodePtr->next != NULL)

 nodePtr = nodePtr->next;

25 //***
26 // displayList outputs a sequence of all values *
27 // currently stored in the list. *
28 //***
29 void NumberList::displayList() const
30 {
31 ListNode *nodePtr = head; // Start at head of list
32 while (nodePtr)
33 {
34 // Print the value in the current node
35 cout << nodePtr->value << " ";
36 // Move on to the next node
37 nodePtr = nodePtr->next;
38 }
39 }
40
41 //**
42 // Destructor deallocates the memory used by the list. *
43 //**
44 NumberList::~NumberList()
45 {
46 ListNode *nodePtr = head; // Start at head of list
47 while (nodePtr != NULL)
48 {
49 // garbage keeps track of node to be deleted
50 ListNode *garbage = nodePtr;
51 // Move on to the next node, if any
52 nodePtr = nodePtr->next;
53 // Delete the "garbage" node
54 delete garbage;
55 }
56 }

VideoNote

Adding an
Element to a
Linked List

1030 Chapter 17 Linked Lists

Once nodePtr is pointing to the last node, we can add the new node after it by using the
code

nodePtr->next = new ListNode(number);

Putting all of this together, we get the add function shown in lines 7–23 of NumberList.cpp.

Displaying a List
The code for the displayList member function, in lines 29–39, is based on the algorithm
for traversing a list presented in the last section.

Destroying the List
It is important for the class’s destructor to release all the memory used by the list. It does
this by stepping through the list, deleting one node at a time. The code for doing so is
found in lines 44–56 of the NumberList.cpp file. A pointer nodePtr starts at the
beginning (head) of the list and steps through the list one node at a time. A second pointer,
garbage, follows in nodePtr’s wake and is used to delete each node as soon as nodePtr
has passed on to the node’s successor.
Program 17–3 demonstrates the operation of the member functions of the NumberList
class.

Let’s step through Program 17-3, observing how the add function builds a linked list to store
the three argument values used.

The head pointer, a member variable of the NumberList class, is automatically
initialized to NULL by the constructor when the list is created. This indicates that the list
is initially empty.

Program 17-3

1 // This program demonstrates the add and
2 // display linked list operations.
3
4 #include "Numberlist.h"
5 using namespace std;
6
7 int main()
8 {
9 NumberList list;
10 list.add(2.5);
11 list.add(7.9);
12 list.add(12.6);
13 list.displayList();
14 cout << endl;
15 return 0;
16 }

Program Output
2.5 7.9 12.6

Linked List Operations 1031

The first call to add passes 2.5 as the argument. Because the list is empty at that time, the code

head = new ListNode(num);

is executed, resulting in the situation depicted in Figure 17-3:

There are no more statements to execute, so control returns to function main. In the
second call to add, 7.9 is passed as the argument. The else clause of the if statement
will be executed, setting nodePtr to point to the first node of the list, as illustrated in
Figure 17-4.

At this point, the pointer nodePtr->next has value NULL, and the while loop terminates.
The statement

nodePtr->next = new ListNode(num);

which follows the loop, is then executed, giving the situation depicted in Figure 17.5. The
function then returns.

The value 12.6 is passed on the third call to add. Again, control will flow to the else clause
of the if statement because the list is nonempty. The pointer nodePtr will be set to the
beginning of the list as shown in Figure 17-6.

Figure 17-3

Figure 17-4

Figure 17-5

NULL2.5

head

2.5

7.9
num

head

nodePtr

NULL

2.5

head

nodePtr

NULL7.9

1032 Chapter 17 Linked Lists

Because nodePtr->next is not NULL, the while loop executes, resulting in the situation
illustrated in Figure 17-7.

At this point, the while loop terminates, and the statement

nodePtr->next = new ListNode(num);

that comes after the while loop is executed. This gives the situation depicted in Figure 17-8.

Linked Lists in Sorted Order
It is sometimes useful to keep elements added to a linked list in sorted order. For example, the
list may maintain its elements in ascending order, meaning that each element in the list is less
than or equal to its successor. In these cases, we cannot add elements to the list by putting
them at the end of the list as in the add function of the NumberList class, because doing so
would violate the order of the elements in the list. A different approach is needed.

Consider a class SortedNumberList that maintains its elements in ascending order. It is
similar to the NumberList class, except the add function is modified so that it keeps the list
in sorted order when placing new elements. Because a sorted list is still a list, it makes sense
to use inheritance and derive it from NumberList.

Figure 17-6

Figure 17-7

Figure 17-8

2.5

head

NULL7.9

nodePtr
num=12.6

2.5

head

NULL7.9

nodePtr

num=12.6

2.5

head

7.9 NULL12.6

nodePtr

Linked List Operations 1033

Inserting a Node into a Sorted List
Suppose that we have a linked list of numbers that is sorted in ascending order. We want to
write the add function so that it inserts its argument number in the list at a position that
leaves the list sorted.

There are two cases to consider. The first case is when the new number to be inserted should
go before every node already in the list. This happens when the list is either empty, or the first
number in the list is greater or equal to num:

if (head == NULL || head->value >= number)
head = new ListNode(number, head);

Note that the order of these two tests should not be reversed: you should make sure that
head is not NULL before you try to access head->value: trying to evaluate the expression
head->value will result in a runtime error if head is NULL.

The second case that should be considered is when the new number needs to go after one of
the nodes already in the list. In this case, the new number will need to be placed just before
the first node that has a value greater or equal to the number. To locate such a node, we use a
pointer called nodePtr. We will start nodePtr at the second node, and then keep moving it
forward in the list until it falls off the end of the list (this will happen when nodePtr
becomes NULL) or it points to a node whose value is greater or equal to number (this will
happen when the expression nodePtr->value >= number becomes true). In order to insert
the new node just before nodePtr, we will need a pointer to the node that precedes the one
that nodePtr points to. To this end, we use a pointer previousNodePtr that always points
to the node previous to the one that nodePtr points to. The whole process of finding the
insertion point is accomplished by the following code:

previousNodePtr = head;
nodePtr = head->next;

// Find the insertion point
while (nodePtr != NULL && nodePtr->value < number)
{

previousNodePtr = nodePtr;
nodePtr = nodePtr->next;

}

The entire function, including the code for creating a new node and inserting it at the point
just after previousNodePtr but before nodePtr, is given here:

Contents of SortedNumberList.h
1 #include "NumberList.h"
2 class SortedNumberList : public NumberList
3 {
4 public:
5 void add(double number);
6 };

Contents of SortedNumberList.h
1 #include "SortedNumberList.h"
2
3 //***
4 // Adds a number to the sorted list. *
5 // This function overrides add in NumberList. *
6 //***

1034 Chapter 17 Linked Lists

Here is a program that uses the add function. A discussion of how the function works
follows the program.

7 void SortedNumberList::add(double number)
8 {
9 ListNode *nodePtr, *previousNodePtr;
10
11 if (head == NULL || head->value >= number)
12 {
13 // A new node goes at the beginning of the list
14 head = new ListNode(number, head);
15 }
16 else
17 {
18 previousNodePtr = head;
19 nodePtr = head->next;
20
21 // Find the insertion point
22 while (nodePtr != NULL && nodePtr->value < number)
23 {
24 previousNodePtr = nodePtr;
25 nodePtr = nodePtr->next;
26 }
27 // Insert the new node just before nodePtr
28 previousNodePtr->next = new ListNode(number, nodePtr);
29 }
30 }

Program 17-4

1 // This program illustrates the NumberList append,
2 // insert, and displayList member functions.
3 #include "SortedNumberList.h"
4
5 int main()
6 {
7 SortedNumberList list;
8
9 // Add elements in order
10 list.add(2.5);
11 list.add(7.9);
12 list.add(12.6);
13 // Add a value that should go in the middle of the list
14 list.add(10.5);
15 // Display the list
16 list.displayList();
17 cout << endl;
18 return 0;
19 }

Program Output
2.5 7.9 10.5 12.6

Linked List Operations 1035

Like Program 17-3, Program 17-4 starts out by building a list with the values 2.5, 7.9,
and 12.6. Because of the order of addition to the list, each of these values is handled
by the if clause in lines 11–15 of SortedNumberList.cpp. The add function is then
called with argument 10.5. This time, the else part in lines 16–26 is executed. The
statements

previousNodePtr = head;
nodePtr = head->next;

are executed, giving the situation depicted in Figure 17-9.

The while loop then executes once, leaving the state of the linked list as shown in
Figure 17-10.

At this point, nodePtr->value is greater or equal to number, so the loop terminates. The
statement after the loop is executed:

previousNodePtr->next = new ListNode(number, nodePtr);

Figure 17-9

Figure 17-10

2.5

head

7.9 NULL12.6

10.5
number

nodePtrpreviousNodePtr

2.5

head

7.9 NULL12.6

10.5
number

nodePtrpreviousNodePtr

1036 Chapter 17 Linked Lists

This final state of the list is illustrated in Figure 17-11.

This leaves the list in its final state. If you follow the links, from the head pointer to the
NULL, you will see that the nodes are stored in the order of their value members.

Checkpoint

17.5 What is the difference between appending a node to a list and inserting a node into a list?

17.6 Which is easier to code, appending or inserting?

17.7 Why does the insertNode function shown in this section use a previousNodePtr
pointer?

Removing an Element
Removing an element from a linked list requires a number of steps:

1. Locating the node containing the element to be removed.
2. Unhooking the node from the list.
3. Deleting the memory allocated to the node.

The remove member function uses a pointer nodePtr to search for a node containing the
value number that is to be removed. During this process, a second pointer previousNodePtr
trails behind nodePtr, always pointing to the node preceding the one pointed to by nodePtr.
When nodePtr points to the node to be deleted, previousNodePtr->next is set to
nodePtr->next. This causes the successor pointers in the list to bypass the node containing
number, allowing its memory to be freed using delete. The entire function is shown here:

Figure 17-11

25 //**
26 // Removes a number from a list. The function *
27 // does not assume that the list is sorted. *
28 //**
29 void NumberList::remove(double number)
30 {
31 ListNode *nodePtr, *previousNodePtr;
32
33 // If the list is empty, do nothing
34 if (!head) return;
35
36 // Determine if the first node is the one to delete
37 if (head->value == number)

2.5

head

7.9 NULL12.6

10.5

previousNodePtr nodePtr

VideoNote

Removing an
Element from
a Linked List

Linked List Operations 1037

Notice that the remove() function is a member of NumberList rather than
SortedNumberList. Unlike add(), the remove() function works with both sorted and
unsorted lists, and so does not have to be overridden. The file RNumberList.cpp, found on
the book’s companion website, is a simple modification of the NumberList.cpp: it simply
adds the implementation of remove(). Program 17-5 demonstrates this new function by first
building a list of three values and then removing the values one by one.

38 {
39 nodePtr = head;
40 head = head->next;
41 delete nodePtr;
42 }
43 else
44 {
45 // Initialize nodePtr to the head of the list
46 nodePtr = head;
47
48 // Skip nodes whose value member is not number
49 while (nodePtr != NULL && nodePtr->value != number)
50 {
51 previousNodePtr = nodePtr;
52 nodePtr = nodePtr->next;
53 }
54 // Link the previous node to the node after
55 // nodePtr, then delete nodePtr
56 if (nodePtr)
57 {
58 previousNodePtr->next = nodePtr->next;
59 delete nodePtr;
60 }
61 }
62 }

Program 17-5

1 // This program demonstrates the remove member function.
2 #include "NumberList.h"
3 using namespace std;
4
5 int main()
6 {
7 NumberList list;
8
9 // Build the list
10 list.add(2.5);
11 list.add(7.9);
12 list.add(12.6);
13
14 // Display the list
15 cout << "Here are the initial values:\n";
16 list.displayList();
17 cout << "\n\n";

(program continues)

1038 Chapter 17 Linked Lists

To illustrate how remove works, we will step through the first call, the one that removes 7.9
from the list. This is a value that is in the middle of the list.

Look at the else part of the second if statement, lines 44–61. This is where the function
will perform its action because the list is not empty and the first node does not contain
the value 7.9. Just like the sorted list version of add(), this function uses nodePtr and
previousNodePtr to traverse the list. The while loop terminates when the value 7.9 is
located. At this point, the list head and the other pointers will be in the state depicted in
Figure 17-12.

18
19 // Demonstrate the remove function
20 cout << "Now removing the value in the middle.\n";
21 list.remove(7.9);
22 cout << "Here are the values left.\n";
23 list.displayList();
24 cout << "\n\n";
25
26 cout << "Now removing the last value.\n";
27 list.remove(12.6);
28 cout << "Here are the values left.\n";
29 list.displayList();
30 cout << "\n\n";
31
32 cout << "Now removing the only remaining value.\n";
33 list.remove(2.5);
34 cout << "Here are the values left.\n";
35 list.displayList();
36 cout << endl;
37
38 return 0;
39 }

Program Output
Here are the initial values:
2.5 7.9 12.6

Now removing the value in the middle.
Here are the values left.
2.5 12.6

Now removing the last value.
Here are the values left.
2.5

Now removing the only remaining value.
Here are the values left.

Program 17-5 (continued)

A Linked List Template 1039

Next, the following statement executes.

previousNodePtr->next = nodePtr->next;

This statement causes the links in the list to bypass the node that nodePtr points to.
Although the node still exists in memory, this removes it from the list, as illustrated in
Figure 17-13.

The last statement uses the delete operator to free the memory used by the deleted node.

Checkpoint

17.8 What are the two steps involved in deleting a node from a linked list?

17.9 When deleting a node, why can’t you just use the delete operator to remove it
from memory? Why must you take the steps you listed in response to question 17.8?

17.10 In a program that uses several linked lists, what might eventually happen if the class
destructor does not destroy its linked list?

17.3 A Linked List Template*
A major limitation of the NumberList class is that it can only hold values of type double.
A list class is most useful when it can be used to hold values of different types. The
LinkedList class, which we will cover next, uses templates to achieve type flexibility. It
uses the same logic as the NumberList class.

Figure 17-12

Figure 17-13

* Note: This section should be skipped if Chapter 16 has not yet been covered.

2.5

head

7.9 NULL12.6

nodePtrpreviousNodePtr

2.5

head

7.9 NULL12.6

nodePtrpreviousNodePtr

1040 Chapter 17 Linked Lists

Contents of LinkedList.h
1 #include <iostream>
2 using namespace std;
3 template <class T>
4 class LinkedList
5 {
6 protected:
7 // Declare a class for the list node
8 struct ListNode
9 {
10 T value;
11 ListNode *next;
12 ListNode(T value1, ListNode *next1 = NULL)
13 {
14 value = value1;
15 next = next1;
16 }
17 };
18 ListNode *head; // List head pointer
19 public:
20 LinkedList() { head = NULL; } // Constructor
21 ~LinkedList(); // Destructor
22 void add(T value);
23 void remove(T value);
24 void displayList() const;
25 };
26
27 //***
28 // Adds a new element to the end of the list. *
29 //***
30 template <class T>
31 void LinkedList<T>::add(T value)
32 {
33 if (head == NULL)
34 head = new ListNode(value);
35 else
36 {
37 // The list is not empty
38 // Use nodePtr to traverse the list
39 ListNode *nodePtr = head;
40 while (nodePtr->next != NULL)
41 nodePtr = nodePtr->next;
42
43 // nodePtr->next is NULL so nodePtr points to the last node
44 // Create a new node and put it after the last node
45 nodePtr->next = new ListNode(value);
46 }
47 }
48
49 //**
50 // Removes a number from a list. The function *
51 // does not assume that the list is sorted. *
52 //**
53 template <class T>
54 void LinkedList<T>::remove(T value)

A Linked List Template 1041

55 {
56 ListNode *nodePtr, *previousNodePtr;
57
58 // If the list is empty, do nothing
59 if (!head) return;
60
61 // Determine if the first node is the one to delete
62 if (head->value == value)
63 {
64 nodePtr = head;
65 head = head->next;
66 delete nodePtr;
67 }
68 else
69 {
70 // Initialize nodePtr to the head of the list
71 nodePtr = head;
72
73 // Skip nodes whose value member is not num
74 while (nodePtr != NULL && nodePtr->value != value)
75 {
76 previousNodePtr = nodePtr;
77 nodePtr = nodePtr->next;
78 }
79 // Link the previous node to the node after
80 // nodePtr, then delete nodePtr
81 if (nodePtr)
82 {
83 previousNodePtr->next = nodePtr->next;
84 delete nodePtr;
85 }
86 }
87 }
88
89 //***
90 // displayList outputs a sequence of all values *
91 // currently stored in the list. *
92 //***
93 template <class T>
94 void LinkedList<T>::displayList() const
95 {
96 ListNode *nodePtr = head; // Start at head of list
97 while (nodePtr)
98 {
99 // Print the value in the current node
100 cout << nodePtr->value << " ";
101 // Move on to the next node
102 nodePtr = nodePtr->next;
103 }
104 }
105
106 //**
107 // Destructor deallocates the memory used by the list. *
108 //**

1042 Chapter 17 Linked Lists

Notice that the implementation of the class member functions, previously in a separate .cpp
file, have now been folded into the header file. This has been done to avoid the tremendous
complexities of compiling and linking a multifile program that uses templates.

The template class will work for any data type that supports comparison operators such as
== and <=. In particular, it will work for all numeric types and for string. Program 17-6
shows the template being used as list of strings.

109 template <class T>
110 LinkedList<T>::~LinkedList()
111 {
112 ListNode *nodePtr = head; // Start at head of list
113 while (nodePtr != NULL)
114 {
115 // garbage keeps track of node to be deleted
116 ListNode *garbage = nodePtr;
117 // Move on to the next node, if any
118 nodePtr = nodePtr->next;
119 // Delete the "garbage" node
120 delete garbage;
121 }
122 }

Program 17-6

1 // This program demonstrates the linked list template
2 // being used to create a linked list of strings.
3 #include <string>
4 #include "LinkedList.h"
5 using namespace std;
6
7 int main()
8 {
9 LinkedList<string> list;
10
11 // Build the list
12 list.add("Alice");
13 list.add("Chuck");
14 list.add("Elaine");
15 list.add("Fran");
16
17 cout << "Here are the initial names:\n";
18 list.displayList();
19 cout << "\n\n";
20
21 cout << "Now removing Elaine.\n\n";
22 list.remove("Elaine");
23 cout << "Here are the remaining elements.\n";
24 list.displayList();
25 cout << endl;
26
27 return 0;
28 }

(program continues)

Recursive Linked List Operations 1043

17.4 Recursive Linked List Operations

CONCEPT: Recursion is a useful technique for working with linked lists.

Recursion is a useful approach to solving problems that can be broken down into smaller
problems of the same type. Some data structures, such as arrays and linked lists, mirror this
property of recursion in that a large array can be split into smaller arrays; and likewise, a
nonempty linked list can be reduced to a smaller linked list by removing its first node. Because
of this, both array and linked list operations are often well suited to a recursive solution. In
this section, we will take a look at the recursive implementation of linked list operations.

Let’s take a look at some examples of recursive linked list operations. We will first look at the
implementation of recursive stand-alone functions, and then later on in the section, we will
look at how member functions of a class can be made recursive. We will use for our examples
linked lists of numbers based on the node type

struct ListNode
{

double value;
ListNode *next;
ListNode(double value1, ListNode *next1 = NULL)
{

value = value1;
next = next1;

}
};

We have used a structure here to represent the node for ease of presentation only, normally,
the node would be a class type to restrict access to its private members.

Recall that the head of a nonempty list is the first item on the list. The tail of a nonempty list
is the list that remains after you remove the head. For example, any list with only one item
has the empty list for its tail. A list of numbers 2.5, 7.9, 12.6 has the list 7.9, 12.6 as its
tail. With a declaration such as ListNode, if a nonempty list is represented by a pointer ptr,
the tail will be represented by ptr->next.

Finally, remember that a good recursive solution must be careful to identify and deal with
base cases of the problem, that is, the subproblems resulting from the breaking down process
that can be directly solved. In the case of linked lists, the process will often involve breaking

Program Output
Here are the initial names:
Alice Chuck Elaine Fran

Now removing Elaine.

Here are the remaining elements.
Alice Chuck Fran

Program 17-6 (continued)

1044 Chapter 17 Linked Lists

a list down by separating it into its head and tail, and then recursively solving the problem on
the tail. The base case will usually be when the list on which the operation is to be
performed is empty, or in some cases, has only one item.

Recursive List Functions
Let’s write some recursive linked list functions. The function

int size(ListNode *ptr)

takes as parameter a pointer to the head node of a linked list and returns the number of
elements stored in the list. If the list is empty, its size is zero:

if (ptr == NULL) return 0;

But if a list is nonempty, its size will be one more than the size of its tail:

if (ptr != NULL) return 1 + size(ptr->next);

Putting these two observations together, we arrive at the following code for the size()
function:

int size(ListNode *ptr)
{
 if (ptr == NULL)
 return 0;
 else
 return 1 + size(ptr->next);
}

Consider now a recursive strategy for a function

void displayList(ListNode *ptr)

that takes a pointer to the head node of a list and prints the list elements. There is nothing
to print if the list is empty. To display a nonempty list, we first display the element stored in
the head node

cout << ptr->value << " ";

and then recursively display the tail of the list. Because the tail of the list is given by
ptr->next, we arrive at the following code:

void displayList(ListNode *ptr)
{
 if (ptr != NULL)
 {
 cout << ptr-> value << " ";
 displayList(ptr->next);
 }
}

Program 17-7 gathers these two functions together and illustrates their use. The program
reads data from a file Numberfile.dat that can be found on the book’s companion website.

Recursive Linked List Operations 1045

Program 17-7

1 // This program illustrates recursion on linked lists.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 struct ListNode
7 {
8 double value;
9 ListNode *next;
10 // Constructor
11 ListNode(double value1, ListNode *next1 = NULL)
12 {
13 value = value1;
14 next = next1;
15 }
16 };
17
18 // Function prototypes
19 int size(ListNode *);
20 void displayList(ListNode *);
21
22 int main()
23 {
24 ListNode *numberList = NULL; // List of numbers
25 double number; // Used to read the file
26
27 // Open the file
28 ifstream numberFile("numberFile.dat");
29 if (!numberFile)
30 {
31 cout << "Error in opening the file of numbers.";
32 exit(1);
33 }
34 // Read the file into a linked list
35 while (numberFile >> number)
36 {
37 // Create a node to hold this number
38 numberList = new ListNode(number, numberList);
39 }
40 // Print the list
41 cout << endl << "The contents of the list are: " << endl;
42 displayList(numberList);
43
44 // Print the size of the list
45 cout << endl << "The number of items in the list is: "
46 << size(numberList);
47 return 0;
48 }
49

(program continues)

1046 Chapter 17 Linked Lists

Recursive Member Functions
Let’s write a new version of the NumberList class in which the member functions for
adding an element, removing an element, and displaying the list have recursive
implementations. The class will also have a size() function. Here is the class declaration:

50 //***
51 // length computes the number of nodes in *
52 // a linked list *
53 //***
54 int size(ListNode *ptr)
55 {
56 if (ptr == NULL)
57 return 0;
58 else
59 return 1 + size(ptr->next);
60 }
61
62 //***
63 // displayList prints all the values stored *
64 // in the list *
65 //***
66 void displayList(ListNode *ptr)
67 {
68 if (ptr != NULL)
69 {
70 cout << ptr-> value << " ";
71 displayList(ptr->next);
72 }
73 }

Program Output:
The contents of the list are:
40 30 20 10
The number of items in the list is: 4

Contents of NumberList2.h
1 #include <iostream>
2 using namespace std;
3 class NumberList2
4 {
5 protected:
6 // Declare a class for the list node
7 struct ListNode
8 {
9 double value;
10 ListNode *next;
11 ListNode(double value1, ListNode *next1 = NULL)
12 {
13 value = value1;

Program 17-7 (continued)

Recursive Linked List Operations 1047

If you look at the class, you will notice that each public member function in lines 20–24 has
a corresponding private member function in lines 27–30. The private member functions
provide recursive implementations for their public counterparts. Notice that each of the
private member functions has a parameter of type ListNode*. This parameter is needed for
the recursion to work.

You might wonder why we do not make the recursive functions public. The reason is
that the parameters of type ListNode* are implementation details, and therefore should
not be exposed to the users of the class. The user of the public interface of the class does
not need to know that the list is internally implemented using a pointer to ListNode
named head.

The Recursive add Member Function
Notice that the recursive add member function

ListNode *add(ListNode *aList, double value);

takes as parameters an input list and a value and returns the list that results from adding the
value to the input list. Technically, the function takes as its first parameter a pointer to the
head of a linked list and returns a pointer to the head of the resulting list. Line 21 of the code
listing of NumberList2.h shows how the recursive function is called to add a value to the
list.

Let’s see how the add function works. If the input list is empty (base case), the function
creates a new node containing the value and returns a pointer to that node:

return new ListNode(value);

If the list is not empty, the function proceeds as follows. First, it splits the input list into its
constituent head node and tail.

ListNode *tail = aList->next; // Fix the tail
aList->next = null; // aList now points to the head

14 next = next1;
15 }
16 };
17 ListNode *head; // List head pointer
18 public:
19 NumberList2() { head = NULL; } // Constructor
20 ~NumberList2(); // Destructor
21 void add(double value) { head = add(head, value);}
22 void remove(double value) {head = remove(head, value);}
23 void displayList() const {displayList(head);}
24 int size() const {return size(head);}
25 private:
26 // Recursive implementations
27 ListNode *add(ListNode *aList, double value);
28 ListNode *remove(ListNode *aList, double value);
29 void displayList(ListNode *aList) const;
30 int size(ListNode *aList) const;
31 };

1048 Chapter 17 Linked Lists

The tail is shorter than the original input list, and is therefore closer to the base case. Using
recursion, the function adds the value to the tail of the list, resulting in a “bigger” tail:

ListNode *biggerTail = add(tail, value);

Finally, the original head, which is being pointed to by aList, is reattached to the bigger tail,
and a pointer to the original head is returned:

aList->next = biggerTail; // Reattach the head
return aList; // Return pointer to augmented list

Putting all of this together, we get the following code for the add function:

The code in this function can be shortened. First, notice that line 50 is not needed. The head
does not have to be detached before making the recursive call on the tail in line 52, as long as
it is “reattached” in line 54. Then, we can eliminate the tail variable and just use aList->next
in line 52. The code in the else clause then gets shortened to

ListNode *biggerTail = add(aList->next, value);
aList->next = biggerTail;
return aList;

which can in turn be shortened to

aList->next = add(aList->next, value);
return aList;

The add function can therefore be written as follows:

42 NumberList2::ListNode *NumberList2::add(ListNode *aList, double value)
43 {
44 if (aList == NULL)
45 return new ListNode(value);
46 else
47 {
48 // Split into constituent head and tail
49 ListNode *tail = aList->next; // tail
50 aList->next = NULL; // Detached head
51 // Recursively add value to tail
52 ListNode *biggerTail = add(tail, value);
53 // Reattach the head
54 aList->next = biggerTail;
55 // Return pointer to head of bigger list
56 return aList;
57 }
58 }

28 NumberList2::ListNode *NumberList2::add(ListNode *aList, double value)
29 {
30 if (aList == NULL)
31 return new ListNode(value);
32 else
33 {
34 // Add the value to the end of the tail
35 aList->next = add(aList->next, value);
36 return aList;
37 }
38 }

Recursive Linked List Operations 1049

The Recursive remove Member Function
The remove function

ListNode *remove(ListNode *aList, double value)

takes as parameter an input list and a value, removes the value from the input list, and
returns the resulting list. If the value to be removed is not on the list, the function returns the
input list unchanged.

The function works as follows. If the list is empty, the function returns NULL.

if(aList == NULL) return NULL;

Otherwise, the function compares the value to what is stored in the first (head) node of the
list. If the value is found there, the head node (pointed to by aList) is deleted and the
function returns the tail:

if (aList->value == value)
{
 ListNode *tail = aList->next;
 delete aList;
 return tail;
}

The last case considered is when the list is not empty and the head of the list does not contain
the value to be removed. In this case, the function recursively removes the value from the tail
of the list, reattaches the original head to the modified tail, and returns a pointer to the head
of the (possibly) modified list. Using the same reasoning as in the add() function, we can
write this case as

aList->next = remove(aList->next, value);
return aList;

Again putting it all together, we get the complete function as found lines 10–60 of the
implementation file NumberList2.cpp.

Contents of NumberList2.cpp
1 #include "NumberList2.h"
2
3 //***
4 // Returns the number of elements in a list *
5 // **
6 int NumberList2::size(ListNode *aList) const
7 {
8 if (aList == NULL)
9 return 0;
10 else
11 return 1 + size(aList->next);
12 }
13
14 //***
15 // Prints all elements stored in a list *
16 //***
17 void NumberList2::displayList(ListNode *aList) const

1050 Chapter 17 Linked Lists

18 {
19 if (aList != NULL)
20 {
21 cout << aList->value << " ";
22 displayList(aList->next);
23 }
24 }
25 //***
26 // Adds a value at the end of a list *
27 //***
28 NumberList2::ListNode *NumberList2::add(ListNode *aList, double value)
29 {
30 if (aList == NULL)
31 return new ListNode(value);
32 else
33 {
34 // Add the value to the end of the tail
35 aList->next = add(aList->next, value);
36 return aList;
37 }
38 }
39
40 NumberList2::ListNode *NumberList2::remove(ListNode *aList, double value)
41 {
42 if (aList == NULL) return NULL;
43 // The list is not empty
44
45 // See if value is first on the list
46 // If so, delete the value and return the tail
47 if (aList->value == value)
48 {
49 ListNode *tail = aList->next;
50 delete aList;
51 return tail;
52 }
53 else
54 {
55 // value is not the first on the list
56 // Return the list with the value removed
57 // from the tail of the list
58 aList->next = remove(aList->next, value);
59 return aList;
60 }
61 }
62
63 NumberList2::~NumberList2()
64 {
65 ListNode *ptr = head;
66 while (ptr != NULL)

Recursive Linked List Operations 1051

The following program demonstrates the use of these member functions.

67 {
68 // Point to the node to be deleted
69 ListNode *garbage = ptr;
70 // Go on to the next node
71 ptr = ptr->next;
72 // Delete the current node
73 delete garbage;
74 }
75 }
76
77

Program 17-8

1 // This program demonstrates the recursive member
2 // functions of the NumberList2 class.
3 #include "NumberList2.h"
4
5 int main()
6 {
7 NumberList2 list;
8 double number;
9 list.add(23);
10 list.add(17);
11 list.add(59);
12 cout << "The members of the list are: ";
13 list.displayList();
14 cout << "\n";
15 cout << "Enter a number to add: ";
16 cin >> number;
17 list.add(number);
18 cout << "The members of the list are: ";
19 list.displayList();
20 cout << "\n";
21 cout << "Enter a number to remove: ";
22 cin >> number;
23 list.remove(number);
24 cout << "The members of the list are: ";
25 list.displayList();
26 cout << "\n";
27 return 0;
28 }

Program Output with Example Input Shown in Bold
The members of the list are: 23 17 59
Enter a number to add: 89
The members of the list are: 23 17 59 89
Enter a number to remove: 17
The members of the list are: 23 59 89

1052 Chapter 17 Linked Lists

17.5 Variations of the Linked List

CONCEPT: There are many ways to link dynamically allocated data structures together.
Two variations of the linked list are the doubly linked list and the circular
linked list.

The linked list examples that we have discussed are singly linked lists: Each node is linked to a
single other node. A variation of this is the doubly linked list. In this type of list, each node not
only points to the next node, but also to the previous one. This is illustrated in Figure 17-14.

In Figure 17-14, the last node and the first node in the list have pointers to the NULL
address. When the program traverses the list it knows when it has reached either end.

Another variation is the circular linked list. The last node in this type of list points to the first,
as shown in Figure 17-15.

17.6 The STL list Container*

CONCEPT: The Standard Template Library provides a linked list container.

The list container, found in the Standard Template Library, is a template version of a
doubly linked list. STL lists can insert elements or add elements within the list more
quickly than vectors can, because lists do not have to shift the other elements. Lists are also
efficient at adding elements at their back because they have a built-in pointer to the last
element in the list (no traversal required).

Figure 17-14

Figure 17-15

* Note: This section should be skipped if Chapter 16 has not yet been covered.

List Head

NULL

NULL

List Head

The STL list Container 1053

Table 17-1 describes some of the list member functions.

Table 17-1 Selected List Member Functions

Member
Function Examples and Description

back cout << list.back() << endl;
The back member function returns a reference to the last element in the list.

erase list.erase(iter);
list.erase(firstIter, lastIter)
The first form causes the list element pointed to by the iterator iter to be
removed. The second form causes all of the list elements from firstIter to
lastIter to be removed.

empty if (list.empty())
The empty member function returns true if the list is empty. It returns false if
the list has elements.

end iter = list.end();
end returns an iterator to the end of the list.

front cout << list.front() << endl;
front returns a reference to the first element of the list.

insert list.insert(iter, x)
The insert member function inserts an element into the list. The example inserts
an element with the value x, just before the element pointed to by iter.

merge list1.merge(list2);
The merge member function expects both list1 and list2 to be already sorted.
Every element of list2 will be inserted into list1 in such a way that the expanded
list1 remains sorted.

pop_back list.pop_back();
pop_back removes the last element of the list.

pop_front list.pop_front();
pop_front removes the first element of the list.

push_back list.push_back(x);
push_back inserts an element with value x at the end of the list.

push_front list.push_front(x);
push_front inserts an element with value x at the beginning of the list.

reverse list.reverse();
reverse reverses the order in which the elements appear in the list.

size() Returns the number of elements in the list.

swap list1.swap(list2)
The swap member function swaps the elements stored in two lists. For example,
assuming list1 and list2 are lists, the statement shown will exchange the values
in the two lists.

unique list.unique();
unique eliminates duplicate values by removing any element that has the same
value as the element before it.

1054 Chapter 17 Linked Lists

Program 17-9 demonstrates some simple operations with the STL lists.

17.7 Reliable Software Systems, Inc., Case Study

Problem Statement
Reliable Software Systems, Inc., writes and markets C++ class libraries for use by
programmers worldwide. One of the company’s products is a library package that
includes the NumberList class introduced in Section 2 of this chapter. Its customers need
to use the class in programs in which copies and assignment of NumberList objects will
occur. You have been asked to modify the class to support a copy constructor and an
assignment operator.

Program 17-9

1 // This program demonstrates the STL list container.
2 #include <iostream>
3 #include <list> // Include the list header
4 using namespace std;
5
6 int main()
7 {
8 list<int> myList;
9 list<int>::iterator iter;
10
11 // Add values to the list
12 for (int x = 0; x < 100; x += 10)
13 myList.push_back(x);
14
15 // Display the values
16 for (iter = myList.begin(); iter != myList.end(); iter++)
17 cout << *iter << " ";
18 cout << endl;
19
20 // Now reverse the order of the elements
21 myList.reverse();
22
23 // Display the values again
24 for (iter = myList.begin(); iter != myList.end(); iter++)
25 cout << *iter << " ";
26 cout << endl;
27 return 0;
28 }

Program Output
0 10 20 30 40 50 60 70 80 90
90 80 70 60 50 40 30 20 10 0

Reliable Software Systems, Inc., Case Study 1055

Planning for the Changes and Class Design
At least two functions need to be added to the NumberList class. Rather than modifying
the original class, you opt to use inheritance to create a new class with the requested
enhancements. Both copy constructor and assignment need to make a copy of the linked
list of nodes inside of the NumberList object being copied. To avoid duplication of code,
we will add a member function

ListNode *copyList(ListNode *aList);

that creates and returns a distinct copy of a list of nodes. In addition, the assignment
operator, when applied as in the statement

x = y;

will need to deallocate storage allocated to the linked list in the NumberList object x.
Accordingly, we add a member function

void destroyList(ListNode *aList);

to the class. The result of this design work is the ReliableNumberList class shown in the
listing of the ReliableNumberList.h file.

We have added a default constructor (Line 9) to allow lists that are initially empty to be
created. Notice that the auxiliary functions copyList and destroyList are declared static.
This is because they are generic utility functions that do not require access to specific
NumberList objects to do their job.

Implementation of Class Member Functions
We adopt a recursive strategy for implementing copyList and destroyList. If a list is
empty, copyList returns NULL. If a list is not empty, then the function creates a copy of
the head node, attaches it to recursively created copy of the tail, and returns the
resulting list.

Consider now the working of destroyList. There is nothing to destroy if the
argument list is empty. If the argument list is nonempty, the function recursively
destroys the tail and then deallocates the storage for the head node. The coding details

Contents of ReliableNumberList.h
1 #include "numberlist.h"
2
3 class ReliableNumberList : public NumberList
4 {
5 public:
6 // Copy constructor
7 ReliableNumberList(const ReliableNumberList& original);
8 // Now we need a default constructor
9 ReliableNumberList(){}
10 // Assignment operator
11 ReliableNumberList& operator=(ReliableNumberList right);
12 private:
13 static ListNode* copyList(ListNode *aList);
14 static void destroyList(ListNode *aList);
15 };

1056 Chapter 17 Linked Lists

for both copyList and destroyList can be seen in the listing of
ReliableNumberList.cpp that follows.

Having the copyList function makes writing the copy constructor almost trivial: the
constructor simply copies the linked list in the existing object and assigns the result to the
head pointer of the object being created:

head = copylist(original.head);

Coding the assignment operator is not much harder. The operator first deallocates the
storage for the linked list in the calling object and then assigns a copy of the list in its right
operand to the head member of the calling object.

destroyList(head);
head = copyList(right.head);

You can find the full implementation details and an illustration of the use of this new class in
the following listing.

Contents of ReliableNumberList.h
1 #include "reliablenumberlist.h"
2
3 //***
4 // Copy constructor *
5 //***
6 ReliableNumberList::
7 ReliableNumberList(const ReliableNumberList& original)
8 {
9 head = copyList(original.head);
10 }
11
12 //**
13 // Overloaded Assignment operator *
14 //**
15 ReliableNumberList&
16 ReliableNumberList::operator=(ReliableNumberList right)
17 {
18 // First destroy the linked list in this object
19 destroyList(head);
20 // Assign a copy of the linked list in other object
21 head = copyList(right.head);
22 }
23
24 //**
25 // Make a separate copy of the linked list inside *
26 // a ReliableNumberList object *
27 //**
28 NumberList::ListNode *
29 ReliableNumberList::copyList(ListNode *aList)
30 {
31 if (aList == NULL)
32 return NULL;
33 else

Reliable Software Systems, Inc., Case Study 1057

34 {
35 // First copy the tail
36 ListNode *tailCopy = copyList(aList->next);
37 // Return copy of head attached to copy of tail
38 return new ListNode(aList->value, tailCopy);
39 }
40 }
41
42 //**
43 // Destroy a list by deallocating all of its nodes *
44 //**
45 void ReliableNumberList::destroyList(ListNode *aList)
46 {
47 if (aList != NULL)
48 {
49 ListNode *tail = aList->next;
50 // Deallocate the head and then destroy the tail
51 delete aList;
52 destroyList(tail);
53 }
54 }

Program 17-10

1 // This program demonstrates the copy constructor
2 // and assignment operator added to NumberList.
3 #include "reliablenumberlist.h"
4 int main()
5 {
6 ReliableNumberList squareList, cubeList;
7 // Store values in the two lists
8 for (int k = 1; k <= 5; k++)
9 {
10 squareList.add(k*k);
11 cubeList.add(k*k*k);
12 }
13
14 // Use copy constructor to create a third list
15 ReliableNumberList otherList(squareList);
16 cout << "Result of the copy constructor is: ";
17 otherList.displayList();
18 cout << endl;
19
20 // Use the assignment operator
21 otherList = cubeList;
22 cout << "Result of assignment is: ";
23 otherList.displayList();
24 cout << endl;
25 return 0;
26 }

(program continues)

1058 Chapter 17 Linked Lists

17.8 Tying It All Together: More on Graphics
and Animation
In previous chapters you learned how to use text-based graphics to draw and animate
simple geometric shapes like straight lines, rectangles, and triangles. The techniques
you learned can be extended to more complex shapes and figures.

Before you can draw a shape, you must determine the screen coordinates of the characters
that will form both its outline and interior. For example, consider the slanted line segment
shown in Figure 17-16.

The line starts at (0, 0) and ends at (3, 3) and is drawn by placing asterisks at the screen
coordinates (0, 0), (1, 1), (2, 2), and (3, 3).

Representing Shapes with Image Maps
More generally, a figure or shape may consist of several parts. Each of the individual parts
making up the figure may be a line segment, a geometric shape such as a rectangle or triangle,
or some other type of shape. It is convenient to use an array of coordinates to specify a part of
a multi-part figure, and then combine the arrays into a single list that defines the whole figure.
We use the term image map to refer to the list of coordinates that specifies a shape to be drawn.

Let us design the class that will be used to represent image maps. An image map is a list of
coordinates, so we make the class a subclass of the STL type list<COORD>. In addition, we
define a member function

void add(COORD coordArray[]);

to allow us to add an array of coordinates to the list. We mark the end of the coordinate
array by storing a COORD value of (�1, �1) as the last element of the array.

Here is a preliminary declaration of an ImageMap class:

class ImageMap: list<COORD>
{
public:
 // Add an array of coordinates to the image map
 void add(COORD coordArray[])

Program Output
Result of the copy constructor is: 1 4 9 16 25
Result of assignment is: 1 8 27 64 125

Figure 17-16

Program 17-10 (continued)

1059

 {
 for(int k = 0; coordArray[k].X != -1; k++)
 {
 push_back(coordArray[k]);
 }
 }
}

As an example, the line from (0, 0) to (3, 3) would be represented by the code

ImageMap line;
COORD lineCoords[] = {{0,0}, {1,1}, {2,2}, {3,3}, {-1,-1}};
line.add(lineCoords);

Initializing an array of coordinates in this manner and then adding it to the image map is
very handy and is a vast improvement over the alternative of using push_back to add the
coordinates to the image map one at a time:

ImageMap line;
COORD pos;
pos.X = 0;
pos.Y = 0;
line.push_back(pos);
pos.X = 1;
pos.Y = 1;
line.push_back(pos);
// Rest of the code is omitted

The braces { } that go around a single COORD object in the initialization of the
lineCoords array are tedious to insert, particularly when the array has a lot of
elements. We will therefore consider an alternative notation for initializing the image
map. The alternative will allow us to use an array of short integers to initialize an array
of coordinates.

An array of two short integers and a COORD object both consist of two short integers and C++
compilers store both in memory the same way. Once stored in memory, an array of 5 COORD
objects is indistinguishable from an array of 10 short integers. If we write

short int lineShorts[] = {0, 0, 1, 1, 2, 2, 3, 3, -1, -1};

then the array lineShorts is indistinguishable from lineCoords in the way the two
arrays are stored in memory. We can use this fact to find an alternative way of initializing
image maps that does not require as many braces. We add a second add member function
to ImageMap, one that takes an array of short int as a parameter. The new add
function uses a cast to convert its parameter to an array of COORD and then calls the
first add function.

void add(short *coordAsShorts)
{
 COORD *pCoord = reinterpret_cast<COORD *>(coordAsShorts);
 add(pCoord);
}

It will help you to understand why this code works if you remember that an array of COORD,
which is what the member function add(COORD arr[]) expects, has the same type as a
pointer to COORD.

Tying It All Together: More on Graphics and Animation

1060 Chapter 17 Linked Lists

Basics of Animation
Now consider a video game in which a person has to run across the screen. The effect of
running will be achieved by creating image maps of a person in successive running position
as in Figure 17-17.

The first image is displayed briefly at a certain position and then erased. Next, the second
image is briefly displayed a little to the right of the first position and then erased. By
successively displaying and erasing a progression of images at a series of positions in left to
right order, we obtain the appearance of a person running.

Implementation Details
Once an ImageMap object is created, a programmer can use its add methods to incrementally
build the list of coordinates that comprises the shape. Starting with an empty image map, the
programmer can initialize arrays of short integers to represent different parts of the human
body. In this way, arms, legs, torsos, and other parts of the body can be represented and
added to the image map to form the shape of a complete person. Two additional methods,

void displayAt(char ch, int col, int row);
void displayAt(int col, int row);

can be used to display the image map’s shape at a given position. The first of the two
methods specifies a fill character to be used for the outline and interior of the shape. The
second is a convenience method—it calls the first display method and passes it the asterisk as
fill character. Finally, the method

void eraseAt(int col, int row);

is used to erase the image map’s shape at a specified position. The full implementation of the
ImageMap class, and an illustration of its use to achieve graphics animation, are shown in
the listings that follow.

Figure 17-17

Contents of Imagemap.h
1 #include <iostream>
2 #include <list>
3 #include <windows.h>
4 using namespace std;
5
6 const HANDLE console = GetStdHandle(STD_OUTPUT_HANDLE);

Chapter 17 Linked Lists

1061

7
8 class ImageMap:list<COORD>{
9
10 public:
11 // Add an array of coordinates to the image map
12 void add(COORD coordArray[]);
13 // Convenience method for adding an array of coordinates
14 void add(short *coordAsShorts);
15 // Display a given character at a specified position
16 void displayAt(char ch, int col, int row);
17 // Display an asterisk at a given position
18 void displayAt(int col, int row)
19 {
20 displayAt('*', col, row);
21 }
22 // Erase whatever character is at a given position
23 void eraseAt(int col, int row)
24 {
25 displayAt(' ', col, row);
26 }
27 };

Contents of Imagemap.cpp
1 #include "ImageMap.h"
2
3 //**
4 // Adds an array of coordinates to the image map *
5 //**
6 void ImageMap::add(COORD coordArray[])
7 {
8 for(int k = 0; coordArray[k].X != -1; k++)
9 {
10 push_back(coordArray[k]);
11 }
12 }
13
14 //***
15 // Allows an array of shorts to be converted to *
16 // an array of COORD. That simplifies the *
17 // initialization process for an image *
18 //***
19 void ImageMap::add(short *coordAsShorts)
20 {
21 COORD *pCoord = reinterpret_cast<COORD *>(coordAsShorts);
22 add(pCoord);
23 }
24
25 //**
26 // Shows an image at a given position. The image is *
27 // is drawn using the character ch *
28 //**
29 void ImageMap::displayAt(char ch, int col, int row)
30 {
31 list<COORD>::iterator iter = this->begin();
32 for (; iter != this->end(); iter++)

Tying It All Together: More on Graphics and Animation

1062 Chapter 17 Linked ListsChapter 17 Linked Lists

33 {
34 COORD currentPos;
35 currentPos.Y = row + iter->Y;
36 currentPos.X = col + iter->X;
37 SetConsoleCursorPosition(console, currentPos);
38 cout << ch << endl;
39 }
40 }

Program 17-11

1 // This program illustrates animation using the
2 // ImageMap class.
3 #include "ImageMap.h"
4
5 int main()
6 {
7 // Figure 1 - a snapshot of a person running
8 ImageMap figure1;
9
10 // Set up the coordinates for the various body parts
11 // of the person in the first running position
12 short int lowerLeg1[] = { 1, 10, 2, 10, 3, 10, -1, -1};
13 short int thigh1[] = { 4, 9, 5, 8, 6, 7, 7, 6, -1, -1};
14 short int thigh2[] = { 6, 7, 7, 8, 8, 9, -1, -1};
15 short int lowerLeg2[] = {8, 10, 8, 11, -1, -1};
16 short int torso[] = { 8, 5, 9, 4, 10, 3, 11, 2, -1, -1};
17 short int upperArms[] = { 7, 2, 8, 3, 9,
18 4, 10, 5, 11, 6, -1, -1
19 };
20 short int foreArm1[] = { 12, 5, 13, 4, -1, -1};
21 short int foreArm2[] = {6, 3, 5, 4, -1, -1};
22 short int * figure1AllParts [] =
23 {
24 lowerLeg1, lowerLeg2, thigh1, thigh2, torso,
25 upperArms, foreArm1, foreArm2, 0
26 };
27 // Add the coordinates that make up the various body
28 // parts to the image map for the first running position
29 int k = 0;
30 for (int k = 0; figure1AllParts[k] != 0; k++)
31 figure1.add(figure1AllParts[k]);
32
33 // Figure 2- a snapshot of the person in a
34 // different running position
35 ImageMap figure2;
36 short int p2LowerLeg1[] = {1, 11, 2, 10, 3, 9, -1, -1};
37 short int p2thigh1[] = {3, 9, 3, 8, 3, 7, -1, -1};
38 short int p2thigh2[] = {4, 7, 5, 7, 6, 7, -1, -1};
39 short int p2LowerLeg2[] = {6, 8, 6, 9, -1, -1};

(program continues)

1063Tying It All Together: More on Graphics and Animation

40 short int p2torso[] = {3, 6, 3, 5, 3, 4, 3, 3,
41 3, 2, 3, 1, -1, -1
42 };
43 short int p2UpperArms[] = {1, 3, 2, 3, 4, 3, 5, 3, -1, -1};
44 short int p2foreArm1[] = { 1, 4, 1, 5, -1, -1};
45 short int p2foreArm2[] = { 5, 2, 5, 1, -1, -1};
46 short int *figure2AllParts[] =
47 {
48 p2LowerLeg1, p2thigh1, p2thigh2, p2LowerLeg2,
49 p2torso, p2UpperArms, p2foreArm1, p2foreArm2, 0
50 };
51 for (int k = 0; figure2AllParts[k] != 0; k++)
52 figure2.add(figure2AllParts[k]);
53
54 // Figure 3- a snapshot of a person in
55 // yet another running position
56 ImageMap figure3;
57 short int p3torso[] = {4, 7, 4, 6, 4, 5, 4, 4,
58 4, 3, 4, 2, 4, 1, -1, -1
59 };
60 short int p3Thigh1[] = {5, 8, 6, 9, -1, -1};
61 short int p3Thigh2[] = {3, 8, 2, 9, -1, -1};
62 short int p3LowerLeg1[] = {6, 10, 6, 11, -1, -1};
63 short int p3LowerLeg2[] = {1, 8, 0, 7, -1, -1};
64 short int p3UpperArm1[] = {3, 4, 2, 5, -1, -1};
65 short int p3UpperArm2[] = {5, 4, 6, 5, -1, -1};
66 short int p3ForeArm1[] = {3, 6, 4, 7, -1, -1};
67 short int p3ForeArm2[] = {7, 4, 8, 3, -1, -1};
68 short int * figure3AllParts[] =
69 {
70 p3torso, p3Thigh1, p3Thigh2, p3LowerLeg1,
71 p3LowerLeg2,p3UpperArm1, p3UpperArm2,
72 p3ForeArm1, p3ForeArm2, 0
73 };
74
75 for (int k = 0; figure3AllParts[k] != 0; k++)
76 figure3.add(figure3AllParts[k]);
77
78 // Ask Microsoft Windows to clear the screen
79 system("cls");
80 // Form an array of all three figures
81 ImageMap *sequence[3] = {&figure1, &figure2, &figure3};
82
83 // Animate to create the appearance of
84 // running across the screen
85 k = 0;
86 int pos = 0;
87 while (pos <= 60)
88 {
89 // Show the current image at the current position
90 sequence[k]->displayAt(pos, 3);
91 Sleep(400);

(program continues)

Program 17-11 (continued)

1064 Chapter 17 Linked ListsChapter 17 Linked Lists

Review Questions and Exercises

Fill-in-the-Blank

1. The __________ points to the first node in a linked list.

2. A data structure that points to an object of the same type as itself is known as a(n)
__________ data structure.

3. To indicate that a linked list is empty, you should set the pointer to its head to the
value __________.

4. __________ a node means adding it to the end of a list.

5. __________ a node means adding it to a list, but not necessarily to the end.

6. __________ a list means traveling through the list.

7. In a(n) __________ list, the last node has a pointer to the first node.

8. In a(n) __________ list, each node has a pointer to the one before it and the one after it.

Algorithm Workbench

9. Using the ListNode structure introduced in this chapter, write a function

void printFirst(ListNode *ptr)

that prints the value stored in the first node of a list passed to it as parameter. The function
should print an error message and terminate the program if the list passed to it is empty.

10. Write a function

void printSecond(ListNode *ptr)

that prints the value stored in the second node of a list passed to it as parameter.
The function should print an error message and terminate the program if the list
passed to it has less than two nodes.

11. Write a function

double lastValue(ListNode *ptr)

that returns the value stored in the last node of a nonempty list passed to it as
parameter. The function should print an error message and terminate the program if
the list passed to it is empty.

92 // Erase the current image
93 sequence[k]->eraseAt(pos, 3);
94 // Move to next image in the rotation and next position
95 k = (k+1) % 3;
96 pos = pos + 8;
97 }
98 sequence[k]->displayAt(pos, 3);
99 return 0;
100 }

Program 17-11 (continued)

Review Questions and Exercises 1065

12. Write a function

 ListNode *removeFirst(ListNode *ptr)

that is passed a linked list as parameter, and returns the tail of the list: that is, it
removes the first node and returns what is left. The function should deallocate the
storage of the removed node. The function returns NULL if the list passed to it is
empty.

13. Write a function

 ListNode *ListConcat(ListNode *list1, ListNode *list2)

That concatenates the items in list2 to the end of list1 and returns the resulting
list.

Predict the Output

For each of the following program fragments, predict what the output will be.
14. ListNode *p = new ListNode(56.4);

p = new ListNode(34.2, p);
cout << (*p).value << endl << p->value;

15. ListNode *p = new ListNode(56.4);
p = new ListNode(34.2, p);
ListNode *q = p->next;
cout << q->value;

16. ListNode *p = new ListNode(56.4, new ListNode(31.5));
ListNode *q = p;
while (q->next->next != NULL)
q = q->next;
cout << q->value;

Find the Errors

17. Each of the following member functions for performing an operation on a linked list
of type NumberList has at least one error. Explain what is wrong and how to fix it.

A) NumberList::printList()
{

while(head)
{

cout << head->value;
head = head->next;

}
}

B) NumberList::printList()
{

ListNode *p = head;
while (p->next)
{

cout << p->value;
p = p->next;

}
}

1066 Chapter 17 Linked Lists

C) NumberList::printList()
{

ListNode *p = head;
while(p)
{

cout << p->value;
p++;

}
}

D) NumberList::~NumberList()
{

ListNode *nodePtr, *nextNode;

nodePtr = head;
while (nodePtr != NULL)
{

nextNode = nodePtr->next;
nodePtr->next = NULL;
nodePtr = nextNode;

}
}

Soft Skills

18. You are the leader of a programming team. You want the programmers on your team to
attend a two-day workshop on linked lists, stacks, and queues. One of the managers
points out that the STL already supplies each one of those data structures, making it
unnecessary for your programmers to write their own. Write the manager a short memo
that justifies the need for the workshop.

Programming Challenges

1. Simple Linked List Class

Using an appropriate definition of ListNode, design a simple linked list class with only two
member functions and a default constructor:

void add(double x);
boolean isMember(double x);
LinkedList();

The add function adds a new node containing x to the front (head) of the list, while the
isMember function tests to see if the list contains a node with the value x. Test your linked
list class by adding various numbers to the list and then testing for membership.

2. List Copy Constructor

Modify your list class of Programming Challenge 1 to add a copy constructor. Test your class
by making a copy of a list and then testing membership on the copy.

3. List Print

Modify the list class you created in the previous programming challenges to add a print
member function. Test the class by starting with an empty list, adding some elements, and
then printing the resulting list out.

Review Questions and Exercises 1067

4. Recursive Member Check

Modify the list class you created in the previous programming challenges to use a recursive
method to check for list membership. Test your class.

5. List Member Deletion

Modify the list class you created in the previous programming challenges by adding a
function to remove an item from the list, and by adding a destructor:

void remove(double x);
~LinkedList();

Test the class by adding by a sequence of instructions that mixes operations for adding items,
removing items, and printing the list.

6. List Reverse

Modify the list class you created in the previous programming challenges by adding a
member function for reversing the list:

void reverse();

The member function rearranges the nodes in the list so that their order is reversed. You
should do this without creating or destroying nodes.

7. List Search

Modify the list class of Programming Challenge 1 (or later) to include a member function

int search(double x)

that returns the position of a number x on the list. The first node in the list is at position 0,
the second node is at position 1, and so on. If x is not found on the list, the search should
return �1. Test the new member function using an appropriate driver program.

8. Member Insertion By Position

Modify the list class you created in the previous programming challenges by adding a
member function for inserting a new item at a specified position:

void insert(double x, int pos);

A position of 0 means that x will become the first item on the list, a position of 1 means that
x will become the second item on the list, and so on. A position equal to, or greater than, the
length of the list means that the x is placed at the end of the list.

9. Member Removal by Position

Modify the list class you created in the previous programming challenges by adding a
member function for deleting a node at a specified position:

void remove(int pos);

A value of 0 for the position means that the first node on the list (the current head) is deleted.
The function does nothing if the value passed for pos is greater or equal to the length of the
list.

VideoNote

Solving the
Member
Insertion By
Position
Problem

1068 Chapter 17 Linked Lists

10. List Sort

Modify the list class you created in the previous programming challenges by adding a
member function that will sort the list into ascending order by the numeric value of the item
stored in the node.

void sort();

You should sort the list by moving pointers rather than by copying or swapping the contents
of the nodes.

11. Generation of Subsets

Adopt the following strategy to construct the list of all subsets of the set of the integers 1,
2, . . . n. Use an STL vector to represent a single subset of integers, and use an STL list of
vectors to represent a list of subsets. Start with a list L0 of one empty vector; then L0
represents the list of all subsets of the empty set. Now suppose that you have created the list
Lk−1 of all subsets of 1, 2, . . ., k−1. To form the list Lk of all subsets of 1, 2, . . . k create an
empty list L, and then for each vector v in Lk−1, add both v and v + [k] to L. Finally, set Lk to
L. (Here by v + [k] we mean the result of adding the integer k to the vector v.) Test your
program for all values of n ≤ 4.

12. Recursive Generation of Subsets

Solve the problem of Programming Challenge 11 by using recursion. Do this by writing a
recursive function that takes an integer parameter n and returns a list of all subsets of the set
1, 2 . . . , n.

13. Running Back

Program 17-11 makes a person run from across the screen, starting near the left edge of the
screen and ending near the right edge. Modify the program so that the person turns around
and runs back to the starting point.

1069

C
H

A
P

T
E

R

18 Stacks and Queues

18.1 Introduction to the Stack ADT

CONCEPT: A stack is a data structure that stores and retrieves items in a last-in-first-out
manner.

Definition
Like an array or a linked list, a stack is a data structure that holds a sequence of elements.
Unlike arrays and lists, however, stacks are last-in-first-out (LIFO) structures. This means
that when a program retrieves elements from a stack, the last element inserted into the
stack is the first one retrieved (and likewise, the first element inserted is the last one
retrieved).

When visualizing the way a stack works, think of a stack of plates at the beginning of a
cafeteria line. When a cafeteria worker replenishes the supply of plates, the first one he or
she puts on the stack is the last one taken off. This is illustrated in Figure 18-1.

TOPICS

18.1 Introduction to the Stack ADT
18.2 Dynamic Stacks
18.3 The STL stack Container
18.4 Introduction to the Queue ADT
18.5 Dynamic Queues

18.6 The STL deque and queue Containers
18.7 Focus on Problem Solving and

Program Design: Eliminating Recursion
18.8 Tying It All Together: Converting Postfix

Expressions to Infix

1070 Chapter 18 Stacks and Queues

The LIFO characteristic of a stack of plates in a cafeteria is also the primary characteristic
of a stack data structure. The last data element placed on the stack is the first data
retrieved from the stack.

Applications of Stacks
Stacks are useful data structures for algorithms that work first with the last saved element
of a series. For example, computer systems use stacks while executing programs. When a
function is called, they save the program’s return address on a stack. They also create local
variables on a stack. When the function terminates, the local variables are removed from
the stack and the return address is retrieved. Also, some calculators use a stack for
performing mathematical operations.

Static and Dynamic Stacks
There are two types of stack data structure: static and dynamic. Static stacks have a fixed size
and are implemented as arrays. Dynamic stacks grow in size as needed and are implemented
as linked lists. In this section you will see examples of both static and dynamic stacks.

Stack Operations
A stack has two primary operations: push and pop. The push operation causes a value to
be stored, or pushed onto the stack. For example, suppose we have an empty integer stack
that is capable of holding a maximum of three values. With that stack we execute the
following push operations.

push(5);
push(10);
push(15);

Figure 18-2 illustrates the state of the stack after each of these push operations.

The pop operation retrieves (and hence, removes) a value from the stack. Suppose we
execute three consecutive pop operations on the stack shown in Figure 18-2. Figure 18-3
depicts the results.

Figure 18-1

Figure 18-2

Last plate in,
first plate out

First plate in,
last plate out

5
4
3
2
1

5

push(5); push(15);push(10);

5

10

5

10

15

Introduction to the Stack ADT 1071

As you can see from Figure 18-3, the last pop operation leaves the stack empty.

For a static stack (one with a fixed size), we will need a Boolean isFull operation. The isFull
operation returns true if the stack is full and false otherwise. This operation is necessary to
prevent a stack overflow in the event a push operation is attempted when all the stack’s
elements have values stored in them.

For both static and dynamic stacks we will need a Boolean isEmpty operation. The
isEmpty operation returns true when the stack is empty and false otherwise. This prevents
an error from occurring when a pop operation is attempted on an empty stack.

A Static Stack Class
Now we examine a class IntStack that stores a static stack of integers and performs the stack
operations we have discussed. The class has the member variables described in Table 18-1.

The class’s member functions are listed in Table 18-2.

Figure 18-3

Table 18-1 Members Variables of the Stack Class

Member Variable Description

stackArray A pointer to int. When the constructor is executed, it uses stackArray to
dynamically allocate an array for storage.

capacity An integer that holds the size of the stack. This is the maximum number of
elements the stack can hold, not the number of elements currently in the stack.

top An integer that is used to mark the top of the stack. It specifies the position of
the next item that will be added to the stack.

Table 18-2 Members Functions of the Stack Class

Member Functions Description

Constructor The class constructor accepts an integer argument, which specifies the size of
the stack. An integer array of this size is dynamically allocated and assigned
to stackArray. Also, the variable top is initialized to 0 to indicate that the
stack is currently empty.

push The push function accepts an integer argument, which is pushed onto the
top of the stack.

pop The pop function uses an integer reference parameter. The value at the top of
the stack is removed and copied into the reference parameter.

isEmpty Returns true if the stack is empty, and false otherwise. The stack is empty
when top is set to 0.

5

10

15

pop;

5

10

pop;

5

pop;

1072 Chapter 18 Stacks and Queues

The code for the class is shown here:

In addition to the members of the stack described in Table 18-2, the IntStack class
defines two inner classes named Overflow and Underflow to be used as stack
exceptions. Exceptions are covered in Chapter 16, but we will briefly explain them here
for the benefit of those who may have skipped that chapter. A section of code is said to
cause an exception when, in the course of execution, it encounters conditions that make it
impossible to perform the task the code was designed to do. In the case of a static stack,
an overflow exception occurs during a call to push if there is no more room on the stack.
Likewise, an underflow exception occurs in a call to pop if there is nothing on the stack
for pop to return.

Code that detects the occurrence of an exception can notify the rest of the program by
creating a value that describes the exception and passing that value to the rest of the program
using a throw statement. For example, the push function announces the occurrence of an
overflow exception by executing the statement

throw InstStack::Overflow();

and the pop function executes the statement

throw IntStack::Underflow();

to notify the program that the underflow exception has occurred. By default, a program
terminates with an error message when any part of it throws an exception. This default
behavior can be changed through a process known as catching the exception. You can learn
more about exceptions in Chapter 16.

The IntStack constructor allocates an array of a specified capacity and sets the member
variable top to 0. All stack functions use top in such a way that it always points to the

NOTE: Even though the constructor dynamically allocates the stack array, it is still
considered a static stack since the size of the stack does not change once it is allocated.

Contents of IntStack.h
1 class IntStack
2 {
3 private:
4 int *stackArray;
5 int capacity;
6 int top;
7 public:
8 IntStack(int capacity); // Constructor
9 ~IntStack() { delete[] stackArray; }
10 void push(int value);
11 void pop(int &value);
12 bool isEmpty() const;
13
14 // Stack Exceptions
15 class Overflow {};
16 class Underflow {};
17 };

Introduction to the Stack ADT 1073

next available slot in the stack’s array. When top equals capacity, there are no more
slots available to store values, and the next call to push throws an exception. Likewise,
when top is zero, the stack is empty and a call to pop throws an exception. Because there
are no provisions in the program to catch either exception, the occurrence of either one
will terminate the program with an error message. Notice that push increments top after
adding a value to the stack, and pop decrements top before returning the value stored at
stackArray[top].

Program 18-1 illustrates the stack class and its member functions. Notice that the values
pushed onto the stack come off in reverse order when they are popped.

Contents of IntStack.cpp
1 #include "intstack.h"
2 //************************************
3 // Constructor *
4 //************************************
5 IntStack::IntStack(int capacity)
6 {
7 this->capacity = capacity;
8 stackArray = new int[capacity];
9 top = 0;
10 }
11
12 //***********************************
13 // Adds a value to the stack *
14 //***********************************
15 void IntStack::push(int value)
16 {
17 if (top == capacity) throw IntStack::Overflow();
18 stackArray[top] = value;
19 top++;
20 }
21
22 //**
23 // Determines whether the stack is empty *
24 //**
25 bool IntStack::isEmpty() const
26 {
27 if (top == 0)
28 return true;
29 else
30 return false;
31 }
32
33 //**
34 // Removes a value from the stack and returns it *
35 //**
36 void IntStack::pop(int &value)
37 {
38 if (isEmpty()) throw IntStack::Underflow();
39 top --;
40 value = stackArray[top];
41 }

1074 Chapter 18 Stacks and Queues

In Program 18-1, the constructor is called with the argument 5. This sets up the member
variables, as shown in Figure 18-4. Since top is set to 0, the stack is empty.

Figure 18-5 shows the state of the member variables after the push function is called the
first time (with 5 as its argument). The value of top is now 1.

Program 18-1

1 // This program illustrates the IntStack class.
2 #include "intstack.h"
3 #include <iostream>
4 using namespace std;
5 int main()
6 {
7 IntStack stack(5);
8 int values[] = {5, 10, 15, 20, 25};
9 int value;
10
11 cout << "Pushing...\n";
12 for (int k = 0; k < 5; k++)
13 {
14 cout << values[k] << " ";
15 stack.push(values[k]);
16 }
17 cout << "\nPopping...\n";
18 while (!stack.isEmpty())
19 {
20 stack.pop(value);
21 cout << value << " ";
22 }
23 cout << endl;
24 return 0;
25 }

Program Output
Pushing...
5 10 15 20 25
Popping...
25 20 15 10 5

Figure 18-4

0[4]

[3]

[2]

[1]

[0]

top 5capacity

stackArray

Introduction to the Stack ADT 1075

Figure 18-6 shows the state of the member variables after all five calls to the push function.
Now top has value 5, and the stack is full.

Notice that the pop function uses a reference parameter, value. The value that is popped
off the stack is copied into value so it can be used later in the program. Figure 18-7
depicts the state of the class members and the value parameter, just after the first value is
popped off the stack.

The program continues to call the pop function until all the values have been removed
from the stack.

Handling Stack Exceptions
As you learned in Chapter 16, the C++ try/catch statement can be used to catch and
recover from exceptions, thereby allowing the program to avoid being terminated. The
following program shows how a program using the IntStack class can catch the exceptions
that it throws. The program tries to store in the stack more values than the stack can handle,
causing push to throw the Overflow exception. The main function catches the exception and
prints an explanatory error message.

Figure 18-5

Figure 18-6

Figure 18-7

5

1[4]

[3]

[2]

[1]

[0]

top 5capacity

stackArray

25 5[4]

20 [3]

15 [2]

10 [1]

5 [0]

top 5capacity

stackArray

25 4[4]

20 [3]

15 [2]

10 [1]

5 [0]

top25value 5capacity

stackArray

1076 Chapter 18 Stacks and Queues

There is a significant difference between a stack filling up and a stack becoming empty,
and between the stack overflow and stack underflow exceptions. In stack overflow, a
program has a value to push on a stack, but cannot continue execution because the stack
is full. There is a sense in which overflow is unexpected, because a program does not
normally expect to use up every slot in the stack. On the other hand, programs are
usually written to remove and process all items stored on a stack, so they do expect that
the stack will eventually become empty. Indeed, most algorithms that use a stack have a
loop that continues to iterate as long as the stack is not empty. This is why a stack
always needs an isEmpty function, but does not need an isFull function. A well-
written stack-based algorithm will normally call isEmpty to make sure the stack is not
empty before calling pop.

The difference between overflow and underflow can be summarized as follows. Stack
overflow in push notifies the caller that the stack has run out of resources, while stack

Program 18-2

1 // This program illustrates IntStack exception handling.
2 #include "intstack.h"
3 #include <iostream>
4 using namespace std;
5 int main()
6 {
7 IntStack stack(5);
8 int values[] = {5, 10, 15, 20, 25};
9 int value;
10 try
11 {
12 cout << "Pushing...\n";
13 for (int k = 0; k < 5; k++)
14 {
15 cout << values[k] << " ";
16 stack.push(values[k]);
17 }
18 cout << "\nPushing value after stack is full..";
19 stack.push(30);
20 cout << "\nYou should not see this!!";
21 cout << endl;
22 }
23 catch(IntStack::Overflow)
24 {
25 cout << "\nAn Overflow exception occurred.\n";
26 }
27 return 0;
28 }

Program Output
Pushing...
5 10 15 20 25
Pushing value after stack is full..
An Overflow exception occurred.

Dynamic Stacks 1077

underflow notifies the caller of an error in the program’s logic. Unlike overflow, stack
underflow can be avoided by careful programming. Therefore, programs should not use
try/catch to handle underflow. Instead, they should ensure that underflow cannot occur
by calling isEmpty before calling pop.

Stack Templates
The stack classes shown in this chapter work only with integers. A stack template can
be easily designed to work with any data type. This is left as a Programming Challenge for
you to complete.

18.2 Dynamic Stacks

CONCEPT: A stack may be implemented as a linked list and expand or shrink with each
push or pop operation.

A dynamic stack is built on a linked list instead of on an array. A stack based on a linked
list offers two advantages over a stack based on an array. First, there is no need to specify
the starting size of the stack. A dynamic stack simply starts as an empty linked list, then
expands by one node each time a value is pushed. Second, a dynamic stack will never be
full, as long as the system has enough free memory.

In this section we will look at a dynamic stack class, DynIntStack. This class is a
dynamic version of the IntStack class previously discussed. The class declaration is
shown here:

Contents of DynIntStack.h
1 #ifndef DYNINTSTACK_H
2 #define DYNINTSTACK_H
3
4 class DynIntStack
5 {
6 private:
7 class StackNode
8 {
9 friend class DynIntStack;
10 int value;
11 StackNode *next;
12 // Constructor
13 StackNode(int value1, StackNode *next1 = NULL)
14 {
15 value = value1;
16 next = next1;
17 }
18 };
19 StackNode *top;
20 public:
21 DynIntStack() { top = NULL; }

1078 Chapter 18 Stacks and Queues

The StackNode class is the data type of each node in the linked list. Because it is easy to
add and remove items at the beginning of the list, we make the beginning of the linked
list the top of the stack and use a pointer top to point to the first node in the list. This
pointer is initialized to NULL by the stack constructor, to signify that the stack is
created empty.

The member functions of this stack class are shown here:

22 void push(int);
23 void pop(int &);
24 bool isEmpty() const;
25 };
26 #endif

Contents of DynIntStack.cpp
1 #include <iostream>
2 #include "DynIntStack.h"
3 using namespace std;
4
5 //**
6 // Member function push pushes the argument onto *
7 // the stack. *
8 //**
9 void DynIntStack::push(int num)
10 {
11 top = new StackNode(num, top);
12 }
13
14 //***
15 // Member function pop removes the value at the top *
16 // of the stack and copies it into the variable *
17 // passed as an argument. *
18 //***
19 void DynIntStack::pop(int &num)
20 {
21 StackNode *temp;
22
23 if (isEmpty())
24 {
25 cout << "The stack is empty.\n";
26 exit(1);
27 }
28 else // Pop value off top of stack
29 {
30 num = top->value;
31 temp = top;
32 top = top->next;
33 delete temp;
34 }
35 }
36
37 //***
38 // Member function isEmpty returns true if the stack *
39 // is empty, or false otherwise. *
40 //***

Dynamic Stacks 1079

The push function is particularly simple. It simply creates a new node whose value is the
number to be pushed on the stack and whose successor pointer is the node that is currently
the top of the stack, and then makes the newly created node the new top of the stack:

top = new StackNode(num, top);

Note that this works correctly even if the stack was empty previous to the push operation,
because in that case the successor to the new node at the top of the stack will be correctly
set to NULL.

Now let’s look at the pop function. Just as the push function must insert nodes at the head
of the list, pop must delete nodes at the head of the list. First, the function calls isEmpty to
determine whether there are any nodes in the stack. If not, an error message is displayed,
and the program is terminated.

if (isEmpty())
{

cout << "The stack is empty.\n";
exit(1);

}

If isEmpty returns false, then the following statements are executed.

else // Pop value off top of stack
{

num = top->value;
temp = top;
top = top->next;
delete temp;

}

First, a copy of the value member of the node at the top of the stack is saved in the num
reference parameter. A temporary pointer temp is then set to point to the node that is to be
deleted, that is, the node currently at the top of the stack. The top pointer is then set to
point to the node after the one that is currently at the top. The same code will set top to
NULL if there are no nodes after the one that is currently at the top of the stack. It is then
safe to delete the top node through the temporary pointer.

Program 18-3 is a driver that demostrates the DynIntStack class.

41 bool DynIntStack::isEmpty() const
42 {
43 if (!top)
44 return true;
45 else
46 return false;
47 }

Program 18-3

1 // This program demonstrates the dynamic stack
2 // class DynIntStack.
3 #include <iostream>
4 #include "DynIntStack.h"
5 using namespace std;
6

(program continues)

1080 Chapter 18 Stacks and Queues

18.3 The STL stack Container*

CONCEPT: The Standard Template Library offers a stack template that may be
implemented as a vector, a list, or a deque.

So far, the STL containers you have learned about are vectors and lists. The STL stack
container may be implemented as a vector or a list. (It may also be implemented as a
deque, which you will learn about later in this chapter.) One class is said to adapt another

7 int main()
8 {
9 DynIntStack stack;
10 int catchVar;
11
12 cout << "Pushing 5\n";
13 stack.push(5);
14 cout << "Pushing 10\n";
15 stack.push(10);
16 cout << "Pushing 15\n";
17 stack.push(15);
18
19 cout << "Popping...\n";
20 stack.pop(catchVar);
21 cout << catchVar << endl;
22 stack.pop(catchVar);
23 cout << catchVar << endl;
24 stack.pop(catchVar);
25 cout << catchVar << endl;
26
27 cout << "\nAttempting to pop again... ";
28 stack.pop(catchVar);
29 return 0;
30 }

Program Output
Pushing 5
Pushing 10
Pushing 15
Popping...
15
10
5

Attempting to pop again... The stack is empty.

* This section should be skipped if Chapter 16 has not yet been covered.

Program 18-3 (continued)

The STL stack Container 1081

Storing Objects
in an STL Stack

class if it provides a new interface for it. The purpose of the new interface is to make it
more convenient to use the class for specialized tasks. Because the stack container is used
to adapt the list, vector, and deque containers, it is often referred to as a container adapter.

Here are examples of how to declare a stack of ints, implemented as a vector, a list,
and a deque.

stack< int, vector<int> > iStack; // Vector stack
stack< int, list<int> > iStack // List stack
stack< int > iStack; // Deque stack (the default)

Table 18-3 lists and describes some of the stack template’s member functions.

Program 18-4 is a driver that demonstrates an STL stack implemented as a vector.

NOTE: Be sure to put spaces between the angled brackets that appear next to each
other. This will prevent the compiler from mistaking >> for the stream extraction
operator, >>.

Table 18-3 STL Stack Member Fiunctions

Member Function Examples and Description

empty if (myStack.empty())
The empty member function returns true if the stack is empty. It returns
false if the stack has elements.

pop myStack.pop();
The pop function removes the element at the top of the stack.

push myStack.push(x);
The push function pushes an element with the value x onto the stack.

size cout << myStack.size() << endl;
The size function returns the number of elements currently in the stack.

top x = myStack.top();
The top function returns a reference to the element at the top of the stack.

NOTE: The pop function in the stack template does not retrieve the value from the top
of the stack, it only removes it. To retrieve the value, you must call the top function
first.

Program 18-4

1 // This program demonstrates the STL stack
2 // container adapter.
3 #include <iostream>
4 #include <vector>
5 #include <stack>
6 using namespace std;
7
8 int main()

(program continues)

VideoNote

1082 Chapter 18 Stacks and Queues

Checkpoint

18.1 Describe what LIFO means.

18.2 What is the difference between static and dynamic stacks? What advantages do
dynamic stacks have over static stacks?

18.3 What are the two primary stack operations? Describe them both.

18.4 What STL types does the STL stack container adapt?

18.4 Introduction to the Queue ADT

CONCEPT: A queue is a data structure that stores and retrieves items in a first-in-first-out
manner.

Definition
Like a stack, a queue (pronounced “cue”) is a data structure that holds a sequence of
elements. A queue, however, provides access to its elements in first-in, first-out (FIFO)

9 {
10 stack< int, vector<int> > iStack;
11
12 for (int x = 2; x < 8; x += 2)
13 {
14 cout << "Pushing " << x << endl;
15 iStack.push(x);
16 }
17
18 cout << "The size of the stack is ";
19 cout << iStack.size() << endl;
20
21 // Print items and pop until the stack is empty
22 while (!iStack.empty())
23 {
24 cout << "Popping " << iStack.top() << endl;
25 iStack.pop();
26 }
27 return 0;
28 }

Program Output
Pushing 2
Pushing 4
Pushing 6
The size of the stack is 3
Popping 6
Popping 4
Popping 2

Program 18-4 (continued)

Introduction to the Queue ADT 1083

order. The elements in a queue are processed like customers standing in a grocery
checkout line: The first customer in line is the first one served.

Application of Queues
Queue data structures are commonly used in computer operating systems. They are
especially important in multiuser/multitasking environments where several users or
tasks may be requesting the same resource simultaneously. Printing, for example, is
controlled by a queue because only one document may be printed at a time. A queue is
used to hold print jobs submitted by users of the system, while the printer services those
jobs one at a time.

Communications software also uses queues to hold information received over networks
and dial-up connections. Sometimes information is transmitted to a system faster than it
can be processed, so it is placed in a queue when it is received.

Static and Dynamic Queues
Queues, like stacks, can be implemented as arrays or linked lists. Dynamic queues offer the
same advantages over static queues that dynamic stacks offer over static stacks. In fact, the
primary difference between queues and stacks is the way data elements are accessed in each
structure.

Queue Operations
A queue has a front and a rear like a checkout line in a grocery store. This is illustrated
in Figure 18-8. When an element is added to a queue, it is added to the rear. When an
element is removed from a queue, it is removed from the front. The two primary queue
operations are enqueuing and dequeuing. To enqueue means to insert an element at the
rear of a queue, and to dequeue means to remove an element from the front of a queue.
There are several algorithms for implementing these operations. We will begin by
looking at the simplest.

Suppose we have an empty static integer queue that is capable of holding a maximum of
three values. With that queue we execute the following enqueue operations:

enqueue(3);
enqueue(6);
enqueue(9);

Figure 18-9 illustrates the state of the queue after each of these enqueue operations.

Figure 18-8

front rear

1084 Chapter 18 Stacks and Queues

Notice that the front index (which is a variable holding a subscript or perhaps a pointer)
always references the same physical element. The rear index moves in the array as items
are enqueued. Now let’s see how dequeue operations are performed. Figure 18-10
illustrates the state of the queue after each of three consecutive dequeue operations.

In the dequeuing operation, the element at the front of the queue is removed. This is done by
moving all the elements after it forward by one position. After the first dequeue operation,
the value 3 is removed from the queue and the value 6 is at the front. After the second
dequeue operation, the value 6 is removed and the value 9 is at the front. Notice that when
only one value is stored in the queue, that value is at both the front and the rear.

When the last dequeue operation is performed in Figure 18-10, the queue is empty. An
empty queue can be signified by setting both front and rear indices to –1.

The problem with this algorithm is its inefficiency. Each time an item is dequeued, the
remaining items in the queue are copied forward to their neighboring element. The more
items there are in the queue, the longer each successive dequeue operation will take.

Here is one way to overcome the problem: Make both the front and rear indices move in
the array. As before, when an item is enqueued, the rear index is moved to make room for
it. But in this design, when an item is dequeued, the front index moves by one element

Figure 18-9

Figure 18-10

3

enqueue(3);
front rear

3 6

enqueue(6);
front rear

front rear

9

enqueue(9);

3 6

6 9

dequeue();
front rear

9

dequeue();
front rear

dequeue();
front = –1 rear = –1

Introduction to the Queue ADT 1085

toward the rear of the queue. This logically removes the front item from the queue and
eleminates the need to copy the remaining items to their neighboring elements.

With this approach, as items are added and removed, the queue gradually “crawls” toward
the end of the array. This is illustrated in Figure 18-11. The shaded squares represent the
queue elements (between the front and rear).

The problem with this approach is that the rear index cannot move beyond the last
element in the array. The solution is to think of the array as circular instead of linear. When
an item moves past the end of a circular array, it simply wraps around to the beginning.
For example, consider the queue depicted in Figure 18-12.

The value 3 is at the rear of the queue, and the value 7 is at the front of the queue.
Now, suppose an enqueue operation is performed, inserting the value 4 into the
queue. Figure 18-13 shows how the rear of the queue wraps around to the beginning
of the array.

So, what is the code for wrapping the rear marker around to the opposite end of the array?
One straightforward approach is to use an if statement such as

if (rear == queueSize - 1)
rear = 0;

else
rear++;

Figure 18-11

Figure 18-12

Figure 18-13

5 items have been enqueued.

1 item is dequeued.

3 more items are enqueued.

3 more items are dequeued.

 7 9 6 3

[0] [1] [2] [3] [4] [5] [6] [7] [8]

front rear

4 7 9 6 3

[0] [1] [2] [3] [4] [5] [6] [7] [8]

rear front

1086 Chapter 18 Stacks and Queues

Another approach is with modular arithmetic:

rear = (rear + 1) % queueSize;

This statement uses the % operator to adjust the value in rear to the proper position.
Although this approach appears more elegant, the choice of which code to use is yours.

Detecting Full and Empty Queues with Circular Arrays
In our implementation of a queue using a circular array, we have adopted the convention
that the front and rear indices both reference items that are still in the queue, and that the
front and rear indices will both be set to –1 to indicate an empty queue. To preserve this
convention, the operation for dequeueing an element must set both front and rear to –1
after removing an element from a queue with only one item. The dequeuing operation can
test for a queue with only one item by testing whether front is equal to rear. To avoid
overflowing the queue, the operation for enqueuing must first check that the queue is not
already full before adding another element. We can check to see if the queue is full by
testing the expression

(rear + 1) % queueSize == front

to see if it is true.

There is another way for detecting full and empty queues: A counter variable can be used
to keep a count of the number of items currently stored in the queue. With this convention,
the counter is incremented with each enqueue operation and decremented with each
dequeue operation. The queue is empty when the counter is zero and is full when the
counter equals the size allocated for the queue.

Because it might be helpful to keep a count of items in the queue anyway, we will use the
second method in our implementation. Accordingly, we introduce the variables

int *queueArray;
int queueSize;
int front;
int rear;
int numItems;

with numItems being the counter variable, and queueArray the pointer to a dynamically
allocated array of size queueSize. We adopt the following two conventions:

• rear points to the place in the queue holding the item that was last added to the
queue.

• front points to the place in the queue that used to hold the item that was last removed
from the queue.

Because of the convention on where the rear index is pointing to, the enqueue operation
must first (circularly) move rear one place to the right before adding a new item num:

rear = (rear + 1) % queueSize;
queueArray[rear] = num;
numItems ++;

Similarly, because whatever is at front has already been removed, the dequeue operation
must first move front before retrieving a queue item.

Introduction to the Queue ADT 1087

A Static Queue Class
The declaration of the IntQueue class is as follows:

Notice that in addition to the operations discussed in this section, the class also declares a
member function named clear. This function clears the queue by resetting the front and
rear indices and setting the numItems member to 0. The member function definitions are
listed here:

Contents of IntQueue.h
1 #ifndef INTQUEUE_H
2 #define INTQUEUE_H
3
4 class IntQueue
5 {
6 private:
7 int *queueArray;
8 int queueSize;
9 int front;
10 int rear;
11 int numItems;
12 public:
13 IntQueue(int);
14 ~IntQueue();
15 void enqueue(int);
16 void dequeue(int &);
17 bool isEmpty() const;
18 bool isFull() const;
19 void clear();
20 };
21 #endif

Contents of IntQueue.cpp
1 #include <iostream>
2 #include "IntQueue.h"
3 using namespace std;
4
5 //*************************
6 // Constructor. *
7 //*************************
8 IntQueue::IntQueue(int s)
9 {
10 queueArray = new int[s];
11 queueSize = s;
12 front = -1;
13 rear = -1;
14 numItems = 0;
15 }
16
17 //*************************
18 // Destructor. *
19 //*************************
20 IntQueue::~IntQueue()

1088 Chapter 18 Stacks and Queues

21 {
22 delete [] queueArray;
23 }
24
25 //**
26 // Function enqueue inserts the value in num *
27 // at the rear of the queue. *
28 //**
29 void IntQueue::enqueue(int num)
30 {
31 if (isFull())
32 {
33 cout << "The queue is full.\n";
34 exit(1);
35 }
36 else
37 {
38 // Calculate the new rear position
39 rear = (rear + 1) % queueSize;
40 // Insert new item
41 queueArray[rear] = num;
42 // Update item count
43 numItems++;
44 }
45 }
46
47 //**
48 // Function dequeue removes the value at the *
49 // front of the queue, and copies it into num. *
50 //**
51 void IntQueue::dequeue(int &num)
52 {
53 if (isEmpty())
54 {
55 cout << "The queue is empty.\n";
56 exit(1);
57 }
58 else
59 {
60 // Move front
61 front = (front + 1) % queueSize;
62 // Retrieve the front item
63 num = queueArray[front];
64 // Update item count
65 numItems--;
66 }
67 }
68
69 //***
70 // Function isEmpty returns true if the queue *
71 // is empty, and false otherwise. *
72 //***
73 bool IntQueue::isEmpty() const
74 {
75 if (numItems > 0)

Introduction to the Queue ADT 1089

Program 18-5 is a driver that demonstrates the IntQueue class.

76 return false;
77 else
78 return true;
79 }
80
81 //**
82 // Function isFull returns true if the queue *
83 // is full, and false otherwise. *
84 //**
85 bool IntQueue::isFull() const
86 {
87 if (numItems < queueSize)
88 return false;
89 else
90 return true;
91 }
92
93 //***
94 // Function clear resets the front and rear *
95 // indices, and sets numItems to 0. *
96 //***
97 void IntQueue::clear()
98 {
99 front = - 1;
100 rear = - 1;
101 numItems = 0;
102 }

Program 18-5

1 // This program demonstrates the IntQueue class.
2 #include <iostream>
3 #include "IntQueue.h"
4 using namespace std;
5
6 int main()
7 {
8 IntQueue iQueue(5);
9
10 cout << "Enqueuing 5 items...\n";
11
12 // Enqueue 5 items
13 for (int k = 1; k <= 5; k++)
14 iQueue.enqueue(k*k);
15
16 // Deqeue and retrieve all items in the queue
17 cout << "The values in the queue were: ";
18 while (!iQueue.isEmpty())
19 {
20 int value;

(program continues)

1090 Chapter 18 Stacks and Queues

Overflow and Underflow Exceptions in a Static Queue
The enqueue and dequeue functions in our queue class terminate the calling program
when they cannot perform the task they are called to do. But terminating the caller is not
always the right thing to do. A better course of action is to throw an exception and allow
the caller who is prepared to handle such an exception to take appropriate action. Upon
catching such an exception, some callers may indeed decide to terminate the program.
Other callers, however, may be able to recover and continue execution. For example, a
program that catches a queue overflow exception might be able to create a bigger queue
and switch to the new queue.

A better design for a static queue is to have enqueue and dequeue throw overflow and
underflow exceptions. Having enqueue throw overflow eliminates the need for a public
isFull function because the caller can use a try/catch block to handle queue overflows
if and when they occur. By putting all calls to enqueue within the try block, the caller is
able to put the code to handle an exception thrown by any of those calls in a single place:
the catch block. Without exception handling, every call to enqueue would have to be
preceded by a call to isFull and have code attached to it to recover in the event that
isFull returns true. One of the programming challenges at the end of this chapter asks
you to modify the queue class to use exceptions.

18.5 Dynamic Queues

CONCEPT: A queue may be implemented as a linked list and expand or shrink with each
enqueue or dequeue operation.

Dynamic queues, which are built around linked lists, are much more intuitive to understand
than static queues. A dynamic queue starts as an empty linked list. With the first enqueue
operation, a node is added, which is pointed to by the front and rear pointers. As each new
item is added to the queue, a new node is added to the rear of the list, and the rear pointer is
updated to point to the new node. As each item is dequeued, front is made to point to the
next mode in the list, and then the node that was previously at the front of the list is deleted.
Figure 18-14 shows the structure of a dynamic queue.

21 iQueue.dequeue(value);
22 cout << value << " ";
23 }
24 cout << endl;
25 return 0;
26 }

Program Output
Enqueuing 5 items...
The values in the queue were: 1 4 9 16 25

Program 18-5 (continued)

Dynamic Queues 1091

A dynamic integer queue class is listed here:

Figure 18-14

Contents of DynIntQueue.h
1 #ifndef DYNINTQUEUE_H
2 #define DYNINTQUEUE_H
3
4 class DynIntQueue
5 {
6 private:
7 class QueueNode
8 {
9 friend class DynIntQueue;
10 int value;
11 QueueNode *next;
12 QueueNode(int value1, QueueNode *next1 = NULL)
13 {
14 value = value1;
15 next = next1;
16 }
17 };
18 // These track the front and rear of the queue
19 QueueNode *front;
20 QueueNode *rear;
21 public:
22 // Constructor and Destructor
23 DynIntQueue();
24 ~DynIntQueue();
25
26 // Member functions
27 void enqueue(int);
28 void dequeue(int &);
29 bool isEmpty() const;
30 void clear();
31 };
32 #endif

Contents of DynIntQueue.cpp
1 #include <iostream>
2 #include "DynIntQueue.h"
3 using namespace std;
4
5 //************************
6 // Constructor. *

front

item 1 item 2 item 3

rear

NULL

1092 Chapter 18 Stacks and Queues

7 //************************
8 DynIntQueue::DynIntQueue()
9 {
10 front = NULL;
11 rear = NULL;
12 }
13
14 //************************
15 // Destructor. *
16 //************************
17 DynIntQueue::~DynIntQueue()
18 {
19 clear();
20 }
21
22 //**
23 // Function enqueue inserts the value in num *
24 // at the rear of the queue. *
25 //**
26 void DynIntQueue::enqueue(int num)
27 {
28 if (isEmpty())
29 {
30 front = new QueueNode(num);
31 rear = front;
32 }
33 else
34 {
35 rear->next = new QueueNode(num);
36 rear = rear->next;
37 }
38 }
39
40 //**
41 // Function dequeue removes the value at the *
42 // front of the queue, and copies it into num. *
43 //**
44 void DynIntQueue::dequeue(int &num)
45 {
46 QueueNode *temp;
47 if (isEmpty())
48 {
49 cout << "The queue is empty.\n";
50 exit(1);
51 }
52 else
53 {
54 num = front->value;
55 temp = front;
56 front = front->next;
57 delete temp;
58 }
59 }
60
61 //***
62 // Function isEmpty returns true if the queue *

Dynamic Queues 1093

Program 18-6 is a driver that demonstrates the DynIntQueue class.

63 // is empty, and false otherwise. *
64 //***
65 bool DynIntQueue::isEmpty() const
66 {
67 if (front == NULL)
68 return true;
69 else
70 return false;
71 }
72
73 //**
74 // Function clear dequeues all the elements *
75 // in the queue. *
76 //**
77 void DynIntQueue::clear()
78 {
79 int value; // Dummy variable for dequeue
80
81 while(!isEmpty())
82 dequeue(value);
83 }

Program 18-6

1 // This program demonstrates the DynIntQeue class.
2 #include <iostream>
3 #include "DynIntQueue.h"
4 using namespace std;
5
6 int main()
7 {
8 DynIntQueue iQueue;
9
10 cout << "Enqueuing 5 items...\n";
11
12 // Enqueue 5 items
13 for (int k = 1; k < = 5; k++)
14 iQueue.enqueue(k*k);
15
16 // Dequeue and retrieve all items in the queue
17 cout << "The values in the queue were:\n";
18 while (!iQueue.isEmpty())
19 {
20 int value;
21 iQueue.dequeue(value);
22 cout << value << " ";
23 }
24 return 0;
25 }

Program Ouput
Enqueuing 5 items...
The values in the queue were:
1 4 9 16 25

1094 Chapter 18 Stacks and Queues

18.6 The STL deque and queue Containers*

CONCEPT: The Standard Template Library provides two containers, deque and queue,
for implementing queue-like data structures.

In this section we will examine two ADTs offered by the Standard Template Library:
deque and queue. A deque (pronounced “deck” or “deek”) is a double-ended queue. It
similar to a vector, but allows efficient access to values at both the front and the rear. The
queue ADT is like the stack ADT: It is actually a container adapter.

The deque Container
Think of the deque container as a vector that provides quick access to the element at its
front as well as at the back. (Like vector, deque also provides access to its elements with the
[] operator.)

Programs that use the deque ADT must include the deque header. Since we are concentrating
on its queue-like characteristics, we will focus our attention on the push_back, pop_front,
and front member functions. Table 18-4 describes them.

Program 18-7 demonstrates the deque container.

* Note: This section should be skipped if Chapter 16 has not yet been covered.

Table 18-4 deque Member Functions

Member Function Examples and Description

push_back iDeque.push_back(7);
Accepts as an argument a value to be inserted into the deque. The argument is
inserted after the last element (pushed onto the back of the deque).

pop_front iDeque.pop_front();
Removes the first element of the deque and discards it.

front cout << iDeque.front() << endl;
front returns a reference to the first element of the deque.

Program 18-7

1 // This program demonstrates the STL deque
2 // container.
3 #include <iostream>
4 #include <deque>
5 using namespace std;
6
7 int main()
8 {
9 deque<int> iDeque;
10

(program continues)

The STL deque and queue Containers 1095

Storing Objects
in an STL
Queue

The queue Container Adapter
The queue container adapter can be built upon vectors, lists, or deques. By default, it uses
a deque as its base.

The insertion and removal operations supported by queue are similar to those supported
by the stack ADT: push, pop, and front. There are differences in their behavior, however.
The queue version of push always inserts an element at the rear of the queue. The queue
version of pop always removes an element from the structure’s front. The front function
returns the value of the element at the front of the queue.

Program 18-8 demonstrates a queue. Since the declaration of the queue does not specify
which type of container is being adapted, the queue will be built on a deque.

11 cout << "I will now enqueue items...\n";
12 for (int x = 2; x < 8; x += 2)
13 {
14 cout << "Pushing " << x << endl;
15 iDeque.push_back(x);
16 }
17
18 cout << "I will now dequeue items...\n";
19 while (!iDeque.empty())
20 {
21 cout << "Popping " << iDeque.front() << endl;
22 iDeque.pop_front();
23 }
24 return 0;
25 }

Program Output
I will now enqueue items...
Pushing 2
Pushing 4
Pushing 6
I will now dequeue items...
Popping 2
Popping 4
Popping 6

Program 18-8

1 // This program demonstrates the STL queue
2 // container adapter.
3 #include <iostream>
4 #include <queue>
5 using namespace std;
6

(program continues)

Program 18-7 (continued)

VideoNote

1096 Chapter 18 Stacks and Queues

18.7 Focus on Problem Solving and Program Design:
Eliminating Recursion
Although recursion is a very useful programming technique, it carries the overhead of
the necessity to make numerous function calls during the process of solving the problem.
The efficiency of a recursive solution can often be greatly improved by reformulating a
recursive algorithm to eliminate the recursion. In this section, we look at how a stack can
be used to eliminate recursion from the Quicksort algorithm.

The main problem in Quicksort is that of sorting a range, or a segment of an array arr,
between two indices start and end. Naturally, this has to be done only if start is less
than end. As learned in Chapter 14, this is accomplished by calling a procedure partition,
which determines an integer pivot such that

1. All array items in the segment to the left of the pivot are less than the element at the
pivot: that is,

arr[k] < arr[pivot] for all k in the range start .. pivot-1

7 int main()
8 {
9 queue<int> iQueue;
10
11 cout << "I will now enqueue items...\n";
12 for (int x = 2; x < 8; x += 2)
13 {
14 cout << "Pushing " << x << endl;
15 iQueue.push(x);
16 }
17 cout << "I will now dequeue items...\n";
18 while(!iQueue.empty())
19 {
20 cout << "Popping " << iQueue.front() << endl;
21 iQueue.pop();
22 }
23 return 0;
24 }

Program Output
I will now enqueue items...
Pushing 2
Pushing 4
Pushing 6
I will now dequeue items...
Popping 2
Popping 4
Popping 6

Program 18-8 (continued)

1097

2. All array items in the segment to the right of the pivot are greater than or equal to
the element at the pivot: that is,

arr[k] >= arr[pivot] for all k in the range pivot+1..end

Once this is done, the array item at the pivot is in its sorted position. Thus an
important effect of the partition procedure is that it gets the pivot element in its
final sorted position. By keeping track of the left and right subranges when we call
partition, and then later calling partition on those subranges, we can sort the
entire array without using recursion. We need to keep track of these subranges, and
eventually partition them in the order in which the recursive calls to Quicksort would
have done them. Because the recursive calls to Quicksort are invoked and return in
LIFO (last-in-first-out) order, we use a stack to keep track of the ranges that are
waiting to be partitioned.

The main idea of our solution is to define a class

class Range
{

int start;
int end;

public:
Range(int s, int e)
{

start = s;
end = e;

}
};

to keep track of the ranges of the array that remain to be partitioned. Accordingly, we use
the STL stack class to define a stack of these ranges:

stack<Range> qStack;

We then use a function qSort(int arr[], int size) that sorts the array arr by initially
pushing the range from 0 to size-1 onto the stack, and then repeatedly removing ranges
from the stack, partitioning the range, and putting the left and right subrange back onto the
stack. Empty subranges removed from the stack are discarded. The algorithm is

push Range(0, size-1) onto stack
While stack not empty

pop a range r from the stack
If r is not empty

partition the range r into two smaller ranges about the pivot
push the two smaller ranges onto the stack

End if
End While

The complete solution, which reuses the partition function from Chapter 14, is given in
Program 18-9. Notice that we declare the qSort function to be a friend of Range, to allow
access to the private members of Range.

NOTE: The statement qStack.push(Range(0, size-1)); creates a Range object by
invoking the constructor. The Range object is then pushed onto the stack.

Focus on Problem Solving and Program Design: Eliminating Recursion

1098 Chapter 18 Stacks and Queues

Program 18-9

1 // This program illustrates the use of a stack to
2 // implement a nonrecursive quicksort.
3 #include <stack>
4 #include <iostream>
5 #include <fstream>
6 #include <algorithm> // Needed for swap
7 using namespace std;
8
9 // Function prototypes
10 void qSort(int a[], int size);
11 void outputArray(const int a[], int size);
12 int partition(int a[], int, int);
13
14 // Range is used to indicate a segment
15 // of an array that is still to be sorted
16 class Range
17 {
18 // Make qSort a friend
19 friend void qSort(int a[], int);
20 int start;
21 int end;
22 public:
23 Range(int s, int e)
24 {
25 start = s;
26 end = e;
27 }
28 };
29
30 const int MAX = 100;
31 int main()
32 {
33 ifstream inputFile;
34 string filename = "sort.dat" ;
35 int array[MAX];
36 int size;
37 inputFile.open(filename.data());
38 if (!inputFile)
39 {
40 cout << "The file " << filename << " cannot be "
41 << "opened .";
42 exit(1);
43 }
44
45 // Read the file and count the number of items in the
46 // file. Take care not to overrun the array
47 size = 0;
48 while (inputFile >> array[size])
49 {
50 size ++;
51 if (size == MAX)
52 break;
53 }

(program continues)

1099Focus on Problem Solving and Program Design: Eliminating Recursion

54 // Echo the inputted array
55 cout << "The original array is :" << endl;
56 outputArray(array, size);
57
58 // Perform the sort and output the result
59 qSort(array, size);
60 cout << "The sorted array is: " << endl;
61 outputArray(array, size);
62 return 0;
63 }
64
65 //**
66 // qSort performs a nonrecursive quicksort *
67 // on the array a[] of the given size *
68 //**
69 void qSort(int arr[], int size)
70 {
71 // qStack holds segments of the array that have not
72 // yet been sorted
73 stack<Range> qStack;
74 int pivot, start, end;
75
76 qStack.push(Range(0, size-1));
77 // As long as there is a range waiting to be sorted,
78 // take it off the stack, partition it, and then
79 // put the resulting two smaller ranges onto the stack
80 while (!qStack.empty())
81 {
82 Range currentRange = qStack.top();
83 qStack.pop();
84
85 // Get the endpoints of the current Range
86 // and partition it
87 start = currentRange.start;
88 end = currentRange.end;
89 if (start < end)
90 {
91 pivot = partition(arr, start, end);
92 // Store the resulting smaller ranges for later
93 // processing
94 qStack.push(Range(start, pivot-1));
95 qStack.push(Range(pivot + 1, end));
96 }
97 }
98 }
99
100 //***
101 // partition rearranges the entries in the array arr *
102 // from start to end so all values greater than or *
103 // equal to the pivot are on the right of the pivot *
104 // and all values less than are on the left of the *
105 // pivot. *
106 //***

(program continues)

Program 18-9 (continued)

1100 Chapter 18 Stacks and Queues

107 int partition(int arr[], int start, int end)
108 {
109 // The pivot element is taken to be the element at
110 // the start of the subrange to be partitioned
111 int pivotValue = arr[start];
112 int pivotPosition = start;
113
114 // Rearrange the rest of the array elements to
115 // partition the subrange from start to end
116 for (int pos = start + 1; pos <= end; pos++)
117 {
118 if (arr[pos] < pivotValue)
119 {
120 // arr[scan] is the "current" item.
121 // Swap the current item with the item to the
122 // right of the pivot element
123 swap(arr[pivotPosition + 1], arr[pos]);
124 // Swap the current item with the pivot element
125 swap(arr[pivotPosition], arr[pivotPosition + 1]);
126 // Adjust the pivot position so it stays with the
127 // pivot element
128 pivotPosition ++;
129 }
130 }
131 return pivotPosition;
132 }
133
134 //*************************************
135 // Output an array's elements. *
136 //*************************************
137 void outputArray(const int arr[], int size)
138 {
139 for (int k = 0; k < size; k++)
140 cout << arr[k] << " ";
141 cout << endl;
142 }

Program Output
The original array is :
34 -45 78 32 90 45
The sorted array is:
-45 32 34 45 78 90

NOTE: The friend concept should be used with caution, since it circumvents the
protection afforded the members of the class by declaring them private. Notice that in
our case, the start and end members of the Range class are never modified by the
friend function qSort.

Program 18-9 (continued)

1101Tying It All Together: Converting Postfix Expressions to Infix

18.8 Tying It All Together: Converting Postfix
Expressions to Infix

Stacks can be used to evaluate postfix expressions. Let’s see how this can be done. We
confine ourselves to postfix expressions that contain only numbers and the binary
operators +, �, *, and /.

Recall from Chapter 14 that a postfix expression is either a single number or two postfix
expressions followed by an operator. Evaluation of a single-number postfix expression is easy:
we just return the number. For the nonsimple case, we must evaluate the two postfix
expressions in order and save their values. Then, when we come to the operator, we retrieve the
two previously saved values and apply the operator.

To see how the method works consider the example

2 5 �

Because 2 and 5 are single-number postfix expressions, we simply save their values for later
use. Then, when we encounter the minus operator, we retrieve the two saved values and apply
the operator, yielding �3 as the value of the entire expression. In general, any postfix
expression can be evaluated by reading it in left to right order. Whenever a value is
encountered, it is pushed onto the stack to await application by an operator at a later stage.
Whenever an operator is encountered, its two operands are popped off the stack, and the
operator is applied to them to yield a value. This value is in turn pushed onto the stack. The
procedure ends when all of the input expression has been read. At that time, there should be
only one value on the stack. The value on the stack is the value of the postfix expression.

This same idea can be used to convert postfix expressions to infix. Again, we read the input
postfix expression from left to right. This time, though, we use a stack of strings instead of a
stack of integer. Any number that is read must be an operand: it is converted to a string and
pushed onto the stack. If an operator is encountered, the two strings at the top of the stack are
popped and the operator is placed between them. Parentheses are then placed around the
resulting string, and the parenthesized string is pushed back onto the stack. Thus, for example,
the above input postfix expression would result on the following sequence of pushes of strings
onto the stack:

"2"

"2" "5"

"(2 – 5)"

These ideas are used in Program 18–10, which follows.

Program 18-10

1 // This program converts postfix expressions to infix.
2 #include <string>
3 #include <iostream>
4 #include <sstream>

(program continues)

1102 Chapter 18 Stacks and QueuesChapter 18 Stacks and Queues

5 #include <stack>
6
7 using namespace std;
8
9 string postfixExpr(istream & inputStream);
10
11 int main()
12 {
13 string input;
14 cout << "Enter a postfix expression to convert to infix,"
15 << " \nor a blank line to quit the program:";
16 getline(cin, input);
17 while (input.size() != 0)
18 {
19 // Convert string to a string stream
20 istringstream inputExpr(input);
21 cout << "The infix equivalent is "
22 << postfixExpr(inputExpr) << endl;
23 cout << "Enter a postfix expression to evaluate: ";
24 getline(cin, input);
25 }
26 return 0;
27 }
28
29 //***
30 // Takes an istream that contains a single postfix expression p *
31 // and returns a string representing the infix equivalent of p *
32 //***
33 string postfixExpr(istream & in)
34 {
35 // Holds intermediate values in computation
36 stack<string> infixStack;
37 // Used to read characters in the expression
38 char ch;
39 // Used to read numbers in the expression
40 int number;
41 // Used to remove infix expressions from the stack
42 string lExpr, rExpr;
43
44 ch = in.peek();
45 while (ch != EOF)
46 {
47 // If we have a whitespace character skip it and
48 // continue with the next iteration of this loop
49 if (isspace(ch))
50 {
51 ch = in.get();
52 ch = in.peek();
53 continue; // Go back to top of loop
54 }

(program continues)

Program 18-10 (continued)

Tying It All Together: Converting Postfix Expressions to Infix 1103Tying It All Together: Converting Postfix Expressions to Infix

55 // Nonspace character is next in input stream
56 // If the next character is a number, read it, convert
57 // to string, and push the string onto the infix stack
58 if (isdigit(ch))
59 {
60 in >> number;
61 // Use to convert number to string
62 ostringstream numberStr;
63 // Convert number to string using stream
64 numberStr << number;
65 // Push the string representing the expression onto the stack
66 infixStack.push(numberStr.str());
67 ch = in.peek();
68 continue;
69 }
70 // If the next character is an operator,
71 // pop the two top infix expresssions stored on the
72 // stack, put the operator between the two infix expressions,
73 // and then push the result on the stack
74
75 rExpr = infixStack.top();
76 infixStack.pop();
77 lExpr = infixStack.top();
78 infixStack.pop();
79 if (ch == '+' || ch == '-' || + ch == '*' || ch == '/')
80 infixStack.push("(" + lExpr + " " + ch + " " + rExpr + ")");
81 else
82 {
83 cout << "Error in the input expression" << endl;
84 exit(1);
85 }
86 ch = in.get(); // Actually read the operator character
87 ch = in.peek(); // Prepare for the next iteration of the loop
88 }
89 return infixStack.top();
90 }

Program Output with Example Input Shown in Bold
Enter a postfix expression to convert to infix,
or a blank line to quit the program: 56
The infix equivalent is 56
Enter a postfix expression to evaluate: 56 2 +
The infix equivalent is (56 + 2)
Enter a postfix expression to evaluate: 56 2 + 12 9 - *
The infix equivalent is ((56 + 2) * (12 - 9))
Enter a postfix expression to evaluate: [Enter]

Program 18-10 (continued)

1104 Chapter 18 Stacks and Queues

Review Questions and Exercises

Short Answer

1. What does LIFO mean?

2. What element is retrieved from a stack by the pop operation?

3. What is the difference between a static stack and a dynamic stack?

4. Describe two operations that all stacks perform.

5. The STL stack is considered a container adapter. What does that mean?

6. What types may the STL stack be based on? By default, what type is an STL stack
based on?

7. What does FIFO mean?

8. When an element is added to a queue, where is it added?

9. When an element is removed from a queue, where is it removed from?

10. Describe two operations that all queues perform.

11. What two queue-like containers does the STL offer?

12. Suppose the following operations were performed on an empty stack:

 push(0);
 push(9);
 push(12);
 push(1);

Insert numbers in the following diagram to show what will be stored in the static stack
after the operations have executed.

13. Suppose the following operations were performed on an empty stack:

 push(8);
 push(7);
 pop();
 push(19);
 push(21);
 pop();

Insert numbers in the following diagram to show what will be stored in the static stack
after the operations have executed.

top of stack

bottom of stack

Review Questions and Exercises 1105

14. Suppose the following operations are performed on an empty queue:

 enqueue(5);
 enqueue(7);
 enqueue(9);
 enqueue(12);

Insert numbers in the following diagram to show what will be stored in the static queue
after the operations have executed.

15. Suppose the following operations are performed on an empty queue:

 enqueue(5);
 enqueue(7);
 dequeue();
 enqueue(9);
 enqueue(12);
 dequeue();
 enqueue(10);

Insert numbers in the following diagram to show what will be stored in the static queue
after the operations have executed.

16. What problem is overcome by using a circular array for a static queue?

Algorithm Workbench

17. Give pseudocode that implements a queue using two stacks. The queue operations
enqueue, dequeue, and empty must be implemented in terms of the push, pop, and
empty stack operations.

Soft Skills

18. A common real-life example used to explain stacks is the stack of plates in a cafeteria. Find
at least two other real-life examples in which items are added and removed from a
container in last-in-first-out order, and use these examples to explain the concept of a
stack.

top of stack

bottom of stack

front rear

front rear

1106 Chapter 18 Stacks and Queues

Programming Challenges

1. Static Stack Template

In this chapter you studied IntStack, a class that implements a static stack of integers.
Write a template that will create a static stack of any data type. Demonstrate the class with
a driver program.

2. Dynamic Stack Template

In this chapter you studied DynIntStack, a class that implements a dynamic stack of
integers. Write a template that will create a dynamic stack of any data type. Demonstrate
the class with a driver program.

3. Static Queue Template

In this chapter you studied IntQueue, a class that implements a static queue of integers.
Write a template that will create a static queue of any data type. Demonstrate the class
with a driver program.

4. Dynamic Queue Template

In this chapter you studied DynIntQueue, a class that implements a dynamic queue of
integers. Write a template that will create a dynamic queue of any data type. Demonstrate
the class with a driver program.

5. Error Testing

The DynIntStack and DynIntQueue classes shown in this chapter are abstract data types
using a dynamic stack and dynamic queue, respectively. The classes do not currently test
for memory allocaton errors. Modify the classes so they determine if new nodes cannot be
created, and handle the error condition in an appropriate way. (You will need to catch the
predefined exception bad_alloc.)

6. Dynamic String Queue

Design a class that stores strings on a dynamic queue. The strings should not be fixed in
length. Demonstrate the class with a driver program.

7. Queue Exceptions

Modify the static queue class used in Program 18-5 as follows.

1. Make the isFull member private.

2. Define a queue overflow exception and modify enqueue so that it throws this
exception when the queue runs out of space.

3. Define a queue underflow exception and modify dequeue so that it throws this
exception when the queue is empty.

NOTE: If you have already done Programming Challenges 2 and 4, modify the templates
you created.

Review Questions and Exercises 1107

4. Rewrite the main program so that it catches overflow exceptions when they occur.
The exception handler for queue overflow should print an appropriate error message
and then terminate the program.

8. Evaluating Postfix Expressions

Write a program that reads postfix expressions and prints their values. Each input
expression should be entered on its own line, and the program should terminate when
the user enters a blank line.

Assume only binary operators, and that the expressions contain no variables. Note that
you will need to use parentheses to indicate the order of application of the operators in
the expression. Here are sample input–output pairs:

78 78

78 6 + 84

78 6 + 9 2 - / 12

9. File Reverser

Write a program that opens a text file and reads its contents into a stack of characters. The
program should then pop the characters from the stack and save them in a second text file.
The order of the characters saved in the second file should be the reverse of their order in
the first file.

10. Balanced Parentheses

A string of characters has balanced parentheses if each right parentheses occurring in the
string is matched with a preceding left parentheses in the same way each right brace in a
C++ program is matched with a preceding left brace. Write a program that uses a stack to
determine whether a string entered at the keyboard has balanced parentheses.

11. Balanced Multiple Delimiters

A string may use more than one type of delimiter to bracket information into “blocks.”
For example, A string may use braces { }, parentheses (), and brackets [] as delimiters. A
string is properly delimited if each right delimiter is matched with a preceding left delimiter
of the same type in such a way that the either the resulting blocks of information are
disjoint, or one of them is completely nested within the other. Write a program that uses a
single stack to check whether a string containing braces, parentheses, and brackets is
properly delimited.

12. Stack-based Binary Search

Imitate the technique of Section 18.7 and use a stack to remove recursion from the binary
search algorithm.

13. Stack-based Fibonacci Function

Use a stack to remove recursion from the implementation of the Fibonacci function
discussed in Section 14.4

VideoNote

Solving the
File Reverser
Problem

This page intentionally left blank

1109

C
H

A
P

T
E

R

19 Binary Trees

19.1 Definition and Applications of Binary Trees

CONCEPT: Binary trees differ from linked lists in that where a node in a linked list may
have at most one successor, a node in a binary tree can have up to two
successors.

A binary tree is a collection of nodes in which each node is associated with up to two
successor nodes, respectively called the left and right child. Not every node in the binary
tree will have two children: one or both nodes may be omitted. A node in a binary tree that
has no children is called a leaf node.

A node that has children is said to be the parent of its children. For a nonempty collection
of nodes to qualify as a binary tree, every node must have at most one parent, and there
must be exactly one node with no parent. The one node that has no parent is called the
root of the binary tree. An empty collection of nodes is regarded as constituting an empty
binary tree.

There is some similarity between a linked list and a binary tree. The root of a binary tree
corresponds to the head of a list, a child of a binary tree node corresponds to a successor
node in a list, and the parent of a binary tree node corresponds to the predecessor of a
node in the list. And of course, the analog of the empty list is the empty binary tree.

TOPICS

19.1 Definition and Applications of
Binary Trees

19.2 Binary Search Tree Operations

19.3 Template Considerations for
Binary Search Trees

19.4 Tying It All Together: Genealogy Trees

1110 Chapter 19 Binary Trees

Implementation of Binary Trees
Binary trees are used to store values in their nodes. A node in a binary tree will therefore be
a structure or class object that contains a member for storing the value, as well as two
members that point to nodes that are the left and right children of that node:

struct TreeNode
{

int value;
TreeNode *left;
TreeNode *right;

};

A binary tree is itself represented by a pointer to the node that is the root of the tree. An
example binary tree, with the values stored in the nodes not shown, is illustrated in
Figure 19-1. The left or right pointer in a node is set to NULL if that node does not
possess the corresponding child.

Binary trees are called trees because they resemble an upside-down tree. Any nonempty
tree can be partitioned into its root node, its left subtree, and its right subtree. Intuitively, a
subtree is an entire branch of the tree, from one particular node down. Figure 19-2 shows
the left subtree of the binary tree shown in Figure 19-1.

Applications of Binary Trees
Searching any linear data structure, such as an array or a standard linked list, is slow when
the structure holds a large amount of information. This is because of the sequential nature
of linear data structures. Binary trees and their generalizations are excellent data structures
for searching large amounts of information. They are commonly used in database
applications to organize key values that index database records. When used to facilitate

Figure 19-1

root
pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

Definition and Applications of Binary Trees 1111

searches, a binary tree is called a binary search tree. Binary search trees are the primary
focus of this chapter.

Information is stored in binary search trees in a way that makes searching for information
in the tree simple. For example, look at Figure 19-3.

Figure 19-2

Figure 19-3

root
Pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

Left Subtree

root
Pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

M

F R

PB

1112 Chapter 19 Binary Trees

The figure depicts a binary search tree where each node stores a letter of the alphabet.
Notice that the root node holds the letter M. The left child of the root node holds the letter
F, and the right child holds R. Values are stored in a binary search tree so that a node’s left
child holds data whose value is less than the node’s data, and the node’s right child holds
data whose value is greater than the node’s data. This is true for all nodes in the tree that
have children.

In fact, in a binary search tree, all the nodes to the left of a node hold values less than the
node’s value. Likewise, all the nodes to the right of a node hold values that are greater than
the node’s data. When an application is searching a binary search tree, it starts at the root
node. If the root node does not hold the search value, the application branches either to the
left or right child, depending on whether the search value is less than or greater than the
value at the root node. This process continues until the value is found or it is determined
that the search value is not in the tree. Figure 19-4 illustrates the search pattern for finding
the letter P in the binary tree shown.

This manner of searching a binary tree is reminiscent of the binary search technique that is
used on sorted arrays. Assuming that the binary tree is balanced (meaning that at each
node, the left and right subtrees have approximately the same number of nodes), the search
will reduce the size of the tree remaining to be searched by one half at each step. This
makes it possible to search trees with very large amounts of information in a relatively
small number of steps.

Checkpoint

19.1 Describe the difference between a binary tree and a linked list.

19.2 What is a root node?

19.3 What is a child node?

Figure 19-4

root
pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

M

F R

PB

1

2

3

Binary Search Tree Operations 1113

19.4 What is a leaf node?

19.5 What is a subtree?

19.6 Why are binary trees suitable for algorithms that must search large amounts of
information?

19.2 Binary Search Tree Operations

CONCEPT: There are many operations that may be performed on a binary search tree,
including creating a binary search tree, inserting, finding, and deleting
nodes.

In this section you will learn some basic operations that may be performed on a binary
search tree. We will study a simple class that implements a binary tree for storing integer
values.

Creating a Binary Search Tree
We will demonstrate the fundamental binary tree operations using a simple ADT: the
IntBinaryTree class. The basis of our binary tree node is the following class declaration:

class TreeNode
{

friend class IntBinaryTree;
int value;
TreeNode *left;
TreeNode *right;
TreeNode(int value1,

 TreeNode *left1 = NULL,
 TreeNode *right1 = NULL
)

{
value = value1;
left = left1;
right = right1;

}
};

Notice that each node of the tree has a value member, as well as two pointers to keep
track of the left and right children of the node. The class will only be used by methods of
IntBinaryTree, which is declared a friend of TreeNode to allow it access to all of the
members of TreeNode.

The entire IntBinaryTree class follows:

Contents of IntBinaryTree.h
1 #ifndef INTBINARYTREE_H
2 #define INTBINARYTREE_H
3

1114 Chapter 19 Binary Trees

Besides the TreeNode class declaration, the class has a root member. This is a pointer
to the root node of the binary tree, and plays a role similar to that of the head pointer
in the linked list class of Chapter 17. In many instances, it is useful to think of the

4 class IntBinaryTree
5 {
6 private:
7 // The TreeNode class is used to build the tree
8 class TreeNode
9 {
10 friend class IntBinaryTree;
11 int value;
12 TreeNode *left;
13 TreeNode *right;
14 TreeNode(int value1, TreeNode *left1 = NULL,
15 TreeNode *right1 = NULL)
16 {
17 value = value1;
18 left = left1;
19 right = right1;
20 }
21 };
22
23 TreeNode *root; // Pointer to the root of the tree
24
25 // Various helper member functions
26 void insert(TreeNode *&, int);
27 void destroySubtree(TreeNode *);
28 void remove(TreeNode *&, int);
29 void makeDeletion(TreeNode *&);
30 void displayInOrder(TreeNode *) const;
31 void displayPreOrder(TreeNode *) const;
32 void displayPostOrder(TreeNode *) const;
33
34 public:
35 // These member functions are the public interface
36 IntBinaryTree() // Constructor
37 { root = NULL; }
38 ~IntBinaryTree() // Destructor
39 { destroySubtree(root); }
40 void insert(int num)
41 { insert(root, num); }
42 bool search(int) const;
43 void remove(int num)
44 { remove(root, num);}
45 void showInOrder(void) const
46 { displayInOrder(root); }
47 void showPreOrder() const
48 { displayPreOrder(root); }
49 void showPostOrder() const
50 { displayPostOrder(root); }
51 };
52 #endif

Binary Search Tree Operations 1115

pointer to the node that is the root of a binary tree as the binary tree itself. Thus, we
may write

TreeNode *tree;

or

TreeNode *root;

and think of both as representing a binary tree because the root provides access to the
entire tree. On the other hand, it is also useful to think of an object of the IntBinaryTree
class as a binary tree, and write

IntBinaryTree Tree;

To avoid confusion, we will use identifiers with an initial capital letter for a binary tree that
is represented by an object of the IntBinaryTree class and use identifiers with initial
lowercase letters for a binary tree represented by a pointer to its root node.

The public member functions of IntBinaryTree include a constructor, a destructor, and
member functions for inserting a new number into the tree, for searching a tree to
determine whether a given number is in the tree, for removing a number from the tree, and
for displaying the numbers stored in the tree according to different orders. All of these
member functions are discussed in the sections that follow.

Program 19-1 demonstrates the creation of an IntBinaryTree object and the use of the
public insert member function to build a binary search tree. The implementation code for
the member functions are in the IntBinaryTree.cpp file; the contents of that file will be
discussed later. The tree that results from the execution of Program 19-1 is shown in
Figure 19-5.

Program 19-1

1 // This program builds a binary tree with 5 nodes.
2 #include <iostream>
3 #include "IntBinaryTree.h"
4 using namespace std;
5
6 int main()
7 {
8 IntBinaryTree tree;
9
10 cout << "Inserting numbers. ";
11 tree.insert(5);
12 tree.insert(8);
13 tree.insert(3);
14 tree.insert(12);
15 tree.insert(9);
16 cout << "Done.\n";
17 return 0;
18 }

1116 Chapter 19 Binary Trees

Implementation of the Binary Search Tree Operations
Many binary tree operations have very natural recursive implementations. This is because
a binary tree is an inherently recursive data structure: every nonempty binary tree consists
of a root node together with the left and right subtrees, which are of course, binary trees.
Many binary tree operations can be implemented by performing some processing at the
root node and then recursively performing the operation on the left and right subtrees. For
example, if the root node is represented by a pointer

TreeNode *tree;

then the value in the root node will be tree->value, and the left and right subtrees will
be given by tree->left and tree->right. A recursive operation might first process
tree->value, and then the recursively operate on tree->left and tree->right.

Inserting an Element
The work of inserting a number into a binary search tree is performed by the private
member function

insert(TreeNode *&tree, int num)

which is passed a pointer tree to the root node of a binary search tree and a number num
to be inserted into the tree. It uses a recursive strategy: if the binary tree is empty (this is the
base case for the recursion), it creates a new TreeNode object whose value member is the
given number and makes it the root of the tree:

Figure 19-5

root
pointer

left right

left right

left right

left right

NULL NULLNULL

NULL

5

3 8

12

left right

NULLNULL

9

VideoNote

Inserting an
Element into a
Binary Tree

Binary Search Tree Operations 1117

if (!tree)
{

tree = new TreeNode(num);
return;

}

If, however, the binary search tree is not empty, the insert function compares num to the
tree->value, the value in the root node. Depending on the outcome of this comparison,
the new value is recursively inserted into the left or right subtree:

if (num < tree->value)
insert(tree->left, num);

else
insert(tree->right, num);

The entire function is given here:

void IntBinaryTree::insert(TreeNode * &tree, int num)
{

// If the tree is empty, make a new node and make it
// the root of the tree
if (!tree)

{
 tree = new TreeNode(num);
 return;
}

// If num is already in tree: return
if (tree->value == num)
 return;

// The tree is not empty: insert the new node into the
// left or right subtree
if (num < tree->value)
 insert(tree->left, num);
else
 insert(tree->right, num);

}

Note that the function is passed a reference to a pointer because the pointer passed may
need to be modified by the function. This is also the reason the remove and makeDeletion
functions are passed their parameters by reference.

Traversing the Tree
There are three common methods for traversing a nonempty binary tree and processing the
value of each node: inorder, preorder, and postorder. Each of these methods is best
implemented as a recursive function. The algorithms are described as follows.

NOTE: The shape of the tree shown in Figure 19-5 is determined by the order in which
the values are inserted. The root node holds the value 5 because that was the first value
inserted. By stepping through the function, you can see how the other nodes came to
appear in their depicted positions.

1118 Chapter 19 Binary Trees

• Inorder traversal
1. The node’s left subtree is traversed.
2. The node’s data is processed.
3. The node’s right subtree is traversed.

• Preorder traversal
1. The node’s data is processed.
2. The node’s left subtree is traversed.
3. The node’s right subtree is traversed.

• Postorder traversal
1. The node’s left subtree is traversed.
2. The node’s right subtree is traversed.
3. The node’s data is processed.

The IntBinaryTree class can display all the values in the tree using all three of these
algorithms. The algorithms are initiated by the following inline public member functions:

void showInOrder(void)
{ displayInOrder(root); }

void showPreOrder()
{ displayPreOrder(root); }

void showPostOrder()
{ displayPostOrder(root); }

Each of the public member functions calls a recursive private member function and passes the
root pointer as an argument. The recursive functions are very simple and straightforward:

void IntBinaryTree::displayInOrder(TreeNode *tree) const
{

if (tree)
{

displayInOrder(tree->left);
cout << tree->value << " ";
displayInOrder(tree->right);

}
}

void IntBinaryTree::displayPreOrder(TreeNode *tree) const
{

if (tree)
{

cout << tree->value << " ";
displayPreOrder(tree->left);
displayPreOrder(tree->right);

}
}

void IntBinaryTree::displayPostOrder(TreeNode *tree) const
{

if (tree)
{

displayPostOrder(tree->left);
displayPostOrder(tree->right);
cout << tree->value << " ";

}
}

Binary Search Tree Operations 1119

Program 19-2, which is a modification of Program 19-1, demonstrates each of these
traversal methods.

Searching the Binary Search Tree
The IntBinarySearchTree class has a public member function search, which returns
true if a given value is found in the tree and returns false otherwise. The function
simply starts out searching the entire tree. The function compares num, the value being
searched for, to the value in the root of the tree it is currently searching. If the value
matches, the function returns true. If the value does not match, the function replaces
the tree with either its left subtree or its right subtree and continues the search. The
search will terminate when the function finds the value or when the tree being searched
becomes empty.

Program 19-2

1 // This program builds a binary tree with 5 nodes.
2 // The nodes are displayed with inorder, preorder,
3 // and postorder algorithms.
4 #include <iostream>
5 #include "IntBinaryTree.h"
6 using namespace std;
7
8 int main()
9 {
10 IntBinaryTree tree;
11 cout << "Inserting the numbers 5 8 3 12 9.\n\n";
12 tree.insert(5);
13 tree.insert(8);
14 tree.insert(3);
15 tree.insert(12);
16 tree.insert(9);
17
18 cout << "Inorder traversal: ";
19 tree.showInOrder();
20
21 cout << "\n\nPreorder traversal: ";
22 tree.showPreOrder();
23
24 cout << "\n\nPostorder traversal: ";
25 tree.showPostOrder();
26 return 0;
27 }

Program Output
Inserting the numbers 5 8 3 12 9.

Inorder traversal: 3 5 8 9 12

Preorder traversal: 5 3 8 12 9

Postorder traversal: 3 9 12 8 5

1120 Chapter 19 Binary Trees

bool IntBinaryTree::search(int num) const
{

TreeNode *tree = root;

while (tree)
{

if (tree->value == num)
return true;

else if (num < tree->value)
tree = tree->left;

else
tree = tree->right;

}
return false;

}

Program 19-3 demonstrates this function.

Removing an Element
To remove an element, we first locate the node containing the element and then delete the
node. The procedure for deleting a node X depends on the number of its children. If X has
no children, we first find its parent, set the parent’s child pointer that links to X to NULL,

Program 19-3

1 // This program builds a binary tree with 5 nodes.
2 // The search function determines if the
3 // value 3 is in the tree.
4 #include <iostream>
5 #include "IntBinarytree.h"
6 using namespace std;
7
8 int main()
9 {
10 IntBinaryTree tree;
11 cout << "Inserting the numbers 5 8 3 12 9.\n\n";
12 tree.insert(5);
13 tree.insert(8);
14 tree.insert(3);
15 tree.insert(12);
16 tree.insert(9);
17
18 if (tree.search(3))
19 cout << "3 is found in the tree.\n";
20 else
21 cout << "3 was not found in the tree.\n";
22 return 0;
23 }

Program Output
Inserting the numbers 5 8 3 12 9.

3 is found in the tree.

VideoNote

Removing an
Element from
a Binary Tree

Binary Search Tree Operations 1121

and then free the memory allocated to X. If X is the root of the tree, the procedure we have
just described will not work. In that case, we simply delete X and set the pointer to the root
of the tree to NULL.

A procedure for deleting a nonleaf node must ensure that the subtrees that the node links
to remain as parts of the tree. The procedure varies according to whether the node being
deleted has one or two children. Figure 19-6 shows a tree in which we are about to delete a
node with one subtree.

Figure 19-7 shows how we will link the node’s subtree with its parent.

Figure 19-6

Figure 19-7

root
pointer

left right

left right

left right

left right

NULL NULL

NULLNULL

left right

NULLNULL

This node will
be deleted

root
pointer

left right

left right

left right

left right

NULL NULL

NULLNULL

left right

NULLNULL

1122 Chapter 19 Binary Trees

The problem is not as easily solved, however, when the node we are about to delete has
two subtrees. For example, look at Figure 19-8.

Obviously, we cannot attach both of the node’s subtrees to its parent, so there must be an
alternative solution. One way of addressing this problem is to attach the node’s right
subtree to the parent, then find a position in the right subtree to attach the left subtree. The
result is shown in Figure 19-9. Note that in attaching the left subtree to the right subtree,
we must take care to preserve the binary tree’s search property.

Figure 19-8

Figure 19-9

root
pointer

left right

left right

left right

left right

NULL

NULLNULL

left right

NULLNULL

left right

NULLNULL

This node will
be deleted

root
pointer

left right

left right

left right

left right

NULL

NULLNULL

left right

NULLNULL

left right

NULL

This node will
be deleted

Binary Search Tree Operations 1123

The deletion of a value from an IntBinaryTree object is accomplished by calling the
public member function remove, which in turn calls the private member function of the
same name. This latter function is passed (the root of) a binary search tree tree, and a
value num to be removed from the tree:

remove(TreeNode *&tree, int num)

The function uses a recursive strategy. If the tree is empty, it returns immediately.
Otherwise, if num is less than the value stored in the root node, the function recursively
removes num from the left subtree; but if num is greater, the function recursively removes
num from the right subtree. The case where num is found in the root node is handed off to a
function

makeDeletion(TreeNode *&tree)

Here is the code for remove:

void IntBinaryTree::remove(TreeNode *&tree, int num)
{

if (tree == NULL) return;
if (num < tree->value)

remove(tree->left, num);
else if (num > tree->value)

remove(tree->right,num);
else

// We have found the node to delete.
makeDeletion(tree);

}

The makeDeletion function is designed to remove the root node of the binary search
tree passed to it as an argument, leaving a binary search tree consisting of the remaining
nodes. Let us take a look at the logic behind makeDeletion. There are a number of cases
to consider:

1. The root of the tree passed to makeDeletion has no children. In this case, we delete
the root node and replace the tree with NULL.

2. The root of the tree has only one child. In this case we delete the root node and
replace the tree with the child of the deleted root:

TreeNode *nodeToDelete = tree;
if (tree->right == NULL)

tree = tree->left;
else if (tree->left == NULL)

tree = tree->right;

Note that this code works for the first case as well.
3. The tree passed to makeDelete has two children. The deletion of the root node

would leave two subtrees, and we need to do something with both of them. The
strategy we adopt is to combine the two subtrees into one binary search tree, and
then replace the original tree with the tree built from the combined subtrees. As
shown in Figure 19-9, we can do this by attaching the left subtree of the original tree
as the left subtree of the least node in the right subtree of the original tree. Here is the
code for the entire function.

1124 Chapter 19 Binary Trees

void IntBinaryTree::makeDeletion(TreeNode *&tree)
{

// Used to hold node that will be deleted
TreeNode *nodeToDelete = tree;

// Used to locate the point where the
// left subtree is attached
TreeNode *attachPoint;

if (tree->right == NULL)
{

// Replace tree with its left subtree
tree = tree->left;

}
else if (tree->left == NULL)
{

// Replace tree with its right subtree
tree = tree->right;

}
else

//The node has two children
{

// Move to right subtree
attachPoint = tree->right;

// Locate the smallest node in the right subtree
// by moving as far to the left as possible
while (attachPoint->left != NULL)
attachPoint = attachPoint->left;

// Attach the left subtree of the original tree
// as the left subtree of the smallest node
// in the right subtree
attachPoint->left = tree->left;

// Replace the original tree with its right subtree
tree = tree->right;

}

// Delete root of original tree
delete nodeToDelete;

}

Program 19-4 demonstrates these functions.

Program 19-4

1 // This program builds a binary tree with 5 nodes.
2 // The deleteNode function is used to remove 2 of them.
3 #include <iostream>
4 #include "IntBinaryTree.h"
5 using namespace std;
6
7 int main()

(program continues)

Binary Search Tree Operations 1125

For your reference, the entire contents of IntBinaryTree file are shown here:

8 {
9 IntBinaryTree tree;
10
11 cout << "Inserting the numbers 5 8 3 12 9.";
12 tree.insert(5);
13 tree.insert(8);
14 tree.insert(3);
15 tree.insert(12);
16 tree.insert(9);
17
18 cout << "\nHere are the values in the tree:\n";
19 tree.showInOrder();
20
21 cout << "\nDeleting 8...\n";
22 tree.remove(8);
23
24 cout << "Deleting 12...\n";
25 tree.remove(12);
26
27 cout << "Now, here are the nodes:\n";
28 tree.showInOrder();
29 return 0;
30 }

Program Output
Inserting the numbers 5 8 3 12 9.
Here are the values in the tree:
3 5 8 9 12
Deleting 8...
Deleting 12...
Now, here are the nodes:
3 5 9

Contents of IntBinaryTree.cpp
1 #include <iostream>
2 #include "IntBinaryTree.h"
3 using namespace std;
4
5 //**
6 // This version of insert inserts a number into *
7 // a given subtree of the main binary search tree. *
8 //**
9 void IntBinaryTree::insert(TreeNode * &tree, int num)
10 {
11 // If the tree is empty, make a new node and make it
12 // the root of the tree
13 if (!tree)
14 {
15 tree = new TreeNode(num);

Program 19-4 (continued)

1126 Chapter 19 Binary Trees

16 return;
17 }
18
19 // If num is already in tree: return
20 if (tree->value == num)
21 return;
22
23 // The tree is not empty: insert the new node into the
24 // left or right subtree
25 if (num < tree->value)
26 insert(tree->left, num);
27 else
28 insert(tree->right, num);
29 }
30
31 //***
32 // destroySubTree is called by the destructor. It *
33 // deletes all nodes in the tree. *
34 //***
35 void IntBinaryTree::destroySubtree(TreeNode *tree)
36 {
37 if (!tree) return;
38 destroySubtree(tree->left);
39 destroySubtree(tree->right);
40 // Delete the node at the root
41 delete tree;
42 }
43
44 //***
45 // searchNode determines if a value is present in *
46 // the tree. If so, the function returns true. *
47 // Otherwise, it returns false. *
48 //***
49 bool IntBinaryTree::search(int num) const
50 {
51 TreeNode *tree = root;
52
53 while (tree)
54 {
55 if (tree->value == num)
56 return true;
57 else if (num < tree->value)
58 tree = tree->left;
59 else
60 tree = tree->right;
61 }
62 return false;
63 }
64
65 //**
66 // remove deletes the node in the given tree *
67 // that has a value member the same as num. *
68 //**

Binary Search Tree Operations 1127

69 void IntBinaryTree::remove(TreeNode *&tree, int num)
70 {
71 if (tree == NULL) return;
72 if (num < tree->value)
73 remove(tree->left, num);
74 else if (num > tree->value)
75 remove(tree->right,num);
76 else
77 // We have found the node to delete
78 makeDeletion(tree);
79 }
80
81 //***
82 // makeDeletion takes a reference to a tree whose root *
83 // is to be deleted. If the tree has a single child, *
84 // the tree is replaced by the single child after the *
85 // removal of its root node. If the tree has two children *
86 // the left subtree of the deleted node is attached at *
87 // an appropriate point in the right subtree, and then *
88 // the right subtree replaces the original tree. *
89 //***
90 void IntBinaryTree::makeDeletion(TreeNode *&tree)
91 {
92 // Used to hold node that will be deleted
93 TreeNode *nodeToDelete = tree;
94
95 // Used to locate the point where the
96 // left subtree is attached
97 TreeNode *attachPoint;
98
99 if (tree->right == NULL)
100 {
101 // Replace tree with its left subtree
102 tree = tree->left;
103 }
104 else if (tree->left == NULL)
105 {
106 // Replace tree with its right subtree
107 tree = tree->right;
108 }
109 else
110 //The node has two children
111 {
112 // Move to right subtree
113 attachPoint = tree->right;
114
115 // Locate the smallest node in the right subtree
116 // by moving as far to the left as possible
117 while (attachPoint->left != NULL)
118 attachPoint = attachPoint->left;
119
120 // Attach the left subtree of the original tree
121 // as the left subtree of the smallest node

1128 Chapter 19 Binary Trees

122 // in the right subtree
123 attachPoint->left = tree->left;
124
125 // Replace the original tree with its right subtree
126 tree = tree->right;
127 }
128
129 // Delete root of original tree
130 delete nodeToDelete;
131 }
132
133 //***
134 // This function displays the values stored in a tree *
135 // in inorder. *
136 //***
137 void IntBinaryTree::displayInOrder(TreeNode *tree) const
138 {
139 if (tree)
140 {
141 displayInOrder(tree->left);
142 cout << tree->value << " ";
143 displayInOrder(tree->right);
144 }
145 }
146
147 //***
148 // This function displays the values stored in a tree *
149 // in inorder. *
150 //***
151 void IntBinaryTree::displayPreOrder(TreeNode *tree) const
152 {
153 if (tree)
154 {
155 cout << tree->value << " ";
156 displayPreOrder(tree->left);
157 displayPreOrder(tree->right);
158 }
159 }
160
161 //***
162 // This function displays the values stored in a tree *
163 // in postorder. *
164 //***
165 void IntBinaryTree::displayPostOrder(TreeNode *tree) const
166 {
167 if (tree)
168 {
169 displayPostOrder(tree->left);
170 displayPostOrder(tree->right);
171 cout << tree->value << " ";
172 }
173 }

1129

Checkpoint

19.7 Describe the sequence of events in an inorder traversal.

19.8 Describe the sequence of events in a preorder traversal.

19.9 Describe the sequence of events in a postorder traversal.

19.10 Describe the steps taken in deleting a leaf node.

19.11 Describe the steps taken in deleting a node with one child.

19.12 Describe the steps taken in deleting a node with two children.

19.3 Template Considerations for Binary Search Trees

CONCEPT: Binary search trees may be implemented as templates, but any data types
used with them must support the <, >, and == operators.

The actual implementation of a binary tree template has been left as a Programming
Challenge for students who have covered Chapters 16 and 19. When designing your
template, remember that any data types stored in the binary tree must support the <, >, and
== operators. If you use the tree to store class objects, these operators must be overridden.

19.4 Tying It All Together: Genealogy Trees
Say we want to write a program that will trace peoples' ancestries and build genealogy
trees. To keep track of each person’s biological parents, we might use a class such as the
following:

class Person
{
 string name;
 Person *father;
 Person *mother;
};

This simple class is very similar to the “node” classes we have been using to build binary
trees. In maintaining genealogies, however, we are interested in recording not only a
person’s ancestors, but their descendants as well. We also want to keep track of gender
information to enable people using the program to distinguish between maternal and
paternal relatives. The Person class, as shown above, is not adequate for these needs. We
therefore modify it as shown here:

enum Gender {male, female};
class Person
{
 string name;
 Gender gender;
 vector<Person *> parents;
 vector<Person *> children;
};

Tying It All Together: Genealogy Trees

1130 Chapter 19 Binary Trees

We now have a “node” that can have any number of children and any number of parents.
Because each person can have at most two parents, the size of the parents vector will
never exceed two.

We can make the Person class more useful by adding a constructor and several member
functions. The method

Person *addChild(string name, Gender g);

creates a Person object with the specified name and gender, adds a pointer p to the created
object to the children of “this” Person object, and returns p to the caller. Another
method,

Person *addChild(Person *p);

adds a pointer to an already created Person object to the children vector of "this"
Person object. The following code shows the use of these member functions to record the
fact that a father f and a mother m have a child named "Charlie":

Person f("Frank", male);
Person m("Mary", female);
Person *pChild = m.addChild("Charlie", male);
f.addChild(pChild);

There is also a method

void addParent(Person *p);

that is used to record the fact that one person is the parent of another. The class also has an
overloaded stream operator that outputs the data in a Person object using an XML-like
format. Finally, the class has several methods that can be used to access information about
various members of the class objects. These additional functions can be seen in lines 29–34
of the program listing.

Program 19-5

1 // This program uses a generalization of binary trees to build
2 // genealogy trees.
3 #include <vector>
4 #include <string>
5 #include <iostream>
6 using namespace std;
7 enum Gender{male, female};
8
9 // Person class represents a person participating in a genealogy
10 class Person
11 {
12 string name;
13 Gender gender;
14 vector<Person *> parents;
15 vector<Person *> children;
16 void addParent(Person *p){ parents.push_back(p); }
17 public:
18 Person (string name, Gender g)

(program continues)

1131Tying It All Together: Genealogy Trees

19 {
20 this->name = name;
21 gender = g;
22 }
23 Person *addChild(string name, Gender g);
24 Person *addChild(Person *p);
25
26 friend ostream &operator << (ostream &out, Person p);
27
28 // Member functions for getting various Person info
29 string getName() const { return name; };
30 Gender getGender() const { return gender; };
31 int getNumChildren() const { return children.size(); }
32 int getNumParents() const { return parents.size(); }
33 Person *getChild(int k) const;
34 Person *getParent(int k) const;
35 };
36
37 //**
38 // Create a child with specified name and gender, and *
39 // set one of the parents to be this person. *
40 // Add the new child to the list of children for this person *
41 //**
42 Person *Person::addChild(string name, Gender g)
43 {
44 Person *child = new Person(name, g);
45 child->addParent(this); // I am a parent of this child
46 children.push_back(child); // This is one of my children
47 return child;
48 }
49
50 //**
51 // Add a child to the list of children for this person *
52 //**
53 Person *Person::addChild(Person* child)
54 {
55 child->addParent(this); // I am a parent of this child
56 children.push_back(child); // This is one of my children
57 return child;
58 }
59
60 //***
61 // Return a pointer to the specified parent *
62 //***
63 Person *Person::getParent(int k) const
64 {
65 if (k < 0 || k >= parents.size())
66 {
67 cout << "Error indexing parents vector." << endl;
68 exit(1);
69 }
70 return parents[k];
71 }

(program continues)

Program 19-5 (continued)

1132 Chapter 19 Binary Trees

72
73 //**
74 // Return a pointer to a specified child *
75 //**
76 Person *Person::getChild(int k) const
77 {
78 if (k < 0 || k >= children.size())
79 {
80 cout << "Error indexing children's vector." << endl;
81 exit(1);
82 }
83 return children[k];
84 }
85
86 //**
87 // Overloaded stream output operator *
88 //**
89 ostream & operator<<(ostream & out, Person p)
90 {
91 out << "<person name = " << p.name << ">" << '\n';
92 if (p.parents.size() > 0)
93 out << " <parents>" << ' ';
94 for (int k = 0; k < p.parents.size(); k++)
95 {
96 out << " " << p.parents[k]->name << ' ';
97 }
98 if (p.parents.size() > 0)
99 out << " </parents>" << "\n";
100 if (p.children.size() > 0)
101 out << " <children>" << ' ';
102 for (int k = 0; k < p.children.size(); k++)
103 {
104 out << " " << p.children[k]->name << ' ';
105 }
106 if (p.children.size() > 0)
107 out << " </children>" << "\n";
108 out << "</person>" << "\n";
109 return out;
110 }
111
112
113 int main(int argc, char** argv)
114 {
115 // Here are the people
116 Person adam("Adam", male);
117 Person eve("Eve", female);
118 Person joan("Joan", female);
119
120 // Adam and Eve are parents of Abel

(program continues)

Program 19-5 (continued)

1133Tying It All Together: Genealogy Trees

121 Person *pAbel = eve.addChild(new Person("Abel", male));
122 adam.addChild(pAbel);
123
124 // Abel and Joan are parents of Missy
125 Person *pMissy = joan.addChild("Missy", female);
126 pAbel->addChild(pMissy);
127
128 // Output all the people
129 cout << "Here are all the people:\n\n";
130 cout << adam << eve";
131 cout << *pAbel << joan;
132 cout << *pMissy << "\n";
133
134 // Print parents of Missy
135 cout << "Missy's parents are: " << endl;
136 for (unsigned int k = 0; k < pMissy->getNumParents(); k++)
137 {
138 Person * p = pMissy->getParent(k);
139 switch(p->getGender())
140 {
141 case female : cout << "\tMother: "; break;
142 case male: cout << "\tFather: "; break;
143 }
144 cout << p->getName() << endl;
145 }
146 return 0;
147 }

Program Output
Here are all the people:

<person name = Adam>
 <children> Abel </children>
</person>
<person name = Eve>
 <children> Abel </children>
</person>
<person name = Abel>
 <parents> Eve Adam </parents>
 <children> Missy </children>
</person>
<person name = Joan>
 <children> Missy </children>
</person>
<person name = Missy>
 <parents> Joan Abel </parents>
</person>

Missy's parents are:
 Mother: Joan
 Father: Abel

Program 19-5 (continued)

1134 Chapter 19 Binary Trees

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The first node in a binary tree is called the __________.

2. A binary tree node’s left and right pointers point to the node’s __________.

3. A node with no children is called a(n) __________.

4. A(n)__________ is an entire branch of the tree, from one particular node down.

5. The three common types of traversal with a binary tree are __________, __________,
and __________.

6. In what ways is a binary tree similar to a linked list?

7. A ternary tree is like a binary tree, except each node in a ternary tree may have three
children: a left child, a middle child, and a right child. Write an analogue of the
TreeNode declaration that can be used to represent the nodes of a ternary tree.

8. Imagine a tree in which each node can have up to a hundred children. Write an analog
of the TreeNode declaration that can be used to represent the nodes of such a tree. A
declaration such as

TreeNode
{

int value;
TreeNode *child1;
TreeNode *child2;
TreeNode *child3;
.
.
.

};

that simply lists all the pointers to the hundred children is not acceptable.

Algorithm Workbench

9. Propose a definition of a preorder traversal for ternary trees, and give pseudocode for
accomplishing such a traversal.

10. Propose a definition of a postorder traversal for ternary trees, and give pseudocode
for accomplishing such a traversal.

11. What problems do you encounter when you try to define the concept of an inorder
traversal for ternary trees?

12. Assume that data is stored in a binary tree, but that unlike in the case of binary
search tree, no attempt is made to maintain any sort of order in the data stored.
Give an algorithm for a function search that searches a binary tree for a particular
value num and returns true or false according to whether the value num is found
in the tree.

13. Give an algorithm for a function

int largest(TreeNode *tree)

that takes a pointer to a root of a binary search tree as parameter and returns the
largest value stored in the tree.

Review Questions and Exercises 1135

14. Give an algorithm for a function

int smallest(TreeNode *tree)

that takes a pointer to a root of a binary search tree as parameter and returns the
smallest value stored in the tree.

15. Give an algorithm for a function

void increment (TreeNode *tree)

that increments the value in every node of a binary tree by one.

16. Suppose the following values are inserted into a binary search tree, in the order given:

12, 7, 9, 10, 22, 24, 30, 18, 3, 14, 20

Draw a diagram of the resulting binary tree.

17. How would the values in the tree you sketched for queston 16 be displayed in an
inorder traversal?

18. How would the values in the tree you sketched for queston 16 be displayed in a
preorder traversal?

19. How would the values in the tree you sketched for queston 16 be displayed in a
postorder traversal?

Soft Skills

20. All three binary tree traversal methods studied in this chapter traverse the left
subtree before the right subtree. This is an artifact of Western culture, where
people are accustomed to reading material printed on a page from left to right. In
a world of increasing globalization, products and services that will be offered in
foreign markets must be designed so that they can be easily altered to target
different markets. Discuss with your classmates some of the ways these
internationalization considerations are affecting the design of computer software
and hardware today. Discuss this with a friend who has had a course in
International Business, or take such a course yourself, to become better aware of
some of the problems businesses face when they enter inter-national markets.

Programming Challenges

1. Simple Binary Search Tree Class

Write a class for implementing a simple binary search tree capable of storing numbers. The
class should have member functions

void insert(double x)
bool search(double x)
void inorder(vector <double> & v)

The insert function should not use recursion directly, or indirectly by calling a
recursive function. The search function should work by calling a private recursive
member function

bool search(double x, BtreeNode *t)

1136 Chapter 19 Binary Trees

The inorder function is passed an initially empty vector v: it fills v with the inorder list of
numbers stored in the binary search tree. Demonstrate the operation of the class using a
suitable driver program.

2. Tree Size

Modify the binary search tree created in the previous programming challenge to add a
member function

int size()

that returns the number of items (nodes) stored in the tree. Demonstrate the correctness of
the new member function with a suitable driver program.

3. Leaf Counter

Modify the binary search tree you created in the preceding programming challenges to add
a member function

int leafCount()

that counts and returns the number of leaf nodes in the tree. Demonstrate that the function
works correctly in a suitable driver program.

4. Tree Height

Modify the binary search tree created in the preceding programming challenges by adding
a member function that computes and returns the height of the tree.

int height()

The height of the tree is the number of levels it contains. For example, the tree shown in
Figure 19-10 has three levels. Demonstrate the function with a suitable driver program.

5. Tree Width

Modify the binary search tree created in the preceding programming challenges by adding
a member function that computes the width of the tree.

int width()

Figure 19-10

VideoNote

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

Solving the
Tree Size
Problem

Review Questions and Exercises 1137

The width of a tree is the largest number of nodes at the same level. Demonstrate
correctness in a suitable driver program.

6. Tree Copy Constructor

Design and implement a copy constructor for the binary search tree created in the
preceding programming challenges. Use a driver program to demonstrate correctness.

7. Tree Assignment Operator

Design and implement an overloaded assignment operator for the binary search tree
created in the preceding programming challenges.

8. Employee Tree

Design an EmployeeInfo class that holds the following employee information:

Employee ID Number: an integer
Employee Name: a string

Implement a binary tree whose nodes hold an instance of the EmployeeInfo class. The
nodes should be sorted on the Employee ID number.

Test the binary tree by inserting nodes with the following information.

Your program should allow the user to enter an ID number, then search the tree for the
number. If the number is found, it should display the employee’s name. If the node is not
found, it should display a message indicating so.

9. Cousins

Building on Program 19-5, write a function that takes a pointer to a Person object and
produces a list of that person’s cousins.

Employee
ID Number Name

1021
1057
2487
3769
1017
1275
1899
4218

John Williams
Bill Witherspoon
Jennifer Twain
Sophia Lancaster
Debbie Reece
George McMullen
Ashley Smith
Josh Plemmons

This page intentionally left blank

1139

A
P

P
E

N
D

IX

A The ASCII Character Set

Nonprintable ASCII Characters

Dec Hex Oct Name of Character
0 0 0 NULL
1 1 1 SOTT
2 2 2 STX
3 3 3 ETY
4 4 4 EOT
5 5 5 ENQ
6 6 6 ACK
7 7 7 BELL
8 8 10 BKSPC
9 9 11 HZTAB
10 a 12 NEWLN
11 b 13 VTAB
12 c 14 FF
13 d 15 CR
14 e 16 SO
15 f 17 SI
16 10 20 DLE
17 11 21 DC1
18 12 22 DC2
19 13 23 DC3
20 14 24 DC4
21 15 25 NAK
22 16 26 SYN
23 17 27 ETB
24 18 30 CAN
25 19 31 EM
26 1a 32 SUB
27 1b 33 ESC
28 1c 34 FS
29 1d 35 GS
30 1e 36 RS
31 1f 37 US
127 7f 177 DEL

Printable ASCII Characters

Dec Hex Oct Character
32 20 40 (Space)
33 21 41 !
34 22 42 “
35 23 43 #
36 24 44 $
37 25 45 %
38 26 46 &
39 27 47 ‘
40 28 50 (
41 29 51)
42 2a 52 *
43 2b 53 +
44 2c 54 ’
45 2d 55 -
46 2e 56 .
47 2f 57 /
48 30 60 0
49 31 61 1
50 32 62 2
51 33 63 3
52 34 64 4
53 35 65 5
54 36 66 6
55 37 67 7
56 38 70 8
57 39 71 9
58 3a 72 :
59 3b 73 ;
60 3c 74 <
61 3d 75 =
62 3e 76 >
63 3f 77 ?
64 40 100 @

1140 Appendix A The ASCII Character Set

65 41 101 A
66 42 102 B
67 43 103 C
68 44 104 D
69 45 105 E
70 46 106 F
71 47 107 G
72 48 110 H
73 49 111 I
74 4a 112 J
75 4b 113 K
76 4c 114 L
77 4d 115 M
78 4e 116 N
79 4f 117 O
80 50 120 P
81 51 121 Q
82 52 122 R
83 53 123 S
84 54 124 T
85 55 125 U
86 56 126 V
87 57 127 W
88 58 130 X
89 59 131 Y
90 5a 132 Z
91 5b 133 [
92 5c 134 \
93 5d 135]
94 5e 136 ^
95 5f 137 _
96 60 140 `
97 61 141 a
98 62 142 b
99 63 143 c
100 64 144 d
101 65 145 e
102 66 146 f
103 67 147 g
104 68 150 h
105 69 151 i
106 6a 152 j
107 6b 153 k
108 6c 154 l
109 6d 155 m
110 6e 156 n
111 6f 157 o
112 70 160 p
113 71 161 q
114 72 162 r
115 73 163 s
116 74 164 t
117 75 165 u
118 76 166 v
119 77 167 w
120 78 170 x

Printable ASCII Characters

Dec Hex Oct Character
121 79 171 y
122 7a 172 z
123 7b 173 {
124 7c 174 |
125 7d 175 }
126 7e 176 ~

Extended ASCII Characters

Dec Hex Oct Character
128 80 200 Ç
129 81 201 ü
130 82 202 é
131 83 203 â
132 84 204 ä
133 85 205 à
134 86 206 å
135 87 207 ç
136 88 210 ê
137 89 211 ë
138 8a 212 è
139 8b 213 ï
140 8c 214 î
141 8d 215 ì
142 8e 216 Ä
143 8f 217 Å
144 90 220 É
145 91 221 æ
146 92 222 Æ
147 93 223 ô
148 94 224 ö
149 95 225 ò
150 96 226 û
151 97 227 ù
152 98 230 ÿ
153 99 231 Ö
154 9a 232 Ü
155 9b 233 ¢
156 9c 234 £
157 9d 235 ù
158 9e 236 û
159 9f 237 ƒ
160 a0 240 á
161 a1 241 í
162 a2 242 ó
163 a3 243 ú
164 a4 244 ñ
165 a5 245 Ñ
166 a6 246 ª
167 a7 247 º
168 a8 250 ¿
169 a9 251 ©
170 aa 252 Ñ
171 ab 253 ´

Printable ASCII Characters

Dec Hex Oct Character

The ASCII Character Set 1141

172 ac 254 ¨
173 ad 255 ¡
174 ae 256
175 af 257 »
176 b0 260 ∞
177 b1 261 ±
178 b2 262 ≤
179 b3 263 ≥
180 b4 264 ¥
181 b5 265 μ
182 b6 266 ∂
183 b7 267 ∑
184 b8 270 ∏
185 b9 271 π
186 ba 272 ∫
187 bb 273 a
188 bc 274 o
189 bd 275 Ω
190 be 276 æ
191 bf 277 ø
192 c0 300 ¿
193 c1 301 ¡
194 c2 302 ¬
195 c3 303 √
196 c4 304 ƒ
197 c5 305 ≈
198 c6 306 Δ
199 c7 307
200 c8 310 »
201 c9 311 …
202 ca 312 _
203 cb 313 À
204 cc 314 Ã
205 cd 315 Õ
206 ce 316 Œ
207 cf 317 œ
208 d0 320 –
209 d1 321 ——
210 d2 322 “
211 d3 323 ”
212 d4 324 ‘
213 d5 325 ’

Extended ASCII Characters

Dec Hex Oct Character
214 d6 326 ÷
215 d7 327 ◊
216 d8 330 ÿ
217 d9 331 Ÿ
218 da 332 ⁄
219 db 333
220 dc 334 ‹
221 dd 335 ›
222 de 336 fi
223 df 337 fl
224 e0 340 ‡
225 e1 341 ·
226 e2 342 ‚
227 e3 343 ”
228 e4 344 ‰
229 e5 345 Â
230 e6 346 Ê
231 e7 347 Á
232 e8 350 Ë
233 e9 351 È
234 ea 352 Í
235 eb 353 Î
236 ec 354 Ï
237 ed 355 Ì
238 ee 356 Ó
239 ef 357 Ô
240 f0 360
241 f1 361 Ò
242 f2 362 Ú
243 f3 363 Û
244 f4 364 Ù
245 f5 365 ı
246 f6 366 ˆ
247 f7 367 ˜
248 f8 370 ¯
249 f9 371 ˘
250 fa 372 ˙
251 fb 373 •
252 fc 374 ¸
253 fd 375 ˝
254 fe 376 ˛
255 ff 377

Extended ASCII Characters

Dec Hex Oct Character

This page intentionally left blank

1143

A
P

P
E

N
D

IX

B Operator Precedence
and Associativity

The operators are shown in order of precedence, from highest to lowest.

Operator Associativity

 :: unary: left to right
 binary: right to left
 () [] -> . left to right
 ++ – + - ! ~ (type) * &
sizeof

right to left

 * / % left to right
 + - left to right
 << >> left to right
 < <= > >= left to right
 == != left to right
 & left to right
 ^ left to right
 | left to right
 && left to right
 || left to right
 ?: right to left
 = += -= *= /= %= &= ^= |=
<<= >>=

right to left

 , left to right

This page intentionally left blank

1145

A
P

P
E

N
D

IX

C Answers to Checkpoints

Chapter 1
1.1 Because the computer can be programmed to do so many different tasks

1.2 The central processing unit (CPU), main memory (RAM), secondary storage
devices, input devices, and output devices

1.3 Arithmetic and logic unit (ALU) and control unit

1.4 Fetch: The CPU’s control unit fetches the program’s next instruction from main
memory.

Decode: The control unit decodes the instruction, which is encoded in the form of
a number. An electrical signal is generated.

Execute: The signal is routed to the appropriate component of the computer,
which causes a device to perform an operation.

1.5 A memory address is a unique number assigned to each storage location in
memory. Its purpose is to allow data stored in RAM to be located.

1.6 Program instructions and data are stored in main memory while the program is
running. Main memory is volatile and loses its contents when power is removed
from the computer. Secondary storage holds data for long periods of time—even
when there is no power to the computer.

1.7 Operating systems and application software

1.8 The operating system

1.9 A utility program

1.10 Application software or application programs

1.11 A set of well-defined steps for performing a task or solving a problem

1.12 To ease the task of programming. Programs may be written in a programming
language, then converted to machine language.

1.13 A low-level language is close to the level of the computer and resembles the
system’s numeric machine language. A high-level language is closer to the level of
human readability and resembles natural languages.

1146 Appendix C Answers to Checkpoints

1.14 That a program may be written on one type of computer and run on another type

1.15 The preprocessor reads the source file, searching for commands that begin with the
symbol. These are commands that cause the preprocessor to modify the source file
in some way. The compiler translates each source code instruction into the
appropriate machine language instruction and creates an object file. The linker
combines the object file with necessary library routines to create an executable file.

1.16 Source file: Contains program statements written by the programmer.

Object file: Contains machine language instructions generated by the compiler.

Executable file: Contains code ready to run on the computer. Includes the machine
language from an object file and the necessary code from library routines.

1.17 A programming environment that includes a text editor, compiler, debugger, and
other utilities, integrated into one package

1.18 A key word has a special purpose and is defined as part of a programming language.
A programmer-defined symbol is a word or name defined by the programmer.

1.19 Operators perform operations on one or more operands. Punctuation symbols
mark the beginning or ending of a statement, or separate items in a list.

1.20 A line is a single line as it appears in the body of a program. A statement is a
complete instruction that causes the computer to perform an action. It may be
written on 1 or more lines.

1.21 Because their contents may be changed while the program is running.

1.22 It is overwritten by the new value. The old value is “lost”.

1.23 The variable must be defined in a declaration.

1.24 Input, processing, and output

1.25 The program’s purpose, the information to be input, the processing to take place,
and the desired output.

1.26 To imagine what the computer screen looks like while the program is running.
This helps define input and output.

1.27 A chart that depicts the logical steps of the program in a hierarchical fashion

1.28 A “language” that is a cross between human language and programming
languages that is used to express algorithms.

1.29 High-level psuedocode just lists the steps a program must carry out. Detailed
psuedocode shows the variables, logic, and computations needed to create the
program.

1.30 It translates each source code statement into the appropriate machine language
statements.

1.31 A mistake that causes a program to produce erroneous results. A logic error
occurs when what the programmer means for the program to do does not match
what the code actually instructs the program to do.

1.32 An error that occurs while the program is running when the system is asked to
perform an action it cannot carry out.

1.33 The programmer steps through each statement in the program from beginning to
end. The contents of variables are recorded, and screen output is sketched.

Answers to Checkpoints 1147

Chapter 2
2.1 // A crazy mixed up program

#include <iostream>
using namespace std;

int main()
{

cout << "In 1492 Columbus sailed the ocean blue.";
return 0;

}

2.2 // Insert current date here
#include <iostream>
using namespace std;

int main()
{

cout << "Teresa Jones";
return 0;

}

2.3 cout << "red \n" << "blue \n" << "yellow \n" << "green";

2.4 The works of Wolfgang
include the following:
The Turkish March
and Symphony No. 40 in G minor.

2.5 #include <iostream>
using namespace std;

int main()
{

cout << "Teresa Jones\n";
cout << "127 West 423rd Street\n";
cout << "San Antonio, TX 78204\n";
cout << "555-475-1212\n";
return 0;

}

2.6 Only statement a is legal. The left-hand side of an assignment statement must be a
variable, not a literal.

2.7 Variables: little and big

Literals: 2, 2000, "The little number is ", "The big number is", 0

2.8 The little number is 2
The big number is 2000

2.9 The value is number

2.10 99bottles: Variable names cannot begin with a number.

r&d: Variable names may only use alphabetic letters, digits, and underscores.

2.11 No. Variable names are case sensitive.

1148 Appendix C Answers to Checkpoints

2.12 A) short or unsigned short

B) int

C) They both use the same amount of memory.

2.13 unsigned short, unsigned int, and unsigned long

2.14 int apples 20;

2.15 int xCoord = 2, yCoord = -4, zCoord = 6;

2.16 6.31E17

2.17 3

2.18 #include <iostream>
using namespace std;

int main()
{

int age;
double weight;

age = 26;
weight = 168.5;
cout << "My age is " << age << "and my weight is " << weight;
cout << weight << " pounds.\n";
return 0;

}

2.19 67, 70, 87

2.20 ‘B’

2.21 1 byte, 2 bytes, 6 bytes, 1 byte

2.22 The string literal “Z” is being stored in the character variable letter.

2.23 string

2.24 // Substitute your name, address, and phone
// number for those shown in this program.
#include <iostream>
#include <string>
using namespace std;

int main()
{

string name, address, phone;
name = "George Davis";
address = "179 Ravenwood Lane";
phone = "555-6767";
cout << name << endl;
cout << address << endl;
cout << phone << endl;
return 0;

}

2.25 Invalid. The value on the left of the = operator must be an lvalue, such as a
variable name.

Answers to Checkpoints 1149

2.26 The variable critter is assigned a value before it is declared. You can correct the
program by moving the statement critter = 62.7; to the line after the variable
declaration.

2.27 11, 5, 24, 2

2.28 Integer division. The value 5 will be displayed.

Chapter 3
3.1 iostream

3.2 The stream extraction operator

3.3 The console (or keyboard)

3.4 True

3.5 3

3.6 cin >> miles >> feet >> inches;

3.7 Include one or more cout statements explaining what values the user should
enter.

3.8 #include <iostream>
using namespace std;

int main()
{

double pounds, kilograms;

cout << "Enter your weight in pounds: ";
cin >> pounds;
// The following line does the conversion.
kilograms = pounds / 2.2;
cout << "Your weight in kilograms is ";
cout << kilograms << endl;
return 0;

}

3.9 A) *
B) same
C) same

3.10 Value
21
 2
31
 5
24
 2
69
 0
30

1150 Appendix C Answers to Checkpoints

3.11 y = 6 * x;
a = 2 * b + 4 * c;
y = x * x * x; or y = pow(x, 3);

g = (x + 2) / (z * z); or g = (x + 2) / pow(z, 2);

y = (x * x) / (z * z); or y = pow(x, 2) / pow (z, 2);

3.12 If the user enters… The program displays…

2 6
5 27
4.3 20.49
6 38

3.13 #include <iostream>
#include <cmath>
using namespace std;

int main()
{

double volume, radius, height;
cout << "This program will tell you the volume of\n";
cout << "a cylinder-shaped fuel tank.\n";
cout << "How tall is the tank? ";
cin >> height;
cout << "What is the radius of the tank? ";
cin >> radius;
volume = 3.14159 * pow(radius, 2.0) * height;
cout << "The volume of the tank is " << volume << endl;
return 0;

}

3.14 A) 2 F) 2.4
B) 17.0 G) 4
C) 2.0 H) 27
D) 2.4 I) 30
E) 2.4 J) 27.0

3.15 The ASCII values of uppercase letters are 65 - 90
The ASCII values of lowercase letters are 97 - 122
Enter a letter and I will tell you its ASCII code: B
The ASCII code for B is 66

3.16 9
9.5
9

3.17 const double E = 2.71828;
const double MIN_PER_YEAR = 5.256E5;
const double GRAV_ACC_FT_PER_SEC = 32.2;
const double GRAV_ACC_M_PER_SEC = 9.8;
const int METERS_PER_MILE = 1609;

Answers to Checkpoints 1151

3.18 #define E 2.71828
#define YEAR_SECS 5.26e5
#define GRAV_ACC_FT_PER_SEC 32.2
#define GRAV_ACC_M_PER_SEC 9.8
#define METERS_PER_MILE 1609

3.19 This program calculates the number of candy pieces sold.
How many jars of candy have you sold? 6[Enter]
The number of pieces sold: 11160
Candy pieces you get for commission: 2232

3.20 #include <iostream>
using namespace std;

int main()
{

const double CONVERSION = 1.467;
double milesPerHour, feetPerSecond;

cout << "This program converts miles-per-hour to\n";
cout << "feet-per-second.\n";
cout << "Enter a speed in MPH: ";
cin >> milesPerHour;
feetPerSecond = milesPerHour * CONVERSION;
cout << "That is " << feetPerSecond
 << " feet-per-second.\n";
return 0;

}

3.21 total = subtotal = tax = shipping = 0;

3.22 A) x += 6;
B) amount -= 4;
C) y *= 4;
D) total /= 27;
E) x %= 7;
F) x += (y * 5);
G) total -= (discount * 4);
H) increase *= (salesRep * 5);
I) profit /= (shares – 1000);

3.23 3
11
1

3.24 A) cout << fixed << setprecision(2);
cout << setw(9) << 34.789;

B) cout << fixed << showpoint
 << setprecision(3);
 cout << setw(5) << 7.0;

C) cout << fixed << 5.789e12;

D) cout << left << setw(7) << 67;

1152 Appendix C Answers to Checkpoints

3.25 #include <iostream>
#include <iomanip>
using namespace std;

int main()
{

const double PI = 3.14159;
double degrees, radians;
cout << "Enter an angle in degrees and I will convert it\n";
cout << "to radians for you: ";
cin >> degrees;
radians = degrees * PI / 180;
cout << degrees << " degrees is equal to ";
cout << fixed << showpoint << setprecision(4);
cout << left << setw(7) << radians << " radians.\n ";
return 0;

}

3.26 No. Space is needed for a fifth character, to hold the null terminator.

3.27 A) Legal (Though no embedded blanks can be input)
B) Illegal (This works for C-strings only)
C) Legal
D) Legal

3.28 A) Legal (Though no embedded blanks can be input)
B) Legal
C) Legal
D) Illegal (Arrays cannot be assigned to variables like this. Use strcpy().)

3.29 x = sin(angle1) + cos(angle2);

3.30 y = pow(x, 0.2); // 0.2 is equal to 1/5

3.31 luckyNumber = rand() % 100 + 1;

Chapter 4
4.1 T, T, T, T, T, T, T

4.2 A) Incorrect
B) Incorrect
C) Correct

4.3 A) Yes
B) No
C) No

4.4 0 0 1 0

4.5 if (price > 500)
 discountRate = 0.2;

4.6 if (hours > 40)
 payRate = payRate * 1.5;

Answers to Checkpoints 1153

4.7 if (sales > 50000)
{ commissionRate = 0.25;
 bonus = 250;
}

4.8 false

4.9 if (ticketsSold == 200)
 soldOut = true;

4.10 if (soldOut) // Same as if (soldOut == true)
 cout << "The performance is sold out! \n";

4.11 A) Error: There is a semicolon after the if test condition.

Result: The cout statement will execute even though hours is not greater
than 40.

Output: 12 hours qualifies for over-time.

B) Error: The if test condition uses an assignment operator (=) rather than
an equality test (==).

Result: interestRate will be assigned the value .07, and the cout
statement will execute even though it shouldn’t.

Output: This account is earning the maximum rate.

C) Error: The 2 statements that are supposed to be included in the body of
the if statement are not surrounded by curly braces.

Result: Only the cout statement is in the if body. The $10 addition to
balance will always be done, even when interestRate is not
greater than .07.

Output: None

4.12 if (sales >= 50000.00)
 commission = 0.20;
else
 commission = 0.10;

4.13 if (y == 100)
 x = 1;
else
 x = 0;

4.14 if (prepaid) // Same as if (prepaid == true)
 discount = 0.10;
else
 discount = 0.0;

4.15 true
4.16 No. When x equals y the two separate if statements don’t display anything, but

the if/else statement causes a 2 to display.

4.17 5 5

1154 Appendix C Answers to Checkpoints

4.18 If the customer purchases This many coupons are given
this many books...

 1 1
 2 1
 3 2
 4 2
 5 3
 10 3

4.19 if (quantityOnHand == 0)
 cout << "Out of stock \n";
else if (quantityOnHand < 10)
 cout << "Reorder \n";

4.20 if (quantityOnHand == 0)
 cout << "Out of stock \n";
else if (quantityOnHand < 10)
 cout << "Reorder \n";
else
 cout << "Quantity OK \n";

4.21 A) Zero
B) Zero Ten
C) Zero Ten Twenty
D) Nothing is displayed

4.22 A) Good luck in the rest of your games.
B) You are the champions.
C) You have won more than 50% of your games.

4.23

4.24 T, F, T, T, T

4.25 True (&& is done before ||)

4.26 if (!activeEmployee)

4.27 if (speed >= 0 && speed <= 200)
 cout << "The number is valid. \n";

Logical Expression Result (True or False)

true && false false

true && true true

false && false false

true || false true

true || true true

false || false false

!true false

!false true

Answers to Checkpoints 1155

4.28 if (speed < 0 || speed > 200)
 cout << "The number is not valid.";

4.29 The variables length, width, and area should be defined before they are used.
There is no prompt for the width.

4.30 A) True D) False
B) False E) False
C) True F) True

4.31 A) False E) False
B) False F) False
C) True G) True
D) False H) False

4.32 if (str1 == str2)
 cout << "Both strings have the value" << str1 << endl;
else if (str1 < str2)
 cout << str1 << endl << str2 << endl;
else
 cout << str2 << endl << str1 << endl;

4.33 A) True E) True
B) True F) False
C) False G) True
D) False H) False

4.34 A) z = (x > y) ? 1 : 20;
B) population = (temp > 45) ? (base * 10) : (base * 2);
C) wages *= (hours > 40) ? 1.5 : 1;
D) cout << ((result >= 0) ? ("The result is positive\n") :

 ("The result is negative.\n"));

4.35 A) if (k > 90)
 j = 57;
 else
 j = 12;
B) if (x >= 10)
 factor = y * 22;
 else
 factor = y * 35;
C) if (count == 1)
 total += sales;
 else
 total += count * sales;
D) if (num % 2)
 cout << "Even\n";
 else
 cout << "Odd\n";

4.36 2 2

1156 Appendix C Answers to Checkpoints

4.37 Because the if /else statement tests several different conditions, consisting of
different variables and because it tests values with relational operators other than
equal-to.

4.38 The case statements must be followed by an integer constant, not a relational
expression.

4.39 That is serious.

4.40 switch (userNum)
{

case 1 : cout << "One";
 break;
case 2 : cout << "Two";
 break;
case 3 : cout << "Three";
 break;
default: cout << "Enter 1, 2, or 3 please.\n";

}

4.41 Here is the converted if/else if statement found in the program segment.
switch (selection)
{

case 1 : cout << "Pi times radius squared\n";
 break;
case 2 : cout << "length times width\n";
 break;
case 3 : cout << "Pi times radius squared times height\n";
 break;
case 4 : cout << "Well okay then, good bye!\n";
 break;
default : cout << "Not good with numbers, eh?\n";

}

4.42 enum must be lowercase. There should be no = sign. The symbolic names in the
enumeration list should not be in quotes. It should end with a semicolon.

4.43 if (color <= yellow)
 cout "primary color \n";
else
 cout "mixed color \n";

Chapter 5
5.1 A) 4

B) 0
C) 0. Notice the semicolon after the while test expression. This causes an infinite

loop that prints nothing.
D) Notice the missing braces. This means the line that increments count is not in

the loop, so count always remains less than 5, causing an infinite loop. The
cout statement executes over and over again until the user stops the program.

5.2 int num = 1;
while (num <= 15)
{ cout << num << endl;
 num += 2;
}

Answers to Checkpoints 1157

5.3 A) 3 2 D) 3 4
B) 3 3 E) It is true!
C) 2 3 F) It is true!

5.4 A) Hello World
B) 5 5 5 5 5 5 5 5 … (Infinite loop)
C) 8 4

5.5 do
{
 cout << "Enter an integer: ";
 cin >> num;

 if (num % 2 == 0)
 cout << "That integer is even.\n";
 else
 cout << "That integer is odd.\n";

 cout << "Do you want to test another number (y/n)? ";
 cin >> reply;
} while (reply == 'y' || reply == 'Y');

5.6 Change the last line of answer 5.5 to the following:
while(toupper(reply) == 'Y')

5.7 initialization expression, test expression, and update expression

5.8 A) count = 1
B) count <= 50
C) count++
D) for (count = 1; count <= 50; count++)

 cout << “I love to program.\n”;

5.9 A) 0 2 4 6 8 10
B) −5 −4 −3 −2 −1 0 1 2 3 4
C) 3 6 9 12

5.10 for (int count = 1; count <= 10; count++)
 cout << "Put your name here.\n";

5.11 for (int num = 1; num < 50; num += 2)
 cout << num << endl;

5.12 for (int num = 0; num <= 100; num += 5)
 cout << num << endl;

5.13 x is the counter, y is the accumulator.

5.14 int sum = 0;
for (int num = 1; num <= 10; num++)
 sum += num * num;
cout << "The sum of the squares of the integers \n"
 << "from 1 through 10 is " << sum << endl;

1158 Appendix C Answers to Checkpoints

5.15 int sum = 0;
for (int num = 1; num <= 9; num += 2)
 sum += num * num;
cout << "The sum of the squares of the odd integers \n"
 << "from 1 through 9 is " << sum;

5.16 int count, number, total = 0;
for (count = 0; count < 7; count++)
{

cout << "Enter a number: ";
cin >> number;
total += number;

}
cout << "The total is " << total << endl;

5.17 double x, y, quotient, total = 0.0;
for (x = 1, y = 30; x <= 30; x++, y--)
{

quotient = x / y;
total += quotient;

}
cout << "The total is " << total << endl;

5.18 double total = 0.0;
for (int denom = 2; denom <= 1024; denom *= 2)

total += 1.0 / denom;
cout << "The total of the series is " << total << endl;

5.19 int score, numScores = 0;
double total = 0.0;

cout << "Enter the first test score (or -99 to quit): ";
cin >> score;

while (score != -99)
{ numScores++;
 total += score;
 cout << "Enter the next test score (or -99 to quit): ";

cin >> score;
}
if (numScores == 0)
 cout << "No scores were entered." << endl;
else
 cout << "The average of the " << numScores
 << " scores is " << total / numScores << endl;

5.20 A) for
B) do-while
C) while
D) while
E) for

5.21 A) 600 (20 rows with 30 stars in each row)
B) 220 (20 rows with just 11 stars in each row due to the break statement)

5.22 1 3 7 12

Answers to Checkpoints 1159

5.23 A) An output file is one that a program can write output to.
B) In input file is one that a program can read input from.

5.24 fstream

5.25 1. Include the fstream header file needed to perform file input/output.
2. Define a file stream object.
3. Open the file.
4. Use the file.
5. Close the file.

5.26 A text file contains data that has been encoded as text, so it can be read with a
text editor. A binary file contains binary data that has not been converted to text,
so it cannot be viewed with a text editor.

5.27 A sequential access file contains data that can only be accessed in sequential order
from beginnning to end. A random access file allows direct access to any piece of
data without having to read the data that comes before it.

5.28 ofstream

5.29 ifstream

5.30 C. dataFile << salary;

5.31 The open function needs an argument that is a C-string. Change the third line to
outputFile.open(filename.c_str());

5.32 for (int num = 1; num <= 10; num++)
 outfile << num << endl;

Chapter 6
6.1 Function call

6.2 Function header

6.3 I saw Elba
Able was I

6.4 void qualify()
{

cout << "Congratulations, you qualify for\n";
cout << "the loan. The annual interest rate\n";
cout << "is 12%\n";

}

void noQualify()
{

cout << "You do not qualify. In order to\n";
cout << "qualify you must have worked on\n";
cout << "your current job for at least two\n";
cout << "years and you must earn at least\n";
cout << "$17,000 per year.\n";

}

1160 Appendix C Answers to Checkpoints

6.5 Header
Prototype
Function call

6.6 void timesTen(int number)
{

cout << (number * 10);
}

6.7 void timesTen(int);

6.8 0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 16
9 18

6.9 0 1.5
1.5 0
0 10
0 1.5

6.10 void showDollars(double pay)
{

cout << fixed << showpoint << setprecision(2);
cout << "Your wages are $" << pay << endl;

}

6.11 One

6.12 double distance(double rate, double time)

6.13 int days(int years, int months, int weeks)

6.14 char getKey()

6.15 long lightYears(long miles)

6.16 A static local variable’s scope is limited to the function in which it is defined. A
global variable’s scope is the portion of the program from its definition to the end
of the program.

6.17 100
50
100

6.18 10
11
12
13
14
15
16
17
18
19

Answers to Checkpoints 1161

6.19 Literals and Constants

6.20 Prototype:
void compute(double, int = 5, long = 65536);

Header:
void compute(double x, int y, long z)

6.21 Prototype:
void calculate(long, &double, int = 47);

Header:
void calculate(long x, double &y, int z)

6.22 5 10 15
9 10 15
6 15 15
4 11 16

6.23 0 00
Enter two numbers: 12 14
12 140
14 15-1
14 15-1

6.24 Different parameter lists

6.25 1.2

6.26 30

Chapter 7
7.1 B

7.2 A

7.3 C

7.4 class Date
{
private:

int month;
int day;
int year;

public:
void setDate(int m, int d, int y)

 { month = m; day = d; year = y; }
int getMonth()

 { return month; }
int getDay()

 { return day; }
int getYear()

 { return year; }
}

Alternately these could be separate setMonth, setDay, and setYear member
functions to validate and set each component of the date separately.

1162 Appendix C Answers to Checkpoints

7.5 A constructor is automatically called when the class object is created. It is useful
for initializing member variables or performing setup operations.

7.6 A

7.7 A

7.8 ClassAct sally(25);

7.9 True

7.10 False

7.11 B

7.12 False

7.13 50
50
20

7.14 4
7
goodbye
goodbye

7.15 D

7.16 A

7.17 B

7.18 False. They can be both passed to functions and returned by functions.

7.19 False. Passing it by value will ensure it is not changed, but it is best to pass it as a
constant reference.

7.20 D

7.21 class Circle
{ private:

 double radius; // In inches
 public:
 void setRadius(double r)
 { radius = r; }
 double getArea() // In sq. in.
 { return (3.14.159 * radius * radius); }
}

7.22 class Pizza
{ private:
 double price;
 Circle size;
 public:
 void setPrice(double p)
 { price = p; }
 void setSize(double r)
 { size.setRadius(r); }
 double costPerSqIn()
 { return (price / size.getArea()); }
}

Answers to Checkpoints 1163

7.23 Other prices and sizes could be used.
Pizza myPizza;
myPizza.setPrice(12.99);
myPizza.setSize(14);
cout << "Price per square inch $" << myPizza.costPerSqIn();

7.24 The BasePay class declaration would reside in Basepay.h

The BasePay member function definitions would reside in Basepay.cpp

The Overtime class declaration would reside in Overtime.h

The Overtime member function declarations would reside in Overtime.cpp

7.25 Basepay.h and Overtime.h

7.26 struct Student
{ int id,

 entryYear;
double gpa;

};
Student s1(1234, 2008, 3.41);
Student s2(5678, 2010);

7.27 struct Account
{ string acctNum;
 double acctBal,
 intRate,
 avgBal;

 Account(string num, double bal, double rate, double avg)
 { acctNum = num; acctBal = bal;
 intRate = rate; avgBal = avg;
 }
};
Account savings(“ACZ42137”, 4512.59, .04, 4217.07);

7.28 #include <iostream>
#include <string>
using namespace std;

struct MovieInfo
{

string name,
 director;
int year;

};

int main()
{

MovieInfo movie;

cout << "Enter the following information about your "
 << " favorite movie.\n" << "Name: ";
getline(cin, movie.name);

1164 Appendix C Answers to Checkpoints

cout << "Director: ";
 getline(cin, movie.director);

 cout << "Year of Release: ";
 cin >> movie.year;

 cout << "\nHere is information on your favorite movie:\n";
 cout << "Name: " << movie.name << endl;
 cout << "Director: " << movie.director << endl;
 cout << "Year of Release: " << movie.year << endl;
 return 0;
}

7.29 struct Location
{
 double latitude,
 longitude,
 height;
};

7.30 struct City
{
 String cityName;
 Location position;
};
City destination;

7.31 destination.cityName = "Tupelo";
destination.position.latitude = 34.28; // degrees north
destination.position.longitude = -88.77; // degrees west
destination.position.height = 361.0; // ft. above sea level

7.32 void showRect(Rectangle r)
{

cout << r.length << endl;
cout << r.width << endl;

}

7.33 void getRect(Rectangle &r)
{

cout << "Width: ";
cin >> r.width;
cout << "Length: ";
cin >> r.length;

}

7.34 Rectangle getRect() // Function return type is a Rectangle structure
{

Rectangle r;
cout << "Width: ";
cin >> r.width;
cout << "Length: ";
cin >> r.length;
return r;

}

Answers to Checkpoints 1165

7.35 The problem domain is the set of real-world objects, parties, and major events
related to a problem.

7.36 Someone who has an adequate understanding of the problem. If you adequately
understand the nature of the problem you are trying to solve, you can write a
description of the problem domain yourself. If you do not thoroughly understand
the nature of the problem, you should have an expert write the description for you.

7.37 Start by identifying all the nouns (including pronouns and noun phrases) in the
problem domain description. Each of these is a potential class. Then, refine the
list to include only the classes that are relevant to the problem.

7.38 It is often helpful to ask the questions “In the context of this problem, what must
the class know? What must the class do?”

7.39 A) Begin by identifying the nouns: doctor, patients, practice, patient, procedure,
description, fee, statement, office manager, name, address, and total charge.
After eliminating duplicates, objects, and simple data items that can be stored
in variables, the remaining list of potential classes is: Doctor, Practice, Patient,
Procedure, Statement, and Office manager.

B) The necessary classes for this problem are: Patient, Procedure, and Statement.
C) The Patient class knows the patient’s name and address. The Procedure

class knows the procedure description and fee. The Statement class knows
each procedure that was performed. The Statement class can calculate
total charges.

Chapter 8
8.1 A) int empNum[100];

B) double payRate[25];
C) long miles[14];
D) string stateCapital[50];
E) double lightYears[1000];

8.2 int readings[-1]; // Size declarator cannot be negative
float measurements[4.5]; // Size declarator must be an integer
int size; // This is not an array
string name[size]; // Size declarator must be a constant

8.3 0 through 3

8.4 The size declarator is used in the array definition statement. It specifies the
number of elements in the array. A subscript is used to access an individual
element in an array.

8.5 Array bounds checking is a safeguard provided by some languages. It prevents a
program from using a subscript that is beyond the boundaries of an array. C++
does not perform array bounds checking.

8.6 1
2
3
4
5

1166 Appendix C Answers to Checkpoints

8.7 #include <iostream>
using namespace std;

int main()
{

const int NUM_MEN = 10;
int fish[NUM_MEN], count;

cout << "Enter the number of fish caught\n";
 cout << "by each fisherman.\n";

for (int count = 0; count < NUM_MEN; count++)
{

 cout << "fisherman " << (count+1) << ": ";
 cin >> fish[count];
 }

cout << "\n\nFish Report\n\n";
for (int count = 0; count < NUM_MEN; count++)
{

cout << "Fisherman #" << count+1 << " caught "
 << fish[count] << " fish.\n";

}
return 0;

}

8.8 A) int ages[10] = {5, 7, 9, 14, 15, 17, 18, 19, 21, 23};
B) double temps[7] = {14.7, 16.3, 18.43, 21.09, 17.9, 18.76,

 26.7};

C) char alpha[8] = {'J', 'B', 'L', 'A', '*', '$', 'H', 'M'};

8.9 A) int numbers[10] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};

The definition is valid.
B) int matrix[5] = {1, 2, 3, 4, 5, 6, 7};

The definition is invalid because there are too many values in the initialization
list.

C) double radii[10] = {3.2, 4.7};
The definition is valid. Elements 2 through 9 will be initialized to 0.0.

D) int table[7] = {2, , , 27, , 45, 39};
The definition is invalid. Values cannot be skipped in the initialization list.

E) char codes[] = {'A', 'X', '1', '2', 's'};
The definition is valid. The codes array will be allocated space for five
characters.

F) int blanks[];
The definition is invalid. An initialization list must be provided when an array
is implicitly sized.

G) string suit[4] = {"Clubs", "Diamonds", "Hearts", "Spades"};
The definition is valid.

8.10 No. An entire array cannot be copied in a single statement with the = operator.
The array must be copied element by element.

8.11 A) 10
B) 3
C) 6
D) 14

Answers to Checkpoints 1167

8.12 0

8.13 10.00
25.00
32.50
50.00
110.00

8.14 1 18 18
2 4 8
3 27 81
4 52 208
5 100 500

8.15 typedef int TenInts[10];

8.16 The starting address of the array

8.17 ABCDEFGH

8.18 (The entire program is shown here.)

#include <iostream>
using namespace std;

// Function prototype
double avgArray(const int [], int);

int main()
{

const int SIZE = 10;
int userNums[SIZE];

cout << "Enter 10 numbers: ";
for (int count = 0; count < SIZE; count++)
{

cout << "#" << (count + 1) << " ";
cin >> userNums[count];

}
cout << "The average of those numbers is ";
cout << avgArray(userNums, SIZE) << endl;
return 0;

}

// Function avgArray
double avgArray(const int array[], size)
{

double total = 0.0, average;
for (int count = 0; count < size; count++)

total += array[count];
average = total / size;
return average;

}

8.19 int grades[30][10];

8.20 24

8.21 sales[0][0] = 56893.12;

1168 Appendix C Answers to Checkpoints

8.22 cout << sales[5][3];

8.23 int settings[3][5] = {{12, 24, 32, 21, 42},
 {14, 67, 87, 65, 90},
 {19, 1, 24, 12, 8}};

8.24

8.25 void displayArray7(int array[][7], int numRows)
{

for (int row = 0; row < numRows; row ++)
{

for (int col = 0; col < 7; col ++)
{ cout << array[row][col] << " ";
}
cout << endl;

}
}

8.26 int vidNum[50][10][25];

8.27 vector

8.28 vector <int> frogs;
vector <float> lizards(20);
vector <char> toads(100, 'Z');

8.29 vector <int> gators;
vector <double> snakes(10);
gators.push_back(27);
snakes[4] = 12.897;

8.30 False

8.31 False

8.32 10
20
50

8.33 #include <iostream>
using namespace std;

class Yard
{
private:

int length, width;
public:

Yard()
{ length = 0; width = 0; }

void setLength(int len)
{ length = len; }

void setWidth(int wide)
{ width = wide; }

int getLength() {return length;}
int getWidth() {return width;}

};

2 3 0 0

7 9 2 0

1 0 0 0

Answers to Checkpoints 1169

int main()
{

const int SIZE = 10;
Yard lawns[SIZE];
cout << "Enter the length and width of "
 << "each yard.\n";

for (int count = 0; count < SIZE; count++)
{

int input;
cout << "Yard " << (count + 1) << ":\n";
cout << "length: ";
cin >> input;
lawns[count].setLength(input);
cout << "width: ";
cin >> input;
lawns[count].setWidth(input);

}
cout << "\nHere are the yard dimensions.\n";
for (int yard = 0; yard < SIZE; yard++)
{
 cout << "Yard " << (yard+1) << " "
 << lawns[yard].getLength() << " X "
 << lawns[yard].getWidth() << endl;
}
return 0;

}

8.34 Product() // Default constructor
{ description = "";

partNum = cost = 0;
}
Product(string d, int p, double c) // Constructor
{ description = d;

partNum = p;
cost = c;

}

8.35 Product items[100];

8.36 items[0].description = "Claw Hammer";
items[0].partNum = 547;
items[0].cost = 8.29;

8.37 for (int x = 0; x < 100; x++)
{

cout << items[x].description << endl;
cout << items[x].partNum << endl;
cout << items[x].cost << endl << endl;

}

8.38 Product items[5] = { Product("Screw driver", 621, 1.72),
 Product("Socket set", 892, 19.97),
 Product("Claw hammer", 547, 8.29) };

8.39 struct Measurement
{

int miles;
double hours;

};

1170 Appendix C Answers to Checkpoints

8.40 struct Destination
{

string city;
Measurement travelTime;

};

8.41 Destination places [20];
places[4].city = "Tupelo";
places[4].travelTime.miles = 375;
places[4].travelTime.hours = 7.5;

Chapter 9
9.1 The linear search algorithm simply uses a loop to step through each element of an

array, comparing each element’s value with the value being searched for. The
binary search algorithm, which requires the values in the array to be sorted in
order, starts searching at the element in the middle of the array. If the middle
element’s value is greater than the value being searched for, the algorithm next
tests the element in the middle of the first half of the array. If the middle element’s
value is less than the value being searched for, the algorithm next tests the element
in the middle of the last half of the array. Each time the array tests an array
element and does not find the value being searched for, it eliminates half of the
remaining portion of the array. This method continues until the value is found, or
there are no more elements to test. The binary search is more efficient than the
linear search.

9.2 10,000

9.3 14

9.4 The items frequently searched for can be stored near the beginning of the array.

9.5 True

9.6 Change the > sign in the if statement to a < sign. The line would now read

 If (array[count] < array[count + 1])

9.7 The last value is now in order.

9.8 The first value, in position 0, is now in order.

9.9 selection sort

9.10 A basic operation is one that requires constant time, regardless of the size of the
problem that is being solved.

9.11 The worst case complexity function f(n) of an algorithm is a measure of the time
required by the algorithm to solve a problem instance of size n that requires the
most time.

9.12 Because 10n and 25n differ by a constant factor and constant factors are not
significant, the two algorithms are considered to be equivalent in efficiency.

9.13 To say that f(n) is in O(g(n)) means that there exists a positive constant K such
that f(n) ≤ Kg(n) for all n ≥ 1. This means that for large problem sizes, an
algorithm with complexity function f(n) is no worse than one with complexity
function g(n).

Answers to Checkpoints 1171

9.14 To show that 100n3 + 50n2 + 75 is in O(20n3), we must show that some constant
K exists for which 100n3 + 50n2 + 75 ≤ K(20n3) for all n ≥ 1.

Observe that for all n ≥ 1

Therefore, we have found a constant K that satisfies the inequality, namely K = 85.

9.15 Assuming that g(n) ≥ 1 for all n ≥ 1, we have 100 ≤ 100 g(n) for all n ≥ 1. This
implies that g(n) + 100 ≤ g(n) + 100g(n) = 101g(n) for all n ≥ 1. Now, if f(n) is in
O(g(n)+100), there exists a positive K such that f(n) ≤ K(g(n)+100) ≤ 101Kg(n)
for all n ≥ 1. Taking K1 = 101K, we see that f(n) ≤ K1g(n) for all n ≥ 1.

Chapter 10
10.1 cout << &count;

10.2 double *dPtr;

10.3 Multiplication operator, pointer declaration, indirection operator

10.4 50 60 70
500 300 140

10.5 for (int x = 0; x < 100; x++)
 cout << *(array + x) << endl;

10.6 12040

10.7 A) Valid
B) Valid
C) Invalid. Only addition and subtraction are valid arithmetic operations with

pointers.
D) Invalid. Only addition and subtraction are valid arithmetic operations with

pointers.
E) Valid

10.8 A) Valid
B) Valid
C) Invalid. fvar is a float, and iptr is a pointer to an int.
D) Valid
E) Invalid. ivar must be defined before it is used.

10.9 A) True
B) False
C) True
D) False

10.10 makeNegative (&num);

10.11 void convert(double *val)
{

*val *= 2.54;
}

10.12 A

10.13 ip = new int;
delete ip;

100n3 50n2 75+ +
20n3-- 5 5

2n

75

20n3------------ 5 5 75 85≤+ +≤+ +=

1172 Appendix C Answers to Checkpoints

10.14 ip = new int[500];
delete [] ip;

10.15 A pointer whose value is the address 0

10.16 char *getname(char *name)
{

cout << "Enter your name: ";
cin.getline(name, 81);
return name;

}

10.17 char *getname()
{

char name[81];
cout << "Enter your name: ";
cin.getline(name, 81);
return name;

}

10.18 Rectangle *rptr;

10.19 cout << rptr->length << endl << rptr->width << endl;

10.20 B

Chapter 11
11.1 Each class object (an instance of a class) has its own copy of the class’s instance

member variables. If a class’s member variable is static, however, only one copy of
the variable exists in memory. All objects of that class have access to that one
variable.

11.2 Outside the class declaration

11.3 Before

11.4 Static member functions cannot access instance members unless they explicitly
specify an object of the class.

11.5 You can call a static member function before any instances of the class have been
created.

11.6 No, but it has access to all of class X’s members, just as if it were a member.

11.7 Class X

11.8 Each member of one object is copied to its counterpart in another object of the
same class.

11.9 When one object is copied to another with the = operator, and when one object is
initialized with another object’s data

11.10 When an object contains a pointer to dynamically allocated memory

11.11 When an object is initialized with another object’s data, when an object is passed
by value as the argument to a function, and when an object is returned by value.

11.12 The member function has the same name as the class, has no return type, and has
a single reference parameter to the same type as the class.

11.13 It performs memberwise assignment.

Answers to Checkpoints 1173

11.14 Pet Pet :: operator=(const Pet);

11.15 dog.operator=(cat);

11.16 It cannot be used in multiple assignment statements or other expressions.

11.17 It’s a built-in pointer, available to a class’s instance member functions, that always
points to the instance of the class making the function call.

11.18 Instance member functions

11.19 cat is calling the operator+ function. tiger is passed as an argument.

11.20 The operator is used in postfix mode.

11.21 They should always return Boolean values.

11.22 The object may be directly used with input stream such as cin and output
streams such as cout.

11.23 An ostream object should be returned by reference.

11.24 An istream object should be returned by reference.

11.25 The operator function must be declared as a friend.

11.26 list1.operator[](25);

11.27 The object whose name appears on the right of the operator in the expression

11.28 So statements using the overloaded operators may be used in other expressions

11.29 The postfix version has a dummy parameter.

11.30 #ifndef INTARRAY_H
#define INTARRAY_H
#include <iostream>
using namespace std;
// Modified Intarry.h
class IntArray
{
private:

 int *aptr;
 int arraySize;
 void subError(); // Handles subscripts out of range

public:
 IntArray(int); // Constructor
 IntArray(const IntArray &); // Copy constructor
 ~IntArray(); // Destructor
 int size(){ return arraySize; }
 int &operator[](int); // Overloaded [] operator
 int operator()(int, int); // Overloaded () operator

};
#endif

// Overloaded operator () added to IntArray.cpp
int IntArray::operator()(int i, int j)
{
 int sum = 0;

1174 Appendix C Answers to Checkpoints

 if (i < 0 || j >= arraySize)
subError();

 for(int k = i; k <= j; k++)
 sum = sum + aptr[k];
 return sum;
}

#include <iostream>
#include "IntArray.h"

using namespace std;

int main()
{

IntArray table(10);

// Store values in the array.
for (int x = 0; x < table.size(); x++)

table[x] = x;

// Print the sum of the values in the range 3..5
cout << table(3, 5);

return 0;
}

11.31 Objects are automatically converted to other types. This ensures that an object’s
data is properly converted.

11.32 They always return a value of the data type they are converting to.

11.33 BlackBox::operator int()

11.34 Big::Big (Small sm)

11.35 The is-a relation

11.36 Because derived class objects can be considered as forming a subset of the set of
base class objects. Hence we can think of the base class as a “uperset” or
superclass of the derived class.

11.37 The base class access specification determines how members inherited from the
base class will be accessed in the derived class.

11.38 A typist is a special case of an employee.

class Employee
{

int yearsOfService;
};
class Typist : public Employee
{

int wordsPerMinute;
};

11.39 Other than to friend functions, private members are only accessible to member
functions of the same class. Protected members are accessible to member
functions of the class as well as member functions of all derived classes.

Answers to Checkpoints 1175

11.40 Member access specification determines how a class member is accessible to code
outside of the class. Base class access specification determines how members
inherited from a base class will be accessed through the derived class.

11.41 A) a is inaccessible; the rest are private.
B) a is inaccessible; the rest are protected.
C) a is inaccessible; b, c, and setA are protected; setB and setC are public.
D) Private

11.42 Derived class constructors can assume members of the base class object have
already been initialized.

11.43 Declarations are for typechecking, definitions are for code generation. The
compiler needs the arguments to the base class constructor when it is generating
code.

11.44 The same situation arises with composition when an outer class object needs to
pass arguments to a constructor of an inner class object. The same syntax is used.

11.45 Entering the base.
Entering the camp.
Leaving the camp.
Leaving the base.

11.46 This base is secure.
The camp is secluded.
Leaving the camp.
Leaving the base.

Chapter 12
12.1

strlen Accepts a C-string as an argument. Returns the length of the string
(not including the null terminator).

strcat Accepts two C-strings as arguments. The function appends the
contents of the second string to the first string. (The first string is
altered, the second string is left unchanged.)

strcpy Accepts two C-strings as arguments. The function copies the second
string to the first string. The second string is left unchanged.

strncpy Accepts two C-strings and an integer argument. The third argument,
an integer, indicates how many characters to copy from the second
string to the first string. If the string2 has fewer than n characters,
string1 is padded with ‘\0’ characters.

strcmp Accepts two C-string arguments. If string1 and string2 are the
same, this function returns 0. If string2 is alphabetically greater
than string1, it returns a negative number. If string2 is
alphabetically less than string1, it returns a positive number.

strstr Searches for the first occurrence of string2 in string1. If an
occurrence of string2 is found, the function returns a pointer to it.
Otherwise, it returns a NULL pointer (address 0).

1176 Appendix C Answers to Checkpoints

12.2 4

12.3 Have a nice day
nice day

12.4 strcpy(composer, "Beethoven");

12.5 #include <iostream>
#include <cstring>
using namespace std;

int main()
{

char place[] = "The Windy City";
if (strstr(place, "Windy"))

cout << "Windy found.\n";
else

cout << "Windy not found.\n";
return 0;

}

12.6 A) negative
B) negative
C) negative
D) positive

12.7 if (strcmp(iceCream, "Chocolate") == 0)
 cout << "Chocolate: 9 fat grams.\n";

else if (strcmp(iceCream, "Vanilla") == 0)
 cout << "Vanilla: 10 fat grams.\n";

else if (strcmp(iceCream, "Pralines and Pecan") == 0)
 cout << "Pralines and Pecan: 14 fat grams.\n";

else
 cout << "That's not one of our flavors!\n";

12.8

12.9 num = atoi("10");

12.10 num = atol("10000");

12.11 num = atof("7.2389");

atoi Accepts a C-string as an argument. The function converts the string
to an integer and returns that value.

atol Accepts a C-string as an argument. The function converts the string
to a long integer and returns that value.

atof Accepts a C-string as an argument. The function converts the string
to a double and returns that value.

itoa Converts an integer to a C-string. The first argument is the integer.
The result will be stored at the location pointed to by the second
argument. The third argument is an integer. It specifies the numbering
system that the converted integer should be expressed in. (8 = octal,
10 = decimal, 16 = hexadecimal, etc.)

Answers to Checkpoints 1177

12.12 itoa(127, strValue, 10);

12.13 Tom Talbert Tried Trains
 Dom Dalbert Dried Drains

Chapter 13
13.1 istream, istringstream, and ifstream

13.2 ostream, ostringstream, and ofstream

13.3 To specify a file open mode.

13.4 Closing the file sooner than later frees up operating system resources and prevents
loss of data written to the file in the event of an abnormal termination.

13.5 ios::app

13.6 ios::trunc

13.7 A new file of the given name is created and opened for output.

13.8 The contents of the file are discarded and the file is opened for output.

13.9 int a, b;
cout << "Enter two octal numbers " ;
cin >> oct >> a >> b;
cout << "The octal sum is " << oct << a + b;

13.10 int a, b;
cout << "Enter hexadecimal numbers" ;
cin >> hex >> a >> b;
cout << "The hexadecimal sum is " << hex << a + b << endl;
cout << "The decimal sum is " << dec << a + b;

13.11 fstream fileObj(“myfile.txt”, ios::in);

13.12 #include <cstdlib>
#include <iostream>
#include <iomanip>

using namespace std;

int main(int argc, char** argv)
{
 const int SIZE = 5;
 string names[SIZE] = {"Alfonso", "Bella", "Clinton",
 "Dave", "Elaine"};
 int numbers[SIZE] = {12, 56, 23, -45, 9};

 for (int k = 0; k < SIZE; k++)
 {
 cout << left << setw(20) << names[k]

 << right << setw(10) << numbers[k] << endl;
 }
 return 0;
}

1178 Appendix C Answers to Checkpoints

13.13 #include<iostream>
#include <fstream>
using namespace std;

int main()
{

fstream outFile;
outFile.open("output.txt", ios::out);
outFile << "Today is the first day\n";
outFile << "of the rest of your life.\n";
return 0;

}

13.14 It reports when the end of a file has been encountered.

13.15 Run
Spot
run
See
Spot
run

13.16 The >> operator considers whitespace characters as delimiters and does not read
them. The getline() member function does read whitespace characters.

13.17 The getline function reads a line of text; the get function reads a single character.

13.18 Writes a single character to a file.

13.19 1e+002 1.7 8.6 7.8 5.1

13.20 #include <cstdlib>
#include <iostream>
#include <fstream>
#include <cctype> // Needed for toupper
using namespace std;
int main()
{
 cout << "This program allows you to add names and phone\n";
 cout << "numbers to phones.dat.\n";
 fstream namesFile("phones.dat", ios::out|ios::app);
 if (!namesFile){ cout << "Error "; return 1;}
 string name, phone;
 char add;
 do
 {
 cout << "Do you wish to add an entry? ";
 cin >> add;
 cin.ignore();
 if (toupper(add) == 'Y')
 {
 cout << "Name: ";
 getline(cin, name);
 namesFile << name << " ";
 cout << "Phone Number: ";
 getline(cin, phone);
 namesFile << phone << endl;
 }

Answers to Checkpoints 1179

 } while (toupper(add) == 'Y');
 namesFile.close();
 return 0;
}

13.21 #include <cstdlib>
#include <iostream>
#include <fstream>

using namespace std;

int main(int argc, char** argv)
{
 fstream data1("data1.txt", ios::in);
 fstream data2("data2.txt", ios::in);
 fstream data3("data3.txt", ios::out);
 if (!data1 || !data2 || !data2)
 {
 cout << "Trouble opening files.";
 return 1;
 }

 for (char ch = data1.get(); ch != EOF; ch = data1.get())
 data3.put(ch);
 data1.close();
 for (char ch = data2.get(); ch != EOF; ch = data2.get())
 data3.put(ch);
 data2.close();
 data3.close();

 return 0;
}

13.22 Character representation: “479”

ASCII codes: 52 55 57

13.23 The << operator writes text to a file. The write member function writes binary
data to a file.

13.24 The first argument is the starting address of the section of memory, which is to be
written to the file. The second argument is the size, in bytes, of the item being
written.

13.25 The first argument is the starting address of the section of memory where
information read from the file is to be stored. The second argument is the size, in
bytes, of the item being read.

13.26 A filed is an individual piece of information pertaining to a single item. A record
is made up of fields and is a complete set of information about a single item.

13.27 file.write(reinterpret_cast<char> (&cust), sizeof(cust));

13.28 seekg moves the file’s read position (for input) and seekp moves the file’s write
position (for output).

13.29 tellg reports the file’s read position and tellp reports the files write position.

1180 Appendix C Answers to Checkpoints

13.30 ios::beg The offset is calculated from the beginning of the file

ios::end The offset is calculated from the end of the file

ios::curr The offset is calculated from the current position

13.31 0

13.32 file.seekp(100L, ios::beg);

Moves the write position to the one hundred first byte (byte 100) from the
beginning of the file.

file.seekp(-10L, ios::end);

Moves the write position to 10 bytes before the end of the file.

file.seekp(-25L, ios::cur);

Moves the write position 25 bytes backward from the current position.

file.seekp(30L, ios::cur);

Moves the write position 30 bytes forward from the current position.

13.33 file.open("info.dat", ios::in | ios::out);

Input and output

file.open("info.dat", ios::in | ios::app);

Input and output. Output will be appended to the end of the file.

file.open("info.dat", ios::in | ios::out | ios::ate);

Input and output. If the file already exists, the program goes immediately to the
end of the file.

file.open("info.dat", ios::in | ios::out | ios::binary);

Input and output, binary mode

Chapter 14
14.1 A simple case of the problem that can be solved without recursion.

14.2 The function calls itself with no way of stopping. It creates an infinite recursion.

14.3 10

14.4 In direct recursion, a recursive function calls itself. In indirect recursion, function
A calls function B, which in turn calls function A.

Chapter 15
15.1 Let p be a pointer pointing to an object ob of a class that is part of an inheritance

hierarchy. In general, p will be a pointer to some base class B, and the object ob
will be an instance of a class D derived from B. Let f be a member function of B
that is overridden in D. If the call p->f() is being made, static binding will call the
version of f that is in the class B. Static binding will select the function to call
based on the type of the pointer and will do so at compile time. Dynamic binding
will wait until runtime and will select the version of f that is in D, the class of the
object.

Answers to Checkpoints 1181

15.2 Dynamically

15.3 1
5

15.4 2
2

15.5 2
1

15.6 2

15.7 The body of the function is replaced with = 0;

15.8 It cannot be used to instantiate objects.

15.9 A) Inaccessible
B) Protected
C) Protected
D) Inaccessible
E) Protected
F) Public
G) Private
H) Protected
I) Public

Chapter 16
16.1 The try block contains one or more statements that may directly or indirectly

throw an exception. The catch block contains code that handles, or responds to
an exception.

16.2 The entire program will abort execution.

16.3 Each exception must be of a different type. The catch block whose parameter
matches the data type of the exception handles the exception.

16.4 With the first statement after the try/catch construct

16.5 By giving the exception class a member variable, and storing the desired
information in the variable. The throw statement creates an instance of the
exception class, which must be caught by a catch statement. The catch block can
then examine the contents of the member variable.

16.6 When it encounters a call to the function

16.7 template <class T>
int minPosition(T arr[], int size)
{

int minPos = 0;
for (int k = 1; k < size; k++)
{

if (arr[k] < arr[minPos])
minPos = k;

}
return minPos;

}

1182 Appendix C Answers to Checkpoints

16.8 That the operator has been overloaded by the class object

16.9 First write a regular, nontemplated version of the function. Then, after testing the
function, convert it to a template.

16.10 List<int> myList;

16.11 template <class T>
class Rectangle
{

private:
T width;
T length;
T area;

public:
void setData(T W, T L)

{ width = W; length = L;}
void calcArea()

{ area = width * length; }
T getWidth()

{ return width; }
T getLength()

{ return length; }
T getArea()

{ return area; }
};

Chapter 17
17.1 A data member contains the data stored in the node. A successor pointer points to

the next node in the list.

17.2 A pointer to the first node in the tree

17.3 The successor pointer in the last node will have a value of NULL.

17.4 A data structure that contains a pointer to an object of the same data structure
type

17.5 Appending a node is adding a new node to the end of the list. Inserting a node is
adding a new node in a position between two other nodes.

17.6 Appending

17.7 We need a pointer to the previous node so we can set its successor pointer to the
new node.

17.8 A) Remove the node from the list without breaking the links created by the next
pointers.

B) Delete the node from memory.

17.9 Because there is probably a node pointing to the node being deleted. Additionally,
the node being deleted probably points to another node. These links in the list
must be preserved.

17.10 The unused memory is never freed, so it could eventually be used up.

Answers to Checkpoints 1183

Chapter 18
18.1 Last-in-first-out. The last item stored in a LIFO data structure is the first item

extracted.

18.2 A static stack has a fixed size and is implemented as an array. A dynamic stack
grows in size as needed and is implemented as a linked list. Advantages of a
dynamic stack: There is no need to specify the starting size of the stack. The stack
automatically grows each time an item is pushed and shrinks each time an item is
popped. Also, a dynamic stack is never full (as long as the system has free memory).

18.3 Push: An item is pushed onto, or stored in, the stack.

Pop: An item is retrieved (and hence, removed) from the stack.

18.4 Vector, linked list, or deque

Chapter 19
19.1 A standard linked list is a linear data structure in which each node has at most

one successor. A binary tree is nonlinear, because each node can have up to two
successors.

19.2 The first node in the tree

19.3 A node pointed to by another node in the tree

19.4 A node that points to no other nodes

19.5 A collection of nodes of the binary tree that consists of some node X, together
with all the descendants of X. An empty collection of nodes is also a subtree.

19.6 Information can be stored in a binary tree in a way that makes a form of binary
search possible.

19.7 1. The node’s left subtree is traversed.
2. The node’s data is processed.
3. The node’s right subtree is traversed.

19.8 1. The node’s data is processed.
2. The node’s left subtree is traversed.
3. The node’s right subtree is traversed.

19.9 1. The node’s left subtree is traversed.
2. The node’s right subtree is traversed.
3. The node’s data is processed.

19.10 The node to be deleted is node D.

1. Find node D’s parent and set the child pointer that links the parent to node D,
to NULL.

2. Free node D’s memory.

19.11 The node to be deleted is node D.
1. Find node D’s parent.
2. Link the parent node’s child pointer (that points to node D) to node D’s child.
3. Free node D’s memory.

19.12 1. Attach the node’s right subtree to the parent, and then find a position in the
right subtree to attach the left subtree.

2. Free the node’s memory.

This page intentionally left blank

1185

A
P

P
E

N
D

IX

D Answers to Odd-Numbered
Review Questions

Chapter 1
1. programmed

3. arithmetic logic unit (ALU) and control unit

5. operating systems and application software

7. programming language

9. High-level

11. portability

13. programmer-defined symbols

15. Punctuation

17. variable

19. input, processing, output

21. Output

23. Main memory, or RAM, is volatile, which means its contents are erased when power
is removed from the computer. Secondary memory, such as a disk or CD, does not
lose its contents when power is removed from the computer.

25. A syntax error is the misuse of a key word, operator, punctuation, or other part of
the programming language. A logical error is a mistake that tells the computer to
carry out a task incorrectly or to carry out tasks in the wrong order. It causes the
program to produce the wrong results.

27. Account Balance High Level Pseudocode
Have user input starting balance
Have user input total deposits
Have user input total withdrawals
Calculate current balance
Display current balance

1186 Appendix D Answers to Odd-Numbered Review Questions

Account Balance Detailed Pseudocode
Input startBalance // with prompt
Input totalDeposits // with prompt
Input totalWithdrawals // with prompt
currentBalance = startBalance + totalDeposits - totalWithdrawals
Display currentBalance

29. 45

31. 28

33. The error is that the program performs its math operation before the user has
entered values for the variables width and length.

Chapter 2
1. semicolon

3. main

5. braces {}

7. 9.7865E14

9. B

11. B (C is valid, but prints the contents of variable Hello, rather than the string
“Hello”.)

13. A) 11 B) 14 C) 3 (An integer divide takes place.)

15. double temp,
 weight,
 height;

17. A) d2 = d1 + 2;
B) d1 = d2 * 4;
C) c = ‘K’;
D) i = ‘K’;
E) i = i – 1;

19. cout << "Two mandolins like creatures in the\n\n\n";
cout << "dark\n\n\n";
cout << "Creating the agony of ecstasy.\n\n\n";
cout << " - George Barker\n\n\n";

21. Input weeks // with prompt
days = weeks * 7
Display days

23. Input speed // with prompt
Input time // with prompt
distance = speed * time
Display distance

Answers to Odd-Numbered Review Questions 1187

25. A) 0
100

B) 8
2

C) I am the incrediblecomputing
machine
and I will
amaze
you.

27. The C-style comments symbols are backwards.
iostream should be enclosed in angle brackets.
There shouldn’t be a semicolon after int main().
The opening and closing braces of function main are reversed.
There should be a semicolon after int a, b, c.
The comment \\ Three integers should read // Three integers.
There should be a semicolon at the end of each of the following lines:

a = 3
b = 4
c = a + b

cout begins with a capital letter.
The stream insertion operator (that appears twice in the cout statement) should
read << instead of <.
The cout statement uses the variable C instead of c.

Chapter 3
1. A) cin >> description;

B) getline(cin, description);

3. A) cin >> setw(25) >> name;
B) cin.getline(name, 25);

5. iostream and iomanip

7. A) price = 12 * unitCost;
B) cout << setw(12) << 98.7;
C) cout << 12;

9. A) a = 12 * x;
B) z = 5 * x + 14 * y + 6 * k;
C) y = pow(x, 4);
D) g = (h + 12) / (4 * k);
E) c = pow(a, 3) / (pow(b, 2) * pow(k, 4));

11. 8

13. const int RATE = 12;

15. east = west = north = south = 1;

17. No, a named constant must be initialized at the time it is defined. It cannot be
assigned a value at a later time.

1188 Appendix D Answers to Odd-Numbered Review Questions

19. cout << fixed << showpoint << setprecision(4);
cout << setw(12) << profit;

21. Input score1
Input score2
Input score3
average = (score1 + score2 + score3) / 3.0
Display average

23. Input maxCredit
Input creditUsed
availableCredit = maxCredit – creditUsed
Display availableCredit

25. A) Your monthly wages are 3225
B) 6 3 12
C) In 1492 Columbus sailed the ocean blue.

27. A) #include <iostream> is missing.
Each cin and cout statement starts with capital C.
The << operator is mistakenly used with cin.
The assignment statement should read:

sum = number1 + number2;

The last cout statement should have << after cout.
The last cout statement is missing a semicolon.
The body of the main function should be indented within the braces.

B) The cin statement should read:

cin >> number1 >> number2;

The assignment statement should read:

quotient = static_cast<double>(number1) / number2;

The last cout statement is missing a semicolon.
There is no return 0;

29. A) There shouldn’t be a semicolon after the #include directive.
The function header for main should read:

int main()

The variable number is defined, but it is called number1 in the cin statement.
The combined assignment operator is improperly used. The statement should
 read:

half /= 2;

NOTE: Now that you understand that user inputs should always be preceded by prompts,
the // with prompt comment can be omitted from the pseudocode. Beginning with Chapter 3,
we have begun omitting it.

Answers to Odd-Numbered Review Questions 1189

There is a logical error. The value divided by 2 should be number, not half.
The results are never output.
There is no return 0;

B) There shouldn’t be a semicolon after the #include directive.
name should be declared as a string or a char array. If declared as string, a

 #include <string> directive is needed.
The statement cin.getline >> name; should read

cin >> name;

The statement cin >> go; should read

cin.get(go);

Chapter 4
1. relational

3. false, true

5. true, false

7. false

9. !

11. &&

13. block (or local)

15. break

17. if (y == 0)
x = 100;

19. if (score >= 90)
cout << "Excellent";

else if (score >= 80)
cout << "Good";

else
cout << "Try Harder";

21. if(x < y)
q = a + b;

else
q = x * 2;

23. T, F, T

25. if (grade >= 0 && grade <= 100)
 cout << "The number is valid.";

27. if (hours < 0 || hours > 80)
 cout << "The number is not valid.";

1190 Appendix D Answers to Odd-Numbered Review Questions

29. if(sales < 10000)
 commission = .10;
else if (sales <= 15000)
 commission = .15;
else
 commission = .20;

31. It should read

if (!(x > 20))

33. It should use || instead of &&.

35. A) The first cout statement is terminated by a semicolon too early.
 The definition of score1, score2, and score3 should end with a semicolon.

The following statement:

if (average = 100)

should read:

if (average == 100)

perfectScore is used before it is declared.
The following if statement should not be terminated with a semicolon:

if (perfectScore);

The conditionally executed block in the if statement shown above should
end with a closing brace.

B) The conditionally executed blocks in the if/else construct should be
enclosed in braces.
The following statement:

cout << "The quotient of " << num1 <<

should end with a semicolon, rather than with a <<.
C) The trailing else statement should come at the end of the if/else construct.
D) A switch case construct cannot be used to test relational expressions.

An if/else if statement should be used instead.

Chapter 5
1. increment

3. prefix

5. body

7. pretest

9. infinite (or endless)

11. running total

13. sentinel

15. do-while

Answers to Odd-Numbered Review Questions 1191

17. initialization, test, update

19. break

21. fstream

23. It will be erased and a new file with the same name will be created.

25. It marks the location of the next byte to be read. When an input file is opened, its
read position is initially set to the first byte in the file.

27. int num;
cin >> num;
num *=2;
while (num < 50)
{ cout << num << endl;

 num *=2;
}

29. for (int x = 0; x <= 1000; x += 10)
 cout << x;

31. for (int row = 1; row <= 3; row++)
{ for (int star = 1; star <= 5; star++)

cout << ‘*’;
 cout << endl;

}

33. char doAgain;
int sum = 0;

cout << "This code will increment sum 1 or more times.\n";
do
{ sum++;

 cout << "Sum has been incremented. “
 << "Increment it again(y/n)? ";

 cin >> doAgain;
} while ((doAgain == 'y') || (doAgain == 'Y'));

cout << "Sum was incremented " << sum << " times.\n";

35. for (int count = 0; count < 50; count++)
 cout << "count is " << count << endl;

37. ofstream outfile;
outfile.open("numbers.txt");
for (int num = 1; num <= 100; num++)
 outfile << num << " ";
outfile.close();

39. Nothing will print. The erroneous semicolon after the while condition causes the
while loop to end there. Because x will continue to remain 1, x < 10 will remain
true and the infinite loop can never be exited.

41. 2 4 6 8 10

1192 Appendix D Answers to Odd-Numbered Review Questions

43. A) The statement result = ++(num1 + num2); is invalid.
B) The while loop tests the variable again before any values are stored in it.

The while loop is missing its opening and closing braces.

45. A) The expression tested by the do-while loop should be choice == 1 instead of
choice = 1.

B) The variable total is not initialized to 0.
The while loop does not change the value of count, so it iterates an infinite
number of times.

Chapter 6
1. header

3. showValue(5);

5. arguments

7. value

9. local

11. Global

13. local

15. return

17. last

19. reference

21. reference

23. parameter lists

25. Arguments appear in the parentheses of a function call. They are the actual values
passed to a function. Parameters appear in the parentheses of a function heading.
They are the variables that receive the arguments.

27. Function overloading means including more than one function in the same program
that has the same name. C++ allows this providing the overloaded functions can be
distinguished by having different parameter lists.

29. You want the function to change the value of a variable that is defined in the calling
function.

31. Yes, but within that function only the local variable can be “seen” and accessed.

33. double half(double value)
{

return value / 2;
}

35. void timesTen(int num)
{

cout << num * 10;
}

Answers to Odd-Numbered Review Questions 1193

37. void getNumber(int &number)
{

cout << "Enter an integer between 1 and 100): ";
cin >> number;
while (number < 1 || number > 100)
{

cout << "This value is out of the allowed range.\n"
 << "Enter an integer between 1 and 100): ";

}
}

39. A) The data type of value2 and value3 must be declared.
The function is declared void but returns a value.

 B) The assignment statement should read:

average = (value1 + value2 + value3) / 3.0;

The function is declared as a double but returns no value.
C) width should have a default argument value.

The function is declared void but returns a value.
D) The parameter should be declared as:

int &value

The cin statement should read:

cin >> value;

E) The functions must have different parameter lists.

Chapter 7
1. Abstract Data Type

3. procedural and object-oriented

5. data and procedures (i.e., functions)

7. instantiating

9. member variables

11. encapsulation

13. member variables, member functions

15. mutator

17. class

19. return

21. destroyed

23. default

25. constructor, destructor

27. public

29. False. It can be both passed to a function and returned from a function.

1194 Appendix D Answers to Odd-Numbered Review Questions

31. separate (i.e., each in their own file)

33. Canine.cpp

35. public

37. initialization list, constructor

39. Inventory trivet = {555, 110};

41. struct TempScale
{ double fahrenheit;

 double celsius;
};
struct Reading
{ int windSpeed;

 double humidity;
 TempScale temperature;

};
Reading today;
today.windSpeed = 37;
today.humidity = .32;
today.temperature.fahrenheit = 32;
today.temperature.celsius = 0;

43. void inputReading(Reading &r)
{

 cout << "Enter the wind speed: ";
 cin >> r.windSpeed;
 cout << "Enter the humidity: ";
 cin >> r.humidity;
 cout << "Enter the fahrenheit temperature: ";
 cin >> r.temperature.fahrenheit;
 cout << "Enter the celsius temperature: ";
 cin >> r.temperature.celsius;

}

45. union Items
{

 char alpha;
 int num;
 long bigNum;
 double real;

};
Items anItem;

47. Inventory(string id = 0, string descrip = “new”, int qty = 0)

{ prodID = id; prodDescription = descrip; qtyInStock = qty; }

49. A) The structure declaration has no tag.
B) The semicolon is missing after the closing brace.

51. A) The Names structure needs a constructor that accepts 2 strings.
B) Structure members cannot be initialized in the structure declaration.

Answers to Odd-Numbered Review Questions 1195

53. A) The semicolon should not appear after the word DumbBell in the class
declaration.

Even though the weight member variable is private by default, it should be
preceded with the private access specifier.

Because the setWeight member function is defined outside the class
declaration, its function header must appear as:

 void DumbBell::setWeight(int w)

The line that reads: DumbBell.setWeight(200);
should read: bar.setWeight(200);

Because the weight member variable is private, it cannot be accessed outside
the class, so the cout statement cannot legally output bar.weight. There
needs to be a public getWeight() function that the main program can call.

B) Constructors must be public, not private.

Both constructors are considered the default constructor. This is illegal since
there can be only one default constructor.

All the parameters in the Change function header should have a data type.

55. A) The nouns are

Bank Savings Account Money Interest rate
Account Checking Account Balance
Customer Money market account Interest

After eliminating duplicates, objects, and simple values that can be stored in
class variables, the potential classes are: Bank, Account, and Customer.

B) The only class needed for this particular problem is Account.

C) The Account class must know its balance and interest rate.

 The Account class must be able to handle deposits and withdrawals and
calculate interest earned. It is this last capability, calculating interest earned, that
this application will use.

Chapter 8
1. size declarator

3. subscript

5. size declarator, subscript

7. initialization

9. initialization list

11. subscript

13. value

15. multidimensional

17. two

19. columns

1196 Appendix D Answers to Odd-Numbered Review Questions

21. A) 10 B) 0 C) 9 D) 40

23. A) 3 B) 0

25. the starting address of the array

27. A) 8 B) 10 C) 80 D) sales[7][9] = 3.52;

29. Car forSale[35] = { Car("Ford", "Taurus", 2006, 21000),
 Car("Honda","Accord", 2004, 11000),
 Car("Jeep", "Wrangler",2007, 24000) };

31. for (int index = 0; index < 25; index++)
 array2[index] = array1[index]

33. int id[10];
double grossPay[10];
for (int emp = 0; emp < 10; emp++)

cout << id[emp] << " " << grossPay[emp] << endl;

35. struct PopStruct
{ string name;
 long population;
};
PopStruct country[12];
ifstream dataIn;
dataIn.open(“pop.dat”);
for (int index = 0; index < 12; index++)
{ getline(dataIn, country[index].name);
 dataIn >> country[index].population;
 dataIn.ignore();
}
dataIn.close();

37. A) The size declarator cannot be a variable.
B) The size declarator cannot be negative.
C) The initialization list must be enclosed in braces.

39. A) The parameter should be declared as int nums[].
B) The parameter must specify the number of columns, not the number of rows.

Also, a second parameter is needed to specify the number of rows.

Chapter 9
1. linear

3. linear

 5. N/2

 7. first

 9. 1/8

11. ascending

13. one

15. there were no number exchanges on the previous pass

Answers to Odd-Numbered Review Questions 1197

17. Bubble sort normally has to make many data exchanges to place a value in its
correct position. Selection sort determines which value belongs in the position
currently being filled with the correctly ordered next value and then places that
value directly there.

19.

21. A) Map directly from the desired ID to the array location as follows:
index = desiredID –101

B) Do a linear search starting from the last array element and working backwards
until the item is found or until a smaller ID is encountered, which means the
desired ID is not in the array. Here is the pseudocode:

index = 299 // start at the last element
position = -1
found = false
While index >= 0 and array[index].customerID >= desiredID
 and not found
 If array[index].customerID = desiredID
 found = true
 position = index
 End If
 Decrement index
End While
Return position

Chapter 10
1. address

3. pointer

5. pointers

7. new

9. null

11. new

13. Sending *iptr to cout will display 7. Sending iptr to cout will display the address
of x.

15. You can increment or decrement a pointer using ++ and --, you can add an integer to
a pointer, and you can subtract an integer from a pointer.

17. 8

Array Size →
50

Elements
500

Elements
10,000

Elements
100,000

Elements
10,000,000
Elements

Linear Search
(Average Comparisons)

25 250 5,000 50,000 5,000,000

Linear Search
(Maximum Comparisons)

50 500 10,000 100,000 10,000,000

Binary Search
(Maximum Comparisons)

6 9 14 17 24

1198 Appendix D Answers to Odd-Numbered Review Questions

19. If new fails to allocate the requested amount of memory, it throws the bad_alloc
exception. In programs compiled with older compilers, new returns the value 0.

21. delete is used to deallocate memory allocated by new.

23. const int *p;

25. change(&i);

27. void exchange(int *p, int *q)
{

int temp = *p;
*p = *q;
*q = temp;

}

29. A) 30
 B) 30

C) 0
 D) 0
 E) 20
 F) 10
 G) 10
 H) 20

Chapter 11
1. static

3. static

5. friend

7. Memberwise assignment

9. this

11. postfix increment (or decrement)

13. has-a

15. copy constructor
overloaded = operator
overloaded = operator
copy constructor

17. Place the static keyword in the function’s prototype. Calls to the function are
performed by connecting the function name to the class name with the scope
resolution operator.

19. In object composition, one object is a nested inside another object, which creates a
has-a relationship. When a class is a friend of another class, there is no nesting. If a
class A is a friend of a class B, member functions of A have access to all of B’s
members, including the private ones.

21. If a pointer member is used to reference dynamically allocated memory, a
memberwise assignment operation will only copy the contents of the pointer, not the
section of memory referenced by the pointer. This means that two objects will exist
with pointers to the same address in memory. If either object manipulates this area
of memory, the changes will show up for both objects. Also, if either object frees the
memory, it will no longer contain valid information for either object.

Answers to Odd-Numbered Review Questions 1199

23. If an object were passed to the copy constructor by value, a copy of the argument
would have to be created before it can be passed to the copy constructor. But then
the creation of the copy would require a call to the copy constructor with the
original argument being passed by value. This process will continue indefinitely.

25. Dollars Dollars::operator++(); // Prefix
Dollars Dollars::operator++(int); // Postfix

27. ostream &operator<<(ostream &strm, Length obj);

29. The overloaded operators offer a more intuitive way of manipulating objects, similar
to the way primitive data types are manipulated.

31. members

33. Pet

35. private

37. inaccessible, private, private

39. inaccessible, protected, public

41. last

43. A) The first line of the class declaration should read

class Car : public Vehicle

Also, the class declaration should end in a semicolon.

B) The first line of the class declaration should read

class Truck : public Vehicle

Chapter 12
1. C-string

3. string literal

5. null terminator

7. ostringstream

9. concatenate

11. strcpy

13. strcmp

15. atoi

17. atof

19. char lastChar(const char *str)
{ //go to null terminator at end

while (*str != 0)
str++;

//back up to last character
str--;
return *str;

}

21. h

1200 Appendix D Answers to Odd-Numbered Review Questions

23. 9

25. Most compilers will print “not equal”. Some compilers store only one copy of each
literal string: such compilers will print “equal” because all copies of “a” will be
stored at the same address.

27. abrasion

29. A) This is probably a logic error because C-strings should not be compared with the
== operator

B) atoi converts a string to an integer, not an integer to a string.
C) The compiler will not allocate enough space in string1 to accommodate both

strings.

D) strcmp compares C-strings, not characters.

Chapter 13
1. file name

3. close

5. ifstream, ofstream, fstream

7. ifstream

9. ofstream people(“people.dat”);

11. fstream places(“places.dat”);

13. pets.open(“pets.dat”, ios::in);

fstream pets(“pets.dat”, ios::in);

15. null or 0

17. cout

19. getline

21. put

23. text, ASCII text

25. structures

27. read

29. sequential

31. seekg

33. tellg

35. ios::beg

37. ios::cur

39. Open the file in binary mode, seek to the end, and then call tellg to determine the
position of the last byte:

ifstream inFile(fileName, ios::binary);
inFile.seekg(0L, ios::end);
long len = inFile.tellg();

Answers to Odd-Numbered Review Questions 1201

41. Open the two files in binary mode, the first file for input and the second file for
output. Seek to the end of the first file, and then keep backing up in the first file while
writing to the second.

fstream inFile(file1name, ios::in | ios::binary);
fstream outFile(file2name, ios::out | ios::binary);
char ch;
// seek to end of source file
// and then position just before that last
// character
inFile.seekg(0L, ios::end);
inFile.seekg(-1, ios::cur);
while (true)
{

// we are positioned before a character we need to read
inFile.get(ch);

 outFile.put(ch);
 // back up two characters to skip the character just read
 // and go to the character before it.
 inFile.seekg(-2, ios::cur);
 if (inFile.fail())
 break;
}

43. A) File should be opened as

fstream file(“info.dat”, ios::in | ios::out);

 or

fstream file;
file.open(“info.dat”, ios::in | ios::out);

B) Should not specify ios::in with an ofstream object. Also, the if statement
should read

if (!File)

C) File access flags must be specified with fstream objects.
D) Should not write to a file opened for input. Also, the << operator should not be

used on binary files.
E) The while statement should read

while(!dataFile.eof())

F) The input stream member function get that takes a single parameter requires a single
character parameter. There is a version of get that reads a string of characters, but
that function should be avoided. Use the global getline function if you need to read
a string.

G) The get member function that takes a single parameter cannot be used to read a
string: it can only read single characters.

H) The file access flag should be ios::in. Also, the put member function cannot be
used to write a string.

I) The file access flag should be ios::out. Also, the last line should read

dataFile.write(&dt, sizeof(date));

J) The seekp member function should not be used since the file is opened for input.

1202 Appendix D Answers to Odd-Numbered Review Questions

Chapter 14
1. Indirect recursion. There are more function calls to keep up with.

3. When the problem is more easily solved with recursion, and the recursive calls do
not repeatedly solve the same subproblems.

5. direct

7. A) 55

B) **********

**

*

 C) evE dna madA

Chapter 15
1. abstract class

 3. abstract

 5. compile

 7. polymorphism

 9. Inheritance

11. Inheritance

13. yes

15. yes

17. pAnimal = new Dog; pDog = static_cast<Dog *>(pAnimal);

19. A pure virtual function cannot have a body, and the function myFun has no return
type.

Chapter 16
1. throw point

3. catch

5. template prefix

7. vector, list, or any sequence container

9. iterators

Answers to Odd-Numbered Review Questions 1203

11. This solution uses recursion to perform the reversal. It needs the inclusion of the STL
algorithm header file to allow use of swap.

template<class T>
void reverse(T arr[], int size)
{ if (size >= 2)

{ swap(arr[0], arr[size-1]);
reverse(arr+1, size-2);

}
}

13. The stiring of characters stored in the array will be reversed.

15. A) The try block must appear before the catch block.
B) The cout statement should not appear between the try and catch blocks.
C) The return statement should read return number * number;
D) The type parameter, T, is not used.
E) The type parameter, T2 is not used.
F) The declaration should read SimpleVector<int> array(25);
G) The statement should read cout << valueSet[2] << endl;

Chapter 17
 1. head pointer

 3. NULL or 0

 5. Inserting

 7. circular

 9. void printFirst(ListNode *ptr)
{

if (!ptr) { cout << “Error”; exit(1);}
cout << ptr->value;

}

11. double lastValue(ListNode *ptr)
{

if (!ptr) { cout << “Error”; exit(1);}
if (ptr->next == NULL)

return ptr->value;
else

return lastValue(ptr->next);
}

13. ListNode *ListConcat(ListNode *list1, ListNode *list2)
{

if (list1 == NULL)
return list2;

// Concatenate list2 to end of list1
ListNode *ptr = list1;
while (ptr->next != NULL)

ptr = ptr->next;
ptr->next = list2;
return list1;

}

1204 Appendix D Answers to Odd-Numbered Review Questions

15. 56.4

17. A) The printList function should have a return type of void. Also, the use of the
head pointer to walk down the list destroys the list: use an auxiliary pointer
initialized to head instead.

B) Eventually the pointer p becomes NULL, at which time the attempt to access p-
>next will result in an error. Replace the test p->next in the while loop with p.
Also, the function fails to declare a return type of void.

C) The function should declare a return type of void. Also, the function uses p++
erroneously in place of p = p->next when attempting to move to the next node
in the list.

D) Replace nodeptr->next = NULL; with delete nodeptr;

Chapter 18
1. Last In First Out

3. A static stack has all its storage allocated at once, when the stack is created. A
dynamic stack allocates storage for each element as it is added. Normally, static
stacks use array-based implementations, whereas dynamic stacks use linked lists.

5. It takes an existing container and implements a new interface on top of it to adapt it
to a different use.

7. First In First Out

9. the front of the queue

11. lists and deques

13.

15. Assuming a circular array buffer:

17. Use two stacks, a main stack and an auxiliary stack. The main stack will store all
items that are currently enqueued.

• To enqueue a new item, push it onto the main stack.
• To dequeue an item, keep popping items from the main stack and pushing them

onto the auxiliary stack until the main stack is empty, then pop and store the top
element from the auxiliary stack into some variable X. Now keep popping items
from the auxiliary stack and pushing them back onto the main stack till the auxil-
iary stack is empty. Return the stored item X.

• To check if the queue is empty, see if the main stack is empty.

Top of Stack

19

8 Bottom of Stack

10 9 12

rear front

Answers to Odd-Numbered Review Questions 1205

Chapter 19
1. root node

3. leaf node

5. inorder, preorder, and postorder

7. struct TreeNode
{

int value;
TreeNode *left, *middle, *right;

};

9. To traverse a ternary tree in preorder, visit the root, then traverse the left, middle,
and right subtrees.

preorder(ternarytree)
If (ternarytree != NULL)

visit the root
preorder left subtree of ternarytree
preorder middle subtree of ternarytree
preorder right subtree of ternarytree

End If
End preorder

11. We must decide whether to visit the root right after the traversal of the left subtree
or right after the traversal of the middle subtree.

13. int largest(TreeNode *tree)
Set a pointer p to the root node of tree
While node at p has a right child Do

Set p to the right child of the node at p
End While
return value in the node at p

End largest

15. int smallest(TreeNode *tree)
Set a pointer p to the root node of tree
While node at p has a left child Do

Set p to the left child of the node at p
End While
return value in the node at p

End smallest

17. 3 7 9 10 12 14 18 20 22 24 30

19. 3 10 9 7 14 20 18 30 24 22 12

This page intentionally left blank

1207

INDEX

Symbols and Numerics
(preprocessor directive symbol), 11,

28, 30. See also preprocessor
directives

%= (combined assignment operator), 105
% (modulus operator), 62–63, 86
&& (logical AND operator), 187–189
& (address operator), 638, 646
& (reference variable), 369
*= (combined assignment operator), 105
* (indirection operator), 15, 639
* (multiplication operator), 62, 86
* (pointer variable), 639
++ (increment operator), 252–257
+= (combined assignment operator), 105
+ (addition operator), 62, 86
+ (concatenation operator), 124
() (parentheses), 30, 87
:: (scope resolution operator), 417
; (semicolon), 15, 30
<< (stream insertion operator),

32, 290–292
<= (less than or equal to operator),

156–157
< (less than operator), 156–157
<> (angle brackets), 30, 449
== (equal to operator), 156–157, 166
= (assignment operator), 15, 39, 60, 156,

166, 247
{} (braces), 29, 30
-- (decrement operator), 252–257
/ (forward slash), 35
/ (division operator), 62, 63, 86
// (single line comment), 28, 30, 66
/= (combined assignment operator), 105
/* */ (multi-line comment), 66
\ (backslash), 34–35
\\ (backslash escape sequence), 35

\' (single quote escape sequence), 35
\" (double quote escape sequence), 35
− (negation operator), 61, 86
- (subtraction operator), 62, 86
-> (structure pointer operator), 670–677
-= (combined assignment operator), 105
'' (character literal symbol), 52, 54
"" (string literal symbol), 30, 39, 40, 54
> (greater than operator), 156–157
>= (greater than or equal to operator),

156–157
>> (stream extraction operator),

78–80, 120, 122–123, 293
! (NOT operator), 187, 191–193
!= (not equal to operator), 156–157
? : (conditional operator), 207–210
~ (destructor), 429
|| (logical OR operator), 187, 189–191
1D array. See one-dimensional array
2D array. See two-dimensional array

A
\a (alarm escape sequence), 35
abs function, 131
abstract base class, 944–947
abstract data type (ADT), 407–408
abstract function, 944
abstraction, 407–408
accessor, 416
access specifications

base classes, 765–768
member, 767
private, 768
protected, 768
public, 768

access specifiers, 413
accumulator, 272–273

summing values with, 523

Ackermann’s function, 910
actual arguments, 335
actual parameters, 335
addition operator (+), 62, 86
address

array, 537–538, 655
defined, 5
pointer, 646, 650–651
print format, 638
variable, 638

address operator (&), 638, 646
ADT. See abstract data type (ADT)
Advanced Software Enterprises case

study, 827–828
aggregation

defined, 752
has-a relation, 752, 757
through pointers, 754–755

algorithms
analysis of, 619–627
asymptotic complexity, 625–627
average-case complexity, 625
complexity, 621–622
computational problems, 620–621
defined, 8
efficiency of, 619
run time, 627
search, 595–601
sorting, 605–613
worst-case complexity,

623–625
ALU (arithmetic and logic unit), 4
American Standard Code for

Information Interchange.
See ASCII

ampersand (&)
address operator, 638, 646
reference variable, 369

1208 INDEX

analysis of algorithms
basic step, 620–621
big O notation, 625–627
experimental approach, 619–620
introduction to, 619–627
space criterion, 619
time criterion, 619

AND operator (&&), 187–189
precedence of, 194
short circuit evaluation, 188
truth table, 188

angle brackets (<>), 30, 449
application software/program, 7
arguments

actual, 335
default, 365–368
defined, 88, 334–335
formal, 335
passing, 336
passing array addresses as, 655
passing arrays as, 535–544
passing by reference, 373–375
passing by value, 339–341, 373–375
passing C-strings as, 814–816
passing objects as, 435–442
passing structures as, 462–463
passing to base class constructors,

769–771
arithmetic, pointer, 647–648
arithmetic and logic unit (ALU), 4
arithmetic operators, 61–64

array contents
associativity, 86
list of, 62
overloading, 730–733
precedence of, 85–86

arrays, 503–577
accessing elements, 505–507
addresses, 537–538, 655
bounds checking, lack of,

511–513, 645
comparing, 522–523
copying from one to another, 522
data type, definitions, 504
defined, 125
definition/concept, 503
displaying contents of, 507–514
elements in, 504–507
finding average value in, 523–524
finding highest value in, 524–526
finding lowest value in, 524–526
as function arguments, 535–544
functions, 542–544
implicit sizing, 520
initialization, 514–520
inputting data, 507–514
memory requirements, 504–505
name, 541
name, as pointer constant, 647

of objects, 568–573
off-by-one error, 513
parallel, 531–533
partial initialization, 518–519
partially-filled, 526–527
pointer relationship, 643–647
processing contents of, 520–531
reading data from file into, 509–510
searching for an element in, 595–605
size declarator, 504–505
sorting data in, 605–613
string processing, 529–531
of structures, 574–577
subscript, 505–513, 515–518
summing values in, 523
three or more dimensional, 553–555
two-dimensional, 545–552
typedef statement with, 535
use of, reasons for, 527–529
and vectors, 556–568
writing contents of to a file, 510

ascending order, 605, 610–611
ASCII (American Standard Code for

Information Interchange),
53–54, 296

character set table, 1139–1141
character values, 201–202, 262–263

assignment
combined, 105–107
copy constructors and, 723
default arguments, 366
initialization versus, 713
memberwise, 712–713, 717
multiple, 104

assignment operator (=), 15, 39, 60,
156, 166

overloading, 722–728
assignment statement, 39, 60
associative containers, STL, 557,

1001–1002. See also containers
associativity

of arithmetic operators, 86
of logical operators, 194
of relational operators, 156

asymptotic complexity, 625–627
atof library function, 808
atoi library function, 808
atol library function, 808
attributes

classes, 474–475
defined, 409
objects, 409
private, 476

average-case complexity, 625

B
\b (backspace escape sequence), 35
backslash character (\), 34–35
bad member function,845–846

bad_alloc exception, 663, 981
base class, 476

access specifications, 765–766
constructors, 768
constructors, passing arguments to,

769–771
destructor, 768
functions, overriding, 773–775
inheritance, 758
member functions, 775
pointer, 934–935
protected members, 765–768

BASIC, 10
basic step, 620–621
begin member function, 1004
behaviors

class, 475
polymorphic, 939

bidirectional iterator, 1002
big O notation, 625–627
binary digits (bits), 5
binary files, 286, 861–863
binary numbers, 8
binary operators, 61–62, 86, 156.

See also arithmetic operators;
relational operators

binary search, 598–601
efficiency, 601–602
worst-case complexity, 623

binary_search algorithm, STL, 1006
binary search trees

creating, 1113–1115
definition, 1111
implementation of operations, 1116
information storage, 1111–1112
inorder traversal of, 1117–1119
inserting elements into, 1116–1117
left subtree, 1119, 1122–1123
nodes, 1112
nonempty, 1109–1110, 1116, 1117
postorder traversal of, 1117–1119
preorder traversal of, 1117–1119
recursive functions, 1118
recursive implementations of, 1116
removing elements from,

1120–1124
right subtree, 1119, 1122–1123
searching, 1119–1120
template considerations for, 1129
traversing, 1117–1119

binary trees
application of, 1109–1112
child nodes, 1109
comparison with linked list, 1109
definition, 1109
implementation of, 1110
leaf nodes, 1109
operations, 1113–1124
parent, 1109

INDEX 1209

predecessor of a node, 1109
root, 1109

bit flag, 845
bit patterns, 44
bit (binary digit), 5
block, defined, 162
block scope, 199
body

of a block, 197
of a function, 324
of a loop, 244
of an if statement, 162

bool data type, 58
Boole, George, 58
Boolean expressions, 58, 156
Boolean value, returning from a

function, 350–352
Boolean variables, 58, 163

as flags, 167
and NOT operator (!), 192–193

bounds checking. See arrays
braces ({}), 29, 30, 68

in a while loop, 247
in an if statement, 162–163, 165
in an if/else if statement, 176

branching. See decision structures
break statement

for early loop termination, 280–281
in a nested loop, 281
in a switch statement, 212

bubble sort, 605–609. See also sorting
algorithms

buffer overrun, 128
buffer

file, 289
flushing, 844
input, 79
keyboard, 79
output, 844

business operations software, 285
byte, 5

C
C# programming language, 10
C++

portability, 10
prestandard, 11
programming language, 2, 8, 10
program parts, 27–30
standard, 37

C programming language, 10
calling functions. See function call
case sensitivity, 29, 43
case statement, 210–211
case studies

Advanced Software Enterprises,
827–828

Central Mountain Credit Union,
305–309

Crazy Al’s Computer Emporium, 229
Creating an Abstract Array Data

Type—Part 1, 580
Creating an Abstract Array Data

Type—Part 2, 627
Demetris Leadership Center, 627
General Crates, Inc., 140
Green Fields Landscaping—Part 1,

138–140
Green Fields Landscaping—Part 2,

225–228
High Adventure Travel Agency, 391
Home Software Company, 467–473
Lightening Lanes, 309
Little Lotto, 387–391
National Commerce Bank,

578–580
Set Intersection, 580
United Cause Relief Agency,

678–686
cast. See type cast expression
catch block, 973, 982–983
cctype header file, 204, 263
CD (compact disc), 6
cell, 485
Central Mountain Credit Union case

study, 305–309
central processing unit (CPU), 4, 8
char data type, 52–56

pointer to, 793–794
character data types, 44, 52–56
characters

ASCII value of, 201, 202, 262–263
comparing with relational operators,

200–202
constants, 54–56
inputting, 120–121
memory storage, 52
null, 54, 55, 124, 126
special, 30
testing, 204–206
whitespace, 119
working with, 118–125

character testing functions, 204–206
isalnum, 205
isalpha, 193, 205
isdigit, 205
islower, 205
isprint, 205
ispunct, 205
isspace, 205
isupper, 205

cin object, 77–82
C-strings and, 126
entering multiple values, 80–81
field widths and, 129
getline function, 129–130
get member function, 121
ignore member function, 123

>> (stream extraction operator),
78–80, 120, 122–123

width function, 128
cipher text, 955
Circle class, 409, 412–413, 417
circular array, 1086
circular linked list, 1052
class

access specifiers, 413
attributes, 409, 474–475
base, 476
behaviors, 475
composition, 752–757, 951
constructors, 423–429, 457
creating, 412
declaration, 412, 414, 417, 446
defined, 411
defining by inheritance, 758
derived, 476, 758–759
destructor, 429–430
friends, 707–711
identifying, 474–480
implementation, 412
implementation file, 446, 452
inheritance, 476
instance of. See objects
instantiation, 414
I/O, 452
member functions. See member

functions
member variables, 409
name, 412, 417
objects. See objects
overview, 411–413
pointer to, 670
private member functions, 432–435
private members, 413
relationship to other classes, 443,

475–476
responsibilities, 480–483
specification file, 446, 447, 452
string, 411–412
subclasses, 762
superclasses, 762

class template
declaring, 991
definition, 991
and inheritance, 996–998
member function, 992
name, 992–993
operator [] function, 992
rule of attaching type

parameters, 993
type parameters, 993

clear member function
file bit flags, 845
string class, 819
vector class, 564, 567, 1004

client program/code, 446

1210 INDEX

close function, 289
cmath header file, 89, 131
COBOL, 10
code reuse, 323
combined assignment operators,

105–107
comments, 65–67

defined, 65
multi-line, 66–67
single line, 66
using //, 28, 66
using /* */, 66–67

compact disc (CD), 6
comparisons

characters, 200–202
pointers, 650–652
strings, 202–204
structure variables, 456

compilers, 11–12, 67
dynamic binding and, 944
prestandard, 112
static binding and, 944

compile-time errors, 21
compiling, 11, 12, 21
complexity, 621–627

asymptotic, 625–627
average-case, 625
classes, 626
measurement, 623–625
time, 627
worst-case, 623–625

composition
aggregation and, 755
class, 752–757
class relationship, 475–476
defined, 755
inheritance versus, 950–955
object, 442–446

compound operators. See combined
assignment operators

computational problems, 620–621
computer

hardware, 3–6
software, 2, 6–7
systems, 3–7
uses of, 1

concatenation operator (+), 124
conditional execution, 161
conditional expression, 207–210
conditional loop, 266
conditional operator (? :), 207–210
console

defined, 31
input, 77
operating system functions, 484
output, 31

const array parameter, 541
const key word, 101, 102, 659,

698–699

const parameters, 721
const pointers, 659–651
constant functions, 438
constant member functions, 695,

698–700
constant pointers

to constants, 660–661
defined, 659
initializing, 660

constant reference parameters, 438–439
constant time, 627
constant variable. See named constant
constants. See also literals; string literals

address, passing, 658
characters, 54–56
constant pointers to, 660–661
defined, 38
floating-point, 50–51
global, 359–361
hexadecimal, 48
integer, 40, 47
named, 99–104
octal, 48
pointers to, 657–659
string, 54–56

constructor, 423–429, 457
base class, 768–771
convert, 733, 749–752
copy, 713–722
default, 426, 428–429
defined, 423
designating in UML, 423
as inline function, 424
overloading, 426–428

container adapter, 1081
containers. See also Standard Template

Library (STL)
associative, 557, 1001–1002
defined, 557, 1000
deque, 1001, 1094–1095
list, 1001
queue, 1095–1096
sequential, 557, 1000–1001
stack, 1080–1082
vector, 1001, 1003–1005

continue statement, 282–283
control structures

branching. See decision structures
looping. See loops

control unit, 4
control variable, 245–246
conversion

algebraic expression to C++, 87–88
data type, 91–97
floating-point to integer, 51–52, 93
number to string, 40
string/numeric functions, 807–810
type conversion operators,

746–748

convert constructor, 733, 749–752
C-strings and, 752
defined, 749
examples, 749–750
invocation, 749
uses, 751–752

cookies, 285
copy constructor, 713–722
count algorithm, STL, 1006
count-controlled loop, 266
counter, 258–260

defined, 258
for loop, 267–268, 269

cout object, 31–34
.cpp file, 446–451
CPU (central processing unit), 4, 8
Crazy Al’s Computer Emporium case

study, 229
Creating an Abstract Array Data Type

case study
part 1, 580
part 2, 627

cstdlib header file, 133, 383
C-strings, 125–130, 204, 530, 789–794

arguments, passing, 794
arguments, passing with pointers,

814–816
defined, 125
defined as array, 792
functions, writing, 811–816
library functions, 794–805
memory allocation, 127–129
pointers to char, 793–794
reading line of input, 129–130
size declarator, 126
storage, 530
termination, 530
value assignment to, 127

C-style type cast expressions, 95–96
ctime header file, 134
cursor, positioning on screen, 484–487

D
dangling pointer, 664
data abstraction, 408
data hiding, 410
data types

abstract, 407–408
bool, 58
char, 52–56
character, 44
conversion, 91–97
defined, 43
demoted values, 92
double, 49, 50
enumerated, 219–222
float, 49, 50
floating-point, 44, 49–52
fstream, 288

INDEX 1211

ifstream, 288–289
int, 45
integer, 43–48
long, 45
long double, 49, 50
numeric, 43–48
ofstream, 288–289
promoted values, 92
ranking, 92
selection of, 44
short, 44–45
size of, 44, 45, 59
string class used as, 56–58
unsigned int, 45
unsigned long, 45
unsigned short, 44–45

debugging, 302–304
hand tracing, 136–137
validating output results, 222–224

decimal notation, 50–51, 114
decision structures

defined, 161
if statement, 160–167
if/else statement, 169–170
if/else if statement, 174–180
nested, 183–186
switch statement, 210–217

declaration
class, 412
structure, 453
union, 465

dec manipulator, 842
decode, 628–631
decrement operator (--), 252–258

defined, 253
postfix mode, 254–256
prefix mode, 254–256

decryption, 955–958
default arguments, 365–368
#define directive, 101–103
delete operator, 663, 664–666
Demetris Leadership Center

case study, 627
deque ADT, 1094
dequeue, 1083–1084
dereferencing a pointer, 641
derived class, 476, 758–762

constructors, 768
destructors, 768
objects, 760–762
overriding base class member

functions, 775
pointer, 934–937

descending order, 605, 610
deserializing an object, 882
design

object-oriented, 474–483
program, 18–22
top-down, 20, 22

desk-checking, 21–22
destructor, 429–430

base class, 768
defined, 429
derived class, 768
designating in UML, 429
inheritance and, 758
tilde character (~), 429

digital versatile disc (DVD), 6
direct access file. See random

access file
directives. See preprocessor directives
direct recursion, 905
disk drive, 5
divide and conquer approach, 323
divide by zero error, 21, 343–344,

971–974
division operator (/), 62, 63, 86.

See also integer division
documentation, 42, 66, 100, 221, 327.

See also comments
dot operator (.), 415, 454
double data type, 49, 50
double precision data type, 49
double slash (//), 28, 30
do-while loop, 260–265. See also loops

defined, 260
flowchart, 260
format, 260
iteration, 261
with menus, 263–265
as post test loop, 261
termination, 260
usage decision, 277
while loop versus, 261

driver, 385–387
dummy function, 384
dummy parameter, 735
DVD (digital versatile disc), 6
dynamic memory, 661–666

of class objects, 670, 671–672
defined, 661–662
throwing an exception, 663

E
element. See arrays
else, 170

trailing, 179–180
empty member function

list container, 1053
stack container, 1081
string class, 809
vector class, 565–566, 567, 1004

encapsulation, 409
encode, 628–631
encryption, 955–958
#endif directive, 447
endl stream manipulator, 33–34,

40, 842

end of file (EOF), 297–298
E notation, 49, 50, 51
enumerated data types,

219–222
declaration, 219
defined, 219
purposes of, 221
symbolic names, 220, 221
values, 221

enumeration algorithm, 920–922
equal to operator (==), 156,

166, 247
overloading, 731

error
buffer overrun, 128
compiler, 11, 21
correcting, 21
file open, 299–300
logical, 21, 22
round-off, 309
run-time, 21
state bits, 845–848
syntax, 11, 67

escape sequences, 34–36
exceptions, 971–983

bad_alloc, 663, 981
catch block, 973, 982–983
classes, 974–976
default action, 663
defined, 663, 971
handling, 972–973
multiple, 976–978
object-oriented handling with

classes, 974–976
overflow, 1072, 1090
rethrowing, 982–983
throwing, 972
try block, 973, 982
uncaught, 974
underflow, 1072, 1090
unwinding the stack, 981–982

executable code, 11
executable file, 11

creation, 21
exhaustive algorithm, 920–922
exit function, 382–383
expressions

algebraic, 87–88
Boolean, 58, 156
case statement, 210–211
conditional, 207–210
defined, 84
initialization, 266, 269
mathematical, 84–90. See also

arithmetic operators
relational, 156, 157
test, 266
type cast, 93–95
update, 266, 269

1212 INDEX

F
factorial function, 906–907
false condition

internal representation, 157
false key word, 58, 157
fetch/decode/execute cycle, 4
Fibonacci numbers, 909
Fibonacci sequence, 909–910
field

defined, 865
key, 602

field width. See also setw manipulator
defined, 109
for input, 129
for output, 109–111

file access methods
random, 286
sequential, 286

file error flags
ios::badbit, 845
ios::eofbit, 845
ios::failbit, 845
ios::goodbit, 845
ios::hardfail, 845

file open modes
ios::app, 840
ios::ate, 840
ios::binary, 840
ios::in, 840, 876
ios::out, 840, 876
ios::trunc, 840

file positioning modes
ios::beg, 857, 871
ios::cur, 857, 871
ios::end, 857, 871

files
access methods. See file access

methods
binary. See binary files
buffer, 289
class implementation, 446, 452
class specification, 446, 452
closing, 289
.cpp, 446–451
end of, detection, 297–298
error flags. See file error flags
executable, 11, 21
.h, 446–451
header. See header files
input, 285
ios flags, 840, 845
iostream, 28, 36
multi-file projects, 446–451
naming, 287, 300–301
open errors, testing for, 299–300
open modes, 839–840. See also file

open modes
opening, 288–289
output, 285

passing to functions, 375–376
positioning flags. See file positioning

modes
positioning modes. See file

positioning modes
processing, loops and, 295–297
purpose of, 284
random access. See random

access files
reading data from, 285–286,

293–295
read position, 294–295
rewinding, 857–859
sequential access, 286
source, 11
stream object, 287–289
text. See text files
types of, 286
writing data to, 285, 290–292

file seek operations, 871
file stream classes, 838

error flags, 839, 845–846
file stream objects, 287–289.

See also ifstream class;
ofstream class

fill character, 844
find algorithm, STL, 1006
fixed manipulator, 114–117, 842
fixed-point notation, 114
flags, 167–168

bit, 845
file open modes, 840
file positioning, 871
state bits that act as, 845

flash memory, 6
float data type, 49, 50
floating-point

arguments, 88
constants, 50–51
data types, 44, 49–52
output, 114–115
representations, 49
value assignment, to integer

variables, 51–52
floating-point numbers, 17

comparing, 172–173
defined, 49
field width, 111

floppy disk drive, 6
flowchart

decision structure, 161
defined, 20
do-while loop, 260
if statement, 162
if/else statement, 169
if/else if statement, 175
for loop, 267
nested if statements, 184
while loop, 244

flush manipulator, 842, 844
for_each algorithm, STL,

1006, 1013
for loop, 266–272. See also loops

counters, 267–269
defined, 266
event sequence, 267
example of, 267
expressions, omitting, 271
flowchart, 267
format, 266
header, 266
initialization expression,

266–267, 269–271
as pretest loop, 268
test expression, 266
update expression, 266–267,

269–271
usage decision, 277
user-controlled, 270

formal arguments, 335
formal parameters, 335
formatting

defined, 108
number to string conversion, 861
output, 108–118

FORTRAN, 10
friend classes, 711
friend functions, 707–711

declaration, 707
defined, 707
list, 707

front STL member function
deque container, 1094
list container, 1053
queue container, 1095
vector class, 1004

fstream class, 837–839
constructor, 840
getline function, 850, 853
member functions, 856
open member function, 838

fstream header file, 288
function call, 325–331. See also functions

arguments, 334–339
defined, 324
syntax, 339
value-returning function, 346–349

function prototype, 332–334
defined, 332
main function and, 332
parameters, 338
placement, 333
value-returning function, 346

functional notation, 96
functions. See also individual functions

arguments, 334, 338–339,
373–375, 535–544

body of, 324

INDEX 1213

calling. See function call
constant reference parameters,

438–439
default arguments, 365–368
defined, 29, 323, 324–325
friend, 707–711
header, 325, 326
inline, 417, 422
library. See library functions
local variables, 355–357
main. See main function
member. See member functions
in menu-driven programs, 352–355
name, 324
operator, 723
overloading, 377–381
parameter list, 324–325
parameters, 332–339
passing data by reference,

369–376
passing data by value, 339–341,

373–376
passing files to, 375–376
passing objects to, 435–442
passing structures to, 462–463
passing two-dimensional arrays to,

549–551
pointer parameters, 653–657
prototypes. See function prototypes
recursive. See recursive algorithms;

recursive functions
returning objects from, 439–441
returning pointers from, 666–668
returning structures from, 464–465
return statement, 343–344
return type, 325
sending data into, 334–339
signature, 379
static member, 703–706
stub, 384–385
value-returning, 344–349
void, 325

function templates
algorithm header file, 987
declaring, 991
defining, 990
definition, 983
with multiple types, 989
operators in, 988
overloading with, 989–990
template prefix, 984
type parameter, 983–984

G
gcd function, 908
General Crates, Inc., case

study, 140
get/getter functions, 416
get function, 853–856

getline function, 119, 849–851, 850,
853, 855

global constants, 359–361
global variables, 357–359.

See also variables
defined, 355
with same name, 361–362

greater than operator (>), 156
greater than or equal to operator (>=),

156, 157
greedy strategy, 921
Green Fields Landscaping case study

part 1, 138–140
part 2, 225–228

H
hand tracing, 136–137
hard copy, 6
hardware, 3–6

components, 3
CPU, 4
defined, 3
input devices, 6
main memory, 5
output devices, 6
secondary storage, 5–6

has-a relationship
class composition, 951
defined, 752

header files
cctype, 204, 263
cmath, 89, 131
cstdlib, 133, 383
ctime, 134
defined, 28
fstream, 288
.h, 446–451
iomanip, 110, 113
iostream, 28, 37, 80, 288
older style, 37
string, 56, 411

heap, 663
hexadecimal constant, 48
hex manipulator, 842
.h files, 446–451
hierarchy chart, 19, 20
High Adventure Travel Agency case

study, 391
high-level languages, 9–10
Hoare, C. A. R., 913
Home Software Company case study,

467–473

I
identifier

defined, 42
naming rules, 43

IDE (integrated development
environment), 12

if statement, 160–168
defined, 160–161
errors to avoid, 164–166
flowcharts, 161, 162
format, 162
nested, 183–186
programming style and, 164

if/else statement, 169–173
defined, 169
flowchart, 169
format, 169
if versus, 170–172

if/else if statement, 174–180
defined, 174
flowcharts, 175, 177
format, 175
trailing else, 179–180

#ifndef directive, 447
ifstream class, 288

file open mode, 288, 839–840
getline function, 850, 853
objects, 837
open member function, 838
read member function, 863

implementation file, class, 446, 452
#include directive, 28, 36

in multi-file programs, 446–451
include file directory, 449
include guard, 447
increment operator (++), 252–257

defined, 252–253
in mathematical expressions, 256
postfix mode, 254–256
prefix mode, 254–256
in relational expressions, 257

indentation, 165
indirection operator (*)

defined, 639
in pointer declaration, 639–640, 655

indirect recursion, 905
infinite loop, 246–247
inheritance, 758–763

base class, 937–938
class, 950
class access, 763–766
class relationship, 476
and class templates, 996–998
composition versus, 950–953
constructors, destructors, and,

768–772
derived class, 758–759
hierarchies, 933
is-a relationship, 758–762
multiple, 762–763
private base class, 766
protected base class, 766
public base class, 766
type casts, 937–938
type compatibility in, 934–937

1214 INDEX

initialization
array of objects, 571–573
array of structures, 576–577
array, 514–516
assignment versus, 713
constant pointer, 660
with constructors, 423–429
defined, 60
local variable, 357
named constant, 100
object, 423–429
partial array initialization,

518–519
pointer, 648–649
structure, 456–458
two-dimensional array, 548–549
variable, 59–60

inline member function, 417, 422
inner loop, 277
inorder tree traversal, 1117–1119
input

buffer, 79
characters, 120–121
in class object, 452
console, 77
defined, 17
devices, 6
file, 285
reading line of, 129–130
string, 119–120
test data, 21
validation. See input validation

input-output stream library, 36
input stream, 837
input validation, 196–197

defined, 183, 196
using while loop for, 250–252

insert member function,
1004–1005, 1053

instance
of a class, 414
member, 696, 703

instantiating a class, 414
instructions, 4, 7
int data type, 45
integer, 39

constants, 40, 47
data types, 43–48
division, 63
flag, 168
variables, 51–52

integrated development environment
(IDE), 12

iomanip header file, 110, 113
I/O manipulators, 842. See also

individual I/O manipulators
I/O stream member functions

get, 853–856
getline, 849–850

peek, 854–855
put, 856–857

ios class, 839, 857. See also file error
flags; file open modes; file
positioning modes

iostream header file, 28, 36, 37,
80, 288

istringstream class, 806, 850, 853
iteration

defined, 245
do-while loop, 261
recursion versus, 924

iterators. See also Standard Template
Library (STL)

defined, 1000
types, 1002
use of, 1002–1003

J
Java, 10
JavaScript, 10

K
keyboard buffer, 79
key field, 602
key word. See also specific key words

defined, 14
list of, 42
use of, 14–15

L
leaf node, 1109
leak, memory. See memory leak
left manipulator, 116–117, 842
left to right associativity, 86, 156
less than operator (<), 156
less than or equal to operator (<=),

156–157
libraries. See also Standard Template

Library (STL)
run-time, 11

library functions
abs, 131
atof, 808
atoi, 808
atol, 808
cos, 131
for C-strings, 794–805
defined, 88
exp, 131
fmod, 131
isalnum, 205
isalpha, 193, 205
isdigit, 205
islower, 205
isprint, 205
ispunct, 205
isspace, 205
isupper, 205

itoa, 808, 809
log, 131
log10, 131
mathematical, 131–136
pow, 88, 133, 334, 344
rand, 133
round, 131
sin, 131
sqrt, 131, 132, 408
srand, 133
strcmp, 797–800, 801, 810
strcpy, 127
time, 134

lifetime, local variable, 357
Lightening Lanes case study, 309
linear search, 595–597

in array of objects, 602–605
inefficiency, 598

linear time, 627
line, 15
linked list

adding elements, 1029–1030
advantages, 1021–1022
building, 1025
C++ representation, 1022–1023
comparison with binary tree, 1109
destroying, 1030–1032
displaying, 1030
initializing nodes, 1024–1025
inserting nodes into sorted list,

1033–1034
introduction, 1021
operations, 1027–1029
recursive functions, 1043–1051
removing elements, 1036–1039
in sorted order, 1032–1033
structure, 1022
template, 1039–1042
traversing, 1025–1026
variations, 1052

linker, 11
linking, 11, 12, 21
Linux, 355
literals, 40–41. See also constants; string

literals
Little Lotto case study, 387–391
local variable, 345–357. See also

variables
defined, 355
initializing, 357
lifetime of, 357
with same name, 361–362
static, 363–364

logarithmic time, 627
logical error, 21, 22
logical operators, 187–195

associativity of, 194
defined, 187
list of, 187

INDEX 1215

NOT operator (!), 187, 191–193
numeric range checking with,

194–195
AND operator (&&), 187–189
OR operator (||), 187, 189–191
precedence of, 194

long data type, 45
long double data type, 49, 50
loops

body of, 244
braces and, 247
breaking out of, 280–284
condition, 244
continue statement, 282–283
control variable, 245–246
count-controlled, 266
counters, 258–260
defined, 243
do-while, 260–265
and file processing, 295–297
for, 266–272
header, 244, 266
infinite, 246
inner, 277
iteration, 245
nested, 277–279
outer, 277
post test, 260–261, 277
pretest, 246, 268, 276, 277
sentinel controlled, 274–275
usage decision, 276–277
user controlled, 259–260
while, 244–252

low-level language, 9
lvalue, 60

M
machine language, 8
Mac OS operating system, 31, 355
main function, 136, 325

defined, 29
main memory, 5
manipulators. See I/O manipulators
mantissa, 49
map STL container, 1001, 1002
mathematical expressions, 84–91

associativity, 86
converting to programming

statements, 87–88
decrement operator in, 256
evaluation, 85–86
grouping with parentheses, 86
increment operator in, 256
operator precedence, 85–86

mathematical library functions,
131–136. See also library
functions

max_element algorithm, STL, 1006
member access specification, 765

member functions, 409, 416–423
accessor, 416
calling, 415
of class templates, 992
constant, 695, 698–700
constructors, 423–429
destructors, 429–430
get/getter, 416
implementation, 417
inline, 417, 422
mutator, 416
naming conventions, 419–422
operator overloading, 733–734
private, 413, 432–435
protected, 767
public, 413, 415
for reading and writing files,

848–857
safeguarding, 422
set/setter, 416
static, 703–706
string class, 411–412, 818–820
of vector class template, 1004–1005
virtual, 939–941

members
instance, 696, 703
objects, accessing, 415
pointers as, 676–677
private, 413
protected, 765–768
public, 413
selecting, 676–677
static, 700–706
structure, 453–456

member variable, 409–410
private, 413
public, 413

memberwise assignment,
712–713, 717

memory
C-strings, 127–129
dynamic allocation, 661–666
flash, 6
freeing, 663
heap, 663
leak, 664–466, 674–676
main, 5
random-access (RAM), 5, 16, 38
secondary storage, 5–6

memory requirement, array,
504–505

menu-driven program, 181–183
defined, 181
functions in, 352–355
switch statement and, 216–217

menu
defined, 181
do-while loop with, 263–265

method, 409

microprocessor, 4
Microsoft Visual C++, 451
millisecond, 485
min_element algorithm, STL, 1007
modular programming, 323–324
modulus operator (%), 62, 63, 86, 135
multidimensional arrays, 553–555. See

also arrays
multi-file program, 446–451
multi-line comment, 66–67.

See also comments
multiple assignment, 104
multiple inheritance, 762–763
multiplication expressions, 87
multiplication operator (*), 62, 86
mutator, 416

N
\n (newline escape sequence), 34, 35
named constant, 99–104.

See also constants
declaration, 100
defined, 99
#define directive, 101–103
initialization, 100

namespaces, 28
National Commerce Bank case study,

578–580
negation operator (−), 61, 86
nested if statements, 183–187.

See also if statement
defined, 183
flowchart, 184

nested loops, 277–279. See also loops
break statement in, 281
defined, 277
illustration, 277–278
inner loop, 277, 279
outer loop, 277, 279
use example, 459

nested structures, 458–460.
See also structures

member access, 459
new operator, 662, 663, 665, 671
n log n time, 627
nodes (binary tree). See also binary

search trees; binary trees
child, 1109
defined, 1109
deleting, 1120–1121
leaf, 1109
left child, 1109
left subtree, 1122
parent, 1109
right child, 1109
right subtree, 1122
root, 1112, 1116, 1117
search tree, 1111
value storage in, 1110

1216 INDEX

nodes (linked lists)
data type, 1022–1023
declaration, 1034–1025
defined, 1021
deleting, 1028, 1030
dynamic allocation, 1021
illustrated, 1022
initializing, 1024–1025
inserting into sorted list,

1033–1034
processing, 1025–1026
successor pointers, 1022

not equal to operator (!=), 156, 157,
824–827

NOT operator (!), 187, 191–193
Boolean variable and, 192–193
defined, 187, 191
precedence of, 194
truth table, 191

null pointer, 649
null statement, 164
null terminator/character, 124, 126

defined, 54
placement, 55
string object termination, 530

numbers
binary, 8
conversion to strings, 805–811
Fibonacci, 909
floating-point, 17, 49–51
integer, 17, 43–47
pseudorandom, 133
random, 133–136
real, 17
stored as strings, 40
whole, 17

numeric data, 16–17
numeric data types, 43–48
numeric ranges

checking, logical operators and,
194–195

O
object code, 11
object composition, 442–446
object file, 11
object-oriented analysis and design,

474–483
class behavior, 475
class/object identification, 474,

477–480
class relationships, 475–476
defined, 474
process steps, 474

object-oriented exception handling,
974–976

object-oriented programming (OOP)
basis, 409
case study, 467–473

data hiding, 410
defined, 409
encapsulation, 409
methods, 409
object-based programming

versus, 483
procedural programming

versus, 409
objects

array of, 568–573
attributes, 409
creation, 414–416
defined, 409, 414
derived class, 761
dynamic allocation of, 671–672
identification, 474
input/output in, 452
lifetime, 755–757
member functions, 409, 410, 415
member functions, calling, 671
members, accessing, 415–416
member variables, 409
passing, to functions, 435–436
pointers to, 672–674
returning, from functions,

439–441
reusability, 483
selecting members of, 676–677
stream, 32
string, 57
usage of, 414–416

object serialization
defined, 882
member functions, 882
scheme determination, 883–885

octal constant, 48
oct manipulator, 842
off-by-one error, 513
ofstream class, 288

file open modes, 289, 839–840
member functions, 856
open member function, 838
put member function, 856–857
seekp member function,

870–871
tellp member function, 875
write member function, 862

one-dimensional array, 503–544.
See also arrays

Online Friendship Connections, case
study, 881–885

OOP. See object-oriented programming
open function, 288–289, 299–300
operands, 15, 60
operating system

defined, 6
functions, 484

operator = function,
723, 724

operator functions
calling, 724
defined, 723
implementation, 724
parameters, 724

operator overloading, 722–746
approaches to, 729–730
arithmetic operators, 730–733
assignment, 722–728
general issues, 728–729
member-function, 733–734
relational operators, 730–733
stand-alone, 733–734

operators
addition, 62, 86
address, 638, 646
arithmetic, 61–64, 86
assignment, 15, 39, 60, 156, 166
associativity, 86
binary, 61, 86
combined assignment, 105–107
conditional, 207–210
decrement, 252–258
defined, 14
division, 62, 86
dot, 415
increment, 252–258
indirection, 639–640, 655
logical, 187–195
modulus, 62, 86
multiplication, 15, 62, 86
negation, 61, 86
new, 662, 663, 665, 671
overloaded, 722–746, 824–827
postfix, 735
precedence, 85–86, 158–159, 194
prefix, 735
relational, 155–159, 200–206
scope resolution, 417
stream extraction, 78–80, 120,

122–123, 735–739,
855–856

stream insertion, 32, 735–739, 861
structure pointer, 670, 676–677
subtraction, 62, 86
ternary, 61
type conversion, 746–748
unary, 61, 86

optical discs, 6
OR operator (||), 187, 189–191

defined, 187, 189
precedence of, 194
short circuit evaluation, 191
truth table, 190

ostream class, 806
ostringstream class,

806, 837, 841
member functions, 806, 856

outer loop, 277

INDEX 1217

output
buffer, 844
in class object, 452
console, 31
defined, 17–18
devices, 6
display, 32
file, 285, 288, 510, 956
floating-point, 114–115
left-justified, 117
manipulators, 108–117
opening files for, 876–877
right-justified, 109, 111
validating, 222–224

output file, 285. See also files
output formatting, 108–118, 840–844
output stream, 837
output stream classes, 837, 856–857
overflow, 98–99

defined, 98
exception, 1072, 1075, 1090
stack, 1076

overloaded operators
general issues, 728–729
!= operator, 824–827
+ operator, 730
+= operator, 824
<< operator, 735–737, 823
= operator, 722–728, 824
== operator, 824–827
>> operator, 735–737, 823
[] operator, 739–745
++ (postfix) operator, 735
++ (prefix) operator, 734–735

overloading
constructors, 426–428
with function templates, 989–990
overriding versus, 774–775

overloading functions, 377–381
calling, 379
defined, 377

overloading with function templates,
989–990

overriding
base class functions, 773–775
default arguments, 366
overloading versus, 774–775

ownership, class relationship, 476

P
padding, 109
parallel arrays, 531–533.

See also arrays
definition, 531
subscript in, 533

parameter list, 324
parameters, 332

actual, 335
const, 721

constant reference, 438–439
copy constructors, 720
data type, 338
defined, 334, 335
dummy, 735
formal, 335
initializing local variables with, 357
multiple, 339
number, 332
to operator functions, 724
order of, 339
pointers as, 653–657
pointers to class objects as,

672–674
reference, 721, 724
reference variables as,

369–376
scope, 339
storage location, 341
types of, 332, 993

parent node, 1109
parentheses (), 30, 86

arguments in, 335
conditional expression and, 209
data passed into functions, 326
grouping with, 87
if statements and, 162–163
logical operators and, 194
loops and, 244, 260–261,

266–267
pointers and, 644
relational expressions and, 158

parsing, 861
partial array initialization,

518–519
partially-filled arrays, 526–527
Pascal, 10
passing

files to functions, 356
objects to functions, 435–436
structures to functions, 462
two-dimensional arrays to functions,

549–551
passing by reference

arguments, 373–375
defined, 653
objects, 438
pointers versus, 653
structures, 462
when to use, 373

passing by value, 339–341
copy constructor and, 720
defined, 339
structures, 462
when to use, 373

peek member function, 854–856
percent character (%), 844
pivot, 913
plain text, 955

pointer constant, 647
pointer

addresses, 646, 650–651
aggregation through, 754–755
arithmetic, 647–648
array addresses as arguments, 655
array relationship, 643–647
asterisk (*), 639, 655
base class, 934–935, 937–938
to char, 790, 793
to class object, 672–674
comparing, 650–652
constant, 659–661
to constants, 657–659
dangling, 664
declaration, 639–640
decrementing, 647, 648
defined, 637, 639
dereferencing, 641
as a function parameter,

653–657
identification, 639
implicit, 869
incrementing, 647, 648
initializing, 648–649
as a class or structure member,

676–677
memory allocation, 718
notation, 644, 645, 655
null, 649
parentheses and, 644
passing by reference versus, 653
passing C-string arguments with,

814–816
returning from a function,

666–668
to a structure, 670–675
this, 695–698
variable, 639–642

polymorphism, 939–941
behavior, 940–941
definition, 939
dynamic binding, 943–944
static binding, 943–944

postfix expression, 925–926
postfix mode, 254–256
postorder tree traversal, 1117–1119
post test loop, 261
pound sign (#), 11, 28, 30, 102
pow function, 88, 133, 334, 344
precedence

arithmetic operators, 85–86
of logical operators, 194
relational operators, 158–159

precision, 111, 113
prefix mode, 254–256

defined, 254
prefix notation, 96
preorder tree traversal, 1117–1119

1218 INDEX

preprocessor, 11, 12
preprocessor directives

#define, 101–103
defined, 11
#endif, 447
#ifndef, 447
#include, 28, 36

prestandard C++, 11
prestandard compilers, 112
prestandard type cast expression, 96
pretest loop, 268

while loop as, 246
priming read, 251
private access specification, 413
private attributes, 476
private member functions, 413, 432–435

defined, 432
example of, 432–435

private member variables, 413
problem domain, 477
procedural programming, 409
processing, 17
program, 7–9

client, 446
defined, 1–2, 7
designing and creating, 18–22
elements, 2, 13–17
hand tracing, 136–137
input, 17
language elements, 13–15
lines and statements, 15–16
linking, 21
menu-driven. See menu-driven

program
model creation, 19–20
multi-file, 446–450
older style, 38
output, 17–18
parts of, 27–30
results validation, 22,

222–224
running with test data, 21,

302–304
steps for writing, 18
top-down design, 20
variable definitions, 16–17
variables, 16
visualization, 19

programmer, 2
programmer-defined identifiers, 14, 15
programming

as art and science, 2
modular, 323–324
object-oriented, 409–411
procedural, 409
process, 18–22

programming languages, 8, 9–11
BASIC, 10
C, 10

C#, 10
C++, 2, 8, 10
COBOL, 10
defined, 7
FORTRAN, 10
high-level, 9–10
Java, 10
JavaScript, 10
low-level, 9
Pascal, 10
Python, 10
Ruby, 10
Visual Basic, 10

programming style, 67–68
consistency, 68
defined, 67
if statement, 164
if/else statement, 170
visual arrangement, 67–68
while loop, 247–249

prompt, 78, 79
protected access specification, 766
protected members, 765–768
prototype. See function prototype
pseudocode, 20
pseudorandom, 133
public access specification, 413
public member variable, 413
punctuation, 14, 15
pure virtual function, 944–947
Pythagorean theorem, 132
Python, 10

Q
quadratic time, 627
question mark (?), 506
queue container, 1094
queues, ADT

application of, 1083
class, static, 1087–1089
definition, 1082–1083
deque container, 1094
dequeue, 1083–1084
dynamic, 1083, 1090–1093
empty, 1086
enqueue, 1083–1085
first-in, first-out (FIFO) order,

1082–1083
full, 1086
linked list implementation, 1083
operations, 1083–1086
overflow exceptions, 1090
queue container, 1094
static, 1083
underflow exceptions, 1090

QuickSort algorithm, 627, 913–915
defined, 913
eliminating recursion, 1096–1097
functioning of, 913

implementation, 914
partitioning, 914

quotation marks (""), 30, 39, 40, 54

R
\r (return escape sequence), 35
RAM (random-access memory),

5, 16, 38
rand function, 133
random access file, 286
random-access memory (RAM),

5, 16, 38
random numbers, 133–136

range of, 135–136
random_shuffle algorithm, STL,

1007, 1009
ranking, data types, 92
reading

files, 285, 286, 293
line of input, 129–130
multiple values, 81–82
single characters, 120

read member function, 863
read position, 294–295
real numbers, 17
records

creating with structures, 865–869
recursion, 899–932

depth of, 900
direct, 905
eliminating, 1096–1097
indirect, 905
introduction, 899–906
iteration versus, 924
overhead, 924, 1096
usage, 903

recursive algorithms
binary search, 911
enumeration, 920–922
exhaustive, 920–922
factorial function, 906–907
gcd function, 908
QuickSort, 913–915, 1096–1097
Towers of Hanoi, 917–919

recursive functions, 899–901
base case, 902, 904, 906, 909, 911,

919
binary tree, 1118
definition, 899

recursively defined problems, solving,
909–910

reference parameters, 721, 724
reference variables

ampersand (&), 369
changes to, 539–540
defined, 369
as parameters, 369–376
pointers, 653
and return statement, 371

INDEX 1219

reinterpret_cast, 862–869
relational expressions, 156–159
relational operators, 155–160

associativity of, 156
as binary operators, 156
in comparing characters,

200–202
in comparing pointers, 650–652
in comparing strings, 202–204
defined, 155
list of, 156
overloading, 730–733,

824–827
precedence, 158–159

relationships
access, 476
classes, 443, 475–476
composition, 476
has-a, 752, 757
inheritance, 476
is-a, 758–762
ownership, 476

Reliable Software Systems, Inc., case
study, 1054–1057

remainder, 62
replace member function, 820
reserved words. See key words
resize member function

string class, 820
vector class, 567, 1005

responsibilities, classes, 480–483
rethrowing exceptions, 982–983
return statement, 343–344

reference variables and, 371
value-returning function,

345–349
return types

function, 325
void, 325

return value
assignment operator (=),

727–728
Boolean, 350–352
function, 344–349
multiple, 345
object as, 439–441
structure as, 464–465

reusability, object, 483
rewinding files, 857–859
right child node, 1109
right-justified output, 109, 111
right manipulator, 116–117, 842
right to left associativity, 86
root, binary tree, 1109
round function, 131
round-off errors, 309
rows, two-dimensional array,

551–552
Ruby, 10

running total, 272–274
accumulator, 272–273
defined, 272
logic of, 272

run-time error, 21
run-time library, 11
rvalue, 60

S
scientific manipulator,

842, 844
scientific notation, 49
scope, 61, 197–200
scope resolution operator (::), 417
screen

clearing, 355
control, 484–489
input form, creation of, 487–489
positioning cursor on, 484–487

search algorithms. See also algorithms
binary search, 598–601
defined, 595
introduction to, 595–602
linear search, 595–598

searching. See also binary search; linear
search

array of objects, 602–605
vector, 617–619

search key, 602
secondary storage, 5–6
Secure Encryption Systems, Inc., case

study, 955–956
seekg member function, 870–871
seekp member function, 870–871
selection sort, 609–613. See also sorting

algorithms
worst-case complexity, 625

self-referential data type, 1023
semicolon (;), 30, 36, 103

and if statement, 164–165
and infinite loop, 246–247

sentinel, 274–275
sequence structure, 161
sequential access file, 286
sequential containers, 557,

1000–1001
sequential file access, 870
sequential search. See linear search
serializing, object, 882
setfill(ch) manipulator,

842, 844
Set Intersection case study, 580
setprecision manipulator,

111–117, 842
setprecision(n) manipulator, 842
set/setter functions, 416
setw manipulator, 109–111, 117,

128–129, 842
short circuit evaluation, 188, 191

short data type, 44–45
showbase manipulator, 843
showpoint manipulator, 114–117, 843
showpos manipulator, 843
significant digits, 111
single precision data type, 49
size, data types, 44, 45, 59
size declarator, 504. See also arrays

compiler requirement, 508
defined, 126, 504
example, 505
one-dimensional array,

504–506, 508
subscript versus, 506
two-dimensional array, 546
vector, 557

size member function
list container, 1053
stack container, 1081
string class, 820
vector class, 562, 567, 1005

sizeof operator, 45, 59, 863, 865
soft copy, 6
software, 2, 6–7

application, 7
system, 6–7
tools, 7

software developer. See programmer
software development tools, 7
software engineering, 22
sort algorithm, STL, 1007, 1009
sorting

ranges, 1096
strings, 800–801
sublists, 913–914

sorting algorithms, 605–613.
See also algorithms

array of objects, 614–617
bubble sort, 605–609
defined, 605
introduction to, 605–613
QuickSort, 913–916
selection sort, 609–613
vector, 617–619

source code
compiling, 21
defined, 11
writing, 21

source files
defined, 11
translation process, 12

spaces, 165
blank, 109

special characters, 30
specification file, class, 446, 447, 452
spreadsheets, 285
sqrt function, 131, 132, 408
srand function, 133
stack, memory, 127–129, 422

1220 INDEX

stack ADT
applications of, 1070
class, static, 1071–1073
definition, 1069–1070
dynamic, 1070, 1077–1079
handling exceptions, 1075
IntStack class, 1075
IntStack constructor, 1072
isEmpty function, 1076
isFull function, 1076
member functions, 1071
operations, 1070–1071
overflow exception, 1072, 1075
static, 1070
templates, 1077
underflow exception, 1072, 1075

stack container, STL, 1080–1081
stale data, avoiding, 422
stand-alone operator overloading,

733–734
standard C++, 37
Standard Template Library (STL),

556, 617
algorithms, 1005–1007
associative containers, 1001–1002
data types, 556–557
iterators, 1002–1003
list container, 1052
sequential containers,

1000–1001
stack container, 1080–1081
vector container, 1003–1005

state bits, 845
statement, 15–16

assignment, 39, 60, 85
break, 212, 280
case, 210–211
continue, 282–283
converting algebraic expression to,

87–88
do-while loop, 260–265
for loop, 266–271
if, 160–169
if/else, 169–174
if/else if, 174–181
line versus, 16–17
nested if, 183–187
null, 164
return, 343–344
switch, 210–219
typedef, 535
while loop, 244-252

static_cast, 93–95
static key word, 703
static local variable, 363–364
static member. See also members

declaration, 703
defined, 700
defining, 703

functions, 703–706
variables, 701–703

std namespace, 28
STL. See Standard Template

Library (STL)
storage. See memory
strcat function, 794–795, 801
strcmp function, 797–801
strcpy function, 127, 796, 801
stream extraction operator (>>),

855–856
cin object, 78–80, 120,

122–123
defined, 78
overloading, 735–739
reading from files with, 293
return value, 297

stream insertion operator (<<), 861
cout object, 32
defined, 32
in number formatting, 861
overloading, 735–739
writing into files with,

290–292
stream manipulators. See I/O

manipulators
stream objects

cin, 31–34
cout, 77–82
defined, 32
file, 287, 289

string class, 56–58, 411–412,
816–820

constructors, 817
creating your own, 820–827
defined, 56
header file, 56
length function, 412
member functions, 123–125,

411–412, 818–820
operators, 124, 818
using, 56–57

string literals, 29, 54–56, 790–791.
See also constants; literals

numbers represented as, 40
strings, 529. See also string class;

C-strings
comparing, 202–204
conversion to numbers, 805–811
defined, 29
field width, 111
input, 119–120
length member function,

123–124
numbers represented as, 40
object, 57
processing of, 529–531
sorting, 800–801
storage, 530

strlen function, 794, 801
strncpy function, 801
strstr function, 801–805
structure pointer operator (->),

670, 676–677
defined, 670

structures, 453–465
arrays of, 574–577
declaration, 453–454
defined, 453
initialization, 456–458
members of, accessing,

454–456
nested, 458–460
passing to functions,

462–463
pointers to, 670–672
record creation with, 865
returning from functions,

464–465
structure variables, 454

comparing, 456
displaying, 456
passing to functions,

462–463
returning from functions,

464–465
stub, 384–385
subclass, 762
sublist, 913–914
subscript, 505–513, 515–518.

See also arrays
accessing array elements

with, 505
defined, 505
out of bound, 511
size declarator versus, 506

substr function, 820
subtraction operator (-), 62, 86, 731
superclass, 762
swap member function, 986–987

list container, 1053
string class, 820
vector class, 567, 1005

switch statement, 210–219
break statements, 212
case statements, 210–211
default section, 212
defined, 210
fall-through capability, 213, 214
format, 210
in menu-driven systems,

216–217
symbol, 11, 28, 30, 102
syntax

defined, 14
errors, 11, 67

system software, 6–7
defined, 6

INDEX 1221

T
\t (horizontal tab escape

sequence), 35
tail, linked list, 1044
tellg member function, 875
tellp member function, 875
template. See also function templates

binary search tree, 1129
class, 991–999
function, 983–990
linked list, 1039–1043
stack, 1077

ternary operators, 61
test data, 302–304
test expression, 266
testing

Boolean variables, 192–193
characters, 204–206
for file open errors, 299–300
programs, 302–304

text
cipher, 955
editor, 11
file, 286, 861
plain, 955

this pointer, 695–698
defined, 695
use example, 698

three-dimensional array, 553–555.
See also arrays

throw point, 972
throw statement, 979
throwing exceptions

defined, 972
rethrowing, 982–983
throw point, 972

tilde character (~), 429
time function, 134
tolower function, 263
top-down design, 20, 22
toupper function, 262–263
Towers of Hanoi, 917–919
trailing else, 179–180
traversing

binary search tree,
1117–1119

list, 1025–1027
trees. See binary trees; binary

search trees
true condition

internal representation, 157
true key word, 58, 157
truncation, 51
try block, 973, 982
two-dimensional array, 545–552.

See also arrays
definition, 545
initialization, 548–549
initialization list, 548–549

passing to a function,
549–551

summing all elements, 551
summing columns, 552
summing rows, 551–552

type cast expression,
93–96

assignment, 934
with base class pointers,

937–938
C-style, 95–96
defined, 93
example of, 93
format, 93
prestandard, 96
reinterpret_cast,

862–869
static_cast, 93–95, 935

type coercion, 92
type conversion operators,

746–748
typedef statement, 535, 538

definition, 535
for two-dimensional

array, 551
uses, 535

type parameters in function templates
defined, 983–984
multiple types, 989

U
UML (Unified Modeling Language), 412
unary operators, 61, 86
underflow, 98–99

defined, 98
exceptions, 1072, 1090
stack, 1077

Unified Modeling Language (UML), 412
union, 465–467
United Cause Relief Agency case study,

678–686
unsigned int data type, 45
unsigned long data type, 45
unsigned short data type, 44–45
update expression

defined, 266
forms of, 269
multiple statements in,

271–272
omitting, 271

USB flash drive, 6
using namespace std

statement, 37
utility program, 6

V
validation

input. See input validation
output results, 222–224

value, passing arguments by,
339–341

value-returning function,
344–349

calling, 346–349
defined, 344, 345–346
prototype for, 346
return statement, 345
return value, 347

variable
accumulator, 272
address, 16
assignment, 59–60
Boolean, 58
concept, 38–39
constant. See named constant
counter, 258–260
data types. See data types
defined, 16, 38
definition, 16–17, 39
flag, 167–168
floating-point, 49–50, 52
global, 355, 357–359, 361–362
index, 599
initialization, 59–60
integer, 39, 43–48, 51–52
local, 345, 355–357, 361–365
loop control, 245–246
member, 409–410
memory location, 16
name, 42–43
pointer, 639–642
reference, 369–376
with same name, 199–200
scope, 61, 197–200
static member, 701–703
structure, 454, 456
union, 465

vector data type, 557
vector header file, 557
vector member functions

at, 567
capacity, 567
clear, 564–565, 567
empty, 565–566, 567
pop_back, 563–564, 567
push_back, 560–561, 567
resize, 567
reverse, 567
size, 567
summary table, 567
swap, 567

vectors, 556–568
clearing, 564–565
comparison with arrays, 557
defining, 557–558
empty, detecting, 565–566
example definitions, 558
removing elements from, 563–564

1222 INDEX

vectors (continued)
searching, 617–619
as sequence container, 557
size determination, 562–563
sorting, 617–619
Standard Template Library, 556
values, storing and retrieving,

558–560
virtual function

declaration, 941
defined, 939
polymorphism and, 939–944
pure, 944–946

virtual key word, 941
Visual Basic, 10
Visual C++, 451
void function, 325

W
web browsers, 285
while loop, 244–252.

See also loops
body of, 244
braces and, 247
break statement, 280
comparison with do-while

loop, 261
condition, 244
continue statement in, 282
control variable, 245–246
flowchart, 244
format, 244
header, 244
for input validation, 250–252
iteration, 245

parts of, 244
as pretest loop, 246
programming style and,

247–249
usage decision, 276–277

whitespace characters, 119
whole numbers, 17
width function, 128
Windows operating system, 31, 355
word processors, 284
worst-case complexity function,

623–625
write member function,

862, 865
writing

into files, 285, 290–292
programs, 18

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	CHAPTER 1 Introduction to Computers and Programming
	1.1 Why Program?
	1.2 Computer Systems: Hardware and Software
	1.3 Programs and Programming Languages
	1.4 What Is a Program Made of?
	1.5 Input, Processing, and Output
	1.6 The Programming Process
	1.7 Tying It All Together: Hi! It’s Me

	CHAPTER 2 Introduction to C++
	2.1 The Parts of a C++ Program
	2.2 The cout Object
	2.3 The #include Directive
	2.4 Standard and Prestandard C++
	2.5 Variables, Literals, and the Assignment Statement
	2.6 Identifiers
	2.7 Integer Data Types
	2.8 Floating-Point Data Types
	2.9 The char Data Type
	2.10 The C++ string Class
	2.11 The bool Data Type
	2.12 Determining the Size of a Data Type
	2.13 More on Variable Assignments and Initialization
	2.14 Scope
	2.15 Arithmetic Operators
	2.16 Comments
	2.17 Programming Style
	2.18 Tying It All Together: Smile!

	CHAPTER 3 Expressions and Interactivity
	3.1 The cin Object
	3.2 Mathematical Expressions
	3.3 Data Type Conversion and Type Casting
	3.4 Overflow and Underflow
	3.5 Named Constants
	3.6 Multiple and Combined Assignment
	3.7 Formatting Output
	3.8 Working with Characters and Strings
	3.9 Using C-Strings
	3.10 More Mathematical Library Functions
	3.11 Focus on Debugging: Hand Tracing a Program
	3.12 Green Fields Landscaping Case Study—Part 1
	3.13 Tying It All Together: Word Game

	CHAPTER 4 Making Decisions
	4.1 Relational Operators
	4.2 The if Statement
	4.3 The if/else Statement
	4.4 The if/else if Statement
	4.5 Menu-Driven Programs
	4.6 Nested if Statements
	4.7 Logical Operators
	4.8 Validating User Input
	4.9 More About Blocks and Scope
	4.10 More About Characters and Strings
	4.11 The Conditional Operator
	4.12 The switch Statement
	4.13 Enumerated Data Types
	4.14 Focus on Testing and Debugging: Validating Output Results
	4.15 Green Fields Landscaping Case Study—Part 2
	4.16 Tying It All Together: Fortune Teller

	CHAPTER 5 Looping
	5.1 Introduction to Loops: The while Loop
	5.2 Using the while Loop for Input Validation
	5.3 The Increment and Decrement Operators
	5.4 Counters
	5.5 The do-while Loop
	5.6 The for Loop
	5.7 Keeping a Running Total
	5.8 Sentinels
	5.9 Focus on Software Engineering: Deciding Which Loop to Use
	5.10 Nested Loops
	5.11 Breaking Out of a Loop
	5.12 Using Files for Data Storage
	5.13 Focus on Testing and Debugging: Creating Good Test Data
	5.14 Central Mountain Credit Union Case Study
	5.15 Tying It All Together: What a Colorful World

	CHAPTER 6 Functions
	6.1 Modular Programming
	6.2 Defining and Calling Functions
	6.3 Function Prototypes
	6.4 Sending Data into a Function
	6.5 Passing Data by Value
	6.6 The return Statement
	6.7 Returning a Value from a Function
	6.8 Returning a Boolean Value
	6.9 Using Functions in a Menu-Driven Program
	6.10 Local and Global Variables
	6.11 Static Local Variables
	6.12 Default Arguments
	6.13 Using Reference Variables as Parameters
	6.14 Overloading Functions
	6.15 The exit() Function
	6.16 Stubs and Drivers
	6.17 Little Lotto Case Study
	6.18 Tying It All Together: Glowing Jack-o-lantern

	CHAPTER 7 Introduction to Classes and Objects
	7.1 Abstract Data Types
	7.2 Object-Oriented Programming
	7.3 Introduction to Classes
	7.4 Creating and Using Objects
	7.5 Defining Member Functions
	7.6 Constructors
	7.7 Destructors
	7.8 Private Member Functions
	7.9 Passing Objects to Functions
	7.10 Object Composition
	7.11 Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code
	7.12 Structures
	7.13 Home Software Company OOP Case Study
	7.14 Introduction to Object-Oriented Analysis and Design
	7.15 Screen Control
	7.16 Tying It All Together: Yoyo Animation

	CHAPTER 8 Arrays
	8.1 Arrays Hold Multiple Values
	8.2 Accessing Array Elements
	8.3 Inputting and Displaying Array Contents
	8.4 Array Initialization
	8.5 Processing Array Contents
	8.6 Using Parallel Arrays
	8.7 The typedef Statement
	8.8 Arrays as Function Arguments
	8.9 Two-Dimensional Arrays
	8.10 Arrays with Three or More Dimensions
	8.11 Vectors
	8.12 Arrays of Objects
	8.13 National Commerce Bank Case Study
	8.14 Tying It All Together: Rock, Paper, Scissors

	CHAPTER 9 Searching, Sorting, and Algorithm Analysis
	9.1 Introduction to Search Algorithms
	9.2 Searching an Array of Objects
	9.3 Introduction to Sorting Algorithms
	9.4 Sorting an Array of Objects
	9.5 Sorting and Searching Vectors
	9.6 Introduction to Analysis of Algorithms
	9.7 Case Studies
	9.8 Tying It All Together: Secret Messages

	CHAPTER 10 Pointers
	10.1 Pointers and the Address Operator
	10.2 Pointer Variables
	10.3 The Relationship Between Arrays and Pointers
	10.4 Pointer Arithmetic
	10.5 Initializing Pointers
	10.6 Comparing Pointers
	10.7 Pointers as Function Parameters
	10.8 Pointers to Constants and Constant Pointers
	10.9 Focus on Software Engineering: Dynamic Memory Allocation
	10.10 Focus on Software Engineering: Returning Pointers from Functions
	10.11 Pointers to Class Objects and Structures
	10.12 Focus on Software Engineering: Selecting Members of Objects
	10.13 United Cause Relief Agency Case Study
	10.14 Tying It All Together: Pardon Me, Do You Have the Time?

	CHAPTER 11 More About Classes and Object-Oriented Programming
	11.1 The this Pointer and Constant Member Functions
	11.2 Static Members
	11.3 Friends of Classes
	11.4 Memberwise Assignment
	11.5 Copy Constructors
	11.6 Operator Overloading
	11.7 Type Conversion Operators
	11.8 Convert Constructors
	11.9 Aggregation and Composition
	11.10 Inheritance
	11.11 Protected Members and Class Access
	11.12 Constructors, Destructors, and Inheritance
	11.13 Overriding Base Class Functions
	11.14 Tying It All Together: Putting Data on the World Wide Web

	CHAPTER 12 More on C-Strings and the string Class
	12.1 C-Strings
	12.2 Library Functions for Working with C-Strings
	12.3 Conversions Between Numbers and Strings
	12.4 Writing Your Own C-String Handling Functions
	12.5 More About the C++ string Class
	12.6 Creating Your Own String Class
	12.7 Advanced Software Enterprises Case Study
	12.8 Tying It All Together: Program Execution Environments

	CHAPTER 13 Advanced File and I/O Operations
	13.1 Input and Output Streams
	13.2 More Detailed Error Testing
	13.3 Member Functions for Reading and Writing Files
	13.4 Binary Files
	13.5 Creating Records with Structures
	13.6 Random-Access Files
	13.7 Opening a File for Both Input and Output
	13.8 Online Friendship Connections Case Study: Object Serialization
	13.9 Tying It All Together: File Merging and Color-Coded HTML

	CHAPTER 14 Recursion
	14.1 Introduction to Recursion
	14.2 The Recursive Factorial Function
	14.3 The Recursive gcd Function
	14.4 Solving Recursively Defined Problems
	14.5 A Recursive Binary Search Function
	14.6 Focus on Problem Solving and Program Design: The QuickSort Algorithm
	14.7 The Towers of Hanoi
	14.8 Focus on Problem Solving: Exhaustive and Enumeration Algorithms
	14.9 Focus on Software Engineering: Recursion versus Iteration
	14.10 Tying It All Together: Infix and Prefix Expressions

	CHAPTER 15 Polymorphism and Virtual Functions
	15.1 Type Compatibility in Inheritance Hierarchies
	15.2 Polymorphism and Virtual Member Functions
	15.3 Abstract Base Classes and Pure Virtual Functions
	15.4 Focus on Object-Oriented Programming: Composition versus Inheritance
	15.5 Secure Encryption Systems, Inc., Case Study
	15.6 Tying It All Together: Let’s Move It

	CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL)
	16.1 Exceptions
	16.2 Function Templates
	16.3 Class Templates
	16.4 Class Templates and Inheritance
	16.5 Introduction to the Standard Template Library
	16.6 Tying It All Together: Word Transformers Game

	CHAPTER 17 Linked Lists
	17.1 Introduction to the Linked List ADT
	17.2 Linked List Operations
	17.3 A Linked List Template
	17.4 Recursive Linked List Operations
	17.5 Variations of the Linked List
	17.6 The STL list Container
	17.7 Reliable Software Systems, Inc., Case Study
	17.8 Tying It All Together: More on Graphics and Animation

	CHAPTER 18 Stacks and Queues
	18.1 Introduction to the Stack ADT
	18.2 Dynamic Stacks
	18.3 The STL stack Container
	18.4 Introduction to the Queue ADT
	18.5 Dynamic Queues
	18.6 The STL deque and queue Containers
	18.7 Focus on Problem Solving and Program Design: Eliminating Recursion
	18.8 Tying It All Together: Converting Postfix Expressions to Infix

	CHAPTER 19 Binary Trees
	19.1 Definition and Applications of Binary Trees
	19.2 Binary Search Tree Operations
	19.3 Template Considerations for Binary Search Trees
	19.4 Tying It All Together: Genealogy Trees

	Appendix A: The ASCII Character Set
	Appendix B: Operator Precedence and Associativity
	Appendix C: Answers to Checkpoints
	Appendix D: Answers to Odd-Numbered Review Questions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

