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P R E F A C EP R E F A C E

The evolution of the present text is based on experience teaching introductory dif-

ferential equations and linear algebra with an emphasis on conceptual ideas and

the use of applications and projects to involve students in active problem-solving

experiences. Technical computing environments like Maple, Mathematica, MAT-

LAB, and Python are widely available and are now used extensively by practicing

engineers and scientists. This change in professional practice motivates a shift from

the traditional concentration on manual symbolic methods to coverage also of quali-

tative and computer-based methods that employ numerical computation and graphi-

cal visualization to develop greater conceptual understanding. A bonus of this more

comprehensive approach is accessibility to a wider range of more realistic applica-

tions of differential equations.

Both the conceptual and the computational aspects of such a course depend

heavily on the perspective and techniques of linear algebra. Consequently, the study

of differential equations and linear algebra in tandem reinforces the learning of both

subjects. In this book we therefore have combined core topics in elementary differ-

ential equations with those concepts and methods of elementary linear algebra that

are needed for a contemporary introduction to differential equations.

Principal Features of This Revision

This 4th edition is the most comprehensive and wide-ranging revision in the history

of this text.

We have enhanced the exposition, as well as added graphics, in numerous

sections throughout the book. We have also inserted new applications, including

biological. Moreover we have exploited throughout the new interactive computer

technology that is now available to students on devices ranging from desktop and

laptop computers to smartphones and graphing calculators. While the text contin-

ues to use standard computer algebra systems such as Mathematica, Maple, and

MATLAB, we have now added the Wolfram j Alpha website. In addition, this is the

first edition of this book to feature Python, a computer platform that is freely avail-

able on the internet and which is gaining in popularity as an all-purpose scientific

computing environment.

However, with a single exception of a new section inserted in Chapter 7 (noted

below), the class-tested table of contents of the book remains unchanged. Therefore,

instructors notes and syllabi will not require revision to continue teaching with this

new edition.

A conspicuous feature of this edition is the insertion of about 80 new computer-

generated figures, many of them illustrating interactive computer applications with

slider bars or touchpad controls that can be used to change initial values or parame-

ters in a differential equation, and immediately see in real time the resulting changes

in the structure of its solutions.

ix



x Preface

Some illustrations of the revisions and updating in this edition:

New Exposition In a number of sections, we have added new text and graphics

to enhance student understanding of the subject matter. For instance, see the new

introductory treatments of separable equations in Section 1.4 (page 30), of linear

equations in Section 1.5 (page 46), and of isolated critical points in Sections 9.1

(page 503) and 9.2 (page 514). Also we have updated the examples and accom-

panying graphics in Sections 2.4–2.6, 7.3, and 7.7 to illustrate modern calculator

technology.

New Interactive Technology and Graphics New figures throughout the text il-

lustrate the capability that modern computing technology platforms offer to vary

initial conditions and other parameters interactively. These figures are accompanied

by detailed instructions that allow students to recreate the figures and make full use

of the interactive features. For example, Section 7.4 includes the figure shown, a

Mathematica-drawn phase plane diagram for a linear system of the form x0 D Ax;

after putting the accompanying code into Mathematica, the user can immediately

see the effect of changing the initial condition

by clicking and dragging the “locator point” ini-

tially set at .4; 2/.

Similarly, the application module for Sec-

tion 5.1 now offers MATLAB and TI-Nspire

graphics with interactive slider bars that vary

the coefficients of a linear differential equation.

The Section 11.2 application module features

a new MATLAB graphic in which the user can

vary the order of a series solution of an ini-

tial value problem, again immediately display-

ing the resulting graphical change in the corre-

sponding approximate solution.

–4 –2

–2

–4

0

0

x1
x

2

2

2

4
(4, 2)

4

New Mathematica graphic in Section 7.4

New Content The single entirely new section for this edition is Section 7.4,

which is devoted to the construction of a “gallery” of phase plane portraits illus-

trating all the possible geometric behaviors of solutions of the 2-dimensional linear

system x0 D Ax. In motivation and preparation for the detailed study of eigenvalue-

eigenvector methods in subsequent sections of Chapter 7 (which then follow in the

same order as in the previous edition), Section 7.4 shows how the particular ar-

rangements of eigenvalues and eigenvectors of the coefficient matrix A correspond

to identifiable patterns—“fingerprints,” so to speak—in the phase plane portrait of

the system. The resulting gallery is shown in the two pages of phase plane portraits

in Figure 7.4.16 (pages 417–418) at the end of the section. The new 7.4 appli-

cation module (on dynamic phase plane portraits, page 421) shows how students

can use interactive computer systems to bring to life this gallery by allowing initial

conditions, eigenvalues, and even eigenvectors to vary in real time. This dynamic

approach is then illustrated with several new graphics inserted in the remainder of

Chapter 7.

Finally, for a new biological application, see the application module for Sec-

tion 9.4, which now includes a substantial investigation (page 551) of the nonlinear

FitzHugh–Nagumo equations of neuroscience, which were introduced to model the

behavior of neurons in the nervous system.

New Topical Headings Many of the examples and problems are now organized

under headings that make the topic easy to see at a glance. This not only adds to

the readability of the book, but it also makes it easier to choose in-class examples

and homework problems. For instance, most of the text examples in Section 1.4 are
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now labelled by topic, and the same is true of the wealth of problems following this

section.

New Expanded Applications Website The effectiveness of the application mod-

ules located throughout the text is greatly enhanced by the supplementary material

found at the new Expanded Applications website. Nearly all of the application mod-

ules in the text are marked with and a unique “tiny URL”—a web address that

leads directly to an Expanded Applications page containing a wealth of electronic

resources supporting that module. Typical Expanded Applications materials include

an enhanced and expanded PDF version of the text with further discussion or addi-

tional applications, together with computer files in a variety of platforms, including

Mathematica, Maple, MATLAB, and in some cases Python and/or TI calculator.

These files provide all code appearing in the text as well as equivalent versions in

other platforms, allowing students to immediately use the material in the Applica-

tion Module on the computing platform of their choice. In addition to the URLs

dispersed throughout the text, the Expanded Applications can be accessed by going

to the Expanded Applications home page through this URL: goo.gl/BXB9k4. Note

that when you enter URLs for the Extended Applications, take care to distinguish

the following characters:

l D lowercase L 1 D one

I D uppercase I 0 D zero

O D uppercase O

Features of This Text

Computing Features The following features highlight the flavor of computing

technology that distinguishes much of our exposition.

� Almost 600 computer-generated figures show students vivid pictures of di-

rection fields, solution curves, and phase plane portraits that bring symbolic

solutions of differential equations to life.

� About three dozen application modules follow key sections throughout the

text. Most of these applications outline technology investigations that can be

carried out using a variety of popular technical computing systems and which

seek to actively engage students in the application of new technology. These

modules are accompanied by the new Expanded Applications website previ-

ously detailed, which provides explicit code for nearly all of the applications

in a number of popular technology platforms.

� The early introduction of numerical solution techniques in Chapter 2 (on math-

ematical models and numerical methods) allows for a fresh numerical empha-

sis throughout the text. Here and in Chapter 7, where numerical techniques

for systems are treated, a concrete and tangible flavor is achieved by the inclu-

sion of numerical algorithms presented in parallel fashion for systems ranging

from graphing calculators to MATLAB and Python.

Modeling Features Mathematical modeling is a goal and constant motivation for

the study of differential equations. For a small sample of the range of applications

in this text, consider the following questions:

� What explains the commonly observed time lag between indoor and outdoor

daily temperature oscillations? (Section 1.5)

� What makes the difference between doomsday and extinction in alligator pop-

ulations? (Section 2.1)

http://goo.gl/BXB9k4
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� How do a unicycle and a car react differently to road bumps? (Sections 5.6

and 7.5)

� Why might an earthquake demolish one building and leave standing the one

next door? (Section 7.5)

� How can you predict the time of next perihelion passage of a newly observed

comet? (Section 7.7)

� What determines whether two species will live harmoniously together or

whether competition will result in the extinction of one of them and the sur-

vival of the other? (Section 9.3)

Organization and Content This text reshapes the usual sequence of topics to

accommodate new technology and new perspectives. For instance:

� After a precis of first-order equations in Chapter 1 (though with the coverage

of certain traditional symbolic methods streamlined a bit), Chapter 2 offers an

early introduction to mathematical modeling, stability and qualitative proper-

ties of differential equations, and numerical methods—a combination of topics

that frequently are dispersed later in an introductory course.

� Chapters 3 (Linear Systems and Matrices), 4 (Vector Spaces), and 6 (Eigen-

values and Eigenvectors) provide concrete and self-contained coverage of the

elementary linear algebra concepts and techniques that are needed for the solu-

tion of linear differential equations and systems. Chapter 4 includes sections

4.5 (row and column spaces) and 4.6 (orthogonal vectors in Rn). Chapter

6 concludes with applications of diagonalizable matrices and a proof of the

Cayley–Hamilton theorem for such matrices.

� Chapter 5 exploits the linear algebra of Chapters 3 and 4 to present efficiently

the theory and solution of single linear differential equations. Chapter 7 is

based on the eigenvalue approach to linear systems, and includes (in Section

7.6) the Jordan normal form for matrices and its application to the general

Cayley–Hamilton theorem. This chapter includes an unusual number of ap-

plications (ranging from railway cars to earthquakes) of the various cases of

the eigenvalue method, and concludes in Section 7.7 with numerical methods

for systems.

� Chapter 8 is devoted to matrix exponentials with applications to linear systems

of differential equations. The spectral decomposition method of Section 8.3

offers students an especially concrete approach to the computation of matrix

exponentials.

� Chapter 9 exploits linear methods for the investigation of nonlinear systems

and phenomena, and ranges from phase plane analysis to applications involv-

ing ecological and mechanical systems.

� Chapters 10 treats Laplace transform methods for the solution of constant-

coefficient linear differential equations with a goal of handling the piecewise

continuous and periodic forcing functions that are common in physical ap-

plications. Chapter 11 treats power series methods with a goal of discussing

Bessel’s equation with sufficient detail for the most common elementary ap-

plications.

This edition of the text also contains over 1800 end-of-section exercises, in-

cluding a wealth of application problems. The Answers to Selected Problems sec-

tion (page 677) includes answers to most odd-numbered problems plus a good many

even-numbered ones, as well as about 175 computer-generated graphics to enhance

its value as a learning aid.
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Supplements

Instructor’s Solutions Manual (0-13-449825-9) is available for instructors to down-

load at Pearson’s Instructor Resource Center (pearsonhighered.com/irc). This man-

ual provides worked-out solutions for most of the problems in the book.

Student’s Solutions Manual (0-13-449814-3) contains solutions for most of the

odd-numbered problems.

Both manuals have been reworked extensively for this edition with improved

explanations and more details inserted in the solutions of many problems.
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11 First-Order
Differential Equations

1.1 Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra

is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing

quantities.

Because the derivative dx=dt D f 0.t/ of the function f is the rate at which

the quantity x D f .t/ is changing with respect to the independent variable t , it

is natural that equations involving derivatives are frequently used to describe the

changing universe. An equation relating an unknown function and one or more of

its derivatives is called a differential equation.

Example 1 The differential equation
dx

dt
D x2

C t2

involves both the unknown function x.t/ and its first derivative x0.t/D dx=dt . The differential

equation

d2y

dx2
C 3

dy

dx
C 7y D 0

involves the unknown function y of the independent variable x and the first two derivatives

y0 and y00 of y.

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical

situation.

2. To find—either exactly or approximately—the appropriate solution of that

equation.

3. To interpret the solution that is found.

In algebra, we typically seek the unknown numbers that satisfy an equation

such as x3C 7x2 � 11xC 41D 0. By contrast, in solving a differential equation, we

1



2 Chapter 1 First-Order Differential Equations

are challenged to find the unknown functions y D y.x/ for which an identity such

as y0.x/ D 2xy.x/—that is, the differential equation

dy

dx
D 2xy

—holds on some interval of real numbers. Ordinarily, we will want to find all

solutions of the differential equation, if possible.

Example 2 If C is a constant and

y.x/ D Cex
2

; (1)

then

dy

dx
D C

�

2xex
2
�

D .2x/
�

Cex
2
�

D 2xy:

Thus every function y.x/ of the form in Eq. (1) satisfies—and thus is a solution of—the

differential equation
dy

dx
D 2xy (2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of this differen-

tial equation, one for each choice of the arbitrary constant C . By the method of separation of

variables (Section 1.4) it can be shown that every solution of the differential equation in (2)

is of the form in Eq. (1).

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and

principles into differential equations. In each of these examples the independent

variable is time t , but we will see numerous examples in which some quantity other

than time is the independent variable.

Example 3 Rate of cooling Newton’s law of cooling may be stated in this way: The time rate of change

(the rate of change with respect to time t) of the temperature T .t/ of a body is proportional

to the difference between T and the temperature A of the surrounding medium (Fig. 1.1.1).

That is,
dT

dt
D �k.T � A/; (3)

where k is a positive constant. Observe that if T > A, then dT=dt < 0, so the temperature is

a decreasing function of t and the body is cooling. But if T < A, then dT=dt > 0, so that T

is increasing.

Thus the physical law is translated into a differential equation. If we are given the

values of k and A, we should be able to find an explicit formula for T .t/, and then—with the

aid of this formula—we can predict the future temperature of the body.

Temperature T

Temperature A

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4 Draining tank Torricelli’s law implies that the time rate of change of the volume V of

water in a draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water

in the tank:
dV

dt
D �k

p
y; (4)

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional area A,

then V D Ay, so dV=dt D A � .dy=dt/. In this case Eq. (4) takes the form

dy

dt
D �h

p
y; (5)

where h D k=A is a constant.

yVolume V

FIGURE 1.1.2. Torricelli’s law of
draining, Eq. (4), describes the
draining of a water tank.



1.1 Differential Equations and Mathematical Models 3

Example 5 Population growth The time rate of change of a population P.t/ with constant birth and

death rates is, in many simple cases, proportional to the size of the population. That is,

dP

dt
D kP; (6)

where k is the constant of proportionality.

Let us discuss Example 5 further. Note first that each function of the form

P.t/ D Cekt (7)

is a solution of the differential equation

dP

dt
D kP

in (6). We verify this assertion as follows:

P 0.t/ D Ckekt
D k

�

Cekt

�

D kP.t/

for all real numbers t . Because substitution of each function of the form given in

(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation

dP=dt D kP has infinitely many different solutions of the form P.t/D Cekt , one for

each choice of the “arbitrary” constant C . This is typical of differential equations.

It is also fortunate, because it may allow us to use additional information to select

from among all these solutions a particular one that fits the situation under study.

Example 6 Population growth Suppose that P.t/ D Cekt is the population of a colony of bacteria at

time t , that the population at time t D 0 (hours, h) was 1000, and that the population doubled

after 1 h. This additional information about P.t/ yields the following equations:

1000 D P.0/ D Ce0
D C;

2000 D P.1/ D Cek :

It follows that C D 1000 and that ek D 2, so k D ln 2 � 0:693147. With this value of k the

differential equation in (6) is

dP

dt
D .ln 2/P � .0:693147/P:

Substitution of k D ln 2 and C D 1000 in Eq. (7) yields the particular solution

P.t/ D 1000e.ln 2/t
D 1000.eln 2/t D 1000 � 2t (because eln 2

D 2)

that satisfies the given conditions. We can use this particular solution to predict future popu-

lations of the bacteria colony. For instance, the predicted number of bacteria in the population

after one and a half hours (when t D 1:5) is

P.1:5/ D 1000 � 23=2
� 2828:

The condition P.0/D 1000 in Example 6 is called an initial condition because

we frequently write differential equations for which t D 0 is the “starting time.”

Figure 1.1.3 shows several different graphs of the form P.t/ D Cekt with k D ln 2.

The graphs of all the infinitely many solutions of dP=dt D kP in fact fill the entire

two-dimensional plane, and no two intersect. Moreover, the selection of any one

point P0 on the P -axis amounts to a determination of P.0/. Because exactly one

solution passes through each such point, we see in this case that an initial condition

P.0/ D P0 determines a unique solution agreeing with the given data.

0 1 2 3

t

0P

–2

–1

–4

–2

–6

–8

2

4

6

8
C = 12 C = 6 C = 3

C = –6

C =
1

2

C = –
1

2

C = 1

C = –1

C = –3C = –12

FIGURE 1.1.3. Graphs of

P.t/ D Ce
kt with k D ln 2.
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Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial

process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the

construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

Mathematical
model

Mathematical
results

Mathematical
analysis

Formulation Interpretation

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the

population at some future time. A mathematical model consists of a list of vari-

ables (P and t) that describe the given situation, together with one or more equations

relating these variables (dP=dt D kP , P.0/ D P0) that are known or are assumed to

hold. The mathematical analysis consists of solving these equations (here, for P as

a function of t). Finally, we apply these mathematical results to attempt to answer

the original real-world question.

As an example of this process, think of first formulating the mathematical

model consisting of the equations dP=dt D kP , P.0/ D 1000, describing the bac-

teria population of Example 6. Then our mathematical analysis there consisted of

solving for the solution function P.t/ D 1000e.ln 2/t D 1000 � 2t as our mathemat-

ical result. For an interpretation in terms of our real-world situation—the actual

bacteria population—we substituted t D 1:5 to obtain the predicted population of

P.1:5/ � 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is

growing under ideal conditions of unlimited space and food supply, our prediction

may be quite accurate, in which case we conclude that the mathematical model is

adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential

equation accurately fits the actual population we’re studying. For instance, for no

choice of the constants C and k does the solution P.t/D Cekt in Eq. (7) accurately

describe the actual growth of the human population of the world over the past few

centuries. We must conclude that the differential equation dP=dt D kP is inadequate

for modeling the world population—which in recent decades has “leveled off” as

compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.

With sufficient insight, we might formulate a new mathematical model including

a perhaps more complicated differential equation, one that takes into account such

factors as a limited food supply and the effect of increased population on birth and

death rates. With the formulation of this new mathematical model, we may attempt

to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If

we can solve the new differential equation, we get new solution functions to com-
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pare with the real-world population. Indeed, a successful population analysis may

require refining the mathematical model still further as it is repeatedly measured

against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af-

fect our bacteria population. This made the mathematical analysis quite simple,

perhaps unrealistically so. A satisfactory mathematical model is subject to two con-

tradictory requirements: It must be sufficiently detailed to represent the real-world

situation with relative accuracy, yet it must be sufficiently simple to make the math-

ematical analysis practical. If the model is so detailed that it fully represents the

physical situation, then the mathematical analysis may be too difficult to carry out.

If the model is too simple, the results may be so inaccurate as to be useless. Thus

there is an inevitable tradeoff between what is physically realistic and what is math-

ematically possible. The construction of a model that adequately bridges this gap

between realism and feasibility is therefore the most crucial and delicate step in

the process. Ways must be found to simplify the model mathematically without

sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of

this introductory section is devoted to simple examples and to standard terminology

used in discussing differential equations and their solutions.

Examples and Terminology

Example 7 If C is a constant and y.x/ D 1=.C � x/, then

dy

dx
D

1

.C � x/2
D y2

if x 6D C . Thus

y.x/ D
1

C � x
(8)

defines a solution of the differential equation

dy

dx
D y2 (9)

on any interval of real numbers not containing the point x D C . Actually, Eq. (8) defines a

one-parameter family of solutions of dy=dx D y2, one for each value of the arbitrary constant

or “parameter” C . With C D 1 we get the particular solution

y.x/ D
1

1 � x

that satisfies the initial condition y.0/ D 1. As indicated in Fig. 1.1.5, this solution is contin-

uous on the interval .�1; 1/ but has a vertical asymptote at x D 1.

Example 8 Verify that the function y.x/ D 2x1=2 � x1=2 ln x satisfies the differential equation

4x2y00
C y D 0 (10)

for all x > 0.

Solution First we compute the derivatives

y0.x/ D �1

2
x�1=2 ln x and y00.x/ D 1

4
x�3=2 ln x � 1

2
x�3=2:

Then substitution into Eq. (10) yields

4x2y00
C y D 4x2

�

1

4
x�3=2 ln x � 1

2
x�3=2

�

C 2x1=2
� x1=2 ln x D 0

if x is positive, so the differential equation is satisfied for all x > 0.
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The fact that we can write a differential equation is not enough to guarantee

that it has a solution. For example, it is clear that the differential equation

.y0/2 C y2
D �1 (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be

negative. For a variation on this theme, note that the equation

.y0/2 C y2
D 0 (12)

obviously has only the (real-valued) solution y.x/ � 0. In our previous examples

any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that

appears in it. The differential equation of Example 8 is of second order, those in

Examples 2 through 7 are first-order equations, and

y.4/
C x2y.3/

C x5y D sin x

is a fourth-order equation. The most general form of an nth-order differential

equation with independent variable x and unknown function or dependent variable

y D y.x/ is

F
�

x; y; y0; y00; : : : ; y.n/

�

D 0; (13)

where F is a specific real-valued function of nC 2 variables.

Our use of the word solution has been until now somewhat informal. To be

precise, we say that the continuous function uD u.x/ is a solution of the differential

equation in (13) on the interval I provided that the derivatives u0, u00, : : : , u.n/ exist

on I and

F
�

x; u; u0; u00; : : : ; u.n/

�

D 0

for all x in I. For the sake of brevity, we may say that u D u.x/ satisfies the

differential equation in (13) on I.

Remark Recall from elementary calculus that a differentiable function on an open interval

is necessarily continuous there. This is why only a continuous function can qualify as a

(differentiable) solution of a differential equation on an interval.

0 5

0

5

(0, 1)

x

y

–5
–5

y = 1/(1 – x)

x = 1

FIGURE 1.1.5. The solution of
y

0 D y
2 defined by y.x/ D 1=.1 � x/.

Example 7 Continued Figure 1.1.5 shows the two “connected” branches of the graph y D 1=.1 � x/.

The left-hand branch is the graph of a (continuous) solution of the differential equation y0 D

y2 that is defined on the interval .�1; 1/. The right-hand branch is the graph of a different

solution of the differential equation that is defined (and continuous) on the different interval

.1;1/. So the single formula y.x/ D 1=.1 � x/ actually defines two different solutions (with

different domains of definition) of the same differential equation y0 D y2.

Example 9 If A and B are constants and

y.x/ D A cos 3x C B sin 3x; (14)

then two successive differentiations yield

y0.x/ D �3A sin 3x C 3B cos 3x;

y00.x/ D �9A cos 3x � 9B sin 3x D �9y.x/

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of

solutions of the second-order differential equation

y00
C 9y D 0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions.
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Although the differential equations in (11) and (12) are exceptions to the gen-

eral rule, we will see that an nth-order differential equation ordinarily has an n-

parameter family of solutions—one involving n different arbitrary constants or pa-

0 3

0

5

x

y

–5
–3

y1

y2

y3

FIGURE 1.1.6. The three solutions
y1.x/ D 3 cos 3x, y2.x/ D 2 sin 3x,

and y3.x/ D �3 cos 3x C 2 sin 3x of
the differential equation y

00 C 9y D 0.

rameters.

In both Eqs. (11) and (12), the appearance of y0 as an implicitly defined func-

tion causes complications. For this reason, we will ordinarily assume that any dif-

ferential equation under study can be solved explicitly for the highest derivative that

appears; that is, that the equation can be written in the so-called normal form

y.n/
D G

�

x; y; y0; y00; : : : ; y.n�1/

�

; (16)

where G is a real-valued function of nC 1 variables. In addition, we will always

seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ-

ential equations, meaning that the unknown function (dependent variable) depends

on only a single independent variable. If the dependent variable is a function of

two or more independent variables, then partial derivatives are likely to be involved;

if they are, the equation is called a partial differential equation. For example, the

temperature u D u.x; t/ of a long thin uniform rod at the point x at time t satisfies

(under appropriate simple conditions) the partial differential equation

@u

@t
D k

@2u

@x2
;

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1

through 8 we will be concerned only with ordinary differential equations and will

refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

dy

dx
D f .x; y/: (17)

We also will sample the wide range of applications of such equations. A typical

mathematical model of an applied situation will be an initial value problem, con-

sisting of a differential equation of the form in (17) together with an initial condi-

tion y.x0/ D y0. Note that we call y.x0/ D y0 an initial condition whether or not

x0 D 0. To solve the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0 (18)

means to find a differentiable function y D y.x/ that satisfies both conditions in

Eq. (18) on some interval containing x0.

Example 10 Given the solution y.x/ D 1=.C � x/ of the differential equation dy=dx D y2 discussed in

Example 7, solve the initial value problem

dy

dx
D y2; y.1/ D 2:

Solution We need only find a value of C so that the solution y.x/ D 1=.C � x/ satisfies the initial

condition y.1/ D 2. Substitution of the values x D 1 and y D 2 in the given solution yields

2 D y.1/ D
1

C � 1
;
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so 2C � 2 D 1, and hence C D 3

2
. With this value of C we obtain the desired solution

(1, 2)

(2, –2)

0 5

0

5

x

y

–5
–5

y = 2/(3 – 2x)

x = 3/2

FIGURE 1.1.7. The solutions of

y
0 D y

2 defined by
y.x/ D 2=.3 � 2x/.

y.x/ D
1

3

2
� x
D

2

3 � 2x
:

Figure 1.1.7 shows the two branches of the graph y D 2=.3 � 2x/. The left-hand branch is

the graph on .�1; 3

2
/ of the solution of the given initial value problem y0 D y2, y.1/ D 2.

The right-hand branch passes through the point .2;�2/ and is therefore the graph on .3

2
;1/

of the solution of the different initial value problem y0 D y2, y.2/ D �2.

The central question of greatest immediate interest to us is this: If we are given

a differential equation known to have a solution satisfying a given initial condition,

how do we actually find or compute that solution? And, once found, what can we do

with it? We will see that a relatively few simple techniques—separation of variables

(Section 1.4), solution of linear equations (Section 1.5), elementary substitution

methods (Section 1.6)—are enough to enable us to solve a variety of first-order

equations having impressive applications.

1.1 Problems
In Problems 1 through 12, verify by substitution that each

given function is a solution of the given differential equation.

Throughout these problems, primes denote derivatives with re-

spect to x.

1. y0 D 3x2; y D x3 C 7

2. y0 C 2y D 0; y D 3e�2x

3. y00 C 4y D 0; y1 D cos 2x, y2 D sin 2x

4. y00 D 9y; y1 D e
3x , y2 D e

�3x

5. y0 D y C 2e�x ; y D ex � e�x

6. y00 C 4y0 C 4y D 0; y1 D e
�2x , y2 D xe

�2x

7. y00 � 2y0 C 2y D 0; y1 D e
x cos x, y2 D e

x sin x

8. y00CyD 3 cos 2x, y1D cos x�cos 2x, y2D sin x�cos 2x

9. y0 C 2xy2 D 0; y D
1

1C x2

10. x2y00 C xy0 � y D ln x; y1 D x � ln x, y2 D
1

x
� ln x

11. x2y00 C 5xy0 C 4y D 0; y1 D
1

x2
, y2 D

ln x

x2

12. x2y00 � xy0 C 2y D 0; y1 D x cos.ln x/, y2 D x sin.ln x/

In Problems 13 through 16, substitute y D erx into the given

differential equation to determine all values of the constant r

for which y D erx is a solution of the equation.

13. 3y0 D 2y 14. 4y00 D y

15. y00 C y0 � 2y D 0 16. 3y00 C 3y0 � 4y D 0

In Problems 17 through 26, first verify that y.x/ satisfies the

given differential equation. Then determine a value of the con-

stant C so that y.x/ satisfies the given initial condition. Use a

computer or graphing calculator (if desired) to sketch several

typical solutions of the given differential equation, and high-

light the one that satisfies the given initial condition.

17. y0 C y D 0; y.x/ D Ce�x , y.0/ D 2

18. y0 D 2y; y.x/ D Ce2x , y.0/ D 3

19. y0 D y C 1; y.x/ D Cex � 1, y.0/ D 5

20. y0 D x � y; y.x/ D Ce�x C x � 1, y.0/ D 10

21. y0 C 3x2y D 0; y.x/ D Ce�x
3
, y.0/ D 7

22. eyy0 D 1; y.x/ D ln.x C C/, y.0/ D 0

23. x
dy

dx
C 3y D 2x5; y.x/ D 1

4
x5 C Cx�3, y.2/ D 1

24. xy0 � 3y D x3; y.x/ D x3.C C ln x/, y.1/ D 17

25. y0 D 3x2.y2 C 1/; y.x/ D tan.x3 C C/, y.0/ D 1

26. y0 C y tan x D cos x; y.x/ D .x C C/ cos x, y.�/ D 0

In Problems 27 through 31, a function y D g.x/ is described

by some geometric property of its graph. Write a differential

equation of the form dy=dx D f .x; y/ having the function g as

its solution (or as one of its solutions).

27. The slope of the graph of g at the point .x; y/ is the sum

of x and y.

28. The line tangent to the graph of g at the point .x; y/ inter-

sects the x-axis at the point .x=2; 0/.

29. Every straight line normal to the graph of g passes through

the point .0; 1/. Can you guess what the graph of such a

function g might look like?

30. The graph of g is normal to every curve of the form

y D x2 C k (k is a constant) where they meet.

31. The line tangent to the graph of g at .x; y/ passes through

the point .�y; x/.

Differential Equations as Models

In Problems 32 through 36, write—in the manner of Eqs. (3)

through (6) of this section—a differential equation that is a

mathematical model of the situation described.

32. The time rate of change of a population P is proportional

to the square root of P .

33. The time rate of change of the velocity v of a coasting

motorboat is proportional to the square of v.

34. The acceleration dv=dt of a Lamborghini is proportional

to the difference between 250 km=h and the velocity of the

car.
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35. In a city having a fixed population of P persons, the time

rate of change of the numberN of those persons who have

heard a certain rumor is proportional to the number of

those who have not yet heard the rumor.

36. In a city with a fixed population of P persons, the time rate

of change of the number N of those persons infected with

a certain contagious disease is proportional to the product

of the number who have the disease and the number who

do not.

In Problems 37 through 42, determine by inspection at least

one solution of the given differential equation. That is, use

your knowledge of derivatives to make an intelligent guess.

Then test your hypothesis.

37. y00 D 0 38. y0 D y

39. xy0 C y D 3x2 40. .y0/2 C y2 D 1

41. y0 C y D ex 42. y00 C y D 0

Problems 43 through 46 concern the differential equation

dx

dt
D kx2;

where k is a constant.

43. (a) If k is a constant, show that a general (one-parameter)

solution of the differential equation is given by x.t/D

1=.C � kt/, where C is an arbitrary constant.

(b) Determine by inspection a solution of the initial value

problem x0 D kx2, x.0/ D 0.

44. (a) Assume that k is positive, and then sketch graphs of

solutions of x0 D kx2 with several typical positive

values of x.0/.

(b) How would these solutions differ if the constant k

were negative?

45. Suppose a population P of rodents satisfies the differen-

tial equation dP=dt D kP 2. Initially, there are P.0/ D

2 rodents, and their number is increasing at the rate of

dP=dt D 1 rodent per month when there are P D 10 ro-

dents. Based on the result of Problem 43, how long will it

take for this population to grow to a hundred rodents? To

a thousand? What’s happening here?

46. Suppose the velocity v of a motorboat coasting in water

satisfies the differential equation dv=dt D kv2. The ini-

tial speed of the motorboat is v.0/ D 10 meters per sec-

ond (m=s), and v is decreasing at the rate of 1 m=s2 when

v D 5 m=s. Based on the result of Problem 43, long does

it take for the velocity of the boat to decrease to 1 m=s?

To 1

10
m=s? When does the boat come to a stop?

47. In Example 7 we saw that y.x/ D 1=.C � x/ defines a

one-parameter family of solutions of the differential equa-

tion dy=dx D y2. (a) Determine a value of C so that

y.10/ D 10. (b) Is there a value of C such that y.0/ D 0?

Can you nevertheless find by inspection a solution of

dy=dx D y2 such that y.0/ D 0? (c) Figure 1.1.8 shows

typical graphs of solutions of the form y.x/ D 1=.C � x/.

Does it appear that these solution curves fill the entire xy-

plane? Can you conclude that, given any point .a; b/ in

the plane, the differential equation dy=dx D y2 has ex-

actly one solution y.x/ satisfying the condition y.a/ D b?

48. (a) Show that y.x/ D Cx4 defines a one-parameter fam-

ily of differentiable solutions of the differential equation

xy0 D 4y (Fig. 1.1.9). (b) Show that

y.x/ D

(

�x4 if x < 0,

x4 if x = 0

defines a differentiable solution of xy0D 4y for all x, but is

not of the form y.x/ D Cx4. (c) Given any two real num-

bers a and b, explain why—in contrast to the situation in

part (c) of Problem 47—there exist infinitely many differ-

entiable solutions of xy0 D 4y that all satisfy the condition

y.a/ D b.

0 2 31

x

0y

–1

–2 –1
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–3
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1

2

3
C = –2 C = 0 C = 1 C = 3

C = 4

C = –4

C = 2

C = 2C = –3 C = –2 C = –1 C = 0 C = 1

C = –1

FIGURE 1.1.8. Graphs of solutions of the
equation dy=dx D y
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y
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FIGURE 1.1.9. The graph y D Cx
4 for

various values of C .
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1.2 Integrals as General and Particular Solutions

The first-order equation dy=dx D f .x; y/ takes an especially simple form if the

right-hand-side function f does not actually involve the dependent variable y, so

dy

dx
D f .x/: (1)

In this special case we need only integrate both sides of Eq. (1) to obtain

y.x/ D

Z

f .x/ dx C C: (2)

This is a general solution of Eq. (1), meaning that it involves an arbitrary constant

C , and for every choice of C it is a solution of the differential equation in (1). If

G.x/ is a particular antiderivative of f—that is, if G0.x/ � f .x/—then

y.x/ D G.x/C C: (3)

The graphs of any two such solutions y1.x/DG.x/CC1 and y2.x/DG.x/C

0 2 431
x

y

–2 –1–4 –3

4

3

2

1

0

–1

–2

–3

–4

C = –1

C = –2

C = 3

C = 2

C = 1

C = 0

C = –3

FIGURE 1.2.1. Graphs of

y D 1
4

x
2 C C for various values of C .

C2 on the same interval I are “parallel” in the sense illustrated by Figs. 1.2.1 and

1.2.2. There we see that the constant C is geometrically the vertical distance be-

tween the two curves y.x/ D G.x/ and y.x/ D G.x/C C .

x

0 4 62

0y

–2

–4 –2

–4

–6
–6

2

4

6

C = –4

C = –2

C = 0

C = 2

C = 4

FIGURE 1.2.2. Graphs of
y D sin x C C for various values of C .

To satisfy an initial condition y.x0/ D y0, we need only substitute x D x0 and

y D y0 into Eq. (3) to obtain y0 D G.x0/C C , so that C D y0 � G.x0/. With this

choice of C , we obtain the particular solution of Eq. (1) satisfying the initial value

problem
dy

dx
D f .x/; y.x0/ D y0:

We will see that this is the typical pattern for solutions of first-order differential

equations. Ordinarily, we will first find a general solution involving an arbitrary

constant C . We can then attempt to obtain, by appropriate choice of C , a particular

solution satisfying a given initial condition y.x0/ D y0.

Remark As the term is used in the previous paragraph, a general solution of a first-order

differential equation is simply a one-parameter family of solutions. A natural question is

whether a given general solution contains every particular solution of the differential equa-

tion. When this is known to be true, we call it the general solution of the differential equation.

For example, because any two antiderivatives of the same function f .x/ can differ only by a

constant, it follows that every solution of Eq. (1) is of the form in (2). Thus Eq. (2) serves to

define the general solution of (1).

Example 1 Solve the initial value problem

dy

dx
D 2x C 3; y.1/ D 2:

Solution Integration of both sides of the differential equation as in Eq. (2) immediately yields the

general solution

y.x/ D

Z

.2x C 3/ dx D x2
C 3x C C:

Figure 1.2.3 shows the graph yD x2C3xCC for various values of C . The particular solution

we seek corresponds to the curve that passes through the point .1; 2/, thereby satisfying the

initial condition

y.1/ D .1/2 C 3 � .1/C C D 2:

It follows that C D �2, so the desired particular solution is

y.x/ D x2
C 3x � 2:
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Second-order equations. The observation that the special first-order equation

–2 0 2 4
x

y

–2

–10
–4

–4

–6

–6

–8

4

2

0

C = –6

C = –4

C = –2

C = 0

C = 2

FIGURE 1.2.3. Solution curves for
the differential equation in Example 1.

dy=dx D f .x/ is readily solvable (provided that an antiderivative of f can be found)

extends to second-order differential equations of the special form

d2y

dx2
D g.x/; (4)

in which the function g on the right-hand side involves neither the dependent vari-

able y nor its derivative dy=dx. We simply integrate once to obtain

dy

dx
D

Z

y00.x/ dx D

Z

g.x/ dx D G.x/C C1;

where G is an antiderivative of g and C1 is an arbitrary constant. Then another

integration yields

y.x/ D

Z

y0.x/ dx D

Z

ŒG.x/C C1� dx D

Z

G.x/ dx C C1x C C2;

where C2 is a second arbitrary constant. In effect, the second-order differential

equation in (4) is one that can be solved by solving successively the first-order

equations
dv

dx
D g.x/ and

dy

dx
D v.x/:

Velocity and Acceleration

Direct integration is sufficient to allow us to solve a number of important problems

concerning the motion of a particle (or mass point) in terms of the forces acting

on it. The motion of a particle along a straight line (the x-axis) is described by its

position function

x D f .t/ (5)

giving its x-coordinate at time t . The velocity of the particle is defined to be

v.t/ D f 0.t/I that is, v D
dx

dt
: (6)

Its acceleration a.t/ is a.t/ D v0.t/ D x00.t/; in Leibniz notation,

a D
dv

dt
D
d2x

dt2
: (7)

Equation (6) is sometimes applied either in the indefinite integral form x.t/D
R

v.t/ dt or in the definite integral form

x.t/ D x.t0/C

Z

t

t0

v.s/ ds;

which you should recognize as a statement of the fundamental theorem of calculus

(precisely because dx=dt D v).

Newton’s second law of motion says that if a force F.t/ acts on the particle

and is directed along its line of motion, then

ma.t/ D F.t/I that is, F D ma; (8)
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where m is the mass of the particle. If the force F is known, then the equation

x00.t/ D F.t/=m can be integrated twice to find the position function x.t/ in terms

of two constants of integration. These two arbitrary constants are frequently deter-

mined by the initial position x0 D x.0/ and the initial velocity v0 D v.0/ of the

particle.

Constant acceleration. For instance, suppose that the force F , and therefore the

acceleration a D F=m, are constant. Then we begin with the equation

dv

dt
D a (a is a constant) (9)

and integrate both sides to obtain

v.t/ D

Z

a dt D at C C1:

We know that v D v0 when t D 0, and substitution of this information into the

preceding equation yields the fact that C1 D v0. So

v.t/ D
dx

dt
D at C v0: (10)

A second integration gives

x.t/ D

Z

v.t/ dt D

Z

.at C v0/ dt D
1

2
at2 C v0t C C2;

and the substitution t D 0, x D x0 gives C2 D x0. Therefore,

x.t/ D 1

2
at2 C v0t C x0: (11)

Thus, with Eq. (10) we can find the velocity, and with Eq. (11) the position, of

the particle at any time t in terms of its constant acceleration a, its initial velocity

v0, and its initial position x0.

Example 2 Lunar lander A lunar lander is falling freely toward the surface of the moon at a speed

of 450 meters per second (m=s). Its retrorockets, when fired, provide a constant deceleration

of 2.5 meters per second per second (m=s2) (the gravitational acceleration produced by the

moon is assumed to be included in the given deceleration). At what height above the lunar

surface should the retrorockets be activated to ensure a “soft touchdown” (v D 0 at impact)?

Solution We denote by x.t/ the height of the lunar lander above the surface, as indicated in Fig. 1.2.4.

We let t D 0 denote the time at which the retrorockets should be fired. Then v0 D �450

(m=s, negative because the height x.t/ is decreasing), and a D C2:5, because an upward

thrust increases the velocity v (although it decreases the speed jvj). Then Eqs. (10) and (11)

Lunar surface

a υ

FIGURE 1.2.4. The lunar lander of
Example 2.

become

v.t/ D 2:5t � 450 (12)

and

x.t/ D 1:25t2 � 450t C x0; (13)

where x0 is the height of the lander above the lunar surface at the time t D 0 when the

retrorockets should be activated.

From Eq. (12) we see that v D 0 (soft touchdown) occurs when t D 450=2:5 D 180 s

(that is, 3 minutes); then substitution of t D 180, x D 0 into Eq. (13) yields

x0 D 0 � .1:25/.180/
2
C 450.180/ D 40;500

meters—that is, x0 D 40.5 km � 251

6
miles. Thus the retrorockets should be activated when

the lunar lander is 40.5 kilometers above the surface of the moon, and it will touch down

softly on the lunar surface after 3 minutes of decelerating descent.
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Physical Units

Numerical work requires units for the measurement of physical quantities such as

distance and time. We sometimes use ad hoc units—such as distance in miles or

kilometers and time in hours—in special situations (such as in a problem involving

an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second

(mks) unit systems are used more generally in scientific and engineering problems.

In fact, fps units are commonly used only in the United States (and a few other

countries), while mks units constitute the standard international system of scientific

units.

fps units mks units

Force

Mass

Distance

Time

g

pound (lb)

slug

foot (ft)

second (s)

32 ft=s2

newton (N)

kilogram (kg)

meter (m)

second (s)

9.8 m=s2

The last line of this table gives values for the gravitational acceleration g at

the surface of the earth. Although these approximate values will suffice for most

examples and problems, more precise values are 9:7805 m=s2 and 32:088 ft=s2 (at

sea level at the equator).

Both systems are compatible with Newton’s second law F D ma. Thus 1 N

is (by definition) the force required to impart an acceleration of 1 m=s2 to a mass of

1 kg. Similarly, 1 slug is (by definition) the mass that experiences an acceleration of

1 ft=s2 under a force of 1 lb. (We will use mks units in all problems requiring mass

units and thus will rarely need slugs to measure mass.)

Inches and centimeters (as well as miles and kilometers) also are commonly

used in describing distances. For conversions between fps and mks units it helps to

remember that

1 in. D 2.54 cm (exactly) and 1 lb � 4.448 N:

For instance,

1 ft D 12 in. � 2:54
cm

in.
D 30.48 cm;

and it follows that

1 mi D 5280 ft � 30:48
cm

ft
D 160934.4 cm � 1.609 km:

Thus a posted U.S. speed limit of 50 mi=h means that—in international terms—the

legal speed limit is about 50 � 1:609 � 80:45 km=h.

Vertical Motion with Gravitational Acceleration

The weight W of a body is the force exerted on the body by gravity. Substitution of

a D g and F D W in Newton’s second law F D ma gives

W D mg (14)
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for the weightW of the massm at the surface of the earth (where g � 32 ft=s2 � 9:8

m=s2). For instance, a mass ofmD 20 kg has a weight ofW D (20 kg)(9.8 m=s2)D

196 N. Similarly, a mass m weighing 100 pounds has mks weight

W D (100 lb)(4.448 N=lb) D 444.8 N;

so its mass is

m D
W

g
D

444.8 N

9.8 m=s2
� 45.4 kg:

To discuss vertical motion it is natural to choose the y-axis as the coordinate

system for position, frequently with y D 0 corresponding to “ground level.” If we

choose the upward direction as the positive direction, then the effect of gravity on a

vertically moving body is to decrease its height and also to decrease its velocity v D

dy=dt . Consequently, if we ignore air resistance, then the acceleration a D dv=dt of

the body is given by
dv

dt
D �g: (15)

This acceleration equation provides a starting point in many problems involving

vertical motion. Successive integrations (as in Eqs. (10) and (11)) yield the velocity

and height formulas

v.t/ D �gt C v0 (16)

and

y.t/ D �1

2
gt2 C v0t C y0: (17)

Here, y0 denotes the initial (t D 0) height of the body and v0 its initial velocity.

Example 3 Projectile motion

(a) Suppose that a ball is thrown straight upward from the ground (y0 D 0) with initial

velocity v0 D 96 (ft=s, so we use g D 32 ft=s2 in fps units). Then it reaches its maximum

height when its velocity (Eq. (16)) is zero,

v.t/ D �32t C 96 D 0;

and thus when t D 3 s. Hence the maximum height that the ball attains is

y.3/ D �1

2
� 32 � 32

C 96 � 3C 0 D 144 (ft)

(with the aid of Eq. (17)).

(b) If an arrow is shot straight upward from the ground with initial velocity v0 D 49 (m=s,

so we use g D 9:8 m=s2 in mks units), then it returns to the ground when

y.t/ D �1

2
� .9:8/t2 C 49t D .4:9/t.�t C 10/ D 0;

and thus after 10 s in the air.

A Swimmer’s Problem

Figure 1.2.5 shows a northward-flowing river of width w D 2a. The lines x D ˙a

represent the banks of the river and the y-axis its center. Suppose that the velocity

vR at which the water flows increases as one approaches the center of the river, and

indeed is given in terms of distance x from the center by

vR D v0

�

1 �
x2

a2

�

: (18)

You can use Eq. (18) to verify that the water does flow the fastest at the center,

where vR D v0, and that vR D 0 at each riverbank.

x-axis

y-axis

(a, 0)(–a, 0)

υ
R

υ
S

υ
S

υ
R

α

FIGURE 1.2.5. A swimmer’s
problem (Example 4).
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Suppose that a swimmer starts at the point .�a; 0/ on the west bank and swims

due east (relative to the water) with constant speed vS . As indicated in Fig. 1.2.5, his

velocity vector (relative to the riverbed) has horizontal component vS and vertical

component vR. Hence the swimmer’s direction angle ˛ is given by

tan˛ D
vR

vS

:

Because tan˛ D dy=dx, substitution using (18) gives the differential equation

dy

dx
D
v0

vS

�

1 �
x2

a2

�

(19)

for the swimmer’s trajectory y D y.x/ as he crosses the river.

Example 4 River crossing Suppose that the river is 1 mile wide and that its midstream velocity is

v0 D 9 mi=h. If the swimmer’s velocity is v
S
D 3 mi=h, then Eq. (19) takes the form

dy

dx
D 3.1 � 4x2/:

Integration yields

y.x/ D

Z

.3 � 12x2/ dx D 3x � 4x3
C C

for the swimmer’s trajectory. The initial condition y
�

�
1

2

�

D 0 yields C D 1, so

y.x/ D 3x � 4x3
C 1:

Then

y
�

1

2

�

D 3
�

1

2

�

� 4
�

1

2

�

3

C 1 D 2;

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river.

1.2 Problems
In Problems 1 through 10, find a function y D f .x/ satisfy-

ing the given differential equation and the prescribed initial

condition.

1.
dy

dx
D 2x C 1; y.0/ D 3

2.
dy

dx
D .x � 2/2; y.2/ D 1

3.
dy

dx
D
p
x; y.4/ D 0

4.
dy

dx
D

1

x2
; y.1/ D 5

5.
dy

dx
D

1
p
x C 2

; y.2/ D �1

6.
dy

dx
D x
p
x2 C 9; y.�4/ D 0

7.
dy

dx
D

10

x2 C 1
; y.0/ D 0 8.

dy

dx
D cos 2x; y.0/ D 1

9.
dy

dx
D

1
p
1 � x2

; y.0/ D 0 10.
dy

dx
D xe�x ; y.0/ D 1

In Problems 11 through 18, find the position function x.t/ of a

moving particle with the given acceleration a.t/, initial posi-

tion x0 D x.0/, and initial velocity v0 D v.0/.

11. a.t/ D 50, v0 D 10, x0 D 20

12. a.t/ D �20, v0 D �15, x0 D 5

13. a.t/ D 3t , v0 D 5, x0 D 0

14. a.t/ D 2t C 1, v0 D �7, x0 D 4

15. a.t/ D 4.t C 3/2, v0 D �1, x0 D 1

16. a.t/ D
1

p
t C 4

, v0 D �1, x0 D 1

17. a.t/ D
1

.t C 1/3
, v0 D 0, x0 D 0

18. a.t/ D 50 sin 5t , v0 D �10, x0 D 8

Velocity Given Graphically

In Problems 19 through 22, a particle starts at the origin and

travels along the x-axis with the velocity function v.t/ whose

graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph

of the resulting position function x.t/ for 0 5 t 5 10.
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19.
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FIGURE 1.2.6. Graph of the
velocity function v.t/ of Problem 19.

20.
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FIGURE 1.2.7. Graph of the

velocity function v.t/ of Problem 20.

21.
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FIGURE 1.2.8. Graph of the

velocity function v.t/ of Problem 21.

22.
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FIGURE 1.2.9. Graph of the

velocity function v.t/ of Problem 22.

Problems 23 through 28 explore the motion of projectiles un-

der constant acceleration or deceleration.

23. What is the maximum height attained by the arrow of part

(b) of Example 3?

24. A ball is dropped from the top of a building 400 ft high.

How long does it take to reach the ground? With what

speed does the ball strike the ground?

25. The brakes of a car are applied when it is moving at

100 km=h and provide a constant deceleration of 10 me-

ters per second per second (m=s2). How far does the car

travel before coming to a stop?

26. A projectile is fired straight upward with an initial veloc-

ity of 100 m=s from the top of a building 20 m high and

falls to the ground at the base of the building. Find (a) its

maximum height above the ground; (b) when it passes the

top of the building; (c) its total time in the air.

27. A ball is thrown straight downward from the top of a tall

building. The initial speed of the ball is 10 m=s. It strikes

the ground with a speed of 60 m=s. How tall is the build-

ing?

28. A baseball is thrown straight downward with an initial

speed of 40 ft=s from the top of the Washington Monu-

ment (555 ft high). How long does it take to reach the

ground, and with what speed does the baseball strike the

ground?

29. Variable acceleration A diesel car gradually speeds up

so that for the first 10 s its acceleration is given by

dv

dt
D .0:12/t2 C .0:6/t (ft=s2).

If the car starts from rest (x0D 0, v0D 0), find the distance

it has traveled at the end of the first 10 s and its velocity at

that time.

Problems 30 through 32 explore the relation between the speed

of an auto and the distance it skids when the brakes are ap-

plied.

30. A car traveling at 60 mi=h (88 ft=s) skids 176 ft after its

brakes are suddenly applied. Under the assumption that

the braking system provides constant deceleration, what

is that deceleration? For how long does the skid continue?

31. The skid marks made by an automobile indicated that its

brakes were fully applied for a distance of 75 m before

it came to a stop. The car in question is known to have

a constant deceleration of 20 m=s2 under these condi-

tions. How fast—in km=h—was the car traveling when

the brakes were first applied?

32. Suppose that a car skids 15 m if it is moving at 50 km=h

when the brakes are applied. Assuming that the car has

the same constant deceleration, how far will it skid if it is

moving at 100 km=h when the brakes are applied?

Problems 33 and 34 explore vertical motion on a planet with

gravitational acceleration different than the Earth’s.
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33. On the planet Gzyx, a ball dropped from a height of 20 ft

hits the ground in 2 s. If a ball is dropped from the top of

a 200-ft-tall building on Gzyx, how long will it take to hit

the ground? With what speed will it hit?

34. A person can throw a ball straight upward from the sur-

face of the earth to a maximum height of 144 ft. How

high could this person throw the ball on the planet Gzyx

of Problem 33?

35. Velocity in terms of height A stone is dropped from

rest at an initial height h above the surface of the earth.

Show that the speed with which it strikes the ground is

v D
p

2gh.

36. Varying gravitational acceleration Suppose a woman

has enough “spring” in her legs to jump (on earth) from

the ground to a height of 2.25 feet. If she jumps straight

upward with the same initial velocity on the moon—where

the surface gravitational acceleration is (approximately)

5.3 ft=s2—how high above the surface will she rise?

37. At noon a car starts from rest at point A and proceeds at

constant acceleration along a straight road toward point

B . If the car reaches B at 12:50 P.M. with a velocity of

60 mi=h, what is the distance from A to B?

38. At noon a car starts from rest at point A and proceeds with

constant acceleration along a straight road toward point C ,

35 miles away. If the constantly accelerated car arrives at

C with a velocity of 60 mi=h, at what time does it arrive

at C ?

39. River crossing If a D 0:5 mi and v0 D 9 mi=h as in Ex-

ample 4, what must the swimmer’s speed v
S

be in order

that he drifts only 1 mile downstream as he crosses the

river?

40. River crossing Suppose that a D 0:5 mi, v0 D 9 mi=h,

and v
S
D 3 mi=h as in Example 4, but that the velocity of

the river is given by the fourth-degree function

v
R
D v0

 

1 �
x4

a4

!

rather than the quadratic function in Eq. (18). Now find

how far downstream the swimmer drifts as he crosses the

river.

41. Interception of bomb A bomb is dropped from a he-

licopter hovering at an altitude of 800 feet above the

ground. From the ground directly beneath the helicopter,

a projectile is fired straight upward toward the bomb, ex-

actly 2 seconds after the bomb is released. With what ini-

tial velocity should the projectile be fired in order to hit

the bomb at an altitude of exactly 400 feet?

42. Lunar lander A spacecraft is in free fall toward the sur-

face of the moon at a speed of 1000 mph (mi=h). Its

retrorockets, when fired, provide a constant deceleration

of 20,000 mi=h2. At what height above the lunar surface

should the astronauts fire the retrorockets to insure a soft

touchdown? (As in Example 2, ignore the moon’s gravi-

tational field.)

43. Solar wind Arthur Clarke’s The Wind from the Sun

(1963) describes Diana, a spacecraft propelled by the solar

wind. Its aluminized sail provides it with a constant accel-

eration of 0:001g D 0:0098 m=s2. Suppose this spacecraft

starts from rest at time t D 0 and simultaneously fires a

projectile (straight ahead in the same direction) that trav-

els at one-tenth of the speed c D 3 � 108 m=s of light.

How long will it take the spacecraft to catch up with the

projectile, and how far will it have traveled by then?

44. Length of skid A driver involved in an accident claims

he was going only 25 mph. When police tested his car,

they found that when its brakes were applied at 25 mph,

the car skidded only 45 feet before coming to a stop. But

the driver’s skid marks at the accident scene measured

210 feet. Assuming the same (constant) deceleration, de-

termine the speed he was actually traveling just prior to

the accident.

45. Kinematic formula Use Eqs. (10) and (11) to show that

v.t/2 � v2

0
D 2aŒx.t/ � x0� for all t when the accelera-

tion a D dv=dt is constant. Then use this “kinematic

formula”—commonly presented in introductory physics

courses—to confirm the result of Example 2.

1.3 Slope Fields and Solution Curves

Consider a differential equation of the form

dy

dx
D f .x; y/ (1)

where the right-hand function f .x; y/ involves both the independent variable x and

the dependent variable y. We might think of integrating both sides in (1) with re-

spect to x, and hence write y.x/ D
R

f .x; y.x// dx C C . However, this approach

does not lead to a solution of the differential equation, because the indicated integral

involves the unknown function y.x/ itself, and therefore cannot be evaluated explic-

itly. Actually, there exists no straightforward procedure by which a general differen-

tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking

differential equation as y0 D x2 C y2 cannot be expressed in terms of the ordinary
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elementary functions studied in calculus textbooks. Nevertheless, the graphical and

numerical methods of this and later sections can be used to construct approximate

solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions

There is a simple geometric way to think about solutions of a given differential

equation y0 D f .x; y/. At each point .x; y/ of the xy-plane, the value of f .x; y/

determines a slope m D f .x; y/. A solution of the differential equation is simply

a differentiable function whose graph y D y.x/ has this “correct slope” at each

point .x; y.x// through which it passes—that is, y0.x/ D f .x; y.x//. Thus a so-

lution curve of the differential equation y0 D f .x; y/—the graph of a solution of

the equation—is simply a curve in the xy-plane whose tangent line at each point

.x; y/ has slope m D f .x; y/. For instance, Fig. 1.3.1 shows a solution curve of

the differential equation y0 D x � y together with its tangent lines at three typical

points.

x

y

(x1, y1)

(x2, y2)

(x3, y3)

FIGURE 1.3.1. A solution curve for the differential equation

y0 D x � y together with tangent lines having

� slope m1 D x1 � y1 at the point .x1; y1/;

� slope m2 D x2 � y2 at the point .x2; y2/; and

� slope m3 D x3 � y3 at the point .x3; y3/.

This geometric viewpoint suggests a graphical method for constructing ap-

proximate solutions of the differential equation y0 D f .x; y/. Through each of a

representative collection of points .x; y/ in the plane we draw a short line segment

having the proper slope m D f .x; y/. All these line segments constitute a slope

field (or a direction field) for the equation y0 D f .x; y/.

Example 1 Figures 1.3.2 (a)–(d) show slope fields and solution curves for the differential equation

dy

dx
D ky (2)

with the values k D 2, 0:5, �1, and �3 of the parameter k in Eq. (2). Note that each slope

field yields important qualitative information about the set of all solutions of the differential

equation. For instance, Figs. 1.3.2(a) and (b) suggest that each solution y.x/ approaches˙1

as x ! C1 if k > 0, whereas Figs. 1.3.2(c) and (d) suggest that y.x/ ! 0 as x ! C1

if k < 0. Moreover, although the sign of k determines the direction of increase or decrease

of y.x/, its absolute value jkj appears to determine the rate of change of y.x/. All this is

apparent from slope fields like those in Fig. 1.3.2, even without knowing that the general

solution of Eq. (2) is given explicitly by y.x/ D Cekx .

A slope field suggests visually the general shapes of solution curves of the

differential equation. Through each point a solution curve should proceed in such
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FIGURE 1.3.2(a) Slope field and
solution curves for y

0 D 2y.
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FIGURE 1.3.2(b) Slope field and
solution curves for y

0 D .0:5/y.
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FIGURE 1.3.2(c) Slope field and
solution curves for y

0 D �y.
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FIGURE 1.3.2(d) Slope field
and solution curves for y

0 D �3y.

x ny �4 �3 �2 �1 0 1 2 3 4

�4 0 �1 �2 �3 �4 �5 �6 �7 �8

�3 1 0 �1 �2 �3 �4 �5 �6 �7

�2 2 1 0 �1 �2 �3 �4 �5 �6

�1 3 2 1 0 �1 �2 �3 �4 �5

0 4 3 2 1 0 �1 �2 �3 �4

1 5 4 3 2 1 0 �1 �2 �3

2 6 5 4 3 2 1 0 �1 �2

3 7 6 5 4 3 2 1 0 �1

4 8 7 6 5 4 3 2 1 0

FIGURE 1.3.3. Values of the slope y
0 D x � y for �4 � x; y � 4.

a direction that its tangent line is nearly parallel to the nearby line segments of the

slope field. Starting at any initial point .a; b/, we can attempt to sketch freehand an

approximate solution curve that threads its way through the slope field, following

the visible line segments as closely as possible.

Example 2 Construct a slope field for the differential equation y0 D x � y and use it to sketch an approx-

imate solution curve that passes through the point .�4; 4/.

Solution Figure 1.3.3 shows a table of slopes for the given equation. The numerical slope m D x � y

appears at the intersection of the horizontal x-row and the vertical y-column of the table. If

you inspect the pattern of upper-left to lower-right diagonals in this table, you can see that it

was easily and quickly constructed. (Of course, a more complicated function f .x; y/ on the

right-hand side of the differential equation would necessitate more complicated calculations.)

Figure 1.3.4 shows the corresponding slope field, and Fig. 1.3.5 shows an approximate so-

lution curve sketched through the point .�4; 4/ so as to follow this slope field as closely as

possible. At each point it appears to proceed in the direction indicated by the nearby line

segments of the slope field.

Although a spreadsheet program (for instance) readily constructs a table of

slopes as in Fig. 1.3.3, it can be quite tedious to plot by hand a sufficient number

of slope segments as in Fig. 1.3.4. However, most computer algebra systems in-

clude commands for quick and ready construction of slope fields with as many line

segments as desired; such commands are illustrated in the application material for

this section. The more line segments are constructed, the more accurately solution

curves can be visualized and sketched. Figure 1.3.6 shows a “finer” slope field for
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FIGURE 1.3.4. Slope field for y
0 D x � y

corresponding to the table of slopes in Fig. 1.3.3.
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(–4, 4)

FIGURE 1.3.5. The solution curve

through .�4; 4/.

the differential equation y0 D x � y of Example 2, together with typical solution

curves treading through this slope field.

If you look closely at Fig. 1.3.6, you may spot a solution curve that appears

to be a straight line! Indeed, you can verify that the linear function y D x � 1 is

a solution of the equation y0 D x � y, and it appears likely that the other solution

curves approach this straight line as an asymptote as x ! C1. This inference

illustrates the fact that a slope field can suggest tangible information about solutions

that is not at all evident from the differential equation itself. Can you, by tracing the

appropriate solution curve in this figure, infer that y.3/ � 2 for the solution y.x/ of

the initial value problem y0 D x � y, y.�4/ D 4?0 1 2 3 4
x

0

1

2

3

4

y

–1

–2

–3

–4

–4 –3 –2 –1

FIGURE 1.3.6. Slope field and
typical solution curves for y

0 D x � y.
Applications of Slope Fields

The next two examples illustrate the use of slope fields to glean useful information

in physical situations that are modeled by differential equations. Example 3 is based

on the fact that a baseball moving through the air at a moderate speed v (less than

about 300 ft=s) encounters air resistance that is approximately proportional to v. If

the baseball is thrown straight downward from the top of a tall building or from a

hovering helicopter, then it experiences both the downward acceleration of gravity

and an upward acceleration of air resistance. If the y-axis is directed downward,

then the ball’s velocity v D dy=dt and its gravitational acceleration g D 32 ft=s2 are

both positive, while its acceleration due to air resistance is negative. Hence its total

acceleration is of the form
dv

dt
D g � kv: (3)

A typical value of the air resistance proportionality constant might be k D 0:16.

Example 3 Falling baseball Suppose you throw a baseball straight downward from a helicopter hov-

ering at an altitude of 3000 feet. You wonder whether someone standing on the ground below

0 5 10 15 20 25
0

100

200

300

400

t

v

FIGURE 1.3.7. Slope field and
typical solution curves for

v
0 D 32 � 0:16v.

could conceivably catch it. In order to estimate the speed with which the ball will land, you

can use your laptop’s computer algebra system to construct a slope field for the differential

equation
dv

dt
D 32 � 0:16v: (4)

The result is shown in Fig. 1.3.7, together with a number of solution curves correspond-

ing to different values of the initial velocity v.0/ with which you might throw the baseball

downward. Note that all these solution curves appear to approach the horizontal line v D 200

as an asymptote. This implies that—however you throw it—the baseball should approach the

limiting velocity v D 200 ft=s instead of accelerating indefinitely (as it would in the absence
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of any air resistance). The handy fact that 60 mi=h D 88 ft=s yields

v D 200
ft

s
�

60 mi=h

88 ft=s
� 136.36

mi

h
:

Perhaps a catcher accustomed to 100 mi=h fastballs would have some chance of fielding this

speeding ball.

Comment If the ball’s initial velocity is v.0/ D 200, then Eq. (4) gives v0.0/ D 32 �

.0:16/.200/ D 0, so the ball experiences no initial acceleration. Its velocity therefore remains

unchanged, and hence v.t/ � 200 is a constant “equilibrium solution” of the differential

equation. If the initial velocity is greater than 200, then the initial acceleration given by

Eq. (4) is negative, so the ball slows down as it falls. But if the initial velocity is less than

200, then the initial acceleration given by (4) is positive, so the ball speeds up as it falls. It

therefore seems quite reasonable that, because of air resistance, the baseball will approach a

limiting velocity of 200 ft=s—whatever initial velocity it starts with. You might like to verify

that—in the absence of air resistance—this ball would hit the ground at over 300 mi=h.

In Section 2.1 we will discuss in detail the logistic differential equation

dP

dt
D kP.M � P / (5)

that often is used to model a population P.t/ that inhabits an environment with

carrying capacity M. This means that M is the maximum population that this envi-

ronment can sustain on a long-term basis (in terms of the maximum available food,

for instance).

Example 4 Limiting population If we take k D 0:0004 andM D 150, then the logistic equation in (5)

takes the form
dP

dt
D 0:0004P.150 � P / D 0:06P � 0:0004P 2: (6)

The positive term 0:06P on the right in (6) corresponds to natural growth at a 6% annual rate

0 25 50 75 100
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100

150

200
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300

t

P

FIGURE 1.3.8. Slope field and

typical solution curves for
P

0 D 0:06P � 0:0004P
2.

(with time t measured in years). The negative term �0:0004P 2 represents the inhibition of

growth due to limited resources in the environment.

Figure 1.3.8 shows a slope field for Eq. (6), together with a number of solution curves

corresponding to possible different values of the initial population P.0/. Note that all these

solution curves appear to approach the horizontal line P D 150 as an asymptote. This implies

that—whatever the initial population—the population P.t/ approaches the limiting popula-

tion P D 150 as t !1.

Comment If the initial population is P.0/ D 150, then Eq. (6) gives

P 0.0/ D 0:0004.150/.150 � 150/ D 0;

so the population experiences no initial (instantaneous) change. It therefore remains un-

changed, and hence P.t/ � 150 is a constant “equilibrium solution” of the differential equa-

tion. If the initial population is greater than 150, then the initial rate of change given by (6)

is negative, so the population immediately begins to decrease. But if the initial population is

less than 150, then the initial rate of change given by (6) is positive, so the population imme-

diately begins to increase. It therefore seems quite reasonable to conclude that the population

will approach a limiting value of 150—whatever the (positive) initial population.

Existence and Uniqueness of Solutions

Before one spends much time attempting to solve a given differential equation, it

is wise to know that solutions actually exist. We may also want to know whether

there is only one solution of the equation satisfying a given initial condition—that

is, whether its solutions are unique.
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Example 5 (a) Failure of existence The initial value problem

y0
D
1

x
; y.0/ D 0 (7)

has no solution, because no solution y.x/D
R

.1=x/ dxD ln jxjCC of the differential equation

is defined at x D 0. We see this graphically in Fig. 1.3.9, which shows a direction field and

some typical solution curves for the equation y0 D 1=x. It is apparent that the indicated

direction field “forces” all solution curves near the y-axis to plunge downward so that none

can pass through the point .0; 0/.

–1
–2

2

0

10
x

(0, 0)

y

FIGURE 1.3.9. Direction field and typical
solution curves for the equation y

0 D 1=x.

1

1

0

0

x

y2(x) = 0

y

(0, 0)

y1(x) = x2

FIGURE 1.3.10. Direction field and two
different solution curves for the initial value
problem y

0 D 2

p
y, y.0/ D 0.

(b) Failure of uniqueness On the other hand, you can readily verify that the initial value

problem

y0
D 2
p
y; y.0/ D 0 (8)

has the two different solutions y1.x/ D x2 and y2.x/ � 0 (see Problem 27). Figure 1.3.10

shows a direction field and these two different solution curves for the initial value problem in

(8). We see that the curve y1.x/ D x2 threads its way through the indicated direction field,

whereas the differential equation y0 D 2
p
y specifies slope y0 D 0 along the x-axis y2.x/D 0.

Example 5 illustrates the fact that, before we can speak of “the” solution of

an initial value problem, we need to know that it has one and only one solution.

Questions of existence and uniqueness of solutions also bear on the process of

mathematical modeling. Suppose that we are studying a physical system whose be-

havior is completely determined by certain initial conditions, but that our proposed

mathematical model involves a differential equation not having a unique solution

satisfying those conditions. This raises an immediate question as to whether the

mathematical model adequately represents the physical system.

The theorem stated below implies that the initial value problem y0 D f .x; y/,

y.a/ D b has one and only one solution defined near the point x D a on the x-axis,

provided that both the function f and its partial derivative @f=@y are continuous

near the point .a; b/ in the xy-plane. Methods of proving existence and uniqueness

theorems are discussed in the Appendix.
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THEOREM 1 Existence and Uniqueness of Solutions

Suppose that both the function f .x; y/ and its partial derivative Dyf .x; y/ are

continuous on some rectangle R in the xy-plane that contains the point .a; b/

in its interior. Then, for some open interval I containing the point a, the initial

value problem
dy

dx
D f .x; y/; y.a/ D b (9)

has one and only one solution that is defined on the interval I. (As illustrated in

Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle

R of continuity; see Remark 3 below.)

Remark 1 In the case of the differential equation dy=dx D �y of Example 1 and

y

b

R

x a

I

y = y(x)

(a, b)

FIGURE 1.3.11. The rectangle R

and x-interval I of Theorem 1, and the
solution curve y D y.x/ through the
point .a; b/.

Fig. 1.3.2(c), both the function f .x; y/ D �y and the partial derivative @f=@y D �1 are con-

tinuous everywhere, so Theorem 1 implies the existence of a unique solution for any initial

data .a; b/. Although the theorem ensures existence only on some open interval containing

x D a, each solution y.x/ D Ce�x actually is defined for all x.

Remark 2 In the case of the differential equation dy=dx D 2
p
y of Example 5(b) and

Eq. (8), the function f .x; y/ D 2
p
y is continuous wherever y > 0, but the partial derivative

@f=@y D 1=
p
y is discontinuous when y D 0, and hence at the point .0; 0/. This is why it is

possible for there to exist two different solutions y1.x/ D x2 and y2.x/ � 0, each of which

satisfies the initial condition y.0/ D 0.

Remark 3 In Example 7 of Section 1.1 we examined the especially simple differential

equation dy=dx D y2. Here we have f .x; y/ D y2 and @f=@y D 2y. Both of these functions

are continuous everywhere in the xy-plane, and in particular on the rectangle �2 < x < 2,

0 < y < 2. Because the point .0; 1/ lies in the interior of this rectangle, Theorem 1 guarantees

a unique solution—necessarily a continuous function—of the initial value problem

dy

dx
D y2; y.0/ D 1 (10)

on some open x-interval containing a D 0. Indeed this is the solution

y.x/ D
1

1 � x

that we discussed in Example 7. But y.x/D 1=.1�x/ is discontinuous at x D 1, so our unique

continuous solution does not exist on the entire interval �2 < x < 2. Thus the solution interval

I of Theorem 1 may not be as wide as the rectangle R where f and @f=@y are continuous.

Geometrically, the reason is that the solution curve provided by the theorem may leave the

rectangle—wherein solutions of the differential equation are guaranteed to exist—before it

reaches the one or both ends of the interval (see Fig. 1.3.12).

0 2 4

0

2

4

6

(0, 1)
R

x

y

–2
–2–4

y = 1/(1 – x)

FIGURE 1.3.12. The solution curve
through the initial point .0; 1/ leaves
the rectangle R before it reaches the
right side of R.

The following example shows that, if the function f .x; y/ and/or its partial

derivative @f=@y fail to satisfy the continuity hypothesis of Theorem 1, then the

initial value problem in (9) may have either no solution or many—even infinitely

many—solutions.

Example 6 Consider the first-order differential equation

x
dy

dx
D 2y: (11)

Applying Theorem 1 with f .x; y/ D 2y=x and @f=@y D 2=x, we conclude that Eq. (11) must

have a unique solution near any point in the xy-plane where x 6D 0. Indeed, we see immedi-

ately by substitution in (11) that

y.x/ D Cx2 (12)
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satisfies Eq. (11) for any value of the constant C and for all values of the variable x. In

particular, the initial value problem

0 1 2

0

2

4

x

y

(0, b) (0, 0)

−2

−4
−2 −1

FIGURE 1.3.13. There are infinitely

many solution curves through the point
.0; 0/, but no solution curves through

the point .0; b/ if b 6D 0.

x
dy

dx
D 2y; y.0/ D 0 (13)

has infinitely many different solutions, whose solution curves are the parabolas y D Cx2

illustrated in Fig. 1.3.13. (In case C D 0 the “parabola” is actually the x-axis y D 0.)

Observe that all these parabolas pass through the origin .0; 0/, but none of them passes

through any other point on the y-axis. It follows that the initial value problem in (13) has

infinitely many solutions, but the initial value problem

x
dy

dx
D 2y; y.0/ D b (14)

has no solution if b 6D 0.

Finally, note that through any point off the y-axis there passes only one of the parabolas

y D Cx2. Hence, if a 6D 0, then the initial value problem

x
dy

dx
D 2y; y.a/ D b (15)

has a unique solution on any interval that contains the point x D a but not the origin x D 0.

In summary, the initial value problem in (15) has

� a unique solution near .a; b/ if a 6D 0;

� no solution if a D 0 but b 6D 0;

� infinitely many solutions if a D b D 0.

Still more can be said about the initial value problem in (15). Consider a typi-

cal initial point off the y-axis—for instance the point .�1; 1/ indicated in Fig. 1.3.14.

Then for any value of the constant C the function defined by

y.x/ D

(

x2 if x � 0,

Cx2 if x > 0
(16)

is continuous and satisfies the initial value problem

x
dy

dx
D 2y; y.�1/ D 1: (17)

For a particular value of C , the solution curve defined by (16) consists of the left
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y

−2

−4
−2 −1

y = x2

(−1, 1)

(0, 0)

FIGURE 1.3.14. There are infinitely
many solution curves through the point
.1; �1/.

half of the parabola y D x2 and the right half of the parabola y D Cx2. Thus the

unique solution curve near .�1; 1/ branches at the origin into the infinitely many

solution curves illustrated in Fig. 1.3.14.

We therefore see that Theorem 1 (if its hypotheses are satisfied) guarantees

uniqueness of the solution near the initial point .a; b/, but a solution curve through

.a; b/ may eventually branch elsewhere so that uniqueness is lost. Thus a solution

may exist on a larger interval than one on which the solution is unique. For instance,

the solution y.x/D x2 of the initial value problem in (17) exists on the whole x-axis,

but this solution is unique only on the negative x-axis �1 < x < 0.
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1.3 Problems
In Problems 1 through 10, we have provided the slope field of

the indicated differential equation, together with one or more

solution curves. Sketch likely solution curves through the ad-

ditional points marked in each slope field.

1.
dy

dx
D �y � sin x

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.15.

2.
dy

dx
D x C y

0 2 31
x

0y

−1
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−3
−3
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2

3

FIGURE 1.3.16.

3.
dy

dx
D y � sin x

0 2 31
x

0y
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−2

−3
−3

1

2

3

FIGURE 1.3.17.

4.
dy

dx
D x � y

0 2 31
x

0y

−1
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−3
−3
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3

FIGURE 1.3.18.

5.
dy

dx
D y � x C 1

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1
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3

FIGURE 1.3.19.

6.
dy

dx
D x � y C 1

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.20.
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7.
dy

dx
D sin x C sin y
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FIGURE 1.3.21.

8.
dy

dx
D x2 � y
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FIGURE 1.3.22.

9.
dy

dx
D x2 � y � 2
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FIGURE 1.3.23.

10.
dy

dx
D �x2 C sin y

0 2 31
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0y
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–3
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3

FIGURE 1.3.24.

A more detailed version of Theorem 1 says that, if the function

f .x; y/ is continuous near the point .a; b/, then at least one so-

lution of the differential equation y0 D f .x; y/ exists on some

open interval I containing the point x D a and, moreover, that

if in addition the partial derivative @f=@y is continuous near

.a; b/, then this solution is unique on some (perhaps smaller)

interval J . In Problems 11 through 20, determine whether ex-

istence of at least one solution of the given initial value prob-

lem is thereby guaranteed and, if so, whether uniqueness of

that solution is guaranteed.

11.
dy

dx
D 2x2y2; y.1/ D �1

12.
dy

dx
D x ln y; y.1/ D 1

13.
dy

dx
D 3
p
y; y.0/ D 1

14.
dy

dx
D 3
p
y; y.0/ D 0

15.
dy

dx
D
p
x � y; y.2/ D 2

16.
dy

dx
D
p
x � y; y.2/ D 1

17. y
dy

dx
D x � 1; y.0/ D 1

18. y
dy

dx
D x � 1; y.1/ D 0

19.
dy

dx
D ln.1C y2/; y.0/ D 0

20.
dy

dx
D x2 � y2; y.0/ D 1

In Problems 21 and 22, first use the method of Example 2

to construct a slope field for the given differential equation.

Then sketch the solution curve corresponding to the given ini-

tial condition. Finally, use this solution curve to estimate the

desired value of the solution y.x/.
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21. y0 D x C y, y.0/ D 0; y.�4/ D ?

22. y0 D y � x, y.4/ D 0; y.�4/ D ?

Problems 23 and 24 are like Problems 21 and 22, but now

use a computer algebra system to plot and print out a slope

field for the given differential equation. If you wish (and know

how), you can check your manually sketched solution curve by

plotting it with the computer.

23. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D ?

24. y0 D x C
1

2
y2, y.�2/ D 0; y.2/ D ?

25. Falling parachutist You bail out of the helicopter of

Example 3 and pull the ripcord of your parachute. Now

k D 1:6 in Eq. (3), so your downward velocity satisfies the

initial value problem

dv

dt
D 32 � 1:6v; v.0/ D 0:

In order to investigate your chances of survival, construct

a slope field for this differential equation and sketch the

appropriate solution curve. What will your limiting veloc-

ity be? Will a strategically located haystack do any good?

How long will it take you to reach 95% of your limiting

velocity?

26. Deer population Suppose the deer population P.t/ in a

small forest satisfies the logistic equation

dP

dt
D 0:0225P � 0:0003P 2:

Construct a slope field and appropriate solution curve to

answer the following questions: If there are 25 deer at

time t D 0 and t is measured in months, how long will

it take the number of deer to double? What will be the

limiting deer population?

The next seven problems illustrate the fact that, if the hypothe-

ses of Theorem 1 are not satisfied, then the initial value prob-

lem y0 D f .x; y/, y.a/ D b may have either no solutions,

finitely many solutions, or infinitely many solutions.

27. (a) Verify that if c is a constant, then the function defined

piecewise by

y.x/ D

(

0 for x 5 c,

.x � c/2 for x > c

satisfies the differential equation y0 D 2
p
y for all x (in-

cluding the point x D c). Construct a figure illustrating the

fact that the initial value problem y0 D 2
p
y, y.0/ D 0 has

infinitely many different solutions. (b) For what values of

b does the initial value problem y0 D 2
p
y, y.0/ D b have

(i) no solution, (ii) a unique solution that is defined for all

x?

28. Verify that if k is a constant, then the function y.x/ � kx

satisfies the differential equation xy0 D y for all x. Con-

struct a slope field and several of these straight line so-

lution curves. Then determine (in terms of a and b) how

many different solutions the initial value problem xy0D y,

y.a/ D b has—one, none, or infinitely many.

29. Verify that if c is a constant, then the function defined

piecewise by

y.x/ D

(

0 for x 5 c,

.x � c/3 for x > c

satisfies the differential equation y0 D 3y2=3 for all x. Can

you also use the “left half” of the cubic y D .x � c/3 in

piecing together a solution curve of the differential equa-

tion? (See Fig. 1.3.25.) Sketch a variety of such solution

curves. Is there a point .a; b/ of the xy-plane such that

the initial value problem y0 D 3y2=3, y.a/ D b has either

no solution or a unique solution that is defined for all x?

Reconcile your answer with Theorem 1.

x

y

c

y = (x – c)3

y = x3

FIGURE 1.3.25. A suggestion for Problem 29.

30. Verify that if c is a constant, then the function defined

piecewise by

y.x/ D

8

ˆ

<

ˆ

:

C1 if x 5 c,

cos.x � c/ if c < x < c C � ,

�1 if x = c C �

satisfies the differential equation y0 D�
p

1 � y2 for all x.

(Perhaps a preliminary sketch with c D 0 will be helpful.)

Sketch a variety of such solution curves. Then determine

(in terms of a and b) how many different solutions the ini-

tial value problem y0 D �
p

1 � y2, y.a/ D b has.

31. Carry out an investigation similar to that in Problem 30,

except with the differential equation y0 D C
p

1 � y2.

Does it suffice simply to replace cos.x� c/with sin.x� c/

in piecing together a solution that is defined for all x?

32. Verify that if c > 0, then the function defined piecewise by

y.x/ D

(

0 if x2 5 c,

.x2 � c/2 if x2 > c

satisfies the differential equation y0 D 4x
p
y for all x.

Sketch a variety of such solution curves for different val-

ues of c. Then determine (in terms of a and b) how many

different solutions the initial value problem y0 D 4x
p
y,

y.a/ D b has.
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33. If c 6D 0, verify that the function defined by y.x/ D

x=.cx � 1/ (with the graph illustrated in Fig. 1.3.26) sat-

isfies the differential equation x2y0 C y2 D 0 if x 6D 1=c.

Sketch a variety of such solution curves for different val-

ues of c. Also, note the constant-valued function y.x/� 0

that does not result from any choice of the constant c.

Finally, determine (in terms of a and b) how many dif-

ferent solutions the initial value problem x2y0 C y2 D 0,

y.a/ D b has.

x

y

(1/c, 1/c)

FIGURE 1.3.26. Slope field for x
2
y

0 C y
2 D 0 and

graph of a solution y.x/ D x=.cx � 1/.

34. (a) Use the direction field of Problem 5 to estimate the

values at x D 1 of the two solutions of the differ-

ential equation y0 D y � x C 1 with initial values

y.�1/ D �1:2 and y.�1/ D �0:8.

(b) Use a computer algebra system to estimate the val-

ues at x D 3 of the two solutions of this differen-

tial equation with initial values y.�3/ D �3:01 and

y.�3/ D �2:99.

The lesson of this problem is that small changes in initial

conditions can make big differences in results.

35. (a) Use the direction field of Problem 6 to estimate the

values at x D 2 of the two solutions of the differ-

ential equation y0 D x � y C 1 with initial values

y.�3/ D �0:2 and y.�3/ D C0:2.

(b) Use a computer algebra system to estimate the val-

ues at x D 2 of the two solutions of this differen-

tial equation with initial values y.�3/ D �0:5 and

y.�3/ D C0:5.

The lesson of this problem is that big changes in initial

conditions may make only small differences in results.

Go to goo.gl/QjGAkl to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

1.3 Application Computer-Generated Slope Fields and Solution Curves

Widely available computer algebra systems and technical computing environments

include facilities to automate the construction of slope fields and solution curves, as

do some graphing calculators (see Figs. 1.3.27–29).

The Expanded Applications site at the URL indicated in the margin includes

a discussion of MapleTM, MathematicaTM, and MATLABTM resources for the inves-

tigation of differential equations. For instance, the Maple command

with(DEtools):

DEplot(diff(y(x),x)=sin(x--y(x)), y(x), x=--5..5, y=--5..5);

and the Mathematica command

FIGURE 1.3.27. TI-84 Plus CETM

graphing calculator and TI-NspireTM

CX CAS handheld. Screenshot from
Texas Instruments Incorporated.

Courtesy of Texas Instruments
Incorporated.

VectorPlot[{1, Sin[x--y]}, {x, --5, 5}, {y, --5, 5}]

produce slope fields similar to the one shown in Fig. 1.3.29. Figure 1.3.29 itself was

generated with the MATLAB program dfield [John Polking and David Arnold, Or-

dinary Differential Equations Using MATLAB, 3rd edition, Hoboken, NJ: Pearson,

2003] that is freely available for educational use (math.rice.edu/�dfield).

This web site also provides a stand-alone Java version of dfield that can be used

in a web browser. When a differential equation is entered in the dfield setup

menu (Fig. 1.3.30), you can (with mouse button clicks) plot both a slope field and

the solution curve (or curves) through any desired point (or points). Another freely

available and user-friendly MATLAB-based ODE package with impressive graphical

capabilities is Iode (www.math.uiuc.edu/iode).

Modern technology platforms offer even further interactivity by allowing the

user to vary initial conditions and other parameters “in real time.” Mathematica’s

Manipulate command was used to generate Fig. 1.3.31, which shows three par-

ticular solutions of the differential equation dy=dx D sin.x � y/. The solid curve

corresponds to the initial condition y.1/ D 0. As the “locator point” initially at

www.math.uiuc.edu/iode
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FIGURE 1.3.28. Slope field and solution curves for the differential

equation
dy

dx

D sin.x � y/

with initial points .0; b/, b D �3, �1, �2, 0, 2, 4 and window
�5 5 x; y 5 5 on a TI-89 graphing calculator.

.1; 0/ is dragged—by mouse or touchpad—to the point .0; 3/ or .2;�2/, the solution

curve immediately follows, resulting in the dashed curves shown. The TI-NspireTM

CX CAS has similar capability; indeed, as Fig. 1.3.28 appears on the Nspire dis-

play, each of the initial points .0; b/ can be dragged to different locations using the
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–5
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2

1

x
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–5 1–4 2–3 3–2 4–1

y = x – 2
π

FIGURE 1.3.29. Computer-
generated slope field and solution
curves for the differential equation
y

0 D sin.x � y/.

Nspire’s touchpad, with the corresponding solution curves being instantly redrawn.

FIGURE 1.3.30. MATLAB dfield setup to construct slope field and solution curves for

y
0 D sin.x � y/.

Use a graphing calculator or computer system in the following investigations.

You might warm up by generating the slope fields and some solution curves for

Problems 1 through 10 in this section.

INVESTIGATION A: Plot a slope field and typical solution curves for the differen-

tial equation dy=dx D sin.x � y/, but with a larger window than that of Fig. 1.3.29.

With �10 5 x 5 10, �10 5 y 5 10, for instance, a number of apparent straight line

solution curves should be visible, especially if your display allows you to drag the

–4 –2 0 2 4

–4

–2

0

2

4

FIGURE 1.3.31. Interactive
Mathematica solution of the
differential equation y

0 D sin.x � y/.
The “locator point” corresponding to
the initial condition y.1/ D 0 can be
dragged to any other point in the
display, causing the solution curve to
be automatically redrawn.

initial point interactively from upper left to lower right.

(a) Substitute y D ax C b in the differential equation to determine what the coeffi-

cients a and b must be in order to get a solution. Are the results consistent with

what you see on the display?

(b) A computer algebra system gives the general solution

y.x/ D x � 2 tan�1

�

x � 2 � C

x � C

�

:
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Plot this solution with selected values of the constant C to compare the resulting

solution curves with those indicated in Fig. 1.3.28. Can you see that no value of

C yields the linear solution y D x � �=2 corresponding to the initial condition

y.�=2/ D 0? Are there any values of C for which the corresponding solution

curves lie close to this straight line solution curve?

INVESTIGATION B: For your own personal investigation, let n be the smallest

digit in your student ID number that is greater than 1, and consider the differential

equation
dy

dx
D
1

n
cos.x � ny/:

(a) First investigate (as in part (a) of Investigation A) the possibility of straight line

solutions.

(b) Then generate a slope field for this differential equation, with the viewing win-

dow chosen so that you can picture some of these straight lines, plus a sufficient

number of nonlinear solution curves that you can formulate a conjecture about

what happens to y.x/ as x ! C1. State your inference as plainly as you can.

Given the initial value y.0/ D y0, try to predict (perhaps in terms of y0) how

y.x/ behaves as x !C1.

(c) A computer algebra system gives the general solution

y.x/ D
1

n

�

x C 2 tan�1

�

1

x � C

��

:

Can you make a connection between this symbolic solution and your graphi-

cally generated solution curves (straight lines or otherwise)?

1.4 Separable Equations and Applications

In the preceding sections we saw that if the function f .x; y/ does not involve the

variable y, then solving the first-order differential equation

dy

dx
D f .x; y/ (1)

is a matter of simply finding an antiderivative. For example, the general solution of

dy

dx
D �6x (2)

is given by

y.x/ D

Z

�6x dx D �3x2
C C:

If instead f .x; y/ does involve the dependent variable y, then we can no longer

solve the equation merely by integrating both sides: The differential equation

dy

dx
D �6xy (3a)

differs from Eq. (2) only in the factor y appearing on the right-hand side, but this

is enough to prevent us from using the same approach to solve Eq. (3a) that was

successful with Eq. (2).
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And yet, as we will see throughout the remainder of this chapter, differential

equations like (3a) often can, in fact, be solved by methods which are based on the

idea of “integrating both sides.” The idea behind these techniques is to rewrite the

given equation in a form that, while equivalent to the given equation, allows both

sides to be integrated directly, thus leading to the solution of the original differential

equation.

The most basic of these methods, separation of variables, can be applied to

Eq. (3a). First, we note that the right-hand function f .x; y/ D �6xy can be viewed

as the product of two expressions, one involving only the independent variable x,

and the other involving only the dependent variable y:

dy

dx
D .�6x/ � y: (3b)

Next, we informally break up the derivative dy=dx into the “free-floating” differen-

tials dx and dy—a notational convenience that leads to correct results, as we will

see below—and then multiply by dx and divide by y in Eq. (3b), leading to

dy

y
D �6x dx: (3c)

Equation (3c) is an equivalent version of the original differential equation in (3a),

but with the variables x and y separated (that is, by the equal sign), and this is what

allows us to integrate both sides. The left-hand side is integrated with respect to y

(with no “interference” from the variable x), and vice versa for the right-hand side.

This leads to
Z

dy

y
D

Z

�6x dx;

or

ln jyj D �3x2
C C: (4)

This gives the general solution of Eq. (3a) implicitly, and a family of solution curves

is shown in Fig. 1.4.1.

In this particular case we can go on to solve for y to give the explicit general

solution

y.x/ D ˙e�3x
2CC
D ˙e�3x

2

eC
D Ae�3x

2

; (5)

where A represents the constant ˙eC , which can take on any nonzero value. If we
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FIGURE 1.4.1. Slope field and
solution curves for y

0 D �6xy.

impose an initial condition on Eq. (3a), say y.0/ D 7, then in Eq. (5) we find that

A D 7, yielding the particular solution

y.x/ D 7e�3x
2

;

which is the upper emphasized solution curve shown in Fig. 1.4.1. In the same way,

the initial condition y.0/ D �4 leads to the particular solution

y.x/ D �4e�3x
2

;

which is the lower emphasized solution curve shown in Fig. 1.4.1.

To complete this example, we note that whereas the constant A in Eq. (5) is

nonzero, taking A D 0 in (5) leads to y.x/ � 0, and this is, in fact, a solution of the

given differential equation (3a). Thus Eq. (5) actually provides a solution of (3a)

for all values of the constant A, including AD 0. Why did the method of separation

of variables fail to capture all solutions of Eq. (3a)? The reason is that in the step
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in which we actually separated the variables, that is, in passing from Eq. (3b) to

(3c), we divided by y, thus (tacitly) assuming that y 6D 0. As a result, our general

solution (5), with its restriction that A 6D 0, “missed” the particular solution y.x/� 0

corresponding to A D 0. Such solutions are known as singular solutions, and we

say more about them—together with implicit and general solutions—below.

In general, the first-order differential equation (1) is called separable provided

that f .x; y/ can be written as the product of a function of x and a function of y:

dy

dx
D f .x; y/ D g.x/k.y/ D

g.x/

h.y/
;

where h.y/D 1=k.y/. In this case the variables x and y can be separated—isolated

on opposite sides of an equation—by writing informally the equation

h.y/ dy D g.x/ dx;

which we understand to be concise notation for the differential equation

h.y/
dy

dx
D g.x/: (6)

(In the preceding example, h.y/D
1

y
and g.x/D�6x.) As illustrated above, we can

solve this type of differential equation simply by integrating both sides with respect

to x:
Z

h.y.x//
dy

dx
dx D

Z

g.x/ dx C C I

equivalently,
Z

h.y/ dy D

Z

g.x/ dx C C: (7)

All that is required is that the antiderivatives

H.y/ D

Z

h.y/ dy and G.x/ D

Z

g.x/ dx

can be found. To see that Eqs. (6) and (7) are equivalent, note the following conse-

quence of the chain rule:

DxŒH.y.x//� D H
0.y.x//y0.x/ D h.y/

dy

dx
D g.x/ D Dx ŒG.x/�;

which in turn is equivalent to

H.y.x// D G.x/C C; (8)

because two functions have the same derivative on an interval if and only if they

differ by a constant on that interval.

Example 1 Solve the differential equation
dy

dx
D

4 � 2x

3y2 � 5
: (9)
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Solution Because
4 � 2x

3y2 � 5
D .4 � 2x/ �

1

3y2 � 5
D g.x/k.y/

is the product of a function that depends only on x, and one that depends only on y, Eq. (9)
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FIGURE 1.4.2. Slope field and

solution curves for
y

0 D .4 � 2x/=.3y
2 � 5/ in

Example 1.

is separable, and thus we can proceed in much the same way as in Eq. (3a). Before doing

so, however, we note an important feature of Eq. (9) not shared by Eq. (3a): The function

k.y/D
1

3y2 � 5
is not defined for all values of y. Indeed, setting 3y2 � 5 equal to zero shows

that k.y/, and thus
dy

dx
itself, becomes infinite as y approaches either of ˙

q

5

3
. Because

an infinite slope corresponds to a vertical line segment, we would therefore expect the line

segments in the slope field for this differential equation to be “standing straight up” along

the two horizontal lines y D ˙

q

5

3
� ˙1:29; as Fig. 1.4.2 shows (where these two lines are

dashed), this is indeed what we find.

What this means for the differential equation (9) is that no solution curve of this equa-

tion can cross either of the horizontal lines y D ˙

q

5

3
, simply because along these lines

dy

dx
is undefined. Effectively, then, these lines divide the plane into three regions—defined by the

conditions y >

q

5

3
, �

q

5

3
< y <

q

5

3
, and y < �

q

5

3
—with all solution curves of Eq. (9)

remaining confined to one of these regions.

With this in mind, the general solution of the differential equation in Eq. (9) is easy to

find, at least in implicit form. Separating variables and integrating both sides leads to

Z

3y2
� 5 dy D

Z

4 � 2x dx;

and thus

y3
� 5y D 4x � x2

C C: (10)

Note that unlike Eq. (4), the general solution in Eq. (10) cannot readily be solved for y; thus

we cannot directly plot the solution curves of Eq. (9) in the form y D y.x/, as we would

like. However, what we can do is rearrange Eq. (10) so that the constant C is isolated on the

right-hand side:

y3
� 5y � .4x � x2/ D C: (11)

This shows that the solution curves of the differential equation in Eq. (9) are contained in the

level curves (also known as contours) of the function

F.x; y/ D y3
� 5y � .4x � x2/: (12)

Because no particular solution curve of Eq. (9) can cross either of the lines y D ˙

q

5

3
—

despite the fact that the level curves of F.x; y/ freely do so—the particular solution curves

of Eq. (9) are those portions of the level curves of F.x; y/ which avoid the lines y D ˙

q

5

3
.

For example, suppose that we wish to solve the initial value problem

dy

dx
D

4 � 2x

3y2 � 5
; y.1/ D 3: (13)

Substituting x D 1 and y D 3 into our general solution (10) gives C D 9. Therefore our

desired solution curve lies on the level curve

y3
� 5y � .4x � x2/ D 9 (14)

of F.x; y/; Fig. 1.4.2 shows this and other level curves of F.x; y/. However, because the

solution curve of the initial value problem (13) must pass through the point .1; 3/, which lies

above the line y D

q

5

3
in the xy-plane, our desired solution curve is restricted to that portion

of the level curve (14) which satisfies y >

q

5

3
. (In Fig. 1.4.2 the solution curve of the initial

value problem (13) is drawn more heavily than the remainder of the level curve (14).) In the

same way, Figure 1.4.2 also shows the particular solutions of Eq. (9) subject to the initial
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conditions y.1/ D 0 and y.1/ D �2. In each of these cases, the curve corresponding to the

desired particular solution is only a piece of a larger level curve of the function F.x; y/. (Note

that in fact, some of the level curves of F themselves consist of two pieces.)

Finally, despite the difficulty of solving Eq. (14) for y by algebraic means, we can
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)
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FIGURE 1.4.3. Graph of

f .y/ D y
3 � 5y � 9.

nonetheless “solve” for y in the sense that, when a specific value of x is substituted in (14),

we can attempt to solve numerically for y. For instance, taking x D 4 yields the equation

f .y/ D y3
� 5y � 9 D 0I

Fig. 1.4.3 shows the graph of f . Using technology we can solve for the single real root

y � 2:8552, thus yielding the value y.4/� 2:8552 for the solution of the initial value problem

(13). By repeating this process for other values of x, we can create a table (like the one

shown below) of corresponding x- and y-values for the solution of (13); such a table serves

effectively as a “numerical solution” of this initial value problem.

x �1 0 1 2 3 4 5 6

y 2.5616 2.8552 3 3.0446 3 2.8552 2.5616 1.8342

Implicit, General, and Singular Solutions

The equation K.x; y/ D 0 is commonly called an implicit solution of a differential

equation if it is satisfied (on some interval) by some solution y D y.x/ of the differ-

ential equation. But note that a particular solution y D y.x/ of K.x; y/ D 0 may or

may not satisfy a given initial condition. For example, differentiation of x2Cy2D 4

yields

x C y
dy

dx
D 0;

so x2 C y2 D 4 is an implicit solution of the differential equation x C yy0 D 0. But

only the first of the two explicit solutions

y.x/ D C
p
4 � x2 and y.x/ D �

p
4 � x2

satisfies the initial condition y.0/ D 2 (Fig. 1.4.4).

Remark 1 You should not assume that every possible algebraic solution y D y.x/ of

an implicit solution satisfies the same differential equation. For instance, if we multiply the

3

–3

x

0 3

0y
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FIGURE 1.4.4. Slope field and
solution curves for y

0 D �x=y.

implicit solution x2Cy2� 4D 0 by the factor .y � 2x/, then we get the new implicit solution

.y � 2x/.x2
C y2

� 4/ D 0

that yields (or “contains”) not only the previously noted explicit solutions y D C
p
4 � x2

and y D �
p
4 � x2 of the differential equation x C yy0 D 0, but also the additional function

y D 2x that does not satisfy this differential equation.

Remark 2 Similarly, solutions of a given differential equation can be either gained or lost

when it is multiplied or divided by an algebraic factor. For instance, consider the differential

equation

.y � 2x/y
dy

dx
D �x.y � 2x/ (15)

having the obvious solution y D 2x. But if we divide both sides by the common factor

.y � 2x/, then we get the previously discussed differential equation

y
dy

dx
D �x; or x C y

dy

dx
D 0; (16)

of which y D 2x is not a solution. Thus we “lose” the solution y D 2x of Eq. (15) upon its

division by the factor .y � 2x/; alternatively, we “gain” this new solution when we multiply

Eq. (16) by .y � 2x/. Such elementary algebraic operations to simplify a given differential

equation before attempting to solve it are common in practice, but the possibility of loss or

gain of such “extraneous solutions” should be kept in mind.
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A solution of a differential equation that contains an “arbitrary constant” (like

the constant C appearing in Eqs. (4) and (10)) is commonly called a general so-

lution of the differential equation; any particular choice of a specific value for C

yields a single particular solution of the equation.

The argument preceding Example 1 actually suffices to show that every partic-

ular solution of the differential equation h.y/y0 D g.x/ in (6) satisfies the equation

H.y.x// D G.x/CC in (8). Consequently, it is appropriate to call (8) not merely a

general solution of (6), but the general solution of (6).

In Section 1.5 we shall see that every particular solution of a linear first-order

differential equation is contained in its general solution. By contrast, it is com-

mon for a nonlinear first-order differential equation to have both a general solu-

tion involving an arbitrary constant C and one or several particular solutions that

cannot be obtained by selecting a value for C . These exceptional solutions are

frequently called singular solutions. In Problem 30 we ask you to show that the

general solution of the differential equation .y0/2 D 4y yields the family of parabo-

las y D .x � C/2 illustrated in Fig. 1.4.5, and to observe that the constant-valued
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FIGURE 1.4.5. The general solution

curves y D .x � C /
2 and the singular

solution curve y D 0 of the differential
equation .y

0
/
2 D 4y.

function y.x/ � 0 is a singular solution that cannot be obtained from the general

solution by any choice of the arbitrary constant C .

Example 2 Find all solutions of the differential equation

dy

dx
D 6x.y � 1/2=3:

Solution Separation of variables gives
Z

1

3.y � 1/2=3

dy D

Z

2x dxI

.y � 1/1=3
D x2

C C I

y.x/ D 1C .x2
C C/3:

Positive values of the arbitrary constant C give the solution curves in Fig. 1.4.6 that lie above

the line y D 1, whereas negative values yield those that dip below it. The value C D 0 gives

the solution y.x/ D 1 C x6, but no value of C gives the singular solution y.x/ � 1 that

was lost when the variables were separated. Note that the two different solutions y.x/ � 1

and y.x/ D 1 C .x2 � 1/3 both satisfy the initial condition y.1/ D 1. Indeed, the whole

singular solution curve y D 1 consists of points where the solution is not unique and where

the function f .x; y/ D 6x.y � 1/2=3 is not differentiable.

Natural Growth and Decay

The differential equation
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solution curves for
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2=3.

dx

dt
D kx (k a constant) (17)

serves as a mathematical model for a remarkably wide range of natural

phenomena—any involving a quantity whose time rate of change is proportional

to its current size. Here are some examples.

POPULATION GROWTH: Suppose that P.t/ is the number of individuals in a

population (of humans, or insects, or bacteria) having constant birth and death rates

ˇ and ı (in births or deaths per individual per unit of time). Then, during a short

time interval �t , approximately ˇP.t/�t births and ıP.t/�t deaths occur, so the

change in P.t/ is given approximately by

�P � .ˇ � ı/P.t/�t;
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and therefore
dP

dt
D lim

�t!0

�P

�t
D kP; (18)

where k D ˇ � ı.

COMPOUND INTEREST: Let A.t/ be the number of dollars in a savings account

at time t (in years), and suppose that the interest is compounded continuously at

an annual interest rate r . (Note that 10% annual interest means that r D 0:10.)

Continuous compounding means that during a short time interval �t , the amount of

interest added to the account is approximately �A D rA.t/�t , so that

dA

dt
D lim

�t!0

�A

�t
D rA: (19)

RADIOACTIVE DECAY: Consider a sample of material that contains N.t/ atoms

of a certain radioactive isotope at time t . It has been observed that a constant fraction

of those radioactive atoms will spontaneously decay (into atoms of another element

or into another isotope of the same element) during each unit of time. Consequently,

the sample behaves exactly like a population with a constant death rate and no births.

To write a model for N.t/, we use Eq. (18) with N in place of P , with k > 0 in place

of ı, and with ˇ D 0. We thus get the differential equation

dN

dt
D �kN: (20)

The value of k depends on the particular radioactive isotope.

The key to the method of radiocarbon dating is that a constant proportion

of the carbon atoms in any living creature is made up of the radioactive isotope
14C of carbon. This proportion remains constant because the fraction of 14C in the

atmosphere remains almost constant, and living matter is continuously taking up

carbon from the air or is consuming other living matter containing the same constant

ratio of 14C atoms to ordinary 12C atoms. This same ratio permeates all life, because

organic processes seem to make no distinction between the two isotopes.

The ratio of 14C to normal carbon remains constant in the atmosphere be-

cause, although 14C is radioactive and slowly decays, the amount is continuously

replenished through the conversion of 14N (ordinary nitrogen) to 14C by cosmic

rays bombarding the upper atmosphere. Over the long history of the planet, this

decay and replenishment process has come into nearly steady state.

Of course, when a living organism dies, it ceases its metabolism of carbon

and the process of radioactive decay begins to deplete its 14C content. There is

no replenishment of this 14C, and consequently the ratio of 14C to normal carbon

begins to drop. By measuring this ratio, the amount of time elapsed since the death

of the organism can be estimated. For such purposes it is necessary to measure the

decay constant k. For 14C, it is known that k � 0:0001216 if t is measured in years.

(Matters are not as simple as we have made them appear. In applying the tech-

nique of radiocarbon dating, extreme care must be taken to avoid contaminating the

sample with organic matter or even with ordinary fresh air. In addition, the cosmic

ray levels apparently have not been constant, so the ratio of 14C in the atmosphere

has varied over the past centuries. By using independent methods of dating sam-

ples, researchers in this area have compiled tables of correction factors to enhance

the accuracy of this process.)
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DRUG ELIMINATION: In many cases the amount A.t/ of a certain drug in the

bloodstream, measured by the excess over the natural level of the drug, will decline

at a rate proportional to the current excess amount. That is,

dA

dt
D ��A; (21)

where � > 0. The parameter � is called the elimination constant of the drug.

The Natural Growth Equation

The prototype differential equation dx=dt D kx with x.t/ > 0 and k a con-

stant (either negative or positive) is readily solved by separating the variables and

integrating:

Z

1

x
dx D

Z

k dt I

ln x D kt C C:

Then we solve for x:

x = x0
 
e

kt

     (k > 0)

t

x

x0

FIGURE 1.4.7. Natural growth.

eln x
D ektCC

I x D x.t/ D eC ekt
D Aekt :

Because C is a constant, so is A D eC . It is also clear that A D x.0/ D x0, so the

particular solution of Eq. (17) with the initial condition x.0/ D x0 is simply

x.t/ D x0e
kt : (22)

Because of the presence of the natural exponential function in its solution, the

differential equation
dx

dt
D kx (23)

is often called the exponential or natural growth equation. Figure 1.4.7 shows a

x = x0
 
e

kt

     (k < 0)

t

x

x0

FIGURE 1.4.8. Natural decay.

typical graph of x.t/ in the case k > 0; the case k < 0 is illustrated in Fig. 1.4.8.

Example 3 World population According to data listed at www.census.gov, the world’s total pop-

ulation reached 6 billion persons in mid-1999, and was then increasing at the rate of about 212

thousand persons each day. Assuming that natural population growth at this rate continues,

we want to answer these questions:

(a) What is the annual growth rate k?

(b) What will be the world population at the middle of the 21st century?

(c) How long will it take the world population to increase tenfold—thereby reaching the

60 billion that some demographers believe to be the maximum for which the planet can

provide adequate food supplies?

Solution (a) We measure the world population P.t/ in billions and measure time in years. We take

t D 0 to correspond to (mid) 1999, so P0 D 6. The fact that P is increasing by 212,000, or

0.000212 billion, persons per day at time t D 0 means that

P 0.0/ D .0:000212/.365:25/ � 0:07743

billion per year. From the natural growth equation P 0 D kP with t D 0 we now obtain

k D
P 0.0/

P.0/
�
0:07743

6
� 0:0129:

Thus the world population was growing at the rate of about 1.29% annually in 1999. This

value of k gives the world population function

P.t/ D 6e0:0129t :

www.census.gov
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(b) With t D 51 we obtain the prediction

P.51/ D 6e.0:0129/.51/
� 11.58 (billion)

for the world population in mid-2050 (so the population will almost have doubled in the just

over a half-century since 1999).

(c) The world population should reach 60 billion when

60 D 6e0:0129t
I that is, when t D

ln 10

0:0129
� 178;

and thus in the year 2177.

Note Actually, the rate of growth of the world population is expected to slow somewhat

during the next half-century, and the best current prediction for the 2050 population is “only”

9.1 billion. A simple mathematical model cannot be expected to mirror precisely the com-

plexity of the real world.

The decay constant of a radioactive isotope is often specified in terms of an-

other empirical constant, the half-life of the isotope, because this parameter is more

convenient. The half-life � of a radioactive isotope is the time required for half of

it to decay. To find the relationship between k and � , we set t D � and N D 1

2
N0 in

the equation N.t/ D N0e
�kt , so that 1

2
N0 D N0e

�k� . When we solve for � , we find

that

� D
ln 2

k
: (24)

For example, the half-life of 14C is � � .ln 2/=.0:0001216/, approximately 5700

years.

Example 4 Radiometric dating A specimen of charcoal found at Stonehenge turns out to contain

63% as much 14C as a sample of present-day charcoal of equal mass. What is the age of the

sample?

Solution We take t D 0 as the time of the death of the tree from which the Stonehenge charcoal was

made and N0 as the number of 14C atoms that the Stonehenge sample contained then. We are

given that N D .0:63/N0 now, so we solve the equation .0:63/N0 D N0e
�kt with the value

k D 0:0001216. Thus we find that

t D �
ln.0:63/

0:0001216
� 3800 (years):

Thus the sample is about 3800 years old. If it has any connection with the builders of Stone-

henge, our computations suggest that this observatory, monument, or temple—whichever it

may be—dates from 1800 B.C. or earlier.

Cooling and Heating

According to Newton’s law of cooling (Eq. (3) of Section 1.1), the time rate of

change of the temperature T .t/ of a body immersed in a medium of constant tem-

perature A is proportional to the difference A � T . That is,

dT

dt
D k.A � T /; (25)

where k is a positive constant. This is an instance of the linear first-order differential

equation with constant coefficients:

dx

dt
D ax C b: (26)

It includes the exponential equation as a special case (b D 0) and is also easy to

solve by separation of variables.



1.4 Separable Equations and Applications 39

Example 5 Cooling A 4-lb roast, initially at 50ıF, is placed in a 375ıF oven at 5:00 P.M. After

75 minutes it is found that the temperature T .t/ of the roast is 125ıF. When will the roast be

150ıF (medium rare)?

Solution We take time t in minutes, with t D 0 corresponding to 5:00 P.M. We also assume (somewhat

unrealistically) that at any instant the temperature T .t/ of the roast is uniform throughout.

We have T .t/ < A D 375, T .0/ D 50, and T .75/ D 125. Hence

dT

dt
D k.375 � T /I

Z

1

375 � T
dT D

Z

k dt I

� ln.375 � T / D kt C C I

375 � T D Be�kt :

Now T .0/ D 50 implies that B D 325, so T .t/ D 375� 325e�kt . We also know that T D 125

when t D 75. Substitution of these values in the preceding equation yields

k D � 1

75
ln
�

250

325

�

� 0:0035:

Hence we finally solve the equation

150 D 375 � 325e.�0:0035/t

for t D �Œln.225=325/�=.0:0035/ � 105 (min), the total cooking time required. Because the

roast was placed in the oven at 5:00 P.M., it should be removed at about 6:45 P.M.

Torricelli’s Law

Suppose that a water tank has a hole with area a at its bottom, from which water

is leaking. Denote by y.t/ the depth of water in the tank at time t , and by V.t/ the

volume of water in the tank then. It is plausible—and true, under ideal conditions—

that the velocity of water exiting through the hole is

v D
p

2gy; (27)

which is the velocity a drop of water would acquire in falling freely from the surface

of the water to the hole (see Problem 35 of Section 1.2). One can derive this formula

beginning with the assumption that the sum of the kinetic and potential energy of the

system remains constant. Under real conditions, taking into account the constriction

of a water jet from an orifice, v D c
p
2gy, where c is an empirical constant between

0 and 1 (usually about 0.6 for a small continuous stream of water). For simplicity

we take c D 1 in the following discussion.

As a consequence of Eq. (27), we have

dV

dt
D �av D �a

p

2gyI (28a)

equivalently,
dV

dt
D �k

p
y where k D a

p

2g: (28b)

This is a statement of Torricelli’s law for a draining tank. Let A.y/ denote the hori-

zontal cross-sectional area of the tank at height y. Then, applied to a thin horizontal
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slice of water at height y with area A.y/ and thickness dy, the integral calculus

method of cross sections gives

V.y/ D

Z

y

0

A.y/ dy:

The fundamental theorem of calculus therefore implies that dV=dy D A.y/ and

hence that
dV

dt
D
dV

dy
�
dy

dt
D A.y/

dy

dt
: (29)

From Eqs. (28) and (29) we finally obtain

A.y/
dy

dt
D �a

p

2gy D �k
p
y; (30)

an alternative form of Torricelli’s law.

Example 6 Draining tank A hemispherical bowl has top radius 4 ft and at time t D 0 is full of water.

At that moment a circular hole with diameter 1 in. is opened in the bottom of the tank. How

long will it take for all the water to drain from the tank?

Solution From the right triangle in Fig. 1.4.9, we see that

A.y/ D �r2
D �

h

16 � .4 � y/2
i

D �.8y � y2/:

With g D 32 ft=s2, Eq. (30) becomes

�.8y � y2/
dy

dt
D ��

�

1

24

�

2p

2 � 32y I

Z

.8y1=2
� y3=2/ dy D �

Z

1

72
dt I

16

3
y3=2

�
2

5
y5=2

D �
1

72
t C C:

Now y.0/ D 4, so

C D 16

3
� 43=2

�
2

5
� 45=2

D
448

15
:

The tank is empty when y D 0, thus when

t D 72 � 448

15
� 2150 (s);

that is, about 35 min 50 s. So it takes slightly less than 36 min for the tank to drain.

Positive y-values

r

44 – y

y

FIGURE 1.4.9. Draining a
hemispherical tank.

Example 7 In the case of an upright cylindrical tank with constant cross-sectional area A, Torricelli’s law

in Eq. (30) takes the form
dy

dt
D �c

p
y

with c D k=A. With initial condition y.0/ D 0 we routinely separate variables and integrate

to get

y D 1

4
c2t2:

However, this formula if taken at face value implies that y > 0 if t > 0. But if the tank is

empty at time t D 0 as prescribed by the initial condition y.0/ D 0, then certainly the tank

remains empty thereafter, so y.t/ � 0 for t > 0.

To see what is going on here, note that the right-hand side function f .t; y/D �c
p
y in

our differential equation y0 D �c
p
y does not satisfy the condition that @f=@y be continuous

at .0; 0/, so the existence-uniqueness theorem of Section 1.3 does not guarantee uniqueness

of a solution near t D 0. Indeed, we note the two different but physically meaningful solutions

y1.t/ � 0 for all t ; and y2.t/ D

(

1

4
c2t2 for t < 0,

0 for t = 0
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of the initial value problem y0 D �c
p
y, y.0/ D 0. The constant solution y1.t/ � 0 corre-

sponds to a tank that always has been and always will be empty, while y2.t/ corresponds to a

tank draining while t < 0 that empties precisely at time t D 0 and remains empty thereafter.

Thus this example provides a concrete physical situation described by an initial value

problem with non-unique solutions.

1.4 Problems
Find general solutions (implicit if necessary, explicit if conve-

nient) of the differential equations in Problems 1 through 18.

Primes denote derivatives with respect to x.

1.
dy

dx
C 2xy D 0 2.

dy

dx
C 2xy2 D 0

3.
dy

dx
D y sin x 4. .1C x/

dy

dx
D 4y

5. 2
p
x
dy

dx
D
p

1 � y2 6.
dy

dx
D 3
p
xy

7.
dy

dx
D .64xy/1=3 8.

dy

dx
D 2x sec y

9. .1 � x2/
dy

dx
D 2y 10. .1Cx/2

dy

dx
D .1Cy/2

11. y0 D xy3 12. yy0 D x.y2 C 1/

13. y3
dy

dx
D .y4 C 1/ cos x 14.

dy

dx
D
1C
p
x

1C
p
y

15.
dy

dx
D

.x � 1/y5

x2.2y3 � y/
16. .x2 C 1/.tan y/y0 D x

17. y0 D 1CxCyCxy (Suggestion: Factor the right-hand

side.)

18. x2y0 D 1 � x2 C y2 � x2y2

Find explicit particular solutions of the initial value problems

in Problems 19 through 28.

19.
dy

dx
D yex , y.0/ D 2e

20.
dy

dx
D 3x2.y2 C 1/, y.0/ D 1

21. 2y
dy

dx
D

x
p
x2 � 16

, y.5/ D 2

22.
dy

dx
D 4x3y � y, y.1/ D �3

23.
dy

dx
C 1 D 2y, y.1/ D 1

24.
dy

dx
D y cot x, y

�

1

2
�
�

D
1

2
�

25. x
dy

dx
� y D 2x2y, y.1/ D 1

26.
dy

dx
D 2xy2 C 3x2y2, y.1/ D �1

27.
dy

dx
D 6e2x�y ; y.0/ D 0

28. 2
p
x
dy

dx
D cos2 y; y.4/ D �=4

Problems 29 through 32 explore the connections among gen-

eral and singular solutions, existence, and uniqueness.

29. (a) Find a general solution of the differential equation

dy=dx D y2. (b) Find a singular solution that is not in-

cluded in the general solution. (c) Inspect a sketch of typi-

cal solution curves to determine the points .a; b/ for which

the initial value problem y0 D y2, y.a/ D b has a unique

solution.

30. Solve the differential equation .dy=dx/2 D 4y to verify the

general solution curves and singular solution curve that

are illustrated in Fig. 1.4.5. Then determine the points

.a; b/ in the plane for which the initial value problem

.y0/2 D 4y, y.a/ D b has (a) no solution, (b) infinitely

many solutions that are defined for all x, (c) on some

neighborhood of the point x D a, only finitely many solu-

tions.

31. Discuss the difference between the differential equations

.dy=dx/2 D 4y and dy=dx D 2
p
y. Do they have the

same solution curves? Why or why not? Determine the

points .a; b/ in the plane for which the initial value prob-

lem y0 D 2
p
y, y.a/ D b has (a) no solution, (b) a unique

solution, (c) infinitely many solutions.

32. Find a general solution and any singular solutions of the

differential equation dy=dx D y
p

y2 � 1. Determine the

points .a; b/ in the plane for which the initial value prob-

lem y0 D y
p

y2 � 1, y.a/ D b has (a) no solution, (b) a

unique solution, (c) infinitely many solutions.

33. Population growth A certain city had a population of

25,000 in 1960 and a population of 30,000 in 1970. As-

sume that its population will continue to grow exponen-

tially at a constant rate. What population can its city plan-

ners expect in the year 2000?

34. Population growth In a certain culture of bacteria, the

number of bacteria increased sixfold in 10 h. How long

did it take for the population to double?

35. Radiocarbon dating Carbon extracted from an ancient

skull contained only one-sixth as much 14C as carbon ex-

tracted from present-day bone. How old is the skull?

36. Radiocarbon dating Carbon taken from a purported

relic of the time of Christ contained 4:6 � 1010 atoms of
14C per gram. Carbon extracted from a present-day spec-

imen of the same substance contained 5:0� 1010 atoms of
14C per gram. Compute the approximate age of the relic.

What is your opinion as to its authenticity?

37. Continuously compounded interest Upon the birth of

their first child, a couple deposited $5000 in an account

that pays 8% interest compounded continuously. The in-

terest payments are allowed to accumulate. How much

will the account contain on the child’s eighteenth birth-

day?
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38. Continuously compounded interest Suppose that you

discover in your attic an overdue library book on which

your grandfather owed a fine of 30 cents 100 years ago. If

an overdue fine grows exponentially at a 5% annual rate

compounded continuously, how much would you have to

pay if you returned the book today?

39. Drug elimination Suppose that sodium pentobarbital

is used to anesthetize a dog. The dog is anesthetized

when its bloodstream contains at least 45 milligrams (mg)

of sodium pentobarbitol per kilogram of the dog’s body

weight. Suppose also that sodium pentobarbitol is elim-

inated exponentially from the dog’s bloodstream, with a

half-life of 5 h. What single dose should be administered

in order to anesthetize a 50-kg dog for 1 h?

40. Radiometric dating The half-life of radioactive cobalt

is 5.27 years. Suppose that a nuclear accident has left the

level of cobalt radiation in a certain region at 100 times the

level acceptable for human habitation. How long will it be

until the region is again habitable? (Ignore the probable

presence of other radioactive isotopes.)

41. Isotope formation Suppose that a mineral body formed

in an ancient cataclysm—perhaps the formation of the

earth itself—originally contained the uranium isotope
238U (which has a half-life of 4:51 � 109 years) but no

lead, the end product of the radioactive decay of 238U. If

today the ratio of 238U atoms to lead atoms in the mineral

body is 0.9, when did the cataclysm occur?

42. Radiometric dating A certain moon rock was found to

contain equal numbers of potassium and argon atoms. As-

sume that all the argon is the result of radioactive decay of

potassium (its half-life is about 1:28 � 109 years) and that

one of every nine potassium atom disintegrations yields an

argon atom. What is the age of the rock, measured from

the time it contained only potassium?

43. Cooling A pitcher of buttermilk initially at 25ıC is to

be cooled by setting it on the front porch, where the tem-

perature is 0ıC. Suppose that the temperature of the but-

termilk has dropped to 15ıC after 20 min. When will it be

at 5ıC?

44. Solution rate When sugar is dissolved in water, the

amount A that remains undissolved after t minutes sat-

isfies the differential equation dA=dt D �kA (k > 0). If

25% of the sugar dissolves after 1 min, how long does it

take for half of the sugar to dissolve?

45. Underwater light intensity The intensity I of light at a

depth of x meters below the surface of a lake satisfies the

differential equation dI=dx D .�1:4/I. (a) At what depth

is the intensity half the intensity I0 at the surface (where

x D 0)? (b) What is the intensity at a depth of 10 m (as

a fraction of I0)? (c) At what depth will the intensity be

1% of that at the surface?

46. Barometric pressure and altitude The barometric

pressure p (in inches of mercury) at an altitude x miles

above sea level satisfies the initial value problem dp=dx D

.�0:2/p, p.0/D 29:92. (a) Calculate the barometric pres-

sure at 10,000 ft and again at 30,000 ft. (b) Without prior

conditioning, few people can survive when the pressure

drops to less than 15 in. of mercury. How high is that?

47. Spread of rumor A certain piece of dubious informa-

tion about phenylethylamine in the drinking water began

to spread one day in a city with a population of 100,000.

Within a week, 10,000 people had heard this rumor. As-

sume that the rate of increase of the number who have

heard the rumor is proportional to the number who have

not yet heard it. How long will it be until half the popula-

tion of the city has heard the rumor?

48. Isotope formation According to one cosmological the-

ory, when uranium was first generated in the early evolu-

tion of the universe following the “big bang,” the isotopes
235U and 238U were produced in equal amounts. Given

the half-lives of 4:51 � 109 years for 238U and 7:10 � 108

years for 235U, calculate the length of time required to

reach the present distribution of 137.7 atoms of 238U for

each atom of 235U.

49. Cooling A cake is removed from an oven at 210ıF and

left to cool at room temperature, which is 70ıF. After

30 min the temperature of the cake is 140ıF. When will it

be 100ıF?

50. Pollution increase The amount A.t/ of atmospheric

pollutants in a certain mountain valley grows naturally and

is tripling every 7.5 years.

(a) If the initial amount is 10 pu (pollutant units), write

a formula for A.t/ giving the amount (in pu) present

after t years.

(b) What will be the amount (in pu) of pollutants present

in the valley atmosphere after 5 years?

(c) If it will be dangerous to stay in the valley when the

amount of pollutants reaches 100 pu, how long will

this take?

51. Radioactive decay An accident at a nuclear power plant

has left the surrounding area polluted with radioactive ma-

terial that decays naturally. The initial amount of radioac-

tive material present is 15 su (safe units), and 5 months

later it is still 10 su.

(a) Write a formula giving the amount A.t/ of radioactive

material (in su) remaining after t months.

(b) What amount of radioactive material will remain after

8 months?

(c) How long—total number of months or fraction

thereof—will it be until A D 1 su, so it is safe for

people to return to the area?

52. Growth of languages There are now about 3300 differ-

ent human “language families” in the whole world. As-

sume that all these are derived from a single original lan-

guage and that a language family develops into 1.5 lan-

guage families every 6 thousand years. About how long

ago was the single original human language spoken?

53. Growth of languages Thousands of years ago ancestors

of the Native Americans crossed the Bering Strait from

Asia and entered the western hemisphere. Since then, they

have fanned out across North and South America. The sin-

gle language that the original Native Americans spoke has
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since split into many Indian “language families.” Assume

(as in Problem 52) that the number of these language fami-

lies has been multiplied by 1.5 every 6000 years. There are

now 150 Native American language families in the west-

ern hemisphere. About when did the ancestors of today’s

Native Americans arrive?

Torricelli’s Law

Problems 54 through 64 illustrate the application of Torri-

celli’s law.

54. A tank is shaped like a vertical cylinder; it initially con-

tains water to a depth of 9 ft, and a bottom plug is removed

at time t D 0 (hours). After 1 h the depth of the water has

dropped to 4 ft. How long does it take for all the water to

drain from the tank?

55. Suppose that the tank of Problem 54 has a radius of 3 ft

and that its bottom hole is circular with radius 1 in. How

long will it take the water (initially 9 ft deep) to drain com-

pletely?

56. At time t D 0 the bottom plug (at the vertex) of a full con-

ical water tank 16 ft high is removed. After 1 h the water

in the tank is 9 ft deep. When will the tank be empty?

57. Suppose that a cylindrical tank initially containing V0 gal-

lons of water drains (through a bottom hole) in T minutes.

Use Torricelli’s law to show that the volume of water in

the tank after t 5 T minutes is V D V0 Œ1 � .t=T /�
2.

58. A water tank has the shape obtained by revolving the curve

y D x4=3 around the y-axis. A plug at the bottom is re-

moved at 12 noon, when the depth of water in the tank is

12 ft. At 1 P.M. the depth of the water is 6 ft. When will

the tank be empty?

59. A water tank has the shape obtained by revolving the

parabola x2 D by around the y-axis. The water depth is

4 ft at 12 noon, when a circular plug in the bottom of the

tank is removed. At 1 P.M. the depth of the water is 1 ft.

(a) Find the depth y.t/ of water remaining after t hours.

(b) When will the tank be empty? (c) If the initial radius

of the top surface of the water is 2 ft, what is the radius of

the circular hole in the bottom?

60. A cylindrical tank with length 5 ft and radius 3 ft is sit-

uated with its axis horizontal. If a circular bottom hole

with a radius of 1 in. is opened and the tank is initially

half full of water, how long will it take for the liquid to

drain completely?

61. A spherical tank of radius 4 ft is full of water when a cir-

cular bottom hole with radius 1 in. is opened. How long

will be required for all the water to drain from the tank?

62. Suppose that an initially full hemispherical water tank of

radius 1 m has its flat side as its bottom. It has a bottom

hole of radius 1 cm. If this bottom hole is opened at 1 P.M.,

when will the tank be empty?

63. Consider the initially full hemispherical water tank of Ex-

ample 8, except that the radius r of its circular bottom hole

is now unknown. At 1 P.M. the bottom hole is opened and

at 1:30 P.M. the depth of water in the tank is 2 ft. (a) Use

Torricelli’s law in the form dV=dt D �.0:6/�r2
p
2gy

(taking constriction into account) to determine when the

tank will be empty. (b) What is the radius of the bottom

hole?

64. A 12 h water clock is to be designed with the dimensions

shown in Fig. 1.4.10, shaped like the surface obtained by

revolving the curve y D f .x/ around the y-axis. What

should this curve be, and what should the radius of the

circular bottom hole be, in order that the water level will

fall at the constant rate of 4 inches per hour (in.=h)?

Water flow

4 ft

1 ft

x

y

y = f (x)

or     

x = g(y)

FIGURE 1.4.10. The clepsydra.

65. Time of death Just before midday the body of an ap-

parent homicide victim is found in a room that is kept at

a constant temperature of 70ıF. At 12 noon the tempera-

ture of the body is 80ıF and at 1 P.M. it is 75ıF. Assume

that the temperature of the body at the time of death was

98:6ıF and that it has cooled in accord with Newton’s law.

What was the time of death?

66. Snowplow problem Early one morning it began to

snow at a constant rate. At 7 A.M. a snowplow set off to

clear a road. By 8 A.M. it had traveled 2 miles, but it took

two more hours (until 10 A.M.) for the snowplow to go an

additional 2 miles. (a) Let t D 0 when it began to snow,

and let x denote the distance traveled by the snowplow at

time t . Assuming that the snowplow clears snow from the

road at a constant rate (in cubic feet per hour, say), show

that

k
dx

dt
D
1

t

where k is a constant. (b) What time did it start snowing?

(Answer: 6 A.M.)

67. Snowplow problem A snowplow sets off at 7 A.M. as

in Problem 66. Suppose now that by 8 A.M. it had trav-

eled 4 miles and that by 9 A.M. it had moved an additional

3 miles. What time did it start snowing? This is a more

difficult snowplow problem because now a transcendental

equation must be solved numerically to find the value of

k. (Answer: 4:27 A.M.)

68. Brachistochrone Figure 1.4.11 shows a bead sliding

down a frictionless wire from point P to point Q. The
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brachistochrone problem asks what shape the wire should

be in order to minimize the bead’s time of descent from

P to Q. In June of 1696, John Bernoulli proposed this

problem as a public challenge, with a 6-month deadline

(later extended to Easter 1697 at George Leibniz’s re-

quest). Isaac Newton, then retired from academic life

and serving as Warden of the Mint in London, received

Bernoulli’s challenge on January 29, 1697. The very next

day he communicated his own solution—the curve of min-

imal descent time is an arc of an inverted cycloid—to the

Royal Society of London. For a modern derivation of this

result, suppose the bead starts from rest at the origin P and

let y D y.x/ be the equation of the desired curve in a coor-

dinate system with the y-axis pointing downward. Then a

mechanical analogue of Snell’s law in optics implies that

sin˛

v
D constant, (i)

where ˛ denotes the angle of deflection (from the verti-

cal) of the tangent line to the curve—so cot˛ D y0.x/

(why?)—and v D
p
2gy is the bead’s velocity when it has

descended a distance y vertically (from KE D 1

2
mv2 D

mgy D �PE).

Q

P

FIGURE 1.4.11. A bead sliding down a

wire—the brachistochrone problem.

(a) First derive from Eq. (i) the differential equation

dy

dx
D

s

2a � y

y
; (ii)

where a is an appropriate positive constant.

(b) Substitute y D 2a sin2 t , dy D 4a sin t cos t dt in (ii)

to derive the solution

x D a.2t � sin 2t/; y D a.1 � cos 2t/ (iii)

for which t D y D 0 when x D 0. Finally, the substi-

tution of � D 2t in (iii) yields the standard parametric

equations x D a.� � sin �/, y D a.1 � cos �/ of the

cycloid that is generated by a point on the rim of a

circular wheel of radius a as it rolls along the x-axis.

[See Example 5 in Section 9.4 of Edwards and Pen-

ney, Calculus: Early Transcendentals, 7th edition,

Hoboken, NJ: Pearson, 2008.]

69. Hanging cable Suppose a uniform flexible cable is sus-

pended between two points .˙L;H/ at equal heights

located symmetrically on either side of the x-axis

(Fig. 1.4.12). Principles of physics can be used to show

that the shape y D y.x/ of the hanging cable satisfies the

differential equation

a
d2y

dx2
D

s

1C

�

dy

dx

�

2

;

where the constant a D T=� is the ratio of the cable’s ten-

sion T at its lowest point x D 0 (where y0.0/ D 0) and its

(constant) linear density �. If we substitute v D dy=dx,

dv=dx D d2y=dx2 in this second-order differential equa-

tion, we get the first-order equation

a
dv

dx
D

p

1C v2:

Solve this differential equation for y0.x/ D v.x/ D

sinh.x=a/. Then integrate to get the shape function

y.x/ D a cosh
�x

a

�

C C

of the hanging cable. This curve is called a catenary, from

the Latin word for chain.

y0

Sag: H − y0

y

(−L, H) (L, H)

x

FIGURE 1.4.12. The catenary.

Go to goo.gl/u1nPXF to
download this application’s
computing resources including
Maple/Mathematica/MATLAB/
Python.

1.4 Application The Logistic Equation

As in Eq. (7) of this section, the solution of a separable differential equation reduces

to the evaluation of two indefinite integrals. It is tempting to use a symbolic algebra

system for this purpose. We illustrate this approach using the logistic differential

equation

dx

dt
D ax � bx2 (1)
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that models a population x.t/with births (per unit time) proportional to x and deaths

proportional to x2. Here we concentrate on the solution of Eq. (1) and defer discus-

sion of population applications to Section 2.1.

If a D 0:01 and b D 0:0001, for instance, Eq. (1) is

dx

dt
D .0:01/x � .0:0001/x2

D
x

10000
.100 � x/: (2)

Separation of variables leads to
Z

1

x.100 � x/
dx D

Z

1

10000
dt D

t

10000
C C: (3)

We can evaluate the integral on the left by using the Maple command
FIGURE 1.4.13. TI-89 screen
showing the integral in Eq. (3).

int(1/(x�(100 -- x)), x);

the Mathematica command

Integrate[ 1/(x�(100 -- x)), x ]

or the MATLAB command

syms x; int(1/(x�(100 -- x)))

Alternatively, we could use the freely available WolframjAlpha system

(www.wolframalpha.com); the query

integrate 1/(x�(100 -- x))

produces the output shown in Fig. 1.4.14.

FIGURE 1.4.14. WolframjAlpha
display showing the integral in Eq. (3).
Screenshot of WolframjAlpha output.
Used by permission of WolframAlpha
LLC.

Any computer algebra system gives a result of the form

1

100
ln x �

1

100
ln.x � 100/ D

t

10000
C C (4)

equivalent to the graphing calculator result shown in Fig. 1.4.13.

You can now apply the initial condition x.0/ D x0, combine logarithms, and

finally exponentiate to solve Eq. (4) for the particular solution

x.t/ D
100x0e

t=100

100 � x0 C x0et=100

(5)

of Eq. (2). The slope field and solution curves shown in Fig. 1.4.15 suggest that,

whatever is the initial value x0, the solution x.t/ approaches 100 as t ! C1. Can

t

x

0

0
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200

FIGURE 1.4.15. Slope field and
solution curves for

x
0 D .0:01/x � .0:0001/x

2.

you use Eq. (5) to verify this conjecture?

INVESTIGATION: For your own personal logistic equation, take a D m=n and

b D 1=n in Eq. (1), with m and n being the largest two distinct digits (in either

order) in your student ID number.

(a) First generate a slope field for your differential equation and include a sufficient

number of solution curves that you can see what happens to the population as

t !C1. State your inference plainly.

(b) Next use a computer algebra system to solve the differential equation symboli-

cally; then use the symbolic solution to find the limit of x.t/ as t ! C1. Was

your graphically based inference correct?

(c) Finally, state and solve a numerical problem using the symbolic solution. For

instance, how long does it take x to grow from a selected initial value x0 to a

given target value x1?

www.wolframalpha.com
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1.5 Linear First-Order Equations

We turn now to another important method for solving first-order differential equa-

tions that rests upon the idea of “integrating both sides.” In Section 1.4 we saw that

the first step in solving a separable differential equation is to multiply and/or divide

both sides of the equation by whatever is required in order to separate the variables.

For instance, to solve the equation

dy

dx
D 2xy .y > 0/; (1)

we divide both sides by y (and, so to speak, multiply by the differential dx) to get

dy

y
D 2x dx:

Integrating both sides then gives the general solution lny D x2 C C .

There is another way to approach the differential equation in (1), however,

which—while leading to the same general solution—opens the door not only to the

solution method discussed in this section, but to other methods of solving differen-

tial equations as well. What is common to all these methods is the idea that if a

given equation is difficult to solve, then perhaps multiplying both sides of the equa-

tion by a suitably chosen function of x and/or y may result in an equivalent equation

that can be solved more easily. Thus, in Eq. (1), rather than divide both sides by y,

we could instead multiply both sides by the factor 1=y. (Of course algebraically

these two are the same, but we are highlighting the fact that often the crucial first

step in solving a differential equation is to multiply both of its sides by the “right”

function.) Applying this to Eq. (1) (while leaving dx in place) gives

1

y
�
dy

dx
D 2x: (2)

The significance of Eq. (2) is that, unlike Eq. (1), both sides are recognizable as a

derivative. By the chain rule, the left-hand side of Eq. (2) can be written as

1

y
�
dy

dx
D Dx.lny/;

and of course the right hand side of Eq. (2) isDx.x
2/. Thus each side of Eq. (2) can

be viewed as a derivative with respect to x:

Dx.lny/ D Dx.x
2/:

Integrating both sides with respect to x gives the same general solution lny D x2C

C that we found before.

We were able to solve the differential equation in Eq. (1), then, by first multi-

plying both of its sides by a factor—known as an integrating factor—chosen so that

both sides of the resulting equation could be recognized as a derivative. Solving the

equation then becomes simply a matter of integrating both sides. More generally,

an integrating factor for a differential equation is a function �.x; y/ such that mul-

tiplication of each side of the differential equation by �.x; y/ yields an equation in

which each side is recognizable as a derivative. In some cases integrating factors

involve both of the variables x and y; however, our second solution of Eq. (1) was

based on the integrating factor �.y/ D 1=y, which depends only on y. Our goal
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in this section is to show how integrating factors can be used to solve a broad and

important category of first-order differential equations.

A linear first-order equation is a differential equation of the form

dy

dx
C P.x/y D Q.x/: (3)

We assume that the coefficient functions P.x/ andQ.x/ are continuous on some in-

terval on the x-axis. (Can you see that the differential equation in Eq. (1), in addition

to being separable, is also linear? Is every separable equation also linear?) Assum-

ing that the necessary antiderivatives can be found, the general linear equation in (3)

can always be solved by multiplying by the integrating factor

�.x/ D e
R

P.x/ dx : (4)

The result is

e
R

P.x/ dx
dy

dx
C P.x/e

R

P.x/ dxy D Q.x/e
R

P.x/ dx : (5)

Because

Dx

�Z

P.x/ dx

�

D P.x/;

the left-hand side is the derivative of the product y.x/ � e
R

P.x/ dx , so Eq. (5) is equiv-

alent to

Dx

h

y.x/ � e
R

P.x/ dx

i

D Q.x/e
R

P.x/ dx :

Integration of both sides of this equation gives

y.x/e
R

P.x/ dx
D

Z

�

Q.x/e
R

P.x/ dx

�

dx C C:

Finally, solving for y, we obtain the general solution of the linear first-order equa-

tion in (3):

y.x/ D e�
R

P.x/ dx

�Z

�

Q.x/e
R

P.x/ dx

�

dx C C

�

: (6)

This formula should not be memorized. In a specific problem it generally is

simpler to use the method by which we developed the formula. That is, in order

to solve an equation that can be written in the form in Eq. (3) with the coefficient

functions P.x/ and Q.x/ displayed explicitly, you should attempt to carry out the

following steps.

METHOD: SOLUTION OF LINEAR FIRST-ORDER EQUATIONS

1. Begin by calculating the integrating factor �.x/ D e
R

P.x/ dx .

2. Then multiply both sides of the differential equation by �.x/.

3. Next, recognize the left-hand side of the resulting equation as the derivative

of a product:

Dx Œ�.x/y.x/� D �.x/Q.x/:

4. Finally, integrate this equation,

�.x/y.x/ D

Z

�.x/Q.x/ dx C C;

then solve for y to obtain the general solution of the original differential equa-

tion.
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Remark 1 Given an initial condition y.x0/ D y0, you can (as usual) substitute x D x0 and

y D y0 into the general solution and solve for the value of C yielding the particular solution

that satisfies this initial condition.

Remark 2 You need not supply explicitly a constant of integration when you find the

integrating factor �.x/. For if we replace
Z

P.x/ dx with

Z

P.x/ dx CK

in Eq. (4), the result is

�.x/ D eKC
R

P.x/ dx
D eKe

R

P.x/ dx :

But the constant factor eK does not affect materially the result of multiplying both sides of

the differential equation in (3) by �.x/, so we might as well take K D 0. You may there-

fore choose for
R

P.x/ dx any convenient antiderivative of P.x/, without bothering to add a

constant of integration.

Example 1 Solve the initial value problem

dy

dx
� y D 11

8
e�x=3; y.0/ D �1:

Solution Here we have P.x/ � �1 and Q.x/ D 11

8
e�x=3, so the integrating factor is

�.x/ D e
R

.�1/ dx
D e�x :

Multiplication of both sides of the given equation by e�x yields

e�x
dy

dx
� e�xy D 11

8
e�4x=3; (7)

which we recognize as
d

dx

�

e�xy
�

D
11

8
e�4x=3:

Hence integration with respect to x gives

e�xy D

Z

11

8
e�4x=3 dx D �33

32
e�4x=3

C C;

and multiplication by ex gives the general solution

y.x/ D Cex
�

33

32
e�x=3: (8)

Substitution of x D 0 and y D �1 now gives C D 1

32
, so the desired particular solution is

y.x/ D 1

32
ex
�

33

32
e�x=3

D
1

32

�

ex
� 33e�x=3

�

:

Remark Figure 1.5.1 shows a slope field and typical solution curves for Eq. (7), including

the one passing through the point .0;�1/. Note that some solutions grow rapidly in the

positive direction as x increases, while others grow rapidly in the negative direction. The

behavior of a given solution curve is determined by its initial condition y.0/ D y0. The two

types of behavior are separated by the particular solution y.x/D �33

32
e�x=3 for which C D 0

in Eq. (8), so y0 D �
33

32
for the solution curve that is dashed in Fig. 1.5.1. If y0 > �

33

32
,

then C > 0 in Eq. (8), so the term ex eventually dominates the behavior of y.x/, and hence

y.x/! C1 as x ! C1. But if y0 < �
33

32
, then C < 0, so both terms in y.x/ are negative

and therefore y.x/ ! �1 as x ! C1. Thus the initial condition y0 D �
33

32
is critical

in the sense that solutions that start above �33

32
on the y-axis grow in the positive direction,

while solutions that start lower than �33

32
grow in the negative direction as x ! C1. The

interpretation of a mathematical model often hinges on finding such a critical condition that

separates one kind of behavior of a solution from a different kind of behavior.

0 1 2 3 4 5

0

1

2
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y –1
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–3

–4

–1

y = –     exp(–x/3)33

32(0, –1)

FIGURE 1.5.1. Slope field and
solution curves for
y

0 D y C 11
8

e
�x=3.
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Example 2 Find a general solution of

.x2
C 1/

dy

dx
C 3xy D 6x: (9)

Solution After division of both sides of the equation by x2 C 1, we recognize the result

dy

dx
C

3x

x2 C 1
y D

6x

x2 C 1

as a first-order linear equation with P.x/ D 3x=.x2 C 1/ and Q.x/ D 6x=.x2 C 1/. Multipli-

cation by

�.x/ D exp

�Z

3x

x2 C 1
dx

�

D exp
�

3

2
ln.x2

C 1/
�

D .x2
C 1/3=2

yields

.x2
C 1/3=2

dy

dx
C 3x.x2

C 1/1=2y D 6x.x2
C 1/1=2;

and thus

Dx

h

.x2
C 1/3=2y

i

D 6x.x2
C 1/1=2:

Integration then yields

.x2
C 1/3=2y D

Z

6x.x2
C 1/1=2 dx D 2.x2

C 1/3=2
C C:

Multiplication of both sides by .x2 C 1/�3=2 gives the general solution

y.x/ D 2C C.x2
C 1/�3=2: (10)

Remark Figure 1.5.2 shows a slope field and typical solution curves for Eq. (9). Note

that, as x ! C1, all other solution curves approach the constant solution curve y.x/ �

2 that corresponds to C D 0 in Eq. (10). This constant solution can be described as an

equilibrium solution of the differential equation, because y.0/ D 2 implies that y.x/ D 2 for

all x (and thus the value of the solution remains forever where it starts). More generally, the

word “equilibrium” connotes “unchanging,” so by an equilibrium solution of a differential

equation is meant a constant solution y.x/ � c, for which it follows that y0.x/� 0. Note that

substitution of y0 D 0 in the differential equation (9) yields 3xy D 6x, so it follows that y D 2

if x 6D 0. Hence we see that y.x/ � 2 is the only equilibrium solution of this differential

equation, as seems visually obvious in Fig. 1.5.2.
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FIGURE 1.5.2. Slope field and
solution curves for the differential
equation in Eq. (9).

A Closer Look at the Method

The preceding derivation of the solution in Eq. (6) of the linear first-order equation

y0CPy DQ bears closer examination. Suppose that the coefficient functions P.x/

and Q.x/ are continuous on the (possibly unbounded) open interval I. Then the

antiderivatives
Z

P.x/ dx and

Z

�

Q.x/e
R

P.x/ dx

�

dx

exist on I. Our derivation of Eq. (6) shows that if y D y.x/ is a solution of Eq. (3)

on I, then y.x/ is given by the formula in Eq. (6) for some choice of the constant

C . Conversely, you may verify by direct substitution (Problem 31) that the function

y.x/ given in Eq. (6) satisfies Eq. (3). Finally, given a point x0 of I and any num-

ber y0, there is—as previously noted—a unique value of C such that y.x0/ D y0.

Consequently, we have proved the following existence-uniqueness theorem.
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THEOREM 1 The Linear First-Order Equation

If the functions P.x/ and Q.x/ are continuous on the open interval I containing

the point x0, then the initial value problem

dy

dx
C P.x/y D Q.x/; y.x0/ D y0 (11)

has a unique solution y.x/ on I, given by the formula in Eq. (6) with an appro-

priate value of C .

Remark 1 Theorem 1 gives a solution on the entire interval I for a linear differential

equation, in contrast with Theorem 1 of Section 1.3, which guarantees only a solution on a

possibly smaller interval.

Remark 2 Theorem 1 tells us that every solution of Eq. (3) is included in the general solu-

tion given in Eq. (6). Thus a linear first-order differential equation has no singular solutions.

Remark 3 The appropriate value of the constant C in Eq. (6)—as needed to solve the

initial value problem in Eq. (11)—can be selected “automatically” by writing

�.x/ D exp

�Z

x

x0

P.t/ dt

�

;

y.x/ D
1

�.x/

�

y0 C

Z

x

x0

�.t/Q.t/ dt

�

:

(12)

The indicated limits x0 and x effect a choice of indefinite integrals in Eq. (6) that guarantees

in advance that �.x0/ D 1 and that y.x0/ D y0 (as you can verify directly by substituting

x D x0 in Eq. (12)).

Example 3 Solve the initial value problem

x2
dy

dx
C xy D sin x; y.1/ D y0: (13)

Solution Division by x2 gives the linear first-order equation

dy

dx
C
1

x
y D

sin x

x2

with P.x/ D 1=x and Q.x/ D .sin x/=x2. With x0 D 1 the integrating factor in (12) is

�.x/ D exp

�Z

x

1

1

t
dt

�

D exp.ln x/ D x;

so the desired particular solution is given by

y.x/ D
1

x

�

y0 C

Z

x

1

sin t

t
dt

�

: (14)

In accord with Theorem 1, this solution is defined on the whole positive x-axis.

Comment In general, an integral such as the one in Eq. (14) would (for given x) need to

be approximated numerically—using Simpson’s rule, for instance—to find the value y.x/ of

the solution at x. In this case, however, we have the sine integral function

Si.x/ D

Z

x

0

sin t

t
dt;
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which appears with sufficient frequency in applications that its values have been tabulated. A

good set of tables of special functions is Abramowitz and Stegun, Handbook of Mathematical

Functions (New York: Dover, 1965). Then the particular solution in Eq. (14) reduces to

y.x/ D
1

x

"

y0 C

Z

x

0

sin t

t
dt �

Z

1

0

sin t

t
dt

#

D
1

x
Œy0 C Si.x/ � Si.1/� : (15)

The sine integral function is available in most scientific computing systems and can be used

to plot typical solution curves defined by Eq. (15). Figure 1.5.3 shows a selection of solution

curves with initial values y.1/ D y0 ranging from y0 D �3 to y0 D 3. It appears that on

each solution curve, y.x/! 0 as x ! C1, and this is in fact true because the sine integral

function is bounded.

3
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FIGURE 1.5.3. Typical solution
curves defined by Eq. (15). In the sequel we will see that it is the exception—rather than the rule—when a

solution of a differential equation can be expressed in terms of elementary functions.

We will study various devices for obtaining good approximations to the values of

the nonelementary functions we encounter. In Chapter 2 we will discuss numerical

integration of differential equations in some detail.

Mixture Problems

As a first application of linear first-order equations, we consider a tank containing

a solution—a mixture of solute and solvent—such as salt dissolved in water. There

is both inflow and outflow, and we want to compute the amount x.t/ of solute in

the tank at time t , given the amount x.0/ D x0 at time t D 0. Suppose that solution

with a concentration of ci grams of solute per liter of solution flows into the tank

at the constant rate of ri liters per second, and that the solution in the tank—kept

thoroughly mixed by stirring—flows out at the constant rate of ro liters per second.

To set up a differential equation for x.t/, we estimate the change �x in x

during the brief time interval Œt; t C �t�. The amount of solute that flows into the

tank during �t seconds is rici �t grams. To check this, note how the cancellation

of dimensions checks our computations:

�

ri
liters

second

�

�

ci

grams

liter

�

.�t seconds/

yields a quantity measured in grams.

The amount of solute that flows out of the tank during the same time interval

depends on the concentration co.t/ of solute in the solution at time t . But as noted

in Fig. 1.5.4, co.t/D x.t/=V .t/, where V.t/ denotes the volume (not constant unless

ri D ro) of solution in the tank at time t . Then

Output:

r
o
  L /s,

c
o
  g/L

x

V

Amount x(t)

Volume V(t)

Concentration c
o
(t) =

Input: r
i 
 L/s,  c

i
 g/L

FIGURE 1.5.4. The single-tank
mixture problem.

�x D fgrams inputg � fgrams outputg � rici �t � roco�t:

We now divide by �t :
�x

�t
� rici � roco:

Finally, we take the limit as�t ! 0; if all the functions involved are continuous and

x.t/ is differentiable, then the error in this approximation also approaches zero, and

we obtain the differential equation

dx

dt
D rici � roco; (16)
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in which ri , ci , and ro are constants, but co denotes the variable concentration

co.t/ D
x.t/

V .t/
(17)

of solute in the tank at time t . Thus the amount x.t/ of solute in the tank satisfies

the differential equation
dx

dt
D rici �

ro

V
x: (18)

If V0DV.0/, then V.t/D V0C .ri �ro/t , so Eq. (18) is a linear first-order differential

equation for the amount x.t/ of solute in the tank at time t .

Important Equation (18) need not be committed to memory. It is the process we used to

obtain that equation—examination of the behavior of the system over a short time interval

Œt; t C�t�—that you should strive to understand, because it is a very useful tool for obtaining

all sorts of differential equations.

Remark It was convenient for us to use g/L mass/volume units in deriving Eq. (18). But

any other consistent system of units can be used to measure amounts of solute and volumes

of solution. In the following example we measure both in cubic kilometers.

Example 4 Mixture problem Assume that Lake Erie has a volume of 480 km3 and that its rate of

inflow (from Lake Huron) and outflow (to Lake Ontario) are both 350 km3 per year. Suppose

that at the time t D 0 (years), the pollutant concentration of Lake Erie—caused by past

industrial pollution that has now been ordered to cease—is five times that of Lake Huron.

If the outflow henceforth is perfectly mixed lake water, how long will it take to reduce the

pollution concentration in Lake Erie to twice that of Lake Huron?

Solution Here we have

V D 480 (km3);

ri D ro D r D 350 (km3=yr);

ci D c (the pollutant concentration of Lake Huron), and

x0 D x.0/ D 5cV;

and the question is this: When is x.t/ D 2cV ? With this notation, Eq. (18) is the separable

equation
dx

dt
D rc �

r

V
x; (19)

which we rewrite in the linear first-order form

dx

dt
C px D q (20)

with constant coefficients p D r=V , q D rc, and integrating factor � D ept . You can either

solve this equation directly or apply the formula in (12). The latter gives

x.t/ D e�pt

�

x0 C

Z

t

0

qept dt

�

D e�pt

�

x0 C
q

p

�

ept
� 1

�

�

D e�rt=V

�

5cV C
rc

r=V

�

ert=V
� 1

�

�

I

x.t/ D cV C 4cVe�rt=V : (21)

To find when x.t/ D 2cV , we therefore need only solve the equation

cV C 4cVe�rt=V
D 2cV for t D

V

r
ln 4 D

480

350
ln 4 � 1.901 (years):



1.5 Linear First-Order Equations 53

Example 5 Mixture problem A 120-gallon (gal) tank initially contains 90 lb of salt dissolved in 90 gal

of water. Brine containing 2 lb=gal of salt flows into the tank at the rate of 4 gal=min, and the

well-stirred mixture flows out of the tank at the rate of 3 gal=min. How much salt does the

tank contain when it is full?

Solution The interesting feature of this example is that, due to the differing rates of inflow and outflow,

the volume of brine in the tank increases steadily with V.t/D 90C t gallons. The change �x

in the amount x of salt in the tank from time t to time t C�t (minutes) is given by

�x � .4/.2/�t � 3

�

x

90C t

�

�t;

so our differential equation is
dx

dt
C

3

90C t
x D 8:

An integrating factor is

�.x/ D exp

�Z

3

90C t
dt

�

D e3 ln.90Ct/
D .90C t /3;

which gives

Dt

h

.90C t /3x
i

D 8.90C t /3I

.90C t /3x D 2.90C t /4 C C:

Substitution of x.0/ D 90 gives C D �.90/4, so the amount of salt in the tank at time t is

x.t/ D 2.90C t / �
904

.90C t /3
:

The tank is full after 30 min, and when t D 30, we have

x.30/ D 2.90C 30/ �
904

1203
� 202 (lb)

of salt in the tank.

1.5 Problems
Find general solutions of the differential equations in Prob-

lems 1 through 25. If an initial condition is given, find the

corresponding particular solution. Throughout, primes denote

derivatives with respect to x.

1. y0 C y D 2, y.0/ D 0 2. y0 � 2y D 3e2x , y.0/D 0

3. y0 C 3y D 2xe�3x 4. y0 � 2xy D ex
2

5. xy0 C 2y D 3x, y.1/ D 5

6. xy0 C 5y D 7x2, y.2/ D 5

7. 2xy0 C y D 10
p
x 8. 3xy0 C y D 12x

9. xy0 � y D x, y.1/ D 7 10. 2xy0 � 3y D 9x3

11. xy0 C y D 3xy, y.1/ D 0

12. xy0 C 3y D 2x5, y.2/ D 1

13. y0 C y D ex , y.0/ D 1

14. xy0 � 3y D x3, y.1/ D 10

15. y0 C 2xy D x, y.0/ D �2

16. y0 D .1 � y/ cos x, y.�/ D 2

17. .1C x/y0 C y D cos x, y.0/ D 1

18. xy0 D 2y C x3 cos x

19. y0 C y cot x D cos x

20. y0 D 1C x C y C xy, y.0/ D 0

21. xy0 D 3y C x4 cos x, y.2�/ D 0

22. y0 D 2xy C 3x2 exp.x2/, y.0/ D 5

23. xy0 C .2x � 3/y D 4x4

24. .x2 C 4/y0 C 3xy D x, y.0/ D 1

25. .x2 C 1/
dy

dx
C 3x3y D 6x exp

�

�
3

2
x2

�

, y.0/ D 1

Solve the differential equations in Problems 26 through 28 by

regarding y as the independent variable rather than x.

26. .1 � 4xy2/
dy

dx
D y3 27. .x C yey/

dy

dx
D 1

28. .1C 2xy/
dy

dx
D 1C y2

29. Express the general solution of dy=dx D 1C 2xy in terms

of the error function

erf.x/ D
2
p
�

Z

x

0

e�t
2

dt:
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30. Express the solution of the initial value problem

2x
dy

dx
D y C 2x cos x; y.1/ D 0

as an integral as in Example 3 of this section.

Problems 31 and 32 illustrate—for the special case of first-

order linear equations—techniques that will be important

when we study higher-order linear equations in Chapter 3.

31. (a) Show that

yc.x/ D Ce
�
R

P.x/ dx

is a general solution of dy=dx C P.x/y D 0. (b) Show

that

yp.x/ D e
�
R

P.x/ dx

�Z

�

Q.x/e
R

P.x/ dx

�

dx

�

is a particular solution of dy=dx C P.x/y D Q.x/.

(c) Suppose that yc.x/ is any general solution of dy=dx C

P.x/y D 0 and that yp.x/ is any particular solution of

dy=dxCP.x/y DQ.x/. Show that y.x/D yc.x/Cyp.x/

is a general solution of dy=dx C P.x/y D Q.x/.

32. (a) Find constants A and B such that yp.x/ D A sin x C

B cos x is a solution of dy=dxC y D 2 sin x. (b) Use the

result of part (a) and the method of Problem 31 to find the

general solution of dy=dx C y D 2 sin x. (c) Solve the

initial value problem dy=dx C y D 2 sin x, y.0/ D 1.

Mixture Problems

Problems 33 through 37 illustrate the application of linear

first-order differential equations to mixture problems.

33. A tank contains 1000 liters (L) of a solution consisting of

100 kg of salt dissolved in water. Pure water is pumped

into the tank at the rate of 5 L=s, and the mixture—kept

uniform by stirring— is pumped out at the same rate. How

long will it be until only 10 kg of salt remains in the tank?

34. Consider a reservoir with a volume of 8 billion cubic

feet (ft3) and an initial pollutant concentration of 0.25%.

There is a daily inflow of 500 million ft3 of water with a

pollutant concentration of 0.05% and an equal daily out-

flow of the well-mixed water in the reservoir. How long

will it take to reduce the pollutant concentration in the

reservoir to 0.10%?

35. Rework Example 4 for the case of Lake Ontario, which

empties into the St. Lawrence River and receives inflow

from Lake Erie (via the Niagara River). The only differ-

ences are that this lake has a volume of 1640 km3 and an

inflow-outflow rate of 410 km3=year.

36. A tank initially contains 60 gal of pure water. Brine

containing 1 lb of salt per gallon enters the tank at

2 gal=min, and the (perfectly mixed) solution leaves the

tank at 3 gal=min; thus the tank is empty after exactly 1 h.

(a) Find the amount of salt in the tank after t minutes.

(b) What is the maximum amount of salt ever in the tank?

37. A 400-gal tank initially contains 100 gal of brine contain-

ing 50 lb of salt. Brine containing 1 lb of salt per gallon

enters the tank at the rate of 5 gal=s, and the well-mixed

brine in the tank flows out at the rate of 3 gal=s. How

much salt will the tank contain when it is full of brine?

38. Two tanks Consider the cascade of two tanks shown in

Fig. 1.5.5, with V1 D 100 (gal) and V2 D 200 (gal) the

volumes of brine in the two tanks. Each tank also initially

contains 50 lb of salt. The three flow rates indicated in the

figure are each 5 gal=min, with pure water flowing into

tank 1. (a) Find the amount x.t/ of salt in tank 1 at time

t . (b) Suppose that y.t/ is the amount of salt in tank 2 at

time t . Show first that

dy

dt
D

5x

100
�
5y

200
;

and then solve for y.t/, using the function x.t/ found in

part (a). (c) Finally, find the maximum amount of salt

ever in tank 2.

Tank 1

Volume V1

Amount x

Tank 2

Volume V2

Amount y

FIGURE 1.5.5. A cascade of two tanks.

39. Two tanks Suppose that in the cascade shown in

Fig. 1.5.5, tank 1 initially contains 100 gal of pure ethanol

and tank 2 initially contains 100 gal of pure water. Pure

water flows into tank 1 at 10 gal=min, and the other two

flow rates are also 10 gal=min. (a) Find the amounts x.t/

and y.t/ of ethanol in the two tanks at time t = 0. (b) Find

the maximum amount of ethanol ever in tank 2.

40. Multiple tanks A multiple cascade is shown in

Fig. 1.5.6. At time t D 0, tank 0 contains 1 gal of ethanol

and 1 gal of water; all the remaining tanks contain 2 gal

of pure water each. Pure water is pumped into tank 0 at

1 gal=min, and the varying mixture in each tank is pumped

into the one below it at the same rate. Assume, as usual,

that the mixtures are kept perfectly uniform by stirring.

Let xn.t/ denote the amount of ethanol in tank n at time t .
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Tank 2

Tank 1

Tank n

Tank 0

FIGURE 1.5.6. A multiple cascade.

(a) Show that x0.t/ D e�t=2. (b) Show by induction on

n that

xn.t/ D
tne�t=2

nŠ 2n
for n � 0.

(c) Show that the maximum value of xn.t/ for n > 0 is

Mn D xn.2n/D n
ne�n=nŠ. (d) Conclude from Stirling’s

approximation nŠ� nne�n
p
2�n that Mn � .2�n/

�1=2.

41. Retirement savings A 30-year-old woman accepts an

engineering position with a starting salary of $30,000

per year. Her salary S.t/ increases exponentially, with

S.t/D 30et=20 thousand dollars after t years. Meanwhile,

12% of her salary is deposited continuously in a retirement

account, which accumulates interest at a continuous an-

nual rate of 6%. (a) Estimate�A in terms of�t to derive

the differential equation satisfied by the amount A.t/ in

her retirement account after t years. (b) Compute A.40/,

the amount available for her retirement at age 70.

42. Falling hailstone Suppose that a falling hailstone with

density ı D 1 starts from rest with negligible radius r D 0.

Thereafter its radius is r D kt (k is a constant) as it grows

by accretion during its fall. Use Newton’s second law—

according to which the net force F acting on a possibly

variable mass m equals the time rate of change dp=dt of

its momentum p D mv—to set up and solve the initial

value problem

d

dt
.mv/ D mg; v.0/ D 0;

where m is the variable mass of the hailstone, v D dy=dt

is its velocity, and the positive y-axis points downward.

Then show that dv=dt D g=4. Thus the hailstone falls as

though it were under one-fourth the influence of gravity.

43. Figure 1.5.7 shows a slope field and typical solution

curves for the equation y0 D x � y. (a) Show that ev-

ery solution curve approaches the straight line y D x � 1

as x ! C1. (b) For each of the five values y1 D 3:998,

3:999, 4:000, 4:001, and 4.002, determine the initial value

y0 (accurate to four decimal places) such that y.5/ D y1

for the solution satisfying the initial condition y.�5/D y0.

0
x

y 0

–10

–8

–4

–2

–6

2

4

8

10

6

–5 5

FIGURE 1.5.7. Slope field and solution curves
for y

0 D x � y.

44. Figure 1.5.8 shows a slope field and typical solution

curves for the equation y0 D x C y. (a) Show that ev-

ery solution curve approaches the straight line y D�x � 1

as x ! �1. (b) For each of the five values y1 D �10,

�5, 0, 5, and 10, determine the initial value y0 (accurate to

five decimal places) such that y.5/ D y1 for the solution

satisfying the initial condition y.�5/ D y0.

0
x

y 0

–10

–8

–4

–2

–6

2

4

8

10

6

–5 5

FIGURE 1.5.8. Slope field and solution curves

for y
0 D x C y.

Polluted Reservoir

Problems 45 and 46 deal with a shallow reservoir that has

a one-square-kilometer water surface and an average water

depth of 2 meters. Initially it is filled with fresh water, but at

time t D 0 water contaminated with a liquid pollutant begins

flowing into the reservoir at the rate of 200 thousand cubic

meters per month. The well-mixed water in the reservoir flows

out at the same rate. Your first task is to find the amount x.t/ of

pollutant (in millions of liters) in the reservoir after t months.

45. The incoming water has a pollutant concentration of

c.t/ D 10 liters per cubic meter (L=m3). Verify that

the graph of x.t/ resembles the steadily rising curve in
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Fig. 1.5.9, which approaches asymptotically the graph of

the equilibrium solution x.t/ � 20 that corresponds to the

reservoir’s long-term pollutant content. How long does it

take the pollutant concentration in the reservoir to reach

10 L=m3?

46. The incoming water has pollutant concentration c.t/ D

10.1 C cos t / L=m3 that varies between 0 and 20, with

an average concentration of 10 L=m3 and a period of os-

cillation of slightly over 61

4
months. Does it seem pre-

dictable that the lake’s pollutant content should ultimately

oscillate periodically about an average level of 20 million

liters? Verify that the graph of x.t/ does, indeed, resemble

the oscillatory curve shown in Fig. 1.5.9. How long does

it take the pollutant concentration in the reservoir to reach

10 L=m3?

10 20 30 40 50 60

5

10

15

20

25

t

x

x = 20

Problem 46

Problem 45

FIGURE 1.5.9. Graphs of solutions in
Problems 45 and 46.

Go to goo.gl/QVuenz to
download this application’s
computing resources including
Maple/Mathematica/MATLAB/
Python.

1.5 Application Indoor Temperature Oscillations

For an interesting applied problem that involves the solution of a linear differen-

tial equation, consider indoor temperature oscillations that are driven by outdoor

temperature oscillations of the form

A.t/ D a0 C a1 cos!t C b1 sin!t: (1)

If ! D �=12, then these oscillations have a period of 24 hours (so that the cycle of

outdoor temperatures repeats itself daily) and Eq. (1) provides a realistic model for

the temperature outside a house on a day when no change in the overall day-to-day

weather pattern is occurring. For instance, for a typical July day in Athens, Georgia

with a minimum temperature of 70ıF when t D 4 (4 A.M.) and a maximum of 90ıF

when t D 16 (4 P.M.), we would take

A.t/ D 80 � 10 cos!.t � 4/ D 80 � 5 cos!t � 5
p
3 sin!t: (2)

We derived Eq. (2) by using the identity cos.˛ � ˇ/ D cos˛ cosˇ C sin˛ sinˇ to

get a0 D 80, a1 D �5, and b1 D �5
p
3 in Eq. (1).

If we write Newton’s law of cooling (Eq. (3) of Section 1.1) for the corre-

sponding indoor temperature u.t/ at time t , but with the outside temperature A.t/

given by Eq. (1) instead of a constant ambient temperature A, we get the linear

first-order differential equation

du

dt
D �k.u � A.t//I

that is,

du

dt
C ku D k.a0 C a1 cos!t C b1 sin!t/ (3)

with coefficient functions P.t/� k andQ.t/D kA.t/. Typical values of the propor-

tionality constant k range from 0:2 to 0:5 (although k might be greater than 0:5 for

a poorly insulated building with open windows, or less than 0:2 for a well-insulated

building with tightly sealed windows).
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SCENARIO: Suppose that our air conditioner fails at time t0 D 0 one midnight,

and we cannot afford to have it repaired until payday at the end of the month. We

therefore want to investigate the resulting indoor temperatures that we must endure

for the next several days.

Begin your investigation by solving Eq. (3) with the initial condition u.0/ D

u0 (the indoor temperature at the time of the failure of the air conditioner). You

may want to use the integral formulas in 49 and 50 of the endpapers, or possibly a

computer algebra system. You should get the solution

u.t/ D a0 C c0e
�kt
C c1 cos!t C d1 sin!t; (4)

where

c0 D u0 � a0 �
k2a1 � k!b1

k2 C !2
;

c1 D
k2a1 � k!b1

k2 C !2
; d1 D

k!a1 C k
2b1

k2 C !2

with ! D �=12.

With a0 D 80, a1 D �5, b1 D �5
p
3 (as in Eq. (2)), ! D �=12, and k D 0:2

(for instance), this solution reduces (approximately) to

u.t/ D 80C e�t=5 .u0 � 82:3351/C .2:3351/ cos
�t

12
� .5:6036/ sin

�t

12
: (5)

Observe first that the “damped” exponential term in Eq. (5) approaches zero

as t !C1, leaving the long-term “steady periodic” solution

usp.t/ D 80C .2:3351/ cos
�t

12
� .5:6036/ sin

�t

12
: (6)

Consequently, the long-term indoor temperatures oscillate every 24 hours around

the same average temperature 80ıF as the average outdoor temperature.

Figure 1.5.10 shows a number of solution curves corresponding to possible

0 20 3010 40
t (h)

u
 (

d
eg

)

100

95

90

85

80

75

70

65

60
t = 12 t = 24 t = 36

u0 = 95

u0 = 65

FIGURE 1.5.10. Solution curves
given by Eq. (5) with
u0 D 65; 68; 71; : : : ; 92; 95.

initial temperatures u0 ranging from 65ıF to 95ıF. Observe that—whatever the

initial temperature—the indoor temperature “settles down” within about 18 hours

to a periodic daily oscillation. But the amplitude of temperature variation is less

indoors than outdoors. Indeed, using the trigonometric identity mentioned earlier,

Eq. (6) can be rewritten (verify this!) as

u.t/ D 80 � .6:0707/ cos

�

�t

12
� 1:9656

�

D 80 � .6:0707/ cos
�

12
.t � 7:5082/: (7)

Do you see that this implies that the indoor temperature varies between a minimum

of about 74ıF and a maximum of about 86ıF?

Finally, comparison of Eqs. (2) and (7) indicates that the indoor temperature

lags behind the outdoor temperature by about 7:5082 � 4 � 3:5 hours, as illustrated

in Fig. 1.5.11. Thus the temperature inside the house continues to rise until about

7:30 P.M. each evening, so the hottest part of the day inside is early evening rather

than late afternoon (as outside).
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Outdoor

temperature4 P.M.

Indoor

temperature

7:30 P.M.

FIGURE 1.5.11. Comparison of
indoor and outdoor temperature
oscillations.
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For a personal problem to investigate, carry out a similar analysis using av-

erage July daily maximum=minimum figures for your own locale and a value of k

appropriate to your own home. You might also consider a winter day instead of

a summer day. (What is the winter-summer difference for the indoor temperature

problem?) You may wish to explore the use of available technology both to solve

the differential equation and to graph its solution for the indoor temperature in com-

parison with the outdoor temperature.

1.6 Substitution Methods and Exact Equations

The first-order differential equations we have solved in the previous sections have

all been either separable or linear. But many applications involve differential equa-

tions that are neither separable nor linear. In this section we illustrate (mainly with

examples) substitution methods that sometimes can be used to transform a given

differential equation into one that we already know how to solve.

For instance, the differential equation

dy

dx
D f .x; y/; (1)

with dependent variable y and independent variable x, may contain a conspicuous

combination

v D ˛.x; y/ (2)

of x and y that suggests itself as a new independent variable v. Thus the differential

equation
dy

dx
D .x C y C 3/2

practically demands the substitution v D x C y C 3 of the form in Eq. (2).

If the substitution relation in Eq. (2) can be solved for

y D ˇ.x; v/; (3)

then application of the chain rule—regarding v as an (unknown) function of x—

yields
dy

dx
D
@ˇ

@x

dx

dx
C
@ˇ

@v

dv

dx
D ˇx C ˇv

dv

dx
; (4)

where the partial derivatives @ˇ=@x D ˇx.x; v/ and @ˇ=@v D ˇv.x; v/ are known

functions of x and v. If we substitute the right-hand side in (4) for dy=dx in Eq. (1)

and then solve for dv=dx, the result is a new differential equation of the form

dv

dx
D g.x; v/ (5)

with new dependent variable v. If this new equation is either separable or linear,

then we can apply the methods of preceding sections to solve it.

If v D v.x/ is a solution of Eq. (5), then y D ˇ.x; v.x// will be a solution of

the original Eq. (1). The trick is to select a substitution such that the transformed

Eq. (5) is one we can solve. Even when possible, this is not always easy; it may

require a fair amount of ingenuity or trial and error.

Example 1 Solve the differential equation
dy

dx
D .x C y C 3/2:
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Solution As indicated earlier, let’s try the substitution

v D x C y C 3I that is, y D v � x � 3:

Then
dy

dx
D
dv

dx
� 1;

so the transformed equation is
dv

dx
D 1C v2:

This is a separable equation, and we have no difficulty in obtaining its solution

x D

Z

dv

1C v2
D tan�1 v C C:

So v D tan.x � C/. Because v D x C y C 3, the general solution of the original equation

dy=dx D .x C y C 3/2 is x C y C 3 D tan.x � C/; that is,

y.x/ D tan.x � C/ � x � 3:

Remark Figure 1.6.1 shows a slope field and typical solution curves for the differential

equation of Example 1. We see that, although the function f .x; y/ D .x C y C 3/2 is contin-

uously differentiable for all x and y, each solution is continuous only on a bounded interval.

In particular, because the tangent function is continuous on the open interval .��=2; �=2/,

the particular solution with arbitrary constant value C is continuous on the interval where

��=2 < x � C < �=2; that is, C � �=2 < x < C C �=2. This situation is fairly typical of non-

linear differential equations, in contrast with linear differential equations, whose solutions

are continuous wherever the coefficient functions in the equation are continuous.
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FIGURE 1.6.1. Slope field and
solution curves for
y

0 D .x C y C 3/
2.

Example 1 illustrates the fact that any differential equation of the form

dy

dx
D F.ax C by C c/ (6)

can be transformed into a separable equation by use of the substitution v D ax C

by C c (see Problem 55). The paragraphs that follow deal with other classes of

first-order equations for which there are standard substitutions that are known to

succeed.

Homogeneous Equations

A homogeneous first-order differential equation is one that can be written in the

form
dy

dx
D F

�y

x

�

: (7)

If we make the substitutions

v D
y

x
; y D vx;

dy

dx
D v C x

dv

dx
; (8)

then Eq. (7) is transformed into the separable equation

x
dv

dx
D F.v/ � v:

Thus every homogeneous first-order differential equation can be reduced to an inte-

gration problem by means of the substitutions in (8).



60 Chapter 1 First-Order Differential Equations

Remark A dictionary definition of “homogeneous” is “of a similar kind or nature.” Con-

sider a differential equation of the form

Axmyn
dy

dx
D Bxpyq

C Cxrys ; .�/

whose polynomial coefficient functions are “homogeneous” in the sense that each of their

terms has the same total degree, mC n D p C q D r C s D K. If we divide each side of .�/

by xK , then the result—because xmyn=xmCn D .y=x/n, and so forth—is the equation

A
�y

x

�

n dy

dx
D B

�y

x

�

q

C C
�y

x

�

s

;

which evidently can be written (by another division) in the form of Eq. (7). More generally,

a differential equation of the form P.x; y/y0 D Q.x; y/ with polynomial coefficients P and

Q is homogeneous if the terms in these polynomials all have the same total degree K. The

differential equation in the following example is of this form with K D 2.

Example 2 Solve the differential equation

2xy
dy

dx
D 4x2

C 3y2:

Solution This equation is neither separable nor linear, but we recognize it as a homogeneous equation

by writing it in the form

dy

dx
D
4x2 C 3y2

2xy
D 2

�

x

y

�

C
3

2

�y

x

�

:

The substitutions in (8) then take the form

y D vx;
dy

dx
D v C x

dv

dx
; v D

y

x
; and

1

v
D
x

y
:

These yield

v C x
dv

dx
D
2

v
C
3

2
v;

and hence

x
dv

dx
D
2

v
C
v

2
D
v2 C 4

2v
I

Z

2v

v2 C 4
dv D

Z

1

x
dxI

ln.v2
C 4/ D ln jxj C lnC:

We apply the exponential function to both sides of the last equation to obtain

v2
C 4 D C jxjI

y2

x2
C 4 D C jxjI

y2
C 4x2

D kx3:

Note that the left-hand side of this equation is necessarily nonnegative. It follows that k > 0

in the case of solutions that are defined for x > 0, while k < 0 for solutions where x < 0.

Indeed, the family of solution curves illustrated in Fig. 1.6.2 exhibits symmetry about both

coordinate axes. Actually, there are positive-valued and negative-valued solutions of the

forms y.x/ D ˙
p
kx3 � 4x2 that are defined for x > 4=k if the constant k is positive, and for

6

–6

x

0 6

0y

–6

–4

2

–2

4

2–4 4–2

FIGURE 1.6.2. Slope field and
solution curves for
2xyy

0 D 4x
2 C 3y

2.

x < 4=k if k is negative.
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Example 3 Solve the initial value problem

x
dy

dx
D y C

q

x2 � y2; y.x0/ D 0;

where x0 > 0.

Solution We divide both sides by x and find that

dy

dx
D
y

x
C

r

1 �
�y

x

�

2

;

so we make the substitutions in (8); we get

v C x
dv

dx
D v C

p

1 � v2 I

Z

1
p
1 � v2

dv D

Z

1

x
dxI

sin�1 v D ln x C C:

We need not write ln jxj because x > 0 near x D x0 > 0. Now note that v.x0/D y.x0/=x0 D 0,

so C D sin�1 0 � ln x0 D � ln x0. Hence

v D
y

x
D sin .ln x � ln x0/ D sin

�

ln
x

x0

�

;

and therefore

y.x/ D x sin

�

ln
x

x0

�

is the desired particular solution. Figure 1.6.3 shows some typical solution curves. Because

of the radical in the differential equation, these solution curves are confined to the indicated

triangular region x = jyj. You can check that the boundary lines y D x and y D �x (for

x > 0) are singular solution curves that consist of points of tangency with the solution curves

0 20 403010 50
x

y = x

y = –x

y

50

40

30

20
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0

–50

–40

–30

–20

–10
(10, 0)

y = x sin(ln(x/10))

y = x sin(ln(x/20))

(20, 0)

FIGURE 1.6.3. Solution curves for

xy
0 D y C

p

x
2 � y

2.

found earlier.

Bernoulli Equations

A first-order differential equation of the form

dy

dx
C P.x/y D Q.x/yn (9)

is called a Bernoulli equation. If either n D 0 or n D 1, then Eq. (9) is linear.

Otherwise, as we ask you to show in Problem 56, the substitution

v D y1�n (10)

transforms Eq. (9) into the linear equation

dv

dx
C .1 � n/P.x/v D .1 � n/Q.x/:

Rather than memorizing the form of this transformed equation, it is more efficient

to make the substitution in Eq. (10) explicitly, as in the following examples.



62 Chapter 1 First-Order Differential Equations

Example 4 If we rewrite the homogeneous equation 2xyy0 D 4x2 C 3y2 of Example 2 in the form

dy

dx
�
3

2x
y D

2x

y
;

we see that it is also a Bernoulli equation with P.x/ D �3=.2x/, Q.x/ D 2x, n D �1, and

1 � n D 2. Hence we substitute

v D y2; y D v1=2; and
dy

dx
D
dy

dv

dv

dx
D
1

2
v�1=2

dv

dx
:

This gives
1

2
v�1=2

dv

dx
�
3

2x
v1=2

D 2xv�1=2:

Then multiplication by 2v1=2 produces the linear equation

dv

dx
�
3

x
v D 4x

with integrating factor � D e
R

.�3=x/ dx D x�3. So we obtain

Dx.x
�3v/ D

4

x2
I

x�3v D �
4

x
C C I

x�3y2
D �

4

x
C C I

y2
D �4x2

C Cx3:

Example 5 The equation

x
dy

dx
C 6y D 3xy4=3

is neither separable nor linear nor homogeneous, but it is a Bernoulli equation with n D 4

3
,

1 � n D �1

3
. The substitutions

v D y�1=3; y D v�3; and
dy

dx
D
dy

dv

dv

dx
D �3v�4

dv

dx

transform it into

�3xv�4
dv

dx
C 6v�3

D 3xv�4:

Division by �3xv�4 yields the linear equation

dv

dx
�
2

x
v D �1

with integrating factor � D e
R

.�2=x/ dx D x�2. This gives

Dx.x
�2v/ D �

1

x2
I x�2v D

1

x
C C I v D x C Cx2

I

and finally,

y.x/ D
1

.x C Cx2/3
:

Example 6 The equation

2xe2y
dy

dx
D 3x4

C e2y (11)
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is neither separable, nor linear, nor homogeneous, nor is it a Bernoulli equation. But we

observe that y appears only in the combinations e2y and Dx.e
2y/ D 2e2yy0. This prompts

the substitution

v D e2y ;
dv

dx
D 2e2y

dy

dx

that transforms Eq. (11) into the linear equation xv0.x/ D 3x4 C v.x/; that is,

dv

dx
�
1

x
v D 3x3:

After multiplying by the integrating factor � D 1=x, we find that

1

x
v D

Z

3x2 dx D x3
C C; so e2y

D v D x4
C Cx;

and hence

y.x/ D 1

2
ln
ˇ

ˇ

ˇ
x4
C Cx

ˇ

ˇ

ˇ
:

Flight Trajectories

Suppose that an airplane departs from the point .a; 0/ located due east of its intended

destination—an airport located at the origin .0; 0/. The plane travels with constant

speed v0 relative to the wind, which is blowing due north with constant speed w.

As indicated in Fig. 1.6.4, we assume that the plane’s pilot maintains its heading

directly toward the origin.

x

y

w
y = f (x)

(a, 0)

v0

FIGURE 1.6.4. The airplane headed
for the origin.

Figure 1.6.5 helps us derive the plane’s velocity components relative to the

ground. They are

dx

dt
D �v0 cos � D �

v0x
p

x2 C y2

;

dy

dt
D �v0 sin � C w D �

v0y
p

x2 C y2

C w:

Hence the trajectory y D f .x/ of the plane satisfies the differential equation

dy

dx
D
dy=dt

dx=dt
D

1

v0x

�

v0y � w
p

x2 C y2

�

: (12)

If we set

x

w

θ

(x, y)

x
2 + y2

y

v0

FIGURE 1.6.5. The components of
the velocity vector of the airplane.

k D
w

v0

; (13)

the ratio of the windspeed to the plane’s airspeed, then Eq. (12) takes the homoge-

neous form
dy

dx
D
y

x
� k

�

1C
�y

x

�

2

�

1=2

: (14)

The substitution y D xv, y0 D v C xv0 then leads routinely to

Z

dv
p
1C v2

D �

Z

k

x
dx: (15)

By trigonometric substitution, or by consulting a table for the integral on the left,

we find that

ln
�

v C
p

1C v2

�

D �k ln x C C; (16)
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and the initial condition v.a/ D y.a/=a D 0 yields

C D k ln a: (17)

As we ask you to show in Problem 68, the result of substituting (17) in Eq. (16) and

then solving for v is

v D
1

2

�

�x

a

��k

�

�x

a

�

k

�

: (18)

Because y D xv, we finally obtain

y.x/ D
a

2

�

�x

a

�

1�k

�

�x

a

�

1Ck

�

(19)

for the equation of the plane’s trajectory.

Note that only in the case k < 1 (that is, w < v0) does the curve in Eq. (19)

pass through the origin, so that the plane reaches its destination. If w D v0 (so that

k D 1), then Eq. (19) takes the form y.x/D 1

2
a.1� x2=a2/, so the plane’s trajectory

approaches the point .0; a=2/ rather than .0; 0/. The situation is even worse if w > v0

y

x
(0, 0)

(0, a/2)

w < v0

w > v0

w = v0

(a, 0)

FIGURE 1.6.6. The three cases
w < v0 (plane velocity exceeds wind
velocity), w D v0 (equal velocities),
and w > v0 (wind is greater).

(so k > 1)—in this case it follows from Eq. (19) that y !C1 as x ! 0. The three

cases are illustrated in Fig. 1.6.6.

Example 7 Flight trajectory If a D 200 mi, v0 D 500 mi=h, and w D 100 mi=h, then k D w=v0 D
1

5
,

so the plane will succeed in reaching the airport at .0; 0/. With these values, Eq. (19) yields

y.x/ D 100

�

� x

200

�

4=5

�

� x

200

�

6=5

�

: (20)

Now suppose that we want to find the maximum amount by which the plane is blown off

course during its trip. That is, what is the maximum value of y.x/ for 0 5 x 5 200?

Solution Differentiation of the function in Eq. (20) yields

dy

dx
D
1

2

�

4

5

� x

200

��1=5

�
6

5

� x

200

�

1=5

�

;

and we readily solve the equation y0.x/ D 0 to obtain .x=200/2=5 D
2

3
. Hence

ymax D 100

"

�

2

3

�

2

�

�

2

3

�

3

#

D
400

27
� 14:81:

Thus the plane is blown almost 15 mi north at one point during its westward journey. (The

graph of the function in Eq. (20) is the one used to construct Fig. 1.6.4. The vertical scale

there is exaggerated by a factor of 4.)

Exact Differential Equations

We have seen that a general solution y.x/ of a first-order differential equation is

often defined implicitly by an equation of the form

F.x; y.x// D C; (21)

where C is a constant. On the other hand, given the identity in (21), we can recover

the original differential equation by differentiating each side with respect to x. Pro-

vided that Eq. (21) implicitly defines y as a differentiable function of x, this gives

the original differential equation in the form

@F

@x
C
@F

@y

dy

dx
D 0I
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that is,

M.x; y/CN.x; y/
dy

dx
D 0; (22)

where M.x; y/ D Fx.x; y/ and N.x; y/ D Fy.x; y/.

It is sometimes convenient to rewrite Eq. (22) in the more symmetric form

M.x; y/ dx CN.x; y/ dy D 0; (23)

called its differential form. The general first-order differential equation y0 D

f .x; y/ can be written in this form with M D f .x; y/ and N � �1. The preceding

discussion shows that, if there exists a function F.x; y/ such that

@F

@x
DM and

@F

@y
D N;

then the equation

F.x; y/ D C

implicitly defines a general solution of Eq. (23). In this case, Eq. (23) is called an

exact differential equation—the differential

dF D Fx dx C Fy dy

of F.x; y/ is exactly M dx CN dy.

Natural questions are these: How can we determine whether the differential

equation in (23) is exact? And if it is exact, how can we find the function F such

that Fx D M and Fy D N ? To answer the first question, let us recall that if the

mixed second-order partial derivatives Fxy and Fyx are continuous on an open set

in the xy-plane, then they are equal: Fxy D Fyx . If Eq. (23) is exact and M and N

have continuous partial derivatives, it then follows that

@M

@y
D Fxy D Fyx D

@N

@x
:

Thus the equation

@M

@y
D
@N

@x
(24)

is a necessary condition that the differential equation M dx C N dy D 0 be exact.

That is, if My 6D Nx , then the differential equation in question is not exact, so we

need not attempt to find a function F.x; y/ such that Fx D M and Fy D N—there

is no such function.

Example 8 The differential equation

y3 dx C 3xy2 dy D 0 (25)

is exact because we can immediately see that the function F.x; y/ D xy3 has the property

that Fx D y
3 and Fy D 3xy

2. Thus a general solution of Eq. (25) is

xy3
D C I

if you prefer, y.x/ D kx�1=3.
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But suppose that we divide each term of the differential equation in Example

8 by y2 to obtain

y dx C 3x dy D 0: (26)

This equation is not exact because, with M D y and N D 3x, we have

@M

@y
D 1 6D 3 D

@N

@x
:

Hence the necessary condition in Eq. (24) is not satisfied.

We are confronted with a curious situation here. The differential equations in

(25) and (26) are essentially equivalent, and they have exactly the same solutions,

yet one is exact and the other is not. In brief, whether a given differential equation

is exact or not is related to the precise formM dxCN dy D 0 in which it is written.

Theorem 1 tells us that (subject to differentiability conditions usually satisfied

in practice) the necessary condition in (24) is also a sufficient condition for exact-

ness. In other words, if My D Nx , then the differential equation M dx CN dy D 0

is exact.

THEOREM 1 Criterion for Exactness

Suppose that the functions M.x; y/ and N.x; y/ are continuous and have contin-

uous first-order partial derivatives in the open rectangle RW a < x < b, c < y < d .

Then the differential equation

M.x; y/ dx CN.x; y/ dy D 0 (23)

is exact in R if and only if
@M

@y
D
@N

@x
(24)

at each point of R. That is, there exists a function F.x; y/ defined on R with

@F=@x DM and @F=@y D N if and only if Eq. (24) holds on R.

Proof: We have seen already that it is necessary for Eq. (24) to hold if

Eq. (23) is to be exact. To prove the converse, we must show that if Eq. (24) holds,

then we can construct a function F.x; y/ such that @F=@x D M and @F=@y D N .

Note first that, for any function g.y/, the function

F.x; y/ D

Z

M.x; y/ dx C g.y/ (27)

satisfies the condition @F=@x D M. (In Eq. (27), the notation
R

M.x; y/ dx denotes

an antiderivative of M.x; y/ with respect to x.) We plan to choose g.y/ so that

N D
@F

@y
D

�

@

@y

Z

M.x; y/ dx

�

C g0.y/

as well; that is, so that

g0.y/ D N �
@

@y

Z

M.x; y/ dx: (28)

To see that there is such a function of y, it suffices to show that the right-hand side in

Eq. (28) is a function of y alone. We can then find g.y/ by integrating with respect
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to y. Because the right-hand side in Eq. (28) is defined on a rectangle, and hence on

an interval as a function of x, it suffices to show that its derivative with respect to x

is identically zero. But

@

@x

�

N �
@

@y

Z

M.x; y/ dx

�

D
@N

@x
�
@

@x

@

@y

Z

M.x; y/ dx

D
@N

@x
�
@

@y

@

@x

Z

M.x; y/ dx

D
@N

@x
�
@M

@y
D 0

by hypothesis. So we can, indeed, find the desired function g.y/ by integrating

Eq. (28). We substitute this result in Eq. (27) to obtain

F.x; y/ D

Z

M.x; y/ dx C

Z �

N.x; y/ �
@

@y

Z

M.x; y/ dx

�

dy (29)

as the desired function with Fx DM and Fy D N .

Instead of memorizing Eq. (29), it is usually better to solve an exact equation

M dxCN dy D 0 by carrying out the process indicated by Eqs. (27) and (28). First

we integrate M.x; y/ with respect to x and write

F.x; y/ D

Z

M.x; y/ dx C g.y/;

thinking of the function g.y/ as an “arbitrary constant of integration” as far as the

variable x is concerned. Then we determine g.y/ by imposing the condition that

@F=@y D N.x; y/. This yields a general solution in the implicit form F.x; y/ D C .

Example 9 Solve the differential equation

.6xy � y3/ dx C .4y C 3x2
� 3xy2/ dy D 0: (30)

Solution LetM.x; y/D 6xy�y3 andN.x; y/D 4yC3x2�3xy2. The given equation is exact because

@M

@y
D 6x � 3y2

D
@N

@x
:

Integrating @F=@x DM.x; y/ with respect to x, we get

F.x; y/ D

Z

.6xy � y3/ dx D 3x2y � xy3
C g.y/:

Then we differentiate with respect to y and set @F=@y D N.x; y/. This yields

@F

@y
D 3x2

� 3xy2
C g0.y/ D 4y C 3x2

� 3xy2;

and it follows that g0.y/ D 4y. Hence g.y/ D 2y2 C C1, and thus

F.x; y/ D 3x2y � xy3
C 2y2

C C1:

Therefore, a general solution of the differential equation is defined implicitly by the equation

3x2y � xy3
C 2y2

D C (31)

(we have absorbed the constant C1 into the constant C ).
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Remark Figure 1.6.7 shows a rather complicated structure of solution curves for the differ-

ential equation of Example 9. The solution satisfying a given initial condition y.x0/ D y0

is defined implicitly by Eq. (31), with C determined by substituting x D x0 and y D y0 in

the equation. For instance, the particular solution satisfying y.0/ D 1 is defined implicitly

by the equation 3x2y � xy3 C 2y2 D 2. The other two special points in the figure—at .0; 0/

and near .0:75; 2:12/—are ones where both coefficient functions in Eq. (30) vanish, so the

theorem of Section 1.3 does not guarantee a unique solution.
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0y

–5 1–4 2–3 3–2 4–1

(0, 1)

FIGURE 1.6.7. Slope field and
solution curves for the exact equation
in Example 9.

Reducible Second-Order Equations

A second-order differential equation involves the second derivative of the unknown

function y.x/, and thus has the general form

F.x; y; y0; y00/ D 0: (32)

If either the dependent variable y or the independent variable x is missing from a

second-order equation, then it is easily reduced by a simple substitution to a first-

order equation that may be solvable by the methods of this chapter.

Dependent variable y missing. If y is missing, then Eq. (32) takes the form

F.x; y0; y00/ D 0: (33)

Then the substitution

p D y0
D
dy

dx
; y00

D
dp

dx
(34)

results in the first-order differential equation

F.x; p; p0/ D 0:

If we can solve this equation for a general solution p.x; C1/ involving an arbitrary

constant C1, then we need only write

y.x/ D

Z

y0.x/ dx D

Z

p.x; C1/ dx C C2

to get a solution of Eq. (33) that involves two arbitrary constants C1 and C2 (as is to

be expected in the case of a second-order differential equation).

Example 10 Solve the equation xy00 C 2y0 D 6x in which the dependent variable y is missing.

Solution The substitution defined in (34) gives the first-order equation

x
dp

dx
C 2p D 6xI that is,

dp

dx
C
2

x
p D 6.

Observing that the equation on the right here is linear, we multiply by its integrating factor

� D exp
�R

.2=x/ dx
�

D e2 ln x D x2 and get

Dx.x
2p/ D 6x2;

x2p D 2x3
C C1;

p D
dy

dx
D 2x C

C1

x2
:

A final integration with respect to x yields the general solution

y.x/ D x2
�
C1

x
C C2

of the second-order equation xy00 C 2y0 D 6x. Solution curves with C1 D 0 but C2 6D 0 are

simply vertical translates of the parabola y D x2 (for which C1 D C2 D 0). Figure 1.6.8

shows this parabola and some typical solution curves with C2 D 0 but C1 6D 0. Solution

curves with C1 and C2 both nonzero are vertical translates of those (other than the parabola)

shown in Fig. 1.6.8.
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FIGURE 1.6.8. Solution curves of

the form y.x/ D x
2 �

C1

x

for

C1 D 0, ˙3, ˙10, ˙20, ˙35, ˙60,
˙100.
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Independent variable x missing. If x is missing, then Eq. (32) takes the form

F.y; y0; y00/ D 0: (35)

Then the substitution

p D y0
D
dy

dx
; y00

D
dp

dx
D
dp

dy

dy

dx
D p

dp

dy
(36)

results in the first-order differential equation

F

�

y; p; p
dp

dy

�

D 0

for p as a function of y. If we can solve this equation for a general solution p.y; C1/

involving an arbitrary constant C1, then (assuming that y0 6D 0) we need only write

x.y/ D

Z

dx

dy
dy D

Z

1

dy=dx
dy D

Z

1

p
dy D

Z

dy

p.y; C1/
C C2:

If the final integral P D
R

.1=p/ dy can be evaluated, the result is an implicit solution

x.y/ D P.y; C1/C C2 of our second-order differential equation.

Example 11 Solve the equation yy00 D .y0/2 in which the independent variable x is missing.

Solution We assume temporarily that y and y0 are both nonnegative, and then point out at the end that

this restriction is unnecessary. The substitution defined in (36) gives the first-order equation

yp
dp

dy
D p2:

Then separation of variables gives

Z

dp

p
D

Z

dy

y
;

lnp D ln y C C (because y > 0 and p D y0 > 0),

p D C1y

where C1 D e
C . Hence

dx

dy
D
1

p
D

1

C1y
;

C1x D

Z

dy

y
D ln y C C2:

The resulting general solution of the second-order equation yy00 D .y0/2 is

y.x/ D exp.C1x � C2/ D Ae
Bx ;

where A D e�C2 and B D C1. Despite our temporary assumptions, which imply that the

constants A and B are both positive, we readily verify that y.x/DAeBx satisfies yy00 D .y0/2

for all real values of A and B . With B D 0 and different values of A, we get all horizontal

lines in the plane as solution curves. The upper half of Fig. 1.6.9 shows the solution curves

obtained with A D 1 (for instance) and different positive values of B . With A D �1 these

solution curves are reflected in the x-axis, and with negative values of B they are reflected in

the y-axis. In particular, we see that we get solutions of yy00 D .y0/2, allowing both positive

and negative possibilities for both y and y0.
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FIGURE 1.6.9. The solution curves
y D Ae

Bx with B D 0 and A D 0,
˙1 are the horizontal lines y D 0, ˙1.
The exponential curves with B > 0

and A D ˙1 are in color, those with
B < 0 and A D ˙1 are black.
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1.6 Problems
Find general solutions of the differential equations in Prob-

lems 1 through 30. Primes denote derivatives with respect to

x throughout.

1. .x C y/y0 D x � y 2. 2xyy0 D x2 C 2y2

3. xy0 D y C 2
p
xy 4. .x � y/y0 D x C y

5. x.x C y/y0 D y.x � y/ 6. .x C 2y/y0 D y

7. xy2y0 D x3 C y3 8. x2y0 D xy C x2ey=x

9. x2y0 D xy C y2 10. xyy0 D x2 C 3y2

11. .x2 � y2/y0 D 2xy

12. xyy0 D y2 C x
p

4x2 C y2

13. xy0 D y C
p

x2 C y2

14. yy0 C x D
p

x2 C y2

15. x.x C y/y0 C y.3x C y/ D 0

16. y0 D
p
x C y C 1 17. y0 D .4x C y/2

18. .x C y/y0 D 1 19. x2y0 C 2xy D 5y3

20. y2y0 C 2xy3 D 6x 21. y0 D y C y3

22. x2y0 C 2xy D 5y4 23. xy0 C 6y D 3xy4=3

24. 2xy0 C y3e�2x D 2xy

25. y2.xy0 C y/.1C x4/1=2 D x

26. 3y2y0 C y3 D e�x

27. 3xy2y0 D 3x4 C y3

28. xeyy0 D 2.ey C x3e2x/

29. .2x sin y cos y/y0 D 4x2 C sin2 y

30. .x C ey/y0 D xe�y � 1

In Problems 31 through 42, verify that the given differential

equation is exact; then solve it.

31. .2x C 3y/ dx C .3x C 2y/ dy D 0

32. .4x � y/ dx C .6y � x/ dy D 0

33. .3x2 C 2y2/ dx C .4xy C 6y2/ dy D 0

34. .2xy2 C 3x2/ dx C .2x2y C 4y3/ dy D 0

35.
�

x3 C
y

x

�

dx C .y2 C ln x/ dy D 0

36. .1C yexy/ dx C .2y C xexy/ dy D 0

37. .cos x C ln y/ dx C

�

x

y
C ey

�

dy D 0

38. .x C tan�1 y/ dx C
x C y

1C y2
dy D 0

39. .3x2y3 C y4/ dx C .3x3y2 C y4 C 4xy3/ dy D 0

40. .ex sin y C tan y/ dx C .ex cos y C x sec2 y/ dy D 0

41.

 

2x

y
�
3y2

x4

!

dx C

 

2y

x3
�
x2

y2
C

1
p
y

!

dy D 0

42.
2x5=2 � 3y5=3

2x5=2y2=3

dx C
3y5=3 � 2x5=2

3x3=2y5=3

dy D 0

Find a general solution of each reducible second-order differ-

ential equation in Problems 43–54. Assume x, y and/or y0

positive where helpful (as in Example 11).

43. xy00 D y0 44. yy00 C .y0/2 D 0

45. y00 C 4y D 0 46. xy00 C y0 D 4x

47. y00 D .y0/2 48. x2y00 C 3xy0 D 2

49. yy00 C .y0/2 D yy0 50. y00 D .x C y0/2

51. y00 D 2y.y0/3 52. y3y00 D 1

53. y00 D 2yy0 54. yy00 D 3.y0/2

55. Show that the substitution v D ax C by C c transforms

the differential equation dy=dx D F.ax C by C c/ into a

separable equation.

56. Suppose that n 6D 0 and n 6D 1. Show that the sub-

stitution v D y1�n transforms the Bernoulli equation

dy=dx C P.x/y D Q.x/yn into the linear equation

dv

dx
C .1 � n/P.x/v.x/ D .1 � n/Q.x/:

57. Show that the substitution v D ln y transforms the differ-

ential equation dy=dx C P.x/y D Q.x/.y ln y/ into the

linear equation dv=dx C P.x/ D Q.x/v.x/.

58. Use the idea in Problem 57 to solve the equation

x
dy

dx
� 4x2y C 2y ln y D 0:

59. Solve the differential equation

dy

dx
D
x � y � 1

x C y C 3

by finding h and k so that the substitutions x D u C h,

y D v C k transform it into the homogeneous equation

dv

du
D
u � v

uC v
:

60. Use the method in Problem 59 to solve the differential

equation
dy

dx
D

2y � x C 7

4x � 3y � 18
:

61. Make an appropriate substitution to find a solution of the

equation dy=dx D sin.x � y/. Does this general solution

contain the linear solution y.x/ D x � �=2 that is readily

verified by substitution in the differential equation?

62. Show that the solution curves of the differential equation

dy

dx
D �

y.2x3 � y3/

x.2y3 � x3/

are of the form x3 C y3 D Cxy.

63. The equation dy=dx D A.x/y2 C B.x/y C C.x/ is called

a Riccati equation. Suppose that one particular solution

y1.x/ of this equation is known. Show that the substitu-

tion

y D y1 C
1

v

transforms the Riccati equation into the linear equation

dv

dx
C .B C 2Ay1/v D �A:

Use the method of Problem 63 to solve the equations in Prob-

lems 64 and 65, given that y1.x/ D x is a solution of each.
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64.
dy

dx
C y2 D 1C x2

65.
dy

dx
C 2xy D 1C x2 C y2

66. An equation of the form

y D xy0
C g.y0/ (37)

is called a Clairaut equation. Show that the one-

parameter family of straight lines described by

y.x/ D Cx C g.C / (38)

is a general solution of Eq. (37).

67. Consider the Clairaut equation

y D xy0
�

1

4
.y0/2

for which g.y0/D �1

4
.y0/2 in Eq. (37). Show that the line

y D Cx � 1

4
C 2

is tangent to the parabola y D x2 at the point
�

1

2
C; 1

4
C 2

�

.

Explain why this implies that y D x2 is a singular solu-

tion of the given Clairaut equation. This singular solution

and the one-parameter family of straight line solutions are

illustrated in Fig. 1.6.10.

x

y = x2

y

y = Cx – C
21

4

FIGURE 1.6.10. Solutions of the Clairaut equation

of Problem 67. The “typical” straight line with
equation y D Cx � 1

4
C

2 is tangent to the parabola at

the point .
1
2

C;
1
4

C
2
/.

68. Derive Eq. (18) in this section from Eqs. (16) and (17).

69. Flight trajectory In the situation of Example 7, suppose

that a D 100 mi, v0 D 400 mi=h, and w D 40 mi=h. Now

how far northward does the wind blow the airplane?

70. Flight trajectory As in the text discussion, suppose that

an airplane maintains a heading toward an airport at the

origin. If v0 D 500 mi=h and w D 50 mi=h (with the

wind blowing due north), and the plane begins at the point

.200; 150/, show that its trajectory is described by

y C

q

x2 C y2 D 2.200x9/1=10:

71. River crossing A river 100 ft wide is flowing north at

w feet per second. A dog starts at .100; 0/ and swims at

v0 D 4 ft=s, always heading toward a tree at .0; 0/ on the

west bank directly across from the dog’s starting point.

(a) IfwD 2 ft=s, show that the dog reaches the tree. (b) If

w D 4 ft=s, show that the dog reaches instead the point on

the west bank 50 ft north of the tree. (c) If w D 6 ft=s,

show that the dog never reaches the west bank.

72. In the calculus of plane curves, one learns that the curva-

ture � of the curve y D y.x/ at the point .x; y/ is given

by

� D
jy00.x/j

Œ1C y0.x/2�3=2

;

and that the curvature of a circle of radius r is � D 1=r .

[See Example 3 in Section 11.6 of Edwards and Penney,

Calculus: Early Transcendentals, 7th edition, Hoboken,

NJ: Pearson, 2008.] Conversely, substitute � D y0 to

derive a general solution of the second-order differential

equation

ry00
D Œ1C .y0/2�3=2

(with r constant) in the form

.x � a/2 C .y � b/2 D r2:

Thus a circle of radius r (or a part thereof) is the only plane

curve with constant curvature 1=r .

Go to goo.gl/tLcVCl to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

1.6 Application Computer Algebra Solutions

Computer algebra systems typically include commands for the “automatic” solution

of differential equations. But two different such systems often give different results

whose equivalence is not clear, and a single system may give the solution in an

overly complicated form. Consequently, computer algebra solutions of differential

equations often require considerable “processing” or simplification by a human user

in order to yield concrete and applicable information. Here we illustrate these issues

using the interesting differential equation

dy

dx
D sin.x � y/ (1)
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that appeared in the Section 1.3 Application. The Maple command

dsolve( D(y)(x) = sin(x -- y(x)), y(x));

yields the simple and attractive result

y.x/ D x � 2 tan�1

�

x � 2 � C1

x � C1

�

(2)

that was cited there. But the supposedly equivalent Mathematica command

DSolve[ y'[x] == Sin[x -- y[x]], y[x], x]

and the WolframjAlpha query

y’ = sin(x -- y)

both yield considerably more complicated results from which—with a fair amount

of effort in simplification—one can extract the quite different looking solution

y.x/ D 2 cos�1

0

B

@

2 cos
x

2
C .x � c/

�

cos
x

2
C sin

x

2

�

p

2C 2.x � c C 1/2

1

C

A
: (3)

This apparent disparity is not unusual; different symbolic algebra systems, or

even different versions of the same system, often yield different forms of a solution

of the same differential equation. As an alternative to attempted reconciliation of

such seemingly disparate results as in Eqs. (2) and (3), a common tactic is sim-

plification of the differential equation before submitting it to a computer algebra

system.

EXERCISE 1: Show that the plausible substitution v D x � y in Eq. (1) yields the

separable equation
dv

dx
D 1 � sin v: (4)

Now the Maple command int(1/(1 -- sin(v)), v) yields

Z

dv

1 � sin v
D

2

1 � tan
v

2

(5)

(omitting the constant of integration, as symbolic computer algebra systems often

do).

EXERCISE 2: Use simple algebra to deduce from Eq. (5) the integral formula

Z

dv

1 � sin v
D

1C tan
v

2

1 � tan
v

2

C C: (6)

EXERCISE 3: Deduce from (6) that Eq. (4) has the general solution

v.x/ D 2 tan�1

�

x � 1C C

x C 1C C

�

;

and hence that Eq. (1) has the general solution

y.x/ D x � 2 tan�1

�

x � 1C C

x C 1C C

�

: (7)
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EXERCISE 4: Finally, reconcile the forms in Eq. (2) and Eq. (7). What is the

relation between the constants C and C1?

EXERCISE 5: Show that the integral in Eq. (5) yields immediately the graphing

calculator implicit solution shown in Fig. 1.6.11.

INVESTIGATION: For your own personal differential equation, let p and q be

FIGURE 1.6.11. Implicit solution of
y

0 D sin.x � y/ generated by a
TI-Nspire CX CAS.

two distinct nonzero digits in your student ID number, and consider the differential

equation
dy

dx
D
1

p
cos.x � qy/: (8)

(a) Find a symbolic general solution using a computer algebra system and/or some

combination of the techniques listed in this project.

(b) Determine the symbolic particular solution corresponding to several typical ini-

tial conditions of the form y.x0/ D y0.

(c) Determine the possible values of a and b such that the straight line y D ax C b

is a solution curve of Eq. (8).

(d) Plot a direction field and some typical solution curves. Can you make a con-

nection between the symbolic solution and your (linear and nonlinear) solution

curves?

Chapter 1 Summary

In this chapter we have discussed applications of and solution methods for several

important types of first-order differential equations, including those that are separa-

ble (Section 1.4), linear (Section 1.5), or exact (Section 1.6). In Section 1.6 we also

discussed substitution techniques that can sometimes be used to transform a given

first-order differential equation into one that is either separable, linear, or exact.

Lest it appear that these methods constitute a “grab bag” of special and unre-

lated techniques, it is important to note that they are all versions of a single idea.

Given a differential equation

f .x; y; y0/ D 0; (1)

we attempt to write it in the form

d

dx
ŒG.x; y/� D 0: (2)

It is precisely to obtain the form in Eq. (2) that we multiply the terms in Eq. (1) by an

appropriate integrating factor (even if all we are doing is separating the variables).

But once we have found a function G.x; y/ such that Eqs. (1) and (2) are equivalent,

a general solution is defined implicitly by means of the equation

G.x; y/ D C (3)

that one obtains by integrating Eq. (2).

Given a specific first-order differential equation to be solved, we can attack it

by means of the following steps:

� Is it separable? If so, separate the variables and integrate (Section 1.4).

� Is it linear? That is, can it be written in the form

dy

dx
C P.x/y D Q.x/‹

If so, multiply by the integrating factor � D exp
�R

P dx
�

of Section 1.5.
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� Is it exact? That is, when the equation is written in the formM dxCN dyD 0,

is @M=@y D @N=@x (Section 1.6)?

� If the equation as it stands is not separable, linear, or exact, is there a plausible

substitution that will make it so? For instance, is it homogeneous (Section

1.6)?

Many first-order differential equations succumb to the line of attack outlined

here. Nevertheless, many more do not. Because of the wide availability of com-

puters, numerical techniques are commonly used to approximate the solutions of

differential equations that cannot be solved readily or explicitly by the methods of

this chapter. Indeed, most of the solution curves shown in figures in this chapter

were plotted using numerical approximations rather than exact solutions. Several

numerical methods for the appropriate solution of differential equations will be dis-

cussed in Chapter 2.

Chapter 1 Review Problems

Find general solutions of the differential equations in Problems 1 through 30. Primes denote derivatives with respect

to x.

1. x3 C 3y � xy0 D 0 2. xy2 C 3y2 � x2y0 D 0

3. xy C y2 � x2y0 D 0

4. 2xy3 C ex C .3x2y2 C sin y/y0 D 0

5. 3y C x4y0 D 2xy 6. 2xy2 C x2y0 D y2

7. 2x2y C x3y0 D 1 8. 2xy C x2y0 D y2

9. xy0 C 2y D 6x2
p
y 10. y0D 1Cx2Cy2Cx2y2

11. x2y0 D xy C 3y2

12. 6xy3 C 2y4 C .9x2y2 C 8xy3/y0 D 0

13. 4xy2 C y0 D 5x4y2 14. x3y0 D x2y � y3

15. y0 C 3y D 3x2e�3x 16. y0 D x2 � 2xy C y2

17. ex C yexy C .ey C xeyx/y0 D 0

18. 2x2y � x3y0 D y3 19. 3x5y2 C x3y0 D 2y2

20. xy0 C 3y D 3x�3=2

21. .x2 � 1/y0 C .x � 1/y D 1

22. xy0 D 6y C 12x4y2=3

23. ey C y cos x C .xey C sin x/y0 D 0

24. 9x2y2 C x3=2y0 D y2 25. 2yC .xC 1/y0 D 3xC 3

26. 9x1=2y4=3�12x1=5y3=2C.8x3=2y1=3�15x6=5y1=2/y0D 0

27. 3y C x3y4 C 3xy0 D 0 28. y C xy0 D 2e2x

29. .2x C 1/y0 C y D .2x C 1/3=2 30. y0 D
p
x C y

Each of the differential equations in Problems 31 through 36

is of two different types considered in this chapter—separable,

linear, homogeneous, Bernoulli, exact, etc. Hence, derive gen-

eral solutions for each of these equations in two different ways;

then reconcile your results.

31.
dy

dx
D 3.y C 7/x2 32.

dy

dx
D xy3 � xy

33.
dy

dx
D �

3x2 C 2y2

4xy
34.

dy

dx
D
x C 3y

y � 3x

35.
dy

dx
D
2xy C 2x

x2 C 1
36.

dy

dx
D

p
y � y

tan x
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2.1 Population Models

In Section 1.4 we introduced the exponential differential equation dP=dt D kP ,

with solution P.t/ D P0e
kt , as a mathematical model for natural population

growth that occurs as a result of constant birth and death rates. Here we present

a more general population model that accommodates birth and death rates that are

not necessarily constant. As before, however, our population function P.t/ will be

a continuous approximation to the actual population, which of course changes only

by integral increments—that is, by one birth or death at a time.

Suppose that the population changes only by the occurrence of births and

deaths—there is no immigration or emigration from outside the country or envi-

ronment under consideration. It is customary to track the growth or decline of a

population in terms of its birth rate and death rate functions defined as follows:

� ˇ.t/ is the number of births per unit of population per unit of time at time t ;

� ı.t/ is the number of deaths per unit of population per unit of time at time t .

Then the numbers of births and deaths that occur during the time interval

Œt; t C�t� is given (approximately) by

births: ˇ.t/ � P.t/ ��t; deaths: ı.t/ � P.t/ ��t:

Hence the change �P in the population during the time interval Œt; t C�t� of

length �t is

�P D fbirthsg � fdeathsg � ˇ.t/ � P.t/ ��t � ı.t/ � P.t/ ��t;

so
�P

�t
� Œˇ.t/ � ı.t/� P.t/:

75
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The error in this approximation should approach zero as �t ! 0, so—taking

the limit—we get the differential equation

dP

dt
D .ˇ � ı/P; (1)

in which we write ˇ D ˇ.t/, ı D ı.t/, and P D P.t/ for brevity. Equation (1) is the

general population equation. If ˇ and ı are constant, Eq. (1) reduces to the natural

growth equation with k D ˇ � ı. But it also includes the possibility that ˇ and ı

are variable functions of t . The birth and death rates need not be known in advance;

they may well depend on the unknown function P.t/.

Example 1 Population explosion Suppose that an alligator population numbers 100 initially, and that

its death rate is ı D 0 (so none of the alligators is dying). If the birth rate is ˇ D .0:0005/P—

and thus increases as the population does—then Eq. (1) gives the initial value problem

dP

dt
D .0:0005/P 2; P.0/ D 100

(with t in years). Then upon separating the variables we get
Z

1

P 2
dP D

Z

.0:0005/ dt I

�
1

P
D .0:0005/t C C:

Substitution of t D 0, P D 100 gives C D �1=100, and then we readily solve for

P.t/ D
2000

20 � t
:

For instance, P.10/ D 2000=10 D 200, so after 10 years the alligator population has

doubled. But we see that P ! C1 as t ! 20, so a real “population explosion” occurs in

20 years. Indeed, the direction field and solution curves shown in Fig. 2.1.1 indicate that

a population explosion always occurs, whatever the size of the (positive) initial population

P.0/D P0. In particular, it appears that the population always becomes unbounded in a finite

period of time.

t

P

0

0

10 20 30 40 50

100

200

300

400

500

(0, 100)

FIGURE 2.1.1. Slope field and
solution curves for the equation

dP=dt D .0:0005/P
2 in Example 1.

Bounded Populations and the Logistic Equation

In situations as diverse as the human population of a nation and a fruit fly population

in a closed container, it is often observed that the birth rate decreases as the popu-

lation itself increases. The reasons may range from increased scientific or cultural

sophistication to a limited food supply. Suppose, for example, that the birth rate ˇ is

a linear decreasing function of the population size P , so that ˇ D ˇ0 � ˇ1P , where

ˇ0 and ˇ1 are positive constants. If the death rate ı D ı0 remains constant, then

Eq. (1) takes the form
dP

dt
D .ˇ0 � ˇ1P � ı0/P I

that is,
dP

dt
D aP � bP 2; (2)

where a D ˇ0 � ı0 and b D ˇ1.

If the coefficients a and b are both positive, then Eq. (2) is called the logistic

equation. For the purpose of relating the behavior of the population P.t/ to the

values of the parameters in the equation, it is useful to rewrite the logistic equation

in the form
dP

dt
D kP.M � P /; (3)

where k D b and M D a=b are constants.
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Example 2 Logistic model In Example 4 of Section 1.3 we explored graphically a population that is

modeled by the logistic equation

dP

dt
D 0:0004P.150 � P / D 0:06P � 0:0004P 2: (4)

To solve this differential equation symbolically, we separate the variables and integrate. We

get

Z

dP

P.150 � P /
D

Z

0:0004 dt;

1

150

Z �

1

P
C

1

150 � P

�

dP D

Z

0:0004 dt [partial fractions],

ln jP j � ln j150 � P j D 0:06t C C;

P

150 � P
D ˙eC e0:06t

D Be0:06t [where B D ˙eC ].

If we substitute t D 0 and P D P0 ¤ 150 into this last equation, we find that

B D P0=.150 � P0/. Hence

P

150 � P
D
P0e

0:06t

150 � P0

:

Finally, this equation is easy to solve for the population

P.t/ D
150P0

P0 C .150 � P0/e�0:06t
(5)

at time t in terms of the initial population P0 D P.0/. Figure 2.1.2 shows a number of

25 50 75 100
t

20

60

120
150
180

240

300

P

P0 = 300

P0 = 20

FIGURE 2.1.2. Typical solution
curves for the logistic equation

P
0 D 0:06P � 0:0004P

2.

solution curves corresponding to different values of the initial population ranging from P0 D

20 to P0 D 300. Note that all these solution curves appear to approach the horizontal line

P D 150 as an asymptote. Indeed, you should be able to see directly from Eq. (5) that

limt!1 P.t/ D 150, whatever the initial value P0 > 0.

Limiting Populations and Carrying Capacity

The finite limiting population noted in Example 2 is characteristic of logistic pop-

ulations. In Problem 32 we ask you to use the method of solution of Example 2 to

show that the solution of the logistic initial value problem

dP

dt
D kP.M � P /; P.0/ D P0 (6)

is

P.t/ D
MP0

P0 C .M � P0/e�kM t

: (7)

Actual animal populations are positive valued. If P0 D M , then (7) reduces

to the unchanging (constant-valued) “equilibrium population” P.t/ � M . Other-

wise, the behavior of a logistic population depends on whether 0 < P0 < M or

P0 > M . If 0 < P0 < M , then we see from (6) and (7) that P 0 > 0 and

P.t/ D
MP0

P0 C .M � P0/e�kM t

D
MP0

P0 C fpos. numberg
<

MP0

P0

DM:

However, if P0 > M , then we see from (6) and (7) that P 0 < 0 and

P.t/ D
MP0

P0 C .M � P0/e�kM t

D
MP0

P0 C fneg. numberg
>

MP0

P0

DM:
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In either case, the “positive number” or “negative number” in the denominator has

absolute value less than P0 and—because of the exponential factor—approaches 0

as t !C1. It follows that

lim
t!C1

P.t/ D
MP0

P0 C 0
DM: (8)

Thus a population that satisfies the logistic equation does not grow without

bound like a naturally growing population modeled by the exponential equation

P 0 D kP . Instead, it approaches the finite limiting population M as t ! C1.

As illustrated by the typical logistic solution curves in Fig. 2.1.3, the population

P.t/ steadily increases and approaches M from below if 0 < P0 < M , but steadily

decreases and approaches M from above if P0 > M . Sometimes M is called the

carrying capacity of the environment, considering it to be the maximum population

t

M

P

M/2

P = M

P = M/2

FIGURE 2.1.3. Typical solution
curves for the logistic equation
P

0 D kP.M � P /. Each solution
curve that starts below the line
P D M=2 has an inflection point on
this line. (See Problem 34.)

that the environment can support on a long-term basis.

Example 3 Limiting population Suppose that in 1885 the population of a certain country was 50

million and was growing at the rate of 750;000 people per year at that time. Suppose also

that in 1940 its population was 100 million and was then growing at the rate of 1 million per

year. Assume that this population satisfies the logistic equation. Determine both the limiting

population M and the predicted population for the year 2000.

Solution We substitute the two given pairs of data in Eq. (3) and find that

0:75 D 50k.M � 50/; 1:00 D 100k.M � 100/:

We solve simultaneously for M D 200 and k D 0:0001. Thus the limiting population of the

country in question is 200 million. With these values of M and k, and with t D 0 correspond-

ing to the year 1940 (in which P0 D 100), we find that—according to Eq. (7)—the population

in the year 2000 will be

P.60/ D
100 � 200

100C .200 � 100/e�.0:0001/.200/.60/

;

about 153:7 million people.

Historical Note

The logistic equation was introduced (around 1840) by the Belgian mathematician

and demographer P. F. Verhulst as a possible model for human population growth.

In the next two examples we compare natural growth and logistic model fits to the

19th-century U.S. population census data, then compare projections for the 20th

century.

Example 4 Percentage growth rate The U.S. population in 1800 was 5:308 million and in 1900 was

76:212 million. If we take P0 D 5:308 (with t D 0 in 1800) in the natural growth model

P.t/ D P0e
rt and substitute t D 100, P D 76:212, we find that

76:212 D 5:308e100r ; so r D
1

100
ln
76:212

5:308
� 0:026643:

Thus our natural growth model for the U.S. population during the 19th century is

P.t/ D .5:308/e.0:026643/t (9)

(with t in years and P in millions). Because e0:026643 � 1:02700, the average population

growth between 1800 and 1900 was about 2:7% per year.
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Example 5 Logistic modeling The U.S. population in 1850 was 23:192million. If we take P0 D 5:308

and substitute the data pairs t D 50, P D 23:192 (for 1850) and t D 100, P D 76:212 (for

1900) in the logistic model formula in Eq. (7), we get the two equations

.5:308/M

5:308C .M � 5:308/e�50kM

D 23:192;

.5:308/M

5:308C .M � 5:308/e�100kM

D 76:212

(10)

in the two unknowns k and M . Nonlinear systems like this ordinarily are solved numerically

using an appropriate computer system. But with the right algebraic trick (Problem 36 in this

section) the equations in (10) can be solved manually for k D 0:000167716, M D 188:121.

Substitution of these values in Eq. (7) yields the logistic model

P.t/ D
998:546

5:308C .182:813/e�.0:031551/t

: (11)

The table in Fig. 2.1.4 compares the actual 1800–2010 U.S. census population figures

with those predicted by the exponential growth model in (9) and by the logistic model in (11).

Both models agree well with the 19th-century figures. But the exponential model diverges

appreciably from the census data in the early decades of the 20th century, whereas the logistic

model remains accurate until 1940. By the end of the 20th century the exponential model

vastly overestimates the actual U.S. population; indeed it predicts a U.S. population of nearly

Actual Exponential Exponential Logistic Logistic
Year U.S. Pop. Model Error Model Error

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

5.308

7.240

9.638

12.861

17.064

23.192

31.443

38.558

50.189

62.980

76.212

92.228

106.022

123.203

132.165

151.326

179.323

203.302

226.542

248.710

281.422

308.745

5.308

6.929

9.044

11.805

15.409

20.113

26.253

34.268

44.730

58.387

76.212

99.479

129.849

169.492

221.237

288.780

376.943

492.023

642.236

838.308

1094.240

1428.307

0.000

0.311

0.594

1.056

1.655

3.079

5.190

4.290

5.459

4.593

0.000

�7:251

�23:827

�46:289

�89:072

�137:454

�197:620

�288:721

�415:694

�589:598

�812:818

�1119:562

5.308

7.202

9.735

13.095

17.501

23.192

30.405

39.326

50.034

62.435

76.213

90.834

105.612

119.834

132.886

144.354

154.052

161.990

168.316

173.252

177.038

179.905

0.000

0.038

�0:097

�0:234

�0:437

0.000

1.038

�0:768

0.155

0.545

�0:001

1.394

0.410

3.369

�0:721

6.972

25.271

41.312

58.226

75.458

104.384

128.839

FIGURE 2.1.4. Comparison of exponential growth and logistic models with U.S. census populations
(in millions).
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1.5 billion in the year 2010, over 3.6 times the actual value. The logistic model, on the other

hand, underestimates the U.S. population, but with a percentage error of less than 43%.

The two models are compared in Fig. 2.1.5, where plots of their respective errors—asError

40%

1800 1850 1900 1950

20%

–20%

–40%

Year 

Logistic
Exponential

FIGURE 2.1.5. Percentage errors in
the exponential and logistic population

models for 1800–1950.

a percentage of the actual population—are shown for the 1800–1950 period. We see that the

logistic model tracks the actual population reasonably well throughout this 150-year period.

However, the exponential error is considerably larger during the 19th century and literally

goes off the chart during the first half of the 20th century.

In order to measure the extent to which a given model fits actual data, it is customary

to define the average error (in the model) as the square root of the average of the squares

of the individual errors (the latter appearing in the fourth and sixth columns of the table in

Fig. 2.1.4). Using only the 1800–1900 data, this definition gives 3:162 for the average error

in the exponential model, while the average error in the logistic model is only 0:452. Conse-

quently, even in 1900 we might well have anticipated that the logistic model would predict the

U.S. population growth during the 20th century more accurately than the exponential model.

The moral of Examples 4 and 5 is simply that one should not expect too much

of models that are based on severely limited information (such as just a pair of data

points). Much of the science of statistics is devoted to the analysis of large “data

sets” to formulate useful (and perhaps reliable) mathematical models.

More Applications of the Logistic Equation

We next describe some situations that illustrate the varied circumstances in which

the logistic equation is a satisfactory mathematical model.

1. Limited environment situation. A certain environment can support a popula-

tion of at most M individuals. It is then reasonable to expect the growth rate

ˇ � ı (the combined birth and death rates) to be proportional to M � P , be-

cause we may think of M � P as the potential for further expansion. Then

ˇ � ı D k.M � P /, so that

dP

dt
D .ˇ � ı/P D kP.M � P /:

The classic example of a limited environment situation is a fruit fly population

in a closed container.

2. Competition situation. If the birth rate ˇ is constant but the death rate ı is

proportional to P , so that ı D ˛P , then

dP

dt
D .ˇ � ˛P /P D kP.M � P /:

This might be a reasonable working hypothesis in a study of a cannibalistic

population, in which all deaths result from chance encounters between indi-

viduals. Of course, competition between individuals is not usually so deadly,

nor its effects so immediate and decisive.

3. Joint proportion situation. Let P.t/ denote the number of individuals in a

constant-size susceptible population M who are infected with a certain con-

tagious and incurable disease. The disease is spread by chance encounters.

Then P 0.t/ should be proportional to the product of the number P of indi-

viduals having the disease and the number M � P of those not having it, and

therefore dP=dt D kP.M � P /. Again we discover that the mathematical

model is the logistic equation. The mathematical description of the spread of

a rumor in a population of M individuals is identical.
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Example 6 Spread of rumor Suppose that at time t D 0, 10 thousand people in a city with population

M D 100 thousand people have heard a certain rumor. After 1 week the number P.t/ of

those who have heard it has increased to P.1/ D 20 thousand. Assuming that P.t/ satisfies a

logistic equation, when will 80% of the city’s population have heard the rumor?

Solution Substituting P0 D 10 and M D 100 (thousand) in Eq. (7), we get

P.t/ D
1000

10C 90e�100kt

: (12)

Then substitution of t D 1, P D 20 gives the equation

20 D
1000

10C 90e�100k

that is readily solved for

e�100k
D

4

9
; so k D 1

100
ln 9

4
� 0:008109:

With P.t/ D 80, Eq. (12) takes the form

80 D
1000

10C 90e�100kt

;

which we solve for e�100kt D
1

36
. It follows that 80% of the population has heard the rumor

when

t D
ln 36

100k
D

ln 36

ln 9

4

� 4:42;

thus after about 4 weeks and 3 days.

Doomsday versus Extinction

Consider a population P.t/ of unsophisticated animals in which females rely solely

on chance encounters to meet males for reproductive purposes. It is reasonable to

expect such encounters to occur at a rate that is proportional to the product of the

number P=2 of males and the number P=2 of females, hence at a rate proportional

to P 2. We therefore assume that births occur at the rate kP 2 (per unit time, with

k constant). The birth rate (births=time=population) is then given by ˇ D kP . If

the death rate ı is constant, then the general population equation in (1) yields the

differential equation

dP

dt
D kP 2

� ıP D kP.P �M/ (13)

(where M D ı=k > 0) as a mathematical model of the population.

Note that the right-hand side in Eq. (13) is the negative of the right-hand side

in the logistic equation in (3). We will see that the constant M is now a threshold

population, with the way the population behaves in the future depending critically

on whether the initial population P0 is less than or greater than M .

Example 7 Doomsday vs. extinction Consider an animal population P.t/ that is modeled by the equa-

tion
dP

dt
D 0:0004P.P � 150/ D 0:0004P 2

� 0:06P: (14)

We want to find P.t/ if (a) P.0/ D 200; (b) P.0/ D 100.
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Solution To solve the equation in (14), we separate the variables and integrate. We get

Z

dP

P.P � 150/
D

Z

0:0004 dt;

�
1

150

Z �

1

P
�

1

P � 150

�

dP D

Z

0:0004 dt [partial fractions],

ln jP j � ln jP � 150j D �0:06t C C;

P

P � 150
D ˙eC e�0:06t

D Be�0:06t [where B D ˙eC ]. (15)

(a) Substitution of t D 0 and P D 200 into (15) gives B D 4. With this value of B we solve

Eq. (15) for

P.t/ D
600e�0:06t

4e�0:06t � 1
: (16)

Note that, as t increases and approaches T D ln.4/=0:06 � 23:105, the positive denominator

on the right in (16) decreases and approaches 0. Consequently P.t/!C1 as t ! T�. This

is a doomsday situation—a real population explosion.

(b) Substitution of t D 0 and P D 100 into (15) gives B D�2. With this value of B we solve

Eq. (15) for

P.t/ D
300e�0:06t

2e�0:06t C 1
D

300

2C e0:06t
: (17)

Note that, as t increases without bound, the positive denominator on the right in (16) ap-

proaches C1. Consequently, P.t/ ! 0 as t ! C1. This is an (eventual) extinction situa-

tion.

Thus the population in Example 7 either explodes or is an endangered species

threatened with extinction, depending on whether or not its initial size exceeds the

threshold populationM D 150. An approximation to this phenomenon is sometimes

observed with animal populations, such as the alligator population in certain areas

of the southern United States.

Figure 2.1.6 shows typical solution curves that illustrate the two possibilities

for a population P.t/ satisfying Eq. (13). If P0 D M (exactly!), then the popula-

tion remains constant. However, this equilibrium situation is very unstable. If P0

exceeds M (even slightly), then P.t/ rapidly increases without bound, whereas if

the initial (positive) population is less than M (however slightly), then it decreases

(more gradually) toward zero as t !C1. See Problem 33.

t

M

P

P = M

FIGURE 2.1.6. Typical solution
curves for the explosion/extinction
equation P

0 D kP.P � M/.

2.1 Problems
Separate variables and use partial fractions to solve the initial

value problems in Problems 1–8. Use either the exact solution

or a computer-generated slope field to sketch the graphs of sev-

eral solutions of the given differential equation, and highlight

the indicated particular solution.

1.
dx

dt
D x � x2, x.0/ D 2 2.

dx

dt
D 10x � x2, x.0/ D 1

3.
dx

dt
D 1 � x2, x.0/ D 3 4.

dx

dt
D 9 � 4x2, x.0/ D 0

5.
dx

dt
D 3x.5 � x/, x.0/ D 8

6.
dx

dt
D 3x.x � 5/, x.0/ D 2

7.
dx

dt
D 4x.7 � x/, x.0/ D 11

8.
dx

dt
D 7x.x � 13/, x.0/ D 17

9. Population growth The time rate of change of a rabbit

population P is proportional to the square root of P . At

time t D 0 (months) the population numbers 100 rabbits

and is increasing at the rate of 20 rabbits per month. How

many rabbits will there be one year later?

10. Extinction by disease Suppose that the fish population

P.t/ in a lake is attacked by a disease at time t D 0, with

the result that the fish cease to reproduce (so that the birth

rate is ˇ D 0) and the death rate ı (deaths per week per
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fish) is thereafter proportional to 1=
p
P . If there were ini-

tially 900 fish in the lake and 441 were left after 6 weeks,

how long did it take all the fish in the lake to die?

11. Fish population Suppose that when a certain lake is

stocked with fish, the birth and death rates ˇ and ı are

both inversely proportional to
p
P . (a) Show that

P.t/ D
�

1

2
kt C

p

P0

�

2

;

where k is a constant. (b) If P0 D 100 and after 6months

there are 169 fish in the lake, how many will there be after

1 year?

12. Population growth The time rate of change of an alliga-

tor population P in a swamp is proportional to the square

of P . The swamp contained a dozen alligators in 1988,

two dozen in 1998. When will there be four dozen alliga-

tors in the swamp? What happens thereafter?

13. Birth rate exceeds death rate Consider a prolific breed

of rabbits whose birth and death rates, ˇ and ı, are each

proportional to the rabbit population P DP.t/, with ˇ > ı.

(a) Show that

P.t/ D
P0

1 � kP0t
; k constant:

Note that P.t/!C1 as t ! 1=.kP0/. This is doomsday.

(b) Suppose that P0 D 6 and that there are nine rabbits

after ten months. When does doomsday occur?

14. Death rate exceeds birth rate Repeat part (a) of Prob-

lem 13 in the case ˇ < ı. What now happens to the rabbit

population in the long run?

15. Limiting population Consider a population P.t/ sat-

isfying the logistic equation dP=dt D aP � bP 2, where

BD aP is the time rate at which births occur andDD bP 2

is the rate at which deaths occur. If the initial population

is P.0/ D P0, and B0 births per month and D0 deaths per

month are occurring at time t D 0, show that the limiting

population is M D B0P0=D0.

16. Limiting population Consider a rabbit population P.t/

satisfying the logistic equation as in Problem 15. If the

initial population is 120 rabbits and there are 8 births per

month and 6 deaths per month occurring at time t D 0,

how many months does it take for P.t/ to reach 95% of

the limiting population M ?

17. Limiting population Consider a rabbit population P.t/

satisfying the logistic equation as in Problem 15. If the

initial population is 240 rabbits and there are 9 births per

month and 12 deaths per month occurring at time t D 0,

how many months does it take for P.t/ to reach 105% of

the limiting population M ?

18. Threshold population Consider a population P.t/ sat-

isfying the extinction-explosion equation dP=dt D aP 2 �

bP , where B D aP 2 is the time rate at which births occur

andD D bP is the rate at which deaths occur. If the initial

population is P.0/ D P0 and B0 births per month and D0

deaths per month are occurring at time t D 0, show that

the threshold population is M D D0P0=B0.

19. Threshold population Consider an alligator population

P.t/ satisfying the extinction-explosion equation as in

Problem 18. If the initial population is 100 alligators and

there are 10 births per month and 9 deaths per month oc-

curring at time t D 0, how many months does it take for

P.t/ to reach 10 times the threshold population M ?

20. Threshold population Consider an alligator population

P.t/ satisfying the extinction-explosion equation as in

Problem 18. If the initial population is 110 alligators and

there are 11 births per month and 12 deaths per month oc-

curring at time t D 0, how many months does it take for

P.t/ to reach 10% of the threshold population M ?

21. Logistic model Suppose that the population P.t/ of

a country satisfies the differential equation dP=dt D

kP.200 � P / with k constant. Its population in 1960 was

100 million and was then growing at the rate of 1 million

per year. Predict this country’s population for the year

2020.

22. Logistic model Suppose that at time t D 0, half of a “lo-

gistic” population of 100;000 persons have heard a certain

rumor, and that the number of those who have heard it is

then increasing at the rate of 1000 persons per day. How

long will it take for this rumor to spread to 80% of the pop-

ulation? (Suggestion: Find the value of k by substituting

P.0/ and P 0.0/ in the logistic equation, Eq. (3).)

23. Solution rate As the salt KNO3 dissolves in methanol,

the number x.t/ of grams of the salt in a solution af-

ter t seconds satisfies the differential equation dx=dt D

0:8x � 0:004x2.

(a) What is the maximum amount of the salt that will ever

dissolve in the methanol?

(b) If x D 50 when t D 0, how long will it take for an

additional 50 g of salt to dissolve?

24. Spread of disease Suppose that a community contains

15,000 people who are susceptible to Michaud’s syn-

drome, a contagious disease. At time t D 0 the number

N.t/ of people who have developed Michaud’s syndrome

is 5000 and is increasing at the rate of 500 per day. As-

sume that N 0.t/ is proportional to the product of the num-

bers of those who have caught the disease and of those

who have not. How long will it take for another 5000 peo-

ple to develop Michaud’s syndrome?

25. Logistic model The data in the table in Fig. 2.1.7 are

given for a certain population P.t/ that satisfies the logis-

tic equation in (3). (a) What is the limiting population

M ? (Suggestion: Use the approximation

P 0.t/ �
P.t C h/ � P.t � h/

2h

with hD 1 to estimate the values of P 0.t/when P D 25:00

and when P D 47:54. Then substitute these values in the

logistic equation and solve for k and M .) (b) Use the
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values of k and M found in part (a) to determine when

P D 75. (Suggestion: Take t D 0 to correspond to the

year 1965.)

Year P (millions)

1964

1965

1966

:::

2014

2015

2016

24.63

25.00

25.38

:::

47.04

47.54

48.04

FIGURE 2.1.7. Population data for Problem 25.

26. Constant death rate A population P.t/ of small ro-

dents has birth rate ˇ D .0:001/P (births per month per

rodent) and constant death rate ı. If P.0/ D 100 and

P 0.0/ D 8, how long (in months) will it take this popu-

lation to double to 200 rodents? (Suggestion: First find

the value of ı.)

27. Constant death rate Consider an animal population

P.t/ with constant death rate ı D 0:01 (deaths per ani-

mal per month) and with birth rate ˇ proportional to P .

Suppose that P.0/ D 200 and P 0.0/ D 2. (a) When is

P D 1000? (b) When does doomsday occur?

28. Population growth Suppose that the number x.t/ (with

t in months) of alligators in a swamp satisfies the differ-

ential equation dx=dt D 0:0001x2 � 0:01x.

(a) If initially there are 25 alligators in the swamp, solve

this differential equation to determine what happens

to the alligator population in the long run.

(b) Repeat part (a), except with 150 alligators initially.

29. Logistic model During the period from 1790 to 1930,

the U.S. population P.t/ (t in years) grew from 3.9 million

to 123.2 million. Throughout this period, P.t/ remained

close to the solution of the initial value problem

dP

dt
D 0:03135P � 0:0001489P 2; P.0/ D 3:9:

(a) What 1930 population does this logistic equation pre-

dict?

(b) What limiting population does it predict?

(c) Has this logistic equation continued since 1930 to ac-

curately model the U.S. population?

[This problem is based on a computation by Verhulst, who

in 1845 used the 1790–1840 U.S. population data to pre-

dict accurately the U.S. population through the year 1930

(long after his own death, of course).]

30. Tumor growth A tumor may be regarded as a popula-

tion of multiplying cells. It is found empirically that the

“birth rate” of the cells in a tumor decreases exponentially

with time, so that ˇ.t/ D ˇ0e
�˛t (where ˛ and ˇ0 are

positive constants), and hence

dP

dt
D ˇ0e

�˛tP; P.0/ D P0:

Solve this initial value problem for

P.t/ D P0 exp

�

ˇ0

˛
.1 � e�˛t /

�

:

Observe that P.t/ approaches the finite limiting popula-

tion P0 exp .ˇ0=̨ / as t !C1.

31. Tumor growth For the tumor of Problem 30, suppose

that at time t D 0 there are P0 D 10
6 cells and that P.t/ is

then increasing at the rate of 3�105 cells per month. After

6 months the tumor has doubled (in size and in number of

cells). Solve numerically for ˛, and then find the limiting

population of the tumor.

32. Derive the solution

P.t/ D
MP0

P0 C .M � P0/e�kM t

of the logistic initial value problem P 0 D kP.M � P /,

P.0/D P0. Make it clear how your derivation depends on

whether 0 < P0 < M or P0 > M .

33. (a) Derive the solution

P.t/ D
MP0

P0 C .M � P0/ekM t

of the extinction-explosion initial value problem P 0D

kP.P �M/, P.0/ D P0.

(b) How does the behavior of P.t/ as t increases depend

on whether 0 < P0 < M or P0 > M ?

34. If P.t/ satisfies the logistic equation in (3), use the chain

rule to show that

P 00.t/ D 2k2P.P � 1

2
M/.P �M/:

Conclude that P 00 >0 if 0<P < 1

2
M ; P 00D 0 if P D 1

2
M ;

P 00 < 0 if 1

2
M <P <M ; and P 00 > 0 if P >M . In partic-

ular, it follows that any solution curve that crosses the line

P D 1

2
M has an inflection point where it crosses that line,

and therefore resembles one of the lower S-shaped curves

in Fig. 2.1.3.

35. Approach to limiting population Consider two popu-

lation functions P1.t/ and P2.t/, both of which satisfy the

logistic equation with the same limiting population M but

with different values k1 and k2 of the constant k in Eq. (3).

Assume that k1 < k2. Which population approaches M

the most rapidly? You can reason geometrically by ex-

amining slope fields (especially if appropriate software is

available), symbolically by analyzing the solution given in

Eq. (7), or numerically by substituting successive values

of t .
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36. Logistic modeling To solve the two equations in (10)

for the values of k and M , begin by solving the first equa-

tion for the quantity x D e�50kM and the second equation

for x2 D e�100kM . Upon equating the two resulting ex-

pressions for x2 in terms of M , you get an equation that

is readily solved forM . With M now known, either of the

original equations is readily solved for k. This technique

can be used to “fit” the logistic equation to any three pop-

ulation values P0, P1, and P2 corresponding to equally

spaced times t0 D 0, t1, and t2 D 2t1.

37. Logistic modeling Use the method of Problem 36 to fit

the logistic equation to the actual U.S. population data

(Fig. 2.1.4) for the years 1850, 1900, and 1950. Solve

the resulting logistic equation and compare the predicted

and actual populations for the years 1990 and 2000.

38. Logistic modeling Fit the logistic equation to the ac-

tual U.S. population data (Fig. 2.1.4) for the years 1900,

1930, and 1960. Solve the resulting logistic equation, then

compare the predicted and actual populations for the years

1980, 1990, and 2000.

39. Periodic growth rate Birth and death rates of animal

populations typically are not constant; instead, they vary

periodically with the passage of seasons. Find P.t/ if the

population P satisfies the differential equation

dP

dt
D .k C b cos 2�t/P;

where t is in years and k and b are positive constants. Thus

the growth-rate function r.t/ D k C b cos 2�t varies peri-

odically about its mean value k. Construct a graph that

contrasts the growth of this population with one that has

the same initial value P0 but satisfies the natural growth

equation P 0 D kP (same constant k). How would the two

populations compare after the passage of many years?

Go to goo.gl/s3nZZ3 to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

2.1 Application Logistic Modeling of Population Data

These investigations deal with the problem of fitting a logistic model to given pop-

ulation data. Thus we want to determine the numerical constants a and b so that the

solution P.t/ of the initial value problem

dP

dt
D aP C bP 2; P.0/ D P0 (1)

approximates the given values P0, P1, : : : , Pn of the population at the times t0 D 0,

t1, : : : , tn. If we rewrite Eq. (1) (the logistic equation with kM D a and k D �b) in

the form
1

P

dP

dt
D aC bP; (2)

then we see that the points

�

P.ti /;
P 0.ti /

P.ti /

�

; i D 0; 1; 2; : : : ; n;

should all lie on the straight line with y-intercept a and slope b (as determined by

the function of P on the right-hand side in Eq. (2)).

This observation provides a way to find a and b. If we can determine the ap-

proximate values of the derivatives P 0
1
; P 0

2
; : : : corresponding to the given population

data, then we can proceed with the following agenda:

� First plot the points .P1; P
0
1
=P1/, .P2; P

0
2
=P2/, : : : on a sheet of graph paper

with horizontal P -axis.

� Then use a ruler to draw a straight line that appears to approximate these points

well.

� Finally, measure this straight line’s y-intercept a and slope b.

But where are we to find the needed values of the derivative P 0.t/ of the (as

yet) unknown function P ? It is easiest to use the approximation

P 0
i
D
PiC1 � Pi�1

tiC1 � ti�1

(3)
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P-axis

t-axistiti – 1 ti + 1

(ti + 1, Pi + 1)

(ti , Pi)

Slope: P'(ti)

(ti – 1, Pi – 1)

Slope:
Pi + 1– Pi – 1

ti + 1 – ti – 1

FIGURE 2.1.8. The symmetric difference approximation
PiC1 � Pi�1

tiC1 � ti�1

to

the derivative P
0
.ti /.

suggested by Fig. 2.1.8. For instance, if we take i D 0 corresponding to the year

1790, then the U.S. population data in Fig. 2.1.9 give

P 0
1
D
P2 � P0

t2 � t0
D
7:240 � 3:929

20
� 0:166

for the slope at .t1; P1/ corresponding to the year 1800.

INVESTIGATION A: Use Eq. (3) to verify the slope figures shown in the final col-

umn of the table in Fig. 2.1.9, then plot the points .P1; P
0
1
=P1/, : : : , .P11; P

0
11
=P11/

indicated by the dots in Fig. 2.1.10. If an appropriate graphing calculator, spread-

sheet, or computer program is available, use it to find the straight line y D a C bP

as in (2) that best fits these points. If not, draw your own straight line approximat-

ing these points, and then measure its intercept a and slope b as accurately as you

can. Next, solve the logistic equation in (1) with these numerical parameters, tak-

ing t D 0 corresponding to the year 1800. Finally, compare the predicted 20th- and

21st-century U.S. population figures with the actual data listed in Fig. 2.1.4.

Population Slope
Year i ti Pi P 0

i

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

0

1

2

3

4

5

6

7

8

9

10

11

12

�10

0

10

20

30

40

50

60

70

80

90

100

110

3.929

5.308

7.240

9.638

12.861

17.064

23.192

31.443

38.558

50.189

62.980

76.212

92.228

0.166

0.217

0.281

0.371

0.517

0.719

0.768

0.937

1.221

1.301

1.462

FIGURE 2.1.9. U.S. population data (in millions) and approximate slopes.
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P
P

'/
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0.03
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FIGURE 2.1.10. Points and approximating
straight line for U.S. population data from
1800 to 1900.

World Population
Year (billions)

1975

1980

1985

1990

1995

2000

2005

2010

2015

4.062

4.440

4.853

5.310

5.735

6.127

6.520

6.930

7.349

FIGURE 2.1.11. World population
data.

INVESTIGATION B: Repeat Investigation A, but take t D 0 in 1900 and use only

the 20th-century population data listed in Fig. 2.1.4 to create a logistic model. How

well does your model predict the U.S. population in the years 1990–2010?

INVESTIGATION C: Model similarly the world population data shown in

Fig. 2.1.11. The Population Division of the United Nations predicts a world popu-

lation of 9:157 billion in the year 2040. What do you predict?

2.2 Equilibrium Solutions and Stability

In previous sections we have often used explicit solutions of differential equations

to answer specific numerical questions. But even when a given differential equation

is difficult or impossible to solve explicitly, it often is possible to extract qualitative

information about general properties of its solutions. For example, we may be able

to establish that every solution x.t/ grows without bound as t!C1, or approaches

a finite limit, or is a periodic function of t . In this section we introduce—mainly by

consideration of simple differential equations that can be solved explicitly—some

of the more important qualitative questions that can sometimes be answered for

equations that are difficult or impossible to solve.

Example 1 Cooling and heating Let x.t/ denote the temperature of a body with initial temperature

x.0/ D x0. At time t D 0 this body is immersed in a medium with constant temperature A.

Assuming Newton’s law of cooling,

dx

dt
D �k.x � A/ (k > 0 constant); (1)

we readily solve (by separation of variables) for the explicit solution

x.t/ D AC .x0 � A/e
�kt :

It follows immediately that

lim
t!1

x.t/ D A; (2)

so the temperature of the body approaches that of the surrounding medium (as is evident to

one’s intuition). Note that the constant function x.t/ � A is a solution of Eq. (1); it corre-

sponds to the temperature of the body when it is in thermal equilibrium with the surrounding

medium. In Fig. 2.2.1 the limit in (2) means that every other solution curve approaches the

equilibrium solution curve x D A asymptotically as t !C1.

t

x = A

x

FIGURE 2.2.1. Typical solution
curves for the equation of Newton’s
law of cooling, dx=dt D �k.x � A/.
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Remark The behavior of solutions of Eq. (1) is summarized briefly by the phase diagram

x = Ax < A x > A

x' < 0x' > 0

FIGURE 2.2.2. Phase diagram for

the equation
dx=dt D f .x/ D k.A � x/.

in Fig. 2.2.2—which indicates the direction (or “phase”) of change in x as a function of x

itself. The right-hand side f .x/ D �k.x � A/ D k.A � x/ is positive if x < A, negative if

x > A. This observation corresponds to the fact that solutions starting above the line x D A

and those starting below it both approach the limiting solution x.t/ � A as t increases (as

indicated by the arrows).

In Section 2.1 we introduced the general population equation

dx

dt
D .ˇ � ı/x; (3)

where ˇ and ı are the birth and death rates, respectively, in births or deaths per

individual per unit of time. The question of whether a population x.t/ is bounded or

unbounded as t ! C1 is of evident interest. In many situations—like the logistic

and explosion=extinction populations of Section 2.1—the birth and death rates are

known functions of x. Then Eq. (3) takes the form

dx

dt
D f .x/: (4)

This is an autonomous first-order differential equation—one in which the indepen-

dent variable t does not appear explicitly (the terminology here stemming from the

Greek word autonomos for “independent,” e.g., of the time t). As in Example 1,

the solutions of the equation f .x/D 0 play an important role and are called critical

points of the autonomous differential equation dx=dt D f .x/.

If x D c is a critical point of Eq. (4), then the differential equation has the

constant solution x.t/ � c. A constant solution of a differential equation is some-

times called an equilibrium solution (one may think of a population that remains

constant because it is in “equilibrium” with its environment). Thus the critical point

xD c, a number, corresponds to the equilibrium solution x.t/� c, a constant-valued

function.

Example 2 illustrates the fact that the qualitative behavior (as t increases) of

the solutions of an autonomous first-order equation can be described in terms of its

critical points.

Example 2 Logistic equation Consider the logistic differential equation

dx

dt
D kx.M � x/ (5)

(with k > 0 and M > 0). It has two critical points—the solutions x D 0 and x D M of the

equation

f .x/ D kx.M � x/ D 0:

In Section 2.1 we discussed the logistic-equation solution

x.t/ D
Mx0

x0 C .M � x0/e�kM t

(6)

satisfying the initial condition x.0/ D x0. Note that the initial values x0 D 0 and x0 D M

yield the equilibrium solutions x.t/ � 0 and x.t/ �M of Eq. (5).

We observed in Section 2.1 that if x0 > 0, then x.t/!M as t ! C1. But if x0 < 0,

then the denominator in Eq. (6) initially is positive, but vanishes when

t D t1 D
1

kM
ln
M � x0

�x0

> 0:
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Because the numerator in (6) is negative in this case, it follows that

lim
t!t

�

1

x.t/ D �1 if x0 < 0:

It follows that the solution curves of the logistic equation in (5) look as illustrated in

Fig. 2.2.3. Here we see graphically that every solution either approaches the equilibrium

solution x.t/ � M as t increases, or (in a visually obvious sense) diverges away from the

other equilibrium solution x.t/ � 0.

Stability of Critical Points

Figure 2.2.3 illustrates the concept of stability. A critical point x D c of an au-

tonomous first-order equation is said to be stable provided that, if the initial value

x0 is sufficiently close to c, then x.t/ remains close to c for all t > 0. More precisely,

the critical point c is stable if, for each � > 0, there exists ı > 0 such that

t

x = M

x = 0

x

FIGURE 2.2.3. Typical solution
curves for the logistic equation
dx=dt D kx.M � x/.

jx0 � cj < ı implies that jx.t/ � cj < � (7)

for all t > 0. The critical point x D c is unstable if it is not stable.

Figure 2.2.4 shows a “wider view” of the solution curves of a logistic equation

with k D 1 and M D 4. Note that the strip 3:5 < x < 4:5 enclosing the stable

equilibrium curve x D 4 acts like a funnel—solution curves (moving from left to

right) enter this strip and thereafter remain within it. By contrast, the strip �0:5 <

x < 0:5 enclosing the unstable solution curve x D 0 acts like a spout—solution

curves leave this strip and thereafter remain outside it. Thus the critical point xDM

is stable, whereas the critical point x D 0 is unstable.

Remark 1 We can summarize the behavior of solutions of the logistic equation in (5)—in

terms of their initial values—by means of the phase diagram shown in Fig. 2.2.5. It indicates

that x.t/ ! M as t ! C1 if either x0 > M or 0 < x0 < M , whereas x.t/ ! �1 as t

increases if x0 < 0. The fact thatM is a stable critical point would be important, for instance,

if we wished to conduct an experiment with a population of M bacteria. It is impossible to

count precisely M bacteria for M large, but any initially positive population will approach

12108642
t

x

0
–3

–2

–1

0

1

2

3

4

5

6

7

FIGURE 2.2.4. Solution curves,
funnel, and spout for

dx=dt D 4x � x
2.

M as t increases.

Remark 2 Related to the stability of the limiting solution M D a=b of the logistic equation

x = M

Stable

x' > 0 x' < 0x' < 0

x = 0

Unstable

FIGURE 2.2.5. Phase diagram for
the logistic equation

dx=dt D f .x/ D kx.M � x/.

dx

dt
D ax � bx2 (8)

is the “predictability” of M for an actual population. The coefficients a and b are unlikely

to be known precisely for an actual population. But if they are replaced with close approx-

imations a? and b?—derived perhaps from empirical measurements—then the approximate

limiting populationM? D a?=b? will be close to the actual limiting populationM D a=b. We

may therefore say that the valueM of the limiting population predicted by a logistic equation

not only is a stable critical point of the differential equation, but this value also is “stable”

with respect to small perturbations of the constant coefficients in the equation. (Note that one

of these two statements involves changes in the initial value x0; the other involves changes in

the coefficients a and b.)

Example 3 Explosion/extinction Consider now the explosion=extinction equation

dx

dt
D kx.x �M/ (9)

of Eq. (10) in Section 2.1. Like the logistic equation, it has the two critical points x D 0 and

x D M corresponding to the equilibrium solutions x.t/ � 0 and x.t/ � M . According to

Problem 33 in Section 2.1, its solution with x.0/ D x0 is given by

x.t/ D
Mx0

x0 C .M � x0/ekM t

(10)
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(with only a single difference in sign from the logistic solution in (6)). If x0 < M , then (be-

cause the coefficient of the exponential in the denominator is positive) it follows immediately

from Eq. (10) that x.t/! 0 as t !C1. But if x0 >M , then the denominator in (10) initially

is positive, but vanishes when

t D t1 D
1

kM
ln

x0

x0 �M
> 0:

Because the numerator in (10) is positive in this case, it follows that

t

x = M

x = 0

x

FIGURE 2.2.6. Typical solution
curves for the explosion/extinction
equation dx=dt D kx.x � M/.

lim
t!t

�

1

x.t/ D C1 if x0 > M:

Therefore, the solution curves of the explosion=extinction equation in (9) look as illustrated

in Fig. 2.2.6. A narrow band along the equilibrium curve x D 0 (as in Fig. 2.2.4) would serve

as a funnel, while a band along the solution curve x DM would serve as a spout for solutions.

The behavior of the solutions of Eq. (9) is summarized by the phase diagram in Fig. 2.2.7,

where we see that the critical point x D 0 is stable and the critical point x DM is unstable.

x = M

Unstable

x' < 0 x' > 0x' > 0

x = 0

Stable

FIGURE 2.2.7. Phase diagram for
the explosion/extinction equation

dx=dt D f .x/ D kx.x � M/.

Harvesting a Logistic Population

The autonomous differential equation

dx

dt
D ax � bx2

� h (11)

(with a, b, and h all positive) may be considered to describe a logistic population

with harvesting. For instance, we might think of the population of fish in a lake

from which h fish per year are removed by fishing.

Example 4 Threshold/limiting population Let us rewrite Eq. (11) in the form

dx

dt
D kx.M � x/ � h; (12)

which exhibits the limiting population M in the case h D 0 of no harvesting. Assuming

hereafter that h > 0, we can solve the quadratic equation �kx2 C kMx � h D 0 for the two

critical points

H;N D
kM ˙

p

.kM/2 � 4hk

2k
D
1

2

�

M ˙

q

M 2 � 4h=k

�

; (13)

assuming that the harvesting rate h is sufficiently small that 4h < kM 2, so both roots H and

N are real with 0 < H < N < M . Then we can rewrite Eq. (12) in the form

dx

dt
D k.N � x/.x �H/: (14)

For instance, the number of critical points of the equation may change abruptly as the value

of a parameter is changed. In Problem 24 we ask you to solve this equation for the solution

x.t/ D
N.x0 �H/ �H.x0 �N/e

�k.N �H/t

.x0 �H/ � .x0 �N/e�k.N �H/t

(15)

in terms of the initial value x.0/ D x0.

Note that the exponent �k.N �H/t is negative for t > 0. If x0 > N , then each of the

coefficients within parentheses in Eq. (15) is positive; it follows that

If x0 > N then x.t/! N as t !C1: (16)
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In Problem 25 we ask you to deduce also from Eq. (15) that

If H < x0 < N then x.t/! N as t !C1; whereas (17)

if x0 < H then x.t/! �1 as t ! t1 (18)

for a positive value t1 that depends on x0. It follows that the solution curves of Eq. (12)—still

assuming that 4h < kM 2—look as illustrated in Fig. 2.2.8. (Can you visualize a funnel along

the line x D N and a spout along the line x DH?) Thus the constant solution x.t/� N is an

equilibrium limiting solution, whereas x.t/ � H is a threshold solution that separates differ-

ent behaviors—the population approaches N if x0 > H , while it becomes extinct because of

harvesting if x0 < H . Finally, the stable critical point x D N and the unstable critical point

x D H are illustrated in the phase diagram in Fig. 2.2.9.

x = 0

t

x = N

x = H

x

FIGURE 2.2.8. Typical solution
curves for the logistic harvesting
equation dx=dt D k.N � x/.x � H/.

x = N

Stable

x' > 0 x' < 0x' < 0

x = H

Unstable

FIGURE 2.2.9. Phase diagram for
the logistic harvesting equation
dx=dt D f .x/ D k.N � x/.x � H/.

Example 5 Lake stocked with fish For a concrete application of our stability conclusions in Example

4, suppose that k D 1 and M D 4 for a logistic population x.t/ of fish in a lake, measured in

hundreds after t years. Without any fishing at all, the lake would eventually contain nearly 400

fish, whatever the initial population. Now suppose that hD 3, so that 300 fish are “harvested”

annually (at a constant rate throughout the year). Equation (12) is then dx=dt D x.4� x/� 3,

and the quadratic equation

�x2
C 4x � 3 D .3 � x/.x � 1/ D 0

has solutions H D 1 and N D 3. Thus the threshold population is 100 fish and the (new)

limiting population is 300 fish. In short, if the lake is stocked initially with more than 100

fish, then as t increases, the fish population will approach a limiting value of 300 fish. But

if the lake is stocked initially with fewer than 100 fish, then the lake will be “fished out” and

the fish will disappear entirely within a finite period of time.

Bifurcation and Dependence on Parameters

A biological or physical system that is modeled by a differential equation may de-

pend crucially on the numerical values of certain coefficients or parameters that

appear in the equation. For instance, the number of critical points of the equation

may change abruptly as the value of a parameter is changed.

Example 6 Critical/excessive harvesting The differential equation

dx

dt
D x.4 � x/ � h (19)

(with x in hundreds) models the harvesting of a logistic population with k D 1 and limiting

population M D 4 (hundred). In Example 5 we considered the case of harvesting level hD 3,

and found that the new limiting population is N D 3 hundred and the threshold population is
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H D 1 hundred. Typical solution curves, including the equilibrium solutions x.t/ � 3 and

x.t/ � 1, then look like those pictured in Fig. 2.2.8.

Now let’s investigate the dependence of this picture upon the harvesting level h. Ac-

cording to Eq. (13) with k D 1 and M D 4, the limiting and threshold populations N and H

are given by

H;N D
1

2

�

4˙
p
16 � 4h

�

D 2˙
p
4 � h: (20)

If h < 4—we can consider negative values of h to describe stocking rather than harvesting

the fish—then there are distinct equilibrium solutions x.t/ � N and x.t/ � H with N > H

as in Fig. 2.2.8.

But if h D 4, then Eq. (20) gives N D H D 2, so the differential equation has only the

single equilibrium solution x.t/� 2. In this case the solution curves of the equation look like

those illustrated in Fig. 2.2.10. If the initial number x0 (in hundreds) of fish exceeds 2, then

the population approaches a limiting population of 2 (hundred fish). However, any initial

population x0 < 2 (hundred) results in extinction with the fish dying out as a consequence

of the harvesting of 4 hundred fish annually. The critical point x D 2 might therefore be

0 2 4

1

3

5

t

x

–1

x(t) ≡ 2

FIGURE 2.2.10. Solution curves of
the equation x

0 D x.4 � x/ � h with
critical harvesting h D 4.

described as “semistable”—it looks stable on the side x > 2 where solution curves approach

the equilibrium solution x.t/� 2 as t increases, but unstable on the side x < 2 where solution

0 2 4

1

3

5

t

x

–1

FIGURE 2.2.11. Solution curves of

the equation x
0 D x.4 � x/ � h with

excessive harvesting h D 5.

curves instead diverge away from the equilibrium solution.

If, finally, h > 4, then the quadratic equation corresponding to (20) has no real solu-

tions and the differential equation in (19) has no equilibrium solutions. The solution curves

then look like those illustrated in Fig. 2.2.11, and (whatever the initial number of fish) the

population dies out as a result of the excessive harvesting.

If we imagine turning a dial to gradually increase the value of the parameter h

in Eq. (19), then the picture of the solution curves changes from one like Fig. 2.2.8

with h < 4, to Fig. 2.2.10 with h D 4, to one like Fig. 2.2.11 with h > 4. Thus the

differential equation has

� two critical points if h < 4 ;

� one critical point if h D 4 ;

� no critical point if h > 4.

The value h D 4—for which the qualitative nature of the solutions changes as h

increases—is called a bifurcation point for the differential equation containing the

parameter h. A common way to visualize the corresponding “bifurcation” in the

solutions is to plot the bifurcation diagram consisting of all points .h; c/, where

c is a critical point of the equation x0 D x.4 � x/C h . For instance, if we rewrite

Eq. (20) as

c D 2˙
p
4 � h;

.c � 2/2 D 4 � h;

where either c DN or c DH , then we get the equation of the parabola that is shown

in Fig. 2.2.12. This parabola is then the bifurcation diagram for our differential

equation that models a logistic fish population with harvesting at the level specified

by the parameter h.

4
h

c

(c – 2)2 = 4 – h

FIGURE 2.2.12. The parabola

.c � 2/
2 D 4 � h is the bifurcation

diagram for the differential equation
x

0 D x.4 � x/ � h.

2.2 Problems
In Problems 1 through 12 first solve the equation f .x/ D 0

to find the critical points of the given autonomous differential

equation dx=dt D f .x/. Then analyze the sign of f .x/ to de-

termine whether each critical point is stable or unstable, and

construct the corresponding phase diagram for the differen-

tial equation. Next, solve the differential equation explicitly

for x.t/ in terms of t . Finally, use either the exact solution

or a computer-generated slope field to sketch typical solution

curves for the given differential equation, and verify visually

the stability of each critical point.

1.
dx

dt
D x � 4 2.

dx

dt
D 3 � x
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3.
dx

dt
D x2 � 4x 4.

dx

dt
D 3x � x2

5.
dx

dt
D x2 � 4 6.

dx

dt
D 9 � x2

7.
dx

dt
D .x � 2/2 8.

dx

dt
D �.3 � x/2

9.
dx

dt
D x2 � 5x C 4 10.

dx

dt
D 7x � x2 � 10

11.
dx

dt
D .x � 1/3 12.

dx

dt
D .2 � x/3

In Problems 13 through 18, use a computer system or graphing

calculator to plot a slope field and/or enough solution curves

to indicate the stability or instability of each critical point of

the given differential equation. .Some of these critical points

may be semistable in the sense mentioned in Example 6./

13.
dx

dt
D .x C 2/.x � 2/2 14.

dx

dt
D x.x2 � 4/

15.
dx

dt
D .x2 � 4/2 16.

dx

dt
D .x2 � 4/3

17.
dx

dt
D x2.x2 � 4/ 18.

dx

dt
D x3.x2 � 4/

19. The differential equation dx=dt D 1

10
x.10�x/�hmodels

a logistic population with harvesting at rate h. Determine

(as in Example 6) the dependence of the number of critical

points on the parameter h, and then construct a bifurcation

diagram like Fig. 2.2.12.

20. The differential equation dx=dt D 1

100
x.x�5/C s models

a population with stocking at rate s. Determine the depen-

dence of the number of critical points c on the parameter s,

and then construct the corresponding bifurcation diagram

in the sc-plane.

21. Pitchfork bifurcation Consider the differential equa-

tion dx=dt D kx � x3. (a) If k 5 0, show that the only

critical value c D 0 of x is stable. (b) If k > 0, show

that the critical point c D 0 is now unstable, but that the

critical points c D ˙
p
k are stable. Thus the qualitative

nature of the solutions changes at k D 0 as the parameter

k increases, and so k D 0 is a bifurcation point for the dif-

ferential equation with parameter k. The plot of all points

of the form .k; c/ where c is a critical point of the equa-

tion x0 D kx � x3 is the “pitchfork diagram” shown in

Fig. 2.2.13.

c

k

FIGURE 2.2.13. Bifurcation diagram for
dx=dt D kx � x

3.

22. Consider the differential equation dx=dt D x C kx3 con-

taining the parameter k. Analyze (as in Problem 21) the

dependence of the number and nature of the critical points

on the value of k, and construct the corresponding bifur-

cation diagram.

23. Variable-rate harvesting Suppose that the logistic

equation dx=dt D kx.M � x/ models a population x.t/

of fish in a lake after t months during which no fishing

occurs. Now suppose that, because of fishing, fish are re-

moved from the lake at the rate of hx fish per month (with

h a positive constant). Thus fish are “harvested” at a rate

proportional to the existing fish population, rather than at

the constant rate of Example 4. (a) If 0 < h < kM , show

that the population is still logistic. What is the new limit-

ing population? (b) If h = kM , show that x.t/ ! 0 are

t !C1, so the lake is eventually fished out.

24. Separate variables in the logistic harvesting equation

dx=dt D k.N � x/.x �H/ and then use partial fractions

to derive the solution given in Eq. (15).

25. Use the alternative forms

x.t/ D
N.x0 �H/CH.N � x0/e

�k.N �H/t

.x0 �H/C .N � x0/e�k.N �H/t

D
H.N � x0/e

�k.N �H/t �N.H � x0/

.N � x0/e�k.N �H/t � .H � x0/

of the solution in (15) to establish the conclusions stated

in (17) and (18).

Constant-Rate Harvesting

Example 4 dealt with the case 4h > kM 2 in the equation

dx=dt D kx.M � x/ � h that describes constant-rate harvest-

ing of a logistic population. Problems 26 and 27 deal with the

other cases.

26. If 4h D kM 2, show that typical solution curves look

as illustrated in Fig. 2.2.14. Thus if x0 = M=2, then

x.t/!M=2 as t !C1. But if x0 < M=2, then x.t/ D 0

after a finite period of time, so the lake is fished out. The

critical point xDM=2might be called semistable, because

it looks stable from one side, unstable from the other.

t

x = M/2

x = 0

x

FIGURE 2.2.14. Solution curves for
harvesting a logistic population with

4h D kM
2.

27. If 4h > kM 2, show that x.t/ D 0 after a finite period of

time, so the lake is fished out (whatever the initial popula-

tion). [Suggestion: Complete the square to rewrite the dif-

ferential equation in the form dx=dt D �kŒ.x � a/2C b2�.
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Then solve explicitly by separation of variables.] The re-

sults of this and the previous problem (together with Ex-

ample 4) show that h D 1

4
kM 2 is a critical harvesting rate

for a logistic population. At any lesser harvesting rate the

population approaches a limiting population N that is less

than M (why?), whereas at any greater harvesting rate the

population reaches extinction.

28. Alligator population This problem deals with the dif-

ferential equation dx=dt D kx.x �M/ � h that models

the harvesting of an unsophisticated population (such as

alligators). Show that this equation can be rewritten in the

form dx=dt D k.x �H/.x �K/, where

H D 1

2

�

M C

q

M 2 C 4h=k

�

> 0;

K D 1

2

�

M �

q

M 2 C 4h=k

�

< 0:

Show that typical solution curves look as illustrated in

Fig. 2.2.15.

29. Consider the two differential equations

dx

dt
D .x � a/.x � b/.x � c/ (21)

and
dx

dt
D .a � x/.b � x/.c � x/; (22)

each having the critical points a, b, and c; suppose that

a < b < c. For one of these equations, only the criti-

cal point b is stable; for the other equation, b is the only

unstable critical point. Construct phase diagrams for the

two equations to determine which is which. Without at-

tempting to solve either equation explicitly, make rough

sketches of typical solution curves for each. You should

see two funnels and a spout in one case, two spouts and a

funnel in the other.

t

x = H

x = K

x = 0x

FIGURE 2.2.15. Solution curves for harvesting
a population of alligators.

2.3 Acceleration–Velocity Models

In Section 1.2 we discussed vertical motion of a massm near the surface of the earth

under the influence of constant gravitational acceleration. If we neglect any effects

of air resistance, then Newton’s second law .F D ma) implies that the velocity v of

the mass m satisfies the equation

m
dv

dt
D FG ; (1)

where FG D �mg is the (downward-directed) force of gravity, where the gravita-

tional acceleration is g � 9:8 m=s2 (in mks units; g � 32 ft=s2 in fps units).

Example 1 No air resistance Suppose that a crossbow bolt is shot straight upward from the ground

(y0 D 0) with initial velocity v0 D 49 (m=s). Then Eq. (1) with g D 9:8 gives

dv

dt
D �9:8; so v.t/ D �.9:8/t C v0 D �.9:8/t C 49:

Hence the bolt’s height function y.t/ is given by

y.t/ D

Z

Œ�.9:8/t C 49� dt D �.4:9/t2 C 49t C y0 D �.4:9/t
2
C 49t:

The bolt reaches its maximum height when v D �.9:8/t C 49 D 0, hence when t D 5 (s).

Thus its maximum height is

ymax D y.5/ D �.4:9/.5
2/C .49/.5/ D 122.5 (m):

The bolt returns to the ground when y D �.4:9/t.t � 10/ D 0, and thus after 10 seconds

aloft.
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Now we want to take account of air resistance in a problem like Example 1.

The force FR exerted by air resistance on the moving mass m must be added in

Eq. (1), so now

m
dv

dt
D FG C FR: (2)

Newton showed in his Principia Mathematica that certain simple physical assump-

tions imply that FR is proportional to the square of the velocity: FR D kv2. But

empirical investigations indicate that the actual dependence of air resistance on ve-

locity can be quite complicated. For many purposes it suffices to assume that

FR D kv
p;

where 1 5 p 5 2 and the value of k depends on the size and shape of the body, as

well as the density and viscosity of the air. Generally speaking, p D 1 for relatively

low speeds and p D 2 for high speeds, whereas 1 < p < 2 for intermediate speeds.

But how slow “low speed” and how fast “high speed” are depend on the same factors

that determine the value of the coefficient k.

Thus air resistance is a complicated physical phenomenon. But the simplify-

ing assumption that FR is exactly of the form given here, with either p D 1 or p D 2,

yields a tractable mathematical model that exhibits the most important qualitative

features of motion with resistance.

Resistance Proportional to Velocity

Let us first consider the vertical motion of a body with mass m near the surface ofy

m m

Ground level

FR

FG

Net force F = FR + FG

(Note: FR acts upward when
the body is falling.)

FIGURE 2.3.1. Vertical motion with
air resistance.

the earth, subject to two forces: a downward gravitational force FG and a force FR

of air resistance that is proportional to velocity (so that pD 1) and of course directed

opposite the direction of motion of the body. If we set up a coordinate system with

the positive y-direction upward and with y D 0 at ground level, then FG D �mg

and

FR D �kv; (3)

where k is a positive constant and v D dy=dt is the velocity of the body. Note that

the minus sign in Eq. (3) makes FR positive (an upward force) if the body is falling

(v is negative) and makes FR negative (a downward force) if the body is rising (v is

positive). As indicated in Fig. 2.3.1, the net force acting on the body is then

F D FR C FG D �kv �mg;

and Newton’s law of motion F D m.dv=dt/ yields the equation

m
dv

dt
D �kv �mg:

Thus

dv

dt
D ��v � g; (4)

where � D k=m > 0. You should verify for yourself that if the positive y-axis were

directed downward, then Eq. (4) would take the form dv=dt D ��v C g.

Equation (4) is a separable first-order differential equation, and its solution is

v.t/ D

�

v0 C
g

�

�

e��t
�
g

�
: (5)
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Here, v0 D v.0/ is the initial velocity of the body. Note that

v� D lim
t!1

v.t/ D �
g

�
: (6)

Thus the speed of a body falling with air resistance does not increase indefinitely;

instead, it approaches a finite limiting speed, or terminal speed,

jv� j D
g

�
D
mg

k
: (7)

This fact is what makes a parachute a practical invention; it even helps explain

the occasional survival of people who fall without parachutes from high-flying air-

planes.

We now rewrite Eq. (5) in the form

dy

dt
D .v0 � v� /e

��t
C v� : (8)

Integration gives

y.t/ D �
1

�
.v0 � v� /e

��t
C v� t C C:

We substitute 0 for t and let y0 D y.0/ denote the initial height of the body. Thus

we find that C D y0 C .v0 � v� /=�, and so

y.t/ D y0 C v� t C
1

�
.v0 � v� /.1 � e

��t /: (9)

Equations (8) and (9) give the velocity v and height y of a body moving ver-

tically under the influence of gravity and air resistance. The formulas depend on

the initial height y0 of the body, its initial velocity v0, and the drag coefficient �,

the constant such that the acceleration due to air resistance is aR D ��v. The two

equations also involve the terminal velocity v� defined in Eq. (6).

For a person descending with the aid of a parachute, a typical value of � is 1:5,

which corresponds to a terminal speed of jv� j � 21:3 ft=s, or about 14:5 mi=h. With

an unbuttoned overcoat flapping in the wind in place of a parachute, an unlucky

skydiver might increase � to perhaps as much as 0:5, which gives a terminal speed

of jv� j � 65 ft=s, about 44 mi=h. See Problems 10 and 11 for some parachute-jump

computations.

Example 2 Velocity-proportional resistance We again consider a bolt shot straight upward with ini-

tial velocity v0 D 49 m=s from a crossbow at ground level. But now we take air resistance

into account, with � D 0:04 in Eq. (4). We ask how the resulting maximum height and time

aloft compare with the values found in Example 1.

Solution We substitute y0 D 0, v0 D 49, and v� D �g=� D �245 in Eqs. (5) and (9), and obtain

v.t/ D 294e�t=25
� 245;

y.t/ D 7350 � 245t � 7350e�t=25:

To find the time required for the bolt to reach its maximum height (when v D 0), we solve

the equation

v.t/ D 294e�t=25
� 245 D 0

for tm D 25 ln.294=245/ � 4:558 (s). Its maximum height is then ymax D v.tm/ � 108:280

meters (as opposed to 122:5 meters without air resistance). To find when the bolt strikes the

ground, we must solve the equation

y.t/ D 7350 � 245t � 7350e�t=25
D 0:
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Using Newton’s method, we can begin with the initial guess t0D 10 and carry out the iteration

tnC1 D tn � y.tn/=y
0.tn/ to generate successive approximations to the root. Or we can simply

use the Solve command on a calculator or computer. We find that the bolt is in the air for

tf � 9:411 seconds (as opposed to 10 seconds without air resistance). It hits the ground with

a reduced speed of jv.tf/j � 43:227 m=s (as opposed to its initial velocity of 49 m=s).

Thus the effect of air resistance is to decrease the bolt’s maximum height, the total

time spent aloft, and its final impact speed. Note also that the bolt now spends more time in

descent (tf � tm � 4:853 s) than in ascent (tm � 4:558 s).

Resistance Proportional to Square of Velocity

Now we assume that the force of air resistance is proportional to the square of the

velocity:

FR D ˙kv
2; (10)

with k > 0. The choice of signs here depends on the direction of motion, which

the force of resistance always opposes. Taking the positive y-direction as upward,

FR < 0 for upward motion (when v > 0) while FR > 0 for downward motion (when

v < 0). Thus the sign of FR is always opposite that of v, so we can rewrite Eq. (10)

as

FR D �kvjvj: (100)

Then Newton’s second law gives

m
dv

dt
D FG C FR D �mg � kvjvjI

that is,
dv

dt
D �g � �vjvj; (11)

where � D k=m > 0. We must discuss the cases of upward and downward motion

separately.

UPWARD MOTION: Suppose that a projectile is launched straight upward from

the initial position y0 with initial velocity v0 > 0. Then Eq. (11) with v > 0 gives

the differential equation

dv

dt
D �g � �v2

D �g

�

1C
�

g
v2

�

: (12)

In Problem 13 we ask you to make the substitution uD v
p

�=g and apply the familiar

integral
Z

1

1C u2
du D tan�1 uC C

to derive the projectile’s velocity function

v.t/ D

r

g

�
tan

�

C1 � t
p
�g
�

with C1 D tan�1

�

v0

r

�

g

�

: (13)

Because
R

tanudu D � ln j cosuj C C , a second integration (see Problem 14) yields

the position function

y.t/ D y0 C
1

�
ln

ˇ

ˇ

ˇ

ˇ

ˇ

cos
�

C1 � t
p
�g
�

cosC1

ˇ

ˇ

ˇ

ˇ

ˇ

: (14)
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DOWNWARD MOTION: Suppose that a projectile is launched (or dropped)

straight downward from the initial position y0 with initial velocity v0 5 0. Then

Eq. (11) with v < 0 gives the differential equation

dv

dt
D �g C �v2

D �g

�

1 �
�

g
v2

�

: (15)

In Problem 15 we ask you to make the substitution uD v
p

�=g and apply the integral

Z

1

1 � u2
du D tanh�1 uC C

to derive the projectile’s velocity function

v.t/ D

r

g

�
tanh

�

C2 � t
p
�g
�

with C2 D tanh�1

�

v0

r

�

g

�

: (16)

Because
R

tanhudu D ln j coshuj C C , another integration (Problem 16) yields the

position function

y.t/ D y0 �
1

�
ln

ˇ

ˇ

ˇ

ˇ

ˇ

cosh
�

C2 � t
p
�g
�

coshC2

ˇ

ˇ

ˇ

ˇ

ˇ

: (17)

(Note the analogy between Eqs. (16) and (17) and Eqs. (13) and (14) for upward

motion.)

If v0 D 0, then C2 D 0, so v.t/ D �
p

g=� tanh
�

t
p
�g
�

. Because

lim
x!1

tanh x D lim
x!1

sinh x

cosh x
D lim

x!1

1

2
.ex � e�x/

1

2
.ex C e�x/

D 1;

it follows that in the case of downward motion the body approaches the terminal

speed

jv� j D

r

g

�
(18)

(as compared with jv� j D g=� in the case of downward motion with linear resistance

described by Eq. (4)).

Example 3 Square-proportional resistance We consider once more a bolt shot straight upward with

initial velocity v0 D 49 m=s from a crossbow at ground level, as in Example 2. But now we

assume air resistance proportional to the square of the velocity, with � D 0:0011 in Eqs. (12)

and (15). In Problems 17 and 18 we ask you to verify the entries in the last line of the

following table.

Air Maximum Time Ascent Descent Impact

Resistance Height (ft) Aloft (s) Time (s) Time (s) Speed (ft=s)

0.0

.0:04/v

.0:0011/v2

122.5

108.28

108.47

10

9.41

9.41

5

4.56

4.61

5

4.85

4.80

49

43.23

43.49
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Comparison of the last two lines of data here indicates little difference—for the motion of

t

y

1 2 3 4 5 6 7 8 9 10

Without

resistance

With

resistance

20

40

60

80

100

120

FIGURE 2.3.2. The height functions

in Example 1 (without air resistance),
Example 2 (with linear air resistance),

and Example 3 (with air resistance
proportional to the square of the

velocity) are all plotted. The graphs of
the latter two are visually

indistinguishable.

our crossbow bolt—between linear air resistance and air resistance proportional to the square

of the velocity. And in Fig. 2.3.2, where the corresponding height functions are graphed, the

difference is hardly visible. However, the difference between linear and nonlinear resistance

can be significant in more complex situations—such as, for instance, the atmospheric reentry

and descent of a space vehicle.

Variable Gravitational Acceleration

Unless a projectile in vertical motion remains in the immediate vicinity of the earth’s

surface, the gravitational acceleration acting on it is not constant. According to

Newton’s law of gravitation, the gravitational force of attraction between two point

masses M and m located at a distance r apart is given by

F D
GMm

r2
; (19)

where G is a certain empirical constant (G � 6:6726 � 10�11 N�(m=kg)2 in mks

units). The formula is also valid if either or both of the two masses are homogeneous

spheres; in this case, the distance r is measured between the centers of the spheres.

The following example is similar to Example 2 in Section 1.2, but now we

take account of lunar gravity.

Example 4 Lunar lander A lunar lander is free-falling toward the moon, and at an altitude of 53

kilometers above the lunar surface its downward velocity is measured at 1477 km=h. Its

retrorockets, when fired in free space, provide a deceleration of T D 4 m=s2. At what height

above the lunar surface should the retrorockets be activated to ensure a “soft touchdown”

(v D 0 at impact)?

Solution Let r.t/ denote the lander’s distance from the center of the moon at time t (Fig. 2.3.3). When

we combine the (constant) thrust acceleration T and the (negative) lunar acceleration F=m D

GM=r2 of Eq. (19), we get the (acceleration) differential equation

d2r

dt2
D T �

GM

r2
; (20)

where M D 7:35 � 1022 (kg) is the mass of the moon, which has a radius of R D 1:74 � 106

meters (or 1740 km, a little over a quarter of the earth’s radius). Noting that this second-order

differential equation does not involve the independent variable t , we substitute

Lunar surface

Center of moon

Lander

r – R

R

FIGURE 2.3.3. The lunar lander
descending to the surface of the moon.

v D
dr

dt
;

d2r

dt2
D
dv

dt
D
dv

dr
�
dr

dt
D v

dv

dr

(as in Eq. (36) of Section 1.6) and obtain the first-order equation

v
dv

dr
D T �

GM

r2

with the new independent variable r . Integration with respect to r now yields the equation

1

2
v2
D T r C

GM

r
C C (21)

that we can apply both before ignition (T D 0 ) and after ignition (T D 4).

Before ignition: Substitution of T D 0 in (21) gives the equation

1

2
v2
D

GM

r
C C1 (21a)

where the constant is given by C1 D v
2

0
=2 �GM=r0 with

v0 D �1477
km

h
� 1000

m

km
�

1 h

3600 s
D �

14770

36

m

s
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and r0 D .1:74� 10
6/C 53;000D 1:793� 106 m (from the initial velocity–position measure-

ment).

After ignition: Substitution of T D 4 and v D 0, r D R (at touchdown) into (21) gives

1

2
v2
D 4r C

GM

r
C C2 (21b)

where the constant C2 D �4R � GM=R is obtained by substituting the values v D 0, r D R

at touchdown.

At the instant of ignition the lunar lander’s position and velocity satisfy both (21a)

and (21b). Therefore we can find its desired height h above the lunar surface at ignition by

equating the right-hand sides in (21a) and (21b). This gives r D 1

4
.C1 � C2/ D 1:78187 �

106 and finally h D r � R D 41;870 meters (that is, 41.87 kilometers—just over 26 miles).

Moreover, substitution of this value of r in (21a) gives the velocity v D �450 m=s at the

instant of ignition.

Escape Velocity

In his novel From the Earth to the Moon (1865), Jules Verne raised the questionr

m

M

Velocity    (t )

r (t )

R

FIGURE 2.3.4. A mass m at a great
distance from the earth.

of the initial velocity necessary for a projectile fired from the surface of the earth

to reach the moon. Similarly, we can ask what initial velocity v0 is necessary for

the projectile to escape from the earth altogether. This will be so if its velocity

v D dr=dt remains positive for all t > 0, so it continues forever to move away from

the earth. With r.t/ denoting the projectile’s distance from the earth’s center at time

t (Fig. 2.3.4), we have the equation

dv

dt
D
d2r

dt2
D �

GM

r2
; (22)

similar to Eq. (20), but with T D 0 (no thrust) and with M D 5:975 � 1024 (kg)

denoting the mass of the earth, which has an equatorial radius of R D 6:378 � 106

(m). Substitution of the chain rule expression dv=dt D v.dv=dr/ as in Example 4

gives

v
dv

dr
D �

GM

r2
:

Then integration of both sides with respect to r yields

1

2
v2
D

GM

r
C C:

Now v D v0 and r D R when t D 0, so C D 1

2
v2

0
� GM=R, and hence solution for

v2 gives

v2
D v2

0
C 2GM

�

1

r
�
1

R

�

: (23)

This implicit solution of Eq. (22) determines the projectile’s velocity v as a function

of its distance r from the earth’s center. In particular,

v2 > v2

0
�
2GM

R
;

so v will remain positive provided that v2

0
= 2GM=R. Therefore, the escape velocity

from the earth is given by

v0 D

r

2GM

R
: (24)
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In Problem 27 we ask you to show that, if the projectile’s initial velocity exceeds
p

2GM=R, then r.t/ ! 1 as t ! 1, so it does, indeed, “escape” from the earth.

With the given values of G and the earth’s mass M and radius R, this gives v0 �

11;180 (m=s) (about 36,680 ft=s, about 6:95 mi=s, about 25,000 mi=h).

Remark Equation (24) gives the escape velocity for any other (spherical) planetary body

when we use its mass and radius. For instance, when we use the massM and radius R for the

moon given in Example 4, we find that escape velocity from the lunar surface is v0 � 2375

m=s. This is just over one-fifth of the escape velocity from the earth’s surface, a fact that

greatly facilitates the return trip (“From the Moon to the Earth”).

2.3 Problems
1. The acceleration of a Maserati is proportional to the dif-

ference between 250 km=h and the velocity of this sports

car. If this machine can accelerate from rest to 100 km=h

in 10 s, how long will it take for the car to accelerate from

rest to 200 km=h?

Problems 2 through 8 explore the effects of resistance propor-

tional to a power of the velocity.

2. Suppose that a body moves through a resisting medium

with resistance proportional to its velocity v, so that

dv=dt D �kv. (a) Show that its velocity and position

at time t are given by

v.t/ D v0e
�kt

and

x.t/ D x0 C

�v0

k

�

.1 � e�kt /:

(b) Conclude that the body travels only a finite distance,

and find that distance.

3. Suppose that a motorboat is moving at 40 ft=s when its

motor suddenly quits, and that 10 s later the boat has

slowed to 20 ft=s. Assume, as in Problem 2, that the re-

sistance it encounters while coasting is proportional to its

velocity. How far will the boat coast in all?

4. Consider a body that moves horizontally through a

medium whose resistance is proportional to the square of

the velocity v, so that dv=dt D �kv2. Show that

v.t/ D
v0

1C v0kt

and that

x.t/ D x0 C
1

k
ln.1C v0kt/:

Note that, in contrast with the result of Problem 2, x.t/!

C1 as t ! C1. Which offers less resistance when the

body is moving fairly slowly—the medium in this prob-

lem or the one in Problem 2? Does your answer seem

consistent with the observed behaviors of x.t/ as t !1?

5. Assuming resistance proportional to the square of the ve-

locity (as in Problem 4), how far does the motorboat of

Problem 3 coast in the first minute after its motor quits?

6. Assume that a body moving with velocity v encounters

resistance of the form dv=dt D �kv3=2. Show that

v.t/ D
4v0

�

kt
p
v0 C 2

�

2

and that

x.t/ D x0 C
2

k

p
v0

�

1 �
2

kt
p
v0 C 2

�

:

Conclude that under a 3

2
-power resistance a body coasts

only a finite distance before coming to a stop.

7. Suppose that a car starts from rest, its engine providing an

acceleration of 10 ft=s2, while air resistance provides 0:1

ft=s2 of deceleration for each foot per second of the car’s

velocity. (a) Find the car’s maximum possible (limiting)

velocity. (b) Find how long it takes the car to attain 90%

of its limiting velocity, and how far it travels while doing

so.

8. Rework both parts of Problem 7, with the sole difference

that the deceleration due to air resistance now is .0:001/v2

ft=s2 when the car’s velocity is v feet per second.

Problems 9 through 12 illustrate resistance proportional to the

velocity.

9. A motorboat weighs 32,000 lb and its motor provides a

thrust of 5000 lb. Assume that the water resistance is 100

pounds for each foot per second of the speed v of the boat.

Then

1000
dv

dt
D 5000 � 100v:

If the boat starts from rest, what is the maximum velocity

that it can attain?

10. Falling parachutist A woman bails out of an airplane at

an altitude of 10,000 ft, falls freely for 20 s, then opens her

parachute. How long will it take her to reach the ground?

Assume linear air resistance �v ft=s2, taking � D 0:15

without the parachute and � D 1:5 with the parachute.

(Suggestion: First determine her height above the ground

and velocity when the parachute opens.)

11. Falling paratrooper According to a newspaper ac-

count, a paratrooper survived a training jump from 1200
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ft when his parachute failed to open but provided some re-

sistance by flapping unopened in the wind. Allegedly he

hit the ground at 100mi=h after falling for 8 s. Test the ac-

curacy of this account. (Suggestion: Find � in Eq. (4) by

assuming a terminal velocity of 100 mi=h. Then calculate

the time required to fall 1200 ft.)

12. Nuclear waste disposal It is proposed to dispose of nu-

clear wastes—in drums with weight W D 640 lb and vol-

ume 8 ft3—by dropping them into the ocean (v0 D 0). The

force equation for a drum falling through water is

m
dv

dt
D �W C B C F

R
;

where the buoyant force B is equal to the weight (at 62:5

lb=ft3) of the volume of water displaced by the drum

(Archimedes’ principle) and F
R

is the force of water resis-

tance, found empirically to be 1 lb for each foot per second

of the velocity of a drum. If the drums are likely to burst

upon an impact of more than 75 ft=s, what is the maximum

depth to which they can be dropped in the ocean without

likelihood of bursting?

13. Separate variables in Eq. (12) and substitute u D v
p

�=g

to obtain the upward-motion velocity function given in

Eq. (13) with initial condition v.0/ D v0.

14. Integrate the velocity function in Eq. (13) to obtain the

upward-motion position function given in Eq. (14) with

initial condition y.0/ D y0.

15. Separate variables in Eq. (15) and substitute u D v
p

�=g

to obtain the downward-motion velocity function given in

Eq. (16) with initial condition v.0/ D v0.

16. Integrate the velocity function in Eq. (16) to obtain the

downward-motion position function given in Eq. (17) with

initial condition y.0/ D y0.

Problems 17 and 18 apply Eqs. (12)–(17) to the motion of a

crossbow bolt.

17. Consider the crossbow bolt of Example 3, shot straight

upward from the ground (y D 0) at time t D 0 with initial

velocity v0 D 49 m=s. Take g D 9:8 m=s2 and � D 0:0011

in Eq. (12). Then use Eqs. (13) and (14) to show that

the bolt reaches its maximum height of about 108:47 m in

about 4:61 s.

18. Continuing Problem 17, suppose that the bolt is now

dropped (v0 D 0) from a height of y0 D 108:47 m. Then

use Eqs. (16) and (17) to show that it hits the ground about

4:80 s later with an impact speed of about 43:49 m=s.

Problems 19 through 23 illustrate resistance proportional to

the square of the velocity.

19. A motorboat starts from rest (initial velocity v.0/ D v0 D

0). Its motor provides a constant acceleration of 4 ft=s2,

but water resistance causes a deceleration of v2=400 ft=s2.

Find v when t D 10 s, and also find the limiting velocity

as t ! C1 (that is, the maximum possible speed of the

boat).

20. An arrow is shot straight upward from the ground with

an initial velocity of 160 ft=s. It experiences both the de-

celeration of gravity and deceleration v2=800 due to air

resistance. How high in the air does it go?

21. If a ball is projected upward from the ground with initial

velocity v0 and resistance proportional to v2, deduce from

Eq. (14) that the maximum height it attains is

ymax D
1

2�
ln

 

1C
�v2

0

g

!

:

22. Suppose that � D 0:075 (in fps units, with g D 32 ft=s2)

in Eq. (15) for a paratrooper falling with parachute open.

If he jumps from an altitude of 10,000 ft and opens his

parachute immediately, what will be his terminal speed?

How long will it take him to reach the ground?

23. Suppose that the paratrooper of Problem 22 falls freely for

30 s with � D 0:00075 before opening his parachute. How

long will it now take him to reach the ground?

Problems 24 through 30 explore gravitational acceleration

and escape velocity.

24. The mass of the sun is 329;320 times that of the earth and

its radius is 109 times the radius of the earth. (a) To what

radius (in meters) would the earth have to be compressed

in order for it to become a black hole—the escape velocity

from its surface equal to the velocity c D 3 � 108 m=s of

light? (b) Repeat part (a) with the sun in place of the

earth.

25. (a) Show that if a projectile is launched straight upward

from the surface of the earth with initial velocity v0 less

than escape velocity
p

2GM=R, then the maximum dis-

tance from the center of the earth attained by the projectile

is

rmax D
2GMR

2GM �Rv2

0

;

where M and R are the mass and radius of the earth, re-

spectively. (b) With what initial velocity v0 must such a

projectile be launched to yield a maximum altitude of 100

kilometers above the surface of the earth? (c) Find the

maximum distance from the center of the earth, expressed

in terms of earth radii, attained by a projectile launched

from the surface of the earth with 90% of escape velocity.

26. Suppose that you are stranded—your rocket engine has

failed—on an asteroid of diameter 3 miles, with density

equal to that of the earth with radius 3960 miles. If you

have enough spring in your legs to jump 4 feet straight up

on earth while wearing your space suit, can you blast off

from this asteroid using leg power alone?

27. (a) Suppose a projectile is launched vertically from the

surface r D R of the earth with initial velocity v0 D
p

2GM=R, so v2

0
D k2=R where k2 D 2GM. Solve the

differential equation dr=dt D k=
p
r (from Eq. (23) in

this section) explicitly to deduce that r.t/ ! 1 as

t !1.
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(b) If the projectile is launched vertically with initial ve-

locity v0 >
p

2GM=R, deduce that

dr

dt
D

s

k2

r
C ˛ >

k
p
r
:

Why does it again follow that r.t/!1 as t !1?

28. (a) Suppose that a body is dropped (v0 D 0) from a dis-

tance r0 > R from the earth’s center, so its acceleration

is dv=dt D �GM=r2. Ignoring air resistance, show that it

reaches the height r < r0 at time

t D

r

r0

2GM

�

p

rr0 � r2 C r0 cos�1

r

r

r0

�

:

(Suggestion: Substitute r D r0 cos2 � to evaluate
R
p

r=.r0 � r/ dr .) (b) If a body is dropped from a height

of 1000 km above the earth’s surface and air resistance

is neglected, how long does it take to fall and with what

speed will it strike the earth’s surface?

29. Suppose that a projectile is fired straight upward from the

surface of the earth with initial velocity v0 <
p

2GM=R.

Then its height y.t/ above the surface satisfies the initial

value problem

d2y

dt2
D �

GM

.y CR/2
I y.0/ D 0; y0.0/ D v0:

Substitute dv=dt D v.dv=dy/ and then integrate to obtain

v2
D v2

0
�

2GMy

R.RC y/

for the velocity v of the projectile at height y. What maxi-

mum altitude does it reach if its initial velocity is 1 km=s?

30. In Jules Verne’s original problem, the projectile launched

from the surface of the earth is attracted by both the earth

and the moon, so its distance r.t/ from the center of the

earth satisfies the initial value problem

d2r

dt2
D �

GMe

r2
C

GMm

.S � r/2
I r.0/ D R; r 0.0/ D v0

where Me and Mm denote the masses of the earth and

the moon, respectively; R is the radius of the earth and

S D 384;400 km is the distance between the centers of

the earth and the moon. To reach the moon, the projectile

must only just pass the point between the moon and earth

where its net acceleration vanishes. Thereafter it is “under

the control” of the moon, and falls from there to the lunar

surface. Find the minimal launch velocity v0 that suffices

for the projectile to make it “From the Earth to the Moon.”

2.3 Application Rocket Propulsion

Suppose that the rocket of Fig. 2.3.5 blasts off straight upward from the surface of

the earth at time t D 0. We want to calculate its height y and velocity v D dy=dt at

time t . The rocket is propelled by exhaust gases that exit (rearward) with constant

speed c (relative to the rocket). Because of the combustion of its fuel, the mass

m D m.t/ of the rocket is variable.

To derive the equation of motion of the rocket, we use Newton’s second law

in the form
dP

dt
D F; (1)

whereP is momentum (the product of mass and velocity) and F denotes net external

force (gravity, air resistance, etc.). If the massm of the rocket is constant som0.t/�

0—when its rockets are turned off or burned out, for instance—then Eq. (1) gives

F D
d.mv/

dt
D m

dv

dt
C
dm

dt
v D m

dv

dt
;

which (with dv=dt D a) is the more familiar form F D ma of Newton’s second law.

But here m is not constant. Suppose m changes to mC�m and v to v C�v

during the short time interval from t to t C�t . Then the change in the momentum

y

c

F

FIGURE 2.3.5. An ascending rocket.

of the rocket itself is

�P � .mC�m/.v C�v/ �mv D m�v C v �mC�m�v:

But the system also includes the exhaust gases expelled during this time interval,

with mass ��m and approximate velocity v � c. Hence the total change in momen-
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tum during the time interval �t is

�P � .m�v C v �mC�m�v/C .��m/.v � c/

D m�v C c �mC�m�v:

Now we divide by�t and take the limit as�t! 0, so�m! 0, assuming continuity

of m.t/. The substitution of the resulting expression for dP=dt in (1) yields the

rocket propulsion equation

m
dv

dt
C c

dm

dt
D F: (2)

If F D FG C FR, where FG D �mg is a constant force of gravity and FR D �kv is

a force of air resistance proportional to velocity, then Eq. (2) finally gives

m
dv

dt
C c

dm

dt
D �mg � kv: (3)

Constant Thrust

Now suppose that the rocket fuel is consumed at the constant “burn rate” ˇ during

the time interval Œ0; t1�, during which time the mass of the rocket decreases from m0

to m1. Thus
m.0/ D m0; m.t1/ D m1;

m.t/ D m0 � ˇt;
dm

dt
D �ˇ for t � t1,

(4)

with burnout occurring at time t D t1.

PROBLEM 1 Substitute the expressions in (4) into Eq. (3) to obtain the differential

equation

.m0 � ˇt/
dv

dt
C kv D ˇc � .m0 � ˇt/g: (5)

Solve this linear equation for

v.t/ D v0M
k=ˇ
�

gˇt

ˇ � k
C

�

ˇc

k
C

gm0

ˇ � k

�

.1 �M k=ˇ /; (6)

where v0 D v.0/ and

M D
m.t/

m0

D
m0 � ˇt

m0

denotes the rocket’s fractional mass at time t .

No Resistance

PROBLEM 2 For the case of no air resistance, set k D 0 in Eq. (5) and integrate

to obtain

v.t/ D v0 � gt C c ln
m0

m0 � ˇt
: (7)

Becausem0 � ˇt1 D m1, it follows that the velocity of the rocket at burnout (t D t1)

is

v1 D v.t1/ D v0 � gt1 C c ln
m0

m1

: (8)
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PROBLEM 3 Start with Eq. (7) and integrate to obtain

y.t/ D .v0 C c/t �
1

2
gt2 �

c

ˇ
.m0 � ˇt/ ln

m0

m0 � ˇt
: (9)

It follows that the rocket’s altitude at burnout is

y1 D y.t1/ D .v0 C c/t1 �
1

2
gt2

1
�
cm1

ˇ
ln
m0

m1

: (10)

PROBLEM 4 The V-2 rocket that was used to attack London in World War II had

an initial mass of 12,850 kg, of which 68.5% was fuel. This fuel burned uniformly

for 70 seconds with an exhaust velocity of 2 km=s. Assume it encounters air resis-

tance of 1.45 N per m=s of velocity. Then find the velocity and altitude of the V-2 at

burnout under the assumption that it is launched vertically upward from rest on the

ground.

PROBLEM 5 Actually, our basic differential equation in (3) applies without qual-

ification only when the rocket is already in motion. However, when a rocket is

sitting on its launch pad stand and its engines are turned on initially, it is observed

that a certain time interval passes before the rocket actually “blasts off” and begins

to ascend. The reason is that if v D 0 in (3), then the resulting initial acceleration

dv

dt
D
c

m

dm

dt
� g

of the rocket may be negative. But the rocket does not descend into the ground;

it just “sits there” while (because m is decreasing) this calculated acceleration in-

creases until it reaches 0 and (thereafter) positive values so the rocket can begin to

ascend. With the notation introduced to describe the constant-thrust case, show that

the rocket initially just “sits there” if the exhaust velocity c is less than m0g=̌ , and

that the time tB which then elapses before actual blastoff is given by

tB D
m0g � ˇc

ˇg
:

Free Space

Suppose finally that the rocket is accelerating in free space, where there is neither

gravity nor resistance, so g D k D 0. With g D 0 in Eq. (8) we see that, as the mass

of the rocket decreases from m0 to m1, its increase in velocity is

�v D v1 � v0 D c ln
m0

m1

: (11)

Note that �v depends only on the exhaust gas speed c and the initial-to-final mass

ratio m0=m1, but does not depend on the burn rate ˇ. For example, if the rocket

blasts off from rest (v0 D 0) and c D 5 km=s and m0=m1 D 20, then its velocity at

burnout is v1 D 5 ln 20 � 15 km=s. Thus if a rocket initially consists predominantly

of fuel, then it can attain velocities significantly greater than the (relative) velocity

of its exhaust gases.
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2.4 Numerical Approximation: Euler’s Method

It is the exception rather than the rule when a differential equation of the general

form

dy

dx
D f .x; y/

can be solved exactly and explicitly by elementary methods like those discussed in

Chapter 1. For example, consider the simple equation

dy

dx
D e�x

2

: (1)

A solution of Eq. (1) is simply an antiderivative of e�x
2
. But it is known that every

antiderivative of f .x/ D e�x
2

is a nonelementary function—one that cannot be

expressed as a finite combination of the familiar functions of elementary calculus.

Hence no particular solution of Eq. (1) is finitely expressible in terms of elementary

functions. Any attempt to use the symbolic techniques of Chapter 1 to find a simple

explicit formula for a solution of (1) is therefore doomed to failure.

As a possible alternative, an old-fashioned computer plotter—one that uses an

ink pen to draw curves mechanically—can be programmed to draw a solution curve

that starts at the initial point .x0; y0/ and attempts to thread its way through the slope

field of a given differential equation y0 D f .x; y/. The procedure the plotter carries

out can be described as follows.

� The plotter pen starts at the initial point .x0; y0/ and moves a tiny distance

along the slope segment though .x0; y0/. This takes it to the point .x1; y1/.

� At .x1; y1/ the pen changes direction, and now moves a tiny distance along

the slope segment through this new starting point .x1; y1/. This takes it to the

next starting point .x2; y2/.

� At .x2; y2/ the pen changes direction again, and now moves a tiny distance

along the slope segment through .x2; y2/. This takes it to the next starting

point .x3; y3/.

Figure 2.4.1 illustrates the result of continuing in this fashion—by a sequence

of discrete straight-line steps from one starting point to the next. In this figure we

see a polygonal curve consisting of line segments that connect the successive points

x

y

Solution
curve

(x0, y0) (x1, y1)
(x2, y2)

(x3, y3)

FIGURE 2.4.1. The first few steps in
approximating a solution curve.

.x0; y0/; .x1; y1/; .x2; y2/; .x3; y3/; : : : However, suppose that each “tiny distance”

the pen travels along a slope segment—before the midcourse correction that sends

it along a fresh new slope segment—is so very small that the naked eye cannot

distinguish the individual line segments constituting the polygonal curve. Then the

resulting polygonal curve looks like a smooth, continuously turning solution curve

of the differential equation. Indeed, this is (in essence) how most of the solution

curves shown in the figures of Chapter 1 were computer generated.

Leonhard Euler—the great 18th-century mathematician for whom so many

mathematical concepts, formulas, methods, and results are named—did not have a

computer plotter, and his idea was to do all this numerically rather than graphically.

In order to approximate the solution of the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0; (2)

we first choose a fixed (horizontal) step size h to use in making each step from

one point to the next. Suppose we’ve started at the initial point .x0; y0/ and after

n steps have reached the point .xn; yn/. Then the step from .xn; yn/ to the next

point .xnC1; ynC1/ is illustrated in Fig. 2.4.2. The slope of the direction segment

Slope

(xn, yn)

(xn+1, yn+1)

f (xn, yn) f (xn, yn)h

(xn+1, yn)h

FIGURE 2.4.2. The step from
.xn; yn/ to .xnC1; ynC1/.
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through .xn; yn/ is m D f .xn; yn/. Hence a horizontal change of h from xn to

xnC1 corresponds to a vertical change of m � h D h � f .xn; yn/ from yn to ynC1.

Therefore the coordinates of the new point .xnC1; ynC1/ are given in terms of the

old coordinates by

xnC1 D xn C h; ynC1 D yn C h � f .xn; yn/:

Given the initial value problem in (2), Euler’s method with step size h con-

sists of starting with the initial point .x0; y0/ and applying the formulas

x1 D x0 C h y1 D y0 C h � f .x0; y0/

x2 D x1 C h y2 D y1 C h � f .x1; y1/

x3 D x2 C h y3 D y2 C h � f .x2; y2/
:::

:::
:::

:::

to calculate successive points .x1; y1/, .x2; y2/, .x3; y3/, : : : on an approximate so-

lution curve.

However, we ordinarily do not sketch the corresponding polygonal approxi-

mation. Instead, the numerical result of applying Euler’s method is the sequence of

approximations

y1; y2; y3; : : : ; yn; : : :

to the true values

y.x1/; y.x2/; y.x3/; : : : ; y.xn/; : : :

at the points x1; x2; x3; : : : ; xn; : : : of the exact (though unknown) solution y.x/ of

the initial value problem. These results typically are presented in the form of a table

of approximate values of the desired solution.

ALGORITHM The Euler Method

Given the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0; (2)

Euler’s method with step size h consists of applying the iterative formula

ynC1 D yn C h � f .xn; yn/ .n � 0/ (3)

to calculate successive approximations y1, y2, y3, : : : to the [true] values y.x1/,

y.x2/, y.x3/, : : : of the [exact] solution y D y.x/ at the points x1, x2, x3, : : : ,

respectively.

The iterative formula in (3) tells us how to make the typical step from yn to

ynC1 and is the heart of Euler’s method. Although the most important applications

of Euler’s method are to nonlinear equations, we first illustrate the method with a

simple initial value problem whose exact solution is available, just for the purpose

of comparison of approximate and actual solutions.

Example 1 Apply Euler’s method to approximate the solution of the initial value problem

dy

dx
D x C

1

5
y; y.0/ D �3; (4)
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(a) first with step size h D 1 on the interval Œ0; 5�,

(b) then with step size h D 0:2 on the interval Œ0; 1�.

Solution (a) With x0 D 0, y0 D �3, f .x; y/ D x C
1

5
y, and h D 1 the iterative formula in (3) yields

the approximate values

y1 D y0 C h � Œx0 C
1

5
y0� D .�3/C .1/Œ0C

1

5
.�3/� D �3:6;

y2 D y1 C h � Œx1 C
1

5
y1� D .�3:6/C .1/Œ1C

1

5
.�3:6/� D �3:32;

y3 D y2 C h � Œx2 C
1

5
y2� D .�3:32/C .1/Œ2C

1

5
.�3:32/� D �1:984;

y4 D y3 C h � Œx3 C
1

5
y3� D .�1:984/C .1/Œ3C

1

5
.�1:984/� D 0:6192; and

y5 D y4 C h � Œx4 C
1

5
y4� D .0:6912/C .1/Œ4C

1

5
.0:6912/� � 4:7430

at the points x1 D 1, x2 D 2, x3 D 3, x4 D 4, and x5 D 5. Note how the result of each

calculation feeds into the next one. The resulting table of approximate values is

x 0 1 2 3 4 5

Approx. y �3 �3:6 �3:32 �1:984 0.6912 4.7430

Figure 2.4.3 shows the graph of this approximation, together with the graphs of the

Euler approximations obtained with step sizes h D 0:2 and 0.05, as well as the graph of the

exact solution

y.x/ D 22ex=5
� 5x � 25

that is readily found using the linear-equation technique of Section 1.5. We see that decreas-

ing the step size increases the accuracy, but with any single approximation, the accuracy

decreases with distance from the initial point.

x

Exact solution

h = 0.05

y

50 1 2 3 4
–5

–3

10

5

0

h = 0.2

h = 1

FIGURE 2.4.3. Graphs of Euler approximations with step sizes h D 1,

h D 0:2, and h D 0:05.

(b) Starting afresh with x0 D 0, y0 D �3, f .x; y/ D x C 1

5
y, and h D 0:2, we get the

approximate values

y1 D y0 C h � Œx0 C
1

5
y0� D .�3/C .0:2/Œ0C

1

5
.�3/� D �3:12;

y2 D y1 C h � Œx1 C
1

5
y1� D .�3:12/C .0:2/Œ0:2C

1

5
.�3:12/� � �3:205;

y3 D y2 C h � Œx2 C
1

5
y2� � .�3:205/C .0:2/Œ0:4C

1

5
.�3:205/� � �3:253;

y4 D y3 C h � Œx3 C
1

5
y3� � .�3:253/C .0:2/Œ0:6C

1

5
.�3:253/� � �3:263;

y5 D y4 C h � Œx4 C
1

5
y4� � .�3:263/C .0:2/Œ0:8C

1

5
.�3:263/� � �3:234
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at the points x1 D 0:2, x2 D 0:4, x3 D 0:6, x4 D 0:8, and x5 D 1. The resulting table of

approximate values is

x 0 0.2 0.4 0.6 0.8 1

Approx. y �3 �3:12 �3:205 �3:253 �3:263 �3:234

High accuracy with Euler’s method usually requires a very small step size and

hence a larger number of steps than can reasonably be carried out by hand. The

application material for this section contains calculator and computer programs for

automating Euler’s method. One of these programs was used to calculate the table

entries shown in Fig. 2.4.4. We see that 500 Euler steps (with step size h D 0:002)

from x D 0 to x D 1 yield values that are accurate to within 0.001.

Approx y Approx y Approx y Actual

x with h D 0:2 with h D 0:02 with h D 0:002 value of y

0

0.2

0.4

0.6

0.8

1

�3:000

�3:120

�3:205

�3:253

�3:263

�3:234

�3:000

�3:104

�3:172

�3:201

�3:191

�3:140

�3:000

�3:102

�3:168

�3:196

�3:184

�3:130

�3:000

�3:102

�3:168

�3:195

�3:183

�3:129

FIGURE 2.4.4. Euler approximations with step sizes h D 0:2, h D 0:02, and h D 0:002.

Example 2 Falling baseball Suppose the baseball of Example 3 in Section 1.3 is simply dropped

(instead of being thrown downward) from the helicopter. Then its velocity v.t/ after t seconds

satisfies the initial value problem

dv

dt
D 32 � 0:16v; v.0/ D 0: (5)

We use Euler’s method with hD 1 to track the ball’s increasing velocity at 1-second intervals

for the first 10 seconds of fall. With t0 D 0, v0 D 0, F.t; v/ D 32 � 0:16v, and h D 1 the

iterative formula in (3) yields the approximate values

v1 D v0 C h � Œ32 � 0:16v0� D .0/C .1/Œ32 � 0:16.0/� D 32;

v2 D v1 C h � Œ32 � 0:16v1� D .32/C .1/Œ32 � 0:16.32/� D 58:88;

v3 D v2 C h � Œ32 � 0:16v2� D .58:88/C .1/Œ32 � 0:16.58:88/� � 81:46;

v4 D v3 C h � Œ32 � 0:16v3� D .81:46/C .1/Œ32 � 0:16.81:46/� � 100:43; and

v5 D v4 C h � Œ32 � 0:16v4� D .100:43/C .1/Œ32 � 0:16.100:43/� � 116:36:

Continuing in this fashion, we complete the h D 1 column of v-values shown in the table of

Fig. 2.4.5—where we have rounded off velocity entries to the nearest foot per second. The

values corresponding to h D 0:1 were calculated using a computer, and we see that they are

accurate to within about 1 ft=s. Note also that after 10 seconds the falling ball has attained

about 80% of its limiting velocity of 200 ft=s.

Local and Cumulative Errors

There are several sources of error in Euler’s method that may make the approxima-

tion yn to y.xn/ unreliable for large values of n, those for which xn is not sufficiently

close to x0. The error in the linear approximation formula

y.xnC1/ � yn C h � f .xn; yn/ D ynC1 (6)
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Approx v Approx v Actual

t with h D 1 with h D 0:1 value of v

1

2

3

4

5

6

7

8

9

10

32

59

81

100

116

130

141

150

158

165

30

55

77

95

111

124

135

145

153

160

30

55

76

95

110

123

135

144

153

160

FIGURE 2.4.5. Euler approximations in Example 2 with step sizes

h D 1 and h D 0:1.

is the amount by which the tangent line at .xn; yn/ departs from the solution curve

through .xn; yn/, as illustrated in Fig. 2.4.6. This error, introduced at each step in

the process, is called the local error in Euler’s method.

The local error indicated in Fig. 2.4.6 would be the total error in ynC1 if the

starting point yn in (6) were an exact value, rather than merely an approximation

to the actual value y.xn/. But yn itself suffers from the accumulated effects of all

the local errors introduced at the previous steps. Thus the tangent line in Fig. 2.4.6

is tangent to the “wrong” solution curve—the one through .xn; yn/ rather than the

actual solution curve through the initial point .x0; y0/. Figure 2.4.7 illustrates this

cumulative error in Euler’s method; it is the amount by which the polygonal step-

wise path from .x0; y0/ departs from the actual solution curve through .x0; y0/.

x

y

xn xn + 1

(xn + 1, yn + 1)

(xn , yn)

Local error

FIGURE 2.4.6. The local error in
Euler’s method.

x0 x1 x2 x3 xn

Exact values

Approximate

values

x

y

(x0, y0)

(x1, y1)

(xn, yn)

Cumulative error

FIGURE 2.4.7. The cumulative error in Euler’s method.
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y with y with y with y with Actual

x h D 0:1 h D 0:02 h D 0:005 h D 0:001 y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2200

1.3620

1.5282

1.7210

1.9431

2.1974

2.4872

2.8159

3.1875

1.1082

1.2380

1.3917

1.5719

1.7812

2.0227

2.2998

2.6161

2.9757

3.3832

1.1098

1.2416

1.3977

1.5807

1.7933

2.0388

2.3205

2.6422

3.0082

3.4230

1.1102

1.2426

1.3993

1.5831

1.7966

2.0431

2.3261

2.6493

3.0170

3.4338

1.1103

1.2428

1.3997

1.5836

1.7974

2.0442

2.3275

2.6511

3.0192

3.4366

FIGURE 2.4.8. Approximating the solution of dy=dx D x C y, y.0/ D 1 with successively

smaller step sizes.

The usual way of attempting to reduce the cumulative error in Euler’s method

is to decrease the step size h. The table in Fig. 2.4.8 shows the results obtained in

approximating the exact solution y.x/ D 2ex � x � 1 of the initial value problem

dy

dx
D x C y; y.0/ D 1;

using the successively smaller step sizes h D 0:1, h D 0:02, h D 0:005, and h D

0:001. We show computed values only at intervals of �x D 0:1. For instance, with

h D 0:001, the computation required 1000 Euler steps, but the value yn is shown

only when n is a multiple of 100, so that xn is an integral multiple of 0:1.

By scanning the columns in Fig. 2.4.8 we observe that, for each fixed step

size h, the error yactual � yapprox increases as x gets farther from the starting point

x0 D 0. But by scanning the rows of the table we see that for each fixed x, the

error decreases as the step size h is reduced. The percentage errors at the final point

x D 1 range from 7:25% with hD 0:1 down to only 0:08% with hD 0:001. Thus the

smaller the step size, the more slowly does the error grow with increasing distance

from the starting point.

The column of data for h D 0:1 in Fig. 2.4.8 requires only 10 steps, so Euler’s

method can be carried out with a hand-held calculator. But 50 steps are required to

reach x D 1 with hD 0:02, 200 steps with hD 0:005, and 1000 steps with hD 0:001.

A computer is almost always used to implement Euler’s method when more than 10

or 20 steps are required. Once an appropriate computer program has been written,

one step size is—in principle—just as convenient as another; after all, the computer

hardly cares how many steps it is asked to carry out.

Why, then, do we not simply choose an exceedingly small step size (such as

h D 10�12), with the expectation that very great accuracy will result? There are two

reasons for not doing so. The first is obvious: the time required for the computation.

For example, the data in Fig. 2.4.8 were obtained using a hand-held calculator that

carried out nine Euler steps per second. Thus it required slightly over one second

to approximate y.1/ with h D 0:1 and about 1 min 50 s with h D 0:001. But with

h D 10�12 it would require over 3000 years!

The second reason is more subtle. In addition to the local and cumulative

errors discussed previously, the computer itself will contribute roundoff error at
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each stage because only finitely many significant digits can be used in each calcu-

lation. An Euler’s method computation with h D 0:0001 will introduce roundoff

errors 1000 times as often as one with hD 0:1. Hence with certain differential equa-

tions, hD 0:1might actually produce more accurate results than those obtained with

h D 0:0001, because the cumulative effect of roundoff error in the latter case might

exceed combined cumulative and roundoff error in the case h D 0:1.

The “best” choice of h is difficult to determine in practice as well as in theory.

It depends on the nature of the function f .x; y/ in the initial value problem in (2), on

the exact code in which the program is written, and on the specific computer used.

With a step size that is too large, the approximations inherent in Euler’s method

may not be sufficiently accurate, whereas if h is too small, then roundoff errors may

accumulate to an unacceptable degree or the program may require too much time to

be practical. The subject of error propagation in numerical algorithms is treated in

numerical analysis courses and textbooks.

The computations in Fig. 2.4.8 illustrate the common strategy of applying a

numerical algorithm, such as Euler’s method, several times in succession, beginning

with a selected number n of subintervals for the first application, then doubling n for

each succeeding application of the method. Visual comparison of successive results

often can provide an “intuitive feel” for their accuracy. In the next two examples we

present graphically the results of successive applications of Euler’s method.

Example 3 Approximate logistic solution The exact solution of the logistic initial value problem

dy

dx
D

1

3
y.8 � y/; y.0/ D 1

is y.x/D 8=.1C 7e�8x=3/. Figure 2.4.9 shows both the exact solution curve and approximate

solution curves obtained by applying Euler’s method on the interval 05 x 5 5with nD 5, nD

10, and nD 20 subintervals. Each of these “curves” actually consists of line segments joining

successive points .xn; yn/ and .xnC1; ynC1/. The Euler approximation with 5 subintervals

is poor, and the approximation with 10 subintervals also overshoots the limiting value y D 8

of the solution before leveling off, but with 20 subintervals we obtain fairly good qualitative

agreement with the actual behavior of the solution.

3 4 50 1 2
x

y

0

12

Exact

2

4

6

8

10

n = 5

n = 10

n = 20

FIGURE 2.4.9. Approximating a logistic
solution using Euler’s method with n D 5,
n D 10, and n D 20 subintervals.

Exact

n = 50

n = 100

n = 400
n = 200

0 5 10 15
x

y

3

2

1

0

FIGURE 2.4.10. Approximating the exact

solution y D e
sin x using Euler’s method with

50, 100, 200, and 400 subintervals.

Example 4 The exact solution of the initial value problem

dy

dx
D y cos x; y.0/ D 1

is the periodic function y.x/ D esin x . Figure 2.4.10 shows both the exact solution curve and

approximate solution curves obtained by applying Euler’s method on the interval 0 5 x 5 6�
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with n D 50, n D 100, n D 200, and n D 400 subintervals. Even with this many subintervals,

Euler’s method evidently has considerable difficulty keeping up with the oscillations in the

actual solution. Consequently, the more accurate methods discussed in succeeding sections

are needed for serious numerical investigations.

A Word of Caution

The data shown in Fig. 2.4.8 indicate that Euler’s method works well in approximat-

ing the solution of dy=dx D x C y, y.0/ D 1 on the interval Œ0; 1�. That is, for each

fixed x it appears that the approximate values approach the actual value of y.x/ as

the step size h is decreased. For instance, the approximate values in the rows corre-

sponding to x D 0:3 and x D 0:5 suggest that y.0:3/ � 1:40 and y.0:5/ � 1:80, in

accord with the actual values shown in the final column of the table.

Example 5, in contrast, shows that some initial value problems are not so well

behaved.

Example 5 Cautionary example Use Euler’s method to approximate the solution of the initial value

problem
dy

dx
D x2

C y2; y.0/ D 1 (7)

on the interval Œ0; 1�.

Solution Here f .x; y/ D x2 C y2, so the iterative formula of Euler’s method is

ynC1 D yn C h � .x
2

n
C y2

n
/: (8)

With step size h D 0:1 we obtain

y1 D 1C .0:1/ � Œ.0/
2
C .1/2� D 1:1;

y2 D 1:1C .0:1/ � Œ.0:1/
2
C .1:1/2� D 1:222;

y3 D 1:222C .0:1/ � Œ.0:2/
2
C .1:222/2� � 1:3753;

and so forth. Rounded to four decimal places, the first ten values obtained in this manner are

y1 D 1:1000 y6 D 2:1995

y2 D 1:2220 y7 D 2:7193

y3 D 1:3753 y8 D 3:5078

y4 D 1:5735 y9 D 4:8023

y5 D 1:8371 y10 D 7:1895

But instead of naively accepting these results as accurate approximations, we decided

to use a computer to repeat the computations with smaller values of h. The table in Fig. 2.4.11

shows the results obtained with step sizes h D 0:1, h D 0:02, and h D 0:005. Observe that

now the “stability” of the procedure in Example 1 is missing. Indeed, it seems obvious that

something is going wrong near x D 1.

Figure 2.4.12 provides a graphical clue to the difficulty. It shows a slope field for

dy=dx D x2 C y2, together with a solution curve through .0; 1/ plotted using one of the

more accurate approximation methods of the following two sections. It appears that this

solution curve may have a vertical asymptote near x D 0:97. Indeed, an exact solution using

Bessel functions (see Problem 34 in Section 11.4) can be used to show that y.x/! C1 as

x ! 0:969811 (approximately). Although Euler’s method gives values (albeit spurious ones)

at x D 1, the actual solution does not exist on the entire interval Œ0; 1�. Moreover, Euler’s

method is unable to “keep up” with the rapid changes in y.x/ that occur as x approaches the

infinite discontinuity near 0:969811.

The moral of Example 5 is that there are pitfalls in the numerical solution of

certain initial value problems. Certainly it’s pointless to attempt to approximate a

solution on an interval where it doesn’t even exist (or where it is not unique, in which
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y with y with y with

x h D 0:1 h D 0:02 h D 0:005

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2220

1.3753

1.5735

1.8371

2.1995

2.7193

3.5078

4.8023

7.1895

1.1088

1.2458

1.4243

1.6658

2.0074

2.5201

3.3612

4.9601

9.0000

30.9167

1.1108

1.2512

1.4357

1.6882

2.0512

2.6104

3.5706

5.5763

12.2061

1502.2090

FIGURE 2.4.11. Attempting to approximate the solution of

dy=dx D x
2 C y

2, y.0/ D 1.

2.01.00.0
x

y

8

–4

–2

–2.0 –1.0

0
(0, 1)

x = 0.97

2

4

6

FIGURE 2.4.12. Solution of
dy=dx D x

2 C y
2, y.0/ D 1.

case there’s no general way to predict which way the numerical approximations will

branch at a point of nonuniqueness). One should never accept as accurate the results

of applying Euler’s method with a single fixed step size h. A second “run” with

smaller step size (h=2, say, or h=5, or h=10) may give seemingly consistent results,

thereby suggesting their accuracy, or it may—as in Example 5—reveal the presence

of some hidden difficulty in the problem. Many problems simply require the more

accurate and powerful methods that are discussed in the final two sections of this

chapter.

2.4 Problems
In Problems 1 through 10, an initial value problem and its ex-

act solution y.x/ are given. Apply Euler’s method twice to

approximate to this solution on the interval Œ0; 1

2
�, first with

step size h D 0:25, then with step size h D 0:1. Compare the

three-decimal-place values of the two approximations at xD 1

2

with the value y.1

2
/ of the actual solution.

1. y0 D �y, y.0/ D 2; y.x/ D 2e�x

2. y0 D 2y, y.0/ D 1

2
; y.x/ D 1

2
e2x

3. y0 D y C 1, y.0/ D 1; y.x/ D 2ex � 1

4. y0 D x � y, y.0/ D 1; y.x/ D 2e�x C x � 1

5. y0 D y � x � 1, y.0/ D 1; y.x/ D 2C x � ex

6. y0 D �2xy, y.0/ D 2; y.x/ D 2e�x
2

7. y0 D �3x2y, y.0/ D 3; y.x/ D 3e�x
3

8. y0 D e�y , y.0/ D 0; y.x/ D ln.x C 1/

9. y0 D
1

4
.1C y2/, y.0/ D 1; y.x/ D tan 1

4
.x C �/

10. y0 D 2xy2, y.0/ D 1; y.x/ D
1

1 � x2

Note: The application following this problem set lists illus-

trative calculator/computer programs that can be used in the

remaining problems.

A programmable calculator or a computer will be useful for

Problems 11 through 16. In each problem find the exact so-

lution of the given initial value problem. Then apply Euler’s

method twice to approximate (to four decimal places) this so-

lution on the given interval, first with step size h D 0:01, then

with step size h D 0:005. Make a table showing the approxi-

mate values and the actual value, together with the percentage

error in the more accurate approximation, for x an integral

multiple of 0:2. Throughout, primes denote derivatives with

respect to x.

11. y0 D y � 2, y.0/ D 1I 0 5 x 5 1

12. y0 D
1

2
.y � 1/2, y.0/ D 2I 0 5 x 5 1

13. yy0 D 2x3, y.1/ D 3I 1 5 x 5 2

14. xy0 D y2, y.1/ D 1I 1 5 x 5 2

15. xy0 D 3x � 2y, y.2/ D 3I 2 5 x 5 3

16. y2y0 D 2x5, y.2/ D 3I 2 5 x 5 3

A computer with a printer is required for Problems 17 through

24. In these initial value problems, use Euler’s method with

step sizes h D 0:1, 0:02, 0:004, and 0:0008 to approximate to

four decimal places the values of the solution at ten equally

spaced points of the given interval. Print the results in tabular

form with appropriate headings to make it easy to gauge the

effect of varying the step size h. Throughout, primes denote

derivatives with respect to x.

17. y0 D x2 C y2, y.0/ D 0; 0 5 x 5 1

18. y0 D x2 � y2, y.0/ D 1; 0 5 x 5 2
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19. y0 D x C
p
y, y.0/ D 1; 0 5 x 5 2

20. y0 D x C 3
p
y, y.0/ D �1; 0 5 x 5 2

21. y0 D ln y, y.1/ D 2; 1 5 x 5 2

22. y0 D x2=3 C y2=3, y.0/ D 1; 0 5 x 5 2

23. y0 D sin x C cos y, y.0/ D 0; 0 5 x 5 1

24. y0 D
x

1C y2
, y.�1/ D 1; �1 5 x 5 1

25. Falling parachutist You bail out of the helicopter of

Example 2 and immediately pull the ripcord of your

parachute. Now k D 1:6 in Eq. (5), so your downward

velocity satisfies the initial value problem

dv

dt
D 32 � 1:6v; v.0/ D 0

(with t in seconds and v in ft=sec). Use Euler’s method

with a programmable calculator or computer to approxi-

mate the solution for 05 t 5 2, first with step size hD 0:01

and then with h D 0:005, rounding off approximate v-

values to one decimal place. What percentage of the lim-

iting velocity 20 ft=sec has been attained after 1 second?

After 2 seconds?

26. Deer population Suppose the deer population P.t/ in a

small forest initially numbers 25 and satisfies the logistic

equation
dP

dt
D 0:0225P � 0:0003P 2

(with t in months). Use Euler’s method with a pro-

grammable calculator or computer to approximate the so-

lution for 10 years, first with step size hD 1 and then with

h D 0:5, rounding off approximate P -values to integral

numbers of deer. What percentage of the limiting popula-

tion of 75 deer has been attained after 5 years? After 10

years?

Use Euler’s method with a computer system to find the desired

solution values in Problems 27 and 28. Start with step size

h D 0:1, and then use successively smaller step sizes until suc-

cessive approximate solution values at x D 2 agree rounded

off to two decimal places.

27. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D ‹

28. y0 D x C 1

2
y2, y.�2/ D 0; y.2/ D ‹

Problems 29 through 31 illustrate the unreliability of Euler’s

method near a discontinuity of the solution.

29. Consider the initial value problem

7x
dy

dx
C y D 0; y.�1/ D 1:

(a) Solve this problem for the exact solution

y.x/ D �
1

x1=7

;

which has an infinite discontinuity at x D 0. (b) Ap-

ply Euler’s method with step size hD 0:15 to approximate

this solution on the interval �1 5 x 5 0:5. Note that,

from these data alone, you might not suspect any diffi-

culty near x D 0. The reason is that the numerical ap-

proximation “jumps across the discontinuity” to another

solution of 7xy0 C y D 0 for x > 0. (c) Finally, apply

Euler’s method with step sizes hD 0:03 and hD 0:006, but

still printing results only at the original points x D �1:00,

�0:85, �0:70, : : : , 1:20, 1:35. and 1:50. Would you now

suspect a discontinuity in the exact solution?

30. Apply Euler’s method with successively smaller step sizes

on the interval Œ0; 2� to verify empirically that the solution

of the initial value problem

dy

dx
D x2

C y2; y.0/ D 0

has a vertical asymptote near x D 2:003147. (Contrast this

with Example 2, in which y.0/ D 1.)

31. The general solution of the equation

dy

dx
D .1C y2/ cos x

is y.x/D tan.C C sin x/. With the initial condition y.0/D

0 the solution y.x/ D tan.sin x/ is well behaved. But with

y.0/ D 1 the solution y.x/ D tan
�

1

4
� C sin x

�

has a ver-

tical asymptote at x D sin�1.�=4/ � 0:90334. Use Euler’s

method to verify this fact empirically.

Go to goo.gl/Dd91hc to
download this application’s
computing resources including
Maple/Mathematica/MATLAB/
Python/TI-Nspire.

2.4 Application Implementing Euler’s Method

Construction of a calculator or computer program to implement a numerical algo-

rithm can sharpen one’s understanding of the algorithm. Figure 2.4.13 lists TI-84

Plus and Python programs implementing Euler’s method to approximate the solu-

tion of the initial value problem

dy

dx
D x C y; y.0/ D 1

considered in this section. The comments provided in the final column should make

these programs intelligible even if you have little familiarity with the Python and

TI calculator programming languages. Python—freely available on the Internet—is
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TI-84 Plus Python Comment

PROGRAM:EULER

:10!N

:0!X

:1!Y

:1!T

:(T--X)/N!H

:For(I,1,N)

:X+Y!F

:Y+H*F!Y

:X+H!X

:Disp X,Y

:End

# Program EULER

N = 10

X = 0.0

Y = 1.0

X1 = 1.0

H = (X1--X)/N

for I in range(N):

F = X + Y

Y = Y + H*F

X = X + H

print (X,Y)

# END

Program title

Number of steps

Initial x

Initial y

Final x

Step size

Begin loop

Function value

Euler iteration

New x

Display results

End loop

FIGURE 2.4.13. TI-84 Plus and Python Euler’s method programs.

a general-purpose computing language widely used in education and industry. In

particular, its many add-on packages make Python a powerful scientific computing

platform, with numerical, graphic, and symbolic capabilities approaching those of

commercial systems such as MATLAB, Mathematica, and Maple. Further, Python

code was designed with an emphasis on readability, making it well-suited to ex-

pressing basic mathematical algorithms.

To increase the number of steps (and thereby decrease the step size) you need

only change the value of N specified in the first line of the program. To apply Euler’s

method to a different equation dy=dx D f .x; y/, you need change only the single

line that calculates the function value F.

Any other procedural programming language (such as FORTRAN or CCC)

would follow the pattern illustrated by the parallel lines of TI-84 Plus and Python

code in Fig. 2.4.13. Some of the modern functional programming languages mirror

standard mathematical notation even more closely. Figure 2.4.14 shows a MATLAB

implementation of Euler’s method. The euler function takes as input the initial

value x, the initial value y, the final value x1 of x, and the desired number n of

subintervals.

function yp = f(x,y)

yp = x + y; % yp = y’

function [X,Y] = euler(x,y,x1,n)

h = (x1 -- x)/n; % step size

X = x; % initial x

Y = y; % initial y

for i = 1:n % begin loop

y = y + h*f(x,y); % Euler iteration

x = x + h; % new x

X = [X;x]; % update x-column

Y = [Y;y]; % update y-column

end % end loop

FIGURE 2.4.14. MATLAB implementation of Euler’s method.
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For instance, the MATLAB command

[X, Y] = euler(0, 1, 1, 10)

then generates the xn- and yn-data shown in the first two columns of the table of

Fig. 2.4.8.

You should begin this project by implementing Euler’s method with your own

calculator or computer system. Test your program by first applying it to the initial

value problem in Example 1, then to some of the problems for this section.

Famous Numbers Investigation

The following problems describe the numbers e � 2:71828, ln 2 � 0:69315, and

� � 3:14159 as specific values of solutions of certain initial value problems. In

each case, apply Euler’s method with nD 50, 100, 200, : : : subintervals (doubling n

each time). How many subintervals are needed to obtain—twice in succession—the

correct value of the target number rounded to three decimal places?

1. The number e D y.1/, where y.x/ is the solution of the initial value problem

dy=dx D y, y.0/ D 1.

2. The number ln 2D y.2/, where y.x/ is the solution of the initial value problem

dy=dx D 1=x, y.1/ D 0.

3. The number � D y.1/, where y.x/ is the solution of the initial value problem

dy=dx D 4=.1C x2/, y.0/ D 0.

Also explain in each problem what the point is—why the indicated famous

number is the expected numerical result.

2.5 A Closer Look at the Euler Method

The Euler method as presented in Section 2.4 is not often used in practice, mainly

because more accurate methods are available. But Euler’s method has the advantage

of simplicity, and a careful study of this method yields insights into the workings of

more accurate methods, because many of the latter are extensions or refinements of

the Euler method.

To compare two different methods of numerical approximation, we need some

way to measure the accuracy of each. Theorem 1 tells what degree of accuracy we

can expect when we use Euler’s method.

THEOREM 1 The Error in the Euler Method

Suppose that the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0 (1)

has a unique solution y.x/ on the closed interval Œa; b� with a D x0, and assume

that y.x/ has a continuous second derivative on Œa; b�. (This would follow from

the assumption that f, fx , and fy are all continuous for a 5 x 5 b and c 5

y 5 d , where c 5 y.x/ 5 d for all x in Œa; b�.) Then there exists a constant

C such that the following is true: If the approximations y1; y2; y3; : : : ; yk to the

actual values y.x1/; y.x2/; y.x3/; : : : ; y.xk/ at points of Œa; b� are computed using

Euler’s method with step size h > 0, then

jyn � y.xn/j 5 Ch (2)

for each n D 1; 2; 3; : : : ; k.
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Remark The error

yactual � yapprox D y.xn/ � yn

in (2) denotes the [cumulative] error in Euler’s method after n steps in the approximation,

exclusive of roundoff error (as though we were using a perfect machine that made no roundoff

errors). The theorem can be summarized by saying that the error in Euler’s method is of order

h; that is, the error is bounded by a [predetermined] constant C multiplied by the step size

h. It follows, for instance, that (on a given closed interval) halving the step size cuts the

maximum error in half; similarly, with step size h=10 we get 10 times the accuracy (that is,

1=10 the maximum error) as with step size h. Consequently, we can—in principle—get any

degree of accuracy we want by choosing h sufficiently small.

We will omit the proof of this theorem, but one can be found in Chapter 7 of

G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4th ed. (New York:

John Wiley, 1989). The constant C deserves some comment. Because C tends to

increase as the maximum value of jy00.x/j on Œa; b� increases, it follows that C must

depend in a fairly complicated way on y, and actual computation of a value of C

such that the inequality in (2) holds is usually impractical. In practice, the following

type of procedure is commonly employed.

1. Apply Euler’s method to the initial value problem in (1) with a reasonable

value of h.

2. Repeat with h=2, h=4, and so forth, at each stage halving the step size for the

next application of Euler’s method.

3. Continue until the results obtained at one stage agree—to an appropriate num-

ber of significant digits—with those obtained at the previous stage. Then the

approximate values obtained at this stage are considered likely to be accurate

to the indicated number of significant digits.

Example 1 Carry out this procedure with the initial value problem

dy

dx
D �

2xy

1C x2
; y.0/ D 1 (3)

to approximate accurately the value y.1/ of the solution at x D 1.

Solution Using an Euler method program, perhaps one of those listed in Figs. 2.4.13 and 2.4.14, we

begin with a step size h D 0:04 requiring n D 25 steps to reach x D 1. The table in Fig. 2.5.1

shows the approximate values of y.1/ obtained with successively smaller values of h. The

data suggest that the true value of y.1/ is exactly 0:5. Indeed, the exact solution of the initial

value problem in (3) is y.x/ D 1=.1C x2/, so the true value of y.1/ is exactly 1

2
.

h Approximate y.1/ Actual y.1/ jErrorj=h

0.04

0.02

0.01

0.005

0.0025

0.00125

0.000625

0.0003125

0.50451

0.50220

0.50109

0.50054

0.50027

0.50013

0.50007

0.50003

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.11

0.11

0.11

0.11

0.11

0.10

0.11

0.10

FIGURE 2.5.1. Table of values in Example 1.

The final column of the table in Fig. 2.5.1 displays the ratio of the magnitude

of the error to h; that is, jyactual � yapproxj=h. Observe how the data in this column
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substantiate Theorem 1—in this computation, the error bound in (2) appears to hold

with a value of C slightly larger than 0:1.

An Improvement in Euler’s Method

As Fig. 2.5.2 shows, Euler’s method is rather unsymmetrical. It uses the predicted

slope k D f .xn; yn/ of the graph of the solution at the left-hand endpoint of the

interval Œxn; xn C h� as if it were the actual slope of the solution over that entire

interval. We now turn our attention to a way in which increased accuracy can easily

be obtained; it is known as the improved Euler method.

Given the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0; (4)

suppose that after carrying out n steps with step size h we have computed the ap-

proximation yn to the actual value y.xn/ of the solution at xn D x0 C nh. We canx

y

x x + h

(x + h, y (x + h))

Error

Predicted

y-value

Slope y' (x)

Solution

y = y(x)

FIGURE 2.5.2. True and predicted
values in Euler’s method.

use the Euler method to obtain a first estimate—which we now call unC1 rather than

ynC1—of the value of the solution at xnC1 D xn C h. Thus

unC1 D yn C h � f .xn; yn/ D yn C h � k1:

Now that unC1 � y.xnC1/ has been computed, we can take

k2 D f .xnC1; unC1/

as a second estimate of the slope of the solution curve y D y.x/ at x D xnC1.

Of course, the approximate slope k1 D f .xn; yn/ at x D xn has already been

calculated. Why not average these two slopes to obtain a more accurate estimate of

the average slope of the solution curve over the entire subinterval Œxn; xnC1�? This

idea is the essence of the improved Euler method. Figure 2.5.3 shows the geometry

behind this method.

ALGORITHM The Improved Euler Method

Given the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0;

the improved Euler method with step size h consists in applying the iterative

formulas

k1 D f .xn; yn/;

unC1 D yn C h � k1;

k2 D f .xnC1; unC1/;

ynC1 D yn C h �
1

2
.k1 C k2/

(5)

to compute successive approximations y1, y2, y3; : : : to the [true] values y.x1/,

y.x2/, y.x3/; : : : of the [exact] solution y D y.x/ at the points x1; x2; x3; : : : ,

respectively.
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x

y

Euler point (xn + 1, un + 1)

Improved Euler point

(xn + 1, yn + 1)

xn

(xn, yn)

xn + 1 xn + 2

Slope k1 = f (xn, yn)

Slope k2 = f (xn + 1, un + 1)

(k1 + k2)Slope 1

2

FIGURE 2.5.3. The improved Euler method: Average the slopes of the tangent lines at

.xn; yn/ and .xnC1; unC1/.

Remark The final formula in (5) takes the “Euler form”

ynC1 D yn C h � k

if we write

k D
k1 C k2

2

for the approximate average slope on the interval Œxn; xnC1�.

The improved Euler method is one of a class of numerical techniques known

as predictor-corrector methods. First a predictor unC1 of the next y-value is com-

puted; then it is used to correct itself. Thus the improved Euler method with step

size h consists of using the predictor

unC1 D yn C h � f .xn; yn/ (6)

and the corrector

ynC1 D yn C h �
1

2
Œf .xn; yn/C f .xnC1; unC1/� (7)

iteratively to compute successive approximations y1, y2, y2, : : : to the values y.x1/,

y.x2/, y.x3/, : : : of the actual solution of the initial value problem in (4).

Remark Each improved Euler step requires two evaluations of the function f .x; y/, as com-

pared with the single function evaluation required for an ordinary Euler step. We naturally

wonder whether this doubled computational labor is worth the trouble.

Answer Under the assumption that the exact solution y D y.x/ of the initial value problem

in (4) has a continuous third derivative, it can be proved—see Chapter 7 of Birkhoff and

Rota—that the error in the improved Euler method is of order h2. This means that on a given

bounded interval Œa; b�, each approximate value yn satisfies the inequality

jy.xn/ � ynj 5 Ch2; (8)

where the constant C does not depend on h. Because h2 is much smaller than h if h itself is

small, this means that the improved Euler method is more accurate than Euler’s method itself.
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This advantage is offset by the fact that about twice as many computations are required. But

the factor h2 in (8) means that halving the step size results in 1=4 the maximum error, and

with step size h=10 we get 100 times the accuracy (that is, 1=100 the maximum error) as with

step size h.

Example 2 Figure 2.4.8 shows results of applying Euler’s method to the initial value problem

dy

dx
D x C y; y.0/ D 1 (9)

with exact solution y.x/ D 2ex � x � 1. With f .x; y/ D x C y in Eqs. (6) and (7), the

predictor-corrector formulas for the improved Euler method are

unC1 D yn C h � .xn C yn/;

ynC1 D yn C h �
1

2
Œ.xn C yn/C .xnC1 C unC1/� :

With step size h D 0:1 we calculate

u1 D 1C .0:1/ � .0C 1/ D 1:1;

y1 D 1C .0:05/ � Œ.0C 1/C .0:1C 1:1/� D 1:11;

u2 D 1:11C .0:1/ � .0:1C 1:11/ D 1:231;

y2 D 1:11C .0:05/ � Œ.0:1C 1:11/C .0:2C 1:231/� D 1:24205;

and so forth. The table in Fig. 2.5.4 compares the results obtained using the improved Euler

method with those obtained previously using the “unimproved” Euler method. When the

same step size h D 0:1 is used, the error in the Euler approximation to y.1/ is 7:25%, but the

error in the improved Euler approximation is only 0:24%.

Euler Method, Euler Method, Improved Euler,

h D 0:1 h D 0:005 h D 0:1 Actual

x Values of y Values of y Values of y y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2200

1.3620

1.5282

1.7210

1.9431

2.1974

2.4872

2.8159

3.1875

1.1098

1.2416

1.3977

1.5807

1.7933

2.0388

2.3205

2.6422

3.0082

3.4230

1.1100

1.2421

1.3985

1.5818

1.7949

2.0409

2.3231

2.6456

3.0124

3.4282

1.1103

1.2428

1.3997

1.5836

1.7974

2.0442

2.3275

2.6511

3.0192

3.4366

FIGURE 2.5.4. Euler and improved Euler approximations to the solution of dy=dx D x C y,
y.0/ D 1.

Indeed, the improved Euler method with hD 0:1 is more accurate (in this example) than

the original Euler method with h D 0:005. The latter requires 200 evaluations of the function

f .x; y/, but the former requires only 20 such evaluations, so in this case the improved Euler

method yields greater accuracy with only about one-tenth the work.

Figure 2.5.5 shows the results obtained when the improved Euler method is applied

to the initial value problem in (9) using step size h D 0:005. Accuracy of five significant

figures is apparent in the table. This suggests that, in contrast with the original Euler method,

the improved Euler method is sufficiently accurate for certain practical applications—such as

plotting solution curves.

Improved

Euler,

Approximate Actual

x y y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00000

1.11034

1.24280

1.39971

1.58364

1.79744

2.04423

2.32749

2.65107

3.01919

3.43654

1.00000

1.11034

1.24281

1.39972

1.58365

1.79744

2.04424

2.32751

2.65108

3.01921

3.43656

FIGURE 2.5.5. Improved Euler
approximation to the solution of
Eq. (9) with step size h D 0:005.
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Improved Euler

Approximation

h to y.1/ Error jErrorj=h2

0.04

0.02

0.01

0.005

0.0025

0.00125

0.000625

0.0003125

0.500195903

0.500049494

0.500012437

0.500003117

0.500000780

0.500000195

0.500000049

0.500000012

�0:000195903

�0:000049494

�0:000012437

�0:000003117

�0:000000780

�0:000000195

�0:000000049

�0:000000012

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

FIGURE 2.5.6. Improved Euler approximation to y.1/ for dy=dx D �2xy=.1 C x
2
/,

y.0/ D 1.

An improved Euler program (similar to the ones listed in the project material

for this section) was used to compute approximations to the exact value y.1/ D 0:5

of the solution y.x/ D 1=.1C x2/ of the initial value problem

dy

dx
D �

2xy

1C x2
; y.0/ D 1 (3)

of Example 1. The results obtained by successively halving the step size appear in

the table in Fig. 2.5.6. Note that the final column of this table impressively cor-

roborates the form of the error bound in (8), and that each halving of the step size

reduces the error by a factor of almost exactly 4, as should happen if the error is

proportional to h2.

In the following two examples we exhibit graphical results obtained by em-

ploying this strategy of successively halving the step size, and thus doubling the

number of subintervals of a fixed interval on which we are approximating a solu-

tion.

Example 3 In Example 3 of Section 2.4 we applied Euler’s method to the logistic initial value problem

dy

dx
D

1

3
y.8 � y/; y.0/ D 1:

Figure 2.4.9 shows an obvious difference between the exact solution y.x/ D 8=.1C 7e�8x=3/

and the Euler approximation on 0 5 x 5 5 using n D 20 subintervals. Figure 2.5.7 shows

approximate solution curves plotted using the improved Euler’s method.

The approximation with five subintervals is still bad—perhaps worse! It appears to

level off considerably short of the actual limiting population M D 8. You should carry out

at least the first two improved Euler steps manually to see for yourself how it happens that,

after increasing appropriately during the first step, the approximate solution decreases in the

second step rather than continuing to increase (as it should). In the project for this section

we ask you to show empirically that the improved Euler approximate solution with step size

h D 1 levels off at y � 4:3542.

In contrast, the approximate solution curve with n D 20 subintervals tracks the exact

solution curve rather closely, and with nD 40 subintervals the exact and approximate solution

curves are indistinguishable in Fig. 2.5.7. The table in Fig. 2.5.8 indicates that the improved

Euler approximation with n D 200 subintervals is accurate rounded to three decimal places

(that is, four significant digits) on the interval 0 5 x 5 5. Because discrepancies in the fourth

significant digit are not visually apparent at the resolution of an ordinary computer screen,

the improved Euler method (using several hundred subintervals) is considered adequate for

many graphical purposes.

3 4 50 1 2
x

y

0

12

Exact

2

4

6

8

10

n = 5

n = 10

n = 40
n = 20

FIGURE 2.5.7. Approximating a
logistic solution using the improved
Euler method with n D 5, n D 10,
n D 20, and n D 40 subintervals.
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Improved Euler

x Actual y.x/ with n D 200

0

1

2

3

4

5

1.0000

5.3822

7.7385

7.9813

7.9987

7.9999

1.0000

5.3809

7.7379

7.9812

7.9987

7.9999

FIGURE 2.5.8. Using the improved Euler method to

approximate the actual solution of the initial value
problem in Example 3.

Example 4 In Example 4 of Section 2.4 we applied Euler’s method to the initial value problem

dy

dx
D y cos x; y.0/ D 1:

Figure 2.4.10 shows obvious visual differences between the periodic exact solution y.x/ D
Exact n = 50

n = 100n = 200

0 5 10 15
x

y

3

2

1

0

FIGURE 2.5.9. Approximating the
exact solution y D e

sin x using the

improved Euler method with n D 50,
100, and 200 subintervals.

esin x and the Euler approximations on 0 5 x 5 6� with as many as n D 400 subintervals.

Figure 2.5.9 shows the exact solution curve and approximate solution curves plotted

using the improved Euler method with n D 50, n D 100, and n D 200 subintervals. The

approximation obtained with n D 200 is indistinguishable from the exact solution curve, and

the approximation with n D 100 is only barely distinguishable from it.

Although Figs. 2.5.7 and 2.5.9 indicate that the improved Euler method can

provide accuracy that suffices for many graphical purposes, it does not provide the

higher-precision numerical accuracy that sometimes is needed for more careful in-

vestigations. For instance, consider again the initial value problem

dy

dx
D �

2xy

1C x2
; y.0/ D 1

of Example 1. The final column of the table in Fig. 2.5.6 suggests that, if the im-

proved Euler method is used on the interval 0 5 x 5 1 with n subintervals and step

size hD 1=n, then the resulting error E in the final approximation yn � y.1/ is given

by

E D jy.1/ � ynj � .0:12/h
2
D
0:12

n2
:

If so, then 12-place accuracy (for instance) in the value y.1/ would require that

.0:12/n�2 < 5� 10�13, which means that n = 489;898. Thus, roughly half a million

steps of length h � 0:000002 would be required. Aside from the possible imprac-

ticality of this many steps (using available computational resources), the roundoff

error resulting from so many successive steps might well overwhelm the cumula-

tive error predicted by theory (which assumes exact computations in each separate

step). Consequently, still more accurate methods than the improved Euler method

are needed for such high-precision computations. Such a method is presented in

Section 2.6.
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2.5 Problems
A hand-held calculator will suffice for Problems 1 through 10,

where an initial value problem and its exact solution are given.

Apply the improved Euler method to approximate this solution

on the interval Œ0; 0:5� with step size hD 0:1. Construct a table

showing four-decimal-place values of the approximate solu-

tion and actual solution at the points x D 0:1, 0:2, 0:3, 0:4,

0:5.

1. y0 D �y, y.0/ D 2; y.x/ D 2e�x

2. y0 D 2y, y.0/ D 1

2
; y.x/ D 1

2
e2x

3. y0 D y C 1, y.0/ D 1; y.x/ D 2ex � 1

4. y0 D x � y, y.0/ D 1; y.x/ D 2e�x C x � 1

5. y0 D y � x � 1, y.0/ D 1; y.x/ D 2C x � ex

6. y0 D �2xy, y.0/ D 2; y.x/ D 2e�x
2

7. y0 D �3x2y, y.0/ D 3; y.x/ D 3e�x
3

8. y0 D e�y , y.0/ D 0; y.x/ D ln.x C 1/

9. y0 D
1

4
.1C y2/, y.0/ D 1; y.x/ D tan 1

4
.x C �/

10. y0 D 2xy2, y.0/ D 1; y.x/ D
1

1 � x2

Note: The application following this problem set lists illustra-

tive calculator/computer programs that can be used in Prob-

lems 11 through 24.

A programmable calculator or a computer will be useful for

Problems 11 through 16. In each problem find the exact so-

lution of the given initial value problem. Then apply the im-

proved Euler method twice to approximate (to five decimal

places) this solution on the given interval, first with step size

h D 0:01, then with step size h D 0:005. Make a table showing

the approximate values and the actual value, together with the

percentage error in the more accurate approximations, for x

an integral multiple of 0:2. Throughout, primes denote deriva-

tives with respect to x.

11. y0 D y � 2, y.0/ D 1; 0 5 x 5 1

12. y0 D
1

2
.y � 1/2, y.0/ D 2; 0 5 x 5 1

13. yy0 D 2x3, y.1/ D 3; 1 5 x 5 2

14. xy0 D y2, y.1/ D 1; 1 5 x 5 2

15. xy0 D 3x � 2y, y.2/ D 3; 2 5 x 5 3

16. y2y0 D 2x5, y.2/ D 3; 2 5 x 5 3

A computer with a printer is required for Problems 17 through

24. In these initial value problems, use the improved Euler

method with step sizes h D 0:1, 0:02, 0:004, and 0:0008 to ap-

proximate to five decimal places the values of the solution at

ten equally spaced points of the given interval. Print the results

in tabular form with appropriate headings to make it easy to

gauge the effect of varying the step size h. Throughout, primes

denote derivatives with respect to x.

17. y0 D x2 C y2, y.0/ D 0; 0 5 x 5 1

18. y0 D x2 � y2, y.0/ D 1; 0 5 x 5 2

19. y0 D x C
p
y, y.0/ D 1; 0 5 x 5 2

20. y0 D x C 3
p
y, y.0/ D �1; 0 5 x 5 2

21. y0 D ln y, y.1/ D 2; 1 5 x 5 2

22. y0 D x2=3 C y2=3, y.0/ D 1; 0 5 x 5 2

23. y0 D sin x C cos y, y.0/ D 0; 0 5 x 5 1

24. y0 D
x

1C y2
, y.�1/ D 1; �1 5 x 5 1

25. Falling parachutist As in Problem 25 of Section 2.4,

you bail out of a helicopter and immediately open your

parachute, so your downward velocity satisfies the initial

value problem

dv

dt
D 32 � 1:6v; v.0/ D 0

(with t in seconds and v in ft=s). Use the improved Euler

method with a programmable calculator or computer to

approximate the solution for 0 5 t 5 2, first with step size

h D 0:01 and then with h D 0:005, rounding off approx-

imate v-values to three decimal places. What percentage

of the limiting velocity 20 ft=s has been attained after 1

second? After 2 seconds?

26. Deer population As in Problem 26 of Section 2.4, sup-

pose the deer population P.t/ in a small forest initially

numbers 25 and satisfies the logistic equation

dP

dt
D 0:0225P � 0:0003P 2

(with t in months). Use the improved Euler method with a

programmable calculator or computer to approximate the

solution for 10 years, first with step size h D 1 and then

with h D 0:5, rounding off approximate P -values to three

decimal places. What percentage of the limiting popula-

tion of 75 deer has been attained after 5 years? After 10

years?

Decreasing Step Size

Use the improved Euler method with a computer system to find

the desired solution values in Problems 27 and 28. Start with

step size h D 0:1, and then use successively smaller step sizes

until successive approximate solution values at x D 2 agree

rounded off to four decimal places.

27. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D ‹

28. y0 D x C 1

2
y2, y.�2/ D 0; y.2/ D ‹

29. Velocity-proportional resistance Consider the cross-

bow bolt of Example 2 in Section 2.3, shot straight up-

ward from the ground with an initial velocity of 49 m=s.

Because of linear air resistance, its velocity function v.t/

satisfies the initial value problem

dv

dt
D �.0:04/v � 9:8; v.0/ D 49

with exact solution v.t/ D 294e�t=25 � 245. Use a calcu-

lator or computer implementation of the improved Euler

method to approximate v.t/ for 0 5 t 5 10 using both

n D 50 and n D 100 subintervals. Display the results at

intervals of 1 second. Do the two approximations—each

rounded to two decimal places—agree both with each

other and with the exact solution? If the exact solution
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were unavailable, explain how you could use the improved

Euler method to approximate closely (a) the bolt’s time

of ascent to its apex (given in Section 2.3 as 4:56 s) and

(b) its impact velocity after 9:41 s in the air.

30. Square-proportional resistance Consider now the

crossbow bolt of Example 3 in Section 2.3. It still is shot

straight upward from the ground with an initial velocity of

49 m=s, but because of air resistance proportional to the

square of its velocity, its velocity function v.t/ satisfies

the initial value problem

dv

dt
D �.0:0011/vjvj � 9:8; v.0/ D 49:

The symbolic solution discussed in Section 2.3 required

separate investigations of the bolt’s ascent and its descent,

with v.t/ given by a tangent function during ascent and

by a hyperbolic tangent function during descent. But the

improved Euler method requires no such distinction. Use

a calculator or computer implementation of the improved

Euler method to approximate v.t/ for 05 t 5 10 using both

n D 100 and n D 200 subintervals. Display the results at

intervals of 1 second. Do the two approximations—each

rounded to two decimal places—agree with each other? If

an exact solution were unavailable, explain how you could

use the improved Euler method to approximate closely (a)

the bolt’s time of ascent to its apex (given in Section 2.3

as 4:61 s) and (b) its impact velocity after 9:41 s in the

air.

Go to goo.gl/SEZzyz to
download this application’s
computing resources including
Maple/Mathematica/MATLAB/
Python/TI-Nspire.

2.5 Application Improved Euler Implementation

Figure 2.5.10 lists TI-84 Plus and Python programs implementing the improved

Euler method to approximate the solution of the initial value problem

dy

dx
D x C y; y.0/ D 1

considered in Example 2 of this section. The comments provided in the final column

should make these programs intelligible even if you have little familiarity with the

Python and TI programming languages.

To apply the improved Euler method to a differential equation dy=dx D

f .x; y/, one need only replace X+Y throughout with the desired expression. To

TI-84 Plus Python Comment

PROGRAM:IMPEULER

:10!N

:0!X

:1!Y

:1!T

:(T--X)/N!H

:For(I,1,N)

:Y!Z

:X+Y!K

:Z+H*K!Y

:X+H!X

:X+Y!L

:(K+L)/2!K

:Z+H*K!Y

:Disp X,Y

:End

# Program IMPEULER

def F(X,Y): return X + Y

N = 10

X = 0.0

Y = 1.0

X1 = 1.0

H = (X1--X)/N

for I in range(N):

Y0 = Y

K1 = F(X,Y)

Y = Y0 + H*K1

X = X + H

K2 = F(X,Y)

K = (K1 + K2)/2

Y = Y0 + H*K

print (X,Y)

# END

Program title

Define function f

No. of steps

Initial x

Initial y

Final x

Step size

Begin loop

Save previous y

First slope

Predictor

New x

Second slope

Average slope

Corrector

Display results

End loop

FIGURE 2.5.10. TI-84 Plus and Python improved Euler programs.
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increase the number of steps (and thereby decrease the step size) one need only

change the value of N specified in the second line of the program.

Figure 2.5.11 exhibits one MATLAB implementation of the improved Euler

method. The impeuler function takes as input the initial value x, the initial value

y, the final value x1 of x, and the desired number n of subintervals. As output it

produces the resulting column vectors X and Y of x- and y-values. For instance, the

MATLAB command

[X, Y] = impeuler(0, 1, 1, 10)

then generates the first and fourth columns of data shown in Fig. 2.5.4.

function yp = f(x,y)

yp = x + y; % yp = y’

function [X,Y] = impeuler(x,y,x1,n)

h = (x1 -- x)/n; % step size

X = x; % initial x

Y = y; % initial y

for i = 1:n; % begin loop

k1 = f(x,y); % first slope

k2 = f(x+h,y+h*k1); % second slope

k = (k1 + k2)/2;; % average slope

x = x + h; % new x

y = y + h*k; % new y

X = [X;x]; % update x-column

Y = [Y;y]; % update y-column

end % end loop

FIGURE 2.5.11. MATLAB implementation of improved Euler method.

You should begin this project by implementing the improved Euler method

with your own calculator or computer system. Test your program by applying it

first to the initial value problem of Example 1, then to some of the problems for this

section.

Famous Numbers Revisited

The following problems describe the numbers e � 2:7182818, ln 2 � 0:6931472,

and � � 3:1415927 as specific values of certain initial value problems. In each case,

apply the improved Euler method with n D 10, 20, 40, : : : subintervals (doubling n

each time). How many subintervals are needed to obtain—twice in succession—the

correct value of the target number rounded to five decimal places?

1. The number e D y.1/, where y.x/ is the solution of the initial value problem

dy=dx D y, y.0/ D 1.

2. The number ln 2D y.2/, where y.x/ is the solution of the initial value problem

dy=dx D 1=x, y.1/ D 0.

3. The number � D y.1/, where y.x/ is the solution of the initial value problem

dy=dx D 4=.1C x2/, y.0/ D 0.

Logistic Population Investigation

Apply your improved Euler program to the initial value problem dy=dxD 1

3
y.8�y/,

y.0/ D 1 of Example 3. In particular, verify (as claimed) that the approximate
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solution with step size h D 1 levels off at y � 4:3542 rather than at the limiting

value y D 8 of the exact solution. Perhaps a table of values for 0 5 x 5 100 will

make this apparent.

For your own logistic population to investigate, consider the initial value prob-

lem
dy

dx
D
1

n
y.m � y/; y.0/ D 1

where m and n are (for instance) the largest and smallest nonzero digits in your

student ID number. Does the improved Euler approximation with step size h D 1

level off at the “correct” limiting value of the exact solution? If not, find a smaller

value of h so that it does.

Periodic Harvesting and Restocking

The differential equation

dy

dt
D ky.M � y/ � h sin

�

2�t

P

�

models a logistic population that is periodically harvested and restocked with period

P and maximal harvesting/restocking rate h. A numerical approximation program

was used to plot the typical solution curves for the case k D M D h D P D 1 that

are shown in Fig. 2.5.12. This figure suggests—although it does not prove—the

existence of a threshold initial population such that

y

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
t

FIGURE 2.5.12. Solution curves of
dy=dt D y.1 � y/ � sin 2�t .

� Beginning with an initial population above this threshold, the population os-

cillates (perhaps with period P ?) around the (unharvested) stable limiting

population y.t/ �M , whereas

� The population dies out if it begins with an initial population below this thresh-

old.

Use an appropriate plotting utility to investigate your own logistic population with

periodic harvesting and restocking (selecting typical values of the parameters k, M ,

h, and P ). Do the observations indicated here appear to hold for your population?

2.6 The Runge–Kutta Method

We now discuss a method for approximating the solution y D y.x/ of the initial

value problem
dy

dx
D f .x; y/; y.x0/ D y0 (1)

that is considerably more accurate than the improved Euler method and is more

widely used in practice than any of the numerical methods discussed in Sections 2.4

and 2.5. It is called the Runge–Kutta method, after the German mathematicians who

developed it, Carl Runge (1856–1927) and Wilhelm Kutta (1867–1944).

With the usual notation, suppose that we have computed the approximations

y1, y2, y3, : : : , yn to the actual values y.x1/, y.x2/, y.x3/, : : : , y.xn/ and now want

to compute ynC1 � y.xnC1/. Then

y.xnC1/ � y.xn/ D

Z

xnC1

xn

y0.x/ dx D

Z

xnCh

xn

y0.x/ dx (2)
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by the fundamental theorem of calculus. Next, Simpson’s rule for numerical inte-

gration yields

y.xnC1/ � y.xn/ �
h

6

�

y0.xn/C 4y
0

�

xn C
h

2

�

C y0.xnC1/

�

: (3)

Hence we want to define ynC1 so that

ynC1 � yn C
h

6

�

y0.xn/C 2y
0

�

xn C
h

2

�

C 2y0

�

xn C
h

2

�

C y0.xnC1/

�

I (4)

we have split 4y0
�

xn C
1

2
h
�

into a sum of two terms because we intend to approx-

imate the slope y0
�

xn C
1

2
h
�

at the midpoint xn C
1

2
h of the interval Œxn; xnC1� in

two different ways.

On the right-hand side in (4), we replace the [true] slope values y0.xn/,

y0
�

xn C
1

2
h
�

, y0
�

xn C
1

2
h
�

, and y0.xnC1/, respectively, with the following esti-

mates.

k1 D f .xn; yn/ (5a)

� This is the Euler method slope at xn.

k2 D f
�

xn C
1

2
h; yn C

1

2
hk1

�

(5b)

� This is an estimate of the slope at the midpoint of the interval Œxn; xnC1� using

the Euler method to predict the ordinate there.

k3 D f
�

xn C
1

2
h; yn C

1

2
hk2

�

(5c)

� This is an improved Euler value for the slope at the midpoint.

k4 D f .xnC1; yn C hk3/ (5d)

� This is the Euler method slope at xnC1, using the improved slope k3 at the

midpoint to step to xnC1.

When these substitutions are made in (4), the result is the iterative formula

ynC1 D yn C
h

6
.k1 C 2k2 C 2k3 C k4/: (6)

The use of this formula to compute the approximations y1, y2, y3, : : : successively

constitutes the Runge–Kutta method. Note that Eq. (6) takes the “Euler form”

ynC1 D yn C h � k

if we write

k D
1

6
.k1 C 2k2 C 2k3 C k4/ (7)

for the approximate average slope on the interval Œxn; xnC1�.

The Runge–Kutta method is a fourth-order method—it can be proved that the

cumulative error on a bounded interval Œa; b� with a D x0 is of order h4. (Thus the

iteration in (6) is sometimes called the fourth-order Runge–Kutta method because

it is possible to develop Runge–Kutta methods of other orders.) That is,

jy.xn/ � ynj 5 Ch4; (8)

where the constant C depends on the function f .x; y/ and the interval Œa; b�, but

does not depend on the step size h. The following example illustrates this high

accuracy in comparison with the lower-order accuracy of our previous numerical

methods.
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Example 1 We first apply the Runge–Kutta method to the illustrative initial value problem

dy

dx
D x C y; y.0/ D 1 (9)

that we considered in Fig. 2.4.8 of Section 2.4 and again in Example 2 of Section 2.5. The

exact solution of this problem is y.x/ D 2ex � x � 1. To make a point we use h D 0:5, a

larger step size than in any previous example, so only two steps are required to go from x D 0

to x D 1.

In the first step we use the formulas in (5) and (6) to calculate

k1 D 0C 1 D 1;

k2 D .0C 0:25/C .1C .0:25/ � .1// D 1:5;

k3 D .0C 0:25/C .1C .0:25/ � .1:5// D 1:625;

k4 D .0:5/C .1C .0:5/ � .1:625// D 2:3125;

and then

y1 D 1C
0:5

6
Œ1C 2 � .1:5/C 2 � .1:625/C 2:3125� � 1:7969:

Similarly, the second step yields y2 � 3:4347.

Figure 2.6.1 presents these results together with the results (from Fig. 2.5.4) of apply-

ing the improved Euler method with step size h D 0:1. We see that even with the larger step

size, the Runge–Kutta method gives (for this problem) four to five times the accuracy (in

terms of relative percentage errors) of the improved Euler method.

Improved Euler Runge–Kutta

x y with h D 0:1 Percent Error y with h D 0:5 Percent Error Actual y

0.0

0.5

1.0

1.0000

1.7949

3.4282

0.00%

0.14%

0.24%

1.0000

1.7969

3.4347

0.00%

0.03%

0.05%

1.0000

1.7974

3.4366

FIGURE 2.6.1. Runge–Kutta and improved Euler results for the initial value problem
dy=dx D x C y, y.0/ D 1.

It is customary to measure the computational labor involved in solving

dy=dx D f .x; y/ numerically by counting the number of evaluations of the function

f .x; y/ that are required. In Example 1, the Runge–Kutta method required eight

evaluations of f .x; y/ D x C y (four at each step), whereas the improved Euler

method required 20 such evaluations (two for each of 10 steps). Thus the Runge–

Kutta method gave over four times the accuracy with only 40% of the labor.

Computer programs implementing the Runge–Kutta method are listed in the

project material for this section. Figure 2.6.2 shows the results obtained by apply-

ing the improved Euler and Runge–Kutta methods to the problem dy=dx D x C y,

y.0/ D 1 with the same step size h D 0:1. The relative error in the improved Euler

value at x D 1 is about 0:24%, but for the Runge–Kutta value it is 0:00012%. In this

comparison the Runge–Kutta method is about 2000 times as accurate, but requires

only twice as many function evaluations, as the improved Euler method.

The error bound

jy.xn/ � ynj 5 Ch4 (8)

for the Runge–Kutta method results in a rapid decrease in the magnitude of errors

when the step size h is reduced (except for the possibility that very small step sizes

may result in unacceptable roundoff errors). It follows from the inequality in (8) that

(on a fixed bounded interval) halving the step size decreases the absolute error by
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x Improved Euler y Runge–Kutta y Actual y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1100

1.2421

1.3985

1.5818

1.7949

2.0409

2.3231

2.6456

3.0124

3.4282

1.110342

1.242805

1.399717

1.583648

1.797441

2.044236

2.327503

2.651079

3.019203

3.436559

1.110342

1.242806

1.399718

1.583649

1.797443

2.044238

2.327505

2.651082

3.019206

3.436564

FIGURE 2.6.2. Runge–Kutta and improved Euler results for the initial value problem

dy=dx D x C y, y.0/ D 1, with the same step size h D 0:1.

a factor of
�

1

2

�

4

D
1

16
. Consequently, the common practice of successively halving

the step size until the computed results “stabilize” is particularly effective with the

Runge–Kutta method.

Example 2 Infinite discontinuity In Example 5 of Section 2.4 we saw that Euler’s method is not

adequate to approximate the solution y.x/ of the initial value problem

dy

dx
D x2

C y2; y.0/ D 1 (10)

as x approaches the infinite discontinuity near x D 0:969811 (see Fig. 2.6.3). Now we apply

2.01.00.0
x

y

8

–4

–2

–2.0 –1.0

0
(0, 1)

x = 0.97

2

4

6

FIGURE 2.6.3. Solutions of

dy=dx D x
2 C y

2, y.0/ D 1.

the Runge–Kutta method to this initial value problem.

Figure 2.6.4 shows Runge–Kutta results on the interval Œ0:0; 0:9�, computed with step

sizes h D 0:1, h D 0:05, and h D 0:025. There is still some difficulty near x D 0:9, but it

seems safe to conclude from these data that y.0:5/ � 2:0670.

x y with h D 0:1 y with h D 0:05 y with h D 0:025

0.1

0.3

0.5

0.7

0.9

1.1115

1.4397

2.0670

3.6522

14.0218

1.1115

1.4397

2.0670

3.6529

14.2712

1.1115

1.4397

2.0670

3.6529

14.3021

FIGURE 2.6.4. Approximating the solution of the initial value problem in Eq. (10).

We therefore begin anew and apply the Runge–Kutta method to the initial value prob-

lem
dy

dx
D x2

C y2; y.0:5/ D 2:0670: (11)

Figure 2.6.5 shows results on the interval Œ0:5; 0:9�, obtained with step sizes h D 0:01, h D

0:005, and h D 0:0025. We now conclude that y.0:9/ � 14:3049.

Finally, Fig. 2.6.6 shows results on the interval Œ0:90; 0:95� for the initial value problem

dy

dx
D x2

C y2; y.0:9/ D 14:3049; (12)

obtained using step sizes h D 0:002, h D 0:001, and h D 0:0005. Our final approximate result

is y.0:95/ � 50:4723. The actual value of the solution at x D 0:95 is y.0:95/ � 50:471867.
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x y with h D 0:01 y with h D 0:005 y with h D 0:0025

0.5

0.6

0.7

0.8

0.9

2.0670

2.6440

3.6529

5.8486

14.3048

2.0670

2.6440

3.6529

5.8486

14.3049

2.0670

2.6440

3.6529

5.8486

14.3049

FIGURE 2.6.5. Approximating the solution of the initial value problem in Eq. (11).

x y with h D 0:002 y with h D 0:001 y with h D 0:0005

0.90

0.91

0.92

0.93

0.94

0.95

14.3049

16.7024

20.0617

25.1073

33.5363

50.4722

14.3049

16.7024

20.0617

25.1073

33.5363

50.4723

14.3049

16.7024

20.0617

25.1073

33.5363

50.4723

FIGURE 2.6.6. Approximating the solution of the initial value problem in Eq. (12).

Our slight overestimate results mainly from the fact that the four-place initial value in (12)

is (in effect) the result of rounding up the actual value y.0:9/ � 14:304864; such errors are

magnified considerably as we approach the vertical asymptote.

Example 3 Skydiver A skydiver with a mass of 60 kg jumps from a helicopter hovering at an initial

altitude of 5 kilometers. Assume that she falls vertically with initial velocity zero and expe-

riences an upward force F
R

of air resistance given in terms of her velocity v (in meters per

second) by

F
R
D .0:0096/.100v C 10v2

C v3/

(in newtons, and with the coordinate axis directed downward so that v > 0 during her descent

to the ground). If she does not open her parachute, what will be her terminal velocity? How

fast will she be falling after 5 s have elapsed? After 10 s? After 20 s?

Solution Newton’s law F D ma gives

m
dv

dt
D mg � F

R
I

that is,

60
dv

dt
D .60/.9:8/ � .0:0096/.100v C 10v2

C v3/ (13)

becausemD 60 and gD 9:8. Thus the velocity function v.t/ satisfies the initial value problem

dv

dt
D f .v/; v.0/ D 0; (14)

where

f .v/ D 9:8 � .0:00016/.100v C 10v2
C v3/: (15)

The skydiver reaches her terminal velocity when the forces of gravity and air resistance

balance, so f .v/D 0. We can therefore calculate her terminal velocity immediately by solving

the equation

f .v/ D 9:8 � .0:00016/.100v C 10v2
C v3/ D 0: (16)

Figure 2.6.7 shows the graph of the function f .v/ and exhibits the single real solution v �

35:5780 (found graphically or by using a calculator or computer Solve procedure). Thus the

skydiver’s terminal speed is approximately 35:578 m=s, about 128 km=h (almost 80 mi=h).



132 Chapter 2 Mathematical Models and Numerical Methods

0 40 806020 100–40 –20–60

60

0

–60

20

–40

40

–20

f(
  )

FIGURE 2.6.7. Graph of f .v/ D

9:8 � .0:00016/.100v C 10v
2 C v

3
/.

t (s) v (m=s) t (s) v (m=s)

0

1

2

3

4

5

6

7

8

9

10

0

9.636

18.386

25.299

29.949

32.678

34.137

34.875

35.239

35.415

35.500

11

12

13

14

15

16

17

18

19

20

35.541

35.560

35.569

35.574

35.576

35.577

35.578

35.578

35.578

35.578

FIGURE 2.6.8. The skydiver’s
velocity data.

Figure 2.6.8 shows the results of Runge–Kutta approximations to the solution of the

initial value problem in (14); the step sizes h D 0:2 and h D 0:1 yield the same results (to

three decimal places). Observe that the terminal velocity is effectively attained in only 15 s.

But the skydiver’s velocity is 91:85% of her terminal velocity after only 5 s, and 99:78% after

10 s.

The final example of this section contains a warning: For certain types of

initial value problems, the numerical methods we have discussed are not nearly so

successful as in the previous examples.

Example 4 Consider the seemingly innocuous initial value problem

dy

dx
D 5y � 6e�x ; y.0/ D 1 (17)

whose exact solution is y.x/ D e�x . The table in Fig. 2.6.9 shows the results obtained by

applying the Runge–Kutta method on the interval Œ0; 4� with step sizes h D 0:2, h D 0:1, and

hD 0:05. Obviously these attempts are spectacularly unsuccessful. Although y.x/D e�x! 0

as x!C1, it appears that our numerical approximations are headed toward �1 rather than

zero.

Runge–Kutta y Runge–Kutta y Runge–Kutta y

x with h D 0:2 with h D 0:1 with h D 0:05 Actual y

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

0.66880

0.43713

0.21099

�0:46019

�4:72142

�35:53415

�261:25023

�1;916:69395

�14059:35494

�103;126:5270

0.67020

0.44833

0.29376

0.14697

�0:27026

�2:90419

�22:05352

�163:25077

�1205:71249

�8903:12866

0.67031

0.44926

0.30067

0.19802

0.10668

�0:12102

�1:50367

�11:51868

�85:38156

�631:03934

0.67032

0.44933

0.30119

0.20190

0.13534

0.09072

0.06081

0.04076

0.02732

0.01832

FIGURE 2.6.9. Runge–Kutta attempts to solve numerically the initial value problem in Eq. (17).
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The explanation lies in the fact that the general solution of the equation dy=dx D 5y �

6e�x is

y.x/ D e�x
C Ce5x : (18)

The particular solution of (17) satisfying the initial condition y.0/D 1 is obtained with C D 0.

But any departure, however small, from the exact solution y.x/ D e�x—even if due only to

roundoff error—introduces [in effect] a nonzero value of C in Eq. (18). And as indicated in

Fig. 2.6.10, all solution curves of the form in (18) with C ¤ 0 diverge rapidly away from the

one with C D 0, even if their initial values are close to 1.

3.02.52.01.51.00.5
x

y = e–x

y

0

2.5

2.0

1.5

1.0

0.5

0.0

–1.0

–0.5

FIGURE 2.6.10. Direction field and
solution curves for
dy=dx D 5y � 6e

�x .

Difficulties of the sort illustrated by Example 4 sometimes are unavoidable,

but one can at least hope to recognize such a problem when it appears. Approxi-

mate values whose order of magnitude varies with changing step size are a common

indicator of such instability. These difficulties are discussed in numerical analysis

textbooks and are the subject of current research in the field.

2.6 Problems
A hand-held calculator will suffice for Problems 1 through 10,

where an initial value problem and its exact solution are given.

Apply the Runge–Kutta method to approximate this solution on

the interval Œ0; 0:5� with step size h D 0:25. Construct a table

showing five-decimal-place values of the approximate solution

and actual solution at the points x D 0:25 and 0:5.

1. y0 D �y, y.0/ D 2; y.x/ D 2e�x

2. y0 D 2y, y.0/ D 1

2
; y.x/ D 1

2
e2x

3. y0 D y C 1, y.0/ D 1; y.x/ D 2ex � 1

4. y0 D x � y, y.0/ D 1; y.x/ D 2e�x C x � 1

5. y0 D y � x � 1, y.0/ D 1; y.x/ D 2C x � ex

6. y0 D �2xy, y.0/ D 2; y.x/ D 2e�x
2

7. y0 D �3x2y, y.0/ D 3; y.x/ D 3e�x
3

8. y0 D e�y , y.0/ D 0; y.x/ D ln.x C 1/

9. y0 D
1

4
.1C y2/, y.0/ D 1; y.x/ D tan 1

4
.x C �/

10. y0 D 2xy2, y.0/ D 1; y.x/ D
1

1 � x2

Note: The application following this problem set lists illus-

trative calculator/computer programs that can be used in the

remaining problems.

A programmable calculator or a computer will be useful for

Problems 11 through 16. In each problem find the exact solu-

tion of the given initial value problem. Then apply the Runge–

Kutta method twice to approximate (to five decimal places) this

solution on the given interval, first with step size h D 0:2, then

with step size h D 0:1. Make a table showing the approximate

values and the actual value, together with the percentage error

in the more accurate approximation, for x an integral multi-

ple of 0:2. Throughout, primes denote derivatives with respect

to x.

11. y0 D y � 2, y.0/ D 1; 0 5 x 5 1

12. y0 D
1

2
.y � 1/2, y.0/ D 2; 0 5 x 5 1

13. yy0 D 2x3, y.1/ D 3; 1 5 x 5 2

14. xy0 D y2, y.1/ D 1; 1 5 x 5 2

15. xy0 D 3x � 2y, y.2/ D 3; 2 5 x 5 3

16. y2y0 D 2x5, y.2/ D 3; 2 5 x 5 3

A computer with a printer is required for Problems 17 through

24. In these initial value problems, use the Runge–Kutta

method with step sizes h D 0:2, 0:1, 0:05, and 0:025 to approx-

imate to six decimal places the values of the solution at five

equally spaced points of the given interval. Print the results

in tabular form with appropriate headings to make it easy to

gauge the effect of varying the step size h. Throughout, primes

denote derivatives with respect to x.

17. y0 D x2 C y2, y.0/ D 0; 0 5 x 5 1

18. y0 D x2 � y2, y.0/ D 1; 0 5 x 5 2

19. y0 D x C
p
y, y.0/ D 1; 0 5 x 5 2

20. y0 D x C 3
p
y, y.0/ D �1; 0 5 x 5 2

21. y0 D ln y, y.1/ D 2; 1 5 x 5 2

22. y0 D x2=3 C y2=3, y.0/ D 1; 0 5 x 5 2

23. y0 D sin x C cos y, y.0/ D 0; 0 5 x 5 1

24. y0 D
x

1C y2
, y.�1/ D 1; �1 5 x 5 1

25. Falling parachutist As in Problem 25 of Section 2.5,

you bail out of a helicopter and immediately open your

parachute, so your downward velocity satisfies the initial

value problem

dv

dt
D 32 � 1:6v; v.0/ D 0

(with t in seconds and v in ft=s). Use the Runge–Kutta

method with a programmable calculator or computer to

approximate the solution for 0 5 t 5 2, first with step size

hD 0:1 and then with hD 0:05, rounding off approximate

v-values to three decimal places. What percentage of the

limiting velocity 20 ft=s has been attained after 1 second?

After 2 seconds?
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26. Deer population As in Problem 26 of Section 2.5, sup-

pose the deer population P.t/ in a small forest initially

numbers 25 and satisfies the logistic equation

dP

dt
D 0:0225P � 0:0003P 2

(with t in months). Use the Runge–Kutta method with a

programmable calculator or computer to approximate the

solution for 10 years, first with step size h D 6 and then

with h D 3, rounding off approximate P -values to four

decimal places. What percentage of the limiting popula-

tion of 75 deer has been attained after 5 years? After 10

years?

Use the Runge–Kutta method with a computer system to find

the desired solution values in Problems 27 and 28. Start with

step size h D 1, and then use successively smaller step sizes

until successive approximate solution values at x D 2 agree

rounded off to five decimal places.

27. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D‹

28. y0 D x C 1

2
y2, y.�2/ D 0; y.2/ D‹

Velocity-Acceleration Problems

In Problems 29 and 30, the linear acceleration a D dv=dt of a

moving particle is given by a formula dv=dt D f .t; v/, where

the velocity vD dy=dt is the derivative of the function y D y.t/

giving the position of the particle at time t . Suppose that the

velocity v.t/ is approximated using the Runge–Kutta method

to solve numerically the initial value problem

dv

dt
D f .t; v/; v.0/ D v0: (19)

That is, starting with t0 D 0 and v0, the formulas in Eqs. (5)

and (6) are applied—with t and v in place of x and y—to

calculate the successive approximate velocity values v1, v2,

v3, : : : , vm at the successive times t1, t2, t3, : : : , tm (with

tnC1 D tn C h). Now suppose that we also want to approx-

imate the distance y.t/ traveled by the particle. We can do this

by beginning with the initial position y.0/ D y0 and calculat-

ing

ynC1 D yn C vnhC
1

2
anh

2 (20)

(n D 1, 2, 3, : : : ), where an D f .tn; vn/ � v0.tn/ is the par-

ticle’s approximate acceleration at time tn. The formula in

(20) would give the correct increment (from yn to ynC1) if

the acceleration an remained constant during the time interval

Œtn; tnC1�.

Thus, once a table of approximate velocities has been

calculated, Eq. (20) provides a simple way to calculate a table

of corresponding successive positions. This process is illus-

trated in the project for this section, by beginning with the ve-

locity data in Fig. 2.6.8 (Example 3) and proceeding to follow

the skydiver’s position during her descent to the ground.

29. Consider again the crossbow bolt of Example 2 in Sec-

tion 2.3, shot straight upward from the ground with an ini-

tial velocity of 49 m=s. Because of linear air resistance,

its velocity function v D dy=dt satisfies the initial value

problem

dv

dt
D �.0:04/v � 9:8; v.0/ D 49

with exact solution v.t/D 294e�t=25�245. (a) Use a cal-

culator or computer implementation of the Runge–Kutta

method to approximate v.t/ for 0 5 t 5 10 using both

n D 100 and n D 200 subintervals. Display the results at

intervals of 1 second. Do the two approximations—each

rounded to four decimal places—agree both with each

other and with the exact solution? (b) Now use the veloc-

ity data from part (a) to approximate y.t/ for 0 5 t 5 10

using nD 200 subintervals. Display the results at intervals

of 1 second. Do these approximate position values—each

rounded to two decimal places—agree with the exact so-

lution

y.t/ D 7350
�

1 � e�t=25

�

� 245t?

(c) If the exact solution were unavailable, explain how

you could use the Runge–Kutta method to approximate

closely the bolt’s times of ascent and descent and the max-

imum height it attains.

30. Now consider again the crossbow bolt of Example 3 in

Section 2.3. It still is shot straight upward from the ground

with an initial velocity of 49 m=s, but because of air resis-

tance proportional to the square of its velocity, its velocity

function v.t/ satisfies the initial value problem

dv

dt
D �.0:0011/vjvj � 9:8; v.0/ D 49:

Beginning with this initial value problem, repeat parts (a)

through (c) of Problem 29 (except that you may need

n D 200 subintervals to get four-place accuracy in part

(a) and n D 400 subintervals for two-place accuracy in

part (b)). According to the results of Problems 17 and 18

in Section 2.3, the bolt’s velocity and position functions

during ascent and descent are given by the following for-

mulas.

Ascent:

v.t/ D .94:388/ tan.0:478837 � Œ0:103827�t/;

y.t/ D 108:465

C .909:091/ ln .cos.0:478837 � Œ0:103827�t// I

Descent:

v.t/ D �.94:388/ tanh.0:103827Œt � 4:6119�/;

y.t/ D 108:465

� .909:091/ ln .cosh.0:103827Œt � 4:6119�// :
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Go to goo.gl/zGw2hH to
download this application’s
computing resources including
Maple/Mathematica/MATLAB/
Python/TI-Nspire.

2.6 Application Runge–Kutta Implementation

Figure 2.6.11 lists TI-Nspire CX CAS and Python programs implementing the

Runge–Kutta method to approximate the solution of the initial value problem

dy

dx
D x C y; y.0/ D 1

considered in Example 1 of this section. The comments provided in the final column

should make these programs intelligible even if you have little familiarity with the

Python and TI programming languages.

To apply the Runge–Kutta method to a different equation dy=dx D f .x; y/,

one need only change the initial line of the program, in which the function f is

defined. To increase the number of steps (and thereby decrease the step size), one

need only change the value of n specified in the second line of the program.

Figure 2.6.12 exhibits a MATLAB implementation of the Runge–Kutta

method. Suppose that the function f describing the differential equation y0 D

f .x; y/ has been defined. Then the rk function takes as input the initial value x,

the initial value y, the final value x1 of x, and the desired number n of subintervals.

As output it produces the resulting column vectors X and Y of x- and y-values. For

instance, the MATLAB command

TI-Nspire CX CAS Python Comment

Define rk()=Prgm

f(x,y):=x+y

n:=10

x:=0.0

y:=1.0

x1:=1.0

h:=(x1--x)/n

For i,1,n

x0:=x

y0:=y

k1:=f(x,y)

x:=x0+h/2

y:=y0+(h*k1)/2

k2:=f(x,y)

y:=y0+(h*k2)/2

k3:=f(x,y)

x:=x0+h

y:=y0+h*k3

k4:=f(x,y)

k:=(k1+2*k2+2*k3+k4)/6

y:=y0+h*k

Disp x,y

EndFor

EndPrgm

# Program RK

def F(X,Y): return X + Y

N = 10

X = 0.0

Y = 1.0

X1 = 1.0

H = (X1--X)/N

for I in range(N):

X0 = X

Y0 = Y

K1 = F(X,Y)

X = X0 + H/2

Y = Y0 + H*K1/2

K2 = F(X,Y)

Y = Y0 + H*K2/2

K3 = F(X,Y)

X = X0 + H

Y = Y0 + H*K3

K4 = F(X,Y)

K = (K1+2*K2+2*K3

+K4)/6

Y = Y0 + H*K

print (X,Y)

# END

Program title

Define function f

No. of steps

Initial x

Initial y

Final x

Step size

Begin loop

Save previous x

Save previous y

First slope

Midpoint

Midpt predictor

Second slope

Midpt predictor

Third slope

New x

Endpt predictor

Fourth slope

Average slope

Corrector

Display results

End loop

FIGURE 2.6.11. TI-Nspire CX CAS and Python Runge–Kutta programs.
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function yp = f(x,y)

yp = x + y; % yp = y’

function [X,Y] = rk(x,y,x1,n)

h = (x1 -- x)/n; % step size

X = x; % initial x

Y = y; % initial y

for i = 1:n % begin loop

k1 = f(x,y); % first slope

k2 = f(x+h/2,y+h*k1/2); % second slope

k3 = f(x+h/2,y+h*k2/2); % third slope

k4 = f(x+h,y+h*k3); % fourth slope

k = (k1+2*k2+2*k3+k4)/6; % average slope

x = x + h; % new x

y = y + h*k; % new y

X = [X;x]; % update x-column

Y = [Y;y]; % update y-column

end % end loop

FIGURE 2.6.12. MATLAB implementation of the Runge–Kutta method.

[X, Y] = rk(0, 1, 1, 10)

then generates the first and third columns of data shown in the table in Fig. 2.6.2.

You should begin this project by implementing the Runge–Kutta method with

your own calculator or computer system. Test your program by applying it first to

the initial value problem in Example 1, then to some of the problems for this section.

Famous Numbers Revisited, One Last Time

The following problems describe the numbers

e � 2:71828182846; ln 2 � 0:69314718056; and � � 3:14159265359

as specific values of certain initial value problems. In each case, apply the Runge–

Kutta method with n D 10, 20, 40, : : : subintervals (doubling n each time). How

many subintervals are needed to obtain—twice in succession—the correct value of

the target number rounded to nine decimal places?

1. The number e D y.1/, where y.x/ is the solution of the initial value problem

dy=dx D y, y.0/ D 1.

2. The number ln 2D y.2/, where y.x/ is the solution of the initial value problem

dy=dx D 1=x, y.1/ D 0.

3. The number � D y.1/, where y.x/ is the solution of the initial value problem

dy=dx D 4=.1C x2/, y.0/ D 0.

The Skydiver’s Descent

The following MATLAB function describes the skydiver’s acceleration function in

Example 3.

function vp = f(t,v)

vp = 9.8 -- 0.00016�(100�v + 10�v^2 + v^3);
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Then the commands

k = 200 % 200 subintervals

[t,v] = rk(0, 0, 20, k); % Runge-Kutta approximation

[t(1:10:k+1); v(1:10:k+1)] % Display every 10th entry

produce the table of approximate velocities shown in Fig. 2.6.8. Finally, the com-

mands

y = zeros(k+1,1): % initialize y

h = 0.1; % step size

for n = 1:k % for n = 1 to k

a = f(t(n),v(n)): % acceleration

y(n+1) = y(n) + v(n)�h + 0.5�a�h^2; % Equation (20)

end % end loop

[t(1:20:k+1),v(1:20:k+1),y(1:20:k+1)] % each 20th entry

carry out the position function calculations described in Eq. (20) in the instruc-

tions for Problems 29 and 30. The results of these calculations are shown in

the table in Fig. 2.6.13. It appears that the skydiver falls 629:866 m during her

first 20 s of descent, and then free falls the remaining 4370:134 meters to the

ground at her terminal speed of 35:578 m=s. Hence her total time of descent is

20C .4370:134=35:578/ � 142:833 s, or about 2 min 23 s.

For an individual problem to solve after implementing these methods using

an available computer system, analyze your own skydive (perhaps from a different

height), using your own mass m and a plausible air-resistance force of the form

t (s) v (m=s) y (m)

0

2

4

6

8

10

12

14

16

18

20

0

18.386

29.949

34.137

35.239

35.500

35.560

35.574

35.577

35.578

35.578

0

18.984

68.825

133.763

203.392

274.192

345.266

416.403

487.555

558.710

629.866

FIGURE 2.6.13. The skydiver’s
velocity and position data.

FR D av C bv
2 C cv3.
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3.1 Introduction to Linear Systems

The subject of linear algebra centers around the problem of solving systems of

(algebraic) linear equations. In high school algebra the method of elimination

is used to solve systems of two and three (simultaneous) linear equations, with at-

tention ordinarily confined to systems that have one and only one solution, and with

applications to “word problems” that have one and only one “answer.” In this sec-

tion we introduce some of the basic terminology of linear algebra by reviewing the

elementary technique of elimination from a slightly more general viewpoint. In sub-

sequent sections we apply this same technique to the solution of systems involving

many linear equations in many unknowns. The applications of the method of elim-

ination are diverse and important, because so many mathematical problems involve

the solution of systems of linear equations.

Recall that if a, b, and c are constants with a and b not both zero, then the

graph of the equation

ax C by D c (1)

is a (straight) line in the xy-plane. For this reason, an equation of the form in (1) is

called a linear equation in the variables x and y. Similarly, an equation that can

be written in the form

ax C by C c´ D d (2)

is called linear in the three variables x, y, and ´ (even though its graph in xyz-space

is a plane rather than a line). Thus the equations

3x � 2y D 5 and x � 7y C 5´ D �11

are linear, because they involve only the first powers of the variables. By contrast,

the equations

x C y C xy D 5 and x2
C y3

C
p
´ D 1

are not linear, because they cannot be rewritten to eliminate the higher powers, roots,

and products of the variables.

138
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Two Equations in Two Unknowns

A system of linear equations (also called a linear system) is simply a finite col-

lection of linear equations involving certain variables. Sometimes we refer to the

variables as the “unknowns” in the system. Thus a system of two linear equations

in two unknowns x and y may be written in the form

a1x C b1y D c1

a2x C b2y D c2.
(3)

By a solution of the system in (3) is meant a pair .x; y/ of values—normally real

numbers—that satisfy both equations simultaneously.

Example 1 The values x D 2, y D �1 constitute a solution of the system

2x � y D 5

x C 2y D 0
(4)

because both 2.2/ � .�1/ D 5 and .2/C 2.�1/ D 0. The values x D 3, y D 1 satisfy the first

equation in (4) but do not satisfy the second. Hence .3; 1/ is not a solution of the system in

(4).

Example 2 The linear system

x C y D 1

2x C 2y D 3
(5)

has no solution at all, because if x C y D 1, then 2x C 2y D 2, and so 2x C 2y 6D 3. Thus,

two numbers that satisfy the first equation in (5) cannot simultaneously satisfy the second.

A linear system is said to be consistent if it has at least one solution and

inconsistent if it has none. Thus the system in Example 1 is consistent, whereas the

system in Example 2 is inconsistent.

Three Possibilities

Given a system of linear equations, we ask: What is the set of all solutions of the

system? In brief, what is the solution set of the system?

In the case of a linear system

a1x C b1y D c1

a2x C b2y D c2

(6)

of two equations in two unknowns, we can use our knowledge of elementary geom-

etry to sort out the possibilities for its solution set. If neither equation in (6) has both

left-hand coefficients zero, then their graphs in the xy-plane are two straight lines

L1 and L2. Then exactly one of the following situations must hold.

� The lines L1 and L2 intersect at a single point (as in Figure 3.1.1).

� The lines L1 and L2 are parallel nonintersecting lines (as in Figure 3.1.2).

� The lines L1 and L2 coincide—they actually are the same line (see Figure

3.1.3).

A pair .x; y/ of real numbers constitutes a solution of the system in (6) if and

only if the point .x; y/ in the coordinate plane lies on both the two lines L1 and

L2. In the case shown in Figure 3.1.1, there is exactly one such point. In the case

shown in Figure 3.1.2, there is no such point, and in the case in Figure 3.1.3, there

are infinitely many such points—every point on the line L1 D L2 is such a point.

We therefore see that there are just three possibilities for a linear system of two

equations in two unknowns: It has either
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L2

L1

x

y

FIGURE 3.1.1. Two
intersecting lines: a unique
solution.

L1

L2

x

y

FIGURE 3.1.2. Two parallel
lines: no solution.

L1 = L2

x

y

FIGURE 3.1.3. Two coincident
lines: infinitely many solutions.

� exactly one solution;

� no solution; or

� infinitely many solutions.

It is a fundamental fact of linear algebra (which we will establish in Section

3.3) that, however many equations and variables may appear in a linear system,

precisely these same three possibilities occur: A system of m linear equations in n

variables either has a unique solution (that is, exactly one solution), or it has no

solution, or it has infinitely many solutions. Thus it is impossible, for instance, for

a linear system to have exactly 2 solutions or to have exactly 17 solutions.

The Method of Elimination

The next three examples illustrate how we can use the elementary method of elim-

ination to solve a system of two equations in two unknowns. To solve a system

means to determine what its solution set is. The basic idea of the method is this:

� First, we add an appropriate constant multiple of the first equation to the sec-

ond equation. The idea is to choose the constant in such a way as to eliminate

the variable x from the second equation.

� Next, the new second equation contains only the variable y, so we readily

solve it for the value of y.

� Finally, we determine the value of x by “back substitution” of this value of y

in the first equation.

Examples 3 through 5 illustrate this method in the three cases corresponding to

Figures 3.1.1 through 3.1.3 (respectively).

Example 3 In order to solve the system

5x C 3y D 1

x � 2y D 8,
(7)

we first interchange the two equations:

x � 2y D 8

5x C 3y D 1.

Then we multiply the first equation by �5 and add the resulting terms to the second (without
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changing the first equation). The result is

x � 2y D 8

13y D �39.
(8)

Now the second equation immediately yields the value y D �3, and back substitution of this

value in the first equation yields

x D 2y C 8 D 2.�3/C 8 D 2:

Taking it as obvious (for the moment) that the systems in (7) and (8) have the same solution

set, we conclude that the original system in (7) has the unique solution x D 2, y D �3.

Example 4 To solve the system

2x C 6y D 4

3x C 9y D 11,
(9)

we first multiply the first equation by 1

2
and get

x C 3y D 2

3x C 9y D 11.

We next multiply the first equation by �3 and add each term to the corresponding term in the

second equation. The result is

x C 3y D 2

0 D 5.
(10)

What, however, are we to make of the new second equation, 0 D 5? The system in (10)

actually is

x C 3y D 2

0x C 0y D 5.

Because 0 is simply not equal to 5, there are no values of x and y that satisfy the second equa-

tion. Hence there certainly can be no values that satisfy both simultaneously. We conclude

that the original system in (9) has no solution.

Example 5 If, instead of the system in (9), we had begun in Example 4 with the system

2x C 6y D 4

3x C 9y D 6
(11)

and performed the same operations, we would have obtained, instead of (10), the system

x C 3y D 2

0 D 0.
(12)

Here, 0 D 0 is shorthand for the equation

0x C 0y D 0;

which is satisfied by all values of x and y. In terms of restrictions or conditions on x and

y, one of our original two equations has in effect disappeared, leaving us with the single

equation

x C 3y D 2: (13)

Of course this is hardly surprising, because each equation in (11) is a multiple of the one

in (13); in some sense we really had only one equation to begin with. At any rate, we can

substitute any value of y we please in (13) and then solve for x. Thus our system in (11)

has infinitely many solutions. To describe them explicitly, let us write y D t , where the

parameter t is a new independent variable that we will use to generate solution pairs .x; y/.

Then Equation (13) yields x D 2 � 3t , so our infinite solution set of the system in (11) may

be described as follows:

x D 2 � 3t; y D t

as the arbitrary parameter t ranges over the set of all real numbers. For instance, t D 2 yields

the solution .�4; 2/, and t D �3 yields the solution .11;�3/.
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Remark There is some latitude in how we parameterize the solutions of a system having

infinitely many solutions, including the names of any parameters we introduce for this pur-

pose. For example, we could parameterize the solutions of the system in (11) alternatively by

writing x D s in (13), thereby getting the different parameterization

x D s; y D 1

3
.2 � s/

that yields the same solutions. For instance, the parameter values s D �4 and s D 11 here

give the previously noted solutions .�4; 2/ and .11;�3/ of the original system in (13).

Comment These three examples illustrate the basic features of the method of elimination,

which involves “transforming” a given linear system by means of a sequence of successive

steps that do not change the solutions of the system. Each of these steps consists of perform-

ing one of the following three elementary operations:

1. Multiply one equation by a nonzero constant.

2. Interchange two equations.

3. Add a constant multiple of (the terms of) one equation to (corresponding terms of)

another equation.

In subsequent sections of this chapter we discuss the systematic use of these el-

ementary operations to eliminate variables successively in any linear system, what-

ever the number of equations and variables. In this way we will see that every linear

system corresponds to precisely one of the three situations illustrated in Examples

3–5. That is, either

� we discover (as in Example 3) a unique solution of the system; or

� we eventually arrive at an inconsistent equation (as in Example 4), so that the

system has no solution; or

� we find that the original system has infinitely many solutions.

Three Equations in Three Unknowns

In the case of a system of three linear equations in three variables x, y, and ´, we

may proceed as follows: Assuming that the first equation involves x, use the first

equation to eliminate x from the second and third equations by adding appropriate

multiples of the first equation. Then, assuming that the new second equation in-

volves y, use the new second equation to eliminate y from the new third equation.

Solve the new third equation for ´, back-substitute in the second equation to de-

termine y, and, finally, back-substitute y and ´ in the first equation to find x. The

following two examples illustrate this procedure.

Example 6 Solve the linear system

x C 2y C ´ D 4

3x C 8y C 7´ D 20

2x C 7y C 9´ D 23.

(14)

Solution First, we add �3 times the first equation to the second equation; the result is

x C 2y C ´ D 4

2y C 4´ D 8

2x C 7y C 9´ D 23.

Then addition of �2 times the first equation to the third equation yields

x C 2y C ´ D 4

2y C 4´ D 8

3y C 7´ D 15.
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We have now eliminated x from the second and third equations. To simplify the process of

eliminating y from the third equation, we multiply the second equation by 1

2
, to obtain

x C 2y C ´ D 4

y C 2´ D 4

3y C 7´ D 15.

Finally, addition of �3 times the second equation to the third equation gives

x C 2y C ´ D 4

y C 2´ D 4

´ D 3.

(15)

This system has a triangular form that makes its solution easy. By back substitution of ´D 3

in the second equation in (15), we find that

y D 4 � 2´ D 4 � 2.3/ D �2I

then the first equation yields

x D 4 � 2y � ´

D 4 � 2.�2/ � .3/ D 5:

Thus our original system in (14) has the unique solution x D 5, y D �2, ´ D 3.

Comment The steps by which we transformed (14) into (15) show that every solution of

the system in (14) is a solution of the system in (15). But these steps can be reversed to

show similarly that every solution of the system in (15) is also a solution of the system in

(14). Thus the two systems are equivalent in the sense that they have the same solution set.

The computation at the end of Example 6 shows that (15) has the unique solution .x; y; ´/ D

.5;�2; 3/, and it follows that this also is the unique solution of the original system in (14).

Example 7 Solve the system

3x � 8y C 10´ D 22

x � 3y C 2´ D 5

2x � 9y � 8´ D �11.

(16)

Solution In order to avoid fractions in the elimination of x, we first interchange the first two equations

to get

x � 3y C 2´ D 5

3x � 8y C 10´ D 22

2x � 9y � 8´ D �11.

Addition of �3 times the first equation to the second gives

x � 3y C 2´ D 5

y C 4´ D 7

2x � 9y � 8´ D �11,

and then addition of �2 times the first equation to the third equation gives

x � 3y C 2´ D 5

y C 4´ D 7

� 3y � 12´ D �21.

Finally, addition of 3 times the second equation to the third equation yields

x � 3y C 2´ D 5

y C 4´ D 7

0 D 0.

(17)
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Because the third equation has disappeared, we can choose ´ D t arbitrarily and then solve

for x and y:

y D 7 � 4´ D 7 � 4t;

x D 5C 3y � 2´

D 5C 3.7 � 4t/ � 2t D 26 � 14t:

Thus our original system in (16) has infinitely many solutions. Moreover, one convenient

way of describing them is this:

x D 26 � 14t; y D 7 � 4t; ´ D t: (18)

The arbitrary parameter t can take on all real number values, and in so doing generates

all the (infinitely many) solutions of the original system in (16). Figure 3.1.4 shows the three

planes corresponding to the three equations in (16). These planes intersect in a straight line

that is parameterized by the equations in (18).

z

y

x

FIGURE 3.1.4. The three planes of
Example 7.

A Differential Equations Application

In Chapter 1 we saw that a general solution of a first-order differential equation

involves an arbitrary constant that must be determined in order to satisfy a given

initial condition. The next example illustrates the fact that a general solution of

a second-order differential equation typically involves two arbitrary constants. An

initial value problem for such a differential equation ordinarily involves two ini-

tial conditions, whose imposition leads to a system of two equations with the two

arbitrary constants as unknowns.

Example 8 If A and B are constants and

y.x/ D Ae3x
C Be�3x ; (19)

then differentiation yields

y0.x/ D 3Ae3x
� 3Be�3x (20)

and

y00.x/ D 9Ae3x
C 9Be�3x

D 9y.x/:

Thus the function y.x/ defined by (19) satisfies the second-order differential equation

y00
� 9y D 0: (21)

Now, suppose that we want to solve the initial value problem consisting of this equation and

the two initial conditions

y.0/ D 7; y0.0/ D 9: (22)

Then substitution of x D 0 in (19) and (20) yields the linear system

A C B D 7

3A � 3B D 9

that we readily solve for A D 5, B D 2. It follows that the particular solution

y.x/ D 5e3x
C 2e�3x

satisfies both the differential equation (21) and the initial conditions in (22).

In Chapter 5 we will study higher-order differential equations and initial value

problems in detail, after developing the necessary methods of linear algebra in the

intervening chapters.
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3.1 Problems
In each of Problems 1–22, use the method of elimination to

determine whether the given linear system is consistent or in-

consistent. For each consistent system, find the solution if it is

unique; otherwise, describe the infinite solution set in terms of

an arbitrary parameter t (as in Examples 5 and 7).

1. x C 3y D 9

2x C y D 8

2. 3x C 2y D 9

x � y D 8

3. 2x C 3y D 1

3x C 5y D 3

4. 5x � 6y D 1

6x � 5y D 10

5. x C 2y D 4

2x C 4y D 9

6. 4x � 2y D 4

6x � 3y D 7

7. x � 4y D �10

�2x C 8y D 20

8. 3x � 6y D 12

2x � 4y D 8

9. x C 5y C ´ D 2

2x C y � 2´ D 1

x C 7y C 2´ D 3

10. x C 3y C 2´ D 2

2x C 7y C 7´ D �1

2x C 5y C 2´ D 7

11. 2x C 7y C 3´ D 11

x C 3y C 2´ D 2

3x C 7y C 9´ D �12

12. 3x C 5y � ´ D 13

2x C 7y C ´ D 28

x C 7y C 2´ D 32

13. 3x C 9y C 7´ D 0

2x C 7y C 4´ D 0

2x C 6y C 5´ D 0

14. 4x C 9y C 12´ D �1

3x C y C 16´ D �46

2x C 7y C 3´ D 19

15. x C 3y C 2´ D 5

x � y C 3´ D 3

3x C y C 8´ D 10

16. x � 3y C 2´ D 6

x C 4y � ´ D 4

5x C 6y C ´ D 20

17. 2x � y C 4´ D 7

3x C 2y � 2´ D 3

5x C y C 2´ D 15

18. x C 5y C 6´ D 3

5x C 2y � 10´ D 1

8x C 17y C 8´ D 5

19. x � 2y C ´ D 2

2x � y � 4´ D 13

x � y � ´ D 5

20. 2x C 3y C 7´ D 15

x C 4y C ´ D 20

x C 2y C 3´ D 10

21. x C y � ´ D 5

3x C y C 3´ D 11

4x C y C 5´ D 14

22. 4x � 2y C 6´ D 0

x � y � ´ D 0

2x � y C 3´ D 0

In each of Problems 23–30, a second-order differential equa-

tion and its general solution y.x/ are given. Determine the

constants A and B so as to find a solution of the differen-

tial equation that satisfies the given initial conditions involving

y.0/ and y0.0/.

23. y00 C 4y D 0, y.x/ D A cos 2x C B sin 2x,

y.0/ D 3, y0.0/ D 8

24. y00 � 9y D 0, y.x/ D A cosh 3x C B sinh 3x,

y.0/ D 5, y0.0/ D 12

25. y00 � 25y D 0, y.x/ D Ae5x C Be�5x ,

y.0/ D 10, y0.0/ D 20

26. y00 � 121y D 0, y.x/ D Ae11x C Be�11x ,

y.0/ D 44, y0.0/ D 22

27. y00 C 2y0 � 15y D 0, y.x/ D Ae3x C Be�5x ,

y.0/ D 40, y0.0/ D �16

28. y00 � 10y0 C 21y D 0, y.x/ D Ae3x C Be7x ,

y.0/ D 15, y0.0/ D 13

29. 6y00 � 5y0 C y D 0, y.x/ D Aex=2 C Bex=3,

y.0/ D 7, y0.0/ D 11

30. 15y00 C y0 � 28y D 0, y.x/ D Ae4x=3 C Be�7x=5,

y.0/ D 41, y0.0/ D 164

31. A system of the form

a1x C b1y D 0

a2x C b2y D 0,

in which the constants on the right-hand side are all zero,

is said to be homogeneous. Explain by geometric rea-

soning why such a system has either a unique solution or

infinitely many solutions. In the former case, what is the

unique solution?

32. Consider the system

a1x C b1y C c1´ D d1

a2x C b2y C c2´ D d2

of two equations in three unknowns.

(a) Use the fact that the graph of each such equation is a

plane in xyz-space to explain why such a system al-

ways has either no solution or infinitely many solu-

tions.

(b) Explain why the system must have infinitely many so-

lutions if d1 D 0 D d2.

33. The linear system

a1x C b1y D c1

a2x C b2y D c2

a3x C b3y D c3

of three equations in two unknowns represents three lines

L1, L2, and L3 in the xy-plane. Figure 3.1.5 shows six

possible configurations of these three lines. In each case

describe the solution set of the system.

34. Consider the linear system

a1x C b1y C c1´ D d1

a2x C b2y C c2´ D d2

a3x C b3y C c3´ D d3

of three equations in three unknowns to represent three

planes P1, P2, and P3 in xyz-space. Describe the solution

set of the system in each of the following cases.

(a) The three planes are parallel and distinct.

(b) The three planes coincide—P1 D P2 D P3.

(c) P1 and P2 coincide and are parallel to P3.

(d) P1 and P2 intersect in a line L that is parallel to P3.

(e) P1 and P2 intersect in a line L that lies in P3.

(f) P1 and P2 intersect in a line L that intersects P3 in a

single point.
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L3

(d)

L2

L1

(f)

L1 = L2 = L3

(e)

L3

(a)

L1

L2

L2

L3

L3

(b)

L3

L1

(c)

L1

L2

L1 = L2

FIGURE 3.1.5. Three lines in the plane (Problem 33).

3.2 Matrices and Gaussian Elimination

In Example 6 of Section 3.1 we applied the method of elimination to solve the linear

system

1x C 2y C 1´ D 4

3x C 8y C 7´ D 20

2x C 7y C 9´ D 23.

(1)

There we employed elementary operations to transform this system into the equiv-

alent system

1x C 2y C 1´ D 4

0x C 1y C 2´ D 4

0x C 0y C 1´ D 3,

(2)

which we found easy to solve by back substitution. Here we have printed in color the

coefficients and constants (including the 0s and 1s that would normally be omitted)

because everything else—the symbols x, y, and ´ for the variables and the C and

D signs—is excess baggage that means only extra writing, for we can keep track of

these symbols mentally. In effect, in Example 6 we used an appropriate sequence

of operations to transform the array

2

4

1 2 1 4

3 8 7 20

2 7 9 23

3

5 (3)

of coefficients and constants in (1) into the array

2

4

1 2 1 4

0 1 2 4

0 0 1 3

3

5 (4)

of constants and coefficients in (2).
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Rectangular arrays of numbers like those in (3) and (4) are called matrices.

Thus, a matrix is simply a rectangular array of numbers, which are called the en-

tries or elements of the matrix. The size, or shape, of a matrix is specified by

telling how many horizontal rows and vertical columns it has. Each matrix in (3)

and (4) has three rows and four columns; therefore, each is a 3 � 4 (read “three by

four”) matrix. We always specify first the number of rows and then the number of

columns.

Example 1 The matrices
�

3 �7

�2 5

�

�

3 0 �1 5
�

2

4

2

0

�3

3

5

have sizes 2 � 2, 1 � 4, and 3 � 1, respectively.

Coefficient Matrices

A general system of m linear equations in the n variables x1; x2; : : : ; xn may be

written in the form

a11x1 C a12x2 C a13x3 C � � � C a1nxn D b1

a21x1 C a22x2 C a23x3 C � � � C a2nxn D b2

:::

am1x1 C am2x2 C am3x3 C � � � C amnxn D bm.

(5)

Observe that aij denotes the (constant) coefficient in the i th equation of the j th vari-

able xj and that bi denotes the constant on the right-hand side in the i th equation.

Thus the first subscript i refers to the equation and the second subscript j to the

variable. For instance, a32 denotes the coefficient of x2 in the 3rd equation. This

scheme of systematic double subscripts enables us to specify readily the location of

each coefficient in a system with many equations and variables. It also helps us get

rid of the excess baggage in (5) by focusing our attention on the coefficients.

The coefficient matrix of the linear system in (5) is the m � n matrix

A D

2

6

6

6

4

a11 a12 a13 � � � a1n

a21 a22 a23 � � � a2n

:::
:::

:::
: : :

:::

am1 am2 am3 � � � amn

3

7

7

7

5

: (6)

We will use boldface capital letters to denote matrices and lowercase letters to de-

note numbers. When we want to refer more briefly to the matrix A and its entries,

we can write

A D
�

aij

�

D

2

6

6

4

:::

� � � � � � aij � � � � � �

:::

3

7

7

5

(i th row)

(j th column)

(7)

The first subscript i specifies the row and the second subscript j the column of A in

which the element aij appears:

First Second

subscript subscript

Row Column
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Although double subscripts may seem tedious when first encountered, their

usefulness should not be underestimated. For instance, they are consistent with the

notation used in most programming languages. Many practical applications lead

to linear systems with hundreds or even thousands of variables and equations. In

a typical computer system, the coefficient matrix A of such a system would be

represented by a two-dimensional array in which A.i; j / denotes aij . With this

approach, the computer can store a 100� 100 matrix in the same way that it stores a

3 � 3 matrix.

The matrices in (3) and (4) include not only the coefficients but also the con-

stants on the right-hand sides in the corresponding linear systems in (1) and (2). Let

us write

b D

2

6

6

6

4

b1

b2

:::

bm

3

7

7

7

5

(8)

for the column of constants in the general system in (5). An m � 1 matrix—that is,

one with a single column—is often called a (column) vector and is denoted by a

boldface letter. When we adjoin the constant vector b to the coefficient matrix A (as

a final column), we get the matrix

�

A b
�

D

2

6

6

6

4

a11 a12 � � � a1n b1

a21 a22 � � � a2n b2

:::
:::

: : :
:::

:::

am1 am2 � � � amn bm

3

7

7

7

5

: (9)

This m � .nC 1/ matrix is called the augmented coefficient matrix, or simply the

augmented matrix, of the m � n system in (5).

Although it takes a good deal of notation to describe the augmented matrix

of a general linear system, it is a very simple matter to write the augmented matrix

of a particular system. If the system is written in chalk on a blackboard with the

variables in the same order in each equation, we merely erase all the xj ’s and the

plus and equal signs (retaining a minus sign for each negative coefficient) and insert

a zero in each spot where a variable is missing in an equation.

Example 2 The augmented coefficient matrix of the system

2x1 C 3x2 � 7x3 C 4x4 D 6

x2 C 3x3 � 5x4 D 0

�x1 C 2x2 � 9x4 D 17

of three equations in four variables is the 3 � 5 matrix

2

4

2 3 �7 4 6

0 1 3 �5 0

�1 2 0 �9 17

3

5 :

Elementary Row Operations

In Section 3.1 we described the three elementary operations that are used in the

method of elimination. To each of these corresponds an elementary row operation

on the augmented matrix of the system. For instance, when we interchange two

equations in the system, we interchange the corresponding two rows of its aug-

mented coefficient matrix.



3.2 Matrices and Gaussian Elimination 149

DEFINITION Elementary Row Operations

The following are the three types of elementary row operations on the matrix

A:

1. Multiply any (single) row of A by a nonzero constant.

2. Interchange two rows of A.

3. Add a constant multiple of one row of A to another row.

Figure 3.2.1 shows notation that we use to describe elementary row operations

briefly. For instance,

�

1 2

3 4

�

.3/R1CR2
�������!

�

1 2

6 10

�

(10)

shows the result of adding 3 times row 1 to row 2. Note that, when we perform the

operation .c/Rp CRq on a matrix—that is, when we add c times row p to row q—

row p itself remains unchanged.

Type Row Operation Notation

1 Multiply row p by c cRp

2 Interchange row p and row q SWAP.Rp ; Rq/

3 Add c times row p to row q .c/Rp CRq

FIGURE 3.2.1. Notation for elementary row operations.

Example 3 To solve the system

x1 C 2x2 C x3 D 4

3x1 C 8x2 C 7x3 D 20

2x1 C 7x2 C 9x3 D 23,

(11)

whose augmented coefficient matrix is exhibited in (3), we carry out the following sequence

of elementary row operations, corresponding to the steps in the solution of Example 6 in

Section 3.1:
2

4

1 2 1 4

3 8 7 20

2 7 9 23

3

5 (12)

.�3/R1 CR2

��������������!

2

4

1 2 1 4

0 2 4 8

2 7 9 23

3

5

.�2/R1 CR3

��������������!

2

4

1 2 1 4

0 2 4 8

0 3 7 15

3

5

�

1

2

�

R2

��������������!

2

4

1 2 1 4

0 1 2 4

0 3 7 15

3

5

.�3/R2 CR3

��������������!

2

4

1 2 1 4

0 1 2 4

0 0 1 3

3

5 : (13)



150 Chapter 3 Linear Systems and Matrices

The final matrix here is the augmented coefficient matrix of the system

x1 C 2x2 C x3 D 4

x2 C 2x3 D 4

x3 D 3

: (14)

whose unique solution (readily found by back substitution) is x1 D 5, x2 D �2, x3 D 3.

It is not quite self-evident that a sequence of elementary row operations pro-

duces a linear system having the same solution set as the original system. To state

the pertinent result concisely, we need the following definition.

DEFINITION Row-Equivalent Matrices

Two matrices are called row equivalent if one can be obtained from the other by

a (finite) sequence of elementary row operations.

Thus the two matrices in (10) are row equivalent, as are the two matrices in

(12) and (13). In Problem 29 we ask you to show that if B can be obtained from A

by elementary row operations, then A can be obtained from B by elementary row

operations. This follows from the observation that row operations are “reversible.”

In Problem 30 we suggest a proof of the following theorem.

THEOREM 1 Equivalent Systems and Equivalent Matrices

If the augmented coefficient matrices of two linear systems are row equivalent,

then the two systems have the same solution set.

Thus, the linear systems in (11) and (14) have the same solution set, because

their augmented matrices in (12) and (13) are row equivalent.

Echelon Matrices

Up to this point we have been somewhat informal in our description of the method

of elimination. Its objective is to transform a given linear system, by elementary

row operations, into one for which back substitution leads easily and routinely to

a solution. The following definition tells what should be the appearance of the

augmented coefficient matrix of the transformed system.

DEFINITION Echelon Matrix

The matrix E is called an echelon matrix provided it has the following two

properties:

1. Every row of E that consists entirely of zeros (if any) lies beneath every

row that contains a nonzero element.

2. In each row of E that contains a nonzero element, the first nonzero element

lies strictly to the right of the first nonzero element in the preceding row (if

there is a preceding row).

Echelon matrices are sometimes called row-echelon matrices. Property 1 says

that if E has any all-zero rows, then they are grouped together at the bottom of

the matrix. The first (from the left) nonzero element in each of the other rows is

called its leading entry. Property 2 says that the leading entries form a “descending
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staircase” pattern from upper left to lower right, as in the following echelon matrix.

E D

2

6

6

6

6

4

2 �1 0 4 7

0 1 2 0 �5

0 0 0 3 0

0 0 0 0 0

3

7

7

7

7

5

Here we have highlighted the leading entries and indicated the descending staircase

pattern.

The following list exhibits all possibilities for the form of a 3 � 3 echelon

matrix, with asterisks denoting the (nonzero) leading entries; a # denotes an element

that may be either zero or nonzero.

2

4

� # #

0 � #

0 0 �

3

5

2

4

0 0 0

0 0 0

0 0 0

3

5

2

4

� # #

0 � #

0 0 0

3

5

2

4

� # #

0 0 �

0 0 0

3

5

2

4

0 � #

0 0 �

0 0 0

3

5

2

4

� # #

0 0 0

0 0 0

3

5

2

4

0 � #

0 0 0

0 0 0

3

5

2

4

0 0 �

0 0 0

0 0 0

3

5

It follows from Properties 1 and 2 that the elements beneath any leading entry

in the same column are all zero. The matrices

A D

2

4

1 3 �2

0 0 0

0 1 5

3

5 and B D

2

4

0 1 5

1 3 �2

0 0 0

3

5

are not echelon matrices because A does not have Property 1 and B does not have

Property 2.

Suppose that a linear system is in echelon form—its augmented matrix is an

echelon matrix. Then those variables that correspond to columns containing leading

entries are called leading variables; all the other variables are called free variables.

The following algorithm describes the process of back substitution to solve such a

system.

ALGORITHM Back Substitution

To solve a consistent linear system in echelon form by back substitution, carry

out the following steps.

1. Set each free variable equal to an arbitrary parameter (a different parameter

for each free variable).

2. Solve the final (nonzero) equation for its leading variable.

3. Substitute the result in the next-to-last equation and then solve for its lead-

ing variable.

4. Continuing in this fashion, work upward through the system of equations

until all variables have been determined.
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Example 4 The augmented coefficient matrix of the system

x1 � 2x2 C 3x3 C 2x4 C x5 D 10

x3 C 2x5 D �3

x4 � 4x5 D 7

(15)

is the echelon matrix
2

4

1 �2 3 2 1 10

0 0 1 0 2 �3

0 0 0 1 �4 7

3

5 : (16)

The leading entries are in the first, third, and fourth columns. Hence x1, x3, and x4 are

the leading variables and x2 and x5 are the free variables. To solve the system by back

substitution, we first write

x2 D s; x5 D t; (17a)

where s and t are arbitrary parameters. Then the third equation in (15) gives

x4 D 7C 4x5 D 7C 4t I (17b)

the second equation gives

x3 D �3 � 2x5 D �3 � 2t I (17c)

finally, the first equation in (15) yields

x1 D 10C 2x2 � 3x3 � 2x4 � x5

D 10C 2s � 3.�3 � 2t/ � 2.7C 4t/ � t:

Therefore,

x1 D 5C 2s � 3t: (17d)

Thus the system in (15) has an infinite solution set consisting of all .x1; x2; x3; x4; x5/ given

in terms of the two parameters s and t as follows:

x1 D 5C 2s � 3t

x2 D s

x3 D �3 � 2t

x4 D 7C 4t

x5 D t:

For instance, with s D 2 and t D 1 we get the solution x1 D 6, x2 D 2, x3 D �5, x4 D 11,

and x5 D 1.

Gaussian Elimination

Because we can use back substitution to solve any linear system already in echelon

form, it remains only to establish that we can transform any matrix (using elemen-

tary row operations) into an echelon matrix. The procedure that we have already

illustrated in several examples is known as Gaussian elimination. The following

systematic description of the procedure makes it clear that it succeeds with any

given matrix A.
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ALGORITHM Gaussian Elimination

1. Locate the first column of A that contains a nonzero element.

2. If the first (top) entry in this column is zero, interchange the first row of A

with a row in which the corresponding entry is nonzero.

3. Now the first entry in our column is nonzero. Replace the entries below it

in the same column with zeros by adding appropriate multiples of the first

row of A to lower rows.

4. After Steps 1–3, the matrix looks like the matrix below, although there may

be several initial columns of zeros or even none at all. Perform Steps 1–3

on the indicated lower right matrix A1.

5. Repeat this cycle of steps until an echelon matrix is obtained.

A D

2

6

6

6

6

6

6

6

4

0 � # # � � � #

0 0

0 0
A1:::

:::

0 0

3

7

7

7

7

7

7

7

5

(17)

In brief, we work on the matrix A one column at a time, from left to right. In

each column containing a leading entry (perhaps after a row interchange), we “clear

out” the nonzero elements below it and then move on to the next column.

Example 5 To solve the system

x1 � 2x2 C 3x3 C 2x4 C x5 D 10

2x1 � 4x2 C 8x3 C 3x4 C 10x5 D 7

3x1 � 6x2 C 10x3 C 6x4 C 5x5 D 27,

(18)

we reduce its augmented coefficient matrix to echelon form as follows.

2

4

1 �2 3 2 1 10

2 �4 8 3 10 7

3 �6 10 6 5 27

3

5

.�2/R1 CR2

��������������!

2

4

1 �2 3 2 1 10

0 0 2 �1 8 �13

3 �6 10 6 5 27

3

5

.�3/R1 CR3

��������������!

2

4

1 �2 3 2 1 10

0 0 2 �1 8 �13

0 0 1 0 2 �3

3

5

SWAP.R2; R3/
��������������!

2

4

1 �2 3 2 1 10

0 0 1 0 2 �3

0 0 2 �1 8 �13

3

5

.�2/R2 CR3

��������������!

2

4

1 �2 3 2 1 10

0 0 1 0 2 �3

0 0 0 �1 4 �7

3

5

.�1/R3

��������������!

2

4

1 �2 3 2 1 10

0 0 1 0 2 �3

0 0 0 1 �4 7

3

5

Our final result is the echelon matrix in (16), so by Eqs. (17a)–(17d) in Example 4, the

infinite solution set of the system in (18) is described in terms of arbitrary parameters s and t
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as follows:

x1 D 5C 2s � 3t

x2 D s

x3 D �3 � 2t

x4 D 7C 4t

x5 D t:

(19)

Thus, the substitution of any two specific values for s and t in (19) yields a particular solution

.x1; x2; x3; x4; x5/ of the system, and each of the system’s infinitely many different solutions

is the result of some such substitution.

Examples 3 and 5 illustrate the ways in which Gaussian elimination can result

in either a unique solution or infinitely many solutions. On the other hand, if the

reduction of the augmented matrix to echelon form leads to a row of the form

0 0 � � � 0 0 � ;

where the asterisk denotes a nonzero entry in the last column, then we have an

inconsistent equation,

0x1 C 0x2 C � � � C 0xn D �;

and therefore the system has no solution.

Remark We use algorithms such as the back substitution and Gaussian elimination algo-

rithms of this section to outline the basic computational procedures of linear algebra. In

modern numerical work, these procedures often are implemented on a computer. For in-

stance, linear systems of more than four equations are usually solved in practice by using a

computer to carry out the process of Gaussian elimination.

3.2 Problems
The linear systems in Problems 1–10 are in echelon form.

Solve each by back substitution.

1. x1 C x2 C 2x3 D 5

x2 C 3x3 D 6

x3 D 2

2. 2x1 � 5x2 C x3 D 2

3x2 � 2x3 D 9

x3 D �3

3. x1 � 3x2 C 4x3 D 7

x2 � 5x3 D 2

4. x1 � 5x2 C 2x3 D 10

x2 � 7x3 D 5

5. x1 C x2 � 2x3 C x4 D 9

x2 � x3 C 2x4 D 1

x3 � 3x4 D 5

6. x1 � 2x2 C 5x3 � 3x4 D 7

x2 � 3x3 C 2x4 D 3

x4 D �4

7. x1 C 2x2 C 4x3 � 5x4 D 17

x2 � 2x3 C 7x4 D 7

8. x1 � 10x2 C 3x3 � 13x4 D 5

x3 C 3x4 D 10

9. 2x1 C x2 C x3 C x4 D 6

3x2 � x3 � 2x4 D 2

3x3 C 4x4 D 9

x4 D 6

10. x1 � 5x2 C 2x3 � 7x4 C 11x5 D 0

x2 � 13x3 C 3x4 � 7x5 D 0

x4 � 5x5 D 0

In Problems 11–22, use elementary row operations to trans-

form each augmented coefficient matrix to echelon form. Then

solve the system by back substitution.

11. 2x1 C 8x2 C 3x3 D 2

x1 C 3x2 C 2x3 D 5

2x1 C 7x2 C 4x3 D 8

12. 3x1 C x2 � 3x3 D 6

2x1 C 7x2 C x3 D �9

2x1 C 5x2 D �5

13. x1 C 3x2 C 3x3 D 13

2x1 C 5x2 C 4x3 D 23

2x1 C 7x2 C 8x3 D 29

14. 3x1 � 6x2 � 2x3 D 1

2x1 � 4x2 C x3 D 17

x1 � 2x2 � 2x3 D �9

15. 3x1 C x2 � 3x3 D �4

x1 C x2 C x3 D 1

5x1 C 6x2 C 8x3 D 8

16. 2x1 C 5x2 C 12x3 D 6

3x1 C x2 C 5x3 D 12

5x1 C 8x2 C 21x3 D 17

17. x1 � 4x2 � 3x3 � 3x4 D 4

2x1 � 6x2 � 5x3 � 5x4 D 5

3x1 � x2 � 4x3 � 5x4 D �7

18. 3x1 � 6x2 C x3 C 13x4 D 15

3x1 � 6x2 C 3x3 C 21x4 D 21

2x1 � 4x2 C 5x3 C 26x4 D 23
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19. 3x1 C x2 C x3 C 6x4 D 14

x1 � 2x2 C 5x3 � 5x4 D �7

4x1 C x2 C 2x3 C 7x4 D 17

20. 2x1 C 4x2 � x3 � 2x4 C 2x5 D 6

x1 C 3x2 C 2x3 � 7x4 C 3x5 D 9

5x1 C 8x2 � 7x3 C 6x4 C x5 D 4

21. x1 C x2 C x3 D 6

2x1 � 2x2 � 5x3 D �13

3x1 C x3 C x4 D 13

4x1 � 2x2 � 3x3 C x4 D 1

22. 4x1 � 2x2 � 3x3 C x4 D 3

2x1 � 2x2 � 5x3 D �10

4x1 C x2 C 2x3 C x4 D 17

3x1 C x3 C x4 D 12

In Problems 23–27, determine for what values of k each sys-

tem has (a) a unique solution; (b) no solution; (c) infinitely

many solutions.

23. 3x C 2y D 1

6x C 4y D k

24. 3x C 2y D 0

6x C ky D 0

25. 3x C 2y D 11

6x C ky D 21

26. 3x C 2y D 1

7x C 5y D k

27. x C 2y C ´ D 3

2x � y � 3´ D 5

4x C 3y � ´ D k

28. Under what condition on the constants a, b, and c does the

system

2x � y C 3´ D a

x C 2y C ´ D b

7x C 4y C 9´ D c

have a unique solution? No solution? Infinitely many so-

lutions?

29. This problem deals with the reversibility of elementary

row operations.

(a) If the elementary row operation cRp changes the ma-

trix A to the matrix B, show that .1=c/Rp changes B

to A.

(b) If SWAP.Rp ; Rq/ changes A to B, show that

SWAP.Rp ; Rq/ also changes B to A.

(c) If cRp CRq changes A to B, show that .�c/Rp CRq

changes B to A.

(d) Conclude that if A can be transformed into B by a fi-

nite sequence of elementary row operations, then B

can similarly be transformed into A.

30. This problem outlines a proof that two linear systems LS1

and LS2 are equivalent (that is, have the same solution set)

if their augmented coefficient matrices A1 and A2 are row

equivalent.

(a) If a single elementary row operation transforms A1 to

A2, show directly—considering separately the three

cases—that every solution of LS1 is also a solution of

LS2.

(b) Explain why it now follows from Problem 29 that ev-

ery solution of either system is also a solution of the

other system; thus the two systems have the same so-

lution set.

Go to goo.gl/9szcxW to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

3.2 Application Automated Row Reduction

Computer algebra systems are often used to ease the labor of matrix computations,

including elementary row operations. The 3 � 4 augmented coefficient matrix of

Example 3 can be entered with the Maple command

with(linalg):

A := array( [[1, 2, 1, 4],

[3, 8, 7, 20],

[2, 7, 9, 23]] );

or the Mathematica command

A = {{1, 2, 1, 4},

{3, 8, 7, 20},

{2, 7, 9, 23}}

or the MATLAB command

A = [1 2 1 4

3 8 7 20

2 7 9 23]

The Maple linalg package has built-in elementary row operations that can

be used to carry out the reduction of A exhibited in Example 3, as follows:



156 Chapter 3 Linear Systems and Matrices

A := addrow(A,1,2,-3); # (-3)R1 + R2

A := addrow(A,1,3,-2); # (-2)R1 + R3

A := mulrow(A,2,1/2); # (1/2)R2

A := addrow(A,2,3,-3); # (-3)R2 + R3

The inserted remarks, which follow the notation of Fig. 3.2.1, should make clear the

structure of these row operations in Maple.

In Mathematica the i th row of the matrix A is denoted by A[[i]], and we can

operate directly on rows to carry out the reduction of Example 3, as follows:

A[[2]] = (-3)A[[1]] + A[[2]]; (* (-3)R1 + R2 *)

A[[3]] = (-2)A[[1]] + A[[3]]; (* (-2)R1 + R3 *)

A[[2]] = (1/2)A[[2]]; (* (1/2)R2 *)

A[[3]] = (-3)A[[2]] + A[[3]]; (* (-3)R2 + R3 *)

In MATLAB, the i th row of the matrix A is denoted by A(i,:), and we can

operate similarly on rows to carry out the reduction to echelon form, as follows:

A(2,:) = (-3)*A(1,:) + A(2,:) % (-3)R1 + R2

A(3,:) = (-2)*A(1,:) + A(3,:) % (-2)R1 + R3

A(2,:) = (1/2)*A(2,:) % (1/2)R2

A(3,:) = (-3)*A(2,:) + A(3,:) % (-3)R2 + R3

You should verify (by using the computer algebra system of your choice) that

these operations yield the echelon matrix

2

4

1 2 1 4

0 1 2 4

0 0 1 3

3

5 :

If you wanted to interchange the 1st and 3rd rows—and proceed to solve the corre-

sponding system by “forward substitution” rather than back substitution—this could

be done as follows:

A := swaprow(A,1,3); (Maple)

A[[{1,3}]] = A[[{3,1}]]; (Mathematica)

A([1 3],:) = A([3 1],:) (MATLAB)

These “automated” elementary row operations can be used in Problems 11–22

of this section.

3.3 Reduced Row-Echelon Matrices

The result of the process of Gaussian elimination described in Section 3.2 is not

uniquely determined. That is, two different sequences of elementary row operations,

both starting with the same matrix A, may yield two different echelon matrices, each

of course still row equivalent to A. For instance, the two echelon matrices

2

4

1 2 3

0 4 5

0 0 6

3

5 and

2

4

1 1 1

0 2 2

0 0 3

3

5 (1)

are readily seen (as in Problem 31) to be row equivalent. Hence it is possible to

begin with an appropriate 3 � 3 matrix and derive by Gaussian elimination either of

the two different echelon matrices in (1).
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A full understanding of the structure of systems of linear equations depends

on the definition of a special class of echelon matrices, a class having the property

that every matrix in it is row equivalent to one and only one of these special ech-

elon matrices. Recall that an echelon matrix E is one that has the following two

properties:

1. Every all-zero row of E lies beneath every row that contains a nonzero ele-

ment.

2. The leading nonzero entry in each row lies to the right of the leading nonzero

entry in the preceding row.

A reduced echelon matrix (sometimes called a reduced row-echelon matrix) has two

additional properties.

DEFINITION Reduced Echelon Matrix

A reduced echelon matrix E is an echelon matrix that has—in addition to Prop-

erties 1 and 2—the following properties:

3. Each leading entry of E is 1.

4. Each leading entry of E is the only nonzero element in its column.

A matrix is said to be in reduced echelon form if it is a reduced echelon

matrix. Similarly, a linear system is in reduced echelon form if its augmented

coefficient matrix is a reduced echelon matrix.

Example 1 The following matrices are reduced echelon matrices.

�

1 0

0 1

�

2

4

1 0 �3 0

0 1 4 0

0 0 0 1

3

5

2

4

1 �2 0

0 0 1

0 0 0

3

5

2

4

1 0 �7

0 1 5

0 0 0

3

5

The echelon matrices

A D

2

4

1 0 0

0 2 0

0 0 0

3

5 and B D

2

4

1 0 2

0 1 0

0 0 1

3

5

are not in reduced echelon form, because A does not have Property 3 and B does not have

Property 4.

The process of transforming a matrix A into reduced echelon form is called

Gauss-Jordan elimination.

ALGORITHM Gauss-Jordan Elimination

1. First transform A into echelon form by Gaussian elimination.

2. Then divide each element of each nonzero row by its leading entry (to sat-

isfy Property 3).

3. Finally, use each leading 1 to “clear out” any remaining nonzero elements

in its column (to satisfy Property 4).

The reduced echelon form of a matrix is unique. The special class of matrices

that we mentioned at the beginning of this discussion is simply the class of all re-

duced echelon matrices. A proof of the following theorem may be found in Section
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4.2 of B. Noble and J. W. Daniel, Applied Linear Algebra, 3rd ed., Hoboken, NJ:

Pearson, 1988.

THEOREM 1 Unique Reduced Echelon Form

Every matrix is row equivalent to one and only one reduced echelon matrix.

Example 2 Find the reduced echelon form of the matrix

A D

2

4

1 2 1 4

3 8 7 20

2 7 9 23

3

5 :

Solution In Example 3 of Section 3.2 we found the echelon form

2

4

1 2 1 4

0 1 2 4

0 0 1 3

3

5 ;

which already satisfies Property 3. To clear out columns 2 and 3 (in order to satisfy Property

4), we continue the reduction as follows.

2

4

1 2 1 4

0 1 2 4

0 0 1 3

3

5

.�2/R2 CR1

��������������!

2

4

1 0 �3 �4

0 1 2 4

0 0 1 3

3

5

.�2/R3 CR2

��������������!

2

4

1 0 �3 �4

0 1 0 �2

0 0 1 3

3

5

.3/R3 C R1

��������������!

2

4

1 0 0 5

0 1 0 �2

0 0 1 3

3

5

For instance, we see immediately from this reduced echelon form that the linear system

x C 2y C ´ D 4

3x C 8y C 7´ D 20

2x C 7y C 9´ D 23

with augmented coefficient matrix A has the unique solution x D 5, y D �2, ´ D 3.

Example 3 To use Gauss-Jordan elimination to solve the linear system

x1 C x2 C x3 C x4 D 12

x1 C 2x2 C 5x4 D 17

3x1 C 2x2 C 4x3 � x4 D 31,

(2)

we transform its augmented coefficient matrix into reduced echelon form, as follows:

2

4

1 1 1 1 12

1 2 0 5 17

3 2 4 �1 31

3

5

.�1/R1 CR2

��������������!

2

4

1 1 1 1 12

0 1 �1 4 5

3 2 4 �1 31

3

5

.�3/R1 CR3

��������������!

2

4

1 1 1 1 12

0 1 �1 4 5

0 �1 1 �4 �5

3

5
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.1/R2 CR3

��������������!

2

4

1 1 1 1 12

0 1 �1 4 5

0 0 0 0 0

3

5

.�1/R2 CR1

��������������!

2

4

1 0 2 �3 7

0 1 �1 4 5

0 0 0 0 0

3

5 :

Thus the reduced echelon form of the system in (2) is

x1 C 2x3 � 3x4 D 7

x2 � x3 C 4x4 D 5

0 D 0.

(3)

The leading variables are x1 and x2; the free variables are x3 and x4. If we set

x3 D s and x4 D t;

then (3) immediately yields

x1 D 7 � 2s C 3t;

x2 D 5C s � 4t:

As a practical matter, Gauss-Jordan elimination generally offers no significant

computational advantage over Gaussian elimination (transformation to nonreduced

echelon form) followed by back substitution. Therefore, Gaussian elimination is

commonly employed in practical procedures and in computer programs used to

solve linear systems numerically.

The Three Possibilities

The chief importance of Gauss-Jordan elimination stems from the fact that the re-

duced echelon form of a general linear system

a11x1 C a12x2 C a13x3 C � � � C a1nxn D b1

a21x1 C a22x2 C a23x3 C � � � C a2nxn D b2

:::

am1x1 C am2x2 C am3x3 C � � � C amnxn D bm

(4)

most clearly exhibits its underlying structure and enables us most readily to answer

questions about the number and type of its solutions. If the leading variables are

xj1
; xj2

; : : : ; xjr
, then the reduced echelon form of the system in (4) looks like

xj1
C

n
X

kDrC1

c1kxjk
D d1

xj2
C

n
X

kDrC1

c2kxjk
D d2

: : :
:::

xjr
C

n
X

kDrC1

crkxjk
D dr

0 D drC1

:::

0 D dm;

(5)

where the summations involve only the (non-leading) free variables xjrC1
; : : : ; xjn

.
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Now if any of the constants drC1; drC2; : : : ; dm in (5) is nonzero, then clearly

the system has no real solution. On the other hand, suppose that drC1 D drC2 D

� � � D dm D 0. If r < n, then there are free variables that we can set equal to arbitrary

parameters, and so the system has infinitely many solutions. If instead r D n, then

the summations in (5) disappear and we have the unique solution x1 D d1, x2 D d2,

: : : , xn D dn. These observations establish the following result, to which we have

already alluded.

THEOREM 2 The Three Possibilities

A linear system of equations has either

� a unique solution, or

� no solution, or

� infinitely many solutions.

Homogeneous Systems

The linear system in (4) is called homogeneous provided that the constants b1; b2,

: : : ; bm on the right-hand side are all zero. Thus a homogeneous system of m equa-

tions in n variables has the form

a11x1 C a12x2 C a13x3 C � � � C a1nxn D 0

a21x1 C a22x2 C a23x3 C � � � C a2nxn D 0
:::

am1x1 C am2x2 C am3x3 C � � � C amnxn D 0.

(6)

Every homogeneous system obviously has at least the trivial solution

x1 D 0; x2 D 0; : : : ; xn D 0: (7)

Thus (by Theorem 2) we know from the outset that every homogeneous linear sys-

tem either has only the trivial solution or has infinitely many solutions. If it has

a nontrivial solution—one with not every xi equal to zero—then it must have in-

finitely many solutions.

An important special case, in which a nontrivial solution is guaranteed, is that

of a homogeneous system with more variables than equations: m < n. To see why

there must be a solution, consider the reduced echelon system in (5) with the con-

stants on the right-hand side all zero (because the original system is homogeneous).

The number r of leading variables is at most the number m of equations (because

there is at most one leading variable per equation). If m < n, it then follows that

r < n, so there is at least one free variable that can be set equal to an arbitrary pa-

rameter, thereby yielding infinitely many solutions. This argument establishes the

following key result.

THEOREM 3 Homogeneous Systems with More Variables than
Equations

Every homogeneous linear system with more variables than equations has in-

finitely many solutions.
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Example 4 The homogeneous linear system

47x1 � 73x2 C 56x3 C 21x4 D 0

19x1 C 81x2 � 17x3 � 99x4 D 0

53x1 C 62x2 C 39x3 C 25x4 D 0

of three equations in four unknowns necessarily has infinitely many solutions. The only

question (which we could answer by reducing the system to echelon form) is whether the

system has one, two, or three free variables.

The situation is different for a nonhomogeneous system with more variables

than equations. The simple example

x1 C x2 C x3 D 0

x1 C x2 C x3 D 1

shows that such a system may be inconsistent. But if it is consistent—meaning

that drC1 D � � � D dm D 0 in the reduced echelon form in (5)—then the fact that

m < n implies (just as in the proof of Theorem 3) that there is at least one free

variable, and that the system therefore has infinitely many solutions. Hence every

nonhomogeneous system with more variables than equations either has no solution

or has infinitely many solutions.

Equal Numbers of Equations and Variables

An especially important case in the theory of linear systems is that of a homoge-

neous system
a11x1 C a12x2 C a13x3 C � � � C a1nxn D 0

a21x1 C a22x2 C a23x3 C � � � C a2nxn D 0
:::

an1x1 C an2x2 C an3x3 C � � � C annxn D 0

(8)

with the same number n of variables and equations. The coefficient matrix AD Œaij �

then has the same number of rows and columns and thus is an n� n square matrix.

Here we are most interested in the situation when (8) has only the trivial solu-

tion x1 D x2 D � � � D xn D 0. This occurs if and only if the reduced echelon system

contains no free variables. That is, all n of the variables x1; x2; : : : ; xn must be lead-

ing variables. Because the system consists of exactly n equations, we conclude that

the reduced echelon system is simply

x1 D 0

x2 D 0

x3 D 0

: : :
:::

xn D 0,

and, therefore, that the reduced echelon form of the coefficient matrix A is the matrix

2

6

6

6

6

6

4

1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

3

7

7

7

7

7

5

: (9)
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Such a (square) matrix, with ones on its principal diagonal (the one from

upper left to lower right) and zeros elsewhere, is called an identity matrix (for

reasons given in Section 3.4). For instance, the 2 � 2 and 3 � 3 identity matrices are

�

1 0

0 1

�

and

2

4

1 0 0

0 1 0

0 0 1

3

5 :

The matrix in (9) is the n � n identity matrix. With this terminology, the preceding

argument establishes the following theorem.

THEOREM 4 Homogeneous Systems with Unique Solutions

Let A be an n � n matrix. Then the homogeneous system with coefficient matrix

A has only the trivial solution if and only if A is row equivalent to the n � n

identity matrix.

Example 5 The computation in Example 2 (disregarding the fourth column in each matrix there) shows

that the matrix

A D

2

4

1 2 1

3 8 7

2 7 9

3

5

is row equivalent to the 3�3 identity matrix. Hence Theorem 4 implies that the homogeneous

system

x1 C 2x2 C x3 D 0

3x1 C 8x2 C 7x3 D 0

2x1 C 7x2 C 9x3 D 0

with coefficient matrix A has only the trivial solution x1 D x2 D x3 D 0.

3.3 Problems
Find the reduced echelon form of each of the matrices given in

Problems 1–20.

1.

�

1 2

3 7

�

2.

�

3 7

2 5

�

3.

�

3 7 15

2 5 11

�

4.

�

3 7 �1

5 2 8

�

5.

�

1 2 �11

2 3 �19

�

6.

�

1 �2 19

4 �7 70

�

7.

2

4

1 2 3

1 4 1

2 1 9

3

5 8.

2

4

1 �4 �5

3 �9 3

1 �2 3

3

5

9.

2

4

5 2 18

0 1 4

4 1 12

3

5 10.

2

4

5 2 �5

9 4 �7

4 1 �7

3

5

11.

2

4

3 9 1

2 6 7

1 3 �6

3

5 12.

2

4

1 �4 �2

3 �12 1

2 �8 5

3

5

13.

2

4

2 7 4 0

1 3 2 1

2 6 5 4

3

5 14.

2

4

1 3 2 5

2 5 2 3

2 7 7 22

3

5

15.

2

4

2 2 4 2

1 �1 �4 3

2 7 19 �3

3

5

16.

2

4

1 3 15 7

2 4 22 8

2 7 34 17

3

5

17.

2

4

1 1 1 �1 �4

1 �2 �2 8 �1

2 3 �1 3 11

3

5

18.

2

4

1 �2 �5 �12 1

2 3 18 11 9

2 5 26 21 11

3

5

19.

2

4

2 7 �10 �19 13

1 3 �4 �8 6

1 0 2 1 3

3

5

20.

2

4

3 6 1 7 13

5 10 8 18 47

2 4 5 9 26

3

5

21–30. Use the method of Gauss-Jordan elimination (trans-

forming the augmented matrix into reduced echelon

form) to solve Problems 11–20 in Section 3.2.
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31. Show that the two matrices in (1) are both row equivalent

to the 3 � 3 identity matrix (and hence, by Theorem 1, to

each other).

32. Show that the 2 � 2 matrix

A D

�

a b

c d

�

is row equivalent to the 2� 2 identity matrix provided that

ad � bc 6D 0.

33. List all possible reduced row-echelon forms of a 2� 2ma-

trix, using asterisks to indicate elements that may be either

zero or nonzero.

34. List all possible reduced row-echelon forms of a 3� 3ma-

trix, using asterisks to indicate elements that may be either

zero or nonzero.

35. Consider the homogeneous system

ax C by D 0

cx C dy D 0.

(a) If x D x0 and y D y0 is a solution and k is a real

number, then show that x D kx0 and y D ky0 is also

a solution.

(b) If x D x1, y D y1 and x D x2, y D y2 are both solu-

tions, then show that x D x1 C x2, y D y1 C y2 is a

solution.

36. Suppose that ad � bc 6D 0 in the homogeneous system of

Problem 35. Use Problem 32 to show that its only solution

is the trivial solution.

37. Show that the homogeneous system in Problem 35 has a

nontrivial solution if and only if ad � bc D 0.

38. Use the result of Problem 37 to find all values of c for

which the homogeneous system

.c C 2/x C 3y D 0

2x C .c � 3/y D 0

has a nontrivial solution.

39. Consider a homogeneous system of three equations in

three unknowns. Suppose that the third equation is the

sum of some multiple of the first equation and some mul-

tiple of the second equation. Show that the system has a

nontrivial solution.

40. Let E be an echelon matrix that is row equivalent to the

matrix A. Show that E has the same number of nonzero

rows as does the reduced echelon form E� of A. Thus the

number of nonzero rows in an echelon form of A is an “in-

variant” of the matrix A. Suggestion: Consider reducing

E to E�.

Go to goo.gl/7ryusP to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

3.3 Application Automated Row Reduction

Most computer algebra systems include commands for the immediate reduction of

matrices to reduced echelon form. For instance, if the matrix

A D

2

4

1 2 1 4

3 8 7 20

2 7 9 23

3

5

of Example 2 has been entered—as illustrated in the 3.2 Application—then the

Maple command

with(linalg): R := rref(A);

or the Mathematica command

R = RowReduce[A] // MatrixForm

or the MATLAB command

R = rref(A)

or the WolframjAlpha query

row reduce ((1, 2, 1, 4), (3, 8, 7, 20), (2, 7, 9, 23))

produces the reduced echelon matrix

R D

2

4

1 0 0 5

0 1 0 �2

0 0 1 3

3

5

that exhibits the solution of the linear system having augmented coefficient matrix

A. The same calculation is illustrated in the calculator screen of Fig. 3.3.1. Solve

FIGURE 3.3.1. Finding a reduced
row-echelon matrix with a TI-89
calculator.



164 Chapter 3 Linear Systems and Matrices

similarly the systems in the following problems (which apparently would be some-

what tedious to solve by manual row reduction):

1. 17x C 42y � 36´ D 213

13x C 45y � 34´ D 226

12x C 47y � 35´ D 197

2. 32x C 57y � 41´ D 713

23x C 43y � 37´ D 130

42x � 61y C 39´ D 221

3. 231x C 157y � 241´ D 420

323x C 181y � 375´ D 412

542x C 161y � 759´ D 419

4. 837x C 667y � 729´ D 1659

152x � 179y � 975´ D 1630

542x C 328y � 759´ D 1645

5. 49w � 57x C 37y � 59´ D 97

73w � 15x � 19y � 22´ D 99

52w � 51x C 14y � 29´ D 89

13w � 27x C 27y � 25´ D 73

6. 64w � 57x C 97y � 67´ D 485

92w C 77x � 34y � 37´ D 486

44w � 34x C 53y � 34´ D 465

27w C 57x � 69y C 29´ D 464

3.4 Matrix Operations

As yet, we have used matrices only to simplify our record keeping in the solution

of linear systems. But it turns out that matrices can be added and multiplied in

ways similar to the ways in which numbers are added and multiplied and that these

operations with matrices have far-reaching applications.

At the level of this text everyone “knows” that 2C 3D 5, and we do not dwell

on the underlying meaning of this equation. But in the case of matrices we must

begin with precise definitions of what the familiar language of algebra is to mean

when it is applied to matrices rather than to numbers.

Two matrices A and B of the same size—the same number of rows and the

same number of columns—are called equal provided that each element of A is

equal to the corresponding element of B. Thus two matrices of the same size are

equal provided they are elementwise equal, and we write A D B to denote equality

of the two matrices A and B.

Example 1 If

A D

�

3 4

5 6

�

; B D

�

3 4

5 7

�

; and C D

�

3 4 7

5 6 8

�

;

then A 6D B because a22 D 6, whereas b22 D 7, and A 6D C because the matrices A and C are

not of the same size.

The next two definitions are further examples of “doing it elementwise.”

DEFINITION Addition of Matrices

If AD
�

aij

�

and BD
�

bij

�

are matrices of the same size, then their sum ACB

is the matrix obtained by adding corresponding elements of the matrices A and

B. That is,

AC B D
�

aij C bij

�

; (1)

where the notation on the right signifies that the element in the i th row and j th

column of the matrix AC B is aij C bij .

Example 2 If

A D

�

3 0 �1

2 �7 5

�

; B D

�

4 �3 6

9 0 �2

�

; and C D

�

3 �2

�1 6

�

;
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then

AC B D

�

7 �3 5

11 �7 3

�

;

but the sum ACC is not defined because the matrices A and C are not of the same size.

DEFINITION Multiplication of a Matrix by a Number

If A D
�

aij

�

is a matrix and c is a number, then cA is the matrix obtained by

multiplying each element of A by c. That is,

cA D
�

caij

�

: (2)

Using multiplication of a matrix by a scalar, we define the negative �A of the

matrix A and the difference A � B of the two matrices A and B by writing

�A D .�1/A and A � B D AC .�B/:

Example 3 If A and B are the 2 � 3 matrices of Example 2, then

3A D

�

9 0 �3

6 �21 15

�

; �B D

�

�4 3 �6

�9 0 2

�

;

and

3A � B D

�

5 3 �9

�3 �21 17

�

:

Vectors

Our first application of these matrix operations is to vectors. As mentioned in Sec-

tion 3.2, a column vector (or simply vector) is merely an n � 1 matrix, one having

a single column. We normally use boldface lowercase letters, rather than lightface

uppercase letters, to denote vectors. If

a D

2

4

6

�2

5

3

5 and b D

2

4

�2

3

�4

3

5 ;

then we can form such combinations as

3aC 2b D

2

4

18

�6

15

3

5C

2

4

�4

6

�8

3

5 D

2

4

14

0

7

3

5 :

Largely for typographical reasons, we sometimes write

a D

2

6

6

6

4

a1

a2

:::

an

3

7

7

7

5

D .a1; a2; : : : ; an/: (3)

That is, .a1; a2; : : : ; an/ is simply another notation for the column vector with ele-

ments a1; a2; : : : ; an. It should not be confused with the row vector

�

a1 a2 � � � an

�

: (4)
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A row vector is a 1 � n (rather than n � 1) matrix having a single row, and

.3; 2; 1/ D

2

4

3

2

1

3

5 6D
�

3 2 1
�

because the two matrices here have different sizes (even though they have the same

elements).

Now consider the linear system

a11x1 C a12x2 C a13x3 C � � � C a1nxn D b1

a21x1 C a22x2 C a23x3 C � � � C a2nxn D b2

:::

am1x1 C am2x2 C am3x3 C � � � C amnxn D bm

(5)

of m equations in n variables. We may regard a solution of this system as a vector

x D

2

6

6

6

6

6

4

x1

x2

x3

:::

xn

3

7

7

7

7

7

5

D .x1; x2; x3; : : : ; xn/ (6)

whose elements satisfy each of the equations in (5). If we want to refer explicitly to

the number of elements, we may call x an n-vector.

Example 4 Consider the homogeneous system

x1 C 3x2 � 15x3 C 7x4 D 0

x1 C 4x2 � 19x3 C 10x4 D 0

2x1 C 5x2 � 26x3 C 11x4 D 0.

(7)

We find readily that the reduced echelon form of the augmented coefficient matrix of this

system is
2

4

1 0 �3 �2 0

0 1 �4 3 0

0 0 0 0 0

3

5 :

Hence x1 and x2 are leading variables and x3 and x4 are free variables. In the manner of

Sections 3.2 and 3.3, we therefore see that the infinite solution set of the system in (7) is

described by the equations

x4 D t;

x3 D s;

x2 D 4s � 3t;

x1 D 3s C 2t

(8)

in terms of the arbitrary parameters s and t .

Now let us write the solution x D .x1; x2; x3; x4/ in vector notation. The equations in

(8) yield

x D

2

6

6

4

x1

x2

x3

x4

3

7

7

5

D

2

6

6

4

3s C 2t

4s � 3t

s

t

3

7

7

5

;
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and “separating” the s and t parts gives

x D

2

6

6

4

3s

4s

s

0

3

7

7

5

C

2

6

6

4

2t

�3t

0

t

3

7

7

5

D s

2

6

6

4

3

4

1

0

3

7

7

5

C t

2

6

6

4

2

�3

0

1

3

7

7

5

—that is,

x D s.3; 4; 1; 0/C t .2;�3; 0; 1/ D sx1 C tx2: (9)

Equation (9) expresses in vector form the general solution of the linear system in (7). It says

that the vector x is a solution if and only if x is a linear combination—a sum of multiples—of

the particular solutions x1 D .3; 4; 1; 0/ and x2 D .2;�3; 0; 1/. The parameters s and t are

simply the coefficients in this “sum of multiples.”

In the same manner as that in which we derived Eq. (9) from the equations in

(8), the general solution of every homogeneous linear system can be expressed as a

linear combination of particular solution vectors. For this reason (as well as others),

linear combinations of vectors will play a central role in succeeding chapters.

Matrix Multiplication

The first surprise is that matrices are not multiplied elementwise. The initial purpose

of matrix multiplication is to simplify the notation for systems of linear equations.

If we write

A D
�

aij

�

; x D

2

6

6

6

4

x1

x2

:::

xn

3

7

7

7

5

; and b D

2

6

6

6

4

b1

b2

:::

bm

3

7

7

7

5

; (10)

then A, x, and b are, respectively, the coefficient matrix, the unknown vector, and the

constant vector for the linear system in (5). We want to define the matrix product

Ax in such a way that the entire system of linear equations reduces to the single

matrix equation

Ax D b: (11)

The first step is to define the product of a row vector a and a column vector b,

a D
�

a1 a2 � � � an

�

and b D

2

6

6

6

4

b1

b2

:::

bn

3

7

7

7

5

;

each having n elements. In this case, the product ab is defined to be

ab D a1b1 C a2b2 C � � � C anbn: (12)

Thus ab is the sum of products of corresponding elements of a and b. For instance,

�

2 �3
�

�

3

5

�

D .2/.3/C .�3/.5/ D �9

and

�

3 0 �1 7
�

2

6

6

4

5

2

�3

4

3

7

7

5

D 3 � 5C 0 � 2C .�1/.�3/C 7 � 4 D 46:
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Note that if

a D
�

a1 a2 � � � an

�

and x D

2

6

6

6

4

x1

x2

:::

xn

3

7

7

7

5

;

then

ax D a1x1 C a2x2 C � � � C anxn:

Hence the single equation

a1x1 C a2x2 C � � � C anxn D b (13)

reduces to the equation

ax D b; (14)

which is a step toward the objective expressed in Eq. (11). This observation is the

underlying motivation for the following definition.

DEFINITION Matrix Multiplication

Suppose that A is an m � p matrix and B is a p � n matrix. Then the product

AB is the m � n matrix defined as follows: The element of AB in its i th row and

j th column is the sum of products of corresponding elements in the i th row of A

and the j th column of B.

That is, if the i th row of A is

�

ai1 ai2 ai3 � � � aip

�

and the j th column of B is
2

6

6

6

6

6

4

b1j

b2j

b3j

:::

bpj

3

7

7

7

7

7

5

;

then the element in the i th row and j th column of the product AB is

ai1b1j C ai2b2j C ai3b3j C � � � C aipbpj :

Example 5 If

A D

�

2 �1

�4 3

�

and B D

�

1 5

3 7

�

;

then m D p D n D 2, so AB will also be a 2 � 2 matrix. To find AB, we calculate sums of

products as follows:

AB, row 1, column 1 W .2/.1/C .�1/.3/ D �1I

AB, row 1, column 2 W .2/.5/C .�1/.7/ D 3I

AB, row 2, column 1 W .�4/.1/C .3/.3/ D 5I

AB, row 2, column 2 W .�4/.5/C .3/.7/ D 1:

Thus

AB D

�

�1 3

5 1

�

:
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For your first practice with matrix multiplication, you should compute

BA D

�

1 5

3 7

� �

2 �1

�4 3

�

D

�

�18 14

�22 18

�

:

Note that AB 6D BA. This shows that multiplication of matrices is not commutative!

We must therefore be careful about the order in which we write the matrices in a

matrix product.

The definition of the matrix product bears careful examination to see how it

fits together. First, the fact that A ism�p and B is p � n implies that the number of

columns of A is equal to the number of rows of B. If so, then the size of the product

AB is obtained by a sort of cancellation of the “inside” dimensions:

A times B D AB

m � p p � n m � n.

✂✂✍ ❇❇▼

These “cancel.”

If the inside dimensions are not equal, then the product AB is not defined.

Example 6 If A is a 3 � 2 matrix and B is a 2 � 3 matrix, then AB will be a 3 � 3 matrix, whereas BA

will be a 2 � 2 matrix. If C is a 3 � 5 matrix and D is a 5 � 7 matrix, then CD will be a 3 � 7

matrix, but DC is undefined.

To emphasize the fact that the ijth element of AB is the product of the i th row

of A and the j th column of B, we can write

AB D

2

6

6

6

6

6

6

6

6

6

6

4

a1

a2

:::

ai

:::

am

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

4

b1 b2 � � � bj � � � bn

3

7

7

7

7

7

7

7

7

7

7

5

;

where a1; a2; : : : ; am denote the m row vectors of A and b1;b2; : : : ;bn denote the

n column vectors of B. More briefly, if

A D

2

6

6

6

4

a1

a2

:::

am

3

7

7

7

5

and B D
�

b1 b2 � � � bn

�

in terms of the rows of A and the columns of B, then

AB D
�

ai bj

�

: (15)

Therefore, as mentioned earlier, the ij th element ai bj of AB is given in terms of

elements of A and B by

ai bj D
�

ai1 ai2 � � � aip

�

2

6

6

6

4

b1j

b2j

:::

bpj

3

7

7

7

5

D ai1b1j C ai2b2j C � � � C aipbpj :
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That is,

ai bj D

p
X

kD1

aikbkj : (16)

One can visualize “pouring the i th row of A down the j th column of B” until

elements match in pairs, then forming the sum of the products of these pairs, to

obtain the element cij of the matrix C D AB.

Suggestion The key to accuracy and confidence in computing matrix products lies in doing

it systematically. Always perform your computations in the same order. First calculate the

elements of the first row of AB by multiplying the first row of A by the successive columns

of B; second, calculate the elements of the second row of AB by multiplying the second row

of A by the successive columns of B; and so forth.

Computing systems often are used for the calculation of products of “large”

matrices. If the matrices A and B, with appropriate sizes, have been entered—as

illustrated in the 3.2 Application—then the Maple command

with(linalg) : C := multiply(A,B),

or the Mathematica command

C = A.B,

or the MATLAB command

C = A*B

immediately yield the product matrix C D AB.

Matrix Equations

If A D
�

aij

�

is an m � n coefficient matrix and x D .x1; x2; : : : ; xn/ is an n � 1

variable (column) matrix, then the product Ax is the m � 1 matrix

Ax D

2

6

6

6

6

4

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

am1 am2 � � � amn

3

7

7

7

7

5

2

6

6

6

6

4

x1

x2

:::

xn

3

7

7

7

7

5

D

2

6

6

6

6

4

a11x1 C a12x2 C � � � C a1nxn

a21x1 C a22x2 C � � � C a2nxn

:::

am1x1 C am2x2 C � � � C amnxn

3

7

7

7

7

5

.‹/

D

2

6

6

6

6

4

b1

b2

:::

bm

3

7

7

7

7

5

D b:

We therefore see that

Ax D b (17)

if and only if x D .x1; x2; : : : ; xn/ is a solution of the linear system in (5). Thus,

matrix multiplication enables us to “boil down” a system of m scalar equations in

n unknowns to the single matrix equation in (17), which is analogous in notation to

the single scalar equation ax D b in a single variable x.

Example 7 The system

3x1 � 4x2 C x3 C 7x4 D 10

4x1 � 5x3 C 2x4 D 0

x1 C 9x2 C 2x3 � 6x4 D 5
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of three equations in four unknowns is equivalent to the single matrix equation

2

4

3 �4 1 7

4 0 �5 2

1 9 2 �6

3

5

2

6

6

4

x1

x2

x3

x4

3

7

7

5

D

2

4

10

0

5

3

5 :

Matrix Algebra

The definitions of matrix addition and multiplication can be used to establish the

rules of matrix algebra listed in the following theorem.

THEOREM 1 Rules of Matrix Algebra

If A, B, and C are matrices of appropriate sizes to make the indicated operations

possible, then the following identities hold.

Commutative law of addition: AC B D BCA

Associative law of addition: AC .BCC/ D .AC B/CC

Associative law of multiplication: A.BC/ D .AB/C

Distributive laws: A.BCC/ D ABCAC

and

.AC B/C D ACC BC

The only verification that is not entirely routine is that of the associative law

of multiplication; see Problem 44 for an outline. Each of the others follows quickly

from the corresponding law for the ordinary arithmetic of real numbers. As an

illustration, we prove the first distributive law. Suppose that A D
�

aij

�

is an m � p

matrix and that B D
�

bij

�

and C D
�

cij

�

are p � n matrices. Then

BCC D
�

bij C cij

�

;

so by (16) the ijth element of the m � n matrix A.BCC/ is

p
X

kD1

aik.bkj C ckj /: (18)

The ijth element of the m � n matrix ABCAC is

p
X

kD1

aikbkj C

p
X

kD1

aikckj D

p
X

kD1

.aikbkj C aikckj /: (19)

But the distributive law for real numbers, a.b C c/ D ab C ac, tells us that corre-

sponding terms of the sums in (18) and (19) are equal. Hence, the ijth terms of the

two m � n matrices A.BC C/ and ABC AC are equal, and so these matrices are

equal: A.BCC/ D ABCAC.

If a and b are real numbers, then rules such as

.aC b/C D aCC bC; .ab/C D a.bC/; a.BC/ D .aB/C

are even easier to verify. What all these rules amount to is this: In matrix manipu-

lations, pairs of parentheses can be inserted or deleted in the same ways as in the

ordinary algebra of real numbers.
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But not all of the rules of “ordinary” algebra carry over to matrix algebra. In

Example 5 we saw that multiplication of matrices is not commutative—in general,

AB 6D BA. Other exceptions are associated with zero matrices. A zero matrix is

one whose elements are all zero, such as

�

0 0

0 0

�

;

�

0 0 0

0 0 0

�

;

2

4

0 0

0 0

0 0

3

5 ;

�

0

0

�

:

We ordinarily denote a zero matrix (whatever its size) by 0. It should be clear that

for any matrix A,

0CA D A D AC 0; A0 D 0; and 0A D 0;

where in each case 0 is a zero matrix of appropriate size. Thus zero matrices appear

to play a role in the arithmetic of matrices similar to the role of the real number 0 in

ordinary arithmetic.

For real numbers, the following two rules are familiar:

� If ab D ac and a 6D 0, then b D c

(the “cancellation law”).

� If ad D 0, then either a D 0 or d D 0.

The following example shows that matrices do not obey either of these rules.

Example 8 If

A D

�

4 1 �2 7

3 1 �1 5

�

; B D

2

6

6

4

1 5

3 �1

�2 4

2 �3

3

7

7

5

; and C D

2

6

6

4

3 4

2 1

�2 3

1 �3

3

7

7

5

;

then B 6D C, but

AB D

�

25 �10

18 �5

�

D AC: (Check this!)

Thus the cancellation law does not generally hold for matrices. If

D D B �C D

2

6

6

4

�2 1

1 �2

0 1

1 0

3

7

7

5

;

then

AD D

�

0 0

0 0

�

D 0;

despite the fact that neither A nor D is a zero matrix. See Problems 31–38 for additional

ways in which the algebra of matrices differs significantly from the familiar algebra of real

numbers.

Recall that an identity matrix is a square matrix I that has ones on its principal

diagonal and zeros elsewhere. Identity matrices play a role in matrix arithmetic

which is strongly analogous to that of the real number 1, for which a � 1 D 1 � a D a

for all values of the real number a. For instance, you can check that

�

a b

c d

� �

1 0

0 1

�

D

�

1 0

0 1

� �

a b

c d

�

D

�

a b

c d

�

:

Similarly, if

A D

2

4

a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5 and I D

2

4

1 0 0

0 1 0

0 0 1

3

5 ;
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then AI D IA D A. For instance, the element in the second row and third column

of AI is

.a21/.0/C .a22/.0/C .a23/.1/ D a23:

If a is a nonzero real number and b D a�1, then ab D ba D 1. Given a

nonzero square matrix A, the question as to whether there exists an inverse matrix

B, one such that AB D BA D I, is more complicated and is investigated in Section

3.5.

3.4 Problems
In Problems 1–4, two matrices A and B and two numbers c

and d are given. Compute the matrix cAC dB.

1. A D

�

3 �5

2 7

�

, B D

�

�1 0

3 �4

�

, c D 3, d D 4

2. AD

�

2 0 �3

�1 5 6

�

, BD

�

�2 3 1

7 1 5

�

, cD 5, d D�3

3. A D

2

4

5 0

0 7

3 �1

3

5, B D

2

4

�4 5

3 2

7 4

3

5, c D �2, d D 4

4. AD

2

4

2 �1 0

4 0 �3

5 �2 7

3

5, BD

2

4

6 �3 �4

5 2 �1

0 7 9

3

5, cD 7, d D 5

In Problems 5–12, two matrices A and B are given. Calculate

whichever of the matrices AB and BA is defined.

5. A D

�

2 �1

3 2

�

, B D

�

�4 2

1 3

�

6. A D

2

4

1 0 �3

3 2 4

2 �3 5

3

5, B D

2

4

7 �4 3

1 5 �2

0 3 9

3

5

7. A D
�

1 2 3
�

, B D

2

4

3

4

5

3

5

8. A D

�

1 0 3

2 �5 4

�

, B D

2

4

3 0

�1 4

6 5

3

5

9. A D

�

3

�2

�

, B D

2

4

0 �2

3 1

�4 5

3

5

10. A D

�

2 1

4 3

�

, B D

�

�1 0 4

3 �2 5

�

11. A D
�

3 �5
�

, B D

�

2 7 5 6

�1 4 2 3

�

12. A D
�

1 0 3 �2
�

, B D

�

2 �7 5

3 9 10

�

In Problems 13–16, three matrices A, B, and C are given. Ver-

ify by computation of both sides the associative law A.BC/ D

.AB/C.

13. A D

�

3 1

�1 4

�

, B D

�

2 5

�3 1

�

, C D

�

0 1

2 3

�

14. A D
�

2 �1
�

, B D

�

2 5

�3 1

�

, C D

�

6

�5

�

15. A D

�

3

2

�

, B D
�

1 �1 2
�

, C D

2

4

2 0

0 3

1 4

3

5

16. A D

2

4

2 0

0 3

1 4

3

5, B D

�

1 �1

3 �2

�

,

C D

�

1 0 �1 2

3 2 0 1

�

In Problems 17–22, first write each given homogeneous system

in the matrix form Ax D 0. Then find the solution in vector

form, as in Eq. (9).

17. x1 � 5x3 C 4x4 D 0

x2 C 2x3 � 7x4 D 0

18. x1 � 3x2 C 6x4 D 0

x3 C 9x4 D 0

19. x1 C 3x4 � x5 D 0

x2 � 2x4 C 6x5 D 0

x3 C x4 � 8x5 D 0

20. x1 � 3x2 C 7x5 D 0

x3 � 2x5 D 0

x4 � 10x5 D 0

21. x1 � x3 C 2x4 C 7x5 D 0

x2 C 2x3 � 3x4 C 4x5 D 0

22. x1 � x2 C 7x4 C 3x5 D 0

x3 � x4 � 2x5 D 0

Problems 23 through 26 introduce the idea—developed more

fully in the next section—of a multiplicative inverse of a square

matrix.

23. Let

A D

�

2 1

3 2

�

; B D

�

a b

c d

�

;

and

I D

�

1 0

0 1

�

:

Find B so that AB D I D BA as follows: First equate en-

tries on the two sides of the equation AB D I. Then solve

the resulting four equations for a, b, c, and d . Finally

verify that BA D I as well.

24. Repeat Problem 23, but with A replaced by the matrix

A D

�

3 4

5 7

�

:
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25. Repeat Problem 23, but with A replaced by the matrix

A D

�

5 7

2 3

�

:

26. Use the technique of Problem 23 to show that if

A D

�

1 �2

�2 4

�

;

then there does not exist a matrix B such that AB D I.

Suggestion: Show that the system of four equations in a,

b, c, and d is inconsistent.

27. A diagonal matrix is a square matrix of the form
2

6

6

6

6

6

4

a1 0 0 � � � 0

0 a2 0 � � � 0

0 0 a3 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � an

3

7

7

7

7

7

5

;

in which every element off the main diagonal is zero.

Show that the product AB of two n � n diagonal matri-

ces A and B is again a diagonal matrix. State a concise

rule for quickly computing AB. Is it clear that AB D BA?

Explain.

Problems 28 through 30 develop a method of computing pow-

ers of a square matrix.

28. The positive integral powers of a square matrix A are de-

fined as follows:

A1 D A; A2 D AA; A3 D AA2;

A4 D AA3; : : : ; AnC1 D AAn; : : : :

Suppose that r and s are positive integers. Prove that

Ar As D ArCs and that .Ar /s D Ars (in close analogy

with the laws of exponents for real numbers).

29. If A D

�

a b

c d

�

, then show that

A2
D .aC d/A � .ad � bc/I;

where I denotes the 2� 2 identity matrix. Thus every 2� 2

matrix A satisfies the equation

A2
� .trace A/AC .det A/I D 0

where det A D ad � bc denotes the determinant of the

matrix A, and trace A denotes the sum of its diagonal ele-

ments. This result is the 2-dimensional case of the Cayley-

Hamilton theorem of Section 6.3.

30. The formula in Problem 29 can be used to compute A2

without an explicit matrix multiplication. It follows that

A3
D .aC d/A2

� .ad � bc/A

without an explicit matrix multiplication,

A4
D .aC d/A3

� .ad � bc/A2;

and so on. Use this method to compute A2, A3, A4, and

A5 given

A D

�

2 1

1 2

�

:

Problems 31–38 illustrate ways in which the algebra of matri-

ces is not analogous to the algebra of real numbers.

31. (a) Suppose that A and B are the matrices of Example 5.

Show that .AC B/.A � B/ 6D A2 � B2.

(b) Suppose that A and B are square matrices with the

property that ABD BA. Show that .ACB/.A�B/D

A2 � B2.

32. (a) Suppose that A and B are the matrices of Example 5.

Show that .AC B/2 6D A2 C 2ABC B2.

(b) Suppose that A and B are square matrices such that

AB D BA. Show that .AC B/2 D A2 C 2ABC B2.

33. Find four different 2� 2 matrices A, with each main diag-

onal element either C1 or �1, such that A2 D I.

34. Find a 2 � 2 matrix A with each element C1 or �1 such

that A2 D 0. The formula of Problem 29 may be helpful.

35. Use the formula of Problem 29 to find a 2 � 2 matrix A

such that A 6D 0 and A 6D I but such that A2 D A.

36. Find a 2 � 2 matrix A with each main diagonal element

zero such that A2 D I.

37. Find a 2 � 2 matrix A with each main diagonal element

zero such that A2 D �I.

38. This is a continuation of the previous two problems. Find

two nonzero 2�2matrices A and B such that A2CB2D 0.

39. Use matrix multiplication to show that if x1 and x2 are two

solutions of the homogeneous system Ax D 0 and c1 and

c2 are real numbers, then c1x1 C c2x2 is also a solution.

40. (a) Use matrix multiplication to show that if x0 is a solu-

tion of the homogeneous system Ax D 0 and x1 is a

solution of the nonhomogeneous system AxD b, then

x0Cx1 is also a solution of the nonhomogeneous sys-

tem.

(b) Suppose that x1 and x2 are solutions of the nonhomo-

geneous system of part (a). Show that x1 � x2 is a

solution of the homogeneous system Ax D 0.

41. This is a continuation of Problem 32. Show that if A and

B are square matrices such that AB D BA, then

.AC B/3 D A3
C 3A2BC 3AB2

C B3

and

.AC B/4 D A4
C 4A3BC 6A2B2

C 4AB3
C B4:

42. Let

A D

2

4

1 2 0

0 1 2

0 0 1

3

5

D

2

4

1 0 0

0 1 0

0 0 1

3

5C

2

4

0 2 0

0 0 2

0 0 0

3

5 D ICN:

(a) Show that N2 6D 0 but N3 D 0.
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(b) Use the binomial formulas of Problem 41 to compute

A2
D .ICN/2 D IC 2NCN2;

A3
D .ICN/3 D IC 3NC 3N2;

and

A4
D .ICN/4 D IC 4NC 6N2:

43. Consider the 3 � 3 matrix

A D

2

4

2 �1 �1

�1 2 �1

�1 �1 2

3

5 :

First verify by direct computation that A2 D 3A. Then

conclude that AnC1 D 3nA for every positive integer n.

44. Let A D
�

a
hi

�

, B D
�

bij

�

, and C D
�

c
jk

�

be matrices

of sizes m� n, n�p, and p � q, respectively. To establish

the associative law A.BC/ D .AB/C, proceed as follows.

By Equation (16) the hj th element of AB is

n
X

iD1

a
hi
bij :

By another application of Equation (16), the hkth element

of .AB/C is

p
X

j D1

 

n
X

iD1

a
hi
bij

!

c
jk
D

n
X

iD1

p
X

j D1

a
hi
bij cjk

:

Show similarly that the double sum on the right is also

equal to the hkth element of A.BC/. Hence the m� q ma-

trices .AB/C and A.BC/ are equal.

3.5 Inverses of Matrices

Recall that the n � n identity matrix is the diagonal matrix

I D

2

6

6

6

6

6

4

1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

3

7

7

7

7

7

5

(1)

having ones on its main diagonal and zeros elsewhere. It is not difficult to deduce

directly from the definition of the matrix product that I acts like an identity for

matrix multiplication:

AI D A and IB D B (2)

if the sizes of A and B are such that the products AI and IB are defined. It is,

nevertheless, instructive to derive the identities in (2) formally from the two basic

facts about matrix multiplication that we state below. First, recall that the notation

A D
�

a1 a2 a3 � � � an

�

(3)

expresses the m � n matrix A in terms of its column vectors a1; a2; a3; : : : ; an.

Fact 1 Ax in terms of columns of A

If A D
�

a1 a2 � � � an

�

and x D .x1; x2; : : : ; xn/ is an n-vector, then

Ax D x1a1 C x2a2 C � � � C xnan: (4)

The reason is that when each row vector of A is multiplied by the column vector x,

its j th element is multiplied by xj .

Fact 2 AB in terms of columns of B

If A is an m � n matrix and B D
�

b1 b2 � � � bp

�

is an n � p matrix, then

AB D
�

Ab1 Ab2 � � � Abp

�

: (5)

That is, the j th column of AB is the product of A and the j th column of B. The

reason is that the elements of the j th column of AB are obtained by multiplying the

individual rows of A by the j th column of B.
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Example 1 The third column of the product AB of the matrices

A D

�

2 �1 0

4 0 3

�

and B D

2

4

3 7 5 �4

�2 6 3 6

5 1 �2 �1

3

5

is

Ab3 D

�

2 �1 0

4 0 3

�

2

4

5

3

�2

3

5 D

�

7

14

�

:

To prove that AI D A, note first that

I D
�

e1 e2 � � � en

�

; (6)

where the j th column vector of I is the j th basic unit vector

ej D

2

6

6

6

6

6

6

4

0
:::

1
:::

0

3

7

7

7

7

7

7

5

 j th entry: (7)

If A D
�

a1 a2 � � � an

�

, then Fact 1 yields

Aej D 0 � a1 C � � � C 1 � aj C � � � C 0 � an D aj : (8)

Hence Fact 2 gives

AI D A
�

e1 e2 � � � en

�

D
�

Ae1 Ae2 � � � Aen

�

D
�

a1 a2 � � � an

�

I

that is, AI D A. The proof that IB D B is similar. (See Problems 41 and 42.)

The Inverse Matrix A�1

If a 6D 0, then there is a number b D a�1 D 1=a such that ab D ba D 1. Given

a nonzero matrix A, we therefore wonder whether there is a matrix B such that

AB D BA D I. The following two examples show that the answer to this question

depends upon the particular matrix A.

Example 2 If

A D

�

4 9

3 7

�

and B D

�

7 �9

�3 4

�

;

then

AB D

�

4 9

3 7

� �

7 �9

�3 4

�

D

�

1 0

0 1

�

D II

BA D I by a similar computation.
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Example 3 Let

A D

�

1 �3

�2 6

�

and B D

�

a b

c d

�

:

If the matrix B had the property that AB D BA D I, then

AB D

�

1 �3

�2 6

� �

a b

c d

�

D

�

a � 3c b � 3d

�2aC 6c �2b C 6d

�

D

�

1 0

0 1

�

:

But upon equating corresponding elements of AB and the 2 � 2 identity matrix in the last

line, we find that

a � 3c D 1

�2a C 6c D 0
and

b � 3d D 0

�2b C 6d D 1.

It is clear that these equations are inconsistent. Thus there can exist no 2 � 2 matrix B such

that AB D I.

DEFINITION Invertible Matrix

The square matrix A is called invertible if there exists a matrix B such that

AB D BA D I:

Thus the matrix A of Example 2 is invertible, whereas the matrix A of Exam-

ple 3 is not invertible.

A matrix B such that ABDBAD I is called an inverse matrix of the matrix A.

The following theorem says that no matrix can have two different inverse matrices.

THEOREM 1 Uniqueness of Inverse Matrices

If the matrix A is invertible, then there exists precisely one matrix B such that

AB D BA D I.

Proof: If C is a (possibly different) matrix such that AC D CA D I as well,

then the associative law of multiplication gives

C D CI D C.AB/ D .CA/B D IB D B:

Thus C is in fact the same matrix as B.

The unique inverse of an invertible matrix A is denoted by A�1. Thus we say

in Example 2 that

If A D

�

4 9

3 7

�

then A�1
D

�

7 �9

�3 4

�

:

In the case of a 2 � 2 matrix A, it is easy to determine whether or not A is invertible

and to find A�1 if it exists. In Problems 36 and 37 we ask you to verify the following

result.



178 Chapter 3 Linear Systems and Matrices

THEOREM 2 Inverses of 2 x 2 Matrices

The 2 � 2 matrix

A D

�

a b

c d

�

is invertible if and only if ad � bc 6D 0, in which case

A�1
D

1

ad � bc

�

d �b

�c a

�

: (9)

Equation (9) gives us the following prescription for writing the inverse of an

invertible 2 � 2 matrix:

� First, interchange the two main diagonal entries.

� Then, change the signs of the two off-diagonal elements.

� Finally, divide each element of the resulting matrix by ad � bc.

You might check that this is how B D A�1 is obtained from A in Example 2 (in

which ad � bc D 1).

Example 4 If

A D

�

4 6

5 9

�

;

then ad � bc D 36 � 30 D 6 6D 0, so

A�1
D

1

6

2

4

9 �6

�5 4

3

5 D

2

4

3

2
�1

�
5

6

2

3

3

5 :

Arbitrary integral powers of a square matrix A are defined as follows, though

in the case of a negative exponent we must assume that A is also invertible. If n is a

positive integer, we define

A0
D I and A1

D AI

AnC1
D AnA for n � 1;

A�n
D .A�1/n:

In Problem 28 of Section 3.4, we asked you to verify the laws of exponents

ArAs
D ArCs; .Ar /s D Ars (10)

in the case of positive integral exponents, and Problem 31 of this section deals with

the case of negative integral exponents. In Problem 29 we ask you to establish parts

(a) and (b) of the following theorem.

THEOREM 3 Algebra of Inverse Matrices

If the matrices A and B of the same size are invertible, then

(a) A�1 is invertible and .A�1/�1 D A;

(b) If n is a nonnegative integer, then An is invertible and .An/�1 D .A�1/n;

(c) The product AB is invertible and

.AB/�1
D B�1A�1: (11)
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Proof of (c)

.AB/.B�1A�1/ D A.BB�1/A�1
D AIA�1

D AA�1
D II

.B�1A�1/.AB/ D B�1.A�1A/B D B�1IB D B�1B D I:

Thus we get I when we multiply AB on either side by B�1A�1. Because the inverse

of the matrix AB is unique, this proves that AB is invertible and that its inverse

matrix is B�1A�1.

In mathematics it is frequently important to note the surprises. The surprise in

Eq. (11) is the reversal of the natural order of the factors in the right-hand side. You

should now be able to show that

.ABC/�1
D C�1B�1A�1:

In general, any product of invertible matrices of the same size is again invertible,

and the inverse of a product of invertible matrices is the product in reverse order of

their inverses.

THEOREM 4 Inverse Matrix Solution of Ax = b

If the n � n matrix A is invertible, then for any n-vector b the system

Ax D b (12)

has the unique solution

x D A�1b (13)

that is obtained by multiplying both sides in (12) on the left by the matrix A�1.

Proof: We must show that x D A�1b is a solution and that it is the only

solution of Eq. (12). First, the computation

A.A�1b/ D .AA�1/b D Ib D b

shows that xD A�1b is a solution. Second, if x1 is any (possibly different) solution,

we observe that multiplication of each side of the equation Ax1 D b on the left by

A�1 yields x1 D A�1b, and hence x1 is the same solution as x after all.

Example 5 To solve the system

4x1 C 6x2 D 6

5x1 C 9x2 D 18,

we use the inverse of the coefficient matrix

A D

�

4 6

5 9

�

that we found in Example 4. Then Eq. (13) yields

x D A�1b D

�

4 6

5 9

��1
�

6

18

�

D

2

4

3

2
�1

�
5

6

2

3

3

5

2

4

6

18

3

5 D

2

4

�9

7

3

5 :

Thus x1 D �9, x2 D 7 is the unique solution.
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How to Find A�1

Theorem 2 tells us only how to invert 2 � 2 matrices. The development of a method

for inverting larger matrices involves a special class of matrices, which we define

next.

DEFINITION Elementary Matrix

The n � n matrix E is called an elementary matrix if it can be obtained by

performing a single elementary row operation on the n � n identity matrix I.

Example 6 We obtain some typical elementary matrices as follows.

�

1 0

0 1

�

.3/R1

��������������!

�

3 0

0 1

�

D E1

2

4

1 0 0

0 1 0

0 0 1

3

5

.2/R1 CR3

��������������!

2

4

1 0 0

0 1 0

2 0 1

3

5 D E2

2

4

1 0 0

0 1 0

0 0 1

3

5

SWAP.R1; R2/
��������������!

2

4

0 1 0

1 0 0

0 0 1

3

5 D E3

The three elementary matrices E1, E2, and E3 correspond to three typical elementary row

operations.

Now, suppose that the m � m elementary matrix E corresponds to a certain

elementary row operation. It turns out that if we perform this same operation on an

arbitrarym�nmatrix A, we get the product matrix EA that results upon multiplying

A on the left by the matrix E. Thus we can carry out an elementary row operation

by means of left multiplication by the corresponding elementary matrix. Problems

38–40 illustrate typical cases in the proof of the following theorem.

THEOREM 5 Elementary Matrices and Row Operations

If an elementary row operation is performed on the m � n matrix A, then the

result is the product matrix EA, where E is the elementary matrix obtained by

performing the same row operation on the m �m identity matrix.

Elementary row operations are reversible. That is, to every elementary row
Elementary Inverse

Row Operation Operation

.c/Ri

1

c
Ri

SWAP.Ri ; Rj / SWAP.Ri ; Rj /

.c/Ri CRj .�c/Ri CRj

FIGURE 3.5.1. Inverse elementary

row operations.

operation there corresponds an inverse elementary row operation that cancels its

effects (see Figure 3.5.1). It follows that every elementary matrix is invertible. To

see why, let E be a given elementary matrix and let E1 be the elementary matrix

corresponding to the inverse of the row operation that transforms I into E. Then the

inverse operation transforms E to I, so Theorem 5 implies that E1E D I. We see

similarly that EE1 D I. Hence, the elementary matrix E is invertible with E�1 DE1.

Elementary matrices are not ordinarily used for computational purposes; it is

simpler to carry out row operations directly than to multiply by elementary matrices.

Instead, their principal role is in the proof of the following theorem, which leads in

turn to a practical method for inverting matrices.
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THEOREM 6 Invertible Matrices and Row Operations

The n � n matrix A is invertible if and only if it is row equivalent to the n � n

identity matrix I.

Proof: Assume first that A is invertible. Then, by Theorem 4 (with b D 0),

it follows that Ax D 0 has only the trivial solution x D 0. But Theorem 4 in Section

3.3 implies that this is so (if and) only if A is row equivalent to I.

Now assume, conversely, that A is row equivalent to I. That is, there is a

finite sequence of elementary row operations that transforms A into I. According to

Theorem 5, each of these operations can be performed by multiplying on the left by

the corresponding elementary matrix. If E1;E2; : : : ;Ek are the elementary matrices

corresponding to these row operations, it follows that

EkEk�1 � � �E2E1A D I: (14)

If we now multiply each side in Eq. (14) by the inverse matrices .Ek/
�1, .Ek�1/

�1,

: : : , .E2/
�1, .E1/

�1 in turn, we find that

A D .E1/
�1.E2/

�1
� � � .Ek�1/

�1.Ek/
�1: (15)

Thus A is a product of invertible elementary matrices, and it follows from part (c)

of Theorem 3 that A is invertible.

The proof of Theorem 6 actually tells us how to find the inverse matrix of A.

If we invert each side in Eq. (15) (remembering to reverse the order on the right),

we get

A�1
D EkEk�1 � � �E2E1I: (16)

Because each left multiplication by an elementary matrix is equivalent to perform-

ing the corresponding row operation, we see by comparison of Eqs. (14) and (16)

that the same sequence of elementary row operations that transforms A into I also

transforms I into A�1.

ALGORITHM Finding A�1

To find the inverse A�1 of the invertible n � n matrix A, find a sequence of

elementary row operations that reduces A to the n � n identity matrix I. Then

apply the same sequence of operations in the same order to I to transform it into

A�1.

As a practical matter, it generally is more convenient to carry out the two

reductions—from A to I and from I to A�1—in parallel, as illustrated in our next

example.

Example 7 Find the inverse of the 3 � 3 matrix

A D

2

4

4 3 2

5 6 3

3 5 2

3

5 :

Solution We want to reduce A to the 3� 3 identity matrix I while simultaneously performing the same

sequence of row operations on I to obtain A�1. In order to carry out this process efficiently,

we adjoin I on the right of A to form the 3 � 6 matrix
2

4

4 3 2 1 0 0

5 6 3 0 1 0

3 5 2 0 0 1

3

5 :
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We now apply the following sequence of elementary row operations to this 3 � 6 matrix

(designed to transform its left half into the 3 � 3 identity matrix).

.�1/R3 CR1

��������������!

2

4

1 �2 0 1 0 �1

5 6 3 0 1 0

3 5 2 0 0 1

3

5

.�1/R3 CR2

��������������!

2

4

1 �2 0 1 0 �1

2 1 1 0 1 �1

3 5 2 0 0 1

3

5

.�2/R1 CR2

��������������!

2

4

1 �2 0 1 0 �1

0 5 1 �2 1 1

3 5 2 0 0 1

3

5

.�3/R1 CR3

��������������!

2

4

1 �2 0 1 0 �1

0 5 1 �2 1 1

0 11 2 �3 0 4

3

5

.�2/R2 CR3

��������������!

2

4

1 �2 0 1 0 �1

0 5 1 �2 1 1

0 1 0 1 �2 2

3

5

SWAP.R2; R3/
��������������!

2

4

1 �2 0 1 0 �1

0 1 0 1 �2 2

0 5 1 �2 1 1

3

5

.2/R2 CR1

��������������!

2

4

1 0 0 3 �4 3

0 1 0 1 �2 2

0 5 1 �2 1 1

3

5

.�5/R2 CR3

��������������!

2

4

1 0 0 3 �4 3

0 1 0 1 �2 2

0 0 1 �7 11 �9

3

5

Now that we have reduced the left half of the 3 � 6 matrix to I, we simply examine its right

half to see that the inverse of A is

A�1
D

2

4

3 �4 3

1 �2 2

�7 11 �9

3

5 :

Remark Ordinarily, we do not know in advance whether a given square matrix is invertible

or not. To find out, we attempt to carry out the reduction process illustrated in Example 7. If

we succeed in reducing A to I, then A is invertible and thereby we find A�1. Otherwise—if,

somewhere along the way, an all-zero row appears in the left half—we conclude that A is not

row equivalent to I, and therefore (by Theorem 6) A is not invertible.

Matrix Equations

In certain applications, one needs to solve a system Ax D b of n equations in n

unknowns several times in succession—with the same n � n coefficient matrix A

each time, but with different constant vectors b1;b2; : : : ;bk on the right. Thus we

want to find solution vectors x1; x2; : : : ; xk such that

Ax1 D b1; Ax2 D b2; : : : ; Axk D bk : (17)

By Fact 2 at the beginning of this section,

�

Ax1 Ax2 � � � Axk

�

D A
�

x1 x2 � � � xk

�

:

So the k equations in (17) are equivalent to the single matrix equation

AX D B; (18)
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where

X D
�

x1 x2 � � � xk

�

and B D
�

b1 b2 � � � bk

�

:

If A is invertible and we know A�1, we can find the n� k matrix of “unknowns” by

multiplying each term in Equation (18) on the left by A�1:

X D A�1B: (19)

Note that this equation is a generalization of Eq. (13) in Theorem 4. If k D 1, it

usually is simplest to solve the system by Gaussian elimination, but when several

different solutions are sought, it may be simpler to find A�1 first and then to apply

(19).

Example 8 Find a 3 � 4 matrix X such that

2

4

4 3 2

5 6 3

3 5 2

3

5X D

2

4

3 �1 2 6

7 4 1 5

5 2 4 1

3

5 :

Solution The coefficient matrix is the matrix A whose inverse we found in Example 7, so Eq. (19)

yields

X D A�1B D

2

4

3 �4 3

1 �2 2

�7 11 �9

3

5

2

4

3 �1 2 6

7 4 1 5

5 2 4 1

3

5 ;

and hence

X D

2

4

�4 �13 14 1

�1 �5 8 �2

11 33 �39 4

3

5 :

By looking at the third columns of B and X, for instance, we see that the solution of

4x1 C 3x2 C 2x3 D 2

5x1 C 6x2 C 3x3 D 1

3x1 C 5x2 C 2x3 D 4

is x1 D 14, x2 D 8, x3 D �39.

Nonsingular Matrices

Theorem 6 tells us that the square matrix A is invertible if and only if it is row

equivalent to the identity matrix I, and Theorem 4 in Section 3.3 implies that the

latter is true if and only if the system Ax D 0 has only the trivial solution x D 0. A

square matrix having these equivalent properties is sometimes called a nonsingular

matrix.

THEOREM 7 Properties of Nonsingular Matrices

The following properties of an n � n matrix A are equivalent.

(a) A is invertible.

(b) A is row equivalent to the n � n identity matrix I.

(c) Ax D 0 has only the trivial solution.

(d) For every n-vector b, the system Ax D b has a unique solution.

(e) For every n-vector b, the system Ax D b is consistent.
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Proof: By the remarks preceding the statement of Theorem 7, we already

know that properties (a), (b), and (c) are equivalent—if A has any one of these

properties, then it also has the other two. We can, therefore, complete the proof by

establishing the chain of logical implications

(c)) (d)) (e)) (a):

That is, we need to show that if A has property (c), then it has property (d), and,

similarly, that (d) implies (e) and that (e) implies (a).

(c)) (d): We already know that (c) implies (a), and Theorem 4 says that (a)

implies (d). Therefore, (c) implies (d).

(d)) (e): This is obvious, because if the system Ax D b has a unique solu-

tion, then it certainly has a solution, and thus is consistent.

(e) ) (a): Given the hypothesis that Ax D b is consistent for every b, we

must prove that A is invertible. Let b D ej , the j th column vector of the identity

matrix I. Then the consistency of Ax D ej yields an n-vector xj such that

Axj D ej : (20)

Let the vectors x1; x2; : : : ; xn be obtained in this way for j D 1; 2; : : : ; n, and let B

be the n � n matrix with these vectors as its columns:

B D
�

x1 x2 : : : xn

�

:

Then

AB D A
�

x1 x2 � � � xn

�

D
�

Ax1 Ax2 � � � Axn

�

D
�

e1 e2 � � � en

�

[by (20)].

Therefore, AB D I, and thus we have found a matrix B such that AB D I.

We next show that B is invertible by showing that Bx D 0 has only the trivial

solution [and by using the fact that property (c) implies property (a)]. But if BxD 0,

then

A.Bx/ D A0 D 0;

which implies that Ix D 0 and thus that x D 0. So B is indeed invertible. We can

therefore multiply each term in the equation AB D I on the right by B�1 to get

ABB�1
D IB�1;

so that A D B�1. Thus A is the inverse of an invertible matrix, and so is itself

invertible. This establishes that property (e) implies property (a), and therefore we

have completed the proof.

The proof of Theorem 7 is a bit long, but it summarizes most of the basic

theory of Chapter 1 and is therefore well worth the effort. Indeed, this theorem is

one of the central theorems of elementary linear algebra, and we will need to refer

to it repeatedly in subsequent chapters.
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3.5 Problems
In Problems 1–8, first apply the formulas in (9) to find A�1.

Then use A�1 (as in Example 5) to solve the system Ax D b.

1. A D

�

3 2

4 3

�

, b D

�

5

6

�

2. A D

�

3 7

2 5

�

, b D

�

�1

3

�

3. A D

�

6 7

5 6

�

, b D

�

2

�3

�

4. A D

�

5 12

7 17

�

, b D

�

5

5

�

5. A D

�

3 2

5 4

�

, b D

�

5

6

�

6. A D

�

4 7

3 6

�

, b D

�

10

5

�

7. A D

�

7 9

5 7

�

, b D

�

3

2

�

8. A D

�

8 15

5 10

�

, b D

�

7

3

�

In Problems 9–22, use the method of Example 7 to find the

inverse A�1 of each given matrix A.

9.

�

5 6

4 5

�

10.

�

5 7

4 6

�

11.

2

4

1 5 1

2 5 0

2 7 1

3

5 12.

2

4

1 3 2

2 8 3

3 10 6

3

5

13.

2

4

2 7 3

1 3 2

3 7 9

3

5 14.

2

4

3 5 6

2 4 3

2 3 5

3

5

15.

2

4

1 1 5

1 4 13

3 2 12

3

5 16.

2

4

1 �3 �3

�1 1 2

2 �3 �3

3

5

17.

2

4

1 �3 0

�1 2 �1

0 �2 2

3

5 18.

2

4

1 �2 2

3 0 1

1 �1 2

3

5

19.

2

4

1 4 3

1 4 5

2 5 1

3

5 20.

2

4

2 0 �1

1 0 3

1 1 1

3

5

21.

2

6

6

4

0 0 1 0

1 0 0 0

0 1 2 0

3 0 0 1

3

7

7

5

22.

2

6

6

4

4 0 1 1

3 1 3 1

0 1 2 0

3 2 4 1

3

7

7

5

In Problems 23–28, use the method of Example 8 to find a ma-

trix X such that AX D B.

23. A D

�

4 3

5 4

�

, B D

�

1 3 �5

�1 �2 5

�

24. A D

�

7 6

8 7

�

, B D

�

2 0 4

0 5 �3

�

25. A D

2

4

1 4 1

2 8 3

2 7 4

3

5, B D

2

4

1 0 3

0 2 2

�1 1 0

3

5

26. A D

2

4

1 5 1

2 1 �2

1 7 2

3

5, B D

2

4

2 0 1

0 3 0

1 0 2

3

5

27. A D

2

4

1 �2 3

2 1 7

2 2 7

3

5, B D

2

4

0 0 1 1

0 1 0 1

1 0 1 0

3

5

28. A D

2

4

6 5 3

5 3 2

3 4 2

3

5, B D

2

4

2 1 0 2

�1 3 5 0

1 1 0 5

3

5

29. Verify parts (a) and (b) of Theorem 3.

Problems 30 through 37 explore the properties of matrix in-

verses.

30. Suppose that A, B, and C are invertible matrices of the

same size. Show that the product ABC is invertible and

that .ABC/�1 D C�1B�1A�1.

31. Suppose that A is an invertible matrix and that r and s

are negative integers. Verify that Ar As D ArCs and that

.Ar /s D Ars .

32. Prove that if A is an invertible matrix and AB D AC, then

B D C. Thus invertible matrices can be canceled.

33. Let A be an n � n matrix such that Ax D x for every n-

vector x. Show that A D I.

34. Show that a diagonal matrix is invertible if and only if each

diagonal element is nonzero. In this case, state concisely

how the inverse matrix is obtained.

35. Let A be an n � n matrix with either a row or a column

consisting only of zeros. Show that A is not invertible.

36. Show that A D

�

a b

c d

�

is not invertible if ad � bc D 0.

37. Suppose that ad � bc 6D 0 and A�1 is defined as in Equa-

tion (9). Verify directly that AA�1 D A�1A D I.

Problems 38 through 40 explore the effect of multiplying by an

elementary matrix.

38. Let E be the elementary matrix E1 of Example 6. If A is a

2� 2 matrix, show that EA is the result of multiplying the

first row of A by 3.

39. Let E be the elementary matrix E2 of Example 6 and sup-

pose that A is a 3 � 3 matrix. Show that EA is the result

upon adding twice the first row of A to its third row.

40. Let E be the elementary matrix E3 of Example 6. Show

that EA is the result of interchanging the first two rows of

the matrix A.

Problems 41 and 42 complete the proof of Eq. (2).

41. Show that the i th row of the product AB is Ai B, where Ai

is the i th row of the matrix A.

42. Apply the result of Problem 41 to show that if B is anm�n

matrix and I is the m �m identity matrix, then IB D B.

43. Suppose that the matrices A and B are row equivalent. Use

Theorem 5 to prove that BDGA, where G is a product of

elementary matrices.
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44. Show that every invertible matrix is a product of elemen-

tary matrices.

45. Extract from the proof of Theorem 7 a self-contained

proof of the following fact: If A and B are square matrices

such that AB D I, then A and B are invertible.

46. Deduce from the result of Problem 45 that if A and B are

square matrices whose product AB is invertible, then A

and B are themselves invertible.

Go to goo.gl/IcSRZK to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

3.5 Application Automated Solution of Linear Systems

Linear systems with more than two or three equations are most frequently solved

with the aid of calculators or computers. If an n � n linear system is written in the

matrix form Ax D b, then we need to calculate first the inverse matrix A�1 and

then the matrix product x D A�1b. Suppose the n � n matrix A and the column

vector b have been entered (as illustrated in the 3.2 Application). If A is invertible,

then the inverse matrix A�1 is calculated by the Maple command with(linalg):

inverse(A), the Mathematica command Inverse[A], or the MATLAB command

inv(A). Consequently, the solution vector x is calculated by the Maple command

with(linalg): x := multiply(inverse(A),b);

or the Mathematica command

x = Inverse[A].b

or the MATLAB command

x = inv(A)*b

Figure 3.5.2 illustrates a similar calculator solution of the linear system

FIGURE 3.5.2. TI-89 solution of a
linear system Ax D b.

3x1 � 2x2 C 7x3 C 5x4 D 505

2x1 C 4x2 � x3 C 6x4 D 435

5x1 C x2 C 7x3 � 3x4 D 286

4x1 � 6x2 � 8x3 C 9x4 D 445

for the solution x1 D 59, x2 D 13, x3 D 17, x4 D 47. This solution is also given by

the WolframjAlpha query

A = ((3, --2, 7, 5), (2, 4, --1, 6), (5, 1, 7, --3),

(4, --6, --8, 9)),

b = (505, 435, 286, 445),

inv(A).b

Remark Whereas the preceding commands illustrate the handy use of conveniently avail-

able inverse matrices to solve linear systems, it might be mentioned that modern computer

systems employ direct methods—involving Gaussian elimination and still more sophisticated

techniques—that are more efficient and numerically reliable to solve a linear system Ax D b

without first calculating the inverse matrix A�1.

Use an available calculator or computer system to solve the linear systems in

Problems 1–6 of the 3.3 Application. The applied problems below are elementary

in character—resembling the “word problems” of high school algebra—but might

illustrate the practical advantages of automated solutions.

1. You are walking down the street minding your own business when you spot

a small but heavy leather bag lying on the sidewalk. It turns out to contain

U.S. Mint American Eagle gold coins of the following types:

� One-half ounce gold coins that sell for $285 each,

� One-quarter ounce gold coins that sell for $150 each, and
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� One-tenth ounce gold coins that sell for $70 each.

A bank receipt found in the bag certifies that it contains 258 such coins with a

total weight of 67 ounces and a total value of exactly $40,145. How many coins

of each type are there?

2. Now you really strike it rich! You find a bag containing one-ounce U.S. American

Eagle gold coins valued at $550 each, together with half-ounce and quarter-ounce

coins valued as in the preceding problem. If this bag contains a total of 365 coins

with a total weight of exactly 11 pounds and a total value of $100,130, how many

gold coins of each type are there?

3. A commercial customer orders 81 gallons of paint that contains equal amounts of

red paint, green paint, and blue paint—and, hence, could be prepared by mixing

27 gallons of each. However, the store wishes to prepare this order by mixing

three types of paint that are already available in large quantity:

� a reddish paint that is a mixture of 50% red, 25% green, and 25% blue paint;

� a greenish paint that is 12.5% red, 75% green, and 12.5% blue paint; and

� a bluish paint that is 20% red, 20% green, and 60% blue paint.

How many gallons of each are needed to prepare the customer’s order?

4. Now the paint store receives a really big order—for 244 gallons of paint that is 1=2

red paint, 1=4 green paint, and 1=4 blue paint. The store has three already-mixed

types of paint available in large quantity—the greenish paint and the bluish paint

of the preceding problem, plus a reddish paint that is 2=3 red paint, 1=6 green

paint, and 1=6 blue paint. How many gallons of each must be mixed in order to

fill this order?

5. A tour busload of 45 people attended two Florida theme parks on successive days.

On Day 1 the entrance fee was $15 per adult, $8 per child, $12 per senior citizen

and the total charge was $558. On Day 2 the entrance fee was $20 per adult, $12

per child, $17 per senior citizen and the total charge was $771. How many adults,

children, and senior citizens were on this tour bus?

6. For some crazy reason, the lunches bought at the first theme park were totaled

separately for the adults, children, and seniors. The adults ordered 34 hot dogs,

15 French fries, and 24 soft drinks for a total bill of $70.85. The children ordered

20 hot dogs, 14 French fries, and 15 soft drinks for a total bill of $46.65. The

senior citizens ordered 11 hot dogs, 10 French fries, and 12 soft drinks for a total

bill of $30.05. What were the prices of a hot dog, an order of French fries, and a

soft drink?

7. A fast-food restaurant sells four types of sandwiches—hamburgers, cheeseburg-

ers, roast beef, and chicken—and has four cash registers. At the end of each day,

each cash register tallies the number of each type of sandwich sold, and the total

sandwich receipts for the day. The four cash register operators work at different

speeds, and one day’s totals were as follows:

Hamburgers Cheeseburgers Roast Beef Chicken Receipts

Register 1 37 44 17 23 $232.99

Register 2 28 35 13 17 $178.97

Register 3 32 39 19 21 $215.99

Register 4 47 51 25 29 $294.38

What was the price of each of the four types of sandwiches?
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8. The fast-food restaurant of the preceding problem adds a ham sandwich to its

menu and, because of increased business, it also adds a fifth cash register and

reduces prices. After this expansion, one day’s totals were as follows:

Hamburgers Cheeseburgers Roast Beef Chicken Ham Receipts

Register 1 41 49 22 26 19 $292.79

Register 2 34 39 18 20 16 $236.73

Register 3 36 43 23 24 18 $270.70

Register 4 49 52 26 31 24 $340.19

Register 5 52 55 24 28 25 $341.64

What were the new prices of the five types of sandwiches?

3.6 Determinants

In Theorem 2 of Section 3.5 we saw that the 2 � 2 matrix

A D

�

a b

c d

�

is invertible if and only if ad � bc 6D 0. The number ad � bc is called the determi-

nant of the 2 � 2 matrix A. There are several common notations for determinants:

det A D det

�

a b

c d

�

D

ˇ

ˇ

ˇ

ˇ

a b

c d

ˇ

ˇ

ˇ

ˇ

D ad � bc: (1)

In particular, note the vertical bars that distinguish a determinant from a matrix.

Sometimes we write det.A/ to emphasize that (1) defines a function which asso-

ciates a number jAj with each 2 � 2 matrix A.

Example 1
ˇ

ˇ

ˇ

ˇ

3 7

4 �6

ˇ

ˇ

ˇ

ˇ

D .3/.�6/ � .4/.7/ D �46

Determinants are often used in elementary algebra to solve a 2 � 2 system of

the form
a11x C a12y D b1

a21x C a22y D b2.
(2)

It follows from Theorems 2 and 7 in Section 3.5 that this system has a unique so-

lution if and only if its coefficient determinant—the determinant of its coefficient

matrix A—is nonzero:

det A D

ˇ

ˇ

ˇ

ˇ

a11 a12

a21 a22

ˇ

ˇ

ˇ

ˇ

6D 0: (3)

Then Cramer’s rule says that this unique solution is given by

x D

ˇ

ˇ

ˇ

ˇ

b1 a12

b2 a22

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12

a21 a22

ˇ

ˇ

ˇ

ˇ

; y D

ˇ

ˇ

ˇ

ˇ

a11 b1

a21 b2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12

a21 a22

ˇ

ˇ

ˇ

ˇ

: (4)
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Thus Cramer’s rule gives each of x and y as a quotient of two determinants,

the denominator in each case being the determinant of the coefficient matrix. In

the numerator for x the coefficients a11 and a21 of x are replaced with the right-

side coefficients b1 and b2, whereas in the numerator for y the coefficients of y are

replaced with b1 and b2.

The proof of Cramer’s rule is a routine calculation—to verify that evaluation

of the determinant in (4) gives the same expressions for x and y as are obtained by

solution of (2) by the method of elimination.

Example 2 To apply Cramer’s rule to solve the system

7x C 8y D 5

6x C 9y D 4

with coefficient determinant
ˇ

ˇ

ˇ

ˇ

7 8

6 9

ˇ

ˇ

ˇ

ˇ

D 15;

we simply substitute in the equations in (4) to get

x D

ˇ

ˇ

ˇ

ˇ

5 8

4 9

ˇ

ˇ

ˇ

ˇ

15
D
13

15
; y D

ˇ

ˇ

ˇ

ˇ

7 5

6 4

ˇ

ˇ

ˇ

ˇ

15
D �

2

15
:

Higher-Order Determinants

We define 3 � 3 determinants in terms of 2 � 2 determinants, 4 � 4 determinants in

terms of 3 � 3 determinants, and so on. This type of definition—one dimension at

a time, with the definition in each dimension depending on its meaning in lower

dimensions—is called an inductive definition.

The determinant det A D jaij j of a 3 � 3 matrix A D
�

aij

�

is defined as

follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D a11

ˇ

ˇ

ˇ

ˇ

a22 a23

a32 a33

ˇ

ˇ

ˇ

ˇ

� a12

ˇ

ˇ

ˇ

ˇ

a21 a23

a31 a33

ˇ

ˇ

ˇ

ˇ

C a13

ˇ

ˇ

ˇ

ˇ

a21 a22

a31 a32

ˇ

ˇ

ˇ

ˇ

: (5)

Note the single minus sign on the right-hand side. The three 2 � 2 determinants

in (5) are multiplied by the elements a11, a12, and a13 along the first row of the

matrix A. Each of these elements a1j is multiplied by the determinant of the 2 � 2

submatrix of A that remains after the row and column containing a1j are deleted.

Example 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

5 �2 �3

4 0 1

3 �1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .5/

ˇ

ˇ

ˇ

ˇ

0 1

�1 2

ˇ

ˇ

ˇ

ˇ

� .�2/

ˇ

ˇ

ˇ

ˇ

4 1

3 2

ˇ

ˇ

ˇ

ˇ

C .�3/

ˇ

ˇ

ˇ

ˇ

4 0

3 �1

ˇ

ˇ

ˇ

ˇ

D .5/.1/C .2/.5/ � .3/.�4/ D 27

The definition of higher-order determinants is simplified by the following no-

tation and terminology.
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DEFINITION Minors and Cofactors

Let AD
�

aij

�

be an n� n matrix. The ijth minor of A (also called the minor of

aij ) is the determinant Mij of the .n � 1/ � .n � 1/ submatrix that remains after

deleting the i th row and the j th column of A. The ijth cofactor Aij of A (or the

cofactor of aij ) is defined to be

Aij D .�1/
iCjMij : (6)

For example, the minor of a12 in a 3 � 3 matrix is

M12 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

a21 a23

a31 a33

ˇ

ˇ

ˇ

ˇ

:

The minor of a32 in a 4 � 4 matrix is

M32 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a13 a14

a21 a23 a24

a41 a43 a44

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

According to Eq. (6), the cofactorAij is obtained by attaching the sign .�1/iCj

to the minor Mij . This sign is most easily remembered as the one that appears in

the ijth position in checkerboard arrays such as

2

4

C � C

� C �

C � C

3

5 and

2

6

6

4

C � C �

� C � C

C � C �

� C � C

3

7

7

5

:

Note that a plus sign always appears in the upper left corner and that the signs

alternate horizontally and vertically. In the 4 � 4 case, for instance,

A11 D CM11; A12 D �M12; A13 D CM13; A14 D �M14;

A21 D �M21; A22 D CM22; A23 D �M23; A24 D CM24;

and so forth.

With this notation, the definition of 3 � 3 determinants in (5) can be rewritten

as
det A D a11M11 � a12M12 C a13M13

D a11A11 C a12A12 C a13A13.
(7)

The last formula is the cofactor expansion of det A along the first row of A. Its

natural generalization yields the definition of the determinant of an n � n matrix,

under the inductive assumption that .n � 1/ � .n � 1/ determinants have already

been defined.

DEFINITION n � n Determinants

The determinant det A D jaij j of an n � n matrix A D
�

aij

�

is defined as

det A D a11A11 C a12A12 C � � � C a1nA1n: (8)

Thus we multiply each element of the first row of A by its cofactor and then add

these n products to get det A.
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In numerical computations, it frequently is more convenient to work first with

minors rather than with cofactors and then attach signs in accord with the checker-

board pattern illustrated previously. Note that determinants have been defined only

for square matrices.

Example 4 To evaluate the determinant of

A D

2

6

6

4

2 0 0 �3

0 �1 0 0

7 4 3 5

�6 2 2 4

3

7

7

5

;

we observe that there are only two nonzero terms in the cofactor expansion along the first

row. We need not compute the cofactors of zeros, because they will be multiplied by zero in

computing the determinant; hence

det A D C.2/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1 0 0

4 3 5

2 2 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� .�3/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 �1 0

7 4 3

�6 2 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Each of the 3 � 3 determinants on the right-hand side has only a single nonzero term in its

cofactor expansion along the first row, so

det A D .2/.�1/

ˇ

ˇ

ˇ

ˇ

3 5

2 4

ˇ

ˇ

ˇ

ˇ

C .3/.C1/

ˇ

ˇ

ˇ

ˇ

7 3

�6 2

ˇ

ˇ

ˇ

ˇ

D .�2/.12 � 10/C .3/.14C 18/ D 92:

Note that, if we could expand along the second row in Example 4, there would

be only a single 3 � 3 determinant to evaluate. It is in fact true that a determinant

can be evaluated by expansion along any row or column. The proof of the following

theorem is included in Appendix B.

THEOREM 1 Cofactor Expansions of Determinants

The determinant of an n � n matrix A D
�

aij

�

can be obtained by expansion

along any row or column. The cofactor expansion along the i th row is

det A D ai1Ai1 C ai2Ai2 C � � � C ainAin: (9)

The cofactor expansion along the j th column is

det A D a1jA1j C a2jA2j C � � � C anjAnj : (10)

The formulas in (9) and (10) provide 2n different cofactor expansions of an

n � n determinant. For n D 3, for instance, we have

det A D a11A11 C a12A12 C a13A13

D a21A21 C a22A22 C a23A23

9

=

;

row expansions

D a31A31 C a32A32 C a33A33

D a11A11 C a21A21 C a31A31

D a12A12 C a22A22 C a32A32

9

=

;

column expansions

D a13A13 C a23A23 C a33A33:

In a specific example, we naturally attempt to choose the expansion that requires the

least computational labor.



192 Chapter 3 Linear Systems and Matrices

Example 5 To evaluate the determinant of

A D

2

4

7 6 0

9 �3 2

4 5 0

3

5 ;

we expand along the third column, because it has only a single nonzero entry. Thus

det A D �.2/

ˇ

ˇ

ˇ

ˇ

7 6

4 5

ˇ

ˇ

ˇ

ˇ

D .�2/.35 � 24/ D �22:

In addition to providing ways of evaluating determinants, the theorem on co-

factor expansions is a valuable tool for investigating the general properties of de-

terminants. For instance, it follows immediately from the formulas in (9) and (10)

that, if the square matrix A has either an all-zero row or an all-zero column, then

det A D 0. For example, by expanding along the second row we see immediately

that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

17 33 �24

0 0 0

80 �62 41

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:

Row and Column Properties

We now list seven properties of determinants that simplify their computation. Each

of these properties is readily verified directly in the case of 2 � 2 determinants. Just

as our definition of n � n determinants was inductive, the following discussion of

Properties 1–7 of determinants is inductive. That is, we suppose that n � 3 and that

these properties have already been verified for .n � 1/ � .n � 1/ determinants.

PROPERTY 1: If the n � n matrix B is obtained from A by multiplying a single

row (or a column) of A by the constant k, then det B D k det A.

For instance, if the i th row of A is multiplied by k, then the elements off the

i th row of A are unchanged. Hence for each j D 1; 2; : : : ; n, the ijth cofactors of A

and B are equal: Aij D Bij . Therefore, expansion of B along the i th row gives

det B D .kai1/Bi1 C .kai2/Bi2 C � � � C .kain/Bin

D k.ai1Ai1 C ai2Ai2 C � � � C ainAin/;

and thus det B D k det A.

Property 1 implies simply that a constant can be factored out of a single row

or column of a determinant. Thus we see that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7 15 �17

�2 9 6

5 �12 10

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .3/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7 5 �17

�2 3 6

5 �4 10

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

by factoring 3 out of the second column.

PROPERTY 2: If the n�nmatrix B is obtained from A by interchanging two rows

(or two columns), then det B D � det A.
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To see why this is so, suppose (for instance) that the first row is not one of

the two that are interchanged (recall that n � 3). Then for each j D 1; 2; : : : ; n, the

cofactor B1j is obtained by interchanging two rows of the cofactor A1j . Therefore,

B1j D �A1j by Property 2 for .n � 1/ � .n � 1/ determinants. Because b1j D a1j

for each j , it follows by expanding along the first row that

det B D b11B11 C b12B12 C � � � C b1nB1n

D a11.�A11/C a12.�A12/C � � � C a1n.�A1n/

D �.a11A11 C a12A12 C � � � C a1nA1n/;

and thus det B D � det A.

PROPERTY 3: If two rows (or two columns) of the n � n matrix A are identical,

then det A D 0.

To see why, let B denote the matrix obtained by interchanging the two identical

rows of A. Then B D A, so det B D det A. But Property 2 implies that det B D

� det A. Thus det A D � det A, and it follows immediately that det A D 0.

PROPERTY 4: Suppose that the n� nmatrices A1, A2, and B are identical except

for their i th rows—that is, the other n� 1 rows of the three matrices are identical—

and that the i th row of B is the sum of the i th rows of A1 and A2. Then

det B D det A1 C det A2:

This result also holds if columns are involved instead of rows.

Property 4 is readily established by expanding B along its i th row. In Problem

45 we ask you to supply the details for a typical case. The main importance (at this

point) of Property 4 is that it implies the following property relating determinants

and elementary row operations.

PROPERTY 5: If the n � n matrix B is obtained by adding a constant multiple of

one row (or column) of A to another row (or column) of A, then det B D det A.

Thus the value of a determinant is not changed either by the type of elemen-

tary row operation described or by the corresponding type of elementary column

operation. The following computation with 3 � 3 matrices illustrates the general

proof of Property 5. Let

A D

2

4

a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5 and B D

2

4

a11 a12 a13 C ka11

a21 a22 a23 C ka21

a31 a32 a33 C ka31

3

5 :

So B is the result of adding k times the first column of A to its third column. Then

det B D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13 C ka11

a21 a22 a23 C ka21

a31 a32 a33 C ka31

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(11)

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a11

a21 a22 a21

a31 a32 a31

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
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Here we first applied Property 4 and then factored k out of the second summand

with the aid of Property 1. Now the first determinant on the right-hand side in (11)

is simply det A, whereas the second determinant is zero (by Property 3—its first

and third columns are identical). We therefore have shown that det B D det A, as

desired.

Although we use only elementary row operations in reducing a matrix to ech-

elon form, Properties 1, 2, and 5 imply that we may use both elementary row opera-

tions and the analogous elementary column operations in simplifying the evaluation

of determinants.

Example 6 The matrix

A D

2

4

2 �3 �4

�1 4 2

3 10 1

3

5

has no zero elements to simplify the computation of its determinant as it stands, but we notice

that we can “knock out” the first two elements of its third column by adding twice the first

column to the third column. This gives

det A D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 �3 �4

�1 4 2

3 10 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 �3 0

�1 4 0

3 10 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .C7/

ˇ

ˇ

ˇ

ˇ

2 �3

�1 4

ˇ

ˇ

ˇ

ˇ

D 35:

The moral of the example is this: Evaluate determinants with your eyes open.

An upper triangular matrix is a square matrix having only zeros below its

main diagonal. A lower triangular matrix is a square matrix having only zeros

above its main diagonal. A triangular matrix is one that is either upper triangular

or lower triangular, and thus looks like

2

4

1 6 10

0 5 8

0 0 7

3

5 or

2

4

1 0 0

3 7 0

4 6 5

3

5 :

The next property tells us that determinants of triangular matrices are especially

easy to evaluate.

PROPERTY 6: The determinant of a triangular matrix is equal to the product of

its diagonal elements.

The reason is that the determinant of any triangular matrix can be evaluated as

in the following computation:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 11 9 2

0 �2 8 �6

0 0 5 17

0 0 0 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .3/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�2 8 �6

0 5 17

0 0 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .3/.�2/

ˇ

ˇ

ˇ

ˇ

5 17

0 �4

ˇ

ˇ

ˇ

ˇ

D .3/.�2/.5/.�4/ D 120:

At each step we expand along the first column and pick up another diagonal element

as a factor of the determinant.
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Example 7 To evaluate
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 �1 3

�2 1 5

4 �2 10

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

we first add the first row to the second and then subtract twice the first row from the third.

This yields
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 �1 3

�2 1 5

4 �2 10

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 �1 3

0 0 8

0 0 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0;

because we produced a triangular matrix having a zero on its main diagonal. (Can you see an

even quicker way to do it by keeping your eyes open?)

The Transpose of a Matrix

The transpose AT of a 2 � 2 matrix A is obtained by interchanging its off-diagonal

elements:

If A D

�

a b

c d

�

then AT
D

�

a c

b d

�

: (12)

More generally, the transpose of the m � n matrix A D
�

aij

�

is the n �m matrix

AT defined by

AT
D
�

aj i

�

: (13)

Note the reversal of subscripts; this means that the element of AT in its j th row and

i th column is the element of A in the i th row and the j th column of A. Hence the

rows of the transpose AT are (in order) the columns of A, and the columns of AT

are the rows of A. Thus we obtain AT by changing the rows of A into columns. For

instance,
�

2 0 5

4 �1 7

�

T

D

2

4

2 4

0 �1

5 7

3

5

and
2

4

7 �2 6

1 2 3

5 0 4

3

5

T

D

2

4

7 1 5

�2 2 0

6 3 4

3

5 :

If the matrix A is square, then we get AT by interchanging elements of A that are

located symmetrically with respect to its main diagonal. Thus AT is the mirror

reflection of A through its main diagonal.

In Problems 47 and 48 we ask you to verify the following properties of the

transpose operation (under the assumption that A and B are matrices of appropriate

sizes and c is a number):

(i) .AT /T D A;

(ii) .AC B/T D AT C BT ;

(iii) .cA/T D cAT ;

(iv) .AB/T D BT AT .

PROPERTY 7: If A is a square matrix, then det.AT / D det A.

This property of determinants can be verified by writing the cofactor expan-

sion of det A along its first row and the cofactor expansion of det.AT / along its first

column. When this is done, we see that the two expansions are identical, because

the rows of A are the columns of AT (as in Problem 49).
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Determinants and Invertibility

We began this section with the remark that a 2 � 2 matrix A is invertible if and only

if its determinant is nonzero: jAj 6D 0. This result holds more generally for n � n

matrices.

THEOREM 2 Determinants and Invertibility

The n � n matrix A is invertible if and only if det A 6D 0.

This theorem (along with the others in this section) is proved in Appendix B.

So now we can add the statement that det A 6D 0 to the list of equivalent properties of

nonsingular matrices stated in Theorem 7 of Section 3.5. Indeed, some texts define

the square matrix A to be nonsingular if and only if det A 6D 0.

Example 8 According to Problem 61, the determinant of the matrix

V D

2

4

1 a a2

1 b b2

1 c c2

3

5

is

jVj D .b � a/.c � a/.c � b/:

Note that jVj 6D 0 if and only if the three numbers a, b, and c are distinct. Hence it follows

from Theorem 2 that V is invertible if and only if a, b, and c are distinct. For instance, with

a D �2, b D 3, and c D �4 we see that the matrix

2

4

1 �2 4

1 3 9

1 �4 16

3

5

is invertible.

The connection between nonzero determinants and matrix invertibility is

closely related to the fact that the determinant function “respects” matrix multi-

plication in the sense of the following theorem.

THEOREM 3 Determinants and Matrix Products

If A and B are n � n matrices, then

jABj D jAj jBj: (14)

The fact that jABj D jAj jBj seems so natural that we might fail to note that it

is also quite remarkable. Contrast the simplicity of the equation jABj D jAj jBj with

the complexity of the seemingly unrelated definitions of determinants and matrix

products. For another contrast, we can mention that jAC Bj is generally not equal

to jAj C jBj. (Pick a pair of 2 � 2 matrices and calculate their determinants and that

of their sum.)

As a first application of Theorem 3, we can calculate the determinant of the

inverse of an invertible matrix A:

AA�1
D I;

so

jAj jA�1
j D jAA�1

j D jIj D 1;
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and therefore

jA�1
j D

1

jAj
: (15)

Now jAj 6D 0 because A is invertible. Thus det.A�1/ is the reciprocal of det A.

Example 9 The determinant of

A D

2

6

6

4

2 2 �2 0

�4 2 3 1

0 4 �1 �4

3 1 3 �1

3

7

7

5

happens to be jAj D 320 6D 0. Hence A is invertible, and without finding A�1 we know from

Eq. (15) that jA�1j D 1=320.

Cramer’s Rule for n�n Systems

Suppose that we need to solve the n � n linear system

Ax D b; (16)

where

A D
�

aij

�

; x D

2

6

6

6

4

x1

x2

:::

xn

3

7

7

7

5

; and b D

2

6

6

6

4

b1

b2

:::

bn

3

7

7

7

5

:

We assume that the coefficient matrix A is invertible, so we know in advance that a

unique solution x of (16) exists. The question is how to write x explicitly in terms

of the coefficients aij and the constants bi . In the following discussion, we think of

x as a fixed (though as yet unknown) vector.

If we denote by a1; a2; : : : ; an the column vectors of the n � n matrix A, then

A D
�

a1 a2 � � � an

�

:

The desired formula for the i th unknown xi involves the determinant of the matrix
�

a1 � � � b � � � an

�

that is obtained upon replacing the i th column ai of A with

the constant vector b.

THEOREM 4 Cramer’s Rule

Consider the n � n linear system Ax D b, with

A D
�

a1 a2 � � � an

�

:

If jAj 6D 0, then the i th entry of the unique solution x D .x1; x2; : : : ; xn/ is given

by

xi D

ˇ

ˇ a1 � � � b � � � an

ˇ

ˇ

jAj

D
1

jAj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 � � � b1 � � � a1n

a21 � � � b2 � � � a2n

:::
: : :

:::
: : :

:::

an1 � � � bn � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; (17)

where in the last expression the constant vector b replaces the i th column vector

ai of A.
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For instance, the unique solution .x1; x2; x3/ of the 3 � 3 system

a11x1 C a12x2 C a13x3 D b1

a21x1 C a22x2 C a23x3 D b2

a31x1 C a32x2 C a33x3 D b3

(18)

with jAj D jaij j 6D 0 is given by the formulas

x1 D
1

jAj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1 a12 a13

b2 a22 a23

b3 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

x2 D
1

jAj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 b1 a13

a21 b2 a23

a31 b3 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

x3 D
1

jAj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 b1

a21 a22 b2

a31 a32 b3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(19)

Example 10 Use Cramer’s rule to solve the system

x1 C 4x2 C 5x3 D 2

4x1 C 2x2 C 5x3 D 3

�3x1 C 3x2 � x3 D 1.

Solution We find that

jAj D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 4 5

4 2 5

�3 3 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 29I

then the formulas in (19) yield

x1 D
1

29

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 4 5

3 2 5

1 3 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
33

29
;

x2 D
1

29

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 5

4 3 5

�3 1 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
35

29
;

and

x3 D
1

29

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 4 2

4 2 3

�3 3 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �
23

29
:

Inverses and the Adjoint Matrix

The inverse A�1 of the invertible n� n matrix A can be found by solving the matrix

equation

AX D I: (20)

If we write the coefficient matrix A D
�

a1 a2 � � � an

�

, the unknown matrix

X D
�

x1 x2 � � � xn

�

, and the identity matrix I D
�

e1 e2 � � � en

�

in terms

of their columns, then (20) says that

Axj D ej (21)
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for j D 1; 2; : : : ; n. Each of these n equations can then be solved explicitly using

Cramer’s rule. In particular, Eq. (17) says that the i th element of the column matrix

xj is given by

xij D

ˇ

ˇ a1 � � � ai�1 ej aiC1 � � � an

ˇ

ˇ

jAj
(22)

for i , j D 1; 2; : : : ; n. When these results are assembled (Appendix B), we get an

explicit formula for the inverse matrix.

THEOREM 5 The Inverse Matrix

The inverse of the invertible matrix A is given by the formula

A�1
D

�

Aij

�

T

jAj
; (23)

where, as usual, Aij denotes the ijth cofactor of A; that is, Aij is the product of

.�1/iCj and the ijth minor determinant of A.

We see in (23) the transpose of the cofactor matrix
�

Aij

�

of the n� nmatrix

A. This transposed cofactor matrix is called the adjoint matrix of A and is denoted

by

adj A D
�

Aij

�

T

D
�

Aj i

�

: (24)

Example 11 Apply the formula in (23) to find the inverse of the matrix

A D

2

4

1 4 5

4 2 5

�3 3 �1

3

5

of Example 10, in which we saw that jAj D 29.

Solution First we calculate the cofactors of A, arranging our computations in a natural 3 � 3 array:

A11 D C

ˇ

ˇ

ˇ

ˇ

2 5

3 �1

ˇ

ˇ

ˇ

ˇ

D �17; A12D �

ˇ

ˇ

ˇ

ˇ

4 5

�3 �1

ˇ

ˇ

ˇ

ˇ

D �11; A13 D C

ˇ

ˇ

ˇ

ˇ

4 2

�3 3

ˇ

ˇ

ˇ

ˇ

D 18;

A21 D �

ˇ

ˇ

ˇ

ˇ

4 5

3 �1

ˇ

ˇ

ˇ

ˇ

D 19; A22D C

ˇ

ˇ

ˇ

ˇ

1 5

�3 �1

ˇ

ˇ

ˇ

ˇ

D 14; A23 D �

ˇ

ˇ

ˇ

ˇ

1 4

�3 3

ˇ

ˇ

ˇ

ˇ

D �15;

A31 D C

ˇ

ˇ

ˇ

ˇ

4 5

2 5

ˇ

ˇ

ˇ

ˇ

D 10; A32D �

ˇ

ˇ

ˇ

ˇ

1 5

4 5

ˇ

ˇ

ˇ

ˇ

D 15; A33 D C

ˇ

ˇ

ˇ

ˇ

1 4

4 2

ˇ

ˇ

ˇ

ˇ

D �14:

(Note the familiar checkerboard pattern of signs.) Thus the cofactor matrix of A is

�

Aij

�

D

2

4

�17 �11 18

19 14 �15

10 15 �14

3

5 :

Next, we interchange rows and columns to obtain the adjoint matrix

adj A D
�

Aij

�

T

D

2

4

�17 19 10

�11 14 15

18 �15 �14

3

5 :

Finally, in accord with Eq. (23), we divide by jAj D 29 to get the inverse matrix

A�1
D

1

29

2

4

�17 19 10

�11 14 15

18 �15 �14

3

5 :
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Computational Efficiency

The amount of labor required to complete a numerical calculation is measured by

the number of arithmetical operations it involves. So let us count just the number of

multiplications required to evaluate an n� n determinant using cofactor expansions.

If n D 5, for instance, then the cofactor expansion along a row or column requires

computations of five 4 � 4 determinants. A cofactor expansion of each of these

five 4 � 4 determinants involves four 3 � 3 determinants. Each of these four 3 �

3 determinants leads to three 2 � 2 determinants, and finally each of these 2 � 2

determinants requires two multiplications for its evaluation. Hence the total number

of multiplications required to evaluate the original 5 � 5 determinant is

5 � 4 � 3 � 2 D 5Š D 120:

In general, the number of multiplications required to evaluate an n � n determinant

completely by cofactor expansions is

nŠ D n � .n � 1/ � � � 3 � 2 � 1 (n factorial).

Thus, if we ignore the smaller number of additions involved, then our opera-

tions count for an n � n determinant is nŠ. For instance, the evaluation of a 25 � 25

determinant by cofactor expansion would require about 25Š � 1:55 � 1025 opera-

tions. If we used a supercomputer capable of a billion operations per second this

task would require about .1:55 � 1016/=.365:25 � 24 � 3600/ � 492 million years!

This same supercomputer would require about 9:64 � 1047 years—incomparably

longer than the estimated age of the universe (perhaps 20 billion years)—to eval-

uate a 50 � 50 determinant by cofactor expansion. Contemporary scientific and

engineering applications routinely involve matrices of size 1000 � 1000 (or larger)

whose cofactor expansions would require incomprehensibly long times with any

conceivable computer.

However, a typical 2000-era desktop computer, using MATLAB and perform-

ing “only” about 100 million operations per second, calculates the determinant or

inverse of a randomly generated 100 � 100 matrix almost instantaneously. How is

this possible? Obviously not by using cofactor expansions!

The answer is that determinants are much more efficiently calculated by Gaus-

sian elimination—that is, by reduction to triangular form, so that only the product of

the remaining diagonal elements need be calculated. Similarly, the inverse of the in-

vertible matrix A is much more efficiently calculated by reduction of the augmented

matrix
�

A I
�

to reduced echelon form (as in Section 3.5) than by use of Cramer’s

rule (as in Theorem 5 here). A careful count reveals that the number of arithmetic

operations required to reduce an n � n matrix to echelon form is of the order of n3

rather than nŠ. As indicated in the table of Fig. 3.6.1, n3 is dramatically smaller

than nŠ if n is fairly large. Consequently, cofactor expansions of determinants and

Cramer’s rule for the solution of systems are primarily of theoretical importance,

and are seldom used in numerical problems where n is greater than 3 or 4.

n 5 10 25 50 100

2

3
n3 83 667 10,417 83,333 666,667

nŠ 120 3,628,800 1:55 � 1025 3:04 � 1064 9:33 � 10157

FIGURE 3.6.1. Approximate operations counts for evaluating an n � n determinant by Gaussian

elimination ( 2
3

n
3) and by cofactor expansion (nŠ).
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3.6 Problems
Use cofactor expansions to evaluate the determinants in Prob-

lems 1–6. Expand along the row or column that minimizes the

amount of computation that is required.

1.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 0 3

4 0 0

0 5 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 0

1 2 1

0 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0 0

2 0 5 0

3 6 9 8

4 0 10 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

5 11 8 7

3 �2 6 23

0 0 0 �3

0 4 0 17

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

5.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 0 1 0 0

2 0 0 0 0

0 0 0 3 0

0 0 0 0 4

0 5 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 0 11 �5 0

�2 4 13 6 5

0 0 5 0 0

7 6 �9 17 7

0 0 8 2 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

In Problems 7–12, evaluate each given determinant after first

simplifying the computation (as in Example 6) by adding an

appropriate multiple of some row or column to another.

7.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

2 2 2

3 3 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 3 4

�2 �3 1

3 2 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

9.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 �2 5

0 5 17

6 �4 12

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

10.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�3 6 5

1 �2 �4

2 �5 12

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

11.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 3 4

0 5 6 7

0 0 8 9

2 4 6 9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

12.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 0 0 �3

0 1 11 12

0 0 5 13

�4 0 0 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Use the method of elimination to evaluate the determinants in

Problems 13–20.

13.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�4 4 �1

�1 �2 2

1 4 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

14.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4 2 �2

3 1 �5

�5 �4 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

15.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�2 5 4

5 3 1

1 4 5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

16.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 4 �2

�5 �4 �1

�4 2 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

17.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 3 3 1

0 4 3 �3

2 �1 �1 �3

0 �4 �3 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

18.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 4 4 1

0 1 �2 2

3 3 1 4

0 1 �3 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

19.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0 3

0 1 �2 0

�2 3 �2 3

0 �3 3 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

20.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 1 �1

2 1 3 3

0 1 �2 3

�1 4 �2 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Use Cramer’s rule to solve the systems in Problems 21–32.

21. 3x C 4y D 2

5x C 7y D 1

22. 5x C 8y D 3

8x C 13y D 5

23. 17x C 7y D 6

12x C 5y D 4

24. 11x C 15y D 10

8x C 11y D 7

25. 5x C 6y D 12

3x C 4y D 6

26. 6x C 7y D 3

8x C 9y D 4

27. 5x1 C 2x2 � 2x3 D 1

x1 C 5x2 � 3x3 D �2

5x1 � 3x2 C 5x3 D 2

28. 5x1 C 4x2 � 2x3 D 4

2x1 C 3x3 D 2

2x1 � x2 C x3 D 1

29. 3x1 � x2 � 5x3 D 3

4x1 � 4x2 � 3x3 D �4

x1 � 5x3 D 2

30. x1 C 4x2 C 2x3 D 3

4x1 C 2x2 C x3 D 1

2x1 � 2x2 � 5x3 D �3

31. 2x1 � 5x3 D �3

4x1 � 5x2 C 3x3 D 3

�2x1 C x2 C x3 D 1

32. 3x1 C 4x2 � 3x3 D 5

3x1 � 2x2 C 4x3 D 7

3x1 C 2x2 � x3 D 3

Apply Theorem 5 to find the inverse A�1 of each matrix A

given in Problems 33–40.

33.

2

4

�5 �2 2

1 5 �3

5 �3 1

3

5 34.

2

4

2 0 3

�5 �4 2

2 �1 1

3

5

35.

2

4

3 5 2

�2 3 �4

�5 0 �5

3

5 36.

2

4

�4 4 3

3 �1 �5

1 0 �5

3

5

37.

2

4

�4 1 5

�2 4 5

�3 �3 �1

3

5 38.

2

4

3 4 �3

3 2 �1

�3 2 �4

3

5

39.

2

4

�3 �2 3

0 3 2

2 3 �5

3

5 40.

2

4

2 4 �3

2 �3 �1

�5 0 �3

3

5

41. Show that .AB/T D BT AT if A and B are arbitrary 2 � 2

matrices.
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42. Consider the 2 � 2 matrices

A D

�

a b

c d

�

and B D

�

x

y

�

;

where x and y denote the row vectors of B. Then the prod-

uct AB can be written in the form

AB D

�

axC by

cxC dy

�

:

Use this expression and the properties of determinants to

show that

det AB D .ad � bc/

ˇ

ˇ

ˇ

ˇ

x

y

ˇ

ˇ

ˇ

ˇ

D .det A/.det B/:

Thus the determinant of a product of 2 � 2 matrices is

equal to the product of their determinants.

Each of Problems 43–46 lists a special case of one of Property

1 through Property 5. Verify it by expanding the determinant

on the left-hand side along an appropriate row or column.

43.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ka11 a12 a13

ka21 a22 a23

ka31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

44.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a21 a22 a23

a11 a12 a13

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

45.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1 b1 c1 C d1

a2 b2 c2 C d2

a3 b3 c3 C d3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1 b1 c1

a2 b2 c2

a3 b3 c3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1 b1 d1

a2 b2 d2

a3 b3 d3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

46.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 C ka12 a12 a13

a21 C ka22 a22 a23

a31 C ka32 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Problems 47 through 49 develop properties of matrix trans-

poses.

47. Suppose that A and B are matrices of the same size.

Show that: (a) .AT /T D A; (b) .cA/T D cAT ; and (c)

.AC B/T D AT C BT .

48. Let A and B be matrices such that AB is defined. Show

that .AB/T D BT AT . Begin by recalling that the ijth ele-

ment of AB is obtained by multiplying elements in the i th

row of A with those in the j th column of B. What is the

ijth element of BT AT ?

49. Let A D
�

aij

�

be a 3 � 3 matrix. Show that det.AT / D

det A by expanding det A along its first row and det.AT /

along its first column.

50. Suppose that A2 D A. Prove that jAj D 0 or jAj D 1.

51. Suppose that An D 0 (the zero matrix) for some positive

integer n. Prove that jAj D 0.

52. The square matrix A is called orthogonal provided that

AT D A�1. Show that the determinant of such a matrix

must be either C1 or �1.

53. The matrices A and B are said to be similar provided that

A D P�1BP for some invertible matrix P. Show that if A

and B are similar, then jAj D jBj.

54. Deduce from Theorems 2 and 3 that if A and B are n � n

invertible matrices, then AB is invertible if and only if

both A and B are invertible.

55. Let A and B be n � n matrices. Suppose it is known that

either AB D I or BA D I. Use the result of Problem 54 to

conclude that B D A�1.

56. Let A be an n � n matrix with det A D 1 and with all ele-

ments of A integers.

(a) Show that A�1 has only integer entries.

(b) Suppose that b is an n-vector with only integer en-

tries. Show that the solution vector x of Ax D b has

only integer entries.

57. Let A be a 3 � 3 upper triangular matrix with nonzero de-

terminant. Show by explicit computation that A�1 is also

upper triangular.

58. Figure 3.6.2 shows an acute triangle with angles A, B , and

C and opposite sides a, b, and c. By dropping a perpen-

dicular from each vertex to the opposite side, derive the

equations

c cosB C b cosC D a

c cosA C a cosC D b

a cosB C b cosA D c.

Regarding these as linear equations in the unknowns

cosA, cosB , and cosC , use Cramer’s rule to derive the

law of cosines by solving for

cosA D
b2 C c2 � a2

2bc
:

Thus

a2
D b2

C c2
� 2bc cosA:

Note that the case A D �=2 .90ı/ reduces to the Pythago-

rean theorem.

a

BA

C

c

b

FIGURE 3.6.2. The triangle of Problem 58.

59. Show that

ˇ

ˇ

ˇ

ˇ

2 1

1 2

ˇ

ˇ

ˇ

ˇ

D 3 and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 0

1 2 1

0 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 4:

60. Consider the n � n determinant

Bn D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 0 0 � � � 0 0

1 2 1 0 � � � 0 0

0 1 2 1 � � � 0 0
:::
:::
:::
:::
: : :

:::
:::

0 0 0 0 � � � 2 1

0 0 0 0 � � � 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

in which each entry on the main diagonal is a 2, each entry

on the two adjacent diagonals is a 1, and every other entry

is zero.
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(a) Expand along the first row to show that

Bn D 2Bn�1 � Bn�2:

(b) Prove by induction on n that Bn D nC 1 for n � 2.

Problems 61–64 deal with the Vandermonde determinant

V.x1; x2; : : : ; xn/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 x1 x2

1
� � � xn�1

1

1 x2 x2

2
� � � xn�1

2

:::
:::

:::
: : :

:::

1 xn x2

n
� � � xn�1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

that will play an important role in Section 3.7.

61. Show by direct computation that V.a; b/ D b � a and that

V.a; b; c/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 a a2

1 b b2

1 c c2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .b � a/.c � a/.c � b/:

62. The formulas in Problem 61 are the cases nD 2 and nD 3

of the general formula

V.x1; x2; : : : ; xn/ D

n
Y

i; j D 1

i > j

.xi � xj /: (25)

The case n D 4 is

V.x1; x2; x3; x4/ D .x2 � x1/.x3 � x1/.x3 � x2/

� .x4 � x1/.x4 � x2/.x4 � x3/:

Prove this as follows. Given x1, x2, and x3, define the

cubic polynomial P.y/ to be

P.y/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 x1 x2

1
x3

1

1 x2 x2

2
x3

2

1 x3 x2

3
x3

3

1 y y2 y3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (26)

Because P.x1/ D P.x2/ D P.x3/ D 0 (why?), the roots

of P.y/ are x1, x2, and x3. It follows that

P.y/ D k.y � x1/.y � x2/.y � x3/;

where k is the coefficient of y3 in P.y/. Finally, ob-

serve that expansion of the 4 � 4 determinant in (26)

along its last row gives k D V.x1; x2; x3/ and that

V.x1; x2; x3; x4/ D P.x4/.

63. Generalize the argument in Problem 62 to prove the for-

mula in (25) by induction on n. Begin with the .n � 1/st-

degree polynomial

P.y/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 x1 x2

1
� � � xn�1

1

1 x2 x2

2
� � � xn�1

2

:::
:::

:::
: : :

:::

1 xn�1 x2

n�1
� � � xn�1

n�1

1 y y2 � � � yn�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

64. Use the formula in (25) to evaluate the two determinants

given next.

(a)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

1 2 4 8

1 3 9 27

1 4 16 64

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(b)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 �1 1 �1

1 2 4 8

1 �2 4 �8

1 3 9 27

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3.7 Linear Equations and Curve Fitting

Linear algebra has important applications to the common scientific problem of rep-

resenting empirical data by means of equations or functions of specified types. We
y

x

(x0, y0)

(x1, y1)

(x
i, yi

)

(x
n, yn

)

y = f (x)

FIGURE 3.7.1. A curve y D f .x/

interpolating (that is, passing through)

given data points.

give here only a brief introduction to this extensive subject.

Typically, we begin with a collection of given data points .x0; y0/; .x1; y1/;

: : : ; .xn; yn/ that are to be represented by a specific type of function y D f .x/. For

instance, y might be the volume of a sample of gas when its temperature is x. Thus

the given data points are the results of experiment or measurement, and we want to

determine the curve y D f .x/ in the xy-plane so that it passes through each of these

points; see Figure 3.7.1. Thus we speak of “fitting” the curve to the data points.

We will confine our attention largely to polynomial curves. A polynomial of

degree n is a function of the form

f .x/ D a0 C a1x C a2x
2
C � � � C anx

n; (1)

where the coefficients a0; a1; a2; : : : ; an are constants. The data point .xi ; yi / lies on

the curve y D f .x/ provided that f .xi / D yi . The condition that this be so for each
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i D 0; 1; 2; : : : ; n yields the nC 1 equations

a0 C a1x0 C a2.x0/
2 C � � � C an.x0/

n D y0

a0 C a1x1 C a2.x1/
2 C � � � C an.x1/

n D y1

a0 C a1x2 C a2.x2/
2 C � � � C an.x2/

n D y2

:::

a0 C a1xn C a2.xn/
2 C � � � C an.xn/

n D yn.

(2)

Because the numbers xi and yi are given, this is a system of nC1 linear equations in

the nC1 unknowns a0; a1; a2; : : : ; an (the coefficients that determine the polynomial

in (1)).

The .n C 1/ � .n C 1/ coefficient matrix of the system in (1) is the Vander-

monde matrix

A D

2

6

6

6

6

6

6

6

4

1 x0 .x0/
2 � � � .x0/

n

1 x1 .x1/
2 � � � .x1/

n

1 x2 .x2/
2 � � � .x2/

n

:::
:::

:::
: : :

:::

1 xn .xn/
2 � � � .xn/

n

3

7

7

7

7

7

7

7

5

; (3)

whose determinant is discussed in Problems 61–63 of Section 3.6. It follows from

Eq. (25) there that, if the x-coordinates x0; x1; x2; : : : ; xn are distinct, then the matrix

A is nonsingular. Hence Theorem 7 in Section 3.5 implies that the system in (2)

has a unique solution for the coefficients a0; a1; a2; : : : ; an in (1). Thus there is a

unique nth degree polynomial that fits the n C 1 given data points. We call it an

interpolating polynomial, and say that it interpolates the given points.

Example 1 Find a cubic polynomial of the form

y D AC Bx C Cx2
CDx3

that interpolates the data points .�1; 4/, .1; 2/, .2; 1/, and .3; 16/.

Solution In a particular problem, it generally is simpler to use distinct capital letters rather than sub-

scripted symbols to denote the coefficients. Here we want to find the values of A, B , C , and

D so that y.�1/ D 4, y.1/ D 2, y.2/ D 1, and y.3/ D 16. These conditions yield the four

linear equations

A � B C C � D D 4

A C B C C C D D 2

A C 2B C 4C C 8D D 1

A C 3B C 9C C 27D D 16.

We readily reduce this system to the echelon form

A � B C C � D D 4

B C D D �1

C C 2D D 0

D D 2,

and then back substitution yields A D 7, B D �3, C D �4, and D D 2. Thus the desired

cubic polynomial is

y D 7 � 3x � 4x2
C 2x3:

The graph of this cubic is shown in Fig. 3.7.2, along with the four original data points.

x21 3 4−1
−5

−2

5

15

10

y

−10

FIGURE 3.7.2. Cubic curve through
the four data points of Example 1.
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Modeling World Population Growth

As a concrete example of interpolation, we consider the growth of the world’s hu-

man population. The table in Fig. 3.7.3 shows the total world population (in billions)

at 5-year intervals. Actual populations are shown for the years 1975–2010. The fig-

ures listed for the years 2015–2040 are the world populations that were predicted

by the United Nations on the basis of detailed demographic analysis of population

trends during the 20th century on a country-by-country basis throughout the world.

Each entry of the final column of this table gives the average annual percentage

growth rate during the preceding 5-year period. For instance, 4:062.1:018/5 � 4:44

for the growth during the 5-year period 1975–1980, so the average annual growth

during this period is about 1.8%.

World Population Percent

Year (billions) Growth

1975 4.062

1980 4.440 1.80%

1985 4.853 1.79%

1990 5.310 1.82%

1995 5.735 1.55%

2000 6.127 1.33%

2005 6.520 1.25%

2010 6.930 1.23%

2015 7.349 1.18%

2020 7.758 1.09%

2025 8.142 0.97%

2030 8.501 0.87%

2035 8.839 0.78%

2040 9.157 0.71%

FIGURE 3.7.3. World population data.

We see that the world population grew at an annual rate of about 1.8% during

the 1980s, but the rate of growth has slowed since then, and it is expected to slow

even more during the coming decades of the 21st century. In particular, the growth

of the world population at the present time in history is not natural or exponential in

character—that characterization would imply a constant percentage rate of growth.

We explore the possibility of interpolating world population data with polynomial

models that might be usable to predict future populations. It seems natural to expect

better results with higher-degree interpolating polynomials. Let’s see whether this

is so.

Example 2 First, we fit a linear polynomial P1.t/ D a C bt (with t D 0 in 1900) to the 1995 and 2005

world population values. We need only solve the equations

a C 95b D 5:735

a C 105b D 6:520

for a D �1:7225, b D 0:0785. Thus our linear interpolating polynomial is

P1.t/ D �1:7225C 0:0785t: (4)
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Example 3 Now let’s fit a quadratic polynomial P2.t/ D aC bt C ct
2 (with t D 0 in 1900) to the 1995,

2000, and 2005 world population values. With the three data points .95; 5:735/, .100; 6:127/,

and .105; 6:520/, the system in (2) yields the equations

FIGURE 3.7.4. TI-84 Plus CE

calculator solution of the 3 � 3 system
in Example 3.

a C 95b C 952c D 5:735

a C 100b C 1002c D 6:127

a C 105b C 1052c D 6:520

having the calculator solution a D �1:523, b D 0:0745, c D 0:00002 (Fig. 3.7.4). Thus our

quadratic interpolating polynomial is

P2.t/ D �1:523C 0:0745t C 0:00002t
2: (5)

Example 4 Next we fit a cubic polynomial P3.t/ D a C bt C ct2 C dt3 (with t D 0 in 1900) to the

1995, 2000, 2005, and 2010 world population values. With the four data points .95; 5:735/,

.100; 6:127/, .105; 6:520/, and .110; 6:930/, the system in (2) yields the four equations

5:735 D a C 95b C 952c C 953d

6:127 D a C 100b C 1002c C 1003d

6:520 D a C 105b C 1052c C 1053d

6:930 D a C 110b C 1102c C 1103d .

As in the 3.5 Application, a calculator or computer yields the solution

2

6

6

4

a

b

c

d

3

7

7

5

D

2

6

6

4

1 95 952 953

1 100 1002 1003

1 105 1052 1053

1 110 1102 1103

3

7

7

5

�1 2

6

6

4

5:735

6:127

6:520

6:930

3

7

7

5

D

2

6

6

4

�22:803

0:713967

�0:00638

0:000021333

3

7

7

5

:

Thus our cubic interpolating polynomial is

P3.t/ D �22:803C 0:713967t � 0:00638t
2
C 0:000021333t3: (6)

Example 5 In order to fit a fourth-degree population model of the form

P4.t/ D aC bt C ct
2
C dt3 C et4

to the 1990-1995-2000-2005-2010 world population data, we need to solve the linear system

2

6

6

6

6

4

1 90 902 903 904

1 95 952 953 954

1 100 1002 1003 1004

1 105 1052 1053 1054

1 110 1102 1103 1104

3

7

7

7

7

5

2

6

6

6

6

4

a

b

c

d

e

3

7

7

7

7

5

D

2

6

6

6

6

4

5:310

5:735

6:127

6:520

6:930

3

7

7

7

7

5

to find the values of the coefficients a, b, c, d , and e. The result is

P4.t/ D �154:473C 5:867667t � 0:08195t
2

C 0:00051333t3 � 0:0000012t4:
(7)

The table in Fig. 3.7.5 compares our linear, quadratic, cubic, and quartic pre-

dictions with the “correct” United Nations prediction for the year 2030. Each “er-

ror” in the third column of this table is the amount by which the corresponding pre-

diction undershoots (positive error) or overshoots (negative error) the U.N. predic-

tion. We see that the quadratic prediction is better than the linear but also markedly
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Year 2030

Prediction Error

Linear 8.482 C0:019

Quadratic 8.500 C0:001

Cubic 9.060 �0:559

Quartic 8.430 C0:071

United Nations 8.501

FIGURE 3.7.5. Predictions of the 2030 world
population.

n = 3

n = 2

n = 4

n = 4

n = 3

n = 2

2015 2035 205519951975

P

t

10

8

6

4

2

FIGURE 3.7.6. Comparison of world population data and the
interpolating polynomials Pn.t/ for n D 2, 3, 4.

better than the cubic prediction. The quartic prediction is an improvement over

the cubic, yet still not as good as the quadratic. Thus there is at best an uncertain

relationship between the degree of the polynomial model and the accuracy of its

predictions.

Figure 3.7.6 shows the U.N. world population data points for the years 1975

through 2040, together with the plots of the quadratic, cubic, and quartic population

functions of Examples 3, 4, and 5. (The plot of the linear population function of

Example 2 is virtually indistinguishable from that of the quadratic function for the

values of t shown in the figure.) It looks as though the more work we do to find a

polynomial fitting selected data points, the less we get for our effort. It is certainly

true in this figure that—outside the interval from 1990 to 2010—the higher the

degree of the polynomial, the worse it appears to fit the given data points. The issue

here is the difference between

� interpolating data points within the interval of given points being fitted, and

� extrapolating data points outside this interval.

All four of our polynomials appear to do a good job of interpolating but, somewhat

paradoxically, the higher the degree, the worse the apparent accuracy of extrapo-

lation. The highly questionable accuracy of data extrapolation outside the interval

of interpolation has significant implications. For instance, consider a news report

that when a certain alleged carcinogen was fed to mice in sufficient amounts to kill

an elephant, the mice developed cancer. It is then argued that moderate amounts

of this carcinogen may cause cancer in humans; or that if 1 part per billion of this

carcinogen in the environment kills 1 person, then 1 part per million (a thousand

times as much) will kill 1000 people. Such arguments are common, but they may

well be cases of extrapolation beyond the range of accuracy. The bottom line is that

interpolation is fairly safe—though hardly fail-safe—but extrapolation is risky.

Geometric Applications

In contrast with population prediction, there are interesting situations where curve

fitting is exact. For instance, the fact that “two points determine a line” in the plane

means that, when we fit the linear function y D a C bx to a given pair of points,

we get precisely the one and only straight line in the plane that passes through these

points. Similarly, “three points determine a circle,” meaning that there is one and

only one circle in the plane that passes through three given noncollinear points. In
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order to find this particular circle, we recall that the equation of a circle with center
y

x

(h, k)

(x, y)

r

FIGURE 3.7.7. The circle with
center .h; k/ and radius r .

.h; k/ and radius r is

.x � h/2 C .y � k/2 D r2 (Fig. 3.7.7). (8)

Simplification gives

.x2
� 2hx C h2/C .y2

� 2ky C k2/ D r2;

that is,

x2
C y2

C Ax C By C C D 0 (9)

(where A D �2h, B D �2k, and C D h2 C k2 � r2) as the general equation of a

circle in the plane.

Example 6 Find the equation of the circle that is determined by the points P.�1; 5/, Q.5;�3/, and

R.6; 4/.

Solution Substitution of the xy-coordinates of each of the three points P , Q, and R into (9) gives the

three equations

�A C 5B C C D �26

5A � 3B C C D �34

6A C 4B C C D �52.

Reduction of the corresponding augmented coefficient matrix to reduced row-echelon form

(Fig. 3.7.8) yields A D �4, B D �2, and C D �20. Thus the equation of the desired circle is

x2
C y2

� 4x � 2y � 20 D 0:

To find its center and radius, we complete the squares in x and y and get

FIGURE 3.7.8. TI-89 calculator
solution of the 3 � 3 system in
Example 6.

.x � 2/2 C .y � 1/2 D 25:

Thus the circle has center .2; 1/ and radius 5 (Fig. 3.7.9).

x42 6 8−2

−2

2

y

P
R

Q

−4

−4

−6

−6

−8

−8

4

6

8

FIGURE 3.7.9. The circle of
Example 6.

x

y

Ax
2 + Bxy + Cy

2
 =1

FIGURE 3.7.10. A rotated central
ellipse.

Three appropriate points in the plane also determine a central conic with

equation of the form

Ax2
C Bxy C Cy2

D 1: (10)

This is a rotated conic section—an ellipse, parabola, or hyperbola—centered at the

origin of the xy-coordinate system. Figure 3.7.10 shows a typical rotated ellipse in

the plane.
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Example 7 Find the equation of the central conic that passes through the same three points P.�1; 5/,

Q.5;�3/, and R.6; 4/ of Example 6.

Solution Substitution of the xy-coordinates of each of the three points P , Q, and R into (10) gives the

linear system of three equations

A � 5B C 25C D 1

25A � 15B C 9C D 1

36A C 24B C 16C D 1

(11)

in the three unknowns A, B , and C . Reduction of the corresponding augmented coefficient

FIGURE 3.7.11. TI-89 calculator
solution of the reduced row-echelon

form of the augmented coefficient
matrix in (11).

matrix to reduced row-echelon form (Fig. 3.7.11) yields the values

A D
277

14212
; B D �

172

14212
; and C D

523

14212
:

If we substitute these coefficient values in (10) and multiply the result by the common de-

nominator 14212, we get the desired equation

277x2
� 172xy C 523y2

D 14212 (12)

of our central conic. The computer plot in Fig. 3.7.12 verifies that this rotated ellipse does

indeed pass through all three points P , Q, and R.

x42 6 8−2

−2

2

y

P

R

Q

−4

−4

−6−8

−8

4

6

8

−6

FIGURE 3.7.12. Central ellipse passing through the

points P , Q, and R of Example 7.

3.7 Problems
In each of Problems 1–10, nC 1 data points are given. Find

the nth degree polynomial y D f .x/ that fits these points.

1. .1; 1/ and .3; 7/

2. .�1; 11/ and .2;�10/

3. .0; 3/, .1; 1/, and .2;�5/

4. .�1; 1/, .1; 5/, and .2; 16/

5. .1; 3/, .2; 3/, and .3; 5/

6. .�1;�1/, .3;�13/, and .5; 5/

7. .�1; 1/, .0; 0/, .1; 1/, and .2;�4/

8. .�1; 3/, .0; 5/, .1; 7/, and .2; 3/

9. .�2;�2/, .�1; 2/, .1; 10/, and .2; 26/

10. .�1; 27/, .1; 13/, .2; 3/, and .3;�25/

Three points are given in each of Problems 11–14. Find the

equation of the circle determined by these points, as well as its

center and radius.

11. .�1;�1/, .6; 6/, and .7; 5/

12. .3;�4/, .5; 10/, and .�9; 12/

13. .1; 0/, .0;�5/, and .�5;�4/

14. .0; 0/, .10; 0/, and .�7; 7/

In Problems 15–18, find an equation of the central ellipse that

passes through the three given points.

15. .0; 5/, .5; 0/, and .5; 5/

16. .0; 5/, .5; 0/, and .10; 10/

17. .0; 1/, .1; 0/, and .10; 10/

18. .0; 4/, .3; 0/, and .5; 5/

19. Find a curve of the form y D A C .B=x/ that passes

through the points .1; 5/ and .2; 4/.

20. Find a curve of the form y D Ax C .B=x/C .C=x2/ that

passes through the points .1; 2/, .2; 20/, and .4; 41/.
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A sphere in space with center .h; k; l/ and radius r has equa-

tion

.x � h/2 C .y � k/2 C .´ � l/2 D r2:

Four given points in space suffice to determine the values of h,

k, l , and r . In Problems 21 and 22, find the center and radius

of the sphere that passes through the four given points P , Q,

R, and S . Hint: Substitute each given triple of coordinates

into the sphere equation above to obtain four equations that h,

k, l , and r must satisfy. To solve these equations, first subtract

the first one from each of the other three. How many unknowns

are left in the three equations that result?

21. P.4; 6; 15/, Q.13; 5; 7/, R.5; 14; 6/, S.5; 5;�9/

22. P.11; 17; 17/, Q.29; 1; 15/, R.13;�1; 33/, S.�19;�13; 1/

Population Modeling

Problems 23–34 are intended as calculator or computer prob-

lems and are based on the U.S. census data in the table of

Fig. 3.7.13, listed by national region in millions for the census

years 1950–1990. See www.census.gov/population/

censusdata/table-16.pdf for further details.

In Problems 23–26, fit a quadratic function to the 1970, 1980,

and 1990 population values for the indicated region.

23. The Northeast 24. The Midwest

25. The South 26. The West

27–30. The same as Problems 23–26, except fit a cubic poly-

nomial to the 1960, 1970, 1980, and 1990 population

data for the indicated region.

31–34. The same as Problems 23–26, except fit a quartic poly-

nomial to the 1950, 1960, 1970, 1980, and 1990 pop-

ulation data for the indicated region.

Problems 35 through 40 illustrate the use of determinants in

fitting polynomial curves to data points.

35. Explain why the determinant equation

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y x2 x 1

y1 x2

1
x1 1

y2 x2

2
x2 1

y3 x2

3
x3 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

fits a quadratic polynomial of the form yDAx2CBxCC

to the three given points .x1; y1/, .x2; y2/, and .x3; y3/.

36. Expand the determinant in Problem 35 to find a parabola

that interpolates the points .1; 3/, .2; 3/, and .3; 7/.

37. Explain why the determinant equation

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2 C y2 x y 1

x2

1
C y2

1
x1 y1 1

x2

2
C y2

2
x2 y2 1

x2

3
C y2

3
x3 y3 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

fits a circle of the form x2 C y2 C Ax C By C C D 0 to

the three given points .x1; y1/, .x2; y2/, and .x3; y3/.

38. Expand the determinant in Problem 37 to find the equation

of a circle passing through the three points .3;�4/, .5; 10/,

and .�9; 12/. Then find its center and radius.

39. Explain why the determinant equation

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2 xy y2 1

x2

1
x1y1 y2

1
1

x2

2
x2y2 y2

2
1

x2

3
x3y3 y2

3
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

fits a central conic equation of the form Ax2 C Bxy C

Cy2 D 1 to the three given points .x1; y1/, .x2; y2/, and

.x3; y3/.

40. Expand the determinant in Problem 39 to find the equation

of the ellipse passing through the three points .0; 4/, .3; 0/,

and .5; 5/.

1950 1960 1970 1980 1990

Northeast 39.478 44.678 49.061 49.137 50.809

Midwest 44.461 51.619 56.590 58.867 59.669

South 47.197 54.973 62.813 75.367 85.446

West 20.190 28.053 34.838 43.171 52.786

U.S. 151.326 179.323 203.302 226.542 248.710

FIGURE 3.7.13. Regional population data (in millions) for Problems 23–34.

http://www.census.gov/population/censusdata/table-16.pdf
http://www.census.gov/population/censusdata/table-16.pdf
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4.1 The Vector Space R3

Here we take a fresh look—from the viewpoint of linear algebra—at the famil-

iar 3-dimensional space of the physical world around us (and of multivariable

calculus). This review, combining old and new ideas, will provide an introduction

to basic concepts that are explored further in subsequent sections of the chapter.

We define three-dimensional coordinate space R3 to be the set of all ordered

P(a, b, c)

y

a

v
c

b

z

x

O

FIGURE 4.1.1. The arrow
�!
OP

representing the vector v D .a; b; c/.

triples .a; b; c/ of real numbers. In ordinary language, the elements of R3 are called

points. The numbers a, b, and c are called the coordinates of the point P.a; b; c/

and can be regarded as specifying the location of P in a fixed xyz-coordinate system.

The location of the point P can also be specified by means of the arrow or

directed line segment (Fig. 4.1.1) that points from the origin (its initial point) to P

(its terminal point). Arrows are often used in physics to represent vector quantities,

such as force and velocity, that possess both magnitude and direction. For instance,

the velocity vector v of a point moving in space may be represented by an arrow

that points in the direction of its motion, with the length of the arrow being equal

to the speed of the moving point. If we locate this arrow with its initial point at the

origin O , then its direction and length are determined by its terminal point .a; b; c/.

But the arrow is merely a pictorial object; the mathematical object associated with

the vector v is simply the point .a; b; c/. For this reason, it is customary to use the

words point and vector interchangeably for elements of 3-space R3 and thus to refer

either to the point .a; b; c/ or to the vector .a; b; c/.

DEFINITION Vector

A vector v in 3-space R3 is simply an ordered triple .a; b; c/ of real numbers. We

write v D .a; b; c/ and call the numbers a, b, and c the components of the vector

v.

Thus “a vector is a point is a vector,” but vector terminology often aids us in

visualizing geometric relationships between different points. The point P.a; b; c/

211
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determines the vector v D .a; b; c/ in R3, and v is represented geometrically (as

in Fig. 4.1.1) by the position vector
�!
OP from the origin O.0; 0; 0/ to P—or equally

well by any parallel translate of this arrow. What is important about an arrow usually

is not where it is, but how long it is and which way it points.

As in Section 3.4, we adopt the convention that the vector v with components

v1, v2, and v3 may be written interchangeably as either

v D .v1; v2; v3/ or v D

2

4

v1

v2

v3

3

5

with the column matrix regarded as just another symbol representing one and the

same ordered triple of real numbers. Then the following definitions of addition of

vectors and of multiplication of vectors by scalars are consistent with the matrix

operations defined in Section 3.4.

DEFINITION Addition of Vectors

The sum u C v of the two vectors u D .u1; u2; u3/ and v D .v1; v2; v3/ is the

vector

uC v D .u1 C v1; u2 C v2; u3 C v3/ (1)

that is obtained upon addition of respective components of u and v.

Thus we add vectors by adding corresponding components—that is, by com-

ponentwise addition (just as we add matrices). For instance, the sum of the vectors

u D .4; 3;�5/ and v D .�5; 2; 15/ is the vector

uC v D .4; 3;�5/C .�5; 2; 15/ D .4 � 5; 3C 2;�5C 15/ D .�1; 5; 10/:

The geometric representation of vectors as arrows often converts an algebraic

relation into a picture that is readily understood and remembered. Addition of vec-

tors is defined algebraically by Eq. (1). The geometric interpretation of vector

addition is the triangle law of addition illustrated in Fig. 4.1.2 (for the case of 2-

dimensional vectors in the plane), where the labeled lengths indicate why this inter-

pretation is valid. An equivalent interpretation is the parallelogram law of addition,

illustrated in Fig. 4.1.3.

u + v

y

u

v

u2

v2

u1 v1

(u1 + v1, u2 + v2)

x

FIGURE 4.1.2. The triangle law of
vector addition.

x

u + v

y

u

(v1, v2)

(u1, u2)

v

(u1 + v1, u2 + v2)

FIGURE 4.1.3. The parallelogram law
of vector addition.

Multiplication of a vector by a scalar (a real number) is also defined in a

componentwise manner.
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DEFINITION Multiplication of a Vector by a Scalar

If v D .v1; v2; v3/ is a vector and c is a real number, then the scalar multiple cv

is the vector

cv D .cv1; cv2; cv3/ (2)

that is obtained upon multiplying each component of v by c.

The length jvj of the vector v D .a; b; c/ is defined to be the distance of the

point P.a; b; c/ from the origin,

jvj D
p

a2 C b2 C c2: (3)

The length of cv is jcj times the length of v. For instance, if v D .4; 3;�12/, then

.�7/v D .�7 � 4;�7 � 3;�7 � .�12// D .�28;�21; 84/;

jvj D
p

.4/2 C .3/2 C .�12/2 D
p
169 D 13; and

j�7vj D j�7j � jvj D 7 � 13 D 91:

The geometric interpretation of scalar multiplication is that cv is a vector of length

jcj � jvj, with the same direction as v if c > 0 but the opposite direction if c < 0

u

cu

cu

u

c < 0c > 0

FIGURE 4.1.4. The vector cu may
have the same direction as u or the
opposite direction.

(Fig. 4.1.4).

With vector addition and multiplication by scalars defined as in (1) and (2),

R3 is a vector space. That is, these operations satisfy the conditions in (a)–(h) of

the following theorem.

THEOREM 1 R3 as a Vector Space

If u, v, and w are vectors in R3, and r and s are real numbers, then

(a) uC v D vC u (commutativity)

(b) uC .vCw/ D .uC v/Cw (associativity)

(c) uC 0 D 0C u D u (zero element)

(d) uC .�u/ D .�u/C u D 0 (additive inverse)

(e) r.uC v/ D ruC rv (distributivity)

(f) .r C s/u D ruC su

(g) r.su/ D .rs/u

(h) 1.u/ D u (multiplicative identity).

Of course, 0D .0; 0; 0/ denotes the zero vector in (c) and (d), and �uD .�1/u

in (d). Each of properties (a)–(h) in Theorem 1 is readily verified in a component-

wise manner. For instance, if u D .u1; u2; u3/ and v D .v1; v2; v3/, then use of the

(ordinary) distributive law of real numbers gives

r.uC v/ D r.u1 C v1; u2 C v2; u3 C v3/

D .r.u1 C v1/; r.u2 C v2/; r.u3 C v3//

D .ru1 C rv1; ru2 C rv2; ru3 C rv3/

D .ru1; ru2; ru3/C .rv1; rv2; rv3/

D r.u1; u2; u3/C r.v1; v2; v3/ D ruC rv;

so we have verified property (e).
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The Vector Space R2

The familiar coordinate plane R2 is the set of all ordered pairs .a; b/ of real num-

bers. We may regard R2 as the xy-plane in R3 by identifying .a; b/ with the vector

.a; b; 0/ in R3. Then R2 is simply the set of all 3-dimensional vectors that have third

component 0.

Clearly, the sum of any two vectors in R2 is again a vector in R2, as is any

scalar multiple of a vector in R2. Indeed, vectors in R2 satisfy all the properties of

a vector space enumerated in Theorem 1. Consequently, the plane R2 is a vector

space in its own right.

The two vectors u and v are collinear—they lie on the same line through

the origin and hence point either in the same direction (Fig. 4.1.5) or in opposite

directions—if and only if one is a scalar multiple of the other; that is, either

u D cv or v D cu; (4)

for some scalar c. The scalar c merely adjusts the length and direction of one vector

y

(u1, u2)

(v1, v2)

x

FIGURE 4.1.5. Two linearly
dependent vectors u and v.

to fit the other. If u and v are nonzero vectors, then c D ˙juj=jvj in the first rela-

tion, with c being positive if the two vectors point in the same direction, negative

otherwise.

If one of the relations in (4) holds for some scalar c, then we say that the two

vectors are linearly dependent. Note that if u D 0 while v 6D 0, then u D 0v but

v is not a scalar multiple of u. (Why?) Thus, if precisely one of the two vectors u

and v is the zero vector, then u and v are linearly dependent, but only one of the two

relations in (4) holds.

If u and v are linearly dependent vectors with u D cv (for instance), then

1 � uC .�c/ � v D 0. Thus there exist scalars a and b not both zero such that

auC bv D 0: (5)

Conversely, suppose that Eq. (5) holds with a and b not both zero. If a 6D 0 (for

instance) then we can solve for

u D �
b

a
v D cv

with c D �b=a, so it follows that u and v are linearly dependent. Therefore, we

have proved the following theorem.

THEOREM 2 Two Linearly Dependent Vectors

The two vectors u and v are linearly dependent if and only if there exist scalars

a and b not both zero such that

auC bv D 0: (5)

The most interesting pairs of vectors are those that are not linearly dependent.

The two vectors u and v are said to be linearly independent provided that they are

not linearly dependent. Thus u and v are linearly independent if and only if neither

is a scalar multiple of the other. By Theorem 2 this is equivalent to the following
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statement:

The two vectors u and v are linearly

independent if and only if the relation

auC bv D 0 (5)

implies that a D b D 0.

Thus the vectors u and v are linearly independent provided that no nontrivial linear

combination of them is equal to the zero vector.

Example 1 If u D .3;�2/, v D .�6; 4/, and w D .5;�7/, then u and v are linearly dependent, because

v D �2u. On the other hand, u and w are linearly independent. Here is an argument to

establish this fact: Suppose that there were scalars a and b such that

auC bw D 0:

Then

a.3;�2/C b.5;�7/ D 0;

and thus we get the simultaneous equations

3a C 5b D 0

�2a � 7b D 0.

It is now easy to show that a D b D 0 is the (unique) solution of this system. This shows that

whenever

auC bw D 0;

it follows that a D b D 0. Therefore, u and w are linearly independent.

Alternatively, we could prove that u and w are linearly independent by showing that

neither is a scalar multiple of the other (because 5

3
6D

7

2
).

The most important property of linearly independent pairs of plane vectors is

this: If u and v are linearly independent vectors in the plane, then any third vector

w in R2 can be expressed as a linear combination of u and v. That is, there exist

scalars a and b such that w D au C bv (Fig. 4.1.6). This is a statement that the

two linearly independent vectors u and v suffice (in an obvious sense) to “generate”

x
O

w

au

y

bv

v

u

FIGURE 4.1.6. The vector w as a
linear combination of the two linearly
independent vectors u and v.

the whole plane R2. This general fact—which Section 4.3 discusses in a broader

context—is illustrated computationally by the following example.

Example 2 Express the vector w D .11; 4/ as a linear combination of the vectors u D .3;�2/ and v D

.�2; 7/.

Solution We want to find numbers a and b such that auC bv D w; that is,

a

�

3

�2

�

C b

�

�2

7

�

D

�

11

4

�

:

This vector equation is equivalent to the 2 � 2 linear system

�

3 �2

�2 7

� �

a

b

�

D

�

11

4

�

;

which (using Gaussian elimination or Cramer’s rule) we readily solve for a D 5, b D 2. Thus

w D 5uC 2v.
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Linear Independence in R3

We have said that the two vectors are linearly dependent provided that they lie on

the same line through the origin. For three vectors uD .u1; u2; u3/, vD .v1; v2; v3/,

and w D .w1; w2; w3/ in space, the analogous condition is that the three points

.u1; u2; u3/, .v1; v2; v3/, and .w1; w2; w3/ lie in the same plane through the origin in

R3. Given u, v, and w, how can we determine whether the vectors u, v, and w are

coplanar? The key to the answer is the following observation: If r and s are scalars,

then the parallelogram law of addition implies that the vectors u, v, and ruC sv are

coplanar; specifically, they lie in the plane through the origin that is determined by

the parallelogram with vertices 0, ru, sv, and ruC sv. Thus any linear combination

of u and v is coplanar with u and v. This is the motivation for our next definition.

DEFINITION Linearly Dependent Vectors in R3

The three vectors u, v, and w in R3 are said to be linearly dependent provided

that one of them is a linear combination of the other two—that is, either

w D ruC sv or

u D rvC sw or (6)

v D ruC sw

for appropriate scalars r and s.

Note that each of the three equations in (6) implies that there exist three scalars

a, b, and c not all zero such that

auC bvC cw D 0: (7)

For if w D ruC sv (for instance), then

ruC svC .�1/w D 0;

so we can take a D r , b D s, and c D �1 6D 0. Conversely, suppose that (7) holds

with a, b, and c not all zero. If c 6D 0 (for instance), then we can solve for

w D �
a

c
u �

b

c
v D ruC sv

with r D �a=c and s D �b=c, so it follows that the three vectors u, v, and w are

linearly dependent. Therefore, we have proved the following theorem.

THEOREM 3 Three Linearly Dependent Vectors

The three vectors u, v, and w in R3 are linearly dependent if and only if there

exist scalars a, b, and c not all zero such that

auC bvC cw D 0: (7)

The three vectors u, v, and w are called linearly independent provided that

they are not linearly dependent. Thus u, v, and w are linearly independent if and
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only if neither of them is a linear combination of the other two. As a consequence

of Theorem 3, this is equivalent to the following statement:

The vectors u, v, and w are linearly

independent if and only if the relation

auC bvC cw D 0 (7)

implies that a D b D c D 0.

Thus the three vectors u, v, and w are linearly independent provided that no non-

trivial linear combination of them is equal to the zero vector.

Given two vectors, we can see at a glance whether either is a scalar multiple

of the other. By contrast, it is not evident at a glance whether or not three given

vectors in R3 are linearly independent. The following theorem provides one way to

resolve this question.

THEOREM 4 Three Linearly Independent Vectors

The vectors u D .u1; u2; u3/, v D .v1; v2; v3/, and w D .w1; w2; w3/ are linearly

independent if and only if

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 v1 w1

u2 v2 w2

u3 v3 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6D 0: (8)

Proof: We want to show that u, v, and w are linearly independent if and only

if the matrix

A D

2

4

u1 v1 w1

u2 v2 w2

u3 v3 w3

3

5

—with column vectors u, v, and w—has nonzero determinant. By Theorem 3, the

vectors u, v, and w are linearly independent if and only if the equation

a

2

4

u1

u2

u3

3

5C b

2

4

v1

v2

v3

3

5C c

2

4

w1

w2

w3

3

5 D 0

implies that a D b D c D 0—that is, if and only if the system

2

4

u1 v1 w1

u2 v2 w2

u3 v3 w3

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 (9)

with unknowns a, b, and c has only the trivial solution. But Theorem 7 in Sec-

tion 3.5 implies that this is so if and only if the coefficient matrix A is invertible,

and Theorem 2 in Section 3.6 implies that A is invertible if and only if jAj 6D 0.

Therefore, u, v, and w are linearly independent if and only if jAj 6D 0.

Hence, in order to determine whether or not three given vectors u, v, and w are

linearly independent, we can calculate the determinant in (8). In practice, however,

it is usually more efficient to set up and solve the linear system in (9). If we obtain

only the trivial solution a D b D c D 0, then the three given vectors are linearly
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independent. But if we find a nontrivial solution, we then can express one of the

vectors as a linear combination of the other two and thus see how the three vectors

are linearly dependent.

Example 3 To determine whether the three vectors u D .1; 2;�3/, v D .3; 1;�2/, and w D .5;�5; 6/ are

linearly independent or dependent, we need to solve the system

auC bvC cw D

2

4

1 3 5

2 1 �5

�3 �2 6

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

By Gaussian elimination, we readily reduce this system to the echelon form

2

4

1 3 5

0 1 3

0 0 0

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

Therefore, we can choose c D 1, and it follows that b D �3c D �3 and a D �3b � 5c D 4.

Therefore,

4uC .�3/vCw D 0;

and hence u, v, and w are linearly dependent, with w D �4uC 3v.

Basis Vectors in R3

Perhaps the most familiar triple of linearly independent vectors in R3 consists of the

basic unit vectors

i D .1; 0; 0/; j D .0; 1; 0/; and k D .0; 0; 1/: (10)

When represented by arrows with the initial points at the origin, these three vectors

point in the positive directions along the three coordinate axes (Fig. 4.1.7). The

expression

v D aiC bjC ck D .a; b; c/

shows both that

y

z

x

i

j

k

FIGURE 4.1.7. The basic unit
vectors i, j, and k.

� the three vectors i, j, and k are linearly independent (because v D 0 immedi-

ately implies a D b D c D 0), and that

� any vector in R3 can be expressed as a linear combination of i, j, and k.

A basis for R3 is a triple u, v, w of vectors such that every vector t in R3 can

be expressed as a linear combination

t D auC bvC cw (11)

of them. That is, given any vector t in R3, there exist scalars a, b, c such that Eq. (11)

holds. Thus the unit vectors i, j, and k constitute a basis for R3. The following

theorem says that any three linearly independent vectors constitute a basis for R3.

THEOREM 5 Basis for R3

If the vectors u, v, and w in R3 are linearly independent, then they constitute a

basis for R3.
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Proof: Let u D .u1; u2; u3/, v D .v1; v2; v3/, and w D .w1; w2; w3/. Given

any fourth vector t D .t1; t2; t3/, we must show that there exist scalars a, b, and c

such that

t D auC bvC cw (11)

—that is, such that the system

2

4

u1 v1 w1

u2 v2 w2

u3 v3 w3

3

5

2

4

a

b

c

3

5 D

2

4

t1
t2
t3

3

5 (12)

has a solution .a; b; c/. But by Theorem 4 the fact that u, v, and w are linearly inde-

pendent implies that the coefficient matrix A in (12) has nonzero determinant and is

therefore invertible. Hence, there is a (unique) solution, which may be obtained by

multiplying both sides in (12) by A�1.

Example 4 In order to express the vector t D .4; 20; 23/ as a combination of the linearly independent

vectors u D .1; 3; 2/, v D .2; 8; 7/, and w D .1; 7; 9/, we need to solve the system
2

4

1 2 1

3 8 7

2 7 9

3

5

2

4

a

b

c

3

5 D

2

4

4

20

23

3

5

that we obtain by substitution in Eq. (12). The echelon form found by Gaussian elimination

is
2

4

1 2 1

0 1 2

0 0 1

3

5

2

4

a

b

c

3

5 D

2

4

4

4

3

3

5 ;

so c D 3, b D 4 � 2c D �2, and a D 4 � 2b � c D 5. Thus

t D 5u � 2vC 3w:

Subspaces of R3

Up until this point, we have used the words line and plane only in an informal or

intuitive way. It is now time for us to say precisely what is meant by a line or plane

through the origin in R3. Each is an example of a subspace of R3.

The nonempty subset V of R3 is called a subspace of R3 provided that V

itself is a vector space under the operations of vector addition and multiplication of

vectors by scalars. Suppose that the nonempty subset V of R3 is closed under these

operations—that is, that the sum of any two vectors in V is also in V and that every

scalar multiple of a vector in V is also in V . Then the vectors in V automatically

satisfy properties (a) through (h) of Theorem 1, because these properties are “inher-

ited” from R3; they hold for all vectors in R3, including those in V . Consequently,

we see that a nonempty subset V of R3 is a subspace of R3 if and only if it satisfies

the following two conditions:

(i) If u and v are vectors in V , then uC v is also in V (closure under addition).

(ii) If u is a vector in V and c is a scalar, then cu is in V (closure under multiplica-

tion by scalars).

It is immediate that V D R3 is a subspace: R3 is a subspace of itself. At

the opposite extreme, the subset V D f0g, containing only the zero vector, is also a

subspace of R3, because 0C 0 D 0 and c0 D 0 for every scalar c. Thus V D f0g

satisfies conditions (i) and (ii). The subspaces f0g and R3 are sometimes called the

trivial subspaces of R3 (because the verification that they are subspaces is quite

trivial). All subspaces other than f0g and R3 itself are called proper subspaces of

R3.
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Now we want to show that the proper subspaces of R3 are what we customarily

call lines and planes through the origin. Let V be a subspace of R3 that is neither

f0g nor R3 itself. There are two cases to consider, depending on whether or not V

contains two linearly independent vectors.

CASE 1: Suppose that V does not contain two linearly independent vectors. If u

is a fixed nonzero vector in V , then, by condition (ii) above, every scalar multiple

cu is also in V . Conversely, if v is any other vector in V , then u and v are linearly

dependent, so it follows that v D cu for some scalar c. Thus the subspace V is the

y

L

z

x

u

FIGURE 4.1.8. The line L spanned
by the vector u.

set of all scalar multiples of the fixed nonzero vector u and is therefore what we call

a line through the origin in R3. (See Fig. 4.1.8.)

CASE 2: Suppose that V contains two linearly independent vectors u and v. It

then follows from conditions (i) and (ii) that V contains every linear combination

auC bv of u and v. (See Problem 38.) Conversely, let w be any other vector in

V . If u, v, w were linearly independent, then, by Theorem 4, V would be all of R3.

Therefore, u, v, w are linearly dependent, so it follows that there exist scalars a and

b such that w D auC bv. (See Problem 40.) Thus the subspace V is the set of all

linear combinations auC bv of the two linearly independent vectors u and v and is

therefore what we call a plane through the origin in R3. (See Fig. 4.1.9.)

Subspaces of the coordinate plane R2 are defined similarly—they are the

nonempty subsets of R2 that are closed under addition and multiplication by scalars.

In Problem 39 we ask you to show that every proper subspace of R2 is a line through

the origin.

y

P

z

x

u

v

FIGURE 4.1.9. The plane P

spanned by the vectors u and v.

Example 5 Let V be the set of all vectors .x; y/ in R2 such that y D x. Given u and v in V , we may

write u D .u; u/ and v D .v; v/. Then uC v D .uC v; uC v/ and cu D .cu; cu/ are in V . It

follows that V is a subspace of R2.

Example 6 Let V be the set of all vectors .x; y/ in R2 such that x C y D 1. Thus V is the straight line

that passes through the unit points on the x- and y-axes. Then u D .1; 0/ and v D .0; 1/ are

in V , but the vector uC v D .1; 1/ is not. It follows that V is not a subspace of R2.

Example 6 illustrates the fact that lines that do not pass through the origin

are not subspaces of R2. Because every subspace must contain the zero vector (per

Problem 37), only lines and planes that pass through the origin are subspaces of R3.

4.1 Problems
In Problems 1–4, find ja � bj, 2aC b, and 3a � 4b.

1. a D .2; 5;�4/, b D .1;�2;�3/

2. a D .�1; 0; 2/, b D .3; 4;�5/

3. a D 2i � 3jC 5k, b D 5iC 3j � 7k

4. a D 2i � j, b D j � 3k

In Problems 5–8, determine whether the given vectors u and v

are linearly dependent or linearly independent.

5. u D .0; 2/, v D .0; 3/

6. u D .0; 2/, v D .3; 0/

7. u D .2; 2/, v D .2;�2/

8. u D .2;�2/, v D .�2; 2/

In Problems 9–14, express w as a linear combination of u and

v.

9. u D .1;�2/, v D .�1; 3/, w D .1; 0/

10. u D .3; 4/, v D .2; 3/, w D .0;�1/

11. u D .5; 7/, v D .2; 3/, w D .1; 1/

12. u D .4; 1/, v D .�2;�1/, w D .2;�2/

13. u D .7; 5/, v D .3; 4/, w D .5;�2/

14. u D .5;�2/, v D .�6; 4/, w D .5; 6/

In Problems 15–18, apply Theorem 4 (that is, calculate a de-

terminant) to determine whether the given vectors u, v, and w

are linearly dependent or independent.

15. u D .3;�1; 2/, v D .5; 4;�6/, w D .8; 3;�4/

16. u D .5;�2; 4/, v D .2;�3; 5/, w D .4; 5;�7/

17. u D .1;�1; 2/, v D .3; 0; 1/, w D .1;�2; 2/

18. u D .1; 1; 0/, v D .4; 3; 1/, w D .3;�2;�4/

In Problems 19–24, use the method of Example 3 to determine

whether the given vectors u, v, and w are linearly independent
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or dependent. If they are linearly dependent, find scalars a, b,

and c not all zero such that auC bvC cw D 0.

19. u D .2; 0; 1/, v D .�3; 1;�1/, w D .0;�2;�1/

20. u D .5; 5; 4/, v D .2; 3; 1/, w D .4; 1; 5/

21. u D .1; 1;�2/, v D .�2;�1; 6/, w D .3; 7; 2/

22. u D .1; 1; 0/, v D .5; 1; 3/, w D .0; 1; 2/

23. u D .2; 0; 3/, v D .5; 4;�2/, w D .2;�1; 1/

24. u D .1; 4; 5/, v D .4; 2; 5/, w D .�3; 3;�1/

In Problems 25–28, express the vector t as a linear combina-

tion of the vectors u, v, and w.

25. t D .2;�7; 9/, u D .1;�2; 2/, v D .3; 0; 1/, w D .1;�1; 2/

26. t D .5; 30;�21/, u D .5; 2;�2/, v D .1; 5;�3/,

w D .5;�3; 4/

27. t D .0; 0; 19/, u D .1; 4; 3/, v D .�1;�2; 2/, w D .4; 4; 1/

28. t D .7; 7; 7/, u D .2; 5; 3/, v D .4; 1;�1/, w D .1; 1; 5/

In Problems 29–32, show that the given set V is closed under

addition and under multiplication by scalars and is therefore

a subspace of R3.

29. V is the set of all .x; y; ´/ such that x D 0.

30. V is the set of all .x; y; ´/ such that x C y C ´ D 0.

31. V is the set of all .x; y; ´/ such that 2x D 3y.

32. V is the set of all .x; y; ´/ such that ´ D 2x C 3y.

In Problems 33–36, show that the given set V is not a subspace

of R3.

33. V is the set of all .x; y; ´/ such that y D 1.

34. V is the set of all .x; y; ´/ such that x C y C ´ D 3.

35. V is the set of all .x; y; ´/ such that ´ � 0.

36. V is the set of all .x; y; ´/ such that xy´ D 1.

37. Show that every subspace V of R3 contains the zero vector

0.

38. Suppose that V is a subspace of R3. Show that V is closed

under the operation of taking linear combinations of pairs

of vectors. That is, show that if u and v are in V and a and

b are scalars, then auC bv is in V .

39. Suppose that V is a proper subspace of R2 and that u is a

nonzero vector in V . Show that V is the set of all scalar

multiples of u and therefore that V is a line through the

origin.

40. Suppose that u, v, and w are vectors in R3 such that u and

v are linearly independent but u, v, and w are linearly de-

pendent. Show that there exist scalars a and b such that

w D auC bv.

41. Let V1 and V2 be subspaces of R3. Their intersection

V D V1 \ V2 is the set of all vectors that lie both in V1

and in V2. Show that V is a subspace of R3.

4.2 The Vector Space Rn and Subspaces

In Section 4.1 we defined 3-dimensional space R3 to be the set of all triples .x; y; ´/

of real numbers. This definition provides a mathematical model of the physical

space in which we live, because geometric intuition and experience require that the

location of every point be specified uniquely by three coordinates.

In science fiction, the fourth dimension often plays a rather exotic role. But

P(x1, x2)

y

x

Q(x3, x4)

FIGURE 4.2.1. Two points
P.x1; x2/ and Q.x3; x4/ in R2.

there are common and ordinary situations where it is convenient to use four (or even

more) coordinates rather than just two or three. For example, suppose we want to

describe the motion of two points P and Q that are moving in the plane R2 under

the action of some given physical law. (See Fig. 4.2.1.) In order to tell where P and

Q are at a given instant, we need to give two coordinates for P and two coordinates

for Q. So let us write P.x1; x2/ and Q.x3; x4/ to indicate these four coordinates.

Then the two points P and Q determine a quadruple or 4-tuple .x1; x2; x3; x4/ of

real numbers, and any such 4-tuple determines a possible pair of locations of P and

Q. In this way the set of all pairs of points P and Q in the plane corresponds to

the set of all 4-tuples of real numbers. By analogy with our definition of R3, we

may define 4-dimensional space R4 to be the set of all such 4-tuples .x1; x2; x3; x4/.

Then we can specify a pair of points P and Q in R2 by specifying a single point

.x1; x2; x3; x4/ in R4, and this viewpoint may simplify our analysis of the motions

of the original points P and Q. For instance, it may turn out that their coordinates

satisfy some single equation such as

3x1 � 4x2 C 2x3 � 5x4 D 0

that is better understood in terms of a single point in R4 than in terms of the separate

points P andQ in R2. Finally, note that in this example the fourth dimension is quite

tangible—it refers simply to the second coordinate x4 of the point Q.
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But the number 4 is no more special in this context than the numbers 2 and 3.

To describe similarly the motion of three points in R3, we would need 9 coordinates

rather than 4. For instance, we might be studying the sun-earth-moon system in 3-

dimensional space, with .x1; x2; x3/ denoting the coordinates of the sun, .x4; x5; x6/

the coordinates of the earth, and .x7; x8; x9/ the coordinates of the moon at a given

instant. Then the single list .x1; x2; x3; x4; x5; x6; x7; x8; x9/ of 9 coordinates could

be used to specify simultaneously the locations of the sun, earth, and moon. Ap-

plication of Newton’s second law of motion to each of these three bodies would

then lead to a system of differential equations involving the dependent variables

xi .t/, i D 1; 2; : : : ; 9 as functions of time t . (We will discuss this very situation in

Section 7.6.)

An efficient description of another situation might require fifty, a hundred,

or even a thousand coordinates. For instance, an investor’s stock portfolio might

contain 50 different high-tech stocks. If xi denotes the value of the i th stock on a

particular day, then the state of the whole portfolio is described by the single list

.x1; x2; x3; : : : ; x49; x50/ of 50 separate numbers. And the evolution of this portfolio

with time could then be described by the motion of a single point in 50-dimensional

space!

An n-tuple of real numbers is an (ordered) list .x1; x2; x3; : : : ; xn/ of n real

numbers. Thus .1; 3; 4; 2/ is a 4-tuple and .0;�3; 7; 5; 2;�1/ is a 6-tuple. A 2-tuple

is an ordered pair and a 3-tuple is an ordered triple of real numbers, so the following

definition generalizes our earlier definitions of the plane R2 and 3-space R3.

DEFINITION n-Space R
n

The n-dimensional space Rn is the set of all n-tuples .x1; x2; x3; : : : ; xn/ of real

numbers.

The elements of n-space Rn are called points or vectors, and we ordinarily use

boldface letters to denote vectors. The i th entry of the vector xD .x1; x2; x3; : : : ; xn/

is called its i th coordinate or its i th component. For consistency with matrix oper-

ations, we agree that

x D .x1; x2; x3; : : : ; xn/ D

2

6

6

6

4

x1

x2

:::

xn

3

7

7

7

5

;

so that the n � 1 matrix, or column vector, is simply another notation for the same

ordered list of n real numbers.

If n > 3, we cannot visualize vectors in Rn in the concrete way that we can

“see” vectors in R2 and R3. Nevertheless, we saw in Section 4.1 that the geometric

properties of R2 and R3 stem ultimately from algebraic operations with vectors,

and these algebraic operations can be defined for vectors in Rn by analogy with

their definitions in dimensions 2 and 3.

If u D .u1; u2; : : : ; un/ and v D .v1; v2; : : : ; vn/ are vectors in Rn, then their

sum is the vector uC v given by

uC v D .u1 C v1; u2 C v2; : : : ; un C vn/: (1)

Thus addition of vectors in Rn is defined in a componentwise manner, just as in

R2 and R3, and we can visualize u C v as a diagonal vector in a parallelogram
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determined by u and v, as in Fig. 4.2.2. If c is a scalar—a real number—then the

scalar multiple cu is also defined in componentwise fashion:

v

u

u + v

O

FIGURE 4.2.2. The parallelogram
law for addition of vectors, in Rn just
as in R2 or R3.

cu D .cu1; cu2; : : : ; cun/: (2)

We can visualize cu as a vector collinear with u, with only its length (and possibly

its direction along the same line) altered by multiplication by the scalar c. See

Fig. 4.2.3.

In Section 4.1 we saw that, for vectors in R2 and R3, the operations in (1)

and (2) satisfy a list of properties that constitute the definition of a vector space; the

same is true for vectors in Rn.

Definition of a Vector Space

Let V be a set of elements called vectors, in which the operations of addition of

vectors and multiplication of vectors by scalars are defined. That is, given vectors u

c > 0

u

cu

cu

O

u

O

c < 0

FIGURE 4.2.3. Multiplication of the

vector u by the scalar c, in Rn just as
in R2 or R3.

and v in V and a scalar c, the vectors uC v and cu are also in V (so that V is closed

under vector addition and multiplication by scalars). Then, with these operations, V

is called a vector space provided that—given any vectors u, v, and w in V and any

scalars a and b—the following properties hold true:

(a) uC v D vC u (commutativity)

(b) uC .vCw/ D .uC v/Cw (associativity)

(c) uC 0 D 0C u D u (zero element)

(d) uC .�u/ D .�u/C u D 0 (additive inverse)

(e) a.uC v/ D auC av (distributivity)

(f) .aC b/u D auC bu

(g) a.bu/ D .ab/u

(h) .1/u D u

In property (c), it is meant that there exists a zero vector 0 in V such that

uC 0 D u. The zero vector in Rn is

0 D .0; 0; : : : ; 0/:

Similarly, property (d) actually means that, given the vector u in V , there exists a

vector �u in V such that uC .�u/ D 0. In Rn, we clearly have

�u D .�u1;�u2; : : : ;�un/:

The fact that RDR1 satisfies properties (a)–(h), with the real numbers playing

the dual roles of scalars and vectors, means that the real line may be regarded as a

vector space. If n > 1, then each of properties (a)–(h) may be readily verified for

Rn by working with components and applying the corresponding properties of real

numbers. For example, to verify the commutativity of vector addition in (a), we

begin with Eq. (1) and write

uC v D .u1 C v1; u2 C v2; : : : ; un C vn/

D .v1 C u1; v2 C u2; : : : ; vn C un/

D vC u:

Thus n-space Rn is a vector space with the operations defined in Eqs. (1) and

(2). We will understand throughout that our scalars are the real numbers, though
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in more advanced treatments of linear algebra other scalars (such as the complex

numbers) are sometimes used.

Observe that, in the definition of a vector space, nothing is said about the

elements of V (the “vectors”) being n-tuples. They can be any objects for which

addition and multiplication by scalars are defined and which satisfy properties (a)–

(h). Although many of the vectors you will see in this text actually are n-tuples of

real numbers, an example in which they are not may help to clarify the definition of

a vector space.

Example 1 Let F be the set of all real-valued functions defined on the real number line R. Then each

vector in F is a function f such that the real number f.x/ is defined for all x in R. Given f

and g in F and a real number c, the functions fC g and cf are defined in the natural way,

.fC g/.x/ D f.x/C g.x/

and

.cf/.x/ D c.f.x//:

Then each of properties (a)–(h) of a vector space follows readily from the corresponding

property of the real numbers. For instance, if a is a scalar, then

Œa.fC g/�.x/ D aŒ.fC g/.x/�

D aŒf.x/C g.x/�

D af.x/C ag.x/

D .afC ag/.x/:

Thus a.fC g/ D afC ag, so F enjoys property (e).

After verification of the other seven properties, we conclude that F is, indeed,

a vector space—one that differs in a fundamental way from each of the vector spaces

Rn. We naturally call Rn an n-dimensional vector space, and in Section 4.4 we will

define the word dimension in such a way that the dimension of Rn actually is n. But

the vector space F of functions turns out not to have dimension n for any integer n;

it is an example of an infinite-dimensional vector space. (See Section 4.4.)

Subspaces

Let W D f0g be the subset of Rn that contains only the zero vector 0. Then W

satisfies properties (a)–(h) of a vector space, because each reduces trivially to the

equation 0D 0. ThusW is a subset of the vector space V D Rn that is itself a vector

space. According to the following definition, a subset of a vector space V that is

itself a vector space is called a subspace of V .

DEFINITION Subspace

Let W be a nonempty subset of the vector space V . Then W is a subspace of

V provided that W itself is a vector space with the operations of addition and

multiplication by scalars as defined in V .

In order for the subsetW to be a subspace of the vector space V , it first must be

closed under the operations of vector addition and multiplication by scalars. Then

it must satisfy properties (a)–(h) of a vector space. But W “inherits” all these prop-

erties from V , because the vectors in W all are vectors in V , and the vectors in V

all satisfy properties (a)–(h). The following “subspace criterion” says that, in order

to determine whether the subset W is a vector space, we need only check the two

closure conditions.
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THEOREM 1 Conditions for a Subspace

The nonempty subset W of the vector space V is a subspace of V if and only if

it satisfies the following two conditions:

(i) If u and v are vectors in W , then uC v is also in W .

(ii) If u is in W and c is a scalar, then the vector cu is also in W .

In Section 4.1 we saw that lines through the origin in R2 form subspaces of

R2 and that lines and planes through the origin are subspaces of R3. The subspace

W of the following example may be regarded as a higher-dimensional “plane” (or

“hyperplane”) through the origin in Rn.

Example 2 Let W be the subset of Rn consisting of all those vectors .x1; x2; : : : ; xn/ whose coordinates

satisfy the single homogeneous linear equation

a1x1 C a2x2 C � � � C anxn D 0;

where the given coefficients a1; a2; : : : ; an are not all zero. If u D .u1; u2; : : : ; un/ and v D

.v1; v2; : : : ; vn/ are vectors in W , then

a1.u1 C v1/C a2.u2 C v2/C � � � C an.un C vn/

D .a1u1 C a2u2 C � � � C anun/C .a1v1 C a2v2 C � � � C anvn/

D 0C 0 D 0;

so uC v D .u1 C v1; : : : ; un C vn/ is also in W . If c is a scalar, then

a1.cu1/C a2.cu2/C � � � C an.cun/ D c.a1u1 C a2u2 C � � � C anun/

D .c/.0/ D 0;

so cu D .cu1; cu2; : : : ; cun/ is in W . Thus we have shown that W satisfies conditions (i) and

(ii) of Theorem 1 and is therefore a subspace of Rn.

In order to apply Theorem 1 to show that W is a subspace of the vector space

V , we must show that W satisfies both conditions in the theorem. But to apply

Theorem 1 to show that W is not a subspace of V , we need only show either that

condition (i) fails or that condition (ii) fails.

Example 3 Let W be the set of all those vectors .x1; x2; x3; x4/ in R4 whose four coordinates are all

nonnegative: xi � 0 for i D 1, 2, 3, 4. Then it should be clear that the sum of two vectors in

W is also a vector in W , because the sum of two nonnegative numbers is nonnegative. Thus

W satisfies condition (i) of Theorem 1. But if we take u D .1; 1; 1; 1/ in W and c D �1, then

we find that the scalar multiple

cu D .�1/.1; 1; 1; 1/ D .�1;�1;�1;�1/

is not in W . Thus W fails to satisfy condition (ii) and therefore is not a subspace of R4.

Example 4 Let W be the set of all those vectors .x1; x2; x3; x4/ in R4 such that x1x4 D 0. Now W

satisfies condition (ii) of Theorem 1, because x1x4 D 0 implies that .cx1/.cx4/ D 0 for any

scalar c. But if we take the vectors u D .1; 1; 0; 0/ and v D .0; 0; 1; 1/ in W , we see that their

sum uC v D .1; 1; 1; 1/ is not in W . Thus W does not satisfy condition (i) and therefore is

not a subspace of R4.

Example 2 implies that the solution set of a homogeneous linear equation

a1x1 C a2x2 C � � � C anxn D 0

in n variables is always a subspace of Rn. Theorem 2 further implies that the same

is true of a homogeneous system of linear equations. Recall that any such system
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of m equations in n unknowns can be written in the form Ax D 0, where A is the

m � n coefficient matrix and x D .x1; x2; : : : ; xn/ is regarded as a column vector.

The solution set of Ax D 0 is then the set of all vectors x in Rn that satisfy this

equation—that is, the set of all its solution vectors.

THEOREM 2 Solution Subspaces

If A is a (constant) m� n matrix, then the solution set of the homogeneous linear

system

Ax D 0 (3)

is a subspace of Rn.

Proof: Let W denote the solution set of Eq. (3). If u and v are vectors in W ,

then Au D Av D 0. Hence

A.uC v/ D AuCAv D 0C 0 D 0:

Thus the sum uC v is also in W , and hence W satisfies condition (i) of Theorem 1.

If c is a scalar, then

A.cu/ D c.Au/ D c0 D 0;

so cu is in W if u is in W . Thus W also satisfies condition (ii) of Theorem 1. It

therefore follows that W is a subspace of Rn.

Note that, in order to conclude by Theorem 2 that the solution set of a linear

system is a subspace, it is necessary for the system to be homogeneous. Indeed, the

solution set of a nonhomogeneous linear system

Ax D b (4)

with b 6D 0 is never a subspace. For if u were a solution vector of the system in (4),

then

A.2u/ D 2.Au/ D 2b 6D b

because b 6D 0. Thus the scalar multiple 2u of the solution vector u is not a solution

vector. Therefore, Theorem 1 implies that the solution set of (4) is not a subspace.

Because the solution set of a homogeneous linear system is a subspace, we

often call it the solution space of the system. The subspaces of Rn are the possible

solution spaces of a homogeneous linear system with n unknowns, and this is one

of the principal reasons for our interest in subspaces of Rn.

At opposite extremes as subspaces of Rn lie the zero subspace f0g and Rn

itself. Every other subspace of Rn, each one that is neither f0g nor Rn, is called a

proper subspace of Rn. The proper subspaces of Rn play the same role in Rn that

lines and planes through the origin play in R3. In the following two sections we

develop the tools that are needed to analyze the structure of a given proper subspace

of Rn. In particular, given the homogeneous system Ax D 0, we ask how we can

describe its solution space in a concise and illuminating way, beyond the mere state-

ment that it is the set of all solution vectors of the system. Example 5 illustrates one

possible way of doing this.

Example 5 In Example 4 of Section 3.4 we considered the homogeneous system

x1 C 3x2 � 15x3 C 7x4 D 0

x1 C 4x2 � 19x3 C 10x4 D 0

2x1 C 5x2 � 26x3 C 11x4 D 0.

(5)
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The reduced echelon form of the coefficient matrix of this system is

2

4

1 0 �3 �2

0 1 �4 3

0 0 0 0

3

5 :

Hence x1 and x2 are the leading variables and x3 and x4 are free variables. Back substitution

yields the general solution

x3 D s; x4 D t; x2 D 4s � 3t; x1 D 3s C 2t

in terms of arbitrary parameters s and t . Thus a typical solution vector of the system in (5)

has the form

x D

2

6

6

4

x1

x2

x3

x4

3

7

7

5

D

2

6

6

4

3s C 2t

4s � 3t

s

t

3

7

7

5

D s

2

6

6

4

3

4

1

0

3

7

7

5

C t

2

6

6

4

2

�3

0

1

3

7

7

5

:

It follows that the solution space of the system in (5) can be described as the set of all linear

combinations of the form

x D suC tv; (6)

where u D .3; 4; 1; 0/ and v D .2;�3; 0; 1/. Thus we have found two particular solution

vectors u and v of our system that completely determine its solution space [by the formula in

(6)].

4.2 Problems
In Problems 1–14, a subset W of some n-space Rn is defined

by means of a given condition imposed on the typical vector

.x1; x2; : : : ; xn/. Apply Theorem 1 to determine whether or

not W is a subspace of Rn.

1. W is the set of all vectors in R3 such that x3 D 0.

2. W is the set of all vectors in R3 such that x1 D 5x2.

3. W is the set of all vectors in R3 such that x2 D 1.

4. W is the set of all vectors in R3 such that x1Cx2Cx3D 1.

5. W is the set of all vectors in R4 such that x1 C 2x2 C

3x3 C 4x4 D 0.

6. W is the set of all vectors in R4 such that x1 D 3x3 and

x2 D 4x4.

7. W is the set of all vectors in R2 such that jx1j D jx2j.

8. W is the set of all vectors in R2 such that .x1/
2C .x2/

2 D

0.

9. W is the set of all vectors in R2 such that .x1/
2C .x2/

2 D

1.

10. W is the set of all vectors in R2 such that jx1j C jx2j D 1.

11. W is the set of all vectors in R4 such that x1 C x2 D

x3 C x4.

12. W is the set of all vectors in R4 such that x1x2 D x3x4.

13. W is the set of all vectors in R4 such that x1x2x3x4 D 0.

14. W is the set of all those vectors in R4 whose components

are all nonzero.

In Problems 15–18, apply the method of Example 5 to find two

solution vectors u and v such that the solution space is the set

of all linear combinations of the form suC tv.

15. x1 � 4x2 C x3 � 4x4 D 0

x1 C 2x2 C x3 C 8x4 D 0

x1 C x2 C x3 C 6x4 D 0

16. x1 � 4x2 � 3x3 � 7x4 D 0

2x1 � x2 C x3 C 7x4 D 0

x1 C 2x2 C 3x3 C 11x4 D 0

17. x1 C 3x2 C 8x3 � x4 D 0

x1 � 3x2 � 10x3 C 5x5 D 0

x1 C 4x2 C 11x3 � 2x4 D 0

18. x1 C 3x2 C 2x3 C 5x4 � x5 D 0

2x1 C 7x2 C 4x3 C 11x4 C 2x5 D 0

2x1 C 6x2 C 5x3 C 12x4 � 7x5 D 0

In Problems 19–22, reduce the given system to echelon form to

find a single solution vector u such that the solution space is

the set of all scalar multiples of u.

19. x1 � 3x2 � 5x3 � 6x4 D 0

2x1 C x2 C 4x3 � 4x4 D 0

x1 C 3x2 C 7x3 C x4 D 0

20. x1 C 5x2 C x3 � 8x4 D 0

2x1 C 5x2 � 5x4 D 0

2x1 C 7x2 C x3 � 9x4 D 0

21. x1 C 7x2 C 2x3 � 3x4 D 0

2x1 C 7x2 C x3 � 4x4 D 0

3x1 C 5x2 � x3 � 5x4 D 0

22. x1 C 3x2 C 3x3 C 3x4 D 0

2x1 C 7x2 C 5x3 � x4 D 0

2x1 C 7x2 C 4x3 � 4x4 D 0

23. Show that every subspace W of a vector space V contains

the zero vector 0.

24. Apply the properties of a vector space V to show each of

the following.

(a) 0u D 0 for every u in V .

(b) c0 D 0 for every scalar c.
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(c) .�1/u D �u for every u in V .

Do not assume that the vectors in V are n-tuples of real

numbers.

25. Show that the nonempty subset W of a vector space V is

a subspace of V if and only if for every pair of vectors u

and v in W and every pair of scalars a and b, auC bv is

also in W .

26. Prove: If u is a (fixed) vector in the vector space V , then

the set W of all scalar multiples cu of u is a subspace of

V .

27. Let u and v be (fixed) vectors in the vector space V . Show

that the set W of all linear combinations auC bv of u and

v is a subspace of V .

28. Suppose that A is an n�nmatrix and that k is a (constant)

scalar. Show that the set of all vectors x such that AxD kx

is a subspace of Rn.

29. Let A be an n � n matrix, b be a nonzero vector, and x0

be a solution vector of the system Ax D b. Show that x is

a solution of the nonhomogeneous system Ax D b if and

only if yD x�x0 is a solution of the homogeneous system

Ay D 0.

30. Let U and V be subspaces of the vector space W . Their

intersection U \ V is the set of all vectors that are both

in U and in V . Show that U \ V is a subspace of W . If

U and V are two planes through the origin in R3, what is

U \ V ?

31. Let U and V be subspaces of the vector space W . Their

sum U C V is the set of all vectors w of the form

w D uC v;

where u is in U and v is in V . Show that U C V is a sub-

space of W . If U and V are lines through the origin in R3,

what is U C V ?

4.3 Linear Combinations and Independence of Vectors

In Example 5 of Section 4.2 we solved the homogeneous linear system

x1 C 3x2 � 15x3 C 7x4 D 0

x1 C 4x2 � 19x3 C 10x4 D 0

2x1 C 5x2 � 26x3 C 11x4 D 0.

(1)

We found that its solution space W consists of all those vectors x in R4 that have

the form

x D s.3; 4; 1; 0/C t .2;�3; 0; 1/: (2)

We therefore can visualize W as the plane in R4 determined by the vectors v1 D

.3; 4; 1; 0/ and v2 D .2;�3; 0; 1/. The fact that every solution vector is a combi-

nation [as in (2)] of the particular solution vectors v1 and v2 gives us a tangible

understanding of the solution space W of the system in (1).

More generally, we know from Theorem 2 in Section 4.2 that the solution set

V of any m � n homogeneous linear system Ax D 0 is a subspace of Rn. In order

to understand such a vector space V better, we would like to find a minimal set of

vectors v1; v2; : : : ; vk in V such that every vector in V is a sum of scalar multiples

of these particular vectors.

The vector w is called a linear combination of the vectors v1; v2; : : : ; vk pro-

vided that there exist scalars c1; c2; : : : ; ck such that

w D c1v1 C c2v2 C � � � C ckvk : (3)

Given a vector w in Rn, the problem of determining whether or not w is a linear

combination of the vectors v1; v2; : : : ; vk amounts to solving a linear system to see

whether we can find scalars c1; c2; : : : ; ck so that (3) holds.

Example 1 To determine whether the vector w D .2;�6; 3/ in R3 is a linear combination of the vectors

v1 D .1;�2;�1/ and v2 D .3;�5; 4/, we write the equation c1v1C c2v2 D w in matrix form:

c1

2

4

1

�2

�1

3

5C c2

2

4

3

�5

4

3

5 D

2

4

2

�6

3

3

5
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—that is,

c1 C 3c2 D 2

�2c1 � 5c2 D �6

�c1 C 4c2 D 3.

The augmented coefficient matrix
2

4

1 3 2

�2 �5 �6

�1 4 3

3

5

can be reduced by elementary row operations to echelon form:
2

4

1 3 2

0 1 �2

0 0 19

3

5 :

We see now, from the third row, that our system is inconsistent, so the desired scalars c1 and

c2 do not exist. Thus w is not a linear combination of v1 and v2.

Example 2 To express the vector w D .�7; 7; 11/ as a linear combination of the vectors v1 D .1; 2; 1/,

v2 D .�4;�1; 2/, and v3 D .�3; 1; 3/, we write the equation c1v1 C c2v2 C c3v3 D w in the

form

c1

2

4

1

2

1

3

5C c2

2

4

�4

�1

2

3

5C c3

2

4

�3

1

3

3

5 D

2

4

�7

7

11

3

5

—that is,

c1 � 4c2 � 3c3 D �7

2c1 � c2 C c3 D 7

c1 C 2c2 C 3c3 D 11.

The reduced echelon form of the augmented coefficient matrix of this system is
2

4

1 0 1 5

0 1 1 3

0 0 0 0

3

5 :

Thus c3 is a free variable. With c3 D t , back substitution yields c1 D 5 � t and c2 D 3 � t .

For instance, t D 1 gives c1 D 4, c2 D 2, and c3 D 1, so

w D 4v1 C 2v2 C v3:

But t D �2 yields c1 D 7, c2 D 5, and c3 D �2, so w can also be expressed as

w D 7v1 C 5v2 � 2v3:

We have found not only that w can be expressed as a linear combination of the vectors v1, v2,

v3 but also that this can be done in many different ways (one for each choice of the parameter

t).

We began this section with the observation that every solution vector of the

linear system in (1) is a linear combination of the vectors v1 and v2 that appear in

the right-hand side of Eq. (2). A brief way of saying this is that the vectors v1 and v2

span the solution space. More generally, suppose that v1; v2; : : : ; vk are vectors in a

vector space V . Then we say that the vectors v1; v2; : : : ; vk span the vector space V

provided that every vector in V is a linear combination of these k vectors. We may

also say that the set S D fv1; v2; : : : ; vkg of vectors is a spanning set for V .

Example 3 The familiar unit vectors i D .1; 0; 0/, j D .0; 1; 0/, and k D .0; 0; 1/ span R3, because every

vector x D .x1; x2; x3/ in R3 can be expressed as the linear combination

x D x1iC x2jC x3k

of these three vectors i, j, and k.
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If the vectors v1; v2; : : : ; vk in the vector space V do not span V , we can ask

about the subset of V consisting of all those vectors that are linear combinations of

v1; v2; : : : ; vk . The following theorem implies that this subset is always a subspace

of V .

THEOREM 1 The Span of a Set of Vectors

Let v1; v2; : : : ; vk be vectors in the vector space V . Then the set W of all linear

combinations of v1; v2; : : : ; vk is a subspace of V .

Proof: We must show that W is closed under addition of vectors and multi-

plication by scalars. If

u D a1v1 C a2v2 C � � � C akvk

and

v D b1v1 C b2v2 C � � � C bkvk

are vectors in W , then

uC v D .a1 C b1/v1 C .a2 C b2/v2 C � � � C .ak C bk/vk

and

cu D .ca1/v1 C .ca2/v2 C � � � C .cak/vk

for any scalar c. Thus uC v and cu are linear combinations of v1; v2; : : : ; vk and

therefore are vectors inW . It is clear thatW is nonempty, and henceW is a subspace

of V .

We say that the subspace W of Theorem 1 is the space spanned by the vec-

tors v1; v2; : : : ; vk (or is the span of the set S D fv1; v2; : : : ; vkg of vectors). We

sometimes write

W D span.S/ D spanfv1; v2; : : : ; vkg:

Thus Example 3 implies that R3 D spanfi; j;kg. The question as to whether a given

vector w in Rn lies in the subspace spanfv1; v2; : : : ; vkg reduces to solving a linear

system, as illustrated by Examples 1 and 2.

It is easy to verify that the space W D spanfv1; v2; : : : ; vkg of Theorem 1 is

the smallest subspace of V that contains all the vectors v1; v2; : : : ; vk—meaning

that every other subspace of V that contains these k vectors must also contain W

(Problem 30).

Linear Independence

Henceforth, when we solve a homogeneous system of linear equations, we generally

will seek a set v1; v2; : : : ; vk of solution vectors that span the solution spaceW of the

system. Perhaps the most concrete way to describe a subspace W of a vector space

V is to give explicitly a set v1; v2; : : : ; vk of vectors that span W . And this type of

representation is most useful and desirable (as well as most aesthetically pleasing)

when each vector w in W is expressible in a unique way as a linear combination of

v1; v2; : : : ; vk . (For instance, each vector in R3 is a unique linear combination of the

vectors i, j, and k of Example 3.) But Example 2 demonstrates that a vector w may

well be expressed in many different ways as a linear combination of given vectors

v1; v2; : : : ; vk .
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Thus not all spanning sets enjoy the uniqueness property that we desire. Two

questions arise:

� Given a subspace W of a vector space V , does there necessarily exist a span-

ning set with the uniqueness property that we desire?

� If so, how do we find such a spanning set for W ?

The following definition provides the key to both answers.

DEFINITION Linear Independence

The vectors v1; v2; : : : ; vk in a vector space V are said to be linearly independent

provided that the equation

c1v1 C c2v2 C � � � C ckvk D 0 (4)

has only the trivial solution c1D c2D � � � D ck D 0. That is, the only linear combi-

nation of v1; v2; : : : ; vk that represents the zero vector 0 is the trivial combination

0v1 C 0v2 C � � � C 0vk .

Remark We can immediately verify that any vector w in the subspace W spanned by the

linearly independent vectors v1; v2; : : : ; vk
is uniquely expressible as a linear combination of

these vectors. For

w D

k
X

iD1

ai vi D

k
X

iD1

bi vi implies that

k
X

iD1

.ai � bi /vi D 0:

Hence, with ci D ai � bi for each i D 1; : : : ; k, the linear independence of v1; v2; : : : ; vk

implies that c1 D c2 D � � � D ck
D 0. Thus

k
X

iD1

ai vi D

k
X

iD1

bi vi implies that ai D bi for i D 1; : : : ; k,

so we see that w can be expressed in only one way as a combination of the linearly indepen-

dent vectors v1; v2; : : : ; vk
.

Example 4 The standard unit vectors

e1 D .1; 0; 0; : : : ; 0/;

e2 D .0; 1; 0; : : : ; 0/;

:::

en D .0; 0; 0; : : : ; 1/

in Rn are linearly independent. The reason is that the equation

c1e1 C c2e2 C � � � C cnen D 0

evidently reduces to

.c1; c2; : : : ; cn/ D .0; 0; : : : ; 0/

and thus has only the trivial solution c1 D c2 D � � � D cn D 0.

Example 5 To determine whether the vectors v1 D .1; 2; 2; 1/, v2 D .2; 3; 4; 1/, and v3 D .3; 8; 7; 5/ in R4

are linearly independent, we write the equation c1v1 C c2v2 C c3v3 D 0 as the linear system

c1 C 2c2 C 3c3 D 0

2c1 C 3c2 C 8c3 D 0

2c1 C 4c2 C 7c3 D 0

c1 C c2 C 5c3 D 0
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and then solve for c1, c2, and c3. The augmented coefficient matrix of this system reduces to

the echelon form
2

6

6

4

1 2 3 0

0 1 �2 0

0 0 1 0

0 0 0 0

3

7

7

5

;

so we see that the only solution is c1 D c2 D c3 D 0. Thus the vectors v1, v2, and v3 are

linearly independent.

Observe that linear independence of the vectors v1; v2; : : : ; vk actually is a

property of the set S D fv1; v2; : : : ; vkg whose elements are these vectors. Oc-

casionally the phraseology “the set S D fv1; v2; : : : ; vkg is linearly independent”

is more convenient. For instance, any subset of a linearly independent set S D

fv1; v2; : : : ; vkg is a linearly independent set of vectors (Problem 29).

Now we show that the coefficients in a linear combination of the linearly in-

dependent vectors v1; v2; : : : ; vk are unique. If both

w D a1v1 C a2v2 C � � � C akvk (5)

and

w D b1v1 C b2v2 C � � � C bkvk ; (6)

then

a1v1 C a2v2 C � � � C akvk D b1v1 C b2v2 C � � � C bkvk ;

so it follows that

.a1 � b1/v1 C .a2 � b2/v2 C � � � C .ak � bk/vk D 0: (7)

Because the vectors v1; v2; : : : ; vk are linearly independent, each of the coefficients

in (7) must vanish. Therefore, a1 D b1; a2 D b2; : : : ; ak D bk , so we have shown

that the linear combinations in (5) and (6) actually are identical. Hence, if a vector

w is in the set spanfv1; v2; : : : ; vkg, then it can be expressed in only one way as a

linear combination of these linearly independent vectors.

A set of vectors is called linearly dependent provided it is not linearly inde-

pendent. Hence the vectors v1; v2; : : : ; vk are linearly dependent if and only if there

exist scalars c1; c2; : : : ; ck not all zero such that

c1v1 C c2v2 C � � � C ckvk D 0: (8)

In short, a (finite) set of vectors is linearly dependent provided that some nontrivial

linear combination of them equals the zero vector.

Example 6 Let v1 D .2; 1; 3/, v2 D .5;�2; 4/, v3 D .3; 8;�6/, and v4 D .2; 7;�4/. Then the equation

c1v1 C c2v2 C c3v3 C c4v4 D 0 is equivalent to the linear system

2c1 C 5c2 C 3c3 C 2c4 D 0

c1 � 2c2 C 8c3 C 7c4 D 0

3c1 C 4c2 � 6c3 � 4c4 D 0

of three equations in four unknowns. Because this homogeneous system has more unknowns

than equations, Theorem 3 in Section 3.3 implies that it has a nontrivial solution. Therefore

we may conclude—without even solving explicitly for c1, c2, c3, and c4—that the vectors

v1, v2, v3, and v4 are linearly dependent. (It happens that

2v1 � v2 C 3v3 � 4v4 D 0;

as you can verify easily.)
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The argument in Example 6 may be generalized in an obvious way to prove

that any set of more than n vectors in Rn is linearly dependent. For if k > n, then

Eq. (8) is equivalent to a homogeneous linear system with more unknowns (k) than

equations (n), so Theorem 3 in Section 3.3 yields a nontrivial solution.

We now look at the way in which the elements of a linearly dependent set of

vectors v1; v2; : : : ; vk “depend” on one another. We know that there exist scalars

c1; c2; : : : ; ck not all zero such that

c1v1 C c2v2 C � � � C ckvk D 0: (9)

Suppose that the pth coefficient is nonzero: cp 6D 0. Then we can solve Eq. (9) for

cpvp and next divide by cp to get

vp D a1v1 C � � � C ap�1vp�1 C apC1vpC1 C � � � C akvk ; (10)

where ai D �ci=cp for i 6D p. Thus at least one of the linearly dependent vectors is

a linear combination of the other k � 1. Conversely, suppose we are given a set of

vectors v1; v2; : : : ; vk with one of them dependent on the others as in Eq. (10). Then

we can transpose all the terms to the left-hand side to get an equation of the form in

(9) with cp D 1 6D 0. This shows that the vectors are linearly dependent. Therefore,

we have proved that the vectors v1; v2; : : : ; vk are linearly dependent if and only if

at least one of them is a linear combination of the others.

For instance (as we saw in Section 4.1), two vectors are linearly dependent

if and only if one of them is a scalar multiple of the other, in which case the two

vectors are collinear. Three vectors are linearly dependent if and only if one of them

is a linear combination of the other two, in which case the three vectors are coplanar.

In Theorem 4 of Section 4.1 we saw that the determinant provides a criterion

for deciding whether three vectors in R3 are linearly independent: The vectors v1,

v2, v3 in R3 are linearly independent if and only if the determinant of the 3 � 3

matrix

A D
�

v1 v2 v3

�

is nonzero. The proof given there in the three-dimensional case generalizes readily

to the n-dimensional case. Given n vectors v1; v2; : : : ; vn in Rn, we consider the

n � n matrix

A D
�

v1 v2 � � � vn

�

having these vectors as its column vectors. Then, by Theorem 2 in Section 3.6,

det A 6D 0 if and only if A is invertible, in which case the system Ac D 0 has only

the trivial solution c1 D c2 D � � � D cn D 0, so the vectors v1; v2; : : : ; vn must be

linearly independent.

THEOREM 2 Independence of n Vectors in Rn

The n vectors v1; v2; : : : ; vn in Rn are linearly independent if and only if the n�n

matrix

A D
�

v1 v2 � � � vn

�

having them as its column vectors has nonzero determinant.

We saw earlier that a set of more than n vectors in Rn is always linearly de-

pendent. The following theorem shows us how the determinant provides a criterion

in the case of fewer than n vectors in Rn.
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THEOREM 3 Independence of Fewer Than n Vectors in Rn

Consider k vectors v1; v2; : : : ; vk in Rn, with k < n. Let

A D
�

v1 v2 � � � vk

�

be the n � k matrix having them as its column vectors. Then the vectors

v1; v2; : : : ; vk are linearly independent if and only if some k � k submatrix of

A has nonzero determinant.

Rather than including a complete proof, we will simply illustrate the “if”

part of Theorem 3 in the case n D 5, k D 3. Let v1 D .a1; a2; a3; a4; a5/, v2 D

.b1; b2; b3; b4; b5/, and v3 D .c1; c2; c3; c4; c5/ be three vectors in R5 such that the

5 � 3 matrix

A D

2

6

6

6

6

4

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

3

7

7

7

7

5

has a 3 � 3 submatrix with nonzero determinant. Suppose, for instance, that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1 b1 c1

a3 b3 c3

a5 b5 c5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6D 0:

Then Theorem 2 implies that the three vectors u1 D .a1; a3; a5/, u2 D .b1; b3; b5/,

and u3D .c1; c3; c5/ in R3 are linearly independent. Now suppose that c1v1Cc2v2C

c3v3 D 0. Then by deleting the second and fourth components of each vector in this

equation, we find that c1u1 C c2u2 C c3u3 D 0. But the fact that u1, u2, u3 are

linearly independent implies that c1 D c2 D c3 D 0, and it now follows that v1, v2,

v3 are linearly independent.

4.3 Problems
In Problems 1–8, determine whether the given vectors

v1; v2; : : : ; vk
are linearly independent or linearly dependent.

Do this essentially by inspection—that is, without solving a

linear system of equations.

1. v1 D .4;�2; 6;�4/, v2 D .6;�3; 9;�6/

2. v1 D .3; 9;�3; 6/, v2 D .2; 6;�2; 4/

3. v1 D .3; 4/, v2 D .6;�1/, v3 D .7; 5/

4. v1 D .4;�2; 2/, v2 D .5; 4;�3/, v3 D .4; 6; 5/,

v4 D .�7; 9; 3/

5. v1 D .1; 0; 0/, v2 D .0;�2; 0/, v3 D .0; 0; 3/

6. v1 D .1; 0; 0/, v2 D .1; 1; 0/, v3 D .1; 1; 1/

7. v1 D .2; 1; 0; 0/, v2 D .3; 0; 1; 0/, v3 D .4; 0; 0; 1/

8. v1 D .1; 0; 3; 0/, v2 D .0; 2; 0; 4/, v3 D .1; 2; 3; 4/

In Problems 9–16, express the indicated vector w as a linear

combination of the given vectors v1; v2; : : : ; vk
if this is possi-

ble. If not, show that it is impossible.

9. w D .1; 0;�7/; v1 D .5; 3; 4/, v2 D .3; 2; 5/

10. w D .3;�1;�2/; v1 D .�3; 1;�2/, v2 D .6;�2; 3/

11. w D .1; 0; 0;�1/; v1 D .7;�6; 4; 5/, v2 D .3;�3; 2; 3/

12. w D .4;�4; 3; 3/; v1 D .7; 3;�1; 9/,

v2 D .�2;�2; 1;�3/

13. w D .5; 2;�2/; v1 D .1; 5;�3/, v2 D .5;�3; 4/

14. w D .2;�3; 2;�3/; v1 D .1; 0; 0; 3/, v2 D .0; 1;�2; 0/,

v3 D .0;�1; 1; 1/

15. w D .4; 5; 6/; v1 D .2;�1; 4/, v2 D .3; 0; 1/,

v3 D .1; 2;�1/

16. w D .7; 7; 9; 11/; v1 D .2; 0; 3; 1/, v2 D .4; 1; 3; 2/,

v3 D .1; 3;�1; 3/

In Problems 17–22, three vectors v1, v2, and v3 are given.

If they are linearly independent, show this; otherwise find a

nontrivial linear combination of them that is equal to the zero

vector.

17. v1 D .1; 0; 1/, v2 D .2;�3; 4/, v3 D .3; 5; 2/

18. v1 D .2; 0;�3/, v2 D .4;�5;�6/, v3 D .�2; 1; 3/

19. v1 D .2; 0; 3; 0/, v2 D .5; 4;�2; 1/, v3 D .2;�1; 1;�1/

20. v1 D .1; 1;�1; 1/, v2 D .2; 1; 1; 1/, v3 D .3; 1; 4; 1/
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21. v1 D .3; 0; 1; 2/, v2 D .1;�1; 0; 1/, v3 D .1; 2; 1; 0/

22. v1 D .3; 9; 0; 5/, v2 D .3; 0; 9;�7/, v3 D .4; 7; 5; 0/

In Problems 23–26, the vectors fvi g are known to be linearly

independent. Apply the definition of linear independence to

show that the vectors fui g are also linearly independent.

23. u1 D v1 C v2, u2 D v1 � v2

24. u1 D v1 C v2, u2 D 2v1 C 3v2

25. u1 D v1, u2 D v1 C 2v2, u3 D v1 C 2v2 C 3v3

26. u1 D v2 C v3, u2 D v1 C v3, u3 D v1 C v2

27. Prove: If the (finite) set S of vectors contains the zero

vector, then S is linearly dependent.

28. Prove: If the set S of vectors is linearly dependent and

the (finite) set T contains S , then T is also linearly depen-

dent. You may assume that S D fv1; v2; : : : ; vk
g and that

T D fv1; v2; : : : ; vmg with m > k.

29. Show that if the (finite) set S of vectors is linearly inde-

pendent, then any subset T of S is also linearly indepen-

dent.

30. Suppose that the subspace U of the vector space V con-

tains the vectors v1; v2; : : : ; vk
. Show that U contains the

subspace spanned by these vectors.

31. Let S and T be sets of vectors in a vector space such that S

is a subset of span.T /. Show that span.S/ is also a subset

of span.T /.

32. Let v1; v2; : : : ; vk
be linearly independent vectors in the

set S of vectors. Prove: If no set of more than k vectors in

S is linearly independent, then every vector in S is a linear

combination of v1; v2; : : : ; vk
.

In Problems 33–35, let v1; v2; : : : ; vk
be vectors in Rn and let

A D
�

v1 v2 � � � v
k

�

be the n � k matrix with these vectors as its column vectors.

33. Prove: If some k � k submatrix of A is the k � k identity

matrix, then v1; v2; : : : ; vk
are linearly independent.

34. Suppose that k D n, that the vectors v1; v2; : : : ; vk
are lin-

early independent, and that B is a nonsingular n � n ma-

trix. Prove that the column vectors of the matrix AB are

linearly independent.

35. Suppose that k < n, that the vectors v1; v2; : : : ; vk
are lin-

early independent, and that B is a nonsingular k � k ma-

trix. Use Theorem 3 to show that the column vectors of

AB are linearly independent.

4.4 Bases and Dimension for Vector Spaces

An especially useful way of describing the solution space of a homogeneous linear

system is to list explicitly a set S of solution vectors such that every solution vector

is a unique linear combination of these particular ones. The following definition

specifies the properties of such a set S of “basic” solution vectors, and the concept

is equally important for vector spaces other than solution spaces.

DEFINITION Basis

A finite set S of vectors in a vector space V is called a basis for V provided that

(a) the vectors in S are linearly independent, and

(b) the vectors in S span V .

In short, a basis for the vector space V is a linearly independent spanning set

of vectors in V . Thus, if S D fv1; v2; : : : ; vng is a basis for V , then any vector w in

V can be expressed as a linear combination

w D c1v1 C c2v2 C � � � C cnvn (1)

of the vectors in S , and we saw in Section 4.3 that the linear independence of S

implies that the coefficients c1; c2; : : : ; cn in (1) are unique. That is, w cannot be

expressed differently as a linear combination of the basis vectors v1; v2; : : : ; vn.

Example 1 The standard basis for Rn consists of the unit vectors

e1 D .1; 0; 0; : : : ; 0/; e2 D .0; 1; 0; : : : ; 0/; : : : ; en D .0; 0; 0; : : : ; 1/:

If x D .x1; x2; : : : ; xn/ is a vector in Rn, then

x D x1e1 C x2e2 C � � � C xnen:
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Thus the column vectors

e1 D

2

6

6

6

4

1

0
:::

0

3

7

7

7

5

; e2 D

2

6

6

6

4

0

1
:::

0

3

7

7

7

5

; : : : ; en D

2

6

6

6

4

0

0
:::

1

3

7

7

7

5

of the n � n identity matrix span Rn, and we noted in Example 4 of Section 4.3 that these

standard unit vectors are linearly independent.

Example 2 Let v1; v2; : : : ; vn be n linearly independent vectors in Rn. We saw in Section 4.3 that any

set of more than n vectors in Rn is linearly dependent. Hence, given a vector w in Rn, there

exist scalars c; c1; c2; : : : ; cn not all zero such that

cwC c1v1 C c2v2 C � � � C cnvn D 0: (2)

If c were zero, then (2) would imply that the vectors v1; v2; : : : ; vn are linearly dependent.

Hence c 6D 0, so Eq. (2) can be solved for w as a linear combination of v1; v2; : : : ; vn. Thus

the linearly independent vectors v1; v2; : : : ; vn also span Rn and therefore constitute a basis

for Rn.

Example 2 shows that any set of n linearly independent vectors in Rn is a

basis for Rn. By Theorem 2 in Section 4.3, we can therefore determine whether n

given vectors v1; v2; : : : ; vn form a basis for Rn by calculating the determinant of

the n � n matrix

A D
�

v1 v2 � � � vn

�

with these vectors as its column vectors. They constitute a basis for Rn if and only

if det A 6D 0.

Example 3 Let v1 D .1;�1;�2;�3/, v2 D .1;�1; 2; 3/, v3 D .1;�1;�3;�2/, and v4 D .0; 3;�1; 2/.

Then we find that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 0

�1 �1 �1 3

�2 2 �3 �1

�3 3 �2 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 30 6D 0;

so it follows that fv1; v2; v3; v4g is a basis for R4.

Theorem 1 has the following import: Just as in Rn, a basis for any vector

space V contains the largest possible number of linearly independent vectors in V .

THEOREM 1 Bases as Maximal Linearly Independent Sets

Let S D fv1; v2; : : : ; vng be a basis for the vector space V . Then any set of more

than n vectors in V is linearly dependent.

Proof: We need to show that if m > n, then any set T D fw1;w2; : : : ;wmg

of m vectors in V is linearly dependent. Because the basis S spans V , each vector

wj in T can be expressed as a linear combination of v1; v2; : : : ; vn:

w1 D a11v1 C a21v2 C � � � C an1vn

w2 D a12v1 C a22v2 C � � � C an2vn

:::

wm D a1mv1 C a2mv2 C � � � C anmvn.

(3)

Now we need to find scalars c1; c2; : : : ; cm not all zero such that

c1w1 C c2w2 C � � � C cmwm D 0: (4)
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Substituting in (4) the expressions in (3) for each wj , we get

c1.a11v1 C a21v2 C � � � C an1vn/

C c2.a12v1 C a22v2 C � � � C an2vn/C � � �

C cm.a1mv1 C a2mv2 C � � � C anmvn/ D 0:

(5)

Because the vectors v1; v2; : : : ; vn are linearly independent, the coefficient in (5) of

each vi must vanish:

a11c1 C a12c2 C � � � C a1mcm D 0

a21c1 C a22c2 C � � � C a2mcm D 0
:::

an1c1 C an2c2 C � � � C anmcm D 0.

(6)

But because m > n, this is a homogeneous linear system with more unknowns than

equations, and therefore has a nontrivial solution .c1; c2; : : : ; cm/. Then c1; c2; : : : ,

cm are scalars not all zero such that (4) holds, so we have shown that the set T of

more than n vectors is linearly dependent.

Now let S D fv1; v2; : : : ; vng and T D fw1;w2; : : : ;wmg be two different bases

for the same vector space V . Because S is a basis and T is linearly independent,

Theorem 1 implies that m � n. Next, reverse the roles of S and T ; the fact that T is

a basis and S is linearly independent implies similarly that n � m. Hence mD n, so

we have proved the following theorem for any vector space with a finite basis.

THEOREM 2 The Dimension of a Vector Space

Any two bases for a vector space consist of the same number of vectors.

A nonzero vector space V is called finite dimensional provided that there

exists a basis for V consisting of a finite number of vectors from V . In this case

the number n of vectors in each basis for V is called the dimension of V , denoted

by n D dimV . Then V is an n-dimensional vector space. The standard basis of

Example 1 shows that Rn is, indeed, an n-dimensional vector space.

Note that the zero vector space f0g has no basis because it contains no linearly

independent set of vectors. (Sometimes it is convenient to adopt the convention that

the null set is a basis for f0g.) Here we define dimf0g to be zero. A nonzero vector

space that has no finite basis is called infinite dimensional. Infinite dimensional

vector spaces are discussed in Section 4.5, but we include an illustrative example of

one here.

Example 4 Let P be the set of all polynomials of the form

p.x/ D a0 C a1x C a2x
2
C � � � C anx

n;

where the largest exponent n � 0 that appears is the degree of the polynomial p.x/, and

the coefficients a0; a1; a2; : : : ; an are real numbers. We add polynomials in P and multiply

them by scalars in the usual way—that is, by collecting coefficients of like powers of x. For

instance, if

p.x/ D 3C 2x C 5x3 and q.x/ D 7C 4x C 3x2
C 9x4;

then

.p C q/.x/ D .3C 7/C .2C 4/x C .0C 3/x2
C .5C 0/x3

C .0C 9/x4

D 10C 6x C 3x2
C 5x3

C 9x4



238 Chapter 4 Vector Spaces

and

.7p/.x/ D 7.3C 2x C 5x3/ D 21C 14x C 35x3:

It is readily verified that, with these operations, P is a vector space. But P has no finite basis.

For if p1; p2; : : : ; pn are elements of P, then the degree of any linear combination of them

is at most the maximum of their degrees. Hence no polynomial in P of higher degree lies

in spanfp1; p2; : : : ; png. Thus no finite subset of P spans P, and therefore P is an infinite

dimensional vector space.

Here, our concern is with finite-dimensional vector spaces, and we note first

that any proper subspace W of a finite-dimensional vector space V is itself finite

dimensional, with dimW < dimV . For if dimV D n, let k � n be the largest integer

such that W contains k linearly independent vectors v1; v2; : : : ; vk . Then, by the

same argument as in Example 2, we see that fv1; v2; : : : ; vkg is a basis for W , so W

is finite dimensional with dimW D k, and k < n because W is a proper subspace.

Moreover, an n-dimensional vector space V contains proper subspaces of each

dimension k D 1; 2; : : : ; n � 1. For instance, if fv1; v2; : : : ; vng is a basis for V and

k < n, then W D spanfv1; v2; : : : ; vkg is a subspace of dimension k. Thus R4

contains proper subspaces of dimensions 1, 2, and 3; R5 contains proper subspaces

of dimensions 1, 2, 3, and 4; and so on. The proper subspaces of Rn of dimensions

1; 2; : : : ; n� 1 are the higher-dimensional analogues of lines and planes through the

origin in R3.

Suppose that V is an n-dimensional vector space and that S D fv1; v2; : : : ; vng

is a set of n vectors in V . Then, in order to show that S is a basis for V , it is not

necessary to prove both that S is linearly independent and that S spans V , because

it turns out (for n vectors in an n-dimensional vector space) that either property

of S implies the other. For instance, if S D fv1; v2; : : : ; vng is a set of n linearly

independent vectors in V , then Theorem 1 and the argument of Example 2 (once

again) imply that S spans V and, hence, is a basis for V . This proves part (a) of

Theorem 3. The remaining parts are left to the problems. (See Problems 27–32.)

THEOREM 3 Independent Sets, Spanning Sets, and Bases

Let V be an n-dimensional vector space and let S be a subset of V . Then

(a) If S is linearly independent and consists of n vectors, then S is a basis for V ;

(b) If S spans V and consists of n vectors, then S is a basis for V ;

(c) If S is linearly independent, then S is contained in a basis for V ;

(d) If S spans V , then S contains a basis for V .

Part (c) of Theorem 3 is often applied in the following form: If W is a k-

dimensional subspace of the n-dimensional vector space V , then any basis fv1; v2;

: : : ; vkg for W can be “extended” to a basis fv1; v2; : : : ; vng for V , consisting of the

original basis vectors forW together with n�k additional vectors vkC1; vkC2; : : : ; vn.

Bases for Solution Spaces

We consider now the homogeneous linear system

Ax D 0; (7)

in which A is an m � n matrix, so the system consists of m equations in the n

variables x1; x2; : : : ; xn. Its solution space W is then a subspace of Rn. We want to

determine the dimension of W and, moreover, to find an explicit basis for W . Thus

we seek a maximal set of linearly independent solution vectors of (7).
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Recall the Gaussian elimination method of Section 3.2. We use elementary

row operations to reduce the coefficient matrix A to an echelon matrix E and note

the (nonzero) leading entries in the rows of E. The leading variables are those

that correspond to the columns of E containing the leading entries. The remaining

variables (if any) are the free variables. If there are no free variables, then our

system has only the trivial solution, so W D f0g. If there are free variables, we set

each of them (separately) equal to a parameter and solve (by back substitution) for

the leading variables as linear combinations of these parameters. The solution space

W is then the set of all solution vectors obtained in this manner (for all possible

values of the parameters).

To illustrate the general situation, let us suppose that the leading variables are

the first r variables x1; x2; : : : ; xr , so the k D n � r variables xrC1; xrC2; : : : ; xn are

free variables. The reduced system Ex D 0 then takes the form

b11x1 C b12x2 C � � � C b1rxr C � � � C b1nxn D 0

b22x2 C � � � C b2rxr C � � � C b2nxn D 0
:::

brrxr C � � � C brnxn D 0

0 D 0
:::

0 D 0

(8)

with the last m � r equations being “trivial.” We set

xrC1 D t1; xrC2 D t2; : : : ; xn D tk (9)

and then solve (by back substitution) the equations in (8) for the leading variables

x1 D c11t1 C c12t2 C � � � C c1ktk

x2 D c21t1 C c22t2 C � � � C c2ktk
:::

xr D cr1t1 C cr2t2 C � � � C crktk .

(10)

The typical solution vector .x1; x2; : : : ; xn/ is given in terms of the k parameters

t1; t2; : : : ; tk by the equations in (9) and (10).

We now choose k particular solution vectors v1; v2; : : : ; vk as follows: To get

vj we set the j th parameter tj equal to 1 and set all other parameters equal to zero.

Then

vj D .c1j ; c2j ; : : : ; crj ; 0; : : : ; 1; : : : ; 0/; (11)

with the 1 appearing as the .rCj /th entry. The vectors v1; v2; : : : ; vk are the column

vectors of the n � k matrix
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

c11 c12 � � � c1k

c21 c22 � � � c2k

:::
:::

: : :
:::

cr1 cr2 � � � crk

1 0 � � � 0

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (12)
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Because of the presence of the lower k � k identity matrix, it is clear that the vectors

v1; v2; : : : ; vk are linearly independent. (See Problem 36.) But Eqs. (9) and (10)

show that the typical solution vector x is a linear combination

x D t1v1 C t2v2 C � � � C tkvk : (13)

Therefore, the vectors v1; v2; : : : ; vk defined in (11) form a basis for the solution

space W of the original system in (7).

The following algorithm summarizes the steps in this procedure.

ALGORITHM A Basis for the Solution Space

To find a basis for the solution space W of the homogeneous linear system Ax D

0, carry out the following steps.

1. Reduce the coefficient matrix A to echelon form.

2. Identify the r leading variables and the k D n � r free variables. If k D 0,

then W D f0g.

3. Set the free variables equal to parameters t1; t2; : : : ; tk , and then solve by

back substitution for the leading variables in terms of these parameters.

4. Let vj be the solution vector obtained by setting tj equal to 1 and the other

parameters equal to zero. Then fv1; v2; : : : ; vkg is a basis for W .

Example 5 Find a basis for the solution space of the homogeneous linear system

3x1 C 6x2 � x3 � 5x4 C 5x5 D 0

2x1 C 4x2 � x3 � 3x4 C 2x5 D 0

3x1 C 6x2 � 2x3 � 4x4 C x5 D 0.

(14)

Solution We readily reduce the coefficient matrix A to the echelon form

E D

2

4

1 2 0 �2 3

0 0 1 �1 4

0 0 0 0 0

3

5 :

The leading entries are in the first and third columns, so the leading variables are x1 and x3;

the free variables are x2, x4, and x5. To avoid subscripts, we use r , s, and t rather than t1, t2,

and t3 to denote the three parameters. Thus we set

x2 D r; x4 D s; and x5 D t: (15)

Then back substitution in the reduced system

x1 C 2x2 � 2x4 C 3x5 D 0

x3 � x4 C 4x5 D 0

yields

x1 D �2r C 2s � 3t and x3 D s � 4t: (16)

The equations in (15) and (16) give the typical solution vector .x1; x2; x3; x4; x5/ in terms of

the parameters r , s, and t .

With r D 1 and s D t D 0,

we obtain v1 D .�2; 1; 0; 0; 0/.

With s D 1 and r D t D 0,

we obtain v2 D .2; 0; 1; 1; 0/.
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With t D 1 and r D s D 0,

we obtain v3 D .�3; 0;�4; 0; 1/.

Thus the solution space of the system in (14) is a 3-dimensional subspace of R5 with basis

fv1; v2; v3g.

4.4 Problems
In Problems 1–8, determine whether or not the given vectors

in Rn form a basis for Rn.

1. v1 D .4; 7/, v2 D .5; 6/

2. v1 D .3;�1; 2/, v2 D .6;�2; 4/, v3 D .5; 3;�1/

3. v1 D .1; 7;�3/, v2 D .2; 1; 4/, v3 D .6; 5; 1/,

v4 D .0; 7; 13/

4. v1 D .3;�7; 5; 2/, v2 D .1;�1; 3; 4/, v3 D .7; 11; 3; 13/

5. v1 D .0; 7;�3/, v2 D .0; 5; 4/, v3 D .0; 5; 10/

6. v1 D .0; 0; 1/, v2 D .0; 1; 2/, v3 D .1; 2; 3/

7. v1 D .0; 0; 1/, v2 D .7; 4; 11/, v3 D .5; 3; 13/

8. v1 D .2; 0; 0; 0/, v2 D .0; 3; 0; 0/, v3 D .0; 0; 7; 6/,

v4 D .0; 0; 4; 5/

In Problems 9–11, find a basis for the indicated subspace of

R3.

9. The plane with equation x � 2y C 5´ D 0.

10. The plane with equation y D ´.

11. The line of intersection of the planes described in Prob-

lems 9 and 10.

In Problems 12–14, find a basis for the indicated subspace of

R4.

12. The set of all vectors of the form .a; b; c; d/ for which

a D b C c C d .

13. The set of all vectors of the form .a; b; c; d/ such that

a D 3c and b D 4d .

14. The set of all vectors of the form .a; b; c; d/ for which

aC 2b D c C 3d D 0.

In Problems 15–26, find a basis for the solution space of the

given homogeneous linear system.

15. x1 � 2x2 C 3x3 D 0

2x1 � 3x2 � x3 D 0

16. x1 C 3x2 C 4x3 D 0

3x1 C 8x2 C 7x3 D 0

17. x1 � 3x2 C 2x3 � 4x4 D 0

2x1 � 5x2 C 7x3 � 3x4 D 0

18. x1 C 3x2 C 4x3 C 5x4 D 0

2x1 C 6x2 C 9x3 C 5x4 D 0

19. x1 � 3x2 � 9x3 � 5x4 D 0

2x1 C x2 � 4x3 C 11x4 D 0

x1 C 3x2 C 3x3 C 13x4 D 0

20. x1 � 3x2 � 10x3 C 5x4 D 0

x1 C 4x2 C 11x3 � 2x4 D 0

x1 C 3x2 C 8x3 � x4 D 0

21. x1 � 4x2 � 3x3 � 7x4 D 0

2x1 � x2 C x3 C 7x4 D 0

x1 C 2x2 C 3x3 C 11x4 D 0

22. x1 � 2x2 � 3x3 � 16x4 D 0

2x1 � 4x2 C x3 C 17x4 D 0

x1 � 2x2 C 3x3 C 26x4 D 0

23. x1 C 5x2 C 13x3 C 14x4 D 0

2x1 C 5x2 C 11x3 C 12x4 D 0

2x1 C 7x2 C 17x3 C 19x4 D 0

24. x1 C 3x2 � 4x3 � 8x4 C 6x5 D 0

x1 C 2x3 C x4 C 3x5 D 0

2x1 C 7x2 � 10x3 � 19x4 C 13x5 D 0

25. x1 C 2x2 C 7x3 � 9x4 C 31x5 D 0

2x1 C 4x2 C 7x3 � 11x4 C 34x5 D 0

3x1 C 6x2 C 5x3 � 11x4 C 29x5 D 0

26. 3x1 C x2 � 3x3 C 11x4 C 10x5 D 0

5x1 C 8x2 C 2x3 � 2x4 C 7x5 D 0

2x1 C 5x2 � x4 C 14x5 D 0

Problems 27 through 36 further explore independent sets,

spanning sets, and bases.

27. Suppose that S is a set of n linearly independent vectors in

the n-dimensional vector space V . Prove that S is a basis

for V .

28. Suppose that S is a set of n vectors that span the n-

dimensional vector space V . Prove that S is a basis for

V .

29. Let fv1; v2; : : : ; vk
g be a basis for the proper subspace W

of the vector space V , and suppose that the vector v of

V is not in W . Show that the vectors v1; v2; : : : ; vk
; v are

linearly independent.

30. Use the result of Problem 29 to prove that every linearly

independent set of vectors in a finite-dimensional vector

space V is contained in a basis for V .

31. Suppose that the vectors v1; v2; : : : ; vk
; v

kC1
span the

vector space V and that v
kC1

is a linear combination of

v1; v2; : : : ; vk
. Show that the vectors v1; v2; : : : ; vk

span

V .

32. Use the result of Problem 31 to prove that every spanning

set for a finite-dimensional vector space V contains a basis

for V .

33. Let S be a linearly independent set of vectors in the finite-

dimensional vector space V . Then S is called a maximal

linearly independent set provided that if any other vector

is adjoined to S , then the resulting set is linearly depen-

dent. Prove that every maximal linearly independent set

in V is a basis for V .
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34. Let S be a finite set of vectors that span the vector space

V . Then S is called a minimal spanning set provided that

no proper subset of S spans V . Prove that every minimal

spanning set in V is a basis for V .

35. Let S be a finite set of vectors that span the vector space

V . Then S is called a uniquely spanning set provided that

each vector in V can be expressed in one and only one way

as a linear combination of the vectors in S . Prove that ev-

ery uniquely spanning set in V is a basis for V .

36. Apply the definition of linear independence to show di-

rectly that the column vectors of the matrix in (12) are

linearly independent.

4.5 Row and Column Spaces

In numerous examples we have observed the phenomenon of “disappearing equa-

tions” that sometimes occurs when we solve a linear system using the method of

Gaussian elimination. The appearance in this process of a trivial equation 0 D 0

means that one of the original equations was redundant. For instance, in the system

x � 2y C 2´ D 0

x C 4y C 3´ D 0

2x C 2y C 5´ D 0,

the third equation provides no additional information about a solution .x; y; ´/ be-

cause it is merely the sum of the first two equations.

Given a homogeneous linear system, it is natural to ask how many of the equa-

tions are “irredundant,” and which ones they are. We will see that an answer to this

question leads to a natural and simple relation between the number of irredundant

equations, the number of unknowns, and the number of linearly independent solu-

tions.

Row Space and Row Rank

The individual equations of the homogeneous linear system Ax D 0 correspond to

the “row matrices”

�

a11 a12 � � � a1n

�

�

a21 a22 � � � a2n

�

:::
�

am1 am2 � � � amn

�

of the m � n matrix A D
�

aij

�

. The row vectors of A are the m vectors

r1 D .a11; a12; : : : ; a1n/

r2 D .a21; a22; : : : ; a2n/

:::

rm D .am1; am2; : : : ; amn/

(1)

in Rn. Recalling from Section 3.4 the convection that n-tuples denote column-

vector elements of Rn, we see that the row vectors of A are the transposes of its row

matrices; that is,

ri D

2

6

6

6

4

ai1

ai2

:::

ain

3

7

7

7

5

D
�

ai1 ai2 � � � ain

�

T
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for i D 1; 2; : : : ; m, and thus actually are column vectors (despite being called “row

vectors”). The subspace of Rn spanned by the m row vectors r1; r2; : : : ; rm is called

the row space Row(A) of the matrix A. The dimension of the row space Row(A) is

called the row rank of the matrix A.

Example 1 Consider the 4 � 5 echelon matrix

A D

2

6

6

4

1 �3 2 5 3

0 0 1 �4 2

0 0 0 1 7

0 0 0 0 0

3

7

7

5

:

Its row vectors are r1 D .1;�3; 2; 5; 3/, r2 D .0; 0; 1;�4; 2/, r3 D .0; 0; 0; 1; 7/, and r4 D

.0; 0; 0; 0; 0/. We want to show that the row vectors that are not zero are linearly independent.

To this end we calculate the linear combination

c1r1 C c2r2 C c3r3 D .c1;�3c1; 2c1 C c2; 5c1 � 4c2 C c3; 3c1 C 2c2 C 7c3/:

If c1r1 C c2r2 C c3r3 D 0, then the first component gives c1 D 0, next the third component

2c1 C c2 D 0 yields c2 D 0, and finally the fourth component 5c1 � 4c2 C c3 D 0 yields

c3 D 0. Thus the vectors r1, r2, and r3 are linearly independent and therefore form a basis

for the row space Row.A/. Hence Row.A/ is a 3-dimensional subspace of R5, and the row

rank of A is 3.

It should be apparent that the method used in Example 1 applies to any echelon

matrix ED Œeij �. If the first column of E is not all zero, then its nonzero row vectors

r1, r2, : : : , rk have the forms

r1 D .e11; : : : ; e1p; : : : ; e1q ; : : : /;

r2 D .0; : : : ; 0; e2p; : : : ; e2q ; : : : /;

r3 D .0; : : : ; 0; : : : ; e3q ; : : : /;

and so forth (where e11, e2p , and e3q denote nonzero leading entries). Then the

equation

c1r1 C c2r2 C � � � C ckrk D 0

implies that

c1e11 D 0; c1e1p C c2e2p D 0; c1e1q C c2e2q C c3e3q D 0;

and so forth. We can therefore conclude in turn that c1 D 0, c2 D 0, : : : , ck D 0.

Thus the row vectors r1; r2; : : : ; rk are linearly independent, and hence we have the

following result.

THEOREM 1 Row Space of an Echelon Matrix

The nonzero row vectors of an echelon matrix are linearly independent and there-

fore form a basis for its row space.

We investigate the row space of an arbitrary matrix A by reducing A to an

echelon matrix E. The following theorem then guarantees that A and E have the

same row space. Recall that two matrices are (row) equivalent provided that each

can be transformed to the other by elementary row operations.

THEOREM 2 Row Spaces of Equivalent Matrices

If two matrices A and B are equivalent, then they have the same row space.
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Proof: Because A can be transformed to B by elementary row operations,

it follows that each row vector of B is a linear combination of the row vectors of

A; the fact that this is obviously true if A is transformed into B by a single row

operation implies its truth for any (finite) number of row operations. But then each

vector in Row.B/ is a linear combination of linear combinations of row vectors of

A and hence is a linear combination of row vectors of A, which means that it is also

a vector in Row.A/. Therefore, the fact that A can be transformed to B implies that

Row.A/ contains Row.B/.

But elementary row operations are “reversible,” so B can also be transformed

to A by row operations. Hence the same argument shows that Row.B/ contains

Row.A/. Finally, the fact that each of the two row spaces Row.A/ and Row.B/

contains the other means that they are, indeed, identical.

Theorems 1 and 2 together provide a routine procedure for finding a basis for

the row space of a given matrix, thereby determining its row rank.

ALGORITHM 1 A Basis for the Row Space

To find a basis for the row space of a matrix A, use elementary row operations

to reduce A to an echelon matrix E. Then the nonzero row vectors of E form a

basis for Row.A/.

Example 2 To find a basis for the row space of the matrix

A D

2

6

6

4

1 2 1 3 2

3 4 9 0 7

2 3 5 1 8

2 2 8 �3 5

3

7

7

5

; (2)

we reduce it to its echelon form

E D

2

6

6

4

1 2 1 3 2

0 1 �3 5 �4

0 0 0 1 �7

0 0 0 0 0

3

7

7

5

: (3)

Then the nonzero row vectors v1D .1; 2; 1; 3; 2/, v2D .0; 1;�3; 5;�4/, and v3D .0; 0; 0; 1;�7/

form a basis for the row space of A. Thus Row.A/ is a 3-dimensional subspace of R5 and the

row rank of A is 3.

In Example 2, note that Algorithm 1 does not tell us that the first three row

vectors of the matrix A itself are linearly independent. We know that some three

row vectors of A span Row.A/, but without further investigation we do not know

which three.

Column Space and Column Rank

Now we turn our attention from row vectors to column vectors. Given an m � n

matrix A D Œaij �, the column vectors of A are the n vectors

c1 D

2

6

6

6

4

a11

a21

:::

am1

3

7

7

7

5

; c2 D

2

6

6

6

4

a12

a22

:::

am2

3

7

7

7

5

; : : : ; cn D

2

6

6

6

4

a1n

a2n

:::

amn

3

7

7

7

5

(4)

in Rm. The subspace of Rm spanned by the n column vectors c1; c2; : : : ; cn is called

the column space Col.A/ of the matrix A. The dimension of the space Col.A/ is

called the column rank of the matrix A.



4.5 Row and Column Spaces 245

Example 3 Consider the 4 � 5 echelon matrix

E D

2

6

6

4

1 2 1 3 2

0 1 �3 5 �4

0 0 0 1 �7

0 0 0 0 0

3

7

7

5

: (5)

Its five column vectors c1, c2, c3, c4, c5 all lie in the subspace R3 D f.x1; x2; x3; 0/g of R4.

The column vectors that contain the leading entries in the nonzero rows of E are

c1 D

2

6

6

4

1

0

0

0

3

7

7

5

; c2 D

2

6

6

4

2

1

0

0

3

7

7

5

; and c4 D

2

6

6

4

3

5

1

0

3

7

7

5

: (6)

Note that

a1c1 C a2c2 C a4c4 D .a1 C 2a2 C 3a4; a2 C 5a4; a4; 0/:

Hence a1c1 C a2c2 C a4c4 D 0 readily implies that a1 D a2 D a4 D 0. Thus the vectors

c1, c2, and c4 are linearly independent and therefore form a basis for R3 D f.x1; x2; x3; 0/g.

Hence Col.E/ is a 3-dimensional subspace of R4 and the column rank of E is 3.

To find the column rank of an arbitrary m � n matrix A, we begin in the same

way as when finding the row rank. First we use elementary row operations to reduce

A to an echelon matrix E. But the relationship between the column spaces of A and

E is far more subtle than between their row spaces; the reason is that elementary

row operations generally do not preserve column spaces. (See Problem 36.)

To analyze this situation, let us denote by c1; c2; : : : ; cn the column vectors

of the original matrix A, and by c�
1
; c�

2
; : : : ; c�

n
the column vectors of the echelon

matrix to which we have reduced A. Suppose that E has k nonzero rows. Then each

column vector of E has the form c�
j
D .�; : : : ;�; 0; : : : ; 0/ with m � k final zeros.

Hence the column space Col.E/ is contained in Rk (considered as the subspace of

Rm for which xkC1 D � � � D xm D 0).

We are particularly interested in those columns of E that contain the nonzero

leading entries in the nonzero rows of E. These k columns are called the pivot

columns of E. The echelon matrix E has the general form

E D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

d1 � � � � � � � � �

0 d2 � � � � � � � �

0 0 0 d3 � � � � � �

:::
:::

:::
:::

: : :
:::

:::
:::

0 0 0 0 � � � dk � �

0 0 0 0 � � � 0 0 0
:::

:::
:::

:::
: : :

:::
:::

:::

0 0 0 0 � � � 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (7)

where d1; d2; : : : ; dk are the nonzero leading entries. Hence the k pivot column
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vectors of E look like
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

d1

0

0
:::

0

0
:::

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�

d2

0
:::

0

0
:::

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�

�

d3

:::

0

0
:::

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; : : : ;

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�

�

�

:::

dk

0
:::

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (8)

Because of the upper triangular pattern visible here, it should be apparent that the

argument in Example 3 can be used to show that these k pivot vectors form a basis

for Col.E/. Thus the column rank of the echelon matrix E is equal to the number k

of its nonzero rows, and hence is equal to its row rank.

Now comes the subtle part. We want to show that the column rank of the

original matrix A also is k. Note first that the homogeneous linear systems

Ax D 0 and Ex D 0 (9)

have the same solution set because the matrices A and E are equivalent. If x D

.x1; x2; : : : ; xn/, then the left-hand sides in (9) are linear combinations of column

vectors:
Ax D x1c1 C x2c2 C � � � C xncn;

Ex D x1c�
1
C x2c�

2
C � � � C xnc�

n
:

(10)

Because x satisfies either both or neither of the systems in (9), it follows that

x1c1 C x2c2 C � � � C xncn D 0

if and only if

x1c�
1
C x2c�

2
C � � � C xnc�

n
D 0:

Hence every linear dependence between column vectors of E is mirrored in

a linear dependence with the same coefficients between the corresponding column

vectors of A. In particular, because the k pivot column vectors of E are linearly

independent, it follows that the corresponding k column vectors of A are linearly

independent. And because the k pivot column vectors of E span Col.E/, it follows

that the corresponding k column vectors of A span Col.A/. Thus the latter k vectors

form a basis for the column space of A, and the column rank of A is k. Consequently

we have established the following method for finding a basis for the column space

of a given matrix.

ALGORITHM 2 A Basis for the Column Space

To find a basis for the column space of a matrix A, use elementary row operations

to reduce A to an echelon matrix E. Then the column vectors of A that correspond

to the pivot columns of E form a basis for Col.A/.

Remark Since the pivot column vectors of the matrix A—that is, the column vectors corre-

sponding to the pivot column vectors of the echelon matrix E—form a basis for the column

space of A, it follows that every non-pivot column vector of A is a linear combination of its

pivot column vectors.
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Example 4 Consider again the 4 � 5 matrix

A D

2

6

6

4

1 2 1 3 2

3 4 9 0 7

2 3 5 1 8

2 2 8 �3 5

3

7

7

5

of Example 2, in which we reduced it to the echelon matrix

E D

2

6

6

4

1 2 1 3 2

0 1 �3 5 �4

0 0 0 1 �7

0 0 0 0 0

3

7

7

5

:

The pivot columns of E are its first, second, and fourth columns, so the 3-dimensional

column space of A has a basis consisting of its first, second, and fourth column vectors

c1 D .1; 3; 2; 2/, c2 D .2; 4; 3; 2/, and c4 D .3; 0; 1;�3/.

The fact that Algorithm 2 provides a basis for Col.A/ consisting of column

vectors of A itself (rather than the echelon matrix E) enables us to apply it to the

problem of extracting a maximal linearly independent subset from a given set of

vectors in Rn.

Example 5 Find a subset of the vectors v1 D .1;�1; 2; 2/, v2 D .�3; 4; 1;�2/, v3 D .0; 1; 7; 4/, and

v4 D .�5; 7; 4;�2/ that forms a basis for the subspaceW of R4 spanned by these four vectors.

Solution It is not clear at the outset whether W is 2-dimensional, 3-dimensional, or 4-dimensional. To

apply Algorithm 2, we arrange the given vectors as the column vectors of the matrix

A D

2

6

6

4

1 �3 0 �5

�1 4 1 7

2 1 7 4

2 �2 4 �2

3

7

7

5

;

which reduces readily to the echelon matrix

E D

2

6

6

4

1 �3 0 �5

0 1 1 2

0 0 0 0

0 0 0 0

3

7

7

5

:

The pivot columns of E are its first two columns, so the first two column vectors v1 D

.1;�1; 2; 2/ and v2 D .�3; 4; 1;�2/ of A form a basis for the column space W . In particular,

we see that W is 2-dimensional. (You can confirm that v3 D 3v1 C v2 and v4 D v1 C 2v2.)

Rank and Dimension

We have seen that the row rank and the column rank of an echelon matrix E both

equal the number of rows of E that are not all zeros. But if A is any matrix that

reduces by row operations to the echelon matrix E, then—according to Algorithm

1—the row rank of A is equal to the row rank of E, while Algorithm 2 implies

that the column rank of A is equal to the column rank of E. We therefore have the

following fundamental result.

THEOREM 3 Equality of Row Rank and Column Rank

The row rank and column rank of any matrix are equal.

For instance, if A is a 5 � 7 matrix and Row.A/ is a 3-dimensional subspace

of R7, then Theorem 3 tells us that Col.A/must be a 3-dimensional subspace of R5.
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To see what an extraordinary theorem this is, think of a random 11� 17matrix

A, possibly printed by a computer that uses a random number generator to produce

independently the 187 entries in A. If it turns out that precisely 9 (no more) of the

11 row vectors of A are linearly independent, then Theorem 3 implies that precisely

9 (no more) of the 17 column vectors of A are linearly independent.

The common value of the row rank and the column rank of the matrix A is

simply called the rank of A and is denoted by rank.A/. The rank of A provides a

meaning for the number of irredundant equations in the homogeneous linear system

Ax D 0: (11)

Indeed, the individual scalar equations in (11) correspond to the column vectors of

the transpose matrix AT , whose rank r equals that of A (Problem 25). Then the r

columns vectors of AT that form a basis for Col.AT / correspond to the r equations

in (11) that are irredundant; the remaining equations are linear combinations of

these irredundant ones and hence are redundant.

The solution space of the homogeneous system AxD 0 is sometimes called the

null space of A, denoted by Null.A/. Note that if A is anm�nmatrix, then Null.A/

and Row.A/ are subspaces of Rn, whereas Col.A/ is a subspace of Rm. If r D

rank.A/, then the r column vectors of A that form a basis for Col.A/ correspond to

the r leading variables in a solution of Ax D 0 by Gaussian elimination. Moreover,

we know from the algorithm in Section 4.4 that the dimension of the solution space

Null.A/ is equal to the number n � r of free variables. We therefore obtain the

important identity

rank.A/C dim Null.A/ D n (12)

for any m � n matrix A. For instance, if A is the matrix of Example 4 with rank 3

and n D 5, then the dimension of the null space of A is 5 � 3 D 2.

For another typical application of Equation (12), consider a homogeneous sys-

tem of five linear equations in seven unknowns. If the 5 � 7 coefficient matrix of

the system has rank 3, so only 3 of the 5 equations are irredundant, then (because

n D 7) the system has 7 � 3 D 4 linearly independent solutions.

If A is anm�nmatrix with rankm, then Equation (12) implies that the system

AxD 0 has n�m linearly independent solutions. Thus rank.A/Dm is the condition

under which the “conventional wisdom” about the relation between the numbers of

equations, unknowns, and solutions is valid.

Nonhomogeneous Linear Systems

It follows immediately from Equation (10) and the definition of Col.A/ that the

nonhomogeneous linear system Ax D b is consistent if and only if the vector b is in

the column space of A. In the problems below we outline some of the applications

to nonhomogeneous systems of the results in this section.

If we can find a single particular solution x0 of the nonhomogeneous system

Ax D b; (13)

then the determination of its solution set reduces to solving the associated homoge-

neous system

Ax D 0: (14)

For then Problem 29 in Section 4.2 implies that the solution set of (13) is the set of

all vectors x of the form

x D x0 C xh;
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where xh is a solution of (14). Hence if x1; x2; : : : ; xr is a basis for the solution

space of (14), then the solution set of the nonhomogeneous system is the set of all

vectors of the form

x D x0 C c1x1 C c2x2 C � � � C crxr :

We may describe this solution set as the translate by the vector x0 of the r-

dimensional solution space of the corresponding homogeneous system.

4.5 Problems
In Problems 1–12, find both a basis for the row space and a

basis for the column space of the given matrix A.

1.

2

4

1 2 3

1 5 �9

2 5 2

3

5 2.

2

4

5 2 4

2 1 1

4 1 5

3

5

3.

2

4

1 �4 �3 �7

2 �1 1 7

1 2 3 11

3

5 4.

2

4

1 �3 �9 �5

2 1 4 11

1 3 3 13

3

5

5.

2

4

1 1 1 1

3 1 �3 4

2 5 11 12

3

5 6.

2

4

1 4 9 2

2 2 6 �3

2 7 16 3

3

5

7.

2

6

6

4

1 1 �1 7

1 4 5 16

1 3 3 13

2 5 4 23

3

7

7

5

8.

2

6

6

4

1 �2 �3 �5

1 4 9 2

1 3 7 1

2 2 6 �3

3

7

7

5

9.

2

6

6

4

1 3 3 9

2 7 4 8

2 7 5 12

2 8 3 2

3

7

7

5

10.

2

6

6

4

1 2 3 1 3

1 3 4 3 6

2 2 4 3 5

2 1 3 2 3

3

7

7

5

11.

2

6

6

4

1 1 3 3 1

2 3 7 8 2

2 3 7 8 3

3 1 7 5 4

3

7

7

5

12.

2

6

6

4

1 1 3 3 0

�1 0 �2 �1 1

2 3 7 8 1

�2 4 0 6 7

3

7

7

5

In Problems 13–16, a set S of vectors in R4 is given. Find a

subset of S that forms a basis for the subspace of R4 spanned

by S .

13. v1 D .1; 3;�2; 4/, v2 D .2;�1; 3; 2/, v3 D .5; 1; 4; 8/

14. v1 D .1;�1; 2; 3/, v2 D .2; 3; 4; 1/, v3 D .1; 1; 2; 1/, v4 D

.4; 1; 8; 7/

15. v1 D .3; 2; 2; 2/, v2 D .2; 1; 2; 1/, v3 D .4; 3; 2; 3/, v4 D

.1; 2; 3; 4/

16. v1 D .5; 4; 2; 2/, v2 D .3; 1; 2; 3/, v3 D .7; 7; 2; 1/, v4 D

.1;�1; 2; 4/, v5 D .5; 4; 6; 7/

Let S D fv1; v2; : : : ; vk
g be a basis for the subspace W of Rn.

Then a basis T for Rn that contains S can be found by apply-

ing the method of Example 5 to the vectors

v1; v2; : : : ; vk
; e1; e2; : : : ; en:

Do this in Problems 17–20.

17. Find a basis T for R3 that contains the vectors

v1 D .1; 2; 2/ and v2 D .2; 3; 3/.

18. Find a basis T for R3 that contains the vectors

v1 D .3; 2;�1/ and v2 D .2;�2; 1/.

19. Find a basis T for R4 that contains the vectors

v1 D .1; 1; 1; 1/ and v2 D .2; 3; 3; 3/.

20. Find a basis T for R4 that contains the vectors

v1 D .3; 2; 3; 3/ and v2 D .5; 4; 5; 5/.

Given a homogeneous system Ax D 0 of (scalar) linear equa-

tions, we say that a subset of these equations is irredundant

provided that the corresponding column vectors of the trans-

pose AT are linearly independent. In Problems 21–24, extract

from each given system a maximal subset of irredundant equa-

tions.

21. x1 � 3x2 C 2x3 D 0

2x1 C 3x2 C 2x3 D 0

4x1 � 3x2 C 6x3 D 0

22. 3x1 C 2x2 C 2x3 C 2x4 D 0

2x1 C 3x2 C 3x3 C 3x4 D 0

8x1 C 7x2 C 7x3 C 7x4 D 0

23. x1 C 2x2 � x3 C 2x4 D 0

3x1 � x2 C 3x3 C x4 D 0

5x1 C 3x2 C x3 C 5x4 D 0

2x1 C 5x3 C 4x4 D 0

24. 3x1 C 2x2 C 2x3 D 0

2x1 C 3x2 C 3x3 D 0

7x1 C 8x2 C 8x3 D 0

8x1 C 7x2 C 7x3 D 0

5x1 C 6x2 C 5x3 D 0

25. Explain why the rank of a matrix A is equal to the rank of

its transpose AT .

26. Explain why the n � n matrix A is invertible if and only if

its rank is n.

Problems 27 through 32 explore the properties of nonhomoge-

neous systems.

27. Let A be a 3 � 5 matrix whose three row vectors are lin-

early independent. Prove that, for each b in R3, the non-

homogeneous system Ax D b has a solution.

28. Let A be a 5� 3matrix that has three linearly independent

row vectors. Suppose that b is a vector in R5 such that the
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nonhomogeneous system Ax D b has a solution. Prove

that this solution is unique.

29. Let A be an m � n matrix with m < n. Given b in Rm,

note that any solution of Ax D b expresses b as a linear

combination of the column vectors of A. Then prove that

no such solution is unique.

30. Given the m � n matrix A with m > n, show that there

exists a vector b in Rm such that the system Ax D b has

no solution.

31. Existence of Solutions Let A be anm� nmatrix. Prove

that the system Ax D b is consistent for every b in Rm if

and only if the rank of A is equal to m.

32. Uniqueness of Solutions Let A be an m � n matrix and

suppose that the system Ax D b is consistent. Prove that

its solution is unique if and only if the rank of A is equal

to n.

33. Prove that the pivot column vectors in (8) are linearly in-

dependent.

34. Let A be a matrix with rank r , and suppose that A can be

reduced to echelon form without row interchanges. Show

that the first r row vectors of A are linearly independent.

35. Deduce from Theorem 3 in Section 4.3 that the rank of the

matrix A is the largest integer r such that A has a nonsin-

gular r � r submatrix.

36. Let A be the 3 � 2 matrix whose columns are the unit ba-

sis vectors i D .1; 0; 0/ and j D .0; 1; 0/. If B is the row-

equivalent matrix obtained by adding the first and second

rows of A to its third row, show that A and B do not have

the same column space.

4.6 Orthogonal Vectors in Rn

In this section we show that the geometrical concepts of distance and angle in n-

dimensional space can be based on the definition of the dot product of two vectors in

Rn. Recall from elementary calculus that the dot product u � v of two 3-dimensional

vectors u D .u1; u2; u3/ and v D .v1; v2; v3/ is (by definition) the sum

u � v D u1v1 C u2v2 C u3v3

of the products of corresponding scalar components of the two vectors.

Similarly, the dot product u � v of two n-dimensional vectors u D

.u1; u2; : : : ; un/ and v D .v1; v2; : : : ; vn/ is defined by

u � v D u1v1 C u2v2 C � � � C unvn (1)

(with one additional scalar product term for each additional dimension). And just

as in R3, it follows readily from the formula in (1) that if u, v, and w are vectors in

Rn and c is a scalar, then

u � v D v � u (symmetry) (2)

u � .vCw/ D u � vC u � w (distributivity) (3)

.cu/ � v D c.u � v/ (homogeneity) (4)

u � u = 0I

u � u D 0 if and only if

9

>

=

>

;

(positivity) (5)

u D 0:

Therefore, the dot product in Rn is an example of an inner product.

DEFINITION Inner Product

An inner product on a vector space V is a function that associates with each pair

of vectors u and v in V a scalar hu; vi such that, if u, v, and w are vectors and c

is a scalar, then

(i) hu; vi D hv;ui;

(ii) hu; vCwi D hu; vi C hu;wi;

(iii) hcu; vi D chu; vi;

(iv) hu;ui = 0; hu;ui D 0 if and only if u D 0.
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The dot product on Rn is sometimes called the Euclidean inner product, and

with this inner product Rn is sometimes called Euclidean n-dimensional space.

We can use any of the notations in

u � v D hu; vi D uT v

for the dot product of the two n � 1 column vectors u and v. (Note in the last

expression that uT D .u1; u2; : : : ; un/
T is the 1 � n row vector with the indicated

entries, so the 1 � 1 matrix product uT v is simply a scalar.) Here we will ordinarily

use the notation u � v.

The length juj of the vector u D .u1; u2; : : : ; un/ is defined as follows:

juj D
p

.u � u/ D
�

u2

1
C u2

2
C � � � C u2

n

�

1=2

: (6)

Note that the case n D 2 is a consequence of the familiar Pythagorean formula in

the plane.

Theorem 1 gives one of the most important inequalities in mathematics. Many

proofs are known, but none of them seems direct and well motivated.

THEOREM 1 The Cauchy-Schwarz Inequality

If u and v are vectors in Rn, then

ju � vj 5 jujjvj: (7)

Proof: If u D 0, then ju � vj D juj D 0, so the inequality is satisfied trivially.

If u 6D 0, then we let a D u � u, b D 2u � v, and c D v � v. For any real number x, the

distributivity and positivity properties of the dot product then yield

0 5 .xuC v/ � .xuC v/

D .u � u/x2
C 2.u � v/x C .v � v/;

so that

0 5 ax2
C bx C c:

Thus the quadratic equation ax2 C bx C c D 0 either has no real roots or has a

repeated real root. Hence the quadratic formula

x D
�b ˙

p
b2 � 4ac

2a

implies that the discriminant b2 � 4ac cannot be positive; that is, b2 5 4ac, so

4.u � v/2 5 4.u � u/.v � v/:

We get the Cauchy-Schwarz inequality in (7) when we take square roots, remem-

bering that the numbers juj D .u � u/1=2 and jvj D .v � v/1=2 are nonnegative.
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The Cauchy-Schwarz inequality enables us to define the angle � between thev

u

θ

FIGURE 4.6.1. The angle � between
the vectors u and v.

nonzero vectors u and v. (See Figure 4.6.1.) Division by the positive number jujjvj

in (7) yields ju � vj=.jujjvj/ 5 1, so

�1 5
u � v

jujjvj
5 C1: (8)

Hence there is a unique angle � between 0 and � radians, inclusive (that is, between

0ı and 180ı), such that

cos � D
u � v

jujjvj
: (9)

Thus we obtain the same geometric interpretation

u � v D jujjvj cos � (10)

of the dot product in Rn as one sees (for 3-dimensional vectors) in elementary cal-

culus textbooks—for instance, see Section 11.2 of Edwards and Penney, Calculus:

Early Transcendentals, 7th edition, Hoboken, NJ: Pearson, 2008.

On the basis of (10) we call the vectors u and v orthogonal provided that

u � v D 0: (11)

If u and v are nonzero vectors this means that cos � D 0, so � D �=2 (90ı). Note

that u D 0 satisfies (11) for all v, so the zero vector is orthogonal to every vector.

Example 1 Find the angle �n in Rn between the x1-axis and the line through the origin and the point

.1; 1; : : : ; 1/.

Solution We take u D .1; 0; 0; : : : ; 0/ on the x1-axis and v D .1; 1; : : : ; 1/. Then juj D 1, jvj D
p
n, and

u � v D 1, so the formula in (9) gives

cos �n D
u � v

jujjvj
D

1
p
n
:

For instance, if

n D 3; then �3 D cos�1

�

1
p
3

�

� 0:9553 .55ı/I

n D 4; then �4 D cos�1

�

1
p
4

�

� 1:0472 .60ı/I

n D 5; then �5 D cos�1

�

1
p
5

�

� 1:1071 .63ı/I

n D 100; then �100 D cos�1

�

1

10

�

� 1:4706 .84ı/:

It is interesting to note that �n increases as n increases. Indeed, �n approaches cos�1.0/D�=2

(90ı) as n increases without bound (so that 1=
p
n approaches zero).

In addition to angles, the dot product provides a definition of distance in Rn.

The distance d.u; v/ between the points (vectors) u D .u1; u2; : : : ; un/ and v D

.v1; v2; : : : ; vn/ is defined to be

d.u; v/ D ju � vj

D
�

.u1 � v1/
2
C .u2 � v2/

2
C � � � C .un � vn/

2
�

1=2

:
(12)

Example 2 The distance between the points u D .1;�1;�2; 3; 5/ and v D .4; 3; 4; 5; 9/ in R5 is

ju � vj D
p

32 C 42 C 62 C 22 C 42 D
p
81 D 9:
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The triangle inequality of Theorem 2 relates the three sides of the triangle

shown in Figure 4.6.2.

v

u

u + v

O

FIGURE 4.6.2. The “triangle” of the
triangle inequality.

THEOREM 2 The Triangle Inequality

If u and v are vectors in Rn, then

juC vj 5 juj C jvj: (13)

Proof: We apply the Cauchy-Schwarz inequality to find that

juC vj2 D .uC v/ � .uC v/

D u � uC 2u � vC v � v

5 u � uC 2jujjvj C v � v

D juj2 C 2jujjvj C jvj2;

and therefore

juC vj2 5 .juj C jvj/2:

We now get (13) when we take square roots.

The vectors u and v are orthogonal if and only if u � v D 0, so line (14) in the

proof of the triangle inequality yields the fact that the Pythagorean formula

juC vj2 D juj2 C jvj2 (14)

holds if and only if the triangle with “adjacent side vectors” u and v is a right triangle

with hypotenuse vector uC v (see Figure 4.6.3).

The following theorem states a simple relationship between orthogonality and

linear independence.

O

v

u

u + v

FIGURE 4.6.3. A right triangle in
Rn.

THEOREM 3 Orthogonality and Linear Independence

If the nonzero vectors v1; v2; : : : ; vk are mutually orthogonal—that is, each two

of them are orthogonal—then they are linearly independent.

Proof: Suppose that

c1v1 C c2v2 C � � � C ckvk D 0;

where, as usual, c1; c2; : : : ; ck are scalars. When we take the dot product of each

side of this equation with vi , we find that

ci vi � vi D ci jvi j
2
D 0:

Now jvi j 6D 0 because vi is a nonzero vector. It follows that ci D 0. Thus c1 D c2 D

� � � D ck D 0, and therefore the mutually orthogonal nonzero vectors v1; v2; : : : ; vk

are linearly independent.

In particular, any set of n mutually orthogonal nonzero vectors in Rn consti-

tutes a basis for Rn. Such a basis is called an orthogonal basis. For instance, the

standard unit vectors e1; e2; : : : ; en form an orthogonal basis for Rn.
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Orthogonal Complements

Now we want to relate orthogonality to the solution of systems of linear equations.

Consider the homogeneous linear system

Ax D 0 (15)

of m equations in n unknowns. If v1; v2; : : : ; vm are the row vectors of the m � n

coefficient matrix A, then the system looks like

2

6

6

6

4

v1

v2

:::

vm

3

7

7

7

5

2

6

6

4

x

3

7

7

5

D

2

6

6

6

4

v1 � x

v2 � x
:::

vm � x

3

7

7

7

5

D

2

6

6

6

4

0

0
:::

0

3

7

7

7

5

:

Consequently, it is clear that x is a solution vector of Ax D 0 if and only if x is

orthogonal to each row vector of A. But in the latter event x is orthogonal to every

linear combination of row vectors of A because

x � .c1v1 C c2v2 C � � � C cmvm/

D c1x � v1 C c2x � v2 C � � � C cmx � vm

D .c1/.0/C .c2/.0/C � � � C .cm/.0/ D 0:

Thus we have shown that the vector x in Rn is a solution vector of Ax D 0 if and

only if x is orthogonal to each vector in the row space Row.A/ of the matrix A. This

situation motivates the following definition.

DEFINITION The Orthogonal Complement of a Subspace

The vector u is orthogonal to the subspace V of Rn provided that u is orthogonal

to every vector in V . The orthogonal complement V ? (read “V perp”) of V is

the set of all those vectors in Rn that are orthogonal to the subspace V .

If u1 and u2 are vectors in V ?, v is in V , and c1 and c2 are scalars, then

.c1u1 C c2u2/ � v D c1u1 � vC c2u2 � v

D .c1/.0/C .c2/.0/ D 0:

Thus any linear combination of vectors in V ? is orthogonal to every vector in V and

hence is a vector in V ?. Therefore the orthogonal complement V ? of a subspace

V is itself a subspace of Rn. The standard picture of two complementary subspaces

V and V ? consists of an orthogonal line and plane through the origin in R3 (see

Fig. 4.6.4). The proofs of the remaining parts of Theorem 4 are left to the problems.

V

V

V

V

O

O

FIGURE 4.6.4. Orthogonal
complements.

THEOREM 4 Properties of Orthogonal Complements

Let V be a subspace of Rn. Then

1. Its orthogonal complement V ? is also a subspace of Rn;

2. The only vector that lies in both V and V ? is the zero vector;

3. The orthogonal complement of V ? is V—that is, .V ?/? D V ;

4. If S is a spanning set for V , then the vector u is in V ? if and only if u is

orthogonal to every vector in S .
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In our discussion of the homogeneous linear system Ax D 0 in (16), we

showed that a vector space lies in the null space Null.A/ of A—that is, in the

solution space of Ax D 0—if and only if it is orthogonal to each vector in the row

space of A. In the language of orthogonal complements, this proves Theorem 5.

THEOREM 5 The Row Space and the Null Space

Let A be anm�nmatrix. Then the row space Row.A/ and the null space Null.A/

are orthogonal complements in Rn. That is,

If V D Row.A/, then V ?
D Null.A/. (16)

Now suppose that a subspace V of Rn is given, with v1; v2; : : : ; vm a set of

vectors that span V . For instance, these vectors may form a given basis for V . Then

the implication in (17) provides the following algorithm for finding a basis for the

orthogonal complement V ? of V .

1. Let A be the m � n matrix with row vectors v1; v2; : : : ; vm.

2. Reduce A to echelon form and use the algorithm of Section 4.4 to find a basis

fu1;u2; : : : ;ukg for the solution space Null.A/ of Ax D 0. Because V ? D

Null.A/, this will be a basis for the orthogonal complement of V .

Example 3 Let V be the 1-dimensional subspace of R3 spanned by the vector v1 D .1;�3; 5/. Then

A D
�

1 �3 5
�

and our linear system Ax D 0 consists of the single equation

x1 � 3x2 C 5x3 D 0:

If x2 D s and x3 D t , then x1 D 3s � 5t . With s D 1 and t D 0 we get the solution vector

u1 D .3; 1; 0/, whereas with s D 0 and t D 1 we get the solution vector u2 D .�5; 0; 1/. Thus

the orthogonal complement V ? is the 2-dimensional subspace of R3 having u1 D .3; 1; 0/

and u2 D .�5; 0; 1/ as basis vectors.

Example 4 Let V be the 2-dimensional subspace of R5 that has v1 D .1; 2; 1;�3;�3/ and v2 D

.2; 5; 6;�10;�12/ as basis vectors. The matrix

A D

�

1 2 1 �3 �3

2 5 6 �10 �12

�

with row vectors v1 and v2 has reduced echelon form

E D

�

1 0 �7 5 9

0 1 4 �4 �6

�

:

Hence the solution space of Ax D 0 is described parametrically by

x3 D r; x4 D s; x5 D t;

x2 D �4r C 4s C 6t

x1 D 7r � 5s � 9t:

Then the choice

r D 1; s D 0; t D 0 yields u1D .7;�4; 1; 0; 0/I

r D 0; s D 1; t D 0 yields u2D .�5; 4; 0; 1; 0/I

r D 0; s D 0; t D 1 yields u3D .�9; 6; 0; 0; 1/:

Thus the orthogonal complement V ? is the 3-dimensional subspace of R5 with basis

fu1;u2;u3g.
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Observe that dimV C dimV ? D 3 in Example 3, but dimV C dimV ? D 5 in

Example 4. It is no coincidence that in each case the dimensions of V and V ? add

up to the dimension n of the Euclidean space containing them. To see why, suppose

that V is a subspace of Rn and let A be an m � n matrix whose row vectors span V .

Then Equation (12) in Section 4.5 implies that

rank.A/C dim Null.A/ D n:

But

dimV D dim Row.A/ D rank.A/

and

dimV ?
D dim Null.A/

by Theorem 5, so it follows that

dimV C dimV ?
D n: (17)

Moreover, it should be apparent intuitively that if

fv1; v2; : : : ; vmg is a basis for V

and

fu1;u2; : : : ;ukg is a basis for V ?,

then

fv1; v2; : : : ; vm;u1;u2; : : : ;ukg is a basis for Rn.

That is, the union of a basis for V and a basis for V ? is a basis for Rn. In Problem

34 of this section we ask you to prove that this is so.

4.6 Problems
In Problems 1–4, determine whether the given vectors are mu-

tually orthogonal.

1. v1 D .2; 1; 2; 1/, v2 D .3;�6; 1;�2/,

v3 D .3;�1;�5; 5/

2. v1 D .3;�2; 3;�4/, v2 D .6; 3; 4; 6/,

v3 D .17;�12;�21; 3/

3. v1 D .5; 2;�4;�1/, v2 D .3;�5; 1; 1/,

v3 D .3; 0; 8;�17/

4. v1 D .1; 2; 3;�2; 1/, v2 D .3; 2; 3; 6;�4/,

v3 D .6; 2;�4; 1; 4/

In Problems 5–8, the three vertices A, B , and C of a triangle

are given. Prove that each triangle is a right triangle by show-

ing that its sides a, b, and c satisfy the Pythagorean relation

a2 C b2 D c2.

5. A.6; 6; 5; 8/, B.6; 8; 6; 5/, C.5; 7; 4; 6/

6. A.3; 5; 1; 3/, B.4; 2; 6; 4/, C.1; 3; 4; 2/

7. A.4; 5; 3; 5;�1/, B.3; 4;�1; 4; 4/, C.1; 3; 1; 3; 1/

8. A.2; 8;�3;�1; 2/, B.�2; 5; 6; 2; 12/, C.�5; 3; 2;�3; 5/

9–12. Find the acute angles (in degrees) of each of the right

triangles of Problems 5–8, respectively.

In Problems 13–22, the given vectors span a subspace V of

the indicated Euclidean space. Find a basis for the orthogonal

complement V ? of V .

13. v1 D .1;�2; 3/ 14. v1 D .1; 5;�3/

15. v1 D .1;�2;�3; 5/ 16. v1 D .1; 7;�6;�9/

17. v1 D .1; 3; 2; 4/, v2 D .2; 7; 7; 3/

18. v1 D .1;�3; 3; 5/, v2 D .2;�5; 9; 3/

19. v1 D .1; 2; 5; 2; 3/, v2 D .3; 7; 11; 9; 5/

20. v1 D .2; 5; 5; 4; 3/, v2 D .3; 7; 8; 8; 8/

21. v1 D .1; 2; 3; 1; 3/, v2 D .1; 3; 4; 3; 6/,

v3 D .2; 2; 4; 3; 5/

22. v1 D .1; 1; 1; 1; 3/, v2 D .2; 3; 1; 4; 7/,

v3 D .5; 3; 7; 1; 5/

23. Prove: For arbitrary vectors u and v,

(a) juC vj2 C ju � vj2 D 2juj2 C 2jvj2;

(b) juC vj2 � ju � vj2 D 4u � v.
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24. Given mutually orthogonal vectors v1; v2; : : : ; vk
, show

that

jv1 C v2 C � � � C v
k
j
2
D jv1j

2
C jv2j

2
C � � � C jv

k
j
2:

25. Suppose thatA, B , andC are the unit points on distinct co-

ordinate axes in Rn (for example, perhapsAD e1, B D e2,

and C D e3). Show that ABC is an equilateral triangle.

26. Prove that ju � vj D jujjvj if and only if the vectors u and

v are linearly dependent.

In Problems 27–29, V denotes a subspace of Rn.

27. Show that the only vector that lies in both V and V ? is the

zero vector.

28. Prove that if W D V ? then W ? D V .

29. Let S be a spanning set for V . Show that the vector u is in

V ? if and only if u is orthogonal to every vector in S .

30. Suppose that the vectors u and v are orthogonal and that

uC v D 0. Show that u D v D 0.

31. Let S and T be two sets of vectors in Rn such that each

vector in S is orthogonal to every vector in T. Prove that

each vector in span.S/ is orthogonal to every vector in

span.T /.

32. Let S D fu1;u2g and T D fv1; v2g be linearly indepen-

dent sets of vectors such that each ui in S is orthogonal

to every vector vj in T. Then use the results of Problems

30 and 31 to show that the four vectors u1, u2, v1, v2 are

linearly independent.

33. Let S D fu1;u2; : : : ;uk
g and T D fv1; v2; : : : ; vmg be

linearly independent sets of vectors such that each ui

in S is orthogonal to every vector vj in T. Then

generalize Problem 32 to show that the k C m vectors

u1;u2; : : : ;uk
; v1; v2; : : : ; vm are linearly independent.

34. Deduce from the result of Problem 33 that if V is a sub-

space of Rn, then the union of a basis for V and a basis

for V ? is a basis for Rn.

35. Let A be an m � n matrix and b a vector in Rm. Combine

the observations listed below to prove that the nonhomo-

geneous linear system Ax D b is consistent if and only if

b is orthogonal to the solution space of the homogeneous

system AT y D 0.

(a) Ax D b is consistent if and only if b is in Col.A/.

(b) b is in Col.A/ if and only if b is orthogonal to

fCol.A/g? D fRow.AT /g?.

(c) fRow.AT /g? D Null.AT /.

4.7 General Vector Spaces

In the previous six sections of this chapter, almost all the specific vector spaces

appearing in our examples and problems have been vector spaces of n-tuples of real

numbers. We have thus confined our attention largely to Euclidean spaces and their

subspaces. In this section we discuss examples of some other types of vector spaces

that play important roles in various branches of mathematics and their applications.

Example 1 Given fixed positive integers m and n, let Mmn denote the set of all m � n matrices with

real number entries. Then Mmn is a vector space with the usual operations of addition of

matrices and multiplication of matrices by scalars (real numbers). That is, these operations

satisfy properties (a)–(h) in the definition of a vector space (Section 4.2). In particular, the

zero element in Mmn is the m � n matrix 0 matrix whose elements are all zeros, and the

negative �A of the matrix A is (as usual) the matrix whose elements are the negatives of the

corresponding entries of A.

Given positive integers i and j with 1 � i � m and 1 � j � n, let Eij denote the m� n

matrix whose only nonzero entry is the number 1 in the i th row and the j th column. Then it

should be clear that the mn elements fEij g of Mmn form a basis for Mmn, and so Mmn is a

finite-dimensional vector space of dimension mn.

For instance, in the case of the vector space M22 of all 2 � 2 matrices, these alleged

basis elements are the four matrices

E11 D

�

1 0

0 0

�

; E12 D

�

0 1

0 0

�

;

E21 D

�

0 0

1 0

�

; and E22 D

�

0 0

0 1

�

:

Then any matrix A in M22 can be expressed as

A D

�

a b

c d

�

D aE11 C bE12 C cE21 C dE22;
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so the set fE11;E12;E21;E22g spans M22. Moreover,

aE11 C bE12 C cE21 C dE22 D

�

a b

c d

�

D

�

0 0

0 0

�

implies immediately that a D b D c D d D 0, so the set fE11;E12;E21;E22g is also linearly

independent and therefore forms a basis for M22. Thus, we have shown that M22 is a 4-

dimensional vector space.

Example 2 Let C denote the subset of M22 consisting of all 2 � 2 matrices of the form
�

a �b

b a

�

: (1)

Obviously the sum of any two such matrices is such a matrix, as is any scalar multiple of such

a matrix. Thus C is closed under the operations of addition of matrices and multiplication by

scalars and is therefore a subspace of M22.

To determine the dimension of the subspace C , we consider the two special matrices

Re D

�

1 0

0 1

�

and Im D

�

0 �1

1 0

�

(2)

in C . Here Re is another notation for the 2� 2 identity matrix I, whereas the matrix Im is not

so familiar. The matrices Re and Im are linearly independent—obviously neither is a scalar

multiple of the other—and
�

a �b

b a

�

D aReC bIm; (3)

so these two matrices span C . Thus fRe; Img is a basis for C , and so C is a 2-dimensional

subspace of the 4-dimensional vector space M22 of 2 � 2 matrices.

Now observe that

.Im/2 D

�

0 �1

1 0

� �

0 �1

1 0

�

D

�

�1 0

0 �1

�

D �Re: (4)

It follows that the matrix product of any two elements aReC bIm and cReC dIm of C is

given by

.aReC bIm/.cReC dIm/ D ac.Re/2 C bcIm ReC adRe ImC bd.Im/2

D .ac � bd/ReC .ad C bc/Im: (5)

This explicit formula for the product of two matrices in C shows that, in addition to being

closed under matrix addition and multiplication by scalars, the subspace C of M22 also is

closed under matrix multiplication.

If you feel that the idea of a space of matrices being closed under matrix

multiplication is a rather complex one, you are correct! Indeed, the vector space C

of Example 2 can be taken as a “model” for the set of all complex numbers of the

form aC bi , where a and b are real numbers and i D
p
�1 denotes the “imaginary”

square root of �1 (so that i2 D �1). Because .Im/2 D �Re, the matrix Im plays the

role of i and the matrix
�

a �b

b a

�

D aReC bIm

corresponds to the complex number aC bi . And the matrix multiplication formula

in (5) is then analogous to the formula

.aC bi/.c C di/ D .ac � bd/C .ad C bc/i

for the multiplication of complex numbers. In addition to providing a concrete

interpretation of complex numbers in terms of real numbers, the matrix model C

provides a convenient way to manipulate complex numbers in computer program-

ming languages in which matrix operations are “built in” but complex operations

are not.
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Function Spaces

In Example 1 of Section 4.2 we introduced the vector space F of all real-valued

functions defined on the real line R. If f and g are elements of F and c is a scalar,

then

.fC g/.x/ D f.x/C g.x/

and (6)

.cf/.x/ D c.f.x//

for all x in R. The zero element in F is the function 0 such that 0.x/ D 0 for all

x. We frequently refer to a function in F by simply specifying its formula. For

instance, by “the function x2” we mean that function whose value at each x in R is

x2.

The functions f1; f2; : : : ; fk in F are linearly dependent provided that there

exist scalars c1; c2; : : : ; ck , not all zero, such that

c1f1.x/C c2f2.x/C � � � C ckfk.x/ D 0

for all x in R. We often can determine whether two given functions are linearly

dependent simply by observing whether one is a scalar multiple of the other.

Example 3 The functions ex and e�2x are linearly independent because either of the equations ex D

ae�2x or e�2x D bex would imply that e3x is a constant, which obviously is not so. By

contrast, the functions sin 2x and sin x cos x are linearly dependent, because of the trigono-

metric identity sin 2x D 2 sin x cos x. The three functions 1, cos2 x, and sin2 x are linearly

dependent, because the fundamental identity cos2 x C sin2 x D 1 can be written in the form

.�1/.1/C .1/.cos2 x/C .1/.sin2 x/ D 0:

A subspace of F is called a function space. An example of a function space is

the vector space P of all polynomials in F (Example 4 in Section 4.4). Recall that

a function p.x/ in F is called a polynomial of degree n = 0 if it can be expressed

in the form

p.x/ D a0 C a1x C a2x
2
C � � � C anx

n (7)

with an 6D 0. Polynomials are added and multiplied by scalars in the usual manner—

by collecting coefficients of like powers of x. Clearly any linear combination of

polynomials is a polynomial, so P is, indeed, a subspace of F . (Recall the subspace

criterion of Theorem 1 in Section 4.2.)

Example 4 Given n� 0, denote by Pn the set of all polynomials of degree at most n. That is, Pn consists

of all polynomials of degrees 0; 1; 2; : : : ; n. Any linear combination of two polynomials of

degree at most n is again a polynomial of degree at most n, so Pn is a subspace of P (and of

F ). The formula in (7) shows that the nC 1 polynomials

1; x; x2; x3; : : : ; xn (8)

span Pn. To show that these “monomials” are linearly independent, suppose that

c0 C c1x C c2x
2
C � � � C cnx

n
D 0 (9)

for all x in R. If a0; a1; : : : ; an are fixed distinct real numbers, then each ai satisfies Eq. (9).
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In matrix notation this means that

2

6

6

6

6

6

6

6

4

1 a0 a2

0
� � � an

0

1 a1 a2

1
� � � an

1

1 a2 a2

2
� � � an

2

:::
:::

:::
: : :

:::

1 an a2

n
� � � an

n

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

c0

c1

c2

:::

cn

3

7

7

7

7

7

7

7

5

D

2

6

6

6

6

6

6

6

4

0

0

0

:::

0

3

7

7

7

7

7

7

7

5

: (10)

The coefficient matrix in (10) is a Vandermonde matrix V, and Problems 61–63 in Section

3.6 imply that any Vandermonde matrix is nonsingular. Therefore the system Vc D 0 has

only the trivial solution c D 0, so it follows from (10) that c0 D c1 D c2 D � � � D cn D 0.

Thus we have proved that the nC 1 monomials 1; x; x2; : : : ; xn are linearly independent and

hence constitute a basis for Pn. Consequently Pn is an .nC 1/-dimensional vector space.

The fact that the monomials in (8) are linearly independent implies that the

coefficients in a polynomial are unique. That is, if

a0 C a1x C � � � C anx
n
D b0 C b1x C � � � C bnx

n

for all x, then a0 D b0, a1 D b1, : : : , and an D bn. (See the remark that follows

the definition of linear independence in Section 4.3.) This identity principle for

polynomials is often used without proof in elementary algebra. A typical application

is the method of partial-fraction decomposition illustrated in Example 5.

Example 5 Find constants A, B , and C such that

6x

.x � 1/.x C 1/.x C 2/
D

A

x � 1
C

B

x C 1
C

C

x C 2
(11)

for all x (other than x D 1, �1, or �2).

Solution Multiplication of each side of the equation in (11) by the denominator on the left-hand side

yields

6x D A.x C 1/.x C 2/C B.x � 1/.x C 2/C C.x � 1/.x C 1/I

6x D .2A � 2B � C/C .3AC B/x C .AC B C C/x2:

Then the identity principle for polynomials yields the linear equations

2A � 2B � C D 0

3A C B D 6

A C B C C D 0,

which we readily solve for A D 1, B D 3, and C D �4. Therefore

6x

.x � 1/.x C 1/.x C 2/
D

1

x � 1
C

3

x C 1
�

4

x C 2

if x 6D 1, �1, �2.

Example 6 Show that the four polynomials

1; x; 3x2
� 1; and 5x3

� 3x (12)

form a basis for P3.

Solution In order to show simultaneously that these four polynomials span P3 and are linearly inde-

pendent, it suffices to see that every polynomial

p.x/ D b0 C b1x C b2x
2
C b3x

3 (13)
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in P3 can be expressed uniquely as a linear combination

c0.1/C c1.x/C c2.3x
2
� 1/C c3.5x

3
� 3x/

D .c0 � c2/C .c1 � 3c3/x C .3c2/x
2
C .5c3/x

3 (14)

of the polynomials in (12). But upon comparing the coefficients in (13) and (14), we see that

we need only observe that the linear system

2

6

6

4

1 0 �1 0

0 1 0 �3

0 0 3 0

0 0 0 5

3

7

7

5

2

6

6

4

c0

c1

c2

c3

3

7

7

5

D

2

6

6

4

b0

b1

b2

b3

3

7

7

5

obviously has a unique solution for c0; c1; c2; c3 in terms of b0; b1; b2; b3.

Because the vector space P of all polynomials contains nC 1 linearly inde-

pendent functions for every integer n� 0, it follows that P is an infinite-dimensional

vector space. So too is any function space, such as F itself, that contains P . An-

other important function space is the set C
.0/ of all continuous functions on R; C

.0/ is

a subspace of F because every linear combination of continuous functions is again

a continuous function. Every polynomial is a continuous function, so C
.0/ contains

P and is therefore an infinite-dimensional vector space. Similarly, the set C
.k/ of all

functions in F that have continuous kth-order derivatives is an infinite-dimensional

function space.

Solution Spaces of Differential Equations

In Section 1.5 we saw that the (now familiar) first-order differential equation

y0
D ky (k constant) (15)

has the general solution y.x/D Cekx . Thus the “solution space” of (15) is the set of

all constant multiples of the single function ekx , and it is therefore the 1-dimensional

function space with basis fekxg.

In Section 5.1 we will see that the set of all solutions y.x/ of a linear second-

order differential equation of the form

ay00
C by0

C cy D 0 (16)

(with constant coefficients a, b, and c) is a 2-dimensional function space S , called

the solution space of the differential equation. Here we will illustrate this general

fact with three simple examples of second-order equations that can be solved in an

elementary manner.

Example 7 With a D 1 and b D c D 0 in (16), we get the differential equation

y00
D 0: (17)

If y.x/ is any solution of this equation, so y00.x/ D 0, then two integrations give first

y0.x/ D

Z

y00.x/ dx D

Z

.0/ dx D A

and then

y.x/ D

Z

y0.x/ dx D

Z

Adx D Ax C B;

where A and B are arbitrary constants of integration. Thus every solution of (17) is of the

form y.x/DAxCB , and clearly every such function is a solution of the differential equation.

Thus the solution space of (17) is simply the 2-dimensional space P1 of linear polynomials

generated by the basis f1; xg.
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Example 8 With a D 1, b D �2, and c D 0 in (16), we get the differential equation

y00
� 2y0

D 0: (18)

If y.x/ is any solution of this equation and if v.x/ D y0.x/, then (18) says that

v0.x/ D 2v.x/:

But this is a familiar first-order differential equation with general solution v.x/DCe2x . Then

integration gives

y.x/ D

Z

y0.x/ dx D

Z

v.x/ dx D

Z

Ce2x dx D 1

2
Ce2x

C A:

Thus every solution of (18) is of the form y.x/DACBe2x (where B D 1

2
C ), and you should

show by substitution in (18) that every function of this form is a solution of the differential

equation. Therefore, the solution space of (18) is the 2-dimensional function space that is

generated by the basis f1; e2xg.

Example 9 With a D 1, b D 0, and c D �1 in (16), we get the differential equation

y00
� y D 0: (19)

If y.x/ is any solution of this equation and if v.x/ D y0.x/, then (19) says that

y00
D
dv

dx
D
dv

dy

dy

dx
D v

dv

dy
D yI

so v dv D y dy. Integration therefore gives

1

2
v2
D

1

2
y2
C C; so v2

D y2
˙ a2; (20)

where the final sign depends on the sign of C . The final result is independent of this choice

(Problem 27); we’ll take the negative sign for the sake of illustration. Since v D dy=dx, it

then follows from (20) that

x D ˙

Z

dy
p

y2 � a2

: (21)

Here again the final result is independent of the choice of sign; this time we’ll take the positive

sign. Then the substitution y D au and the standard integral

Z

du
p
u2 � 1

D cosh�1 uC C

(see Section 7.6 of Edwards and Penney, Calculus: Early Transcendentals, 7th edition, Hobo-

ken, NJ: Pearson, 2008) yield

x D cosh�1
y

a
C b;

so finally,

y D a cosh.x � b/ D a.cosh x cosh b � sinh x sinh b/;

which can be written as

y.x/ D A cosh x C B sinh x; (22)

with A D a cosh b and B D �a sinh b. Thus every solution of the differential equation y00 �

y D 0 in (19) is of the form y.x/D A cosh xCB sinh x, and you should show by substitution

in (19) that every function of this form is a solution of the differential equation. Therefore,

the solution space S of (19) is the 2-dimensional function space that is generated by the basis

fcosh x; sinh xg. If we substitute into (22) the relations

cosh x D
ex C e�x

2
; sinh x D

ex � e�x

2
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that define the hyperbolic cosine and sine functions in terms of exponentials, we see that

every solution of y00 � y D 0 can also be written in the form of the linear combination

y.x/ D Cex
CDe�x :

Consequently, fex ; e�xg is a second basis for the 2-dimensional solution space S .

In Section 5.3 we will learn a much quicker way to solve linear second-order

differential equations like the equation y00 � y D 0 of Example 9 and the equation

y00 C y D 0 of Problem 28.

4.7 Problems
In Problems 1–4, determine whether or not the indicated set of

3 � 3 matrices is a subspace of M33.

1. The set of all diagonal 3 � 3 matrices.

2. The set of all symmetric 3 � 3 matrices (that is, matrices

A D
�

aij

�

such that aij D aj i for 1 � i � 3, 1 � j � 3).

3. The set of all nonsingular 3 � 3 matrices.

4. The set of all singular 3 � 3 matrices.

In Problems 5–8, determine whether or not each indicated set

of functions is a subspace of the space F of all real-valued

functions on R.

5. The set of all f such that f .0/ D 0.

6. The set of all f such that f .x/ 6D 0 for all x.

7. The set of all f such that f .0/ D 0 and f .1/ D 1.

8. The set of all f such that f .�x/ D �f .x/ for all x.

In Problems 9–12, a condition on the coefficients of a polyno-

mial a0 C a1xC a2x
2 C a3x

3 is given. Determine whether or

not the set of all such polynomials satisfying this condition is

a subspace of the space P of all polynomials.

9. a3 6D 0

10. a0 D a1 D 0

11. a0 C a1 C a2 C a3 D 0

12. a0, a1, a2, and a3 are all integers

In Problems 13–18, determine whether the given functions are

linearly independent.

13. sin x and cos x

14. ex and xex

15. 1C x, 1 � x, and 1 � x2

16. 1C x, x C x2, and 1 � x2

17. cos 2x, sin2 x, and cos2 x

18. 2 cos x C 3 sin x and 4 cos x C 5 sin x

In Problems 19–22, use the method of Example 5 to find the

constants A, B , and C in the indicated partial-fraction de-

compositions.

19.
x � 5

.x � 2/.x � 3/
D

A

x � 2
C

B

x � 3

20.
2

x.x2 � 1/
D
A

x
C

B

x � 1
C

C

x C 1

21.
8

x.x2 C 4/
D
A

x
C
Bx C C

x2 C 4

22.
2x

.x C 1/.x C 2/.x C 3/
D

A

x C 1
C

B

x C 2
C

C

x C 3

In Problems 23 and 24, use the method of Example 7 to find

a basis for the solution space of the given differential equa-

tion. (It’s 3-dimensional in Problem 23 and 4-dimensional in

Problem 24.)

23. y000 D 0 24. y.4/ D 0

In Problems 25 and 26, use the method of Example 8 to find a

basis for the 2-dimensional solution space of the given differ-

ential equation.

25. y00 � 5y0 D 0 26. y00 C 10y0 D 0

27. Take the positive sign in Eq. (20), and then use the stan-

dard integral

Z

du
p
u2 C 1

D sinh�1 uC C

to derive the same general solution y.x/ D A cosh x C

B sinh x given in Eq. (22).

28. Use the method of Example 9 and the standard integral

Z

du
p
1 � u2

D sin�1 uC C

to derive the general solution y.x/ D A cos x C B sin x of

the second-order differential equation y00 C y D 0. Thus

its solution space has basis fcosx; sin xg.

29. Let V be the set of all infinite sequences fxng D

fx1; x2; x3; : : : g of real numbers. Let addition of elements

of V and multiplication by scalars be defined as follows:

fxng C fyng D fxn C yng

and

cfxng D fcxng:

(a) Show that V is a vector space with these operations.

(b) Prove that V is infinite dimensional.
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30. Let V be the vector space of Problem 29 and let the

subset W consist of those elements fxng of V such that

xn D xn�1 C xn�2 for n � 2. Thus a typical element of

W is the Fibonacci sequence

f1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : : g:

(a) Show that W is a subspace of V .

(b) Prove that W is 2-dimensional.

Problems 31 through 33 develop a method of multiplying ma-

trices whose entries are complex numbers.

31. Motivated by Example 2, let us define a function or trans-

formation T from the set of all complex numbers to the

space of all 2 � 2 matrices of the form in (1) as follows.

Given a complex number ´ D aC bi , let

T .´/ D

�

a �b

b a

�

:

(a) Suppose that ´1 and ´2 are complex numbers and c1

and c2 are real numbers. Show that

T .c1´1 C c2´2/ D c1T .´1/C c2T .´2/:

(b) Show that

T .´1´2/ D T .´1/T .´2/

for all complex numbers ´1 and ´2. Note the complex

multiplication on the left in contrast with the matrix

multiplication on the right.

(c) Prove that if ´ is an arbitrary nonzero complex num-

ber, then

T .´�1/ D fT .´/g�1;

where ´�1 D 1=´ and fT .´/g�1 is the inverse of the

matrix T .´/.

32. Let A and B be 4 � 4 (real) matrices partitioned into 2 � 2

submatrices or “blocks”:

A D

�

A11 A12

A21 A22

�

; B D

�

B11 B12

B21 B22

�

:

Then verify that AB can be calculated in “blockwise”

fashion:

AB D

�

A11B11 CA12B21 A11B12 CA12B22

A21B11 CA22B21 A21B12 CA22B22

�

:

33. Given a 2 � 2 matrix M D
�

´ij

�

whose entries are com-

plex numbers, let T .M/ denote the 4 � 4 matrix of real

numbers given in block form by

T .M/ D

�

T .´11/ T .´12/

T .´21/ T .´22/

�

:

The transformation T on the right-hand side is the one we

defined in Problem 31. Suppose that M and N are 2 � 2

complex matrices. Use Problems 31(b) and 32 to show

that

T .MN/ D T .M/T .N/:

Hence one can find the product of the 2 � 2 complex ma-

trices M and N by calculating the product of the 4� 4 real

matrices T .M/ and T .N/. For instance, if

M D

�

1C i 2C i

1C 2i 1C 3i

�

and

N D

�

3 � i 1 � 2i

2 � i 3 � 2i

�

;

then

T .M/T .N/

D

2

6

6

6

6

4

1 �1 2 �1

1 1 1 2

1 �2 1 �3

2 1 3 1

3

7

7

7

7

5

�

2

6

6

6

6

4

3 1 1 2

� 1 3 �2 1

2 1 3 2

�1 2 �2 3

3

7

7

7

7

5

D

2

6

6

6

6

4

9 �2 11 2

2 9 �2 11

10 �10 14 �7

10 10 7 14

3

7

7

7

7

5

:

Therefore,

MN D

�

9C 2i 11 � 2i

10C 10i 14C 7i

�

:

If M is a nonsingular 2 � 2 complex matrix, it can be

shown that T .M�1/ D fT .M/g�1. The n � n versions

of these results are sometimes used to carry out complex

matrix operations in computer languages that support only

real arithmetic.



55 Higher-Order
Linear Differential
Equations

5.1 Introduction: Second-Order Linear Equations

In Chapters 1 and 2 we investigated first-order differential equations. We now turn

to equations of higher order n = 2, beginning in this chapter with equations that

are linear. The general theory of linear differential equations parallels the second-

order case (n D 2), which we outline in this initial section.

Recall that a second-order differential equation in the (unknown) function

y.x/ is one of the form

G.x; y; y0; y00/ D 0: (1)

This differential equation is said to be linear provided that G is linear in the depen-

dent variable y and its derivatives y0 and y00. Thus a linear second-order equation

takes (or can be written in) the form

A.x/y00
C B.x/y0

C C.x/y D F.x/: (2)

Unless otherwise noted, we will always assume that the (known) coefficient func-

tions A.x/, B.x/, C.x/, and F.x/ are continuous on some open interval I (perhaps

unbounded) on which we wish to solve this differential equation, but we do not

require that they be linear functions of x. Thus the differential equation

exy00
C .cos x/y0

C .1C
p
x /y D tan�1 x

is linear because the dependent variable y and its derivatives y0 and y00 appear lin-

early. By contrast, the equations

y00
D yy0 and y00

C 3.y0/2 C 4y3
D 0

are not linear because products and powers of y or its derivatives appear.

265
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If the function F.x/ on the right-hand side of Eq. (2) vanishes identically on

I, then we call Eq. (2) a homogeneous linear equation; otherwise, it is nonhomo-

geneous. For example, the second-order equation

x2y00
C 2xy0

C 3y D cos x

is nonhomogeneous; its associated homogeneous equation is

x2y00
C 2xy0

C 3y D 0:

In general, the homogeneous linear equation associated with Eq. (2) is

A.x/y00
C B.x/y0

C C.x/y D 0: (3)

In case the differential equation in (2) models a physical system, the nonhomoge-

neous term F.x/ frequently corresponds to some external influence on the system.

Remark Note that the meaning of the term “homogeneous” for a second-order linear differ-

ential equation is quite different from its meaning for a first-order differential equation (as in

Section 1.6). Of course, it is not unusual—either in mathematics or in the English language

more generally—for the same word to have different meanings in different contexts.

A Typical Application

Linear differential equations frequently appear as mathematical models of mechan-Spring Mass Dashpot

x (t)
x  = 0

Equilibrium

position

x  > 0

m

FIGURE 5.1.1. A mass–spring–

dashpot system.

ical systems and electrical circuits. For example, suppose that a mass m is attached

both to a spring that exerts on it a force FS and to a dashpot (shock absorber) that

exerts a force FR on the mass (Fig. 5.1.1). Assume that the restoring force FS of

the spring is proportional to the displacement x of the mass from its equilibrium

position and acts opposite to the direction of displacement. Then

FS D �kx (with k > 0)

so FS < 0 if x > 0 (spring stretched) while FS > 0 if x < 0 (spring compressed).

We assume that the dashpot force FR is proportional to the velocity v D dx=dt of

the mass and acts opposite to the direction of motion. Then

FR D �cv D �c
dx

dt
(with c > 0);

so FR < 0 if v > 0 (motion to the right) while FR > 0 if v < 0 (motion to the left).

If FR and FS are the only forces acting on the mass m (Fig. 5.1.2) and itsm

x ,  v  > 0

FRFS

FIGURE 5.1.2. Directions of the

forces acting on m.

resulting acceleration is a D dv=dt , then Newton’s law F D ma gives

mx00
D FS C FRI (4)

that is,

m
d2x

dt2
C c

dx

dt
C kx D 0: (5)

Thus we have a differential equation satisfied by the position function x.t/ of the

massm. This homogeneous second-order linear equation governs the free vibrations

of the mass; we will return to this problem in detail in Section 5.4.

If, in addition to FS and FR, the mass m is acted on by an external force

F.t/—which must then be added to the right-hand side in Eq. (4)—the resulting

equation is

m
d2x

dt2
C c

dx

dt
C kx D F.t/: (6)

This nonhomogeneous linear differential equation governs the forced vibrations of

the mass under the influence of the external force F.t/.
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Homogeneous Second-Order Linear Equations

Consider the general second-order linear equation

A.x/y00
C B.x/y0

C C.x/y D F.x/; (7)

where the coefficient functions A, B , C , and F are continuous on the open interval

I. Here we assume in addition that A.x/ ¤ 0 at each point of I, so we can divide

each term in Eq. (7) by A.x/ and write it in the form

y00
C p.x/y0

C q.x/y D f .x/: (8)

We will discuss first the associated homogeneous equation

y00
C p.x/y0

C q.x/y D 0: (9)

A particularly useful property of this homogeneous linear equation is the fact that the

sum of any two solutions of Eq. (9) is again a solution, as is any constant multiple

of a solution. This is the central idea of the following theorem.

THEOREM 1 Principle of Superposition for Homogeneous
Equations

Let y1 and y2 be two solutions of the homogeneous linear equation in (9) on the

interval I. If c1 and c2 are constants, then the linear combination

y D c1y1 C c2y2 (10)

is also a solution of Eq. (9) on I.

Proof: The conclusion follows almost immediately from the linearity of the

operation of differentiation, which gives

y0
D c1y

0
1
C c2y

0
2

and y00
D c1y

00
1
C c2y

00
2
:

Then

y00
C py0

C qy D .c1y1 C c2y2/
00
C p.c1y1 C c2y2/

0
C q.c1y1 C c2y2/

D .c1y
00
1
C c2y

00
2
/C p.c1y

0
1
C c2y

0
2
/C q.c1y1 C c2y2/

D c1.y
00
1
C py0

1
C qy1/C c2.y

00
2
C py0

2
C qy2/

D c1 � 0C c2 � 0 D 0

because y1 and y2 are solutions. Thus y D c1y1 C c2y2 is also a solution.

Remark According to Theorem 1 in Section 4.2, Theorem 1 here implies that the set S of

all solutions of the homogeneous linear second-order equation (9) is a subspace of the vector

space of all functions on the real line R—and hence is itself a vector space. We therefore call

S the solution space of the differential equation.

Example 1 We can see by inspection that

y1.x/ D cos x and y2.x/ D sin x

are two solutions of the equation

y00
C y D 0:
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Theorem 1 tells us that any linear combination of these solutions, such as

y.x/ D 3y1.x/ � 2y2.x/ D 3 cos x � 2 sin x;

is also a solution. We will see later that, conversely, every solution of y00 C y D 0 is a

linear combination of these two particular solutions y1 and y2. Thus a general solution of

y00 C y D 0 is given by

y.x/ D c1 cos x C c2 sin x:

It is important to understand that this single formula for the general solution encompasses

a “twofold infinity” of particular solutions, because the two coefficients c1 and c2 can be

selected independently. Figures 5.1.3 through 5.1.5 illustrate some of the possibilities, with

either c1 or c2 set equal to zero, or with both nonzero.

0 2ππ–π

x

y

8

0

–8

2

–6

4

–4

6

–2

c1 = 5

c1 = –5

FIGURE 5.1.3. Solutions
y.x/ D c1 cos x of y

00 C y D 0.

0 2ππ–π

x

y

8

0

–8

2

–6

4

–4

6

–2

c2 = 5

c2 = –5

FIGURE 5.1.4. Solutions
y.x/ D c2 sin x of y

00 C y D 0.

3π2π–π

y = 6 cos x – 2 sin x
y = 3 cos x + 4 sin x

y = cos x – 2 sin x

0
x

y

10

8

6

4

2

0

–10

–8

–6

–4

–2

π

FIGURE 5.1.5. Solutions of
y

00 C y D 0 with c1 and c2 both
nonzero.

Earlier in this section we gave the linear equation mx00 C cx0 C kx D F.t/ as

a mathematical model of the motion of the mass shown in Fig. 5.1.1. Physical con-

siderations suggest that the motion of the mass should be determined by its initial

position and initial velocity. Hence, given any preassigned values of x.0/ and x0.0/,

Eq. (6) ought to have a unique solution satisfying these initial conditions. More

generally, in order to be a “good” mathematical model of a deterministic physical

situation, a differential equation must have unique solutions satisfying any appro-

priate initial conditions. The following existence and uniqueness theorem (proved

in the Appendix) gives us this assurance for the general second-order equation.

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I

containing the point a. Then, given any two numbers b0 and b1, the equation

y00
C p.x/y0

C q.x/y D f .x/ (8)

has a unique (that is, one and only one) solution on the entire interval I that

satisfies the initial conditions

y.a/ D b0; y0.a/ D b1: (11)

Remark 1 Equation (8) and the conditions in (11) constitute a second-order linear initial

value problem. Theorem 2 tells us that any such initial value problem has a unique solution

on the whole interval I where the coefficient functions in (8) are continuous. Recall from
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Section 1.3 that a nonlinear differential equation generally has a unique solution on only a

smaller interval.

Remark 2 Whereas a first-order differential equation dy=dx D F.x; y/ generally admits

only a single solution curve y D y.x/ passing through a given initial point .a; b/, Theorem

2 implies that the second-order equation in (8) has infinitely many solution curves pass-

ing through the point .a; b0/—namely, one for each (real number) value of the initial slope

y0.a/ D b1. That is, instead of there being only one line through .a; b0/ tangent to a solu-

tion curve, every nonvertical straight line through .a; b0/ is tangent to some solution curve of

Eq. (8). Figure 5.1.6 shows a number of solution curves of the equation y00 C 3y0 C 2y D 0

all having the same initial value y.0/D 1, while Fig. 5.1.7 shows a number of solution curves

all having the same initial slope y0.0/ D 1. The application at the end of this section suggests

how to construct such families of solution curves for a given homogeneous second-order

linear differential equation.

y'(0) = 6

y'(0) = –6

y'(0) = 0

543210–1
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y

3
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0

FIGURE 5.1.6. Solutions of
y

00 C 3y
0 C 2y D 0 with the same

initial value y.0/ D 1 but different
initial slopes.
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0

FIGURE 5.1.7. Solutions of
y

00 C 3y
0 C 2y D 0 with the same

initial slope y
0
.0/ D 1 but different

initial values.

Example 1 Continued We saw in the first part of Example 1 that y.x/ D 3 cos x � 2 sin x is a solution

(on the entire real line) of y00Cy D 0. It has the initial values y.0/D 3, y0.0/D�2. Theorem

2 tells us that this is the only solution with these initial values. More generally, the solution

y.x/ D b0 cos x C b1 sin x

satisfies the arbitrary initial conditions y.0/D b0, y0.0/D b1; this illustrates the existence of

such a solution, also as guaranteed by Theorem 2.

Example 1 suggests how, given a homogeneous second-order linear equation,

we might actually find the solution y.x/ whose existence is assured by Theorem 2.

First, we find two “essentially different” solutions y1 and y2; second, we attempt to

impose on the general solution

y D c1y1 C c2y2 (12)

the initial conditions y.a/ D b0, y0.a/ D b1. That is, we attempt to solve the simul-

taneous equations

c1y1.a/C c2y2.a/ D b0;

c1y
0
1
.a/C c2y

0
2
.a/ D b1

(13)

for the coefficients c1 and c2.
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Example 2 Verify that the functions

y1.x/ D e
x and y2.x/ D xe

x

are solutions of the differential equation

y00
� 2y0

C y D 0;

and then find a solution satisfying the initial conditions y.0/ D 3, y0.0/ D 1.

Solution The verification is routine; we omit it. We impose the given initial conditions on the general

solution

y.x/ D c1e
x
C c2xe

x ;

for which

c2 = 0

c2 = 6

c2 = –6

1 20
x

y
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FIGURE 5.1.8. Different solutions
y.x/ D 3e

x C c2xe
x of

y
00 � 2y

0 C y D 0 with the same
initial value y.0/ D 3.

y0.x/ D .c1 C c2/e
x
C c2xe

x ;

to obtain the simultaneous equations

y.0/ D c1 D 3,

y0.0/ D c1 C c2 D 1.

The resulting solution is c1 D 3, c2 D �2. Hence the solution of the original initial value

problem is

y.x/ D 3ex
� 2xex :

Figure 5.1.8 shows several additional solutions of y00 � 2y0 C y D 0, all having the same

initial value y.0/ D 3.

Linearly Independent Solutions

In order for the procedure of Example 2 to succeed, the two solutions y1 and y2

must have the property that the equations in (13) can always be solved for c1 and

c2, no matter what the initial values y.a/ D b0 and y0.a/ D b1 might be. This is so,

provided that the two functions y1 and y2 are linearly independent. According to

the following definition, linear independence of functions defined on an interval I

is analogous to linear independence of ordinary vectors.

DEFINITION Linear Independence of Two Functions

Two functions defined on an open interval I are said to be linearly independent

on I provided that neither is a constant multiple of the other.

Two functions are said to be linearly dependent on an open interval provided

that they are not linearly independent there; that is, one of them is a constant multi-

ple of the other. We can always determine whether two given functions f and g are

linearly dependent on an interval I by noting at a glance whether either of the two

quotients f=g or g=f is a constant-valued function on I.

Example 3 Thus it is clear that the following pairs of functions are linearly independent on the entire real

line:

sin x and cos xI

ex and e�2x
I

ex and xex
I

x C 1 and x2
I

x and jxj:

That is, neither sin x=cos x D tan x nor cos x=sin x D cot x is a constant-valued function;

neither ex=e�2x D e3x nor e�2x=ex is a constant-valued function; and so forth. But the
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identically zero function f .x/ � 0 and any other function g are linearly dependent on every

interval, because 0 � g.x/ D 0 D f .x/. Also, the functions

f .x/ D sin 2x and g.x/ D sin x cos x

are linearly dependent on any interval because f .x/ D 2g.x/ is the familiar trigonometric

identity sin 2x D 2 sin x cos x.

General Solutions

But does the homogeneous equation y00 C py0 C qy D 0 always have two linearly

independent solutions? Theorem 2 says yes! We need only choose y1 and y2 so that

y1.a/ D 1; y
0
1
.a/ D 0 and y2.a/ D 0; y

0
2
.a/ D 1:

It is then impossible that either y1 D ky2 or y2 D ky1 because k � 0 ¤ 1 for any

constant k. Theorem 2 tells us that two such linearly independent solutions exist;

actually finding them is a crucial matter that we will discuss briefly at the end of

this section, and in greater detail beginning in Section 5.3.

We want to show, finally, that given any two linearly independent solutions y1

and y2 of the homogeneous equation

y00.x/C p.x/y0.x/C q.x/y.x/ D 0; (9)

every solution y of Eq. (9) can be expressed as a linear combination

y D c1y1 C c2y2 (12)

of y1 and y2. This means that the function in (12) is a general solution of Eq. (9)—it

provides all possible solutions of the differential equation.

As suggested by the equations in (13), the determination of the constants c1

and c2 in (12) depends on a certain 2 � 2 determinant of values of y1, y2, and

their derivatives. Given two functions f and g, the Wronskian of f and g is the

determinant

W D

ˇ

ˇ

ˇ

ˇ

ˇ

f g

f 0 g0

ˇ

ˇ

ˇ

ˇ

ˇ

D fg0
� f 0g:

We write either W.f; g/ or W.x/, depending on whether we wish to emphasize the

two functions or the point x at which the Wronskian is to be evaluated. For example,

W.cos x; sin x/ D

ˇ

ˇ

ˇ

ˇ

cos x sin x

� sin x cos x

ˇ

ˇ

ˇ

ˇ

D cos2 x C sin2 x D 1

and

W.ex ; xex/ D

ˇ

ˇ

ˇ

ˇ

ex xex

ex ex C xex

ˇ

ˇ

ˇ

ˇ

D e2x :

These are examples of linearly independent pairs of solutions of differential equa-

tions (see Examples 1 and 2). Note that in both cases the Wronskian is everywhere

nonzero.

On the other hand, if the functions f and g are linearly dependent, with f D

kg (for example), then

W.f; g/ D

ˇ

ˇ

ˇ

ˇ

kg g

kg0 g0

ˇ

ˇ

ˇ

ˇ

D kgg0
� kg0g � 0:
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Thus the Wronskian of two linearly dependent functions is identically zero. In

Section 5.2 we will prove that, if the two functions y1 and y2 are solutions of a

homogeneous second-order linear equation, then the strong converse stated in part

(b) of Theorem 3 holds.

THEOREM 3 Wronskians of Solutions

Suppose that y1 and y2 are two solutions of the homogeneous second-order linear

equation (Eq. (9))

y00
C p.x/y0

C q.x/y D 0

on an open interval I on which p and q are continuous.

(a) If y1 and y2 are linearly dependent, then W.y1; y2/ � 0 on I.

(b) If y1 and y2 are linearly independent, then W.y1; y2/ 6D 0 at each point of I.

Thus, given two solutions of Eq. (9), there are just two possibilities: The

Wronskian W is identically zero if the solutions are linearly dependent; the Wron-

skian is never zero if the solutions are linearly independent. The latter fact is what

we need to show that y D c1y1C c2y2 is the general solution of Eq. (9) if y1 and y2

are linearly independent solutions.

THEOREM 4 General Solutions of Homogeneous Equations

Let y1 and y2 be two linearly independent solutions of the homogeneous equation

(Eq. (9))

y00
C p.x/y0

C q.x/y D 0

with p and q continuous on the open interval I. If Y is any solution whatsoever

of Eq. (9) on I, then there exist numbers c1 and c2 such that

Y.x/ D c1y1.x/C c2y2.x/

for all x in I.

Remark In essence, Theorem 4 tells us that, when we have found two linearly indepen-

dent solutions y1 and y2 of the homogeneous equation in (9), we have then found all of its

solutions. Specifically, fy1; y2g is then a basis for the solution space of the differential equa-

tion. We therefore call the linear combination Y D c1y1 C c2y2 a general solution of the

differential equation.

Proof of Theorem 4: Choose a point a of I, and consider the simultaneous

equations
c1y1.a/C c2y2.a/ D Y.a/;

c1y
0
1
.a/C c2y

0
2
.a/ D Y 0.a/:

(14)

The determinant of the coefficients in this system of linear equations in the un-

knowns c1 and c2 is simply the Wronskian W.y1; y2/ evaluated at x D a. By The-

orem 3, this determinant is nonzero, so by elementary algebra it follows that the

equations in (14) can be solved for c1 and c2. With these values of c1 and c2, we

define the solution

G.x/ D c1y1.x/C c2y2.x/

of Eq. (9); then

G.a/ D c1y1.a/C c2y2.a/ D Y.a/
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and

G0.a/ D c1y
0
1
.a/C c2y

0
2
.a/ D Y 0.a/:

Thus the two solutions Y and G have the same initial values at a; likewise, so do Y 0

and G0. By the uniqueness of a solution determined by such initial values (Theorem

2), it follows that Y and G agree on I. Thus we see that

Y.x/ � G.x/ D c1y1.x/C c2y2.x/;

as desired.

Example 4 If y1.x/ D e
2x and y2.x/ D e

�2x , then

y00
1
D .2/.2/e2x

D 4e2x
D 4y1 and y00

2
D .�2/.�2/e�2x

D 4e�2x
D 4y2:

Therefore, y1 and y2 are linearly independent solutions of

y00
� 4y D 0: (15)

But y3.x/ D cosh 2x and y4.x/ D sinh 2x are also solutions of Eq. (15), because

d2

dx2
.cosh 2x/ D

d

dx
.2 sinh 2x/ D 4 cosh 2x

and, similarly, .sinh 2x/00 D 4 sinh 2x. It therefore follows from Theorem 4 that the functions

cosh 2x and sinh 2x can be expressed as linear combinations of y1.x/ D e2x and y2.x/ D

e�2x . Of course, this is no surprise, because

cosh 2x D 1

2
e2x
C

1

2
e�2x and sinh 2x D 1

2
e2x
�

1

2
e�2x

by the definitions of the hyperbolic cosine and hyperbolic sine. Thus the solution space of

the differential equation y00 � 4y D 0 has the two different bases fe2x ; e�2xg and fcosh 2x;

sinh 2xg.

Remark Because e2x , e�2x and cosh x, sinh x are two different pairs of linearly indepen-

dent solutions of the equation y00 � 4y D 0 in (15), Theorem 4 implies that every particular

solution Y.x/ of this equation can be written both in the form

Y.x/ D c1e
2x
C c2e

�2x

and in the form

Y.x/ D a cosh 2x C b sinh 2x:

Thus these two different linear combinations (with arbitrary constant coefficients) provide

two different descriptions of the set of all solutions of the same differential equation y00�4yD

0. Hence each of these two linear combinations is a general solution of the equation. Indeed,

this is why it is accurate to refer to a specific such linear combination as “a general solution”

rather than as “the general solution.”

Linear Second-Order Equations with Constant Coefficients

As an illustration of the general theory introduced in this section, we discuss the

homogeneous second-order linear differential equation

ay00
C by0

C cy D 0 (16)

with constant coefficients a, b, and c. We first look for a single solution of Eq. (16)

and begin with the observation that

.erx/0 D rerx and .erx/00 D r2erx ; (17)

so any derivative of erx is a constant multiple of erx . Hence, if we substituted

y D erx in Eq. (16), then each term would be a constant multiple of erx , with the

constant coefficients dependent on r and the coefficients a, b, and c. This suggests

that we try to find a value of r so that these multiples of erx will have sum zero. If

we succeed, then y D erx will be a solution of Eq. (16).
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For example, if we substitute y D erx in the equation

y00
� 5y0

C 6y D 0;

we obtain

r2erx
� 5rerx

C 6erx
D 0:

Thus

.r2
� 5r C 6/erx

D 0I .r � 2/.r � 3/erx
D 0:

Hence y D erx will be a solution if either r D 2 or r D 3. So, in searching for a

single solution, we actually have found two solutions: y1.x/D e
2x and y2.x/D e

3x .

To carry out this procedure in the general case, we substitute y D erx in

Eq. (16). With the aid of the equations in (17), we find the result to be

ar2erx
C brerx

C cerx
D 0:

Because erx is never zero, we conclude that y.x/ D erx will satisfy the differential

equation in (16) precisely when r is a root of the algebraic equation

ar2
C br C c D 0: (18)

This quadratic equation is called the characteristic equation of the homogeneous

linear differential equation

ay00
C by0

C cy D 0: (16)

If Eq. (18) has two distinct (unequal) roots r1 and r2, then the corresponding solu-

tions y1.x/ D e
r1x and y2.x/ D e

r2x of (16) are linearly independent. (Why?) This

gives the following result.

THEOREM 5 Distinct Real Roots

If the roots r1 and r2 of the characteristic equation in (18) are real and distinct,

then

y.x/ D c1e
r1x
C c2e

r2x (19)

is a general solution of Eq. (16). Thus the solution space of the equation ay00 C

by0 C cy D 0 has basis fer1x; er2xg.

Example 5 Find the general solution of

2y00
� 7y0

C 3y D 0:

Solution We can solve the characteristic equation

2r2
� 7r C 3 D 0

by factoring:

.2r � 1/.r � 3/ D 0:

The roots r1 D
1

2
and r2 D 3 are real and distinct, so Theorem 5 yields the general solution

y.x/ D c1e
x=2
C c2e

3x :
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Example 6 The differential equation y00 C 2y0 D 0 has characteristic equation

r2
C 2r D r.r C 2/ D 0

with distinct real roots r1 D 0 and r2 D �2. Because e0�x � 1, we get the general solution

y.x/ D c1 C c2e
�2x :

Figure 5.1.9 shows several different solution curves with c1 D 1, all appearing to approach

c2 = 0

c2 = 2

c2 = –2

21.510.50–0.5
x

y

3

2

1

–2

–1

0

FIGURE 5.1.9. Solutions
y.x/ D 1 C c2e

�2x of y
00 C 2y

0 D 0

with different values of c2.

the solution curve y.x/ � 1 (with c2 D 0) as x !C1.

Remark Note that Theorem 5 changes a problem involving a differential equation into one

involving only the solution of an algebraic equation.

If the characteristic equation in (18) has equal roots r1 D r2, we get (at first)

only the single solution y1.x/ D er1x of Eq. (16). The problem in this case is to

produce the “missing” second solution of the differential equation.

A double root r D r1 will occur precisely when the characteristic equation is

a constant multiple of the equation

.r � r1/
2
D r2

� 2r1r C r
2

1
D 0:

Any differential equation with this characteristic equation is equivalent to

y00
� 2r1y

0
C r2

1
y D 0: (20)

But it is easy to verify by direct substitution that y D xer1x is a second solution of

Eq. (20). It is clear (but you should verify) that

y1.x/ D e
r1x and y2.x/ D xe

r1x

are linearly independent functions, so the general solution of the differential equa-

tion in (20) is

y.x/ D c1e
r1x
C c2xe

r1x :

THEOREM 6 Repeated Roots

If the characteristic equation in (18) has equal (necessarily real) roots r1 D r2,

then

y.x/ D .c1 C c2x/e
r1x (21)

is a general solution of Eq. (16). In this case the solution space of the equation

ay00 C by0 C cy D 0 has basis fer1x ; xer1xg.

Example 7 To solve the initial value problem

y00
C 2y0

C y D 0I

y.0/ D 5; y0.0/ D �3;

we note first that the characteristic equation

r2
C 2r C 1 D .r C 1/2 D 0

has equal roots r1 D r2 D �1. Hence the general solution provided by Theorem 6 is

y.x/ D c1e
�x
C c2xe

�x :
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Differentiation yields

y0.x/ D �c1e
�x
C c2e

�x
� c2xe

�x ;

so the initial conditions yield the equations

y.0/ D c1 D 5,

y0.0/ D �c1 C c2 D �3,

which imply that c1 D 5 and c2 D 2. Thus the desired particular solution of the initial value

problem is

y.x/ D 5e�x
C 2xe�x :

This particular solution, together with several others of the form y.x/ D c1e
�x C 2xe�x , is

illustrated in Fig. 5.1.10.

c1 = 5

c1 = –5

510 32 4–4 –3 –2 –1
x

y

10

–5

0

5
y = 2xe–x

FIGURE 5.1.10. Solutions
y.x/ D c1e

�x C 2xe
�x of

y
00 C 2y

0 C y D 0 with different
values of c1.

The characteristic equation in (18) may have either real or complex roots. The

case of complex roots will be discussed in Section 5.3.

5.1 Problems
In Problems 1 through 16, a homogeneous second-order lin-

ear differential equation, two functions y1 and y2, and a pair

of initial conditions are given. First verify that y1 and y2 are

solutions of the differential equation. Then find a particular

solution of the form y D c1y1 C c2y2 that satisfies the given

initial conditions. Primes denote derivatives with respect to x.

1. y00 � y D 0; y1 D e
x , y2 D e

�x ; y.0/ D 0, y0.0/ D 5

2. y00 � 9y D 0; y1 D e
3x , y2 D e

�3x ; y.0/D�1, y0.0/D 15

3. y00C4y D 0; y1D cos 2x, y2D sin 2x; y.0/D 3, y0.0/D 8

4. y00 C 25y D 0; y1 D cos 5x, y2 D sin 5x; y.0/ D 10,

y0.0/ D �10

5. y00�3y0C2y D 0; y1 D e
x , y2 D e

2x ; y.0/D 1, y0.0/D 0

6. y00 C y0 � 6y D 0; y1 D e2x , y2 D e�3x ; y.0/ D 7,

y0.0/ D �1

7. y00 C y0 D 0; y1 D 1, y2 D e
�x ; y.0/ D �2, y0.0/ D 8

8. y00 � 3y0 D 0; y1 D 1, y2 D e
3x ; y.0/ D 4, y0.0/ D �2

9. y00 C 2y0 C y D 0; y1 D e�x , y2 D xe�x ; y.0/ D 2,

y0.0/ D �1

10. y00 � 10y0 C 25y D 0; y1 D e5x , y2 D xe5x ; y.0/ D 3,

y0.0/ D 13

11. y00�2y0C 2y D 0; y1 D e
x cos x, y2 D e

x sin x; y.0/D 0,

y0.0/ D 5

12. y00C 6y0C 13y D 0; y1 D e
�3x cos 2x, y2 D e

�3x sin 2x;

y.0/ D 2, y0.0/ D 0

13. x2y00 � 2xy0 C 2y D 0; y1 D x, y2 D x2; y.1/ D 3,

y0.1/ D 1

14. x2y00 C 2xy0 � 6y D 0; y1 D x2, y2 D x�3; y.2/ D 10,

y0.2/ D 15

15. x2y00 � xy0 C y D 0; y1 D x, y2 D x ln x; y.1/ D 7,

y0.1/ D 2

16. x2y00 C xy0 C y D 0; y1 D cos.ln x/, y2 D sin.ln x/;

y.1/ D 2, y0.1/ D 3

The following three problems illustrate the fact that the super-

position principle does not generally hold for nonlinear equa-

tions.

17. Show that y D 1=x is a solution of y0 C y2 D 0, but that

if c 6D 0 and c 6D 1, then y D c=x is not a solution.

18. Show that y D x3 is a solution of yy00 D 6x4, but that if

c2 6D 1, then y D cx3 is not a solution.

19. Show that y1 � 1 and y2 D
p
x are solutions of yy00 C

.y0/2 D 0, but that their sum y D y1C y2 is not a solution.

Determine whether the pairs of functions in Problems 20

through 26 are linearly independent or linearly dependent on

the real line.

20. f .x/ D � , g.x/ D cos2 x C sin2 x

21. f .x/ D x3, g.x/ D x2jxj

22. f .x/ D 1C x, g.x/ D 1C jxj

23. f .x/ D xex , g.x/ D jxjex

24. f .x/ D sin2 x, g.x/ D 1 � cos 2x

25. f .x/ D ex sin x, g.x/ D ex cos x

26. f .x/ D 2 cos x C 3 sin x, g.x/ D 3 cos x � 2 sin x

27. Let yp be a particular solution of the nonhomogeneous

equation y00 C py0 C qy D f .x/ and let yc be a solu-

tion of its associated homogeneous equation. Show that

y D yc C yp is a solution of the given nonhomogeneous

equation.

28. With yp D 1 and yc D c1 cos x C c2 sin x in the notation

of Problem 27, find a solution of y00Cy D 1 satisfying the

initial conditions y.0/ D �1 D y0.0/.

Problems 29 through 32 explore the propeties of the Wron-

skian.

29. Show that y1 D x2 and y2 D x3 are two different solu-

tions of x2y00 � 4xy0 C 6y D 0, both satisfying the initial

conditions y.0/ D 0 D y0.0/. Explain why these facts do

not contradict Theorem 2 (with respect to the guaranteed

uniqueness).

30. (a) Show that y1 D x3 and y2 D
ˇ

ˇx3
ˇ

ˇ are linearly inde-

pendent solutions on the real line of the equation x2y00 �

3xy0 C 3y D 0. (b) Verify that W.y1; y2/ is identically

zero. Why do these facts not contradict Theorem 3?
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31. Show that y1 D sin x2 and y2 D cos x2 are linearly in-

dependent functions, but that their Wronskian vanishes at

x D 0. Why does this imply that there is no differential

equation of the form y00 C p.x/y0 C q.x/y D 0, with both

p and q continuous everywhere, having both y1 and y2 as

solutions?

32. Let y1 and y2 be two solutions of A.x/y00 C B.x/y0 C

C.x/y D 0 on an open interval I where A, B , and C

are continuous and A.x/ is never zero. (a) Let W D

W.y1; y2/. Show that

A.x/
dW

dx
D .y1/.Ay

00
2
/ � .y2/.Ay

00
1
/:

Then substitute for Ay00
2

and Ay00
1

from the original differ-

ential equation to show that

A.x/
dW

dx
D �B.x/W.x/:

(b) Solve this first-order equation to deduce Abel’s for-

mula

W.x/ D K exp

�

�

Z

B.x/

A.x/
dx

�

;

where K is a constant. (c) Why does Abel’s formula

imply that the Wronskian W.y1; y2/ is either zero every-

where or nonzero everywhere (as stated in Theorem 3)?

Apply Theorems 5 and 6 to find general solutions of the dif-

ferential equations given in Problems 33 through 42. Primes

denote derivatives with respect to x.

33. y00 � 3y0 C 2y D 0 34. y00 C 2y0 � 15y D 0

35. y00 C 5y0 D 0 36. 2y00 C 3y0 D 0

37. 2y00 � y0 � y D 0 38. 4y00 C 8y0 C 3y D 0

39. 4y00 C 4y0 C y D 0 40. 9y00 � 12y0 C 4y D 0

41. 6y00 � 7y0 � 20y D 0 42. 35y00 � y0 � 12y D 0

Each of Problems 43 through 48 gives a general solution

y.x/ of a homogeneous second-order differential equation

ay00 C by0 C cy D 0 with constant coefficients. Find such an

equation.

43. y.x/ D c1 C c2e
�10x

44. y.x/ D c1e
10x C c2e

�10x

45. y.x/ D c1e
�10x C c2xe

�10x

46. y.x/ D c1e
10x C c2e

100x

47. y.x/ D c1 C c2x

48. y.x/ D ex

�

c1e
x

p
2 C c2e

�x

p
2

�

Problems 49 and 50 deal with the solution curves of y00C3y0C

2y D 0 shown in Figs. 5.1.6 and 5.1.7.

49. Find the highest point on the solution curve with y.0/ D 1

and y0.0/ D 6 in Fig. 5.1.6.

50. Figure 5.1.7 suggests that the solution curves shown all

meet at a common point in the third quadrant. Assum-

ing that this is indeed the case, find the coordinates of that

point.

51. A second-order Euler equation is one of the form

ax2y00
C bxy0

C cy D 0 (22)

where a, b, c are constants. (a) Show that if x > 0, then the

substitution vD ln x transforms Eq. (22) into the constant-

coefficient linear equation

a
d2y

dv2
C .b � a/

dy

dv
C cy D 0 (23)

with independent variable v. (b) If the roots r1 and r2 of

the characteristic equation of Eq. (23) are real and distinct,

conclude that a general solution of the Euler equation in

(22) is y.x/ D c1x
r1 C c2x

r2 .

Make the substitution v D ln x of Problem 51 to find general

solutions (for x > 0) of the Euler equations in Problems 52–56.

52. x2y00 C xy0 � y D 0 53. x2y00 C 2xy0 � 12y D 0

54. 4x2y00 C 8xy0 � 3y D 0 55. x2y00 C xy0 D 0

56. x2y00 � 3xy0 C 4y D 0

Go to goo.gl/jRVUO1 to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

5.1 Application Plotting Second-Order Solution Families

This application deals with the plotting by computer of families of solutions such as

those illustrated in Figs. 5.1.6 and 5.1.7. Show first that the general solution of the

differential equation

y00
C 3y0

C 2y D 0 (1)

is

y.x/ D c1e
�x
C c2e

�2x : (2)

This is equivalent to the graphing calculator result shown in Figure 5.1.11, and to

the WolframjAlpha output generated by the simple query

y’’ + 3y’ + 2y = 0
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Next show that the particular solution of Eq. (1) satisfying y.0/D a, y0.0/D b

FIGURE 5.1.11. TI-Nspire CX CAS
screen showing the general solution of

y
00 C 3y

0 C 2y D 0.

corresponds to c1 D 2aC b and c2 D �a � b, that is

y.x/ D .2aC b/e�x
� .aC b/e�2x : (3)

For Fig. 5.1.6, we fix a D 1, leading to the particular solution

y.x/ D .b C 2/e�x
� .b C 1/e�2x : (4)

The MATLAB loop

x = -- 1 : 0.02 : 5 % x-vector from x = -- 1 to x = 5

for b = --6 : 2 : 6 % for b = --6 to 6 with db = 2 do

y = (b + 2)*exp(--x) -- (b + 1)*exp(--2*x);

plot(x,y)

end

was used to generate Fig. 5.1.6.

For Fig. 5.1.7, we instead fix b D 1, leading to the particular solution

y.x/ D .2aC 1/e�x
� .aC 1/e�2x : (5)

The MATLAB loop

x = --2 : 0.02 : 4 % x-vector from x = --2 to x = 4

for a = --3 : 1 : 3 % for a = --3 to 3 with da = 1 do

y = (2*a + 1)*exp(--x) -- (a + 1)*exp(--2*x);

plot(x,y)

end

was used to generate Fig. 5.1.7.

Computer systems, such as Maple and Mathematica, as well as graphing

calculators, have commands to carry out for-loops such as the two shown here.

−1 0 1 2 3 4 5
−5

−4

−3

−2

−1
0

1

2

3

4

5

a = 2 b = 1

x

y

FIGURE 5.1.12. MATLAB graph of
Eq. (3) with a D 2 and b D 1. Using
the sliders, a and b can be changed
interactively.

Moreover, such systems often allow for interactive investigation, in which the so-

lution curve is immediately redrawn in response to on-screen input. For example,

Fig. 5.1.12 was generated using MATLAB’s uicontrol command; moving the slid-

ers allows the user to experiment with various combinations of the initial conditions

y.0/ D a and y0.0/ D b.

The Mathematica command

Manipulate[

Plot[(2*a+b)*Exp[--x]+(--b--a)*Exp[--2*x],

{x,--1,5}, PlotRange --> {--5,5}],

{a,--3,3}, {b,--6,6}]

produces a similar display, as does the Maple command

Explore(plot((2*a+b)*exp(--x)+(--b--a)*exp(--2*x),

x = --1..5, y=--5..5))

(after first bringing up a dialog box in which the ranges of values for a and b are

specified). Likewise some graphing calculators feature a touchpad or other screen

navigation method allowing the user to vary specified parameters in real time (see

FIGURE 5.1.13. TI-Nspire CX CAS
graph of Eq. (3) with a D 2 and
b D 1. The arrows allow a and b to be
changed interactively.

Fig. 5.1.13).

Begin by either reproducing Figs. 5.1.6 and 5.1.7 or by creating an interactive

display that shows the graph of (3) for any desired combination of a and b. Then,

for each of the following differential equations, modify your commands to examine

the family of solution curves satisfying y.0/ D 1, as well as the family of solution

curves satisfying the initial condition y0.0/ D 1.
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1. y00 � y D 0

2. y00 � 3y0 C 2y D 0

3. 2y00 C 3y0 C y D 0

4. y00 C y D 0 (see Example 1)

5. y00 C 2y0 C 2y D 0, which has general solution y.x/ D e�x.c1 cos x C c2 sin x/

5.2 General Solutions of Linear Equations

We now show that our discussion in Section 5.1 of second-order linear equations

generalizes in a very natural way to the general nth-order linear differential equa-

tion of the form

P0.x/y
.n/
C P1.x/y

.n�1/
C � � � C Pn�1.x/y

0
C Pn.x/y D F.x/: (1)

Unless otherwise noted, we will always assume that the coefficient functions Pi .x/

and F.x/ are continuous on some open interval I (perhaps unbounded) where we

wish to solve the equation. Under the additional assumption that P0.x/ ¤ 0 at each

point of I, we can divide each term in Eq. (1) by P0.x/ to obtain an equation with

leading coefficient 1, of the form

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D f .x/: (2)

The homogeneous linear equation associated with Eq. (2) is

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D 0: (3)

Just as in the second-order case, a homogeneous nth-order linear differential equa-

tion has the valuable property that any superposition, or linear combination, of so-

lutions of the equation is again a solution. The proof of the following theorem is

essentially the same—a routine verification—as that of Theorem 1 of Section 5.1.

THEOREM 1 Principle of Superposition for Homogeneous
Equations

Let y1, y2, : : : ; yn be n solutions of the homogeneous linear equation in (3) on

the interval I. If c1, c2, : : : ; cn are constants, then the linear combination

y D c1y1 C c2y2 C � � � C cnyn (4)

is also a solution of Eq. (3) on I.

Example 1 It is easy to verify that the three functions

y1.x/ D e
�3x ; y2.x/ D cos 2x; and y3.x/ D sin 2x

are all solutions of the homogeneous third-order equation

y.3/
C 3y00

C 4y0
C 12y D 0

on the entire real line. Theorem 1 tells us that any linear combination of these solutions, such

as

y.x/ D �3y1.x/C 3y2.x/ � 2y3.x/ D �3e
�3x
C 3 cos 2x � 2 sin 2x;
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is also a solution on the entire real line. We will see that, conversely, every solution of the

differential equation of this example is a linear combination of the three particular solutions

y1, y2, and y3. Thus a general solution is given by

y.x/ D c1e
�3x
C c2 cos 2x C c3 sin 2x:

Existence and Uniqueness of Solutions

We saw in Section 5.1 that a particular solution of a second-order linear differential

equation is determined by two initial conditions. Similarly, a particular solution of

an nth-order linear differential equation is determined by n initial conditions. The

following theorem, proved in the Appendix, is the natural generalization of Theorem

2 of Section 5.1.

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p1, p2, : : : ; pn, and f are continuous on the open

interval I containing the point a. Then, given n numbers b0, b1, : : : ; bn�1, the

nth-order linear equation (Eq. (2))

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D f .x/

has a unique (that is, one and only one) solution on the entire interval I that

satisfies the n initial conditions

y.a/ D b0; y0.a/ D b1; : : : ; y.n�1/.a/ D bn�1: (5)

Equation (2) and the conditions in (5) constitute an nth-order initial value

problem. Theorem 2 tells us that any such initial value problem has a unique so-

lution on the whole interval I where the coefficient functions in (2) are continuous.

It tells us nothing, however, about how to find this solution. In Section 5.3 we will

see how to construct explicit solutions of initial value problems in the constant-

coefficient case that occurs often in applications.

Example 1 Continued We saw earlier that

y.x/ D �3e�3x
C 3 cos 2x � 2 sin 2x

is a solution of

0 2 4 6 8 10
x

y

–6

–4

–2

0

2

4

6

FIGURE 5.2.1. The particular
solution y.x/ D
�3e

�3x C 3 cos 2x � 2 sin 2x.

y.3/
C 3y00

C 4y0
C 12y D 0

on the entire real line. This particular solution has initial values y.0/ D 0, y0.0/ D 5, and

y00.0/ D �39, and Theorem 2 implies that there is no other solution with these same initial

values. Note that its graph (in Fig. 5.2.1) looks periodic on the right. Indeed, because of the

negative exponent, we see that y.x/ � 3 cos 2x � 2 sin 2x for large positive x.

Remark Because its general solution involves the three arbitrary constants c1, c2, and c3,

the third-order equation in Example 1 has a “threefold infinity” of solutions, including three

families of especially simple solutions:

� y.x/ D c1e
�3x (obtained from the general solution with c2 D c3 D 0),

� y.x/ D c2 cos 2x (with c1 D c3 D 0), and

� y.x/ D c3 sin 2x (with c1 D c2 D 0).

Alternatively, Theorem 2 suggests a threefold infinity of particular solutions corresponding

to independent choices of the three initial values y.0/ D b0, y0.0/ D b1, and y00.0/ D b2.

Figures 5.2.2 through 5.2.4 illustrate three corresponding families of solutions—for each of

which, two of these three initial values are zero.
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y (0) = 3

y (0) = –3
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–1

FIGURE 5.2.2. Solutions of
y

.3/ C 3y
00 C 4y

0 C 12y D 0 with
y

0
.0/ D y

00
.0/ D 0 but with different

values for y.0/.

x

y'(0) = 3

y'(0) = –3
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FIGURE 5.2.3. Solutions of
y

.3/ C 3y
00 C 4y

0 C 12y D 0 with
y.0/ D y

00
.0/ D 0 but with different

values for y
0
.0/.

y" (0) = 3

y" (0) = –3

510 32 4
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FIGURE 5.2.4. Solutions of
y

.3/ C 3y
00 C 4y

0 C 12y D 0 with
y.0/ D y

0
.0/ D 0 but with different

values for y
00

.0/.

Note that Theorem 2 implies that the trivial solution y.x/ � 0 is the only

solution of the homogeneous equation

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D 0 (3)

that satisfies the trivial initial conditions

y.a/ D y0.a/ D � � � D y.n�1/.a/ D 0:

Example 2 It is easy to verify that

y1.x/ D x
2 and y2.x/ D x

3

are two different solutions of

x2y00
� 4xy0

C 6y D 0;

and that both satisfy the initial conditions y.0/ D y0.0/ D 0. Why does this not contradict

the uniqueness part of Theorem 2? It is because the leading coefficient in this differential

equation vanishes at x D 0, so this equation cannot be written in the form of Eq. (3) with

coefficient functions continuous on an open interval containing the point x D 0.

Linearly Independent Solutions

On the basis of our knowledge of general solutions of second-order linear equations,

we anticipate that a general solution of the homogeneous nth-order linear equation

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D 0 (3)

will be a linear combination

y D c1y1 C c2y2 C � � � C cnyn; (4)

where y1, y2, : : : ; yn are particular solutions of Eq. (3). But these n particular

solutions must be “sufficiently independent” that we can always choose the coef-

ficients c1, c2, : : : ; cn in (4) to satisfy arbitrary initial conditions of the form in

(5). The question is this: What should be meant by independence of three or more

functions?
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Recall that two functions f1 and f2 are linearly dependent if one is a constant

multiple of the other; that is, if either f1 D kf2 or f2 D kf1 for some constant k. If

we write these equations as

.1/f1 C .�k/f2 D 0 or .k/f1 C .�1/f2 D 0;

we see that the linear dependence of f1 and f2 implies that there exist two constants

c1 and c2 not both zero such that

c1f1 C c2f2 D 0: (6)

Conversely, if c1 and c2 are not both zero, then Eq. (6) certainly implies that f1 and

f2 are linearly dependent.

In analogy with Eq. (6), we say that n functions f1, f2, : : : ; fn are linearly

dependent provided that some nontrivial linear combination

c1f1 C c2f2 C � � � C cnfn

of them vanishes identically; nontrivial means that not all of the coefficients c1, c2,

: : : ; cn are zero (although some of them may be zero).

DEFINITION Linear Dependence of Functions

The n functions f1, f2, : : : ; fn are said to be linearly dependent on the interval

I provided that there exist constants c1, c2, : : : ; cn not all zero such that

c1f1 C c2f2 C � � � C cnfn D 0 (7)

on I; that is,

c1f1.x/C c2f2.x/C � � � C cnfn.x/ D 0

for all x in I.

Thus linear dependence of functions on an interval I is precisely analogous to

linear dependence of ordinary vectors (Section 4.3).

If not all the coefficients in Eq. (7) are zero, then clearly we can solve for at

least one of the functions as a linear combination of the others, and conversely. Thus

the functions f1, f2, : : : ; fn are linearly dependent if and only if at least one of them

is a linear combination of the others.

Example 3 The functions

f1.x/ D sin 2x; f2.x/ D sin x cos x; and f3.x/ D e
x

are linearly dependent on the real line because

.1/f1 C .�2/f2 C .0/f3 D 0

(by the familiar trigonometric identity sin 2x D 2 sin x cos x).

The n functions f1, f2, : : : ; fn are called linearly independent on the interval

I provided that they are not linearly dependent there. Equivalently, they are linearly

independent on I provided that the identity

c1f1 C c2f2 C � � � C cnfn D 0 (7)
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holds on I only in the trivial case

c1 D c2 D � � � D cn D 0I

that is, no nontrivial linear combination of these functions vanishes on I. Put yet

another way, the functions f1, f2, : : : ; fn are linearly independent if no one of them

is a linear combination of the others. (Why?)

Sometimes one can show that n given functions are linearly dependent by

finding, as in Example 3, nontrivial values of the coefficients so that Eq. (7) holds.

But in order to show that n given functions are linearly independent, we must prove

that nontrivial values of the coefficients cannot be found, and this is seldom easy to

do in any direct or obvious manner.

Fortunately, in the case of n solutions of a homogeneous nth-order linear equa-

tion, there is a tool that makes the determination of their linear dependence or inde-

pendence a routine matter in many examples. This tool is the Wronskian determi-

nant, which we introduced (for the case n D 2) in Section 5.1. Suppose that the n

functions f1, f2, : : : ; fn are each n� 1 times differentiable. Then their Wronskian

is the n � n determinant

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2 � � � fn

f 0
1

f 0
2

� � � f 0
n

:::
:::

:::

f
.n�1/

1
f

.n�1/

2
� � � f

.n�1/

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (8)

We write W.f1; f2; : : : ; fn/ or W.x/, depending on whether we wish to emphasize

the functions or the point x at which their Wronskian is to be evaluated. The Wron-

skian is named after the Polish mathematician J. M. H. Wronski (1778–1853).

We saw in Section 5.1 that the Wronskian of two linearly dependent functions

vanishes identically. More generally, the Wronskian of n linearly dependent func-

tions f1, f2, : : : ; fn is identically zero. To prove this, assume that Eq. (7) holds on

the interval I for some choice of the constants c1, c2, : : : ; cn not all zero. We then

differentiate this equation n � 1 times in succession, obtaining the n equations

c1f1.x/C c2f2.x/ C � � �C cnfn.x/ D 0;

c1f
0

1
.x/C c2f

0
2
.x/ C � � �C cnf

0
n
.x/ D 0;

:::

c1f
.n�1/

1
.x/C c2f

.n�1/

2
.x/ C � � �C cnf

.n�1/

n .x/ D 0;

(9)

which hold for all x in I. We recall from Theorem 7 in Section 3.5 that a homo-

geneous n � n linear system of equations has a nontrivial solution if and only if

its coefficient matrix is not invertible, which by Theorem 2 in Section 3.6 is so if

and only if the coefficient determinant vanishes. In Eq. (9) the unknowns are the

constants c1, c2, : : :, cn and the determinant of coefficients is simply the Wronskian

W.f1; f2; : : : ; fn/ evaluated at the typical point x of I. Because we know that the ci

are not all zero, it follows that W.x/ � 0, as we wanted to prove.

Therefore, to show that the functions f1, f2, : : : ; fn are linearly independent

on the interval I, it suffices to show that their Wronskian is nonzero at just one point

of I.
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Example 4 Show that the functions y1.x/ D e�3x , y2.x/ D cos 2x, and y3.x/ D sin 2x (of Example 1)

are linearly independent.

Solution Their Wronskian is

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e�3x cos 2x sin 2x

�3e�3x �2 sin 2x 2 cos 2x

9e�3x �4 cos 2x �4 sin 2x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D e�3x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�2 sin 2x 2 cos 2x

�4 cos 2x �4 sin 2x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C 3e�3x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos 2x sin 2x

�4 cos 2x �4 sin 2x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C 9e�3x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos 2x sin 2x

�2 sin 2x 2 cos 2x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 26e�3x
6D 0:

Because W ¤ 0 everywhere, it follows that y1, y2, and y3 are linearly independent on any

open interval (including the entire real line).

Example 5 Show first that the three solutions

y1.x/ D x; y2.x/ D x ln x; and y3.x/ D x
2

of the third-order equation

x3y.3/
� x2y00

C 2xy0
� 2y D 0 (10)

are linearly independent on the open interval x > 0. Then find a particular solution of Eq. (10)

that satisfies the initial conditions

y.1/ D 3; y0.1/ D 2; y00.1/ D 1: (11)

Solution Note that for x > 0, we could divide each term in (10) by x3 to obtain a homogeneous linear

equation of the standard form in (3). When we compute the Wronskian of the three given

solutions, we find that

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x x ln x x2

1 1C ln x 2x

0
1

x
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D x:

Thus W.x/ ¤ 0 for x > 0, so y1, y2, and y3 are linearly independent on the interval x > 0.

To find the desired particular solution, we impose the initial conditions in (11) on

y.x/ D c1x C c2x ln x C c3x
2;

y0.x/ D c1 C c2.1C ln x/ C 2c3x;

y00.x/ D 0 C
c2

x
C 2c3:

This yields the simultaneous equations

y.1/ D c1 C c3 D 3;

y0.1/ D c1 C c2 C 2c3 D 2;

y00.1/ D c2 C 2c3 D 1I

we solve to find c1 D 1, c2 D �3, and c3 D 2. Thus the particular solution in question is

y.x/ D x � 3x ln x C 2x2:
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Provided that W.y1; y2; : : : ; yn/ ¤ 0, it turns out (Theorem 4) that we can

always find values of the coefficients in the linear combination

y D c1y1 C c2y2 C � � � C cnyn

that satisfy any given initial conditions of the form in (5). Theorem 3 provides the

necessary nonvanishing of W in the case of linearly independent solutions.

THEOREM 3 Wronskians of Solutions

Suppose that y1, y2, : : : ; yn are n solutions of the homogeneous nth-order linear

equation

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D 0 (3)

on an open interval I, where each pi is continuous. Let

W D W.y1; y2; : : : ; yn/:

(a) If y1, y2, : : : ; yn are linearly dependent, then W � 0 on I.

(b) If y1, y2, : : : ; yn are linearly independent, then W ¤ 0 at each point of I.

Thus there are just two possibilities: Either W D 0 everywhere on I, or W ¤ 0

everywhere on I.

Proof: We have already proven part (a). To prove part (b), it is sufficient

to assume that W.a/ D 0 at some point of I, and show this implies that the solu-

tions y1, y2, : : : ; yn are linearly dependent. But W.a/ is simply the determinant of

coefficients of the system of n homogeneous linear equations

c1y1.a/ C c2y2.a/ C � � � C cnyn.a/ D 0,

c1y
0
1
.a/ C c2y

0
2
.a/ C � � � C cny

0
n
.a/ D 0,

:::

c1y
.n�1/

1
.a/ C c2y

.n�1/

2
.a/ C � � � C cny

.n�1/

n .a/ D 0

(12)

in the n unknowns c1, c2, : : : ; cn. Because W.a/ D 0, the basic fact from linear

algebra quoted just after (9) implies that the equations in (12) have a nontrivial

solution. That is, the numbers c1, c2, : : : ; cn are not all zero.

We now use these values to define the particular solution

Y.x/ D c1y1.x/C c2y2.x/C � � � C cnyn.x/ (13)

of Eq. (3). The equations in (12) then imply that Y satisfies the trivial initial

conditions

Y.a/ D Y 0.a/ D � � � D Y .n�1/.a/ D 0:

Theorem 2 (uniqueness) therefore implies that Y.x/ � 0 on I. In view of (13)

and the fact that c1, c2, : : : ; cn are not all zero, this is the desired conclusion that

the solutions y1, y2, : : : ; yn are linearly dependent. This completes the proof of

Theorem 3.
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Remark According to Problem 35, the Wronskian of Theorem 3 satisfies the first-order

equation W 0 D �p1.x/W . Solution of this equation yields Abel’s formula

W.x/ D K exp

�

�

Z

p1.x/ dx

�

for the homogeneous linear equation in (3). According as the constant K D 0 or K 6D 0, it

follows immediately from Abel’s formula that eitherW vanishes everywhere orW is nonzero

everywhere.

General Solutions

We can now show that, given any fixed set of n linearly independent solutions of

a homogeneous nth-order equation, every (other) solution of the equation can be

expressed as a linear combination of those n particular solutions. Using the fact

from Theorem 3 that the Wronskian of n linearly independent solutions is nonzero,

the proof of the following theorem is essentially the same as the proof of Theorem

4 of Section 5.1 (the case n D 2).

THEOREM 4 General Solutions of Homogeneous Equations

Let y1, y2, : : : ; yn be n linearly independent solutions of the homogeneous equa-

tion

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D 0 (3)

on an open interval I where the pi are continuous. If Y is any solution whatso-

ever of Eq. (3), then there exist numbers c1, c2, : : : ; cn such that

Y.x/ D c1y1.x/C c2y2.x/C � � � C cnyn.x/

for all x in I.

Remark Theorem 4 tells us that, once we have found n linearly independent solutions

y1; y2; : : : ; yn of the nth-order homogeneous linear equation in (3), we really have found

all of its solutions. For then the solution space S of the equation is an n-dimensional vector

space with basis fy1; y2; : : : ; yng. Because every solution of (3) can be expressed as a linear

combination of the form

y D c1y1 C c2y2 C � � � C cnyn; (14)

we call such a linear combination of n linearly independent particular solutions a general

solution of the homogeneous linear differential equation.

Example 6 According to Example 4, the particular solutions y1.x/D e
�3x , y2.x/D cos 2x, and y3.x/D

sin 2x of the linear differential equation y.3/C 3y00C 4y0C 12y D 0 are linearly independent.

Now Theorem 2 says that—given b0, b1, and b2—there exists a particular solution y.x/

satisfying the initial conditions y.0/ D b0, y0.0/ D b1, and y00.0/ D b2. Hence Theorem 4

implies that this particular solution is a linear combination of y1, y2, and y3. That is, there

exist coefficients c1, c2, and c3 such that

y.x/ D c1e
�3x
C c2 cos 2x C c3 sin 2x:

Upon successive differentiation and substitution of x D 0, we discover that to find these

coefficients, we need only solve the three linear equations

c1 C c2 D b0,

�3c1 C 2c3 D b1,

9c1 � 4c2 D b2.

(See the application for this section.)
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Nonhomogeneous Equations

We now consider the nonhomogeneous nth-order linear differential equation

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D f .x/ (2)

with associated homogeneous equation

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D 0: (3)

Suppose that a single fixed particular solution yp of the nonhomogeneous

equation in (2) is known, and that Y is any other solution of Eq. (2). If yc D Y � yp ,

then subsitution of yc in the differential equation gives (using the linearity of differ-

entiation)

y.n/

c
C p1y

.n�1/

c
C � � � C pn�1y

0
c
C pnyc

D

h

.Y .n/
C p1Y

.n�1/
C � � � C pn�1Y

0
C pnY

i

�

h

.y.n/

p
C p1y

.n�1/

p
C � � � C pn�1y

0
p
C pnyp

i

D f .x/ � f .x/ D 0:

Thus yc D Y �yp is a solution of the associated homogeneous equation in (3). Then

Y D yc C yp; (14)

and it follows from Theorem 4 that

yc D c1y1 C c2y2 C � � � C cnyn; (15)

where y1, y2, : : : ; yn are linearly independent solutions of the associated homo-

geneous equation. We call yc a complementary function of the nonhomogeneous

equation and have thus proved that a general solution of the nonhomogeneous equa-

tion in (2) is the sum of its complementary function yc and a single particular solu-

tion yp of Eq. (2).

THEOREM 5 Solutions of Nonhomogeneous Equations

Let yp be a particular solution of the nonhomogeneous equation in (2) on an open

interval I where the functions pi and f are continuous. Let y1, y2, : : : ; yn be

linearly independent solutions of the associated homogeneous equation in (3). If

Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c1, c2, : : : ;

cn such that

Y.x/ D c1y1.x/C c2y2.x/C � � � C cnyn.x/C yp.x/ (16)

for all x in I.

Example 7 It is evident that yp D 3x is a particular solution of the equation

y00
C 4y D 12x; (17)

and that yc.x/ D c1 cos 2x C c2 sin 2x is its complementary solution. Find a solution of

Eq. (17) that satisfies the initial conditions y.0/ D 5, y0.0/ D 7.
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Solution The general solution of Eq. (17) is

y.x/ D c1 cos 2x C c2 sin 2x C 3x:

Now

y0.x/ D �2c1 sin 2x C 2c2 cos 2x C 3:

Hence the initial conditions give

y.0/ D c1 D 5;

y0.0/ D 2c2 C 3 D 7:

We find that c1 D 5 and c2 D 2. Thus the desired solution is

y.x/ D 5 cos 2x C 2 sin 2x C 3x:

5.2 Problems
In Problems 1 through 6, show directly that the given functions

are linearly dependent on the real line. That is, find a non-

trivial linear combination of the given functions that vanishes

identically.

1. f .x/ D 2x, g.x/ D 3x2, h.x/ D 5x � 8x2

2. f .x/ D 5, g.x/ D 2 � 3x2, h.x/ D 10C 15x2

3. f .x/ D 0, g.x/ D sin x, h.x/ D ex

4. f .x/ D 17, g.x/ D 2 sin2 x, h.x/ D 3 cos2 x

5. f .x/ D 17, g.x/ D cos2 x, h.x/ D cos 2x

6. f .x/ D ex , g.x/ D cosh x, h.x/ D sinh x

In Problems 7 through 12, use the Wronskian to prove that the

given functions are linearly independent on the indicated in-

terval.

7. f .x/ D 1, g.x/ D x, h.x/ D x2; the real line

8. f .x/ D ex , g.x/ D e2x , h.x/ D e3x ; the real line

9. f .x/ D ex , g.x/ D cos x, h.x/ D sin x; the real line

10. f .x/ D ex , g.x/ D x�2, h.x/ D x�2 ln x; x > 0

11. f .x/ D x, g.x/ D xex , h.x/ D x2ex ; the real line

12. f .x/ D x, g.x/ D cos.ln x/, h.x/ D sin.ln x/; x > 0

In Problems 13 through 20, a third-order homogeneous linear

equation and three linearly independent solutions are given.

Find a particular solution satisfying the given initial condi-

tions.

13. y.3/C 2y00 � y0 � 2y D 0; y.0/D 1, y0.0/D 2, y00.0/D 0;

y1 D e
x , y2 D e

�x , y3 D e
�2x

14. y.3/�6y00C11y0�6yD 0; y.0/D 0, y0.0/D 0, y00.0/D 3;

y1 D e
x , y2 D e

2x , y3 D e
3x

15. y.3/ � 3y00C 3y0 � y D 0; y.0/D 2, y0.0/D 0, y00.0/D 0;

y1 D e
x , y2 D xe

x , y3 D x
2ex

16. y.3/� 5y00C 8y0� 4y D 0; y.0/D 1, y0.0/D 4, y00.0/D 0;

y1 D e
x , y2 D e

2x , y3 D xe
2x

17. y.3/ C 9y0 D 0; y.0/ D 3, y0.0/ D �1, y00.0/ D 2; y1 D 1,

y2 D cos 3x, y3 D sin 3x

18. y.3/� 3y00C 4y0� 2y D 0; y.0/D 1, y0.0/D 0, y00.0/D 0;

y1 D e
x , y2 D e

x cos x, y3 D e
x sin x.

19. x3y.3/ � 3x2y00 C 6xy0 � 6y D 0; y.1/ D 6, y0.1/ D 14,

y00.1/ D 22; y1 D x, y2 D x
2, y3 D x

3

20. x3y.3/ C 6x2y00 C 4xy0 � 4y D 0; y.1/ D 1, y0.1/ D 5,

y00.1/ D �11; y1 D x, y2 D x
�2, y3 D x

�2 ln x

In Problems 21 through 24, a nonhomogeneous differential

equation, a complementary solution yc , and a particular so-

lution yp are given. Find a solution satisfying the given initial

conditions.

21. y00 C y D 3x; y.0/ D 2, y0.0/ D �2;

yc D c1 cos x C c2 sin x; yp D 3x

22. y00 � 4y D 12; y.0/ D 0, y0.0/ D 10;

yc D c1e
2x C c2e

�2x ; yp D �3

23. y00 � 2y0 � 3y D 6; y.0/ D 3, y0.0/ D 11;

yc D c1e
�x C c2e

3x ; yp D �2

24. y00 � 2y0 C 2y D 2x; y.0/ D 4, y0.0/ D 8;

yc D c1e
x cos x C c2e

x sin x; yp D x C 1

25. Let Ly D y00 C py0 C qy. Suppose that y1 and y2 are two

functions such that

Ly1 D f .x/ and Ly2 D g.x/:

Show that their sum y D y1 C y2 satisfies the nonhomo-

geneous equation Ly D f .x/C g.x/.

26. (a) Find by inspection particular solutions of the two non-

homogeneous equations

y00
C 2y D 4 and y00

C 2y D 6x:

(b) Use the method of Problem 25 to find a particular so-

lution of the differential equation y00 C 2y D 6x C 4.

27. Prove directly that the functions

f1.x/ � 1; f2.x/ D x; and f3.x/ D x
2

are linearly independent on the whole real line. (Sugges-

tion: Assume that c1C c2xC c3x
2 D 0. Differentiate this

equation twice, and conclude from the equations you get

that c1 D c2 D c3 D 0.)
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28. Generalize the method of Problem 27 to prove directly that

the functions

f0.x/ � 1; f1.x/ D x; f2.x/ D x
2; : : : ; fn.x/ D x

n

are linearly independent on the real line.

29. Use the result of Problem 28 and the definition of linear

independence to prove directly that, for any constant r , the

functions

f0.x/ D e
rx ; f1.x/ D xe

rx ; : : : ; fn.x/ D x
nerx

are linearly independent on the whole real line.

30. Verify that y1 D x and y2 D x2 are linearly independent

solutions on the entire real line of the equation

x2y00
� 2xy0

C 2y D 0;

but that W.x; x2/ vanishes at x D 0. Why do these obser-

vations not contradict part (b) of Theorem 3?

31. This problem indicates why we can impose only n initial

conditions on a solution of an nth-order linear differential

equation. (a) Given the equation

y00
C py0

C qy D 0;

explain why the value of y00.a/ is determined by the values

of y.a/ and y0.a/. (b) Prove that the equation

y00
� 2y0

� 5y D 0

has a solution satisfying the conditions

y.0/ D 1; y0.0/ D 0; and y00.0/ D C

if and only if C D 5.

32. Prove that an nth-order homogeneous linear differential

equation satisfying the hypotheses of Theorem 2 has n lin-

early independent solutions y1; y2; : : : ; yn. (Suggestion:

Let yi be the unique solution such that

y
.i�1/

i
.a/ D 1 and y

.k/

i
.a/ D 0 if k 6D i � 1./

33. Suppose that the three numbers r1, r2, and r3 are dis-

tinct. Show that the three functions exp.r1x/, exp.r2x/,

and exp.r3x/ are linearly independent by showing that

their Wronskian

W D expŒ.r1 C r2 C r3/x� �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

r1 r2 r3

r2

1
r2

2
r2

3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

is nonzero for all x.

34. Assume as known that the Vandermonde determinant

V D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 � � � 1

r1 r2 � � � rn

r2

1
r2

2
� � � r2

n

:::
:::

:::

rn�1

1
rn�1

2
� � � rn�1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

is nonzero if the numbers r1; r2; : : : ; rn are distinct. Prove

by the method of Problem 33 that the functions

fi .x/ D exp.rix/; 1 5 i 5 n

are linearly independent.

35. According to Problem 32 of Section 5.1, the Wronskian

W.y1; y2/ of two solutions of the second-order equation

y00
C p1.x/y

0
C p2.x/y D 0

is given by Abel’s formula

W.x/ D K exp

�

�

Z

p1.x/ dx

�

for some constant K. It can be shown that the Wronskian

of n solutions y1; y2; : : : ; yn of the nth-order equation

y.n/
C p1.x/y

.n�1/
C � � � C pn�1.x/y

0
C pn.x/y D 0

satisfies the same identity. Prove this for the case n D 3

as follows: (a) The derivative of a determinant of func-

tions is the sum of the determinants obtained by separately

differentiating the rows of the original determinant. Con-

clude that

W 0
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2 y3

y0
1

y0
2

y0
3

y
.3/

1
y

.3/

2
y

.3/

3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(b) Substitute for y
.3/

1
, y

.3/

2
, and y

.3/

3
from the equation

y.3/
C p1y

00
C p2y

0
C p3y D 0;

and then show that W 0 D �p1W . Integration now gives

Abel’s formula.

36. Suppose that one solution y1.x/ of the homogeneous

second-order linear differential equation

y00
C p.x/y0

C q.x/y D 0 (18)

is known (on an interval I where p and q are continuous

functions). The method of reduction of order consists

of substituting y2.x/ D v.x/y1.x/ in (18) and attempting

to determine the function v.x/ so that y2.x/ is a second

linearly independent solution of (18). After substituting

y D v.x/y1.x/ in Eq. (18), use the fact that y1.x/ is a

solution to deduce that

y1v
00
C .2y0

1
C py1/v

0
D 0: (19)

If y1.x/ is known, then (19) is a separable equation that

is readily solved for the derivative v0.x/ of v.x/. Integra-

tion of v0.x/ then gives the desired (nonconstant) function

v.x/.
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37. Before applying Eq. (19) with a given homogeneous

second-order linear differential equation and a known so-

lution y1.x/, the equation must first be written in the form

of (18) with leading coefficient 1 in order to correctly

determine the coefficient function p.x/. Frequently it is

more convenient to simply substitute y D v.x/y1.x/ in

the given differential equation and then proceed directly

to find v.x/. Thus, starting with the readily verified solu-

tion y1.x/ D x
3 of the equation

x2y00
� 5xy0

C 9y D 0 .x > 0/;

substitute y D vx3 and deduce that xv00 C v0 D 0. Thence

solve for v.x/ D C ln x, and thereby obtain (with C D 1)

the second solution y2.x/ D x
3 ln x.

In each of Problems 38 through 42, a differential equation and

one solution y1 are given. Use the method of reduction of or-

der as in Problem 37 to find a second linearly independent

solution y2.

38. x2y00 C xy0 � 9y D 0 .x > 0/; y1.x/ D x
3

39. 4y00 � 4y0 C y D 0; y1.x/ D e
x=2

40. x2y00 � x.x C 2/y0 C .x C 2/y D 0 .x > 0/; y1.x/ D x

41. .x C 1/y00 � .x C 2/y0 C y D 0 .x > �1/; y1.x/ D e
x

42. .1 � x2/y00 C 2xy0 � 2y D 0 .�1 < x < 1/; y1.x/ D x

43. First note that y1.x/ D x is one solution of Legendre’s

equation of order 1,

.1 � x2/y00
� 2xy0

C 2y D 0:

Then use the method of reduction of order to derive the

second solution

y2.x/ D 1 �
x

2
ln
1C x

1 � x
(for �1 < x < 1).

44. First verify by substitution that y1.x/D x
�1=2 cos x is one

solution (for x > 0) of Bessel’s equation of order 1

2
,

x2y00
C xy0

C .x2
�

1

4
/y D 0:

Then derive by reduction of order the second solution

y2.x/ D x
�1=2 sin x.

Go to goo.gl/rj9zB2 to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

5.2 Application Plotting Third-Order Solution Families

This application deals with the plotting by computer of families of solutions such

as those illustrated in Figs. 5.2.2 through 5.2.4. We know from Example 6 that the

general solution of

y.3/
C 3y00

C 4y0
C 12y D 0 (1)

is

y.x/ D c1e
�3x
C c2 cos 2x C c3 sin 2x: (2)

For Fig. 5.2.2, use the method of Example 6 to show that the particular solution

of Eq. (1) satisfying the initial conditions y.0/D a, y0.0/D 0, and y00.0/D 0 is given

by

y.x/ D
a

13

�

4e�3x
C 9 cos 2x C 6 sin 2x

�

: (3)

The MATLAB loop

x = --1.5 : 0.02 : 5 % x-vector from x = --1.5 to x = 5

for a = --3 : 1 : 3 % for a = --3 to 3 with da = 1 do

c1 = 4*a/13;

c2 = 9*a/13;

c3 = 6*a/13;

y = c1*exp(--3*x) + c2*cos(2*x) + c3*sin(2*x);

plot(x,y)

end

was used to generate Fig. 5.2.2.
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For Fig. 5.2.3, show that the particular solution of Eq. (1) satisfying the initial

conditions y.0/ D 0, y0.0/ D b, and y00.0/ D 0 is given by

y.x/ D
b

2
sin 2x; (4)

and alter the preceding for-loop accordingly.

For Fig. 5.2.4, show that the particular solution of Eq. (1) satisfying the initial

conditions y.0/ D 0, y0.0/ D 0, and y00.0/ D c is given by

y.x/ D
c

26

�

2e�3x
� 2 cos 2x C 3 sin 2x

�

: (5)

Computer algebra systems such as Maple and Mathematica, as well as graph-

ing calculators, have commands to carry out for-loops such as the one shown here.

Begin by reproducing Figs. 5.2.2 through 5.2.4. Then plot similar families of solu-

tion curves for the differential equations in Problems 13 through 20.

5.3 Homogeneous Equations with Constant Coefficients

In Section 5.2 we saw that a general solution of an nth-order homogeneous linear

equation is a linear combination of n linearly independent particular solutions, but

we said little about how actually to find even a single solution. The solution of a

linear differential equation with variable coefficients ordinarily requires numerical

methods (Chapter 2) or infinite series methods (Chapter 8). But we can now show

how to find, explicitly and in a rather straightforward way, n linearly independent

solutions of a given nth-order linear equation if it has constant coefficients. The

general such equation may be written in the form

any
.n/
C an�1y

.n�1/
C � � � C a2y

00
C a1y

0
C a0y D 0; (1)

where the coefficients a0, a1, a2, : : : ; an are real constants with an ¤ 0.

The Characteristic Equation

We first look for a single solution of Eq. (1), and begin with the observation that

dk

dxk

.erx/ D rkerx ; (2)

so any derivative of erx is a constant multiple of erx . Hence, if we substituted

y D erx in Eq. (1), each term would be a constant multiple of erx , with the constant

coefficients depending on r and the coefficients ak . This suggests that we try to find

r so that all these multiples of erx will have sum zero, in which case y D erx will

be a solution of Eq. (1).

For example, in Section 5.1 we substituted y D erx in the second-order equa-

tion

ay00
C by0

C cy D 0

to derive the characteristic equation

ar2
C br C c D 0

that r must satisfy.
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To carry out this technique in the general case, we substitute yD erx in Eq. (1),

and with the aid of Eq. (2) we find the result to be

anr
nerx

C an�1r
n�1erx

C � � � C a2r
2erx

C a1re
rx
C a0e

rx
D 0I

that is,

erx
�

anr
n
C an�1r

n�1
C � � � C a2r

2
C a1r C a0

�

D 0:

Because erx is never zero, we see that y D erx will be a solution of Eq. (1) precisely

when r is a root of the equation

anr
n
C an�1r

n�1
C � � � C a2r

2
C a1r C a0 D 0: (3)

This equation is called the characteristic equation or auxiliary equation of the

differential equation in (1). Our problem, then, is reduced to the solution of this

purely algebraic equation.

According to the fundamental theorem of algebra, every nth-degree poly-

nomial—such as the one in Eq. (3)—has n zeros, though not necessarily distinct

and not necessarily real. Finding the exact values of these zeros may be difficult

or even impossible; the quadratic formula is sufficient for second-degree equations,

but for equations of higher degree we may need either to spot a fortuitous fac-

torization or to apply a numerical technique such as Newton’s method (or use a

calculator=computer solve command).

Distinct Real Roots

Whatever the method we use, let us suppose that we have solved the characteristic

equation. Then we can always write a general solution of the differential equation.

The situation is slightly more complicated in the case of repeated roots or complex

roots of Eq. (3), so let us first examine the simplest case—in which the characteristic

equation has n distinct (no two equal) real roots r1, r2, : : : ; rn. Then the functions

er1x ; er2x; : : : ; ernx

are all solutions of Eq. (1), and (by Problem 34 of Section 5.2) these n solutions are

linearly independent on the entire real line. In summary, we have proved Theorem 1.

THEOREM 1 Distinct Real Roots

If the roots r1, r2, : : : ; rn of the characteristic equation in (3) are real and distinct,

then

y.x/ D c1e
r1x
C c2e

r2x
C � � � C cne

rnx (4)

is a general solution of Eq. (1). Thus the n linearly independent functions fer1x ;

er2x ; : : : ; ernxg constitute a basis for the n-dimensional solution space of Eq. (1).

Example 1 Solve the initial value problem

y.3/
C 3y00

� 10y0
D 0I

y.0/ D 7; y0.0/ D 0; y00.0/ D 70:
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Solution The characteristic equation of the given differential equation is

r3
C 3r2

� 10r D 0:

We solve by factoring:

r.r2
C 3r � 10/ D r.r C 5/.r � 2/ D 0;

and so the characteristic equation has the three distinct real roots r D 0, r D �5, and r D 2.

Because e0 D 1, Theorem 1 gives the general solution

y.x/ D c1 C c2e
�5x
C c3e

2x :

Then the given initial conditions yield the linear equations

y.0/ D c1 C c2 C c3 D 7,

y0.0/ D � 5c2 C 2c3 D 0,

y00.0/ D 25c2 C 4c3 D 70

in the coefficients c1, c2, and c3. The last two equations give y00.0/ � 2y0.0/ D 35c2 D 70,

so c2 D 2. Then the second equation gives c3 D 5, and finally the first equation gives c1 D 0.

Thus the desired particular solution is

y.x/ D 2e�5x
C 5e2x :

Polynomial Differential Operators

If the roots of the characteristic equation in (3) are not distinct—there are repeated

roots—then we cannot produce n linearly independent solutions of Eq. (1) by the

method of Theorem 1. For example, if the roots are 1, 2, 2, and 2, we obtain only

the two functions ex and e2x . The problem, then, is to produce the missing linearly

independent solutions. For this purpose, it is convenient to adopt “operator notation”

and write Eq. (1) in the form Ly D 0, where the operator

L D an

dn

dxn
C an�1

dn�1

dxn�1
C � � � C a2

d2

dx2
C a1

d

dx
C a0 (5)

operates on the n-times differentiable function y.x/ to produce the linear combina-

tion

Ly D any
.n/
C an�1y

.n�1/
C � � � C a2y

.2/
C a1y

0
C a0y

of y and its first n derivatives. We also denote by D D d=dx the operation of

differentiation with respect to x, so that

Dy D y0; D2y D y00; D3y D y.3/;

and so on. In terms of D, the operator L in (5) may be written

L D anD
n
C an�1D

n�1
C � � � C a2D

2
C a1D C a0; (6)

and we will find it useful to think of the right-hand side in Eq. (6) as a (formal) nth-

degree polynomial in the “variable” D; it is a polynomial differential operator.
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A first-degree polynomial operator with leading coefficient 1 has the form

D � a, where a is a real number. It operates on a function y D y.x/ to produce

.D � a/y D Dy � ay D y0
� ay:

The important fact about such operators is that any two of them commute:

.D � a/.D � b/y D .D � b/.D � a/y (7)

for any twice differentiable function y D y.x/. The proof of the formula in (7) is

the following computation:

.D � a/.D � b/y D .D � a/.y0
� by/

D D.y0
� by/ � a.y0

� by/

D y00
� .b C a/y0

C aby D y00
� .aC b/y0

C bay

D D.y0
� ay/ � b.y0

� ay/

D .D � b/.y0
� ay/ D .D � b/.D � a/y:

We see here also that .D � a/.D � b/ D D2 � .a C b/D C ab. Similarly, it can

be shown by induction on the number of factors that an operator product of the

form .D � a1/.D � a2/ � � � .D � an/ expands—by multiplying out and collecting

coefficients—in the same way as does an ordinary product .x � a1/.x � a2/ � � �

.x � an/ of linear factors, with x denoting a real variable. Consequently, the al-

gebra of polynomial differential operators closely resembles the algebra of ordinary

real polynomials.

Repeated Real Roots

Let us now consider the possibility that the characteristic equation

anr
n
C an�1r

n�1
C � � � C a2r

2
C a1r C a0 D 0 (3)

has repeated roots. For example, suppose that Eq. (3) has only two distinct roots, r0
of multiplicity 1 and r1 of multiplicity k D n � 1 > 1. Then (after dividing by an)

Eq. (3) can be rewritten in the form

.r � r1/
k.r � r0/ D .r � r0/.r � r1/

k
D 0: (8)

Similarly, the corresponding operator L in (6) can be written as

L D .D � r1/
k.D � r0/ D .D � r0/.D � r1/

k; (9)

the order of the factors making no difference because of the formula in (7).

Two solutions of the differential equation Ly D 0 are certainly y0 D e
r0x and

y1 D er1x . This is, however, not sufficient; we need k C 1 linearly independent

solutions in order to construct a general solution, because the equation is of order

k C 1. To find the missing k � 1 solutions, we note that

Ly D .D � r0/Œ.D � r1/
ky� D 0:

Consequently, every solution of the kth-order equation

.D � r1/
ky D 0 (10)
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will also be a solution of the original equation Ly D 0. Hence our problem is

reduced to that of finding a general solution of the differential equation in (10).

The fact that y1 D er1x is one solution of Eq. (10) suggests that we try the

substitution

y.x/ D u.x/y1.x/ D u.x/e
r1x ; (11)

where u.x/ is a function yet to be determined. Observe that

.D � r1/ Œue
r1x � D .Du/er1x

C u.r1e
r1x/ � r1.ue

r1x/ D .Du/er1x : (12)

Upon k applications of this fact, it follows that

.D � r1/
k Œuer1x� D .Dku/er1x (13)

for any sufficiently differentiable function u.x/. Hence y D uer1x will be a solution

of Eq. (10) if and only if Dku D u.k/ D 0. But this is so if and only if

u.x/ D c1 C c2x C c3x
2
C � � � C ckx

k�1;

a polynomial of degree at most k � 1. Hence our desired solution of Eq. (10) is

y.x/ D uer1x
D .c1 C c2x C c3x

2
C � � � C ckx

k�1/er1x :

In particular, we see here the additional solutions xer1x , x2er1x , : : : ; xk�1er1x of

the original differential equation Ly D 0.

The preceding analysis can be carried out with the operator D � r1 replaced

with an arbitrary polynomial operator. When this is done, the result is a proof of the

following theorem.

THEOREM 2 Repeated Roots

If the characteristic equation in (3) has a repeated root r of multiplicity k, then

the part of a general solution of the differential equation in (1) corresponding to

r is of the form

.c1 C c2x C c3x
2
C � � � C ckx

k�1/erx : (14)

Remark According to Problem 29 of Section 5.2, the k functions erx , xerx , x2erx , : : : ,

xk�1erx involved in (14) are linearly independent. Thus a root of multiplicity k = 1 corre-

sponds to k linearly independent “basis solutions” that generate a k-dimensional subspace of

the n-dimensional solution space S of the nth-order homogeneous linear differential equa-

tion. Because the sum of the multiplicities of the separate roots of the nth-degree charac-

teristic equation is n, we get a basis fy1; y2; : : : ; yng for S when we assemble all the ba-

sis solutions corresponding to these separate roots. We can then write a general solution

y D c1y1 C c2y2 C � � � C cnyn of the differential equation. In effect, we thereby construct

a general solution by combining different “parts” corresponding to the separate roots of the

characteristic equation.

Example 2 Find a general solution of the fifth-order differential equation

9y.5/
� 6y.4/

C y.3/
D 0:
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Solution The characteristic equation is

9r5
� 6r4

C r3
D r3.9r2

� 6r C 1/ D r3.3r � 1/2 D 0:

It has the triple root r D 0 and the double root r D 1

3
. The triple root r D 0 contributes

c1e
0�x
C c2xe

0�x
C c3x

2e0�x
D c1 C c2x C c3x

2

to the solution, while the double root r D 1

3
contributes c4e

x=3 C c5xe
x=3. Hence a general

solution of the given differential equation is

y.x/ D c1 C c2x C c3x
2
C c4e

x=3
C c5xe

x=3:

Complex-Valued Functions and Euler’s Formula

Because we have assumed that the coefficients of the differential equation and its

characteristic equation are real, any complex (nonreal) roots will occur in complex

conjugate pairs a˙ bi where a and b are real and i D
p
�1. This raises the question

of what might be meant by an exponential such as e.aCbi/x .

To answer this question, we recall from elementary calculus the Taylor (or

MacLaurin) series for the exponential function

et
D

1
X

nD0

tn

nŠ
D 1C t C

t2

2Š
C
t3

3Š
C
t4

4Š
C � � � :

If we substitute t D i� in this series and recall that i2 D �1, i3 D �i , i4 D 1, and

so on, we get

ei�
D

1
X

nD0

.i�/n

nŠ

D 1C i� �
�2

2Š
�
i�3

3Š
C
�4

4Š
C
i�5

5Š
� � � �

D

�

1 �
�2

2Š
C
�4

4Š
� � � �

�

C i

�

� �
�3

3Š
C
�5

5Š
� � � �

�

:

Because the two real series in the last line are the Taylor series for cos � and sin � ,

respectively, this implies that

ei�
D cos � C i sin �: (15)

This result is known as Euler’s formula. Because of it, we define the exponential

function e´, for ´ D x C iy an arbitrary complex number, to be

e´
D exCiy

D exeiy
D ex.cosy C i siny/: (16)

Thus it appears that complex roots of the characteristic equation will lead to

complex-valued solutions of the differential equation. A complex-valued function

F of the real variable x associates with each real number x (in its domain of defini-

tion) the complex number

F.x/ D f .x/C ig.x/: (17)

The real-valued functions f and g are called the real and imaginary parts, respec-

tively, of F . If they are differentiable, we define the derivative F 0 of F by

F 0.x/ D f 0.x/C ig0.x/: (18)

Thus we simply differentiate the real and imaginary parts of F separately.
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We say that the complex-valued function F.x/ satisfies the homogeneous lin-

ear differential equation LŒF.x/� D 0 provided that its real and imaginary parts in

(17) separately satisfy this equation—so LŒF.x/� D LŒf .x/�C iLŒg.x/� D 0.

The particular complex-valued functions of interest here are of the form

F.x/ D erx , where r D a˙ bi . We note from Euler’s formula that

e.aCbi/x
D eaxeibx

D eax.cos bx C i sin bx/ (19a)

and

e.a�bi/x
D eaxe�ibx

D eax.cos bx � i sin bx/: (19b)

The most important property of erx is that

Dx.e
rx/ D rerx ; (20)

if r is a complex number. The proof of this assertion is a straightforward computa-

tion based on the definitions and formulas given earlier:

Dx.e
rx/ D Dx.e

ax cos bx/C iDx.e
ax sin bx/

D .aeax cos bx � beax sin bx/C i .aeax sin bx C beax cos bx/

D .aC bi/.eax cos bx C ieax sin bx/ D rerx :

Complex Roots

It follows from Eq. (20) that when r is complex (just as when r is real), erx will be a

solution of the differential equation in (1) if and only if r is a root of its characteristic

equation. If the complex conjugate pair of roots r1 D a C bi and r2 D a � bi are

simple (nonrepeated), then the corresponding part of a general solution of Eq. (1) is

y.x/ D C1e
r1x
C C2e

r2x
D C1e

.aCbi/x
C C2e

.a�bi/x

D C1e
ax.cos bx C i sin bx/C C2e

ax.cos bx � i sin bx/

y.x/ D .C1 C C2/e
ax cos bx C i.C1 � C2/e

ax sin bx;

where the arbitrary constants C1 and C2 can be complex. For instance, the choice

C1 D C2 D
1

2
gives the real-valued solution y1.x/ D eax cos bx, while the choice

C1 D �
1

2
i , C2 D

1

2
i gives the independent real-valued solution y2.x/ D e

ax sin bx.

This yields the following result.

THEOREM 3 Complex Roots

If the characteristic equation in (3) has an unrepeated pair of complex conjugate

roots a ˙ bi (with b ¤ 0), then the corresponding part of a general solution of

Eq. (1) has the form

eax.c1 cos bx C c2 sin bx/: (21)

Thus the linearly independent solutions eax cos bx and eax sin bx (corresponding

to the complex conjugate characteristic roots a ˙ bi) generate a 2-dimensional

subspace of the solution space of the differential equation.

Example 3 The characteristic equation of

y00
C b2y D 0 .b > 0/

is r2 C b2 D 0, with roots r D ˙bi . So Theorem 3 (with a D 0) gives the general solution

y.x/ D c1 cos bx C c2 sin bx:
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Example 4 Find the particular solution of

y00
� 4y0

C 5y D 0

for which y.0/ D 1 and y0.0/ D 5.

Solution Completion of the square in the characteristic equation yields

r2
� 4r C 5 D .r � 2/2 C 1 D 0;

so r � 2 D ˙
p
�1 D ˙i . Thus we obtain the complex conjugate roots 2˙ i (which could

also be found directly using the quadratic formula). Hence Theorem 3 with a D 2 and b D 1

gives the general solution

y.x/ D e2x.c1 cos x C c2 sin x/:

Then

y0.x/ D 2e2x.c1 cos x C c2 sin x/C e2x.�c1 sin x C c2 cos x/;

so the initial conditions give

y.0/ D c1 D 1 and y0.0/ D 2c1 C c2 D 5:

It follows that c2 D 3, and so the desired particular solution is

y.x/ D e2x.cos x C 3 sin x/:

In Example 5 below we employ the polar form

´ D x C iy D rei� (22)

of the complex number ´. This form follows from Euler’s formula upon writing

´ D r
�x

r
C i

y

r

�

D r.cos � C i sin �/ D rei�

in terms of the modulus r D
p

x2 C y2 > 0 of the number ´ and its argument �

indicated in Fig. 5.3.1. For instance, the imaginary number i has modulus 1 and

argument �=2, so i D ei�=2. Similarly, �i D e3�=2. Another consequence is the fact

that the nonzero complex number ´ D rei� has the two square roots

x

y

θ

(x, y)

r

FIGURE 5.3.1. Modulus and
argument of the complex number
x C iy.

p
´ D ˙.rei� /1=2

D ˙
p
rei�=2; (23)

where
p
r denotes (as usual for a positive real number) the positive square root of

the modulus of ´.

Example 5 Find a general solution of y.4/ C 4y D 0.

Solution The characteristic equation is

r4
C 4 D .r2/2 � .2i/2 D .r2

C 2i/.r2
� 2i/ D 0;

and its four roots are ˙
p
˙2i . Since i D ei�=2 and �i D ei3�=2, we find that

p
2i D

�

2ei�=2
�

1=2

D
p
2ei�=4

D
p
2
�

cos
�

4
C i sin

�

4

�

D 1C i

and

p
�2i D

�

2ei3�=2
�

1=2

D
p
2ei3�=4

D
p
2

�

cos
3�

4
C i sin

3�

4

�

D �1C i:

Thus the four (distinct) roots of the characteristic equation are r D ˙.1 C i/ and r D

˙.�1C i/. Grouping these four into the complex conjugate pairs 1˙ i and �1˙ i yields the

general solution

y.x/ D ex.c1 cos x C c2 sin x/C e�x.c3 cos x C c4 sin x/

of the differential equation y.4/ C 4y D 0.
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Repeated Complex Roots

Theorem 2 holds for repeated complex roots. If the conjugate pair a˙ bi has mul-

tiplicity k, then the corresponding part of the general solution has the form

.A1 C A2x C � � � C Akx
k�1/e.aCbi/x

C .B1 C B2x C � � � C Bkx
k�1/e.a�bi/x

D

k�1
X

pD0

xpeax.cp cos bx C dp sin bx/: (24)

It can be shown that the 2k functions

xpeax cos bx; xpeax sin bx; 0 5 p 5 k � 1

that appear in Eq. (24) are linearly independent.

Example 6 Find a general solution of .D2 C 6D C 13/2y D 0.

Solution By completing the square, we see that the characteristic equation

.r2
C 6r C 13/2 D Œ.r C 3/2 C 4�2 D 0

has as its roots the conjugate pair �3˙ 2i of multiplicity k D 2. Hence Eq. (24) gives the

general solution

y.x/ D e�3x.c1 cos 2x C d1 sin 2x/C xe�3x.c2 cos 2x C d2 sin 2x/:

In applications we are seldom presented in advance with a factorization as

convenient as the one in Example 6. Often the most difficult part of solving a homo-

geneous linear equation is finding the roots of its characteristic equation. Example

7 illustrates an approach that may succeed when a root of the characteristic equation

can be found by inspection. The application material for this section illustrates other

possibilities.

Example 7 The characteristic equation of the differential equation

y.3/
C y0

� 10y D 0

is the cubic equation

r3
C r � 10 D 0:

By a standard theorem of elementary algebra, the only possible rational roots are the factors

˙1, ˙2, ˙5, and ˙10 of the constant term 10. By trial and error (if not by inspection) we

discover the root 2. The factor theorem of elementary algebra implies that r � 2 is a factor

of r3 C r � 10, and division of the former into the latter produces as quotient the quadratic

polynomial

r2
C 2r C 5 D .r C 1/2 C 4:

The roots of this quotient are the complex conjugates �1˙ 2i . The three roots we have found

now yield the general solution

y.x/ D c1e
2x
C e�x.c2 cos 2x C c3 sin 2x/:

Example 8 The roots of the characteristic equation of a certain differential equation are 3, �5, 0, 0, 0, 0,

�5, 2˙ 3i , and 2˙ 3i . Write a general solution of this homogeneous differential equation.

Solution The solution can be read directly from the list of roots. It is

y.x/ D c1 C c2x C c3x
2
C c4x

3
C c5e

3x
C c6e

�5x
C c7xe

�5x

C e2x.c8 cos 3x C c9 sin 3x/C xe2x.c10 cos 3x C c11 sin 3x/:
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5.3 Problems
Find the general solutions of the differential equations in Prob-

lems 1 through 20.

1. y00 � 4y D 0 2. 2y00 � 3y0 D 0

3. y00 C 3y0 � 10y D 0 4. 2y00 � 7y0 C 3y D 0

5. y00 C 6y0 C 9y D 0 6. y00 C 5y0 C 5y D 0

7. 4y00 � 12y0 C 9y D 0 8. y00 � 6y0 C 13y D 0

9. y00 C 8y0 C 25y D 0 10. 5y.4/ C 3y.3/ D 0

11. y.4/ � 8y.3/ C 16y00 D 0

12. y.4/ � 3y.3/ C 3y00 � y0 D 0

13. 9y.3/ C 12y00 C 4y0 D 0 14. y.4/ C 3y00 � 4y D 0

15. y.4/ � 8y00 C 16y D 0 16. y.4/ C 18y00 C 81y D 0

17. 6y.4/ C 11y00 C 4y D 0 18. y.4/ D 16y

19. y.3/ C y00 � y0 � y D 0

20. y.4/ C 2y.3/ C 3y00 C 2y0 C y D 0 (Suggestion: Expand

.r2 C r C 1/2.)

Solve the initial value problems given in Problems 21 through

26.

21. y00 � 4y0 C 3y D 0; y.0/ D 7, y0.0/ D 11

22. 9y00 C 6y0 C 4y D 0; y.0/ D 3, y0.0/ D 4

23. y00 � 6y0 C 25y D 0; y.0/ D 3, y0.0/ D 1

24. 2y.3/ � 3y00 � 2y0 D 0; y.0/ D 1, y0.0/ D �1, y00.0/ D 3

25. 3y.3/ C 2y00 D 0; y.0/ D �1, y0.0/ D 0, y00.0/ D 1

26. y.3/ C 10y00 C 25y0 D 0; y.0/ D 3, y0.0/ D 4, y00.0/ D 5

Find general solutions of the equations in Problems 27 through

32. First find a small integral root of the characteristic equa-

tion by inspection; then factor by division.

27. y.3/ C 3y00 � 4y D 0

28. 2y.3/ � y00 � 5y0 � 2y D 0

29. y.3/ C 27y D 0

30. y.4/ � y.3/ C y00 � 3y0 � 6y D 0

31. y.3/ C 3y00 C 4y0 � 8y D 0

32. y.4/ C y.3/ � 3y00 � 5y0 � 2y D 0

In Problems 33 through 36, one solution of the differential

equation is given. Find the general solution.

33. y.3/ C 3y00 � 54y D 0; y D e3x

34. 3y.3/ � 2y00 C 12y0 � 8y D 0; y D e2x=3

35. 6y.4/ C 5y.3/ C 25y00 C 20y0 C 4y D 0; y D cos 2x

36. 9y.3/ C 11y00 C 4y0 � 14y D 0; y D e�x sin x

37. Find a function y.x/ such that y.4/.x/ D y.3/.x/ for all x

and y.0/ D 18, y0.0/ D 12, y00.0/ D 13, and y.3/.0/ D 7.

38. Solve the initial value problem

y.3/
� 5y00

C 100y0
� 500y D 0I

y.0/ D 0; y0.0/ D 10; y00.0/ D 250

given that y1.x/ D e5x is one particular solution of the

differential equation.

In Problems 39 through 42, find a linear homogeneous

constant-coefficient equation with the given general solution.

39. y.x/ D .AC Bx C Cx2/e2x

40. y.x/ D Ae2x C B cos 2x C C sin 2x

41. y.x/ D A cos 2x C B sin 2x C C cosh 2x CD sinh 2x

42. y.x/D .ACBxCCx2/ cos 2xC .DCExCFx2/ sin 2x

Problems 43 through 47 pertain to the solution of differential

equations with complex coefficients.

43. (a) Use Euler’s formula to show that every complex num-

ber can be written in the form rei� , where r = 0 and

�� < � 5 � . (b) Express the numbers 4, �2, 3i , 1C i ,

and �1C i
p
3 in the form rei� . (c) The two square roots

of rei� are ˙
p
rei�=2. Find the square roots of the num-

bers 2 � 2i
p
3 and �2C 2i

p
3.

44. Use the quadratic formula to solve the following equa-

tions. Note in each case that the roots are not complex

conjugates.

(a) x2 C ix C 2 D 0 (b) x2 � 2ix C 3 D 0

45. Find a general solution of y00 � 2iy0 C 3y D 0.

46. Find a general solution of y00 � iy0 C 6y D 0.

47. Find a general solution of y00 D
�

�2C 2i
p
3
�

y.

48. Solve the initial value problem

y.3/
D yI y.0/ D 1; y0.0/ D y00.0/ D 0:

(Suggestion: Impose the given initial conditions on the

general solution

y.x/ D Aex
C Be˛x

C Ceˇx ;

where ˛ and ˇ are the complex conjugate roots of r3�1D

0, to discover that

y.x/ D
1

3

 

ex
C 2e�x=2 cos

x
p
3

2

!

is a solution.)

49. Solve the initial value problem

y.4/
D y.3/

C y00
C y0

C 2yI

y.0/ D y0.0/ D y00.0/ D 0; 2y.3/.0/ D 30:

50. The differential equation

y00
C .sgn x/y D 0 (25)

has the discontinuous coefficient function

sgn x D

(

C1 if x > 0,

�1 if x < 0.

Show that Eq. (25) nevertheless has two linearly indepen-

dent solutions y1.x/ and y2.x/ defined for all x such that

� Each satisfies Eq. (25) at each point x ¤ 0;

� Each has a continuous derivative at x D 0;

� y1.0/ D y
0
2
.0/ D 1 and y2.0/ D y

0
1
.0/ D 0.
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(Suggestion: Each yi .x/ will be defined by one formula

for x < 0 and by another for x = 0.) The graphs of these

two solutions are shown in Fig. 5.3.2.

2

4

x

y

2 4 6 8 10 12

–2

–4

–2

y
1
(x)

y
2
(x)

FIGURE 5.3.2. Graphs of y1.x/ and y2.x/

in Problem 50.

51. According to Problem 51 in Section 5.1, the substitution

v D ln x (x > 0) transforms the second-order Euler equa-

tion ax2y00 C bxy0 C cy D 0 to a constant-coefficient ho-

mogeneous linear equation. Show similarly that this same

substitution transforms the third-order Euler equation

ax3y000
C bx2y00

C cxy0
C dy D 0

(where a, b, c, d are constants) into the constant-

coefficient equation

a
d3y

dv3
C .b � 3a/

d2y

dv2
C .c � b C 2a/

dy

dv
C dy D 0:

Make the substitution v D ln x of Problem 51 to find general

solutions (for x > 0) of the Euler equations in Problems 52

through 58.

52. x2y00 C xy0 C 9y D 0

53. x2y00 C 7xy0 C 25y D 0

54. x3y000 C 6x2y00 C 4xy0 D 0

55. x3y000 � x2y00 C xy0 D 0

56. x3y000 C 3x2y00 C xy0 D 0

57. x3y000 � 3x2y00 C xy0 D 0

58. x3y000 C 6x2y00 C 7xy0 C y D 0

Go to goo.gl/9JwK72 to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

5.3 Application Approximate Solutions of Linear Equations

To meet the needs of applications such as those of this section, polynomial-solving

utilities are now a common feature of calculator and computer systems and can be

used to solve a characteristic equation numerically even when no simple factoriza-

tion is evident or even possible. For instance, suppose that we want to solve the

homogeneous linear differential equation

y.3/
� 3y00

C y D 0 (1)

with characteristic equation

r3
� 3r2

C 1 D 0: (2)

A typical graphing calculator has a solve command that can be used to find the

approximate roots of a polynomial equation. As indicated in Figs. 5.3.3 and 5.3.4,

we find that the roots of Eq. (2) are given by r ��0:5321, 0:6527, and 2:8794. Some

analogous computer algebra system commands are

FIGURE 5.3.3. Solving the equation

r
3 � 3r

2 C 1 D 0 with a TI-84 Plus
CE calculator that requires an estimate

of each root.

FIGURE 5.3.4. Solving the

characteristic equation with a TI-89
calculator having a more sophisticated

solve facility.
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fsolve(r^3 -- 3*r^2 + 1 = 0, r); (Maple)

NSolve[r^3 -- 3*r^2 + 1 == 0, r] (Mathematica)

r^3 -- 3r^2 + 1 = 0 (WolframjAlpha)

roots([1 --3 0 1]) (MATLAB)

(In the MATLAB command, one enters the polynomial’s vector [1 --3 0 1]

of coefficients, listed in descending order.) However we find these approximate

roots, it follows that a general solution of the differential equation in (1) is given

(approximately) by

y.x/ D c1e
�.0:5321/x

C c2e
.0:6527/x

C c3e
.2:8794/x : (3)

Use calculator or computer methods like those indicated here to find general

solutions (in approximate numerical form) of the following differential equations.

1. y.3/ � 3y0 C y D 0

2. y.3/ C 3y00 � 3y D 0

3. y.3/ C y0 C y D 0

4. y.3/ C 3y0 C 5y D 0

5. y.4/ C 2y.3/ � 3y D 0

6. y.4/ C 3y0 � 4y D 0

5.4 Mechanical Vibrations

The motion of a mass attached to a spring serves as a relatively simple example

of the vibrations that occur in more complex mechanical systems. For many such

systems, the analysis of these vibrations is a problem in the solution of linear differ-

ential equations with constant coefficients.

We consider a body of mass m attached to one end of an ordinary spring that

resists compression as well as stretching; the other end of the spring is attached to

a fixed wall, as shown in Fig. 5.4.1. Assume that the body rests on a frictionless

horizontal plane, so that it can move only back and forth as the spring compresses

and stretches. Denote by x the distance of the body from its equilibrium position—

its position when the spring is unstretched. We take x > 0 when the spring is

Equilibrium

position

m c

x

FIGURE 5.4.1. A mass–spring–
dashpot system.

stretched, and thus x < 0 when it is compressed.

According to Hooke’s law, the restorative force FS that the spring exerts on

the mass is proportional to the distance x that the spring has been stretched or com-

pressed. Because this is the same as the displacement x of the mass m from its

equilibrium position, it follows that

FS D �kx: (1)

The positive constant of proportionality k is called the spring constant. Note that

FS and x have opposite signs: FS < 0 when x > 0, FS > 0 when x < 0.

Figure 5.4.1 shows the mass attached to a dashpot—a device, like a shock

absorber, that provides a force directed opposite to the instantaneous direction of

motion of the mass m. We assume the dashpot is so designed that this force FR is

proportional to the velocity v D dx=dt of the mass; that is,

FR D �cv D �c
dx

dt
: (2)

The positive constant c is the damping constant of the dashpot. More generally,

we may regard Eq. (2) as specifying frictional forces in our system (including air

resistance to the motion of m).
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If, in addition to the forces FS and FR, the mass is subjected to a given exter-

nal force FE D F.t/, then the total force acting on the mass is F D FS CFRCFE .

Using Newton’s law

F D ma D m
d2x

dt2
D mx00;

we obtain the second-order linear differential equation

mx00
C cx0

C kx D F.t/ (3)

that governs the motion of the mass.

If there is no dashpot (and we ignore all frictional forces), then we set c D 0

in Eq. (3) and call the motion undamped; it is damped motion if c > 0. If there is

no external force, we replace F.t/ with 0 in Eq. (3). We refer to the motion as free

in this case and forced in the case F.t/ ¤ 0. Thus the homogeneous equation

mx00
C cx0

C kx D 0 (4)

describes free motion of a mass on a spring with dashpot but with no external forces

applied. We will defer discussion of forced motion until Section 5.6.

For an alternative example, we might attach the mass to the lower end of a

spring that is suspended vertically from a fixed support, as in Fig. 5.4.2. In this case

the weight W D mg of the mass would stretch the spring a distance s0 determined

by Eq. (1) with FS D �W and x D s0. That is, mg D ks0, so that s0 D mg=k. This

gives the static equilibrium position of the mass. If y denotes the displacement of

the mass in motion, measured downward from its static equilibrium position, then

we ask you to show in Problem 9 that y satisfies Eq. (3); specifically, that

m

Unstretched
spring

Static
equilibrium

System
in motion

s0

y

y = 0m

FIGURE 5.4.2. A mass suspended
vertically from a spring.

my00
C cy0

C ky D F.t/ (5)

if we include damping and external forces (meaning those other than gravity).

The Simple Pendulum

The importance of the differential equation that appears in Eqs. (3) and (5) stems

θ

O

h m

L

FIGURE 5.4.3. The simple
pendulum.

from the fact that it describes the motion of many other simple mechanical systems.

For example, a simple pendulum consists of a mass m swinging back and forth on

the end of a string (or better, a massless rod) of length L, as shown in Fig. 5.4.3.

We may specify the position of the mass at time t by giving the counterclockwise

angle � D �.t/ that the string or rod makes with the vertical at time t . To analyze

the motion of the mass m, we will apply the law of the conservation of mechanical

energy, according to which the sum of the kinetic energy and the potential energy

of m remains constant.

The distance along the circular arc from 0 to m is s D L� , so the velocity of

the mass is v D ds=dt D L.d�=dt/, and therefore its kinetic energy is

T D
1

2
mv2

D
1

2
m

�

ds

dt

�

2

D
1

2
mL2

�

d�

dt

�

2

:

We next choose as reference point the lowest point O reached by the mass (see

Fig. 5.4.3). Then its potential energy V is the product of its weight mg and its

vertical height h D L.1 � cos �/ above O , so

V D mgL.1 � cos �/:
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The fact that the sum of T and V is a constant C therefore gives

1

2
mL2

�

d�

dt

�

2

CmgL.1 � cos �/ D C:

We differentiate both sides of this identity with respect to t to obtain

mL2

�

d�

dt

��

d2�

dt2

�

CmgL.sin �/
d�

dt
D 0;

so

d2�

dt2
C
g

L
sin � D 0 (6)

after removal of the common factor mL2.d�=dt/. This differential equation can

be derived in a seemingly more elementary manner using the familiar second law

F Dma of Newton (applied to tangential components of the acceleration of the mass

and the force acting on it). However, derivations of differential equations based on

conservation of energy are often seen in more complex situations where Newton’s

law is not so directly applicable, and it may be instructive to see the energy method

in a simpler application like the pendulum.

Now recall that if � is small, then sin � � � (this approximation obtained by

retaining just the first term in the Taylor series for sin �). In fact, sin � and � agree

to two decimal places when j� j is at most �=12 (that is, 15ı). In a typical pendulum

clock, for example, � would never exceed 15ı. It therefore seems reasonable to

simplify our mathematical model of the simple pendulum by replacing sin � with �

in Eq. (6). If we also insert a term c� 0 to account for the frictional resistance of the

surrounding medium, the result is an equation in the form of Eq. (4):

� 00
C c� 0

C k� D 0; (7)

where k D g=L. Note that this equation is independent of the mass m on the end

of the rod. We might, however, expect the effects of the discrepancy between � and

sin � to accumulate over a period of time, so that Eq. (7) will probably not describe

accurately the actual motion of the pendulum over a long period of time.

In the remainder of this section, we first analyze free undamped motion and

then free damped motion.

Free Undamped Motion

If we have only a mass on a spring, with neither damping nor external force, then

Eq. (3) takes the simpler form

mx00
C kx D 0: (8)

It is convenient to define

!0 D

r

k

m
(9)

and rewrite Eq. (8) as

x00
C !2

0
x D 0: (80)

The general solution of Eq. (80) is

x.t/ D A cos!0t C B sin!0t: (10)
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To analyze the motion described by this solution, we choose constants C and

˛ so that

A

B
C

α

FIGURE 5.4.4. The angle ˛.

C D
p

A2 C B2; cos˛ D
A

C
; and sin˛ D

B

C
; (11)

as indicated in Fig. 5.4.4. Note that, although tan˛ D B=A, the angle ˛ is not given

by the principal branch of the inverse tangent function (which gives values only in

the interval ��=2 < x < �=2). Instead, ˛ is the angle between 0 and 2� whose cosine

and sine have the signs given in (11), where either A or B or both may be negative.

Thus

˛ D

8

ˆ

<

ˆ

:

tan�1.B=A/ if A > 0, B > 0 (first quadrant),

� C tan�1.B=A/ if A < 0 (second or third quadrant),

2� C tan�1.B=A/ if A > 0, B < 0 (fourth quadrant),

where tan�1.B=A/ is the angle in .��=2; �=2/ given by a calculator or computer.

In any event, from (10) and (11) we get

x.t/ D C

�

A

C
cos!0t C

B

C
sin!0t

�

D C.cos˛ cos!0t C sin˛ sin!0t /:

With the aid of the cosine addition formula, we find that

x.t/ D C cos.!0t � ˛/: (12)

Thus the mass oscillates to and fro about its equilibrium position with

1. Amplitude C ,

2. Circular frequency !0, and

3. Phase angle ˛.

Such motion is called simple harmonic motion.

If time t is measured in seconds, the circular frequency !0 has dimensions of

radians per second (rad=s). The period of the motion is the time required for the

system to complete one full oscillation, so is given by

T D
2�

!0

(13)

seconds; its frequency is

� D
1

T
D
!0

2�
(14)

in hertz (Hz), which measures the number of complete cycles per second. Note

that frequency is measured in cycles per second, whereas circular frequency has the

dimensions of radians per second.

A typical graph of a simple harmonic position function

x.t/ D C cos.!0t � ˛/ D C cos

�

!0

�

t �
˛

!0

��

D C cos.!0.t � ı//

is shown in Fig. 5.4.5, where the geometric significance of the amplitude C , the

t

C

x

T

x(t) = C cos(ω0t – α) 

δ

–C

FIGURE 5.4.5. Simple harmonic
motion.

period T , and the time lag

ı D
˛

!0

are indicated.
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If the initial position x.0/ D x0 and initial velocity x0.0/ D v0 of the mass are

given, we first determine the values of the coefficients A and B in Eq. (10), then find

the amplitude C and phase angle ˛ by carrying out the transformation of x.t/ to the

form in Eq. (12), as indicated previously.

Example 1 Undamped mass-spring system A body with mass m D 1

2
kilogram (kg) is attached to

the end of a spring that is stretched 2 meters (m) by a force of 100 newtons (N). It is set in

motion with initial position x0 D 1 (m) and initial velocity v0 D �5 (m/s). (Note that these

initial conditions indicate that the body is displaced to the right and is moving to the left at

time t D 0.) Find the position function of the body as well as the amplitude, frequency, period

of oscillation, and time lag of its motion.

Solution The spring constant is k D .100 N/=.2 m/D 50 (N=m), so Eq. (8) yields 1

2
x00C 50x D 0; that

is,

x00
C 100x D 0:

Consequently, the circular frequency of the resulting simple harmonic motion of the body

will be !0 D
p
100 D 10 (rad/s). Hence it will oscillate with period

T D
2�

!0

D
2�

10
� 0.6283 s

and with frequency

� D
1

T
D
!0

2�
D
10

2�
� 1.5915 Hz.

We now impose the initial conditions x.0/D 1 and x0.0/D�5 on the position function

x.t/ D A cos 10t C B sin 10t with x0.t/ D �10A sin 10t C 10B cos 10t:

It follows readily that A D 1 and B D �1

2
, so the position function of the body is

x.t/ D cos 10t �
1

2
sin 10t:

Hence its amplitude of motion is

C D

q

.1/2 C .�1

2
/2 D 1

2

p
5 m.

To find the time lag, we write

x.t/ D

p
5

2

�

2
p
5

cos 10t �
1
p
5

sin 10t

�

D

p
5

2
cos.10t � ˛/;

where the phase angle ˛ satisfies

cos˛ D
2
p
5
> 0 and sin˛ D �

1
p
5
< 0:

Hence ˛ is the fourth-quadrant angle

˛ D 2� C tan�1

 

�1=
p
5

2=
p
5

!

D 2� � tan�1.1

2
/ � 5:8195;

and the time lag of the motion is

ı D
˛

!0

� 0.5820 s.

With the amplitude and approximate phase angle shown explicitly, the position function of

the body takes the form

x.t/ � 1

2

p
5 cos.10t � 5:8195/;

and its graph is shown in Fig. 5.4.6.
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δ

FIGURE 5.4.6. Graph of the position function x.t/ D C cos.!0t � ˛/

in Example 1, with amplitude C � 1:118, period T � 0:628, and time

lag ı � 0:582.

Free Damped Motion

With damping but no external force, the differential equation we have been studying

takes the form mx00 C cx0 C kx D 0; alternatively,

x00
C 2px0

C !2

0
x D 0; (15)

where !0 D
p

k=m is the corresponding undamped circular frequency and

p D
c

2m
> 0: (16)

The characteristic equation r2 C 2pr C !2

0
D 0 of Eq. (15) has roots

r1; r2 D �p ˙ .p
2
� !2

0
/1=2 (17)

that depend on the sign of

p2
� !2

0
D

c2

4m2
�
k

m
D
c2 � 4km

4m2
: (18)

The critical damping ccr is given by ccr D
p
4km, and we distinguish three cases,

according as c > ccr, c D ccr, or c < ccr.

OVERDAMPED CASE: c > ccr (c2 > 4km). Because c is relatively large in this

case, we are dealing with a strong resistance in comparison with a relatively weak

spring or a small mass. Then (17) gives distinct real roots r1 and r2, both of which

are negative. The position function has the form

x.t/ D c1e
r1t
C c2e

r2t : (19)

It is easy to see that x.t/! 0 as t !C1 and that the body settles to its equilibrium

position without any oscillations (Problem 29). Figure 5.4.7 shows some typical

graphs of the position function for the overdamped case; we chose x0 a fixed positive

number and illustrated the effects of changing the initial velocity v0. In every case

the would-be oscillations are damped out.

0
t

x

0

(0, x0)

FIGURE 5.4.7. Overdamped
motion: x.t/ D c1e

r1t C c2e
r2t with

r1 < 0 and r2 < 0. Solution curves are
graphed with the same initial position
x0 and different initial velocities.
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CRITICALLY DAMPED CASE: c D ccr (c2
D 4km). In this case, (17) gives equal

roots r1 D r2 D �p of the characteristic equation, so the general solution is

x.t/ D e�pt .c1 C c2t /: (20)

Because e�pt > 0 and c1 C c2t has at most one positive zero, the body passes

0
t

x

0

(0, x0)

FIGURE 5.4.8. Critically damped
motion: x.t/ D .c1 C c2t/e

�pt with

p > 0. Solution curves are graphed
with the same initial position x0 and

different initial velocities.

through its equilibrium position at most once, and it is clear that x.t/ ! 0 as

t ! C1. Some graphs of the motion in the critically damped case appear in

Fig. 5.4.8, and they resemble those of the overdamped case (Fig. 5.4.7). In the

critically damped case, the resistance of the dashpot is just large enough to damp

out any oscillations, but even a slight reduction in resistance will bring us to the

remaining case, the one that shows the most dramatic behavior.

UNDERDAMPED CASE: c < ccr (c2 < 4km). The characteristic equation now

has two complex conjugate roots �p ˙ i
p

!2

0
� p2, and the general solution is

x.t/ D e�pt .A cos!1t C B sin!1t /; (21)

where

!1 D

q

!2

0
� p2 D

p
4km � c2

2m
: (22)

Using the cosine addition formula as in the derivation of Eq. (12), we may rewrite

Eq. (20) as

x.t/ D Ce�pt

�

A

C
cos!1t C

B

C
sin!1t

�

;

so

x.t/ D Ce�pt cos.!1t � ˛/ (23)

where

C D
p

A2 C B2; cos˛ D
A

C
; and sin˛ D

B

C
:

The solution in (21) represents exponentially damped oscillations of the bodyα

ω1ω

α

x = Ce–pt cos( 1t –  )ω α

x = +Ce–pt

x = –Ce–pt

0
t

2π

ω1ω

π
T1 =

x 0

FIGURE 5.4.9. Underdamped
oscillations:

x.t/ D Ce
�pt cos.!1t � ˛/.

around its equilibrium position. The graph of x.t/ lies between the “amplitude

envelope” curves x D �Ce�pt and x D Ce�pt and touches them when !1t � ˛ is

an integral multiple of � . The motion is not actually periodic, but it is nevertheless

useful to call !1 its circular frequency (more properly, its pseudofrequency), T1D

2�=!1 its pseudoperiod of oscillation, and Ce�pt its time-varying amplitude.

Most of these quantities are shown in the typical graph of underdamped motion in

Fig. 5.4.9. Note from Eq. (22) that in this case !1 is less than the undamped circular

frequency !0, so T1 is larger than the period T of oscillation of the same mass

without damping on the same spring. Thus the action of the dashpot has at least two

effects:

1. It exponentially damps the oscillations, in accord with the time-varying

amplitude.

2. It slows the motion; that is, the dashpot decreases the frequency of the motion.

As the following example illustrates, damping typically also delays the motion

further—that is, increases the time lag—as compared with undamped motion with

the same initial conditions.
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Example 2 Damped system The mass and spring of Example 1 are now attached also to a dashpot that

provides 1 N of resistance for each meter per second of velocity. The mass is set in motion

with the same initial position x.0/ D 1 and initial velocity x0.0/ D �5 as in Example 1. Now

find the position function of the mass, its new frequency and pseudoperiod of motion, its new

time lag, and the times of its first four passages through the initial position x D 0.

Solution Rather than memorizing the various formulas given in the preceding discussion, it is better

practice in a particular case to set up the differential equation and then solve it directly.

Recall that m D 1

2
and k D 50; we are now given c D 1 in mks units. Hence Eq. (4) is

1

2
x00 C x0 C 50x D 0; that is,

x00
C 2x0

C 100x D 0:

The characteristic equation r2C 2rC 100D .r C 1/2C 99D 0 has roots r1, r2 D�1˙
p
99 i ,

so the general solution is

x.t/ D e�t .A cos
p
99 t C B sin

p
99 t/: (24)

Consequently, the new circular (pseudo)frequency is !1 D
p
99 � 9:9499 (as compared with

!0 D 10 in Example 1). The new (pseudo)period and frequency are

T1 D
2�

!1

D
2�
p
99
� 0.6315 s

and

�1 D
1

T1

D
!1

2�
D

p
99

2�
� 1.5836 Hz

(as compared with T � 0:6283 < T1 and � � 1:5915 > �1 in Example 1).

We now impose the initial conditions x.0/D 1 and x0.0/D�5 on the position function

in (23) and the resulting velocity function

x0.t/ D �e�t .A cos
p
99 t C B sin

p
99 t/C

p
99 e�t .�A sin

p
99 t C B cos

p
99 t/:

It follows that

x.0/ D A D 1 and x0.0/ D �AC B
p
99 D �5;

whence we find that A D 1 and B D �4=
p
99. Thus the new position function of the body is

x.t/ D e�t

�

cos
p
99 t �

4
p
99

sin
p
99 t

�

:

Hence its time-varying amplitude of motion is

C1e
�t
D

s

.1/2 C

�

�
4
p
99

�

2

e�t
D

r

115

99
e�t :

We therefore write

x.t/ D

p
115
p
99
e�t

 p
99

p
115

cos
p
99 t �

4
p
115

sin
p
99 t

!

D

r

115

99
e�t cos.

p
99 t � ˛1/;

where the phase angle ˛1 satisfies

cos˛1 D

p
99

p
115

> 0 and sin˛1 D �
4
p
115

< 0:

Hence ˛1 is the fourth-quadrant angle

˛1 D 2� C tan�1

 

�4=
p
115

p
99=
p
115

!

D 2� � tan�1

�

4
p
99

�

� 5:9009;
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and the time lag of the motion is

ı1 D
˛1

!1

� 0.5931 s

(as compared with ı � 0:5820 < ı1 in Example 1). With the time-varying amplitude and

approximate phase angle shown explicitly, the position function of the mass takes the form

x.t/ �

r

115

99
e�t cos.

p
99 t � 5:9009/; (25)

and its graph is the damped exponential that is shown in Fig. 5.4.10 (in comparison with the

undamped oscillations of Example 1).

From (24) we see that the mass passes through its equilibrium position x D 0 when

cos.!1t � ˛1/ D 0, and thus when

!1t � ˛1 D �
3�

2
; �

�

2
;

�

2
;

3�

2
; : : : I

that is, when

t D ı1 �
3�

2!1

; ı1 �
�

2!1

; ı1 C
�

2!1

; ı1 C
3�

2!1

; : : : :

We see similarly that the undamped mass of Example 1 passes through equilibrium when

t D ı0 �
3�

2!0

; ı0 �
�

2!0

; ı0 C
�

2!0

; ı0 C
3�

2!0

; : : : :

The following table compares the first four values t1; t2; t3; t4 we calculate for the undamped

and damped cases, respectively.

n 1 2 3 4

tn (undamped) 0.1107 0.4249 0.7390 1.0532

tn (damped) 0.1195 0.4352 0.7509 1.0667

Accordingly, in Fig. 5.4.11 (where only the first three equilibrium passages are shown) we

see the damped oscillations lagging slightly behind the undamped ones.

t

1

x

1 2 3

–1

x = C1e–t

FIGURE 5.4.10. Graphs of the position function x.t/ D
C1e

�t cos.!1t � ˛1/ of Example 2 (damped oscillations), the
position function x.t/ D C cos.!0t � ˛/ of Example 1 (undamped
oscillations), and the envelope curves x.t/ D ˙C1e

�t .

x(t) = C1e–t cos (ω1t – α1)

0.25 0.5
t

1

x

–1

x = C1e–t
x(t) = C cos (ω0t – α)

FIGURE 5.4.11. Graphs on the interval 0 � t � 0:8 illustrating the
additional delay associated with damping.
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5.4 Problems
1. Determine the period and frequency of the simple har-

monic motion of a 4-kg mass on the end of a spring with

spring constant 16 N=m.

2. Determine the period and frequency of the simple har-

monic motion of a body of mass 0:75 kg on the end of

a spring with spring constant 48 N=m.

3. A mass of 3 kg is attached to the end of a spring that is

stretched 20 cm by a force of 15 N. It is set in motion with

initial position x0 D 0 and initial velocity v0 D �10 m=s.

Find the amplitude, period, and frequency of the resulting

motion.

4. A body with mass 250 g is attached to the end of a spring

that is stretched 25 cm by a force of 9 N. At time t D 0 the

body is pulled 1 m to the right, stretching the spring, and

set in motion with an initial velocity of 5 m=s to the left.

(a) Find x.t/ in the form C cos.!0t � ˛/. (b) Find the

amplitude and period of motion of the body.

Simple Pendulum

In Problems 5 through 8, assume that the differential equation

of a simple pendulum of length L is L� 00 C g� D 0, where

g D GM=R2 is the gravitational acceleration at the location

of the pendulum (at distance R from the center of the earth; M

denotes the mass of the earth).

5. Two pendulums are of lengths L1 and L2 and—when lo-

cated at the respective distances R1 and R2 from the cen-

ter of the earth—have periods p1 and p2. Show that

p1

p2

D
R1

p
L1

R2

p
L2

:

6. A certain pendulum keeps perfect time in Paris, where the

radius of the earth is R D 3956 (mi). But this clock loses

2 min 40 s per day at a location on the equator. Use the

result of Problem 5 to find the amount of the equatorial

bulge of the earth.

7. A pendulum of length 100:10 in., located at a point at

sea level where the radius of the earth is R D 3960 (mi),

has the same period as does a pendulum of length 100:00

in. atop a nearby mountain. Use the result of Problem 5 to

find the height of the mountain.

8. Most grandfather clocks have pendulums with adjustable

lengths. One such clock loses 10 min per day when the

length of its pendulum is 30 in. With what length pendu-

lum will this clock keep perfect time?

9. Derive Eq. (5) describing the motion of a mass attached to

the bottom of a vertically suspended spring. (Suggestion:

First denote by x.t/ the displacement of the mass below

the unstretched position of the spring; set up the differ-

ential equation for x. Then substitute y D x � s0 in this

differential equation.)

10. Floating buoy Consider a floating cylindrical buoy with

radius r , height h, and uniform density � 5 0:5 (recall that

the density of water is 1 g=cm3). The buoy is initially

suspended at rest with its bottom at the top surface of the

water and is released at time t D 0. Thereafter it is acted

on by two forces: a downward gravitational force equal to

its weight mg D ��r2hg and (by Archimedes’ principle

of buoyancy) an upward force equal to the weight �r2xg

of water displaced, where x D x.t/ is the depth of the bot-

tom of the buoy beneath the surface at time t (Fig. 5.4.12).

Assume that friction is negligible. Conclude that the buoy

undergoes simple harmonic motion around its equilibrium

position xe D �h with period p D 2�
p

�h=g. Compute

p and the amplitude of the motion if � D 0:5 g=cm3,

h D 200 cm, and g D 980 cm=s2.

11. Floating buoy A cylindrical buoy weighing 100 lb (thus

of mass m D 3:125 slugs in ft-lb-s (fps) units) floats in

water with its axis vertical (as in Problem 10). When de-

pressed slightly and released, it oscillates up and down

four times every 10 s. Find the radius of the buoy.

12. Hole through the earth Assume that the earth is a solid

sphere of uniform density, with mass M and radius R D

3960 (mi). For a particle of mass m within the earth at dis-

tance r from the center of the earth, the gravitational force

attracting m toward the center is Fr D �GMrm=r
2, where

Mr is the mass of the part of the earth within a sphere of

radius r (Fig. 5.4.13). (a) Show that Fr D �GMmr=R3.

Waterline

r

x

h

FIGURE 5.4.12. The buoy of Problem 10.

R

r

m

FR

FIGURE 5.4.13. A mass m falling down a hole

through the center of the earth (Problem 12).
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(b) Now suppose that a small hole is drilled straight

through the center of the earth, thus connecting two an-

tipodal points on its surface. Let a particle of mass m

be dropped at time t D 0 into this hole with initial speed

zero, and let r.t/ be its distance from the center of the

earth at time t , where we take r < 0 when the mass is

“below” the center of the earth. Conclude from New-

ton’s second law and part (a) that r 00.t/ D �k2r.t/, where

k2 D GM=R3 D g=R. (c) Take g D 32:2 ft=s2, and con-

clude from part (b) that the particle undergoes simple har-

monic motion back and forth between the ends of the hole,

with a period of about 84min. (d) Look up (or derive) the

period of a satellite that just skims the surface of the earth;

compare with the result in part (c). How do you explain

the coincidence? Or is it a coincidence? (e) With what

speed (in miles per hour) does the particle pass through

the center of the earth? (f) Look up (or derive) the or-

bital velocity of a satellite that just skims the surface of

the earth; compare with the result in part (e). How do you

explain the coincidence? Or is it a coincidence?

13. Suppose that the mass in a mass–spring–dashpot system

with m D 10, c D 9, and k D 2 is set in motion with

x.0/ D 0 and x0.0/ D 5. (a) Find the position func-

tion x.t/ and show that its graph looks as indicated in

Fig. 5.4.14. (b) Find how far the mass moves to the

right before starting back toward the origin.

14. Suppose that the mass in a mass–spring–dashpot system

with m D 25, c D 10, and k D 226 is set in motion with

x.0/ D 20 and x0.0/ D 41. (a) Find the position func-

tion x.t/ and show that its graph looks as indicated in

Fig. 5.4.15. (b) Find the pseudoperiod of the oscilla-

tions and the equations of the “envelope curves” that are

dashed in the figure.

Free Damped Motion

The remaining problems in this section deal with free damped

motion. In Problems 15 through 21, a mass m is attached

to both a spring (with given spring constant k) and a dash-

pot (with given damping constant c). The mass is set in mo-

tion with initial position x0 and initial velocity v0. Find the

position function x.t/ and determine whether the motion is

overdamped, critically damped, or underdamped. If it is un-

derdamped, write the position function in the form x.t/ D

C1e
�pt cos.!1t � ˛1/. Also, find the undamped position

function u.t/ D C0 cos.!0t � ˛0/ that would result if the mass

on the spring were set in motion with the same initial position

and velocity, but with the dashpot disconnected (so c D 0). Fi-

nally, construct a figure that illustrates the effect of damping

by comparing the graphs of x.t/ and u.t/.

15. m D 1

2
, c D 3, k D 4; x0 D 2, v0 D 0

16. m D 3, c D 30, k D 63; x0 D 2, v0 D 2

17. m D 1, c D 8, k D 16; x0 D 5, v0 D �10

18. m D 2, c D 12, k D 50; x0 D 0, v0 D �8

19. m D 4, c D 20, k D 169; x0 D 4, v0 D 16

20. m D 2, c D 16, k D 40; x0 D 5, v0 D 4

21. m D 1, c D 10, k D 125; x0 D 6, v0 D 50

22. Vertical damped motion A 12-lb weight (mass m D

0:375 slugs in fps units) is attached both to a vertically

suspended spring that it stretches 6 in. and to a dashpot

that provides 3 lb of resistance for every foot per second

of velocity. (a) If the weight is pulled down 1 ft below

its static equilibrium position and then released from rest

at time t D 0, find its position function x.t/. (b) Find the

frequency, time-varying amplitude, and phase angle of the

motion.

23. Car suspension This problem deals with a highly sim-

plified model of a car of weight 3200 lb (mass m D 100

slugs in fps units). Assume that the suspension system

acts like a single spring and its shock absorbers like a sin-

gle dashpot, so that its vertical vibrations satisfy Eq. (4)

with appropriate values of the coefficients. (a) Find the

stiffness coefficient k of the spring if the car undergoes

free vibrations at 80 cycles per minute (cycles=min) when

its shock absorbers are disconnected. (b) With the shock

absorbers connected, the car is set into vibration by driv-

ing it over a bump, and the resulting damped vibrations

have a frequency of 78 cycles=min. After how long will

the time-varying amplitude be 1% of its initial value?

Problems 24 through 34 deal with a mass–spring–dashpot sys-

tem having position function x.t/ satisfying Eq. (4). We write

0 10 15 205
t

x

5

0

–2

1

2

3

4

–1

FIGURE 5.4.14. The position function x.t/

of Problem 13.

t

x

0 5 10 15 20

0

–20

10

–10

20

FIGURE 5.4.15. The position function x.t/

of Problem 14.
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x0 D x.0/ and v0 D x0.0/ and recall that p D c=.2m/, !2

0
D

k=m, and !2

1
D !2

0
� p2. The system is critically damped,

overdamped, or underdamped, as specified in each problem.

24. (Critically damped) Show in this case that

x.t/ D .x0 C v0t C px0t /e
�pt :

25. (Critically damped) Deduce from Problem 24 that the

mass passes through x D 0 at some instant t > 0 if and

only if x0 and v0 C px0 have opposite signs.

26. (Critically damped) Deduce from Problem 24 that x.t/ has

a local maximum or minimum at some instant t > 0 if and

only if v0 and v0 C px0 have the same sign.

27. (Overdamped) Show in this case that

x.t/ D
1

2

�

.v0 � r2x0/e
r1t
� .v0 � r1x0/e

r2t
�

;

where r1; r2 D �p ˙
p

p2 � !2

0
and  D .r1 � r2/=2 > 0.

28. (Overdamped) If x0 D 0, deduce from Problem 27 that

x.t/ D
v0


e�pt sinh  t:

29. (Overdamped) Prove that in this case the mass can pass

through its equilibrium position x D 0 at most once.

30. (Underdamped) Show that in this case

x.t/ D e�pt

�

x0 cos!1t C
v0 C px0

!1

sin!1t

�

:

31. (Underdamped) If the damping constant c is small in com-

parison with
p
8mk, apply the binomial series to show that

!1 � !0

 

1 �
c2

8mk

!

:

32. (Underdamped) Show that the local maxima and minima

of

x.t/ D Ce�pt cos.!1t � ˛/

occur where

tan.!1t � ˛/ D �
p

!1

:

Conclude that t2 � t1 D 2�=!1 if two consecutive maxima

occur at times t1 and t2.

33. (Underdamped) Let x1 and x2 be two consecutive local

maximum values of x.t/. Deduce from the result of Prob-

lem 32 that

ln
x1

x2

D
2�p

!1

:

The constant�D 2�p=!1 is called the logarithmic decre-

ment of the oscillation. Note also that c D m!1�=� be-

cause p D c=.2m/.

Note: The result of Problem 33 provides an accurate method

for measuring the viscosity of a fluid, which is an important

parameter in fluid dynamics but is not easy to measure directly.

According to Stokes’s drag law, a spherical body of radius a

moving at a (relatively slow) speed through a fluid of viscosity

� experiences a resistive force F
R
D 6��av. Thus if a spheri-

cal mass on a spring is immersed in the fluid and set in motion,

this drag resistance damps its oscillations with damping con-

stant c D 6�a�. The frequency !1 and logarithmic decrement

� of the oscillations can be measured by direct observation.

The final formula in Problem 33 then gives c and hence the

viscosity of the fluid.

34. (Underdamped) A body weighing 100 lb (massmD 3:125

slugs in fps units) is oscillating attached to a spring and

a dashpot. Its first two maximum displacements of 6:73

in. and 1:46 in. are observed to occur at times 0:34 s and

1:17 s, respectively. Compute the damping constant (in

pound-seconds per foot) and spring constant (in pounds

per foot).

Differential Equations and Determinism
Given a mass m, a dashpot constant c, and a spring constant

k, Theorem 2 of Section 5.1 implies that the equation

mx00
C cx0

C kx D 0 (26)

has a unique solution for t = 0 satisfying given initial condi-

tions x.0/D x0, x0.0/D v0. Thus the future motion of an ideal

mass–spring–dashpot system is completely determined by the

differential equation and the initial conditions. Of course in

a real physical system it is impossible to measure the param-

eters m, c, and k precisely. Problems 35 through 38 explore

the resulting uncertainty in predicting the future behavior of a

physical system.

35. Suppose that m D 1, c D 2, and k D 1 in Eq. (26). Show

that the solution with x.0/ D 0 and x0.0/ D 1 is

x1.t/ D te
�t :

36. Suppose that m D 1 and c D 2 but k D 1 � 10�2n. Show

that the solution of Eq. (26) with x.0/ D 0 and x0.0/ D 1

is

x2.t/ D 10
ne�t sinh 10�nt:

37. Suppose that m D 1 and c D 2 but that k D 1C 10�2n.

Show that the solution of Eq. (26) with x.0/ D 0 and

x0.0/ D 1 is

x3.t/ D 10
ne�t sin 10�nt:

38. Whereas the graphs of x1.t/ and x2.t/ resemble those

shown in Figs. 5.4.7 and 5.4.8, the graph of x3.t/ exhibits

damped oscillations like those illustrated in Fig. 5.4.9, but

with a very long pseudoperiod. Nevertheless, show that

for each fixed t > 0 it is true that

lim
n!1

x2.t/ D lim
n!1

x3.t/ D x1.t/:

Conclude that on a given finite time interval the three solu-

tions are in “practical” agreement if n is sufficiently large.
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5.5 Nonhomogeneous Equations and Undetermined Coefficients

We learned in Section 5.3 how to solve homogeneous linear equations with constant

coefficients, but we saw in Section 5.4 that an external force in a simple mechanical

system contributes a nonhomogeneous term to its differential equation. The general

nonhomogeneous nth-order linear equation with constant coefficients has the form

any
.n/
C an�1y

.n�1/
C � � � C a1y

0
C a0y D f .x/: (1)

By Theorem 5 of Section 5.2, a general solution of Eq. (1) has the form

y D yc C yp (2)

where the complementary function yc.x/ is a general solution of the associated

homogeneous equation

any
.n/
C an�1y

.n�1/
C � � � C a1y

0
C a0y D 0; (3)

and yp.x/ is a particular solution of Eq. (1). Thus our remaining task is to find yp .

The method of undetermined coefficients is a straightforward way of doing

this when the given function f .x/ in Eq. (1) is sufficiently simple that we can make

an intelligent guess as to the general form of yp . For example, suppose that f .x/

is a polynomial of degree m. Then, because the derivatives of a polynomial are

themselves polynomials of lower degree, it is reasonable to suspect a particular

solution

yp.x/ D Amx
m
C Am�1x

m�1
C � � � C A1x C A0

that is also a polynomial of degreem, but with as yet undetermined coefficients. We

may, therefore, substitute this expression for yp into Eq. (1), and then—by equating

coefficients of like powers of x on the two sides of the resulting equation—attempt

to determine the coefficients A0, A1, : : : ; Am so that yp will, indeed, be a particular

solution of Eq. (1).

Similarly, suppose that

f .x/ D a cos kx C b sin kx:

Then it is reasonable to expect a particular solution of the same form:

yp.x/ D A cos kx C B sin kx;

a linear combination with undetermined coefficients A and B . The reason is that

any derivative of such a linear combination of cos kx and sin kx has the same form.

We may therefore substitute this form of yp in Eq. (1), and then—by equating co-

efficients of cos kx and sin kx on both sides of the resulting equation—attempt to

determine the coefficients A and B so that yp will, indeed, be a particular solution.

It turns out that this approach does succeed whenever all the derivatives of

f .x/ have the same form as f .x/ itself. Before describing the method in full gener-

ality, we illustrate it with several preliminary examples.
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Example 1 Find a particular solution of y00 C 3y0 C 4y D 3x C 2.

Solution Here f .x/ D 3x C 2 is a polynomial of degree 1, so our guess is that

yp.x/ D Ax C B:

Then y0
p
D A and y00

p
D 0, so yp will satisfy the differential equation provided that

.0/C 3.A/C 4.Ax C B/ D 3x C 2;

that is,

.4A/x C .3AC 4B/ D 3x C 2

for all x. This will be true if the x-terms and constant terms on the two sides of this equation

agree. It therefore suffices for A and B to satisfy the two linear equations 4A D 3 and

3A C 4B D 2 that we readily solve for A D 3

4
and B D � 1

16
. Thus we have found the

particular solution

yp.x/ D
3

4
x � 1

16
:

Example 2 Find a particular solution of y00 � 4y D 2e3x .

Solution Any derivative of e3x is a constant multiple of e3x , so it is reasonable to try

yp.x/ D Ae
3x :

Then y00
p
D 9Ae3x , so the given differential equation will be satisfied provided that

9Ae3x
� 4.Ae3x/ D 2e3x

I

that is, 5A D 2, so that A D 2

5
. Thus our particular solution is yp.x/ D

2

5
e3x .

Example 3 Find a particular solution of 3y00 C y0 � 2y D 2 cos x.

Solution A first guess might be yp.x/ D A cos x, but the presence of y0 on the left-hand side signals

that we probably need a term involving sin x as well. So we try

yp.x/ D A cos x C B sin x;

y0
p
.x/ D �A sin x C B cos x;

y00
p
.x/ D �A cos x � B sin x:

Then substitution of yp and its derivatives into the given differential equation yields

3.�A cos x � B sin x/C .�A sin x C B cos x/ � 2.A cos x C B sin x/ D 2 cos x;

that is (collecting coefficients on the left),

.�5AC B/ cos x C .�A � 5B/ sin x D 2 cos x:

This will be true for all x provided that the cosine and sine terms on the two sides of this

equation agree. It therefore suffices for A and B to satisfy the two linear equations

�5A C B D 2,

�A � 5B D 0

with readily found solution A D � 5

13
, B D 1

13
. Hence a particular solution is

yp.x/ D �
5

13
cos x C 1

13
sin x:

The following example, which superficially resembles Example 2, indicates

that the method of undetermined coefficients is not always quite so simple as we

have made it appear.
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Example 4 Find a particular solution of y00 � 4y D 2e2x .

Solution If we try yp.x/ D Ae
2x , we find that

y00
p
� 4yp D 4Ae

2x
� 4Ae2x

D 0 ¤ 2e2x :

Thus, no matter how A is chosen, Ae2x cannot satisfy the given nonhomogeneous equation.

In fact, the preceding computation shows that Ae2x satisfies instead the associated homo-

geneous equation. Therefore, we should begin with a trial function yp.x/ whose derivative

involves both e2x and something else that can cancel upon substitution into the differential

equation to leave the e2x term that we need. A reasonable guess is

yp.x/ D Axe
2x ;

for which

y0
p
.x/ D Ae2x

C 2Axe2x and y00
p
.x/ D 4Ae2x

C 4Axe2x :

Substitution into the original differential equation yields

.4Ae2x
C 4Axe2x/ � 4.Axe2x/ D 2e2x :

The terms involving xe2x obligingly cancel, leaving only 4Ae2x D 2e2x , so that A D 1

2
.

Consequently, a particular solution is

yp.x/ D
1

2
xe2x :

The General Approach

Our initial difficulty in Example 4 resulted from the fact that f .x/ D 2e2x satisfies

the associated homogeneous equation. Rule 1, given shortly, tells what to do when

we do not have this difficulty, and Rule 2 tells what to do when we do have it.

The method of undetermined coefficients applies whenever the function f .x/

in Eq. (1) is a linear combination of (finite) products of functions of the following

three types:

1. A polynomial in x;

2. An exponential function erx; (4)

3. cos kx or sin kx.

Any such function, for example,

f .x/ D .3 � 4x2/e5x
� 4x3 cos 10x;

has the crucial property that only finitely many linearly independent functions ap-

pear as terms (summands) in f .x/ and its derivatives of all orders. In Rules 1 and

2 we assume that Ly D f .x/ is a nonhomogeneous linear equation with constant

coefficients and that f .x/ is a function of this kind.

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in f .x/ or in any of its derivatives satisfies

the associated homogeneous equation Ly D 0. Then take as a trial solution for

yp a linear combination of all linearly independent such terms and their deriva-

tives. Then determine the coefficients by substitution of this trial solution into

the nonhomogeneous equation Ly D f .x/.
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Note that this rule is not a theorem requiring proof; it is merely a procedure to

be followed in searching for a particular solution yp. If we succeed in finding yp ,

then nothing more need be said. (It can be proved, however, that this procedure will

always succeed under the conditions specified here.)

In practice we check the supposition made in Rule 1 by first using the charac-

teristic equation to find the complementary function yc , and then write a list of all

the terms appearing in f .x/ and its successive derivatives. If none of the terms in

this list duplicates a term in yc , then we proceed with Rule 1.

Example 5 Find a particular solution of

y00
C 4y D 3x3: (5)

Solution The (familiar) complementary solution of Eq. (5) is

yc.x/ D c1 cos 2x C c2 sin 2x:

The function f .x/D 3x3 and its derivatives are constant multiples of the linearly independent

functions x3, x2, x, and 1. Because none of these appears in yc , we try

yp D Ax
3
C Bx2

C Cx CD;

y0
p
D 3Ax2

C 2Bx C C;

y00
p
D 6Ax C 2B:

Substitution in Eq. (5) gives

y00
p
C 4yp D .6Ax C 2B/C 4.Ax

3
C Bx2

C Cx CD/

D 4Ax3
C 4Bx2

C .6AC 4C/x C .2B C 4D/ D 3x3:

We equate coefficients of like powers of x in the last equation to get

4A D 3; 4B D 0;

6AC 4C D 0; 2B C 4D D 0

with solution A D 3

4
, B D 0, C D �9

8
, and D D 0. Hence a particular solution of Eq. (5) is

yp.x/ D
3

4
x3
�

9

8
x:

Example 6 Solve the initial value problem

y00
� 3y0

C 2y D 3e�x
� 10 cos 3xI

y.0/ D 1; y0.0/ D 2:
(6)

Solution The characteristic equation r2 � 3r C 2D 0 has roots r D 1 and r D 2, so the complementary

function is

yc.x/ D c1e
x
C c2e

2x :

The terms involved in f .x/D 3e�x �10 cos 3x and its derivatives are e�x , cos 3x, and sin 3x.

Because none of these appears in yc , we try

yp D Ae�x C B cos 3x C C sin 3x;

y0
p
D �Ae�x � 3B sin 3x C 3C cos 3x;

y00
p
D Ae�x � 9B cos 3x � 9C sin 3x:

After we substitute these expressions into the differential equation in (6) and collect coeffi-

cients, we get

y00
p
� 3y0

p
C 2yp D 6Ae

�x
C .�7B � 9C/ cos 3x C .9B � 7C/ sin 3x

D 3e�x
� 10 cos 3x:
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We equate the coefficients of the terms involving e�x , those involving cos 3x, and those

involving sin 3x. The result is the system

6A D 3,

�7B � 9C D �10,

9B � 7C D 0

with solution A D 1

2
, B D 7

13
, and C D 9

13
. This gives the particular solution

yp.x/ D
1

2
e�x
C

7

13
cos 3x C 9

13
sin 3x;

which, however, does not have the required initial values in (6).

To satisfy those initial conditions, we begin with the general solution

y.x/ D yc.x/C yp.x/

D c1e
x
C c2e

2x
C

1

2
e�x
C

7

13
cos 3x C 9

13
sin 3x;

with derivative

y0.x/ D c1e
x
C 2c2e

2x
�

1

2
e�x
�

21

13
sin 3x C 27

13
cos 3x:

The initial conditions in (6) lead to the equations

y.0/ D c1 C c2 C
1

2
C

7

13
D 1;

y0.0/ D c1 C 2c2 �
1

2
C

27

13
D 2

with solution c1 D �
1

2
, c2 D

6

13
. The desired particular solution is therefore

y.x/ D �1

2
ex
C

6

13
e2x
C

1

2
e�x
C

7

13
cos 3x C 9

13
sin 3x:

Example 7 Find the general form of a particular solution of

y.3/
C 9y0

D x sin x C x2e2x : (7)

Solution The characteristic equation r3 C 9r D 0 has roots r D 0, r D �3i , and r D 3i . So the

complementary function is

yc.x/ D c1 C c2 cos 3x C c3 sin 3x:

The derivatives of the right-hand side in Eq. (7) involve the terms

cos x; sin x; x cos x; x sin x;

e2x ; xe2x ; and x2e2x :

Because there is no duplication with the terms of the complementary function, the trial solu-

tion takes the form

yp.x/ D A cos x C B sin x C Cx cos x CDx sin x C Ee2x
C Fxe2x

CGx2e2x :

Upon substituting yp in Eq. (7) and equating coefficients of like terms, we get seven equations

determining the seven coefficients A, B , C , D, E, F , and G.



5.5 Nonhomogeneous Equations and Undetermined Coefficients 319

The Case of Duplication

Now we turn our attention to the situation in which Rule 1 does not apply: Some of

the terms involved in f .x/ and its derivatives satisfy the associated homogeneous

equation. For instance, suppose that we want to find a particular solution of the

differential equation

.D � r/3y D .2x � 3/erx : (8)

Proceeding as in Rule 1, our first guess would be

yp.x/ D Ae
rx
C Bxerx : (9)

This form of yp.x/ will not be adequate because the complementary function of

Eq. (8) is

yc.x/ D c1e
rx
C c2xe

rx
C c3x

2erx ; (10)

so substitution of (9) in the left-hand side of (8) would yield zero rather than

.2x � 3/erx .

To see how to amend our first guess, we observe that

.D � r/2Œ.2x � 3/erx � D ŒD2.2x � 3/�erx
D 0

by Eq. (13) of Section 5.3. If y.x/ is any solution of Eq. (8) and we apply the

operator .D � r/2 to both sides, we see that y.x/ is also a solution of the equation

.D � r/5y D 0. The general solution of this homogeneous equation can be written

as

y.x/ D c1e
rx
C c2xe

rx
C c3x

2erx

„ ƒ‚ …

yc

CAx3erx
C Bx4erx

„ ƒ‚ …

yp

:

Thus every solution of our original equation in (8) is the sum of a complementary

function and a particular solution of the form

yp.x/ D Ax
3erx
C Bx4erx : (11)

Note that the right-hand side in Eq. (11) can be obtained by multiplying each term

of our first guess in (9) by the least positive integral power of x (in this case, x3)

that suffices to eliminate duplication between the terms of the resulting trial solution

yp.x/ and the complementary function yc.x/ given in (10). This procedure succeeds

in the general case.

To simplify the general statement of Rule 2, we observe that to find a particular

solution of the nonhomogeneous linear differential equation

Ly D f1.x/C f2.x/; (12)

it suffices to find separately particular solutions Y1.x/ and Y2.x/ of the two equa-

tions

Ly D f1.x/ and Ly D f2.x/; (13)

respectively. For linearity then gives

LŒY1 C Y2� D LY1 C LY2 D f1.x/C f2.x/;
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and therefore yp D Y1 C Y2 is a particular solution of Eq. (12). (This is a type of

“superposition principle” for nonhomogeneous linear equations.)

Now our problem is to find a particular solution of the equation Ly D f .x/,

where f .x/ is a linear combination of products of the elementary functions listed in

(4). Thus f .x/ can be written as a sum of terms each of the form

Pm.x/e
rx cos kx or Pm.x/e

rx sin kx; (14)

where Pm.x/ is a polynomial in x of degree m. Note that any derivative of such

a term is of the same form but with both sines and cosines appearing. The proce-

dure by which we arrived earlier at the particular solution in (11) of Eq. (8) can be

generalized to show that the following procedure is always successful.

RULE 2 Method of Undetermined Coefficients

If the function f .x/ is of either form in (14), take as the trial solution

yp.x/ D x
sŒ.A0 C A1x C A2x

2
C � � � C Amx

m/erx cos kx

C .B0 C B1x C B2x
2
C � � � C Bmx

m/erx sin kx�; (15)

where s is the smallest nonnegative integer such that no term in yp duplicates

a term in the complementary function yc . Then determine the coefficients in

Eq. (15) by substituting yp into the nonhomogeneous equation.

In practice we seldom need to deal with a function f .x/ exhibiting the full

generality in (14). The table in Fig. 5.5.1 lists the form of yp in various common

cases, corresponding to the possibilities m D 0, r D 0, and k D 0.

On the other hand, it is common to have

f .x/ D f1.x/C f2.x/;

where f1.x/ and f2.x/ are different functions of the sort listed in the table in

Fig. 5.5.1. In this event we take as yp the sum of the trial solutions for f1.x/

and f2.x/, choosing s separately for each part to eliminate duplication with the

complementary function. This procedure is illustrated in Examples 8 through 10.

Example 8 Find a particular solution of

y.3/
C y00

D 3ex
C 4x2: (16)

f .x/ yp

Pm.x/ D b0 C b1x C b2x
2 C � � � C bmx

m

a cos kx C b sin kx

erx.a cos kx C b sin kx/

Pm.x/e
rx

Pm.x/.a cos kx C b sin kx/

xs.A0 C A1x C A2x
2 C � � � C Amx

m/

xs.A cos kx C B sin kx/

xserx.A cos kx C B sin kx/

xs.A0 C A1x C A2x
2 C � � � C Amx

m/erx

xs Œ.A0 C A1x C � � � C Amx
m/ cos kx

C .B0 C B1x C � � � C Bmx
m/ sin kx�

FIGURE 5.5.1. Substitutions in the method of undetermined coefficients.
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Solution The characteristic equation r3 C r2 D 0 has roots r1 D r2 D 0 and r3 D �1, so the comple-

mentary function is

yc.x/ D c1 C c2x C c3e
�x :

As a first step toward our particular solution, we form the sum

.Aex/C .B C Cx CDx2/:

The part Aex corresponding to 3ex does not duplicate any part of the complementary func-

tion, but the part B C Cx CDx2 must be multiplied by x2 to eliminate duplication. Hence

we take

yp D Ae
x
C Bx2

C Cx3
CDx4;

y0
p
D Aex

C 2Bx C 3Cx2
C 4Dx3;

y00
p
D Aex

C 2B C 6Cx C 12Dx2; and

y
.3/

p
D Aex

C 6C C 24Dx:

Substitution of these derivatives in Eq. (16) yields

2Aex
C .2B C 6C/C .6C C 24D/x C 12Dx2

D 3ex
C 4x2:

The system of equations

2A D 3; 2B C 6C D 0;

6C C 24D D 0; 12D D 4

has the solution A D 3

2
, B D 4, C D �4

3
, and D D 1

3
. Hence the desired particular solution

is

yp.x/ D
3

2
ex
C 4x2

�
4

3
x3
C

1

3
x4:

Example 9 Determine the appropriate form for a particular solution of

y00
C 6y0

C 13y D e�3x cos 2x:

Solution The characteristic equation r2C 6r C 13D 0 has roots �3˙ 2i , so the complementary func-

tion is

yc.x/ D e
�3x.c1 cos 2x C c2 sin 2x/:

This is the same form as a first attempt e�3x.A cos 2x C B sin 2x/ at a particular solution, so

we must multiply by x to eliminate duplication. Hence we would take

yp.x/ D e
�3x.Ax cos 2x C Bx sin 2x/:

Example 10 Determine the appropriate form for a particular solution of the fifth-order equation

.D � 2/3.D2
C 9/y D x2e2x

C x sin 3x:

Solution The characteristic equation .r � 2/3.r2 C 9/ D 0 has roots r D 2, 2, 2, 3i , and �3i , so the

complementary function is

yc.x/ D c1e
2x
C c2xe

2x
C c3x

2e2x
C c4 cos 3x C c5 sin 3x:

As a first step toward the form of a particular solution, we examine the sum

Œ.AC Bx C Cx2/e2x �C Œ.D CEx/ cos 3x C .F CGx/ sin 3x�:

To eliminate duplication with terms of yc.x/, the first part—corresponding to

x2e2x—must be multiplied by x3, and the second part—corresponding to x sin 3x—must

be multiplied by x. Hence we would take

yp.x/ D .Ax
3
C Bx4

C Cx5/e2x
C .Dx CEx2/ cos 3x C .F x CGx2/ sin 3x:
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Variation of Parameters

Finally, let us point out the kind of situation in which the method of undetermined

coefficients cannot be used. Consider, for example, the equation

y00
C y D tan x; (17)

which at first glance may appear similar to those considered in the preceding ex-

amples. Not so; the function f .x/ D tan x has infinitely many linearly independent

derivatives

sec2 x; 2 sec2 x tan x; 4 sec2 x tan2 x C 2 sec4 x; : : : :

Therefore, we do not have available a finite linear combination to use as a trial

solution.

We discuss here the method of variation of parameters, which—in principle

(that is, if the integrals that appear can be evaluated)—can always be used to find a

particular solution of the nonhomogeneous linear differential equation

y.n/
C pn�1.x/y

.n�1/
C � � � C p1.x/y

0
C p0.x/y D f .x/; (18)

provided that we already know the general solution

yc D c1y1 C c2y2 C � � � C cnyn (19)

of the associated homogeneous equation

y.n/
C pn�1.x/y

.n�1/
C � � � C p1.x/y

0
C p0.x/y D 0: (20)

Here, in brief, is the basic idea of the method of variation of parameters. Sup-

pose that we replace the constants, or parameters, c1, c2, : : : ; cn in the complemen-

tary function in Eq. (19) with variables: functions u1, u2, : : : ; un of x. We ask

whether it is possible to choose these functions in such a way that the combination

yp.x/ D u1.x/y1.x/C u2.x/y2.x/C � � � C un.x/yn.x/ (21)

is a particular solution of the nonhomogeneous equation in (18). It turns out that

this is always possible.

The method is essentially the same for all orders n = 2, but we will describe

it in detail only for the case n D 2. So we begin with the second-order nonhomoge-

neous equation

LŒy� D y00
C P.x/y0

CQ.x/y D f .x/ (22)

with complementary function

yc.x/ D c1y1.x/C c2y2.x/ (23)

on some open interval I where the functions P and Q are continuous. We want to

find functions u1 and u2 such that

yp.x/ D u1.x/y1.x/C u2.x/y2.x/ (24)

is a particular solution of Eq. (22).
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One condition on the two functions u1 and u2 is that LŒyp� D f .x/. Because

two conditions are required to determine two functions, we are free to impose an

additional condition of our choice. We will do so in a way that simplifies the com-

putations as much as possible. But first, to impose the condition LŒyp� D f .x/, we

must compute the derivatives y0
p

and y00
p

. The product rule gives

y0
p
D .u1y

0
1
C u2y

0
2
/C .u0

1
y1 C u

0
2
y2/:

To avoid the appearance of the second derivatives u00
1

and u00
2
, the additional condition

that we now impose is that the second sum here must vanish:

u0
1
y1 C u

0
2
y2 D 0: (25)

Then

y0
p
D u1y

0
1
C u2y

0
2
; (26)

and the product rule gives

y00
p
D .u1y

00
1
C u2y

00
2
/C .u0

1
y0

1
C u0

2
y0

2
/: (27)

But both y1 and y2 satisfy the homogeneous equation

y00
C Py0

CQy D 0

associated with the nonhomogeneous equation in (22), so

y00
i
D �Py0

i
�Qyi (28)

for i D 1, 2. It therefore follows from Eq. (27) that

y00
p
D .u0

1
y0

1
C u0

2
y0

2
/ � P � .u1y

0
1
C u2y

0
2
/ �Q � .u1y1 C u2y2/:

In view of Eqs. (24) and (26), this means that

y00
p
D .u0

1
y0

1
C u0

2
y0

2
/ � Py0

p
�QypI

hence

LŒyp� D u
0
1
y0

1
C u0

2
y0

2
: (29)

The requirement that yp satisfy the nonhomogeneous equation in (22)—that is, that

LŒyp� D f .x/—therefore implies that

u0
1
y0

1
C u0

2
y0

2
D f .x/: (30)

Finally, Eqs. (25) and (30) determine the functions u1 and u2 that we need.

Collecting these equations, we obtain a system

u0
1
y1 C u

0
2
y2 D 0;

u0
1
y0

1
C u0

2
y0

2
D f .x/

(31)

of two linear equations in the two derivatives u0
1

and u0
2
. Note that the determinant

of coefficients in (31) is simply the Wronskian W.y1; y2/. Once we have solved
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the equations in (31) for the derivatives u0
1

and u0
2
, we integrate each to obtain the

functions u1 and u2 such that

yp D u1y1 C u2y2 (32)

is the desired particular solution of Eq. (22). In Problem 63 we ask you to carry

out this process explicitly and thereby verify the formula for yp.x/ in the following

theorem.

THEOREM 1 Variation of Parameters

If the nonhomogeneous equation y00CP.x/y0CQ.x/y D f .x/ has complemen-

tary function yc.x/ D c1y1.x/C c2y2.x/, then a particular solution is given by

yp.x/ D �y1.x/

Z

y2.x/f .x/

W.x/
dx C y2.x/

Z

y1.x/f .x/

W.x/
dx; (33)

where W D W.y1; y2/ is the Wronskian of the two independent solutions y1 and

y2 of the associated homogeneous equation.

Example 11 Find a particular solution of the equation y00 C y D tan x.

Solution The complementary function is yc.x/ D c1 cos x C c2 sin x, and we could simply substitute

directly in Eq. (33). But it is more instructive to set up the equations in (31) and solve for u0
1

and u0
2
, so we begin with

y1 D cos x; y2 D sin x;

y0
1
D � sin x; y0

2
D cos x:

Hence the equations in (31) are

.u0
1
/.cos x/C .u0

2
/.sin x/ D 0;

.u0
1
/.� sin x/C .u0

2
/.cos x/ D tan x:

We easily solve these equations for

u0
1
D � sin x tan x D �

sin2 x

cos x
D cos x � sec x;

u0
2
D cos x tan x D sin x:

Hence we take

u1 D

Z

.cos x � sec x/ dx D sin x � ln j sec x C tan xj

and

u2 D

Z

sin x dx D � cos x:

(Do you see why we choose the constants of integration to be zero?) Thus our particular

solution is

yp.x/ D u1.x/y1.x/C u2.x/y2.x/

D .sin x � ln jsec x C tan xj/ cos x C .� cos x/.sin x/I

that is,

yp.x/ D �.cos x/ ln jsec x C tan xj :
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5.5 Problems
In Problems 1 through 20, find a particular solution yp of the

given equation. In all these problems, primes denote deriva-

tives with respect to x.

1. y00 C 16y D e3x 2. y00 � y0 � 2y D 3x C 4

3. y00 � y0 � 6y D 2 sin 3x 4. 4y00 C 4y0 C y D 3xex

5. y00 C y0 C y D sin2 x 6. 2y00 C 4y0 C 7y D x2

7. y00 � 4y D sinh x 8. y00 � 4y D cosh 2x

9. y00 C 2y0 � 3y D 1C xex

10. y00 C 9y D 2 cos 3x C 3 sin 3x

11. y.3/ C 4y0 D 3x � 1 12. y.3/ C y0 D 2 � sin x

13. y00 C 2y0 C 5y D ex sin x 14. y.4/ � 2y00 C y D xex

15. y.5/ C 5y.4/ � y D 17 16. y00 C 9y D 2x2e3x C 5

17. y00 C y D sin x C x cos x

18. y.4/ � 5y00 C 4y D ex � xe2x

19. y.5/ C 2y.3/ C 2y00 D 3x2 � 1

20. y.3/ � y D ex C 7

In Problems 21 through 30, set up the appropriate form of a

particular solution yp , but do not determine the values of the

coefficients.

21. y00 � 2y0 C 2y D ex sin x

22. y.5/ � y.3/ D ex C 2x2 � 5

23. y00 C 4y D 3x cos 2x

24. y.3/ � y00 � 12y0 D x � 2xe�3x

25. y00 C 3y0 C 2y D x.e�x � e�2x/

26. y00 � 6y0 C 13y D xe3x sin 2x

27. y.4/ C 5y00 C 4y D sin x C cos 2x

28. y.4/ C 9y00 D .x2 C 1/ sin 3x

29. .D � 1/3.D2 � 4/y D xex C e2x C e�2x

30. y.4/ � 2y00 C y D x2 cos x

Solve the initial value problems in Problems 31 through 40.

31. y00 C 4y D 2x; y.0/ D 1, y0.0/ D 2

32. y00 C 3y0 C 2y D ex ; y.0/ D 0, y0.0/ D 3

33. y00 C 9y D sin 2x; y.0/ D 1, y0.0/ D 0

34. y00 C y D cos x; y.0/ D 1, y0.0/ D �1

35. y00 � 2y0 C 2y D x C 1; y.0/ D 3, y0.0/ D 0

36. y.4/ � 4y00 D x2; y.0/D y0.0/D 1, y00.0/D y.3/.0/D�1

37. y.3/ � 2y00 C y0 D 1C xex ; y.0/ D y0.0/ D 0, y00.0/ D 1

38. y00 C 2y0 C 2y D sin 3x; y.0/ D 2, y0.0/ D 0

39. y.3/ C y00 D x C e�x ; y.0/ D 1, y0.0/ D 0, y00.0/ D 1

40. y.4/ � y D 5; y.0/ D y0.0/ D y00.0/ D y.3/.0/ D 0

41. Find a particular solution of the equation

y.4/
� y.3/

� y00
� y0
� 2y D 8x5:

42. Find the solution of the initial value problem consisting

of the differential equation of Problem 41 and the initial

conditions

y.0/ D y0.0/ D y00.0/ D y.3/.0/ D 0:

43. (a) Write

cos 3x C i sin 3x D e3ix
D .cos x C i sin x/3

by Euler’s formula, expand, and equate real and imag-

inary parts to derive the identities

cos3 x D 3

4
cos x C 1

4
cos 3x;

sin3 x D 3

4
sin x � 1

4
sin 3x:

(b) Use the result of part (a) to find a general solution of

y00
C 4y D cos3 x:

Use trigonometric identities to find general solutions of the

equations in Problems 44 through 46.

44. y00 C y0 C y D sin x sin 3x

45. y00 C 9y D sin4 x

46. y00 C y D x cos3 x

In Problems 47 through 56, use the method of variation of pa-

rameters to find a particular solution of the given differential

equation.

47. y00 C 3y0 C 2y D 4ex 48. y00�2y0�8y D 3e�2x

49. y00 � 4y0 C 4y D 2e2x 50. y00 � 4y D sinh 2x

51. y00 C 4y D cos 3x 52. y00 C 9y D sin 3x

53. y00 C 9y D 2 sec 3x 54. y00 C y D csc2 x

55. y00 C 4y D sin2 x 56. y00 � 4y D xex

57. You can verify by substitution that yc D c1x C c2x
�1 is a

complementary function for the nonhomogeneous second-

order equation

x2y00
C xy0

� y D 72x5:

But before applying the method of variation of parame-

ters, you must first divide this equation by its leading co-

efficient x2 to rewrite it in the standard form

y00
C
1

x
y0
�
1

x2
y D 72x3:

Thus f .x/ D 72x3 in Eq. (22). Now proceed to solve the

equations in (31) and thereby derive the particular solution

yp D 3x
5.

In Problems 58 through 62, a nonhomogeneous second-order

linear equation and a complementary function yc are given.

Apply the method of Problem 57 to find a particular solution

of the equation.

58. x2y00 � 4xy0 C 6y D x3; yc D c1x
2 C c2x

3

59. x2y00 � 3xy0 C 4y D x4; yc D x
2.c1 C c2 ln x/

60. 4x2y00 � 4xy0 C 3y D 8x4=3; yc D c1x C c2x
3=4

61. x2y00 C xy0 C y D ln x; yc D c1 cos.ln x/C c2 sin.ln x/

62. .x2 � 1/y00 � 2xy0 C 2y D x2 � 1; yc D c1xC c2.1C x
2/

63. Carry out the solution process indicated in the text to

derive the variation of parameters formula in (33) from

Eqs. (31) and (32).

64. Apply the variation of parameters formula in (33) to find

the particular solution yp.x/ D �x cos x of the nonhomo-

geneous equation y00 C y D 2 sin x.
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Go to goo.gl/0hPCVi to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

5.5 Application Automated Variation of Parameters

The variation of parameters formula in (33) is especially amenable to implementa-

tion in a computer algebra system when the indicated integrals would be too tedious

or inconvenient for manual evaluation. For example, suppose that we want to find a

particular solution of the nonhomogeneous equation

y00
C y D tan x

of Example 11, with complementary function yc.x/ D c1 cos x C c2 sin x. Then the

Maple commands

y1 := cos(x):

y2 := sin(x):

f := tan(x):

W := y1*diff(y2,x) -- y2*diff(y1,x):

W := simplify(W):

yp := --y1*int(y2*f/W,x) + y2*int(y1*f/W,x):

simplify(yp);

implement (33) and produce the result

yp.x/ D �.cos x/ ln

�

1C sin x

cos x

�

equivalent to the result yp.x/ D �.cos x/ ln.secx C tan x/ found in Example 11.

The analogous Mathematica commands

y1 = Cos[x];

y2 = Sin[x];

f = Tan[x];

W = y1*D[y2,x] -- y2*D[y1,x] // Simplify

yp = --y1*Integrate[y2*f/W,x] + y2*Integrate[y1*f/W,x];

Simplify[yp]

produce the result

yp.x/ D �.cos x/ ln

�

cos.x=2/C sin.x=2/

cos.x=2/� sin.x=2/

�

;

which (by the usual difference-of-squares technique) also is equivalent to the result

found in Example 11.

To solve similarly a second-order linear equation y00 C P.x/y0 C Q.x/y D

f .x/whose complementary function yc.x/D c1y1.x/C c2y2.x/ is known, we need

only insert the corresponding definitions of y1.x/, y2.x/, and f .x/ in the initial

lines shown here. Find in this way the indicated particular solution yp.x/ of the

nonhomogeneous equations in Problems 1 through 6.

1. y00 C y D 2 sin x yp.x/ D �x cos x

2. y00 C y D 4x sin x yp.x/ D x sin x � x2 cos x

3. y00 C y D 12x2 sin x yp.x/ D 3x
2 sin x C .3x � 2x3/ cos x

4. y00 � 2y0 C 2y D 2ex sin x yp.x/ D �xe
x cos x

5. y00 � 2y0 C 2y D 4xex sin x yp.x/ D e
x.x sin x � x2 cos x/

6. y00 � 2y0 C 2y D 12x2ex sin x yp.x/ D e
x

�

3x2 sin x C .3x � 2x3/ cos x
�
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5.6 Forced Oscillations and Resonance

In Section 5.4 we derived the differential equation

mx00
C cx0

C kx D F.t/ (1)

that governs the one-dimensional motion of a mass m that is attached to a spring

(with constant k) and a dashpot (with constant c) and is also acted on by an external

force F.t/. Machines with rotating components commonly involve mass-spring

systems (or their equivalents) in which the external force is simple harmonic:

F.t/ D F0 cos!t or F.t/ D F0 sin!t; (2)

where the constant F0 is the amplitude of the periodic force and ! is its circular

frequency.

For an example of how a rotating machine component can provide a sim-

ple harmonic force, consider the cart with a rotating vertical flywheel shown in

Fig. 5.6.1. The cart has mass m �m0, not including the flywheel of mass m0. The

centroid of the flywheel is off center at a distance a from its center, and its angular

speed is ! radians per second. The cart is attached to a spring (with constant k)

Equilibrium

position

x

k

m0a

ω t

FIGURE 5.6.1. The cart-with-
flywheel system.

as shown. Assume that the centroid of the cart itself is directly beneath the center

of the flywheel, and denote by x.t/ its displacement from its equilibrium position

(where the spring is unstretched). Figure 5.6.1 helps us to see that the displacement

x of the centroid of the combined cart plus flywheel is given by

x D
.m �m0/x Cm0.x C a cos!t/

m
D x C

m0a

m
cos!t:

Let us ignore friction and apply Newton’s second law mx00
D �kx, because the

force exerted by the spring is �kx. We substitute for x in the last equation to obtain

mx00
�m0a!

2 cos!t D �kxI

that is,

mx00
C kx D m0a!

2 cos!t: (3)

Thus the cart with its rotating flywheel acts like a mass on a spring under the in-

fluence of a simple harmonic external force with amplitude F0 D m0a!
2. Such a

system is a reasonable model of a front-loading washing machine with the clothes

being washed loaded off center. This illustrates the practical importance of analyz-

ing solutions of Eq. (1) with external forces as in (2).

Undamped Forced Oscillations

To study undamped oscillations under the influence of the external force F.t/ D

F0 cos!t , we set c D 0 in Eq. (1), and thereby begin with the equation

mx00
C kx D F0 cos!t (4)

whose complementary function is xc D c1 cos!0t C c2 sin!0t . Here

!0 D

r

k

m
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(as in Eq. (9) of Section 5.4) is the (circular) natural frequency of the mass–spring

system. The fact that the angle !0t is measured in (dimensionless) radians reminds

us that if t is measured in seconds (s), then !0 is measured in radians per second—

that is, in inverse seconds (s�1). Also recall from Eq. (14) in Section 5.4 that di-

vision of a circular frequency ! by the number 2� of radians in a cycle gives the

corresponding (ordinary) frequency � D !=2� in Hz (hertz D cycles per second).

Let us assume initially that the external and natural frequencies are unequal:

! 6D !0. We substitute xp D A cos!t in Eq. (4) to find a particular solution. (No

sine term is needed in xp because there is no term involving x0 on the left-hand side

in Eq. (4).) This gives

�m!2A cos!t C kA cos!t D F0 cos!t;

so

A D
F0

k �m!2
D

F0=m

!2

0
� !2

; (5)

and thus

xp.t/ D
F0=m

!2

0
� !2

cos!t: (6)

Therefore, the general solution x D xc C xp is given by

x.t/ D c1 cos!0t C c2 sin!0t C
F0=m

!2

0
� !2

cos!t; (7)

where the constants c1 and c2 are determined by the initial values x.0/ and x0.0/.

Equivalently, as in Eq. (12) of Section 5.4, we can rewrite Eq. (7) as

x.t/ D C cos.!0t � ˛/C
F0=m

!2

0
� !2

cos!t; (8)

so we see that the resulting motion is a superposition of two oscillations, one with

natural circular frequency !0, the other with the frequency ! of the external force.

Example 1 Suppose that m D 1, k D 9, F0 D 80, and ! D 5, so the differential equation in (4) is

x00
C 9x D 80 cos 5t:

Find x.t/ if x.0/ D x0.0/ D 0.

Solution Here the natural frequency !0 D 3 and the frequency ! D 5 of the external force are unequal,

as in the preceding discussion. First we substitute xp D A cos 5t in the differential equation

and find that �25AC 9A D 80, so that A D �5. Thus a particular solution is

xp.t/ D �5 cos 5t:

The complementary function is xc D c1 cos 3t C c2 sin 3t , so the general solution of the given

nonhomogeneous equation is

x.t/ D c1 cos 3t C c2 sin 3t � 5 cos 5t;

with derivative

x0.t/ D �3c1 sin 3t C 3c2 cos 3t C 25 sin 5t:

The initial conditions x.0/ D 0 and x0.0/ D 0 now yield c1 D 5 and c2 D 0, so the desired

particular solution is

x.t/ D 5 cos 3t � 5 cos 5t:

As indicated in Fig. 5.6.2, the period of x.t/ is the least common multiple 2� of the periods

2�=3 and 2�=5 of the two cosine terms.

6π3π 5π4ππ 2π

Period = 2π

0
t

x

15

0

–15

5

–10

10

–5

FIGURE 5.6.2. The response x.t/ D
5 cos 3t � 5 cos 5t in Example 1.
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Beats

If we impose the initial conditions x.0/ D x0.0/ D 0 on the solution in (7), we find

that

c1 D �
F0

m.!2

0
� !2/

and c2 D 0;

so the particular solution is

x.t/ D
F0

m.!2

0
� !2/

.cos!t � cos!0t /: (9)

The trigonometric identity 2 sinA sinB D cos.A � B/ � cos.AC B/, applied with

A D 1

2
.!0 C !/t and B D 1

2
.!0 � !/t , enables us to rewrite Eq. (9) in the form

x.t/ D
2F0

m.!2

0
� !2/

sin 1

2
.!0 � !/t sin 1

2
.!0 C !/t: (10)

Suppose now that ! � !0, so that !0C! is very large in comparison with j!0 �!j.

Then sin 1

2
.!0C!/t is a rapidly varying function, whereas sin 1

2
.!0�!/t is a slowly

varying function. We may therefore interpret Eq. (10) as a rapid oscillation with

circular frequency 1

2
.!0 C !/,

x.t/ D A.t/ sin 1

2
.!0 C !/t;

but with a slowly varying amplitude

A.t/ D
2F0

m.!2

0
� !2/

sin 1

2
.!0 � !/t:

Example 2 With m D 0:1, F0 D 50, !0 D 55, and ! D 45, Eq. (10) gives

x.t/ D sin 5t sin 50t:

Figure 5.6.3 shows the corresponding oscillation of frequency 1

2
.!0 C !/ D 50 that is “mod-

3.02.52.01.51.00.5
t

x = sin 5t

x = sin 5t sin 50t

x

0.0

–1.0

–1.5

1.5

1.0

0.5

0.0

–0.5

FIGURE 5.6.3. The phenomenon of

beats.

ulated” by the amplitude function A.t/ D sin 5t of frequency 1

2
.!0 � !/ D 5.

A rapid oscillation with a (comparatively) slowly varying periodic amplitude

exhibits the phenomenon of beats. For example, if two horns not exactly attuned

to one another simultaneously play their middle C, one at !0=.2�/ D 258 Hz and

the other at !=.2�/ D 254 Hz, then one hears a beat—an audible variation in the

amplitude of the combined sound—with a frequency of

.!0 � !/=2

2�
D
258 � 254

2
D 2 (Hz):

Resonance

Looking at Eq. (6), we see that the amplitude A of xp is large when the natural and

external frequencies !0 and ! are approximately equal. It is sometimes useful to

rewrite Eq. (5) in the form

A D
F0

k �m!2
D

F0=k

1 � .!=!0/2
D ˙

�F0

k
; (11)
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where F0=k is the static displacement of a spring with constant k due to a constant

force F0, and the amplification factor � is defined to be

� D
1

j1 � .!=!0/2j
: (12)

It is clear that � ! C1 as ! ! !0. This is the phenomenon of resonance—the

increase without bound (as !! !0) in the amplitude of oscillations of an undamped

system with natural frequency !0 in response to an external force with frequency

! � !0.

We have been assuming that ! ¤ !0. What sort of catastrophe should one

expect if ! and !0 are precisely equal? Then Eq. (4), upon division of each term by

m, becomes

x00
C !2

0
x D

F0

m
cos!0t: (13)

Because cos!0t is a term of the complementary function, the method of undeter-

mined coefficients calls for us to try

xp.t/ D t .A cos!0t C B sin!0t /:

We substitute this in Eq. (13) and thereby find that A D 0 and B D F0=.2m!0/.

Hence the particular solution is

xp.t/ D
F0

2m!0

t sin!0t: (14)

The graph of xp.t/ in Fig. 5.6.4 (in which m D 1, F0 D 100, and !0 D 50) shows

vividly how the amplitude of the oscillation theoretically would increase without

bound in this case of pure resonance, ! D !0. We may interpret this phenomenon

as reinforcement of the natural vibrations of the system by externally impressed

1.501.251.000.750.500.25
t

x = t

x = t sin 50t

x

0.00
–1.5

–1.0

–0.5

1.5

1.0

0.5

0.0

FIGURE 5.6.4. The phenomenon of
resonance.

vibrations at the same frequency.

Example 3 Cart with rotating flywheel Suppose that m D 5 kg and k D 500 N=m in the cart with

the flywheel of Fig. 5.6.1. Then the natural frequency is !0 D
p

k=m D 10 rad=s; that is,

10=.2�/ � 1:59 Hz. We would therefore expect oscillations of very large amplitude to occur

if the flywheel revolves at about .1:59/.60/ � 95 revolutions per minute (rpm).

In practice, a mechanical system with very little damping can be destroyed by

resonance vibrations. A spectacular example can occur when a column of soldiers

marches in step over a bridge. Any complicated structure such as a bridge has many

natural frequencies of vibration. If the frequency of the soldiers’ cadence is approx-

imately equal to one of the natural frequencies of the structure, then—just as in our

simple example of a mass on a spring—resonance will occur. Indeed, the resulting

resonance vibrations can be of such large amplitude that the bridge will collapse.

This has actually happened—for example, the collapse of Broughton Bridge near

Manchester, England, in 1831—and it is the reason for the now-standard practice

of breaking cadence when crossing a bridge. Resonance may have been involved

in the 1981 Kansas City disaster in which a hotel balcony (called a skywalk) col-

lapsed with dancers on it. The collapse of a building in an earthquake is sometimes

due to resonance vibrations caused by the ground oscillating at one of the natural

frequencies of the structure; this happened to many buildings in the Mexico City

earthquake of September 19, 1985. On occasion an airplane has crashed because of

resonant wing oscillations caused by vibrations of the engines. It is reported that
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for some of the first commercial jet aircraft, the natural frequency of the vertical

vibrations of the airplane during turbulence was almost exactly that of the mass–

spring system consisting of the pilot’s head (mass) and spine (spring). Resonance

occurred, causing pilots to have difficulty in reading the instruments. Large modern

commercial jets have different natural frequencies, so that this resonance problem

no longer occurs.

Modeling Mechanical Systems

The avoidance of destructive resonance vibrations is an ever-present consideration

in the design of mechanical structures and systems of all types. Often the most

important step in determining the natural frequency of vibration of a system is the

formulation of its differential equation. In addition to Newton’s law F D ma, the

principle of conservation of energy is sometimes useful for this purpose (as in the

derivation of the pendulum equation in Section 5.4). The following kinetic and

potential energy formulas are often useful.

1. Kinetic energy: T D 1

2
mv2 for translation of a mass m with velocity v;

2. Kinetic energy: T D 1

2
I!2 for rotation of a body of a moment of inertia I

with angular velocity !;

3. Potential energy: V D 1

2
kx2 for a spring with constant k stretched or com-

pressed a distance x;

4. Potential energy: V D mgh for the gravitational potential energy of a mass m

at height h above the reference level (the level at which V D 0), provided that

g may be regarded as essentially constant.

Example 4 Rolling disk Find the natural frequency of a mass m on a spring with constant k if, instead

of sliding without friction, it is a uniform disk of radius a that rolls without slipping, as shown

in Fig 5.6.5.

Solution With the preceding notation, the principle of conservation of energy gives

1

2
mv2
C

1

2
I!2
C

1

2
kx2
D E

where E is a constant (the total mechanical energy of the system). We note that v D a! andEquilibrium
position

x

a

x = 0

FIGURE 5.6.5. The rolling disk.

recall that I D ma2=2 for a uniform circular disk. Then we may simplify the last equation to

3

4
mv2
C

1

2
kx2
D E:

Because the right-hand side of this equation is constant, differentiation with respect to t (with

v D x0 and v0 D x00) now gives

3

2
mx0x00

C kxx0
D 0:

We divide each term by 3

2
mx0 to obtain

x00
C
2k

3m
x D 0:

Thus the natural frequency of horizontal back-and-forth oscillation of our rolling disk is
p

2k=3m, which is
p

2=3 � 0:8165 times the familiar natural frequency
p

k=m of a mass

on a spring that is sliding without friction rather than rolling without sliding. It is interesting

(and perhaps surprising) that this natural frequency does not depend on the radius of the disk.

It could be either a dime or a large disk with a radius of one meter (but of the same mass).

Example 5 Car suspension Suppose that a car oscillates vertically as if it were a mass m D 800

kg on a single spring (with constant k D 7 � 104 N=m), attached to a single dashpot (with

constant c D 3000 N�s=m). Suppose that this car with the dashpot disconnected is driven

along a washboard road surface with an amplitude of 5 cm and a wavelength of L D 10 m

(Fig. 5.6.6). At what car speed will resonance vibrations occur?
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s

s = 0

y = a cos
L

π2 s

Surface

FIGURE 5.6.6. The washboard road
surface of Example 5.
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FIGURE 5.6.7. The “unicycle
model” of a car.

Solution We think of the car as a unicycle, as pictured in Fig. 5.6.7. Let x.t/ denote the upward

displacement of the mass m from its equilibrium position; we ignore the force of gravity,

because it merely displaces the equilibrium position as in Problem 9 of Section 5.4. We write

the equation of the road surface as

y D a cos
2�s

L
(a D 0:05 m, L D 10 m). (15)

When the car is in motion, the spring is stretched by the amount x � y, so Newton’s second

law, F D ma, gives

mx00
D �k.x � y/I

that is,

mx00
C kx D ky: (16)

If the velocity of the car is v, then s D vt in Eq. (15), so Eq. (16) takes the form

mx00
C kx D ka cos

2�vt

L
: .160/

This is the differential equation that governs the vertical oscillations of the car. In comparing

it with Eq. (4), we see that we have forced oscillations with circular frequency ! D 2�v=L.

Resonance will occur when ! D !0 D
p

k=m. We use our numerical data to find the speed of

the car at resonance:

v D
L

2�

r

k

m
D
10

2�

s

7 � 104

800
� 14.89 (m=s)I

that is, about 33:3 mi=h (using the conversion factor of 2:237 mi=h per m=s).

Damped Forced Oscillations

In real physical systems there is always some damping, from frictional effects if

nothing else. The complementary function xc of the equation

mx00
C cx0

C kx D F0 cos!t (17)

is given by Eq. (19), (20), or (21) of Section 5.4, depending on whether c > ccr Dp
4km, cD ccr, or c < ccr. The specific form is not important here. What is important

is that, in any case, these formulas show that xc.t/ ! 0 as t ! C1. Thus xc is a

transient solution of Eq. (17)—one that dies out with the passage of time, leaving

only the particular solution xp.
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The method of undetermined coefficients indicates that we should substitute

x.t/ D A cos!t C B sin!t

in Eq. (17). When we do this, collect terms, and equate coefficients of cos!t and

sin!t , we obtain the two equations

.k �m!2/AC c!B D F0; �c!AC .k �m!2/B D 0 (18)

that we solve without difficulty for

A D
.k �m!2/F0

.k �m!2/2 C .c!/2
; B D

c!F0

.k �m!2/2 C .c!/2
: (19)

If we write

A cos!t C B sin!t D C.cos!t cos˛ C sin!t sin˛/ D C cos.!t � ˛/

as usual, we see that the resulting steady periodic oscillation

xp.t/ D C cos.!t � ˛/ (20)

has amplitude

C D
p

A2 C B2 D
F0

p

.k �m!2/2 C .c!/2
: (21)

Now (19) implies that sin˛ D B=C > 0, so it follows that the phase angle ˛ lies in

the first or second quadrant. Thus

tan˛ D
B

A
D

c!

k �m!2
with 0 < ˛ < �; (22)

so

˛ D

8

ˆ

<

ˆ

:

tan�1
c!

k �m!2
if k > m!2,

� C tan�1
c!

k �m!2
if k < m!2

(whereas ˛ D �=2 if k D m!2).

Note that if c > 0, then the “forced amplitude”—defined as a function C.!/ by

(21)—always remains finite, in contrast with the case of resonance in the undamped

case when the forcing frequency ! equals the critical frequency !0 D
p

k=m. But

the forced amplitude may attain a maximum for some value of !, in which case we

speak of practical resonance. To see if and when practical resonance occurs, we

need only graph C as a function of ! and look for a global maximum. It can be

shown (Problem 27) that C is a steadily decreasing function of ! if c =
p
2km. But

if c <
p
2km, then the amplitude of C attains a maximum value—and so practical

resonance occurs—at some value of ! less than !0, and then approaches zero as

! ! C1. It follows that an underdamped system typically will undergo forced

oscillations whose amplitude is

� Large if ! is close to the critical resonance frequency;

� Close to F0=k if ! is very small;

� Very small if ! is very large.
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Example 6 Practical resonance Find the transient motion and steady periodic oscillations of a damped

mass-and-spring system with m D 1, c D 2, and k D 26 under the influence of an external

force F.t/ D 82 cos 4t with x.0/ D 6 and x0.0/ D 0. Also investigate the possibility of

practical resonance for this system.

Solution The resulting motion x.t/ D xtr.t/C xsp.t/ of the mass satisfies the initial value problem

x00
C 2x0

C 26x D 82 cos 4t I x.0/ D 6, x0.0/ D 0. (23)

Instead of applying the general formulas derived earlier in this section, it is better in a concrete

problem to work it directly. The roots of the characteristic equation

r2
C 2r C 26 D .r C 1/2 C 25 D 0

are r D �1˙ 5i , so the complementary function is

xc.t/ D e
�t .c1 cos 5t C c2 sin 5t/:

When we substitute the trial solution

x.t/ D A cos 4t C B sin 4t

in the given equation, collect like terms, and equate coefficients of cos 4t and sin 4t , we get

the equations

10A C 8B D 82,

�8A C 10B D 0

with solution A D 5, B D 4. Hence the general solution of the equation in (23) is

x.t/ D e�t .c1 cos 5t C c2 sin 5t/C 5 cos 4t C 4 sin 4t:

At this point we impose the initial conditions x.0/ D 6, x0.0/ D 0 and find that c1 D 1 and

c2 D �3. Therefore, the transient motion and the steady periodic oscillation of the mass are

given by

xtr.t/ D e
�t .cos 5t � 3 sin 5t/

and

xsp.t/ D 5 cos 4t C 4 sin 4t D
p
41

�

5
p
41

cos 4t C
4
p
41

sin 4t

�

D
p
41 cos.4t � ˛/

where ˛ D tan�1

�

4

5

�

� 0:6747.

Figure 5.6.8 shows graphs of the solution x.t/ D xtr.t/ C xsp.t/ of the initial value

problem

x00
C 2x0

C 26x D 82 cos 4t; x.0/ D x0, x0.0/ D 0 (24)

for the different values x0 D �20, �10, 0, 10, and 20 of the initial position. Here we see

clearly what it means for the transient solution xtr.t/ to “die out with the passage of time,”

leaving only the steady periodic motion xsp.t/. Indeed, because xtr.t/ ! 0 exponentially,

within a very few cycles the full solution x.t/ and the steady periodic solution xsp.t/ are

virtually indistinguishable (whatever the initial position x0).

To investigate the possibility of practical resonance in the given system, we substitute

the values m D 1, c D 2, and k D 26 in (21) and find that the forced amplitude at frequency

! is

C.!/ D
82

p
676 � 48!2 C !4

:

The graph of C.!/ is shown in Fig. 5.6.9. The maximum amplitude occurs when

C 0.!/ D
�41.4!3 � 96!/

.676 � 48!2 C !4/3=2

D
�164!.!2 � 24/

.676 � 48!2 C !4/3=2

D 0:

Thus practical resonance occurs when the external frequency is ! D
p
24 (a bit less than the

mass-and-spring’s undamped critical frequency of !0 D
p

k=m D
p
26 ).
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x
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–20

x0 = 20

x = xsp(t)

FIGURE 5.6.8. Solutions of the initial value problem in (24) with
x0 D �20, �10, 0, 10, and 20.
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Practical resonance

FIGURE 5.6.9. Plot of amplitude C

versus external frequency !.

5.6 Problems
In Problems 1 through 6, express the solution of the given ini-

tial value problem as a sum of two oscillations as in Eq. (8).

Throughout, primes denote derivatives with respect to time t .

In Problems 1–4, graph the solution function x.t/ in such a

way that you can identify and label (as in Fig. 5.6.2) its pe-

riod.

1. x00 C 9x D 10 cos 2t ; x.0/ D x0.0/ D 0

2. x00 C 4x D 5 sin 3t ; x.0/ D x0.0/ D 0

3. x00C100xD 225 cos 5tC300 sin 5t ; x.0/D 375, x0.0/D 0

4. x00 C 25x D 90 cos 4t ; x.0/ D 0, x0.0/ D 90

5. mx00C kx D F0 cos!t with ! ¤ !0; x.0/D x0, x0.0/D 0

6. mx00C kx D F0 cos!t with ! D !0; x.0/D 0, x0.0/D v0

In each of Problems 7 through 10, find the steady periodic so-

lution xsp.t/ D C cos.!t � ˛/ of the given equation mx00 C

cx0 C kx D F.t/ with periodic forcing function F.t/ of fre-

quency !. Then graph xsp.t/ together with (for comparison)

the adjusted forcing function F1.t/ D F.t/=m!.

7. x00 C 4x0 C 4x D 10 cos 3t

8. x00 C 3x0 C 5x D �4 cos 5t

9. 2x00 C 2x0 C x D 3 sin 10t

10. x00 C 3x0 C 3x D 8 cos 10t C 6 sin 10t

In each of Problems 11 through 14, find and plot both the

steady periodic solution xsp.t/ D C cos.!t � ˛/ of the given

differential equation and the actual solution x.t/ D xsp.t/ C

xtr.t/ that satisfies the given initial conditions.

11. x00 C 4x0 C 5x D 10 cos 3t ; x.0/ D x0.0/ D 0

12. x00 C 6x0 C 13x D 10 sin 5t ; x.0/ D x0.0/ D 0

13. x00 C 2x0 C 26x D 600 cos 10t ; x.0/ D 10, x0.0/ D 0

14. x00 C 8x0 C 25x D 200 cos t C 520 sin t ; x.0/ D �30,

x0.0/ D �10

Each of Problems 15 through 18 gives the parameters for

a forced mass–spring–dashpot system with equation mx00 C

cx0 C kx D F0 cos!t . Investigate the possibility of practi-

cal resonance of this system. In particular, find the amplitude

C.!/ of steady periodic forced oscillations with frequency !.

Sketch the graph of C.!/ and find the practical resonance fre-

quency ! (if any).

15. m D 1, c D 2, k D 2, F0 D 2

16. m D 1, c D 4, k D 5, F0 D 10

17. m D 1, c D 6, k D 45, F0 D 50

18. m D 1, c D 10, k D 650, F0 D 100

19. A mass weighing 100 lb (mass m D 3:125 slugs in fps

units) is attached to the end of a spring that is stretched

1 in. by a force of 100 lb. A force F0 cos!t acts on the

mass. At what frequency (in hertz) will resonance oscilla-

tions occur? Neglect damping.

20. A front-loading washing machine is mounted on a thick

rubber pad that acts like a spring; the weight W D mg

(with g D 9:8 m=s2) of the machine depresses the pad ex-

actly 0:5 cm. When its rotor spins at ! radians per second,

the rotor exerts a vertical force F0 cos!t newtons on the

machine. At what speed (in revolutions per minute) will

resonance vibrations occur? Neglect friction.

21. Pendulum-spring system Figure 5.6.10 shows a mass

m on the end of a pendulum (of lengthL) also attached to a

horizontal spring (with constant k). Assume small oscilla-

tions ofm so that the spring remains essentially horizontal

and neglect damping. Find the natural circular frequency

!0 of motion of the mass in terms of L, k, m, and the

gravitational constant g.

22. Pulley-spring system A mass m hangs on the end of a

cord around a pulley of radius a and moment of inertia I,

as shown in Fig. 5.6.11. The rim of the pulley is attached

to a spring (with constant k). Assume small oscillations so

that the spring remains essentially horizontal and neglect

friction. Find the natural circular frequency of the system

in terms of m, a, k, I, and g.
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m

L

k

FIGURE 5.6.10. The pendulum-and-spring

system of Problem 21.

k

m

I

a

FIGURE 5.6.11. The mass–spring–pulley

system of Problem 22.

23. Earthquake A building consists of two floors. The first

floor is attached rigidly to the ground, and the second floor

is of mass m D 1000 slugs (fps units) and weighs 16 tons

(32,000 lb). The elastic frame of the building behaves as a

spring that resists horizontal displacements of the second

floor; it requires a horizontal force of 5 tons to displace the

second floor a distance of 1 ft. Assume that in an earth-

quake the ground oscillates horizontally with amplitude

A0 and circular frequency !, resulting in an external hor-

izontal force F.t/ D mA0!
2 sin!t on the second floor.

(a) What is the natural frequency (in hertz) of oscillations

of the second floor? (b) If the ground undergoes one

oscillation every 2:25 s with an amplitude of 3 in., what

is the amplitude of the resulting forced oscillations of the

second floor?

24. A mass on a spring without damping is acted on by the

external force F.t/ D F0 cos3 !t . Show that there are two

values of ! for which resonance occurs, and find both.

25. Derive the steady periodic solution of

mx00
C cx0

C kx D F0 sin!t:

In particular, show that it is what one would expect—the

same as the formula in (20) with the same values of C and

!, except with sin.!t � ˛/ in place of cos.!t � ˛/.

26. Given the differential equation

mx00
C cx0

C kx D E0 cos!t C F0 sin!t

—with both cosine and sine forcing terms—derive the

steady periodic solution

xsp.t/ D

q

E2

0
C F 2

0

p

.k �m!2/2 C .c!/2
cos.!t � ˛ � ˇ/;

where ˛ is defined in Eq. (22) and ˇ D tan�1.F0=E0/.

(Suggestion: Add the steady periodic solutions separately

corresponding to E0 cos!t and F0 sin!t (see Problem

25).)

27. According to Eq. (21), the amplitude of forced steady

periodic oscillations for the system mx00 C cx0 C kx D

F0 cos!t is given by

C.!/ D
F0

p

.k �m!2/2 C .c!/2
:

(a) If c = ccr=
p
2, where ccr D

p
4km, show that C

steadily decreases as ! increases. (b) If c < ccr=
p
2,

show that C attains a maximum value (practical reso-

nance) when

! D !m D

s

k

m
�

c2

2m2
< !0 D

r

k

m
:

28. As indicated by the cart-with-flywheel example discussed

in this section, an unbalanced rotating machine part typ-

ically results in a force having amplitude proportional to

the square of the frequency !. (a) Show that the am-

plitude of the steady periodic solution of the differential

equation

mx00
C cx0

C kx D mA!2 cos!t

(with a forcing term similar to that in Eq. (17)) is given by

C.!/ D
mA!2

p

.k �m!2/2 C .c!/2
:

(b) Suppose that c2 < 2mk. Show that the maximum

amplitude occurs at the frequency !m given by

!m D

s

k

m

�

2mk

2mk � c2

�

:

Thus the resonance frequency in this case is larger (in

contrast with the result of Problem 27) than the natural fre-

quency !0 D
p

k=m. (Suggestion: Maximize the square

of C .)

Automobile Vibrations

Problems 29 and 30 deal further with the car of Example

5. Its upward displacement function satisfies the equation
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mx00 C cx0 C kx D cy0 C ky when the shock absorber is con-

nected (so that c > 0). With y D a sin!t for the road surface,

this differential equation becomes

mx00
C cx0

C kx D E0 cos!t C F0 sin!t

where E0 D c!a and F0 D ka.

29. Apply the result of Problem 26 to show that the amplitude

C of the resulting steady periodic oscillation for the car is

given by

C D
a
p

k2 C .c!/2
p

.k �m!2/2 C .c!/2
:

Because ! D 2�v=L when the car is moving with velocity

v, this gives C as a function of v.

30. Figure 5.6.12 shows the graph of the amplitude function

C.!/ using the numerical data given in Example 5 (in-

cluding c D 3000 N�s=m). It indicates that, as the car

accelerates gradually from rest, it initially oscillates with

amplitude slightly over 5 cm. Maximum resonance vibra-

tions with amplitude about 14 cm occur around 32 mi=h,

but then subside to more tolerable levels at high speeds.

Verify these graphically based conclusions by analyzing

the function C.!/. In particular, find the practical reso-

nance frequency and the corresponding amplitude.

10080604020
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FIGURE 5.6.12. Amplitude of vibrations of the car

on a washboard surface.

Go to goo.gl/l2hK16 to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

5.6 Application Forced Vibrations

Here we investigate forced vibrations of the mass–spring–dashpot system with equa-

tion

mx00
C cx0

C kx D F.t/: (1)

To simplify the notation, let’s take mD p2, c D 2p, and k D p2q2C 1, where p > 0

and q > 0. Then the complementary function of Eq. (1) is

xc.t/ D e
�t=p.c1 cos qt C c2 sin qt/: (2)

We will take p D 5, q D 3, and thus investigate the transient and steady periodic

solutions corresponding to

25x00
C 10x0

C 226x D F.t/; x.0/ D 0; x0.0/ D 0 (3)

with several illustrative possibilities for the external force F.t/. For your personal

investigations to carry out similarly, you might select integers p and q with 65p5 9

and 2 5 q 5 5.

INVESTIGATION 1: With periodic external force F.t/D 901 cos 3t , the MATLAB

commands

x = dsolve(’25*D2x+10*Dx+226*x=901*cos(3*t)’,

’x(0)=0, Dx(0)=0’);

x = simple(x);

syms t, xsp = cos(3*t) + 30*sin(3*t);

ezplot(x, [0 6*pi]),hold on

ezplot(xsp, [0 6*pi])

produce the plot shown in Fig. 5.6.13. We see the (transient plus steady periodic)

50 1510
t

x

40

20

–40

–20

0

xsp(t)

x(t)

FIGURE 5.6.13. The solution
x.t/ D xtr.t/ C xsp.t/ and the steady
periodic solution x.t/ D xsp.t/ with
periodic external force
F .t/ D 901 cos 3t .

solution

x.t/ D cos 3t C 30 sin 3t C e�t=5
�

� cos 3t � 451

15
sin 3t

�

rapidly “building up” to the steady periodic oscillation xsp.t/ D cos 3t C 30 sin 3t .
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INVESTIGATION 2: With damped oscillatory external force

F.t/ D 900e�t=5 cos 3t;

we have duplication with the complementary function in (2). The Maple commands

de2 := 25*diff(x(t),t,t)+10*diff(x(t),t)+226*x(t) =

900*exp(--t/5)*cos(3*t);

dsolve({de2,x(0)=0,D(x)(0)=0}, x(t));

x := simplify(combine(rhs(%),trig));

C := 6*t*exp(--t/5);

plot({x,C,--C},t=0..8*Pi);

produce the plot shown in Fig. 5.6.14. We see the solution

x.t/ D 6te�t=5 sin 3t

oscillating up and down between the envelope curves x D ˙6te�t=5. (Note the

factor of t that signals a resonance situation.)

2520151050
t

x

15

–15

0

–10

5

–5

10 x = +6te–t/5

x = –6te– t/5

FIGURE 5.6.14. The solution
x.t/ D 6te

�t=5 sin 3t and the
envelope curves x.t/ D ˙6te

�t=5

with damped oscillatory force

F .t/ D 900e
�t=5 cos 3t .

INVESTIGATION 3: With damped oscillatory external force

300 15 205 10 25
t

x

200

–200
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–150
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–100
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FIGURE 5.6.15. The solution

x.t/ D
e

�t=5
Œ3t cos t C .9t

2 � 1/ sin 3t� and

the envelope curves

x.t/ D ˙e
�t=5

p

.3t/
2 C .9t

2 � 1/
2

with external force
F .t/ D 2700te

�t=5 cos 3t .

F.t/ D 2700te�t=5 cos 3t;

we have a still more complicated resonance situation. The Mathematica commands

de3 = 25 x’’[t] + 10 x’[t] + 226 x[t] ==

2700 t Exp[--t/5] Cos[3t]

soln = DSolve[{de3, x[0] == 0, x’[0] == 0}, x[t], t]

x = First[x[t] /. soln]

amp = Exp[--t/5] Sqrt[(3t)^2 + (9t^2 -- 1)^2]

Plot[{x, amp, --amp}, {t, 0, 10 Pi}]

produce the plot shown in Fig. 5.6.15. We see the solution

x.t/ D e�t=5
�

3t cos 3t C .9t2 � 1/ sin 3t
�

oscillating up and down between the envelope curves

x D ˙e�t=5

p

.3t/2 C .9t2 � 1/2:



66 Eigenvalues and
Eigenvectors

6.1 Introduction to Eigenvalues

Given a square matrix A, let us pose the following question: Does there exist a

nonzero vector v such that the result Av of multiplying v by the matrix A is

simply a scalar multiple of v? Thus we ask whether or not there exist a nonzero

vector v and a scalar � such that

Av D �v: (1)

Section 6.3 and subsequent chapters include interesting applications in which this

question arises. The following definition provides the terminology that we use in

discussing Eq. (1).

DEFINITION Eigenvalues and Eigenvectors

The number � is said to be an eigenvalue of the n � n matrix A provided there

exists a nonzero vector v such that

Av D �v; (1)

in which case the vector v is called an eigenvector of the matrix A. We also say

that the eigenvector v is associated with the eigenvalue �, or that the eigenvalue

� corresponds to the eigenvector v.

The prefix eigen is a German word that (in some contexts) may be translated

as proper, so eigenvalues are sometimes called proper values. Eigenvalues and

eigenvectors are also called characteristic values and characteristic vectors in some

books.

339
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Example 1 Consider the 2 � 2 matrix

A D

�

5 �6

2 �2

�

:

If v D .2; 1/ D
�

2 1
�

T

, then

Av D

�

5 �6

2 �2

� �

2

1

�

D

�

4

2

�

D 2v:

Thus, v D
�

2 1
�

T

is an eigenvector of A that is associated with the eigenvalue � D 2. If

v D
�

3 2
�

T

, then

Av D

�

5 �6

2 �2

� �

3

2

�

D

�

3

2

�

D 1v;

so vD
�

3 2
�

T

is an eigenvector of A associated with the eigenvalue �D 1. In summary, we

see that the scalars �1 D 2 and �2 D 1 are both eigenvalues of the matrix A; they correspond

to the eigenvectors v1 D
�

2 1
�

T

and v2 D
�

3 2
�

T

, respectively.

Eigenvalues and eigenvectors have a simple geometric interpretation. Suppose

Av = λv

Av = λv

v

(b)(a)

y y

xx

v

(λ > 0)

(λ < 0)

FIGURE 6.1.1. (a) A positive
eigenvalue; (b) a negative eigenvalue.

that � is an eigenvalue of the matrix A and has the associated eigenvector v, so that

Av D �v. Then the length jAvj of the vector Av is ˙�jvj, depending on the sign

of �. Thus, if � > 0, then multiplication of v by the matrix A expands or contracts

the vector v while preserving its direction; if � < 0, then multiplication of v by A

reverses the direction of v (see Fig. 6.1.1).

Remark 1 If v D 0, then the equation Av D �v holds for every scalar � and hence is of no

significance. This is why only nonzero vectors qualify as eigenvectors in the definition.

Remark 2 Let � and v be an eigenvalue and associated eigenvector of the matrix A. If k is

any nonzero scalar and u D kv, then

Au D A.kv/ D k.Av/ D k.�v/ D �.kv/ D �u;

so u D kv is also an eigenvector associated with �. Thus, any nonzero scalar multiple of an

eigenvector is also an eigenvector and is associated with the same eigenvalue. In Example

1, for instance, u1 D �3v1 D
�

�6 �3
�

T

is an eigenvector associated with �1 D 2, and

u2 D 4v2 D
�

12 8
�

T

is an eigenvector associated with �2 D 1.

The Characteristic Equation

We now attack the problem of finding the eigenvalues and eigenvectors of a given

n � n square matrix A. According to the definition, the nonzero vector v is an

eigenvector of A associated with the eigenvalue � exactly when

Av D �v D �IvI

that is, when

.A � �I/v D 0: (2)

For a fixed value of �, Eq. (2) is a homogeneous linear system of n equations

in the n components of v. By Theorem 2 in Section 3.6 and Theorem 7 in Section

3.5, this system has a nontrivial solution v 6D 0 if and only if the determinant

det.A � �I/ D jA � �Ij

of its coefficient matrix is zero. The equation jA � �Ij D 0 is called the charac-

teristic equation of the square matrix A, and we have proved that there exists an

eigenvector v associated with � if and only if � satisfies this equation.
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THEOREM 1 The Characteristic Equation

The number � is an eigenvalue of the n � n matrix A if and only if � satisfies the

characteristic equation

jA � �Ij D 0: (3)

Now let us see just what sort of equation the characteristic equation in (3) is.

Note that the matrix

A � �I D

2

6

6

6

6

4

a11 � � a12 � � � a1n

a21 a22 � � � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann � �

3

7

7

7

7

5

(4)

is obtained simply by subtracting � from each diagonal element of A. If we think of

expanding the determinant by cofactors, we see that jA � �Ij is a polynomial in the

variable �, and that the highest power of � comes from the product of the diagonal

elements of the matrix in (4). Therefore, the characteristic equation of the n � n

matrix A takes the form

.�1/n�n
C cn�1�

n�1
C � � � C c1�C c0 D 0; (5)

an nth-degree polynomial equation in �.

According to the fundamental theorem of algebra, every nth-degree polyno-

mial equation in one variable has n solutions (counting multiple solutions), but some

of them can be complex. Hence, we can say that an n � n matrix A always has n

eigenvalues, though they might not be distinct and might not all be real. In this chap-

ter we confine our attention mainly to real eigenvalues, but in Chapter 7 we will see

important applications of complex eigenvalues to the solution of linear systems of

differential equations.

ALGORITHM Eigenvalues and Eigenvectors

To find the eigenvalues and associated eigenvectors of the n � n matrix A:

1. First solve the characteristic equation

jA � �Ij D 0:

2. Then, for each eigenvalue � thereby found, solve the linear system

.A � �I/v D 0

to find the eigenvectors associated with �.

Solving the characteristic equation is almost always easier said than done. In

the examples that follow and in the problems, we have chosen matrices for which

the characteristic polynomial jA � �Ij readily factors to reveal the eigenvalues.

Example 2 Find the eigenvalues and associated eigenvectors of the matrix

A D

�

5 7

�2 �4

�

:
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Solution Here

A � �I D

�

5 � � 7

�2 �4 � �

�

; (6)

so the characteristic equation of A is

0 D jA � �Ij

D

ˇ

ˇ

ˇ

ˇ

5 � � 7

�2 �4 � �

ˇ

ˇ

ˇ

ˇ

D .5 � �/.�4 � �/ � .�2/.7/

D .� � 5/.�C 4/C 14 D �2
� � � 6I

that is, .� C 2/.� � 3/ D 0. Thus, the matrix A has the two eigenvalues �2 and 3. To

distinguish them, we write �1 D�2 and �2 D 3. To find the associated eigenvectors, we must

separately substitute each eigenvalue in (6) and then solve the resulting system .A��I/vD 0.

CASE 1: �1 D �2. With v D
�

x y
�

T

, the system .A � �I/v D 0 is

�

7 7

�2 �2

� �

x

y

�

D

�

0

0

�

:

Each of the two scalar equations here is a multiple of the equation xCy D 0, and any nontriv-

ial solution v D
�

x y
�

T

of this equation is a nonzero multiple of
�

1 �1
�

T

. Hence, to

within a constant multiple, the only eigenvector associated with �1 D�2 is v1 D
�

1 �1
�

T

.

CASE 2: �2 D 3. With v D
�

x y
�

T

, the system .A � �I/v D 0 is

�

2 7

�2 �7

� �

x

y

�

D

�

0

0

�

:

Again, we have only a single equation, 2x C 7y D 0, and any nontrivial solution of this

equation will suffice. The choice y D �2 yields x D 7, so (to within a constant multiple) the

only eigenvector associated with �2 D 3 is v2 D
�

7 �2
�

T

.

Finally, note that it is not enough to say simply that the given matrix A has eigenvalues

�2 and 3 and has eigenvectors
�

1 �1
�

T

and
�

7 �2
�

T

. To give complete information,

we must say which eigenvector is associated with each eigenvalue.

If the elements of the matrix A are all real, then so are the coefficients of

its characteristic equation jA � �Ij D 0. In this event, it follows that the complex

eigenvalues (if any) of A occur only in conjugate pairs. The next example illustrates

the possibility of imaginary or complex eigenvalues and eigenvectors.

Example 3 The characteristic equation of the matrix

A D

�

0 8

�2 0

�

is

jA � �Ij D

�

�� 8

�2 ��

�

D �2
C 16 D 0:

Hence the matrix A has the complex conjugate eigenvalues � D ˙4i .

CASE 1: �1 D �4i . With v D
�

x y
�

T

, the system .A � �I/v D 0 is

�

4i 8

�2 4i

� �

x

y

�

D

�

0

0

�

:

The first equation here, 4ixC 8y D 0, is �2i times the second one and, obviously, is satisfied

by x D 2i , y D 1. Thus v1 D
�

2i 1
�

T

is a complex eigenvector associated with the

complex eigenvalue �1 D �4i .
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CASE 2: �2 D C4i . In this case, you may verify similarly that the conjugate v2 D
�

�2i 1
�

T

of v1 is an eigenvector associated with the conjugate �2 of the eigenvalue �1.

Thus the complex conjugate eigenvalues �4i of the matrix A correspond to the complex

conjugate eigenvectors
�

˙2i 1
�

T

(taking either both upper signs or both lower signs).

Example 4 The 2 � 2 identity matrix I has characteristic equation

ˇ

ˇ

ˇ

ˇ

1 � � 0

0 1 � �

ˇ

ˇ

ˇ

ˇ

D .1 � �/2 D 0;

so I has the single eigenvalue � D 1. The equation .I � 1�/v D 0 is

�

0 0

0 0

� �

x

y

�

D

�

0

0

�

;

so every nonzero vector v D
�

x y
�

T

is an eigenvector of I. In particular, the single eigen-

value � D 1 corresponds to the two linearly independent eigenvectors v1 D
�

1 0
�

T

and

v2 D
�

0 1
�

T

.

Example 5 The characteristic equation of the matrix

A D

�

2 3

0 2

�

is .2 � �/2 D 0, so A has the single eigenvalue � D 2. The equation .A � 2I/v D 0 is

�

0 3

0 0

� �

x

y

�

D

�

0

0

�

:

Thus x is arbitrary, but y D 0, so the eigenvalue � D 2 corresponds (to within a constant

multiple) to the single eigenvector v D
�

1 0
�

T

.

Examples 2–5 illustrate the four possibilities for a 2 � 2 matrix A. It can have

either

� two distinct real eigenvalues, each corresponding to a single eigenvector;

� a single real eigenvalue corresponding to a single eigenvector;

� a single real eigenvalue corresponding to two linearly independent eigenvec-

tors; or

� two complex conjugate eigenvalues corresponding to complex conjugate eigen-

vectors.

The characteristic equation of a 3 � 3 matrix is, by Eq. (5), of the form

��3
C c2�

2
C c1�C c0 D 0: (7)

Now the value of the continuous function ��3 C � � � C c0 on the left-hand side here

approachesC1 as �!�1 and�1 as �!C1. Hence every such cubic equation

has at least one real solution, so every 3 � 3 matrix has (in contrast with 2 � 2

matrices) at least one real eigenvalue. A 3 � 3 matrix may have one, two, or three

distinct eigenvalues, and a single eigenvalue of a 3 � 3 matrix may correspond to

one, two, or three linearly independent eigenvectors. The remaining two examples

of this section illustrate some of the possibilities. The next example shows also that,

whereas the zero vector 0 cannot be an eigenvector of a matrix, there is nothing to

prevent � D 0 from being an eigenvalue.
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Example 6 Find the eigenvalues and associated eigenvectors of the matrix

A D

2

4

3 0 0

�4 6 2

16 �15 �5

3

5 :

Solution The matrix A � �I is

A � �I D

2

4

3 � � 0 0

�4 6 � � 2

16 �15 �5 � �

3

5 : (8)

Upon expansion of the determinant along its first row, we find that

jA � �Ij D .3 � �/Œ.6 � �/.�5 � �/C 30�

D .3 � �/.�2
� �/ D �.� � 1/.3 � �/:

Hence the characteristic equation jA � �Ij D 0 yields the three eigenvalues �1 D 0, �2 D 1,

and �3 D 3. To find the associated eigenvectors, we must solve the system .A � �I/v D 0

separately for each of these three eigenvalues.

CASE 1: �1 D 0. We write v D
�

x y ´
�

T

and substitute � D 0 in the coefficient

matrix in (8) to obtain the system

2

4

3 0 0

�4 6 2

16 �15 �5

3

5

2

4

x

y

´

3

5 D

2

4

0

0

0

3

5 :

From the first of the three equations here, 3x D 0, we see that x D 0. Then each of the

remaining two equations is a multiple of the equation 3y C ´ D 0. The choice y D 1 yields

´ D �3. Thus the eigenvector v1 D
�

0 1 �3
�

T

is associated with �1 D 0.

CASE 2: �2 D 1. Substitution of � D 1 in the coefficient matrix in (8) yields the system

2

4

2 0 0

�4 5 2

16 �15 �6

3

5

2

4

x

y

´

3

5 D

2

4

0

0

0

3

5

for v D
�

x y ´
�

T

. The first equation 2x D 0 implies that x D 0. Then the third equation

is a multiple of the second equation, 5y C 2´ D 0. The choice of y D 2 yields ´ D �5, so the

eigenvector v2 D
�

0 2 �5
�

T

is associated with �2 D 1.

CASE 3: �3 D 3. Substitution of � D 3 in the coefficient matrix in (8) yields the system

2

4

0 0 0

�4 3 2

16 �15 �8

3

5

2

4

x

y

´

3

5 D

2

4

0

0

0

3

5 :

In this case, the first equation yields no information, but the result of adding 4 times the

second equation to the third equation is �3y D 0, so y D 0. Consequently, the second and

third equations are both multiples of the equation 2x � ´D 0. The choice x D 1 yields ´D 2,

so the eigenvector v3 D
�

1 0 2
�

T

is associated with �3 D 3.

In summary, we have found the eigenvectors v1 D
�

0 1 �3
�

T

, v2 D
�

0 2 �5
�

T

, and v3 D
�

1 0 2
�

T

associated with the distinct eigenvalues �1 D 0,

�2 D 1, and �3 D 3, respectively.

Remark Substitution of � D 0 in the characteristic equation jA � �Ij D 0 yields jAj D 0.

Therefore, � D 0 is an eigenvalue of the matrix A if and only if A is singular: jAj D 0.
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Eigenspaces

Let � be a fixed eigenvalue of the n � n matrix A. Then the set of all eigenvectors

associated with A is the set of all nonzero solution vectors of the system

.A � �I/v D 0: (9)

The solution space of this system is called the eigenspace of A associated with the

eigenvalue �. This subspace of Rn consists of all eigenvectors associated with �

together with the zero vector. In Example 6 we found (to within a constant multi-

ple) only a single eigenvector associated with each eigenvalue �; in this case, the

eigenspace of � is 1-dimensional. In the case of an eigenspace of higher dimension,

we generally want to find a basis for the solution space of Eq. (9).

Example 7 Find bases for the eigenspaces of the matrix

A D

2

4

4 �2 1

2 0 1

2 �2 3

3

5 :

Solution Here we have

A � �I D

2

4

4 � � �2 1

2 �� 1

2 �2 3 � �

3

5 : (10)

We expand along the first row to obtain

jA � �Ij D .4 � �/.�2
� 3�C 2/ � .�2/.4 � 2�/C .1/.�4C 2�/

D ��3
C 7�2

� 16�C 12:

Thus, to find the eigenvalues we need to solve the cubic equation

�3
� 7�2

C 16� � 12 D 0: (11)

We look (hopefully) for integer solutions. The factor theorem of algebra implies that

if the polynomial equation

�n
C cn�1�

n�1
C � � � C c1�C c0 D 0

with integer coefficients and leading coefficient 1 has an integer solution, then that integer is

a divisor of the constant c0. In the case of the cubic equation in (11), the possibilities for such

a solution are ˙1, ˙2, ˙3, ˙4, ˙6, and ˙12. We substitute these numbers successively in

(11) and thereby find that C1 and �1 are not solutions but that � D C2 is a solution. Hence

� � 2 is a factor of the cubic polynomial in (11). Next, the long division

�2 � 5� C 6

� � 2 �3 � 7�2 C 16� � 12

�3 � 2�2

� 5�2 C 16� � 12

� 5�2 C 10�

6� � 12

6� � 12

0

shows that

�3
� 7�2

C 16� � 12 D .� � 2/.�2
� 5�C 6/

D .� � 2/.� � 2/.� � 3/

D .� � 2/2.� � 3/:

Thus we see finally that the given matrix A has the repeated eigenvalue � D 2 and the eigen-

value � D 3.
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CASE 1: � D 2. The system .A � �I/v D 0 is

2

4

2 �2 1

2 �2 1

2 �2 1

3

5

2

4

x

y

´

3

5 D

2

4

0

0

0

3

5 ;

which reduces to the single equation 2x � 2y C ´ D 0. This equation obviously has a 2-

dimensional solution space. With y D 1 and ´ D 0, we get x D 1 and, hence, obtain the basis

eigenvector v1 D
�

1 1 0
�

T

. With y D 0 and ´ D 2, we get x D �1 and, hence, the basis

eigenvector v2 D
�

�1 0 2
�

T

. The 2-dimensional eigenspace of A associated with the

repeated eigenvalue � D 2 has basis fv1; v2g.

CASE 2: � D 3. The system .A � �I/v D 0 is

2

4

1 �2 1

2 �3 1

2 �2 0

3

5

2

4

x

y

´

3

5 D

2

4

0

0

0

3

5 :

The last equation here implies that x D y, and then each of the first two equations yields

x D y D ´. It follows that the eigenspace of A associated with � D 3 is 1-dimensional and

has v3 D
�

1 1 1
�

T

as a basis eigenvector.

Remark The typical higher-degree polynomial is not so easy to factor as the one in Exam-

ple 7. Hence a numerical technique such as Newton’s method is often needed to solve the

characteristic equation. Moreover, for an n�nmatrix with n greater than about 4, the amount

of labor required to find the characteristic equation by expanding the determinant jA � �Ij

is generally prohibitive; because of the presence of the variable �, row and column elimina-

tion methods do not work as they do with numerical determinants. Consequently, specialized

techniques, beyond the scope of the present discussion, are often required to find the eigen-

values and eigenvectors of the large matrices that occur in many applications. Problems 40

and 41 at the end of this section outline a numerical technique that sometimes is useful with

matrices of moderate size.

6.1 Problems
In Problems 1 through 26, find the (real) eigenvalues and as-

sociated eigenvectors of the given matrix A. Find a basis for

each eigenspace of dimension 2 or larger.

1.

�

4 �2

1 1

�

2.

�

5 �6

3 �4

�

3.

�

8 �6

3 �1

�

4.

�

4 �3

2 �1

�

5.

�

10 �9

6 �5

�

6.

�

6 �4

3 �1

�

7.

�

10 �8

6 �4

�

8.

�

7 �6

12 �10

�

9.

�

8 �10

2 �1

�

10.

�

9 �10

2 0

�

11.

�

19 �10

21 �10

�

12.

�

13 �15

6 �6

�

13.

2

4

2 0 0

2 �2 �1

�2 6 3

3

5 14.

2

4

5 0 0

4 �4 �2

�2 12 6

3

5

15.

2

4

2 �2 0

2 �2 �1

�2 2 3

3

5 16.

2

4

1 0 �1

�2 3 �1

�6 6 0

3

5

17.

2

4

3 5 �2

0 2 0

0 2 1

3

5 18.

2

4

1 0 0

�6 8 2

12 �15 �3

3

5

19.

2

4

3 6 �2

0 1 0

0 0 1

3

5 20.

2

4

1 0 0

�4 7 2

10 �15 �4

3

5

21.

2

4

4 �3 1

2 �1 1

0 0 2

3

5 22.

2

4

5 �6 3

6 �7 3

6 �6 2

3

5

23.

2

6

6

4

1 2 2 2

0 2 2 2

0 0 3 2

0 0 0 4

3

7

7

5

24.

2

6

6

4

1 0 4 0

0 1 4 0

0 0 3 0

0 0 0 3

3

7

7

5

25.

2

6

6

4

1 0 1 0

0 1 1 0

0 0 2 0

0 0 0 2

3

7

7

5

26.

2

6

6

4

4 0 0 �3

0 2 0 0

0 0 �1 0

6 0 0 �5

3

7

7

5

Find the complex conjugate eigenvalues and corresponding

eigenvectors of the matrices given in Problems 27 through 32.

27. A D

�

0 1

�1 0

�

28. A D

�

0 �6

6 0

�

29. A D

�

0 �3

12 0

�

30. A D

�

0 �12

12 0

�
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31. A D

�

0 24

�6 0

�

32. A D

�

0 �4

36 0

�

33. Suppose that � is an eigenvalue of the matrix A with asso-

ciated eigenvector v and that n is a positive integer. Show

that �n is an eigenvalue of An with associated eigen-

vector v.

34. Show that � is an eigenvalue of the invertible matrix A if

and only if ��1 is an eigenvalue of A�1. Are the associ-

ated eigenvectors the same?

35. (a) Suppose that A is a square matrix. Use the character-

istic equation to show that A and AT have the same

eigenvalues.

(b) Give an example of a 2 � 2 matrix A such that A and

AT do not have the same eigenvectors.

36. Show that the eigenvalues of a triangular n � n matrix are

its diagonal elements.

37. Suppose that the characteristic equation jA � �Ij D 0 is

written as a polynomial equation [Eq. (5)]. Show that the

constant term is c0 D det A. Suggestion: Substitute an

appropriate value for �.

Problems 38 through 42 introduce the trace of a square ma-

trix and explore its connections with the determinant and the

characteristic polynomial of the matrix.

38. If A D
�

aij

�

is an n � n matrix, then the trace Tr A of A

is defined to be

Tr A D a11 C a22 C � � � C ann;

the sum of the diagonal elements of A. It can be

proved that the coefficient of �n�1 in Eq. (5) is cn�1 D

.�1/n�1.Tr A/. Show explicitly that this is true in the case

of a 2 � 2 matrix.

39. Suppose that the n � n matrix A has n (real) eigenval-

ues �1; �2; : : : ; �n. Assuming the general result stated in

Problem 38, prove that

�1 C �2 C � � � C �n D Tr A

D a11 C a22 C � � � C ann:

40. According to the results stated in Problems 37 and 38, the

characteristic polynomial

p.�/ D jA � �Ij

of a 3 � 3 matrix A is given by

p.�/ D ��3
C .Tr A/�2

C c1�C .det A/:

The remaining coefficient c1 can be found by substituting

� D 1 and then calculating the two determinants jAj and

p.1/ D jA � Ij. Use this method to find the characteristic

equation, eigenvalues, and associated eigenvectors of the

matrix

A D

2

4

32 �67 47

7 �14 13

�7 15 �6

3

5 :

41. According to the results stated in Problems 37 and 38, the

characteristic polynomial

p.�/ D jA � �Ij

of a 4 � 4 matrix A is given by

p.�/ D �4
� .Tr A/�3

C c2�
2
C c1�C .det A/:

The remaining coefficients c1 and c2 can be found by sub-

stituting � D ˙1 and calculating the three determinants

jAj, p.1/D jA� Ij, and p.�1/D jAC Ij. Use this method

to find the characteristic equation, eigenvalues, and asso-

ciated eigenvectors of the matrix

A D

2

6

6

6

4

22 �9 �8 �8

10 �7 �14 2

10 0 8 �10

29 �9 �3 �15

3

7

7

7

5

:

42. Combine ideas from Problems 37–40 to show explicitly

that

(a) If A is a 2 � 2 matrix then det.A � �I/ D .��/2 C

Tr.A/.��/C det.A/.

(b) If A is a 3 � 3 matrix then det.A � �I/ D .��/3 C

Tr.A/.��/2 C c1.��/C det.A/, where c1 is the sum

of the minors of the diagonal elements of A. (Recall

from Section 3.6 the distinction between minors and

cofactors.)

6.2 Diagonalization of Matrices

Given an n � n matrix A, we may ask how many linearly independent eigenvectors

the matrix A has. In Section 6.1, we saw several examples (with n D 2 and n D 3)

in which the n � n matrix A has n linearly independent eigenvectors—the largest

possible number. By contrast, in Example 5 of Section 6.1, we saw that the 2 � 2

matrix

A D

�

2 3

0 2

�

has the single eigenvalue �D 2 corresponding to the single eigenvector vD
�

1 0
�

T

.

Something very nice happens when the n�nmatrix A does have n linearly in-

dependent eigenvectors. Suppose that the eigenvalues �1; �2; : : : ; �n (not necessar-
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ily distinct) of A correspond to the n linearly independent eigenvectors v1; v2; : : : ; vn,

respectively. Let

P D

2

6

6

4

v1 v2 � � � vn

3

7

7

5

(1)

be the n � n matrix having these eigenvectors as its column vectors. Then

AP D A

2

6

6

4

v1 v2 � � � vn

3

7

7

5

D

2

6

6

4

Av1 Av2 � � � Avn

3

7

7

5

and hence

AP D

2

6

6

4

�1v1 �2v2 � � � �nvn

3

7

7

5

; (2)

because Avj D �j vj for each j D 1; 2; : : : ; n. Thus the product matrix AP has

column vectors �1v1; �2v2; : : : ; �nvn.

Now consider the diagonal matrix

D D

2

6

6

6

4

�1 0 � � � 0

0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �n

3

7

7

7

5

; (3)

whose diagonal elements are the eigenvalues corresponding (in the same order) to

the eigenvectors forming the columns of P. Then

PD D

2

6

6

4

v1 v2 � � � vn

3

7

7

5

2

6

6

6

4

�1 0 � � � 0

0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �n

3

7

7

7

5

D

2

6

6

4

�1v1 �2v2 � � � �nvn

3

7

7

5

; (4)

because the product of the i th row of P and the j th column of D is simply the

product of �j and the i th component of vj .

Finally, upon comparing the results in (2) and (4), we see that

AP D PD: (5)

But the matrix P is invertible, because its n column vectors are linearly independent.

So we may multiply on the right by P�1 to obtain

A D PDP�1: (6)

Equation (6) expresses the n�nmatrix A having n linearly independent eigen-

vectors in terms of the eigenvector matrix P and the diagonal eigenvalue matrix D.

It can be rewritten as D D P�1AP, but the form in (6) is the one that should be

memorized.
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Example 1 In Example 1 of Section 6.1 we saw that the matrix

A D

�

5 �6

2 �2

�

has eigenvalues �1 D 2 and �2 D 1 corresponding to the linearly independent eigenvectors

v1 D
�

2 1
�

T

and v2 D
�

3 2
�

T

, respectively. Then

P D

�

2 3

1 2

�

; D D

�

2 0

0 1

�

; and P�1
D

�

2 �3

�1 2

�

:

So

PDP�1
D

�

2 3

1 2

� �

2 0

0 1

� �

2 �3

�1 2

�

D

�

4 3

2 2

� �

2 �3

�1 2

�

D

�

5 �6

2 �2

�

D A;

in accord with Eq. (6).

Similarity and Diagonalization

The following definition embodies the precise relationship in (6) between the origi-

nal matrix A and the diagonal matrix D.

DEFINITION Similar Matrices

The n � n matrices A and B are called similar provided that there exists an in-

vertible matrix P such that

B D P�1AP: (7)

Note that this relationship between A and B is symmetric, for if B D P�1AP,

then A D Q�1BQ for some invertible matrix Q—just take Q D P�1.

An n� n matrix A is called diagonalizable if it is similar to a diagonal matrix

D; that is, there exist a diagonal matrix D and an invertible matrix P such that

A D PDP�1, and so

P�1AP D D: (8)

The process of finding the diagonalizing matrix P and the diagonal matrix D in (8) is

called diagonalization of the matrix A. In Example 1 we showed that the matrices

A D

�

5 �6

2 �2

�

and D D

�

2 0

0 1

�

are similar, and hence that the 2 � 2 matrix A is diagonalizable.

Now we ask under what conditions a given square matrix is diagonalizable. In

deriving Eq. (6), we showed that if the n � n matrix A has n linearly independent

eigenvectors, then A is diagonalizable. The converse of this statement is also true.

THEOREM 1 Criterion for Diagonalizability

The n � n matrix A is diagonalizable if and only if it has n linearly independent

eigenvectors.
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Proof: It remains only to show that, if the n � n matrix A is diagonalizable,

then it has n linearly independent eigenvectors. Suppose that A is similar to the

diagonal matrix D with diagonal elements d1; d2; : : : ; dn, and let

P D
�

v1 v2 � � � vn

�

be an invertible matrix such that D D P�1AP. Then

AP D A
�

v1 v2 � � � vn

�

D
�

Av1 Av2 � � � Avn

�

and

PD D
�

d1v1 d2v2 � � � dnvn

�

;

by essentially the same computation as in Eq. (4). But AP D PD because D D

P�1AP, so it follows that

Avj D dj vj

for each j D 1; 2; : : : ; n. Thus the vectors v1; v2; : : : ; vn are eigenvectors of A associ-

ated with the eigenvalues d1; d2; : : : ; dn, respectively. And it follows from Theorem

2 in Section 3.6 and Theorem 2 in Section 4.3 that these n eigenvectors of the ma-

trix A are linearly independent, because they are the column vectors of the invertible

matrix P.

Remark It is important to remember not only the fact that an n � n matrix A having n

linearly independent eigenvectors is diagonalizable, but also the specific diagonalization

A D PDP�1 in Eq. (6), where the matrix P has the n eigenvectors as its columns, and the

corresponding eigenvalues are the diagonal elements of the diagonal matrix D.

Example 2 In Example 5 of Section 6.1 we saw that the matrix

A D

�

2 3

0 2

�

has only one eigenvalue, � D 2, and that (to within a constant multiple) only the single

eigenvector v D
�

1 0
�

T

is associated with this eigenvalue. Thus the 2 � 2 matrix A does

not have n D 2 linearly independent eigenvectors. Hence Theorem 1 implies that A is not

diagonalizable.

Example 3 In Example 6 of Section 6.1 we saw that the matrix

A D

2

4

3 0 0

�4 6 2

16 �15 �5

3

5

has the following eigenvalues and associated eigenvectors:

�1 D 3 W v1 D
�

1 0 2
�

T

�2 D 1 W v2 D
�

0 2 �5
�

T

�3 D 0 W v3 D
�

0 1 �3
�

T

:

It is obvious (why?) that the three eigenvectors v1, v2, v3 are linearly independent, so The-

orem 1 implies that the 3 � 3 matrix A is diagonalizable. In particular, the inverse of the

eigenvector matrix

P D
�

v1 v2 v3

�

D

2

4

1 0 0

0 2 1

2 �5 �3

3

5

is

P�1
D

2

4

1 0 0

�2 3 1

4 �5 �2

3

5 ;
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and the diagonal eigenvalue matrix is

D D

2

4

�1 0 0

0 �2 0

0 0 �3

3

5 D

2

4

3 0 0

0 1 0

0 0 0

3

5 :

Therefore, Eq. (6) in the form P�1AP D D yields the diagonalization

P�1AP D

2

4

1 0 0

�2 3 1

4 �5 �2

3

5

2

4

3 0 0

�4 6 2

16 �15 �5

3

5

2

4

1 0 0

0 2 1

2 �5 �3

3

5

D

2

4

3 0 0

0 1 0

0 0 0

3

5

of the matrix A.

The following theorem tells us that any set of eigenvectors associated with

distinct eigenvalues (as in Example 3) is automatically linearly independent.

THEOREM 2 Eigenvectors Associated with Distinct Eigenvalues

Suppose that the eigenvectors v1; v2; : : : ; vk are associated with the distinct

eigenvalues �1; �2; : : : ; �k of the matrix A. Then these k eigenvectors are lin-

early independent.

Proof: Our proof will be by induction on k. The theorem is certainly true in

the case k D 1, because any single (nonzero) eigenvector constitutes a linearly inde-

pendent set. Now assume inductively that any set of k � 1 eigenvectors associated

with distinct eigenvalues is linearly independent. Supposing that

c1v1 C c2v2 C � � � C ckvk D 0; (9)

we need to show that c1 D c2 D � � � D ck D 0. To do this, we will multiply in Eq. (9)

by the matrix A � �1I. First note that

.A � �1I/vj D Avj � �1vj D

�

0 if j D 1;

.�j � �1/vj if j > 1;

because Avj D �j vj for each j . Therefore, the result of multiplying Eq. (9) by

A � �1I is

c2.�2 � �1/v2 C � � � C ck.�k � �1/vk D 0: (10)

But the k � 1 eigenvectors v2; v3; : : : ; vk are linearly independent by the inductive

assumption, so each of the scalar coefficients cj .�j � �1/ here must be zero. Now

our hypothesis that the eigenvalues of A are distinct implies that �j � �1 6D 0 for

each j > 1. It therefore follows from Eq. (10) that c2 D c3 D � � � D ck D 0. But then

Eq. (9) reduces to c1v1 D 0, so it now follows (because v1 6D 0) that c1 D 0 as well.

Thus we have shown that all the coefficients in Eq. (9) must vanish, and hence that

the k eigenvectors v1; v2; : : : ; vk are linearly independent. Theorem 2 now follows

by induction.

If the n� nmatrix A has n distinct eigenvalues, then by Theorem 2 the n asso-

ciated eigenvectors are linearly independent, so Theorem 1 implies that the matrix A

is diagonalizable. Thus we have the sufficient condition for diagonalizability given

in Theorem 3.
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THEOREM 3 An n�n Matrix with n Distinct Eigenvalues

If the n � n matrix A has n distinct eigenvalues, then it is diagonalizable.

In general, however, an n � n matrix A can be expected to have fewer than n

distinct eigenvalues �1; �2; : : : ; �k . If k < n, then we may attempt to diagonalize A

by carrying out the following procedure.

Step 1. Find a basis Si for the eigenspace associated with each eigenvalue �i .

Step 2. Form the union S of the bases S1; S2; : : : ; Sk . According to Theorem 4 in

this section, the set S of eigenvectors of A is linearly independent.

Step 3. If S contains n eigenvectors v1; v2; : : : ; vn, then the matrix

P D
�

v1 v2 � � � vn

�

diagonalizes A: that is, P�1AP D D, where the diagonal elements of D are the

eigenvalues (repeated as necessary) corresponding to the n eigenvectors v1, v2, : : : ,

vn.

If the set S—obtained by “merging” the bases for all the eigenspaces of A—

contains fewer than n eigenvectors, then it can be proved that the matrix A is not

diagonalizable.

Example 4 In Example 7 of Section 6.1, we saw that the matrix

A D

2

4

4 �2 1

2 0 1

2 �2 3

3

5

has only two distinct eigenvalues, �1 D 2 and �2 D 3. We found that the eigenvalue �1 D 2

corresponds to a 2-dimensional eigenspace with basis vectors v1 D
�

1 1 0
�

T

and v2 D
�

�1 0 2
�

T

, and that �2 D 3 corresponds to a 1-dimensional eigenspace with basis vector

v3 D
�

1 1 1
�

T

. By Theorem 4 (or by explicit verification), these three eigenvectors are

linearly independent, so Theorem 1 implies that the 3 � 3 matrix A is diagonalizable. The

diagonalizing matrix

P D
�

v1 v2 v3

�

D

2

4

1 �1 1

1 0 1

0 2 1

3

5

has inverse matrix

P�1
D

2

4

�2 3 �1

�1 1 0

2 �2 1

3

5 ;

so we obtain the diagonalization

P�1AP D

2

4

�2 3 �1

�1 1 0

2 �2 1

3

5

2

4

4 �2 1

2 0 1

2 �2 3

3

5

2

4

1 �1 1

1 0 1

0 2 1

3

5

D

2

4

2 0 0

0 2 0

0 0 3

3

5 D D

of the matrix A.
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THEOREM 4 Complete Independence of Eigenvectors

Let �1; �2; : : : ; �k be the distinct eigenvalues of the n � n matrix A. For each

i D 1; 2; : : : ; k, let Si be a basis for the eigenspace associated with �i . Then the

union S of the bases S1; S2; : : : ; Sk is a linearly independent set of eigenvectors

of A.

Proof: To simplify the notation, we will illustrate the proof with the typical

case k D 3, with A having three distinct eigenvalues �1, �2, and �3. Let

S1 D fu1;u2; : : : ;upg;

S2 D fv1; v2; : : : ; vqg; and

S3 D fw1;w2; : : : ;wrg

be bases for the eigenspaces associated with the eigenvalues �1, �2, and �3. Assum-

ing that a linear combination of the vectors in S D S1 [ S2 [ S3 vanishes—

a1u1 C a2u2 C � � � C apup

C b1v1 C b2v2 C � � � C bqvq

C c1w1 C c2w2 C � � � C crwr D 0 (11)

—we need to show that the coefficients are all zero. If we write

u D a1u1 C a2u2 C � � � C apup;

v D b1v1 C b2v2 C � � � C bqvq ; and

w D c1w1 C c2w2 C � � � C crwr ;

then Eq. (11) takes the simple form

uC vCw D 0: (12)

But the vectors u, v, and w either are zero vectors or are eigenvectors associated

with the distinct eigenvalues �1, �2, and �3. In the latter event, Theorem 2 would

imply that u, v, and w are linearly independent. Therefore, Eq. (12) implies that

u D v D w D 0. Finally, the fact that the fui g are linearly independent implies

that a1 D a2 D � � � D ap D 0; the fact that the fvi g are linearly independent im-

plies that b1 D b2 D � � � D bq D 0; similarly, c1 D c2 D � � � D cr D 0. Thus we

have shown that the coefficients in (11) all vanish, and hence that the vectors in

S D S1 [ S2 [ S3 are linearly independent.

6.2 Problems
In Problems 1 through 28, determine whether or not the given

matrix A is diagonalizable. If it is, find a diagonalizing matrix

P and a diagonal matrix D such that P�1AP D D.

1.

�

5 �4

2 �1

�

2.

�

6 �6

4 �4

�

3.

�

5 �3

2 0

�

4.

�

5 �4

3 �2

�

5.

�

9 �8

6 �5

�

6.

�

10 �6

12 �7

�

7.

�

6 �10

2 �3

�

8.

�

11 �15

6 �8

�

9.

�

�1 4

�1 3

�

10.

�

3 �1

1 1

�

11.

�

5 1

�9 �1

�

12.

�

11 9

�16 �13

�

13.

2

4

1 3 0

0 2 0

0 0 2

3

5 14.

2

4

2 �2 1

2 �2 1

2 �2 1

3

5
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15.

2

4

3 �3 1

2 �2 1

0 0 1

3

5 16.

2

4

3 �2 0

0 1 0

�4 4 1

3

5

17.

2

4

7 �8 3

6 �7 3

2 �2 2

3

5 18.

2

4

6 �5 2

4 �3 2

2 �2 3

3

5

19.

2

4

1 1 �1

�2 4 �1

�4 4 1

3

5 20.

2

4

2 0 0

�6 11 2

6 �15 0

3

5

21.

2

4

0 1 0

�1 2 0

�1 1 1

3

5 22.

2

4

2 �2 1

�1 2 0

�5 7 �1

3

5

23.

2

4

�2 4 �1

�3 5 �1

�1 1 1

3

5 24.

2

4

3 �2 1

1 0 1

�1 1 2

3

5

25.

2

6

6

4

1 0 �2 0

0 1 �2 0

0 0 �1 0

0 0 0 �1

3

7

7

5

26.

2

6

6

4

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 2

3

7

7

5

27.

2

6

6

4

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 2

3

7

7

5

28.

2

6

6

4

1 1 0 1

0 1 1 1

0 0 2 1

0 0 0 2

3

7

7

5

29. Prove: If the matrices A and B are similar and the matrices

B and C are similar, then the matrices A and C are similar.

30. Suppose that the matrices A and B are similar and that n is

a positive integer. Prove that the matrices An and Bn are

similar.

31. Suppose that the invertible matrices A and B are similar.

Prove that their inverses A�1 and B�1 are also similar.

32. Show that if the n � n matrices A and B are similar, then

they have the same characteristic equation and therefore

have the same eigenvalues.

33. Suppose that the n � n matrices A and B are similar and

that each has n real eigenvalues. Show that det A D det B

and that Tr A D Tr B. See Problems 38 and 39 in Section

6.1.

34. Consider the 2 � 2 matrix

A D

�

a b

c d

�

and let � D .a � d/2 C 4bc. Then show that

(a) A is diagonalizable if � > 0;

(b) A is not diagonalizable if � < 0;

(c) If � D 0, then A may be diagonalizable or it may not

be.

35. Let A be a 3 � 3 matrix with three distinct eigenval-

ues. Tell how to construct six different invertible ma-

trices P1;P2; : : : ;P6 and six different diagonal matrices

D1;D2; : : : ;D6 such that Pi Di .Pi /
�1 D A for each i D

1; 2; : : : ; 6.

36. Prove: If the diagonalizable matrices A and B have the

same eigenvalues (with the same multiplicities), then A

and B are similar.

37. Given: The diagonalizable matrix A. Show that the eigen-

values of A2 are the squares of the eigenvalues of A but

that A and A2 have the same eigenvectors.

38. Suppose that the n�nmatrix A has n linearly independent

eigenvectors associated with a single eigenvalue �. Show

that A is a diagonal matrix.

39. Let �i be an eigenvalue of the n � n matrix A, and as-

sume that the characteristic equation of A has only real

solutions. The algebraic multiplicity of �i is the largest

positive integer p.i/ such that .���i /
p.i/ is a factor of the

characteristic polynomial jA� �Ij. The geometric multi-

plicity of �i is the dimension q.i/ of the eigenspace asso-

ciated with �i . It can be shown that p.i/ � q.i/ for every

eigenvalue �i . Taking this as already established, prove

that the given matrix A is diagonalizable if and only if the

geometric multiplicity of each eigenvalue is equal to its

algebraic multiplicity.

6.3 Applications Involving Powers of Matrices

In this section we discuss applications that depend on an ability to compute the

matrix Ak for large values of k, given the n � n matrix A. If A is diagonalizable,

then Ak can be found directly by a method that avoids the labor of calculating the

powers A2;A3;A4; : : : by successive matrix multiplications.

Recall from Section 6.2 that, if the n � n matrix A has n linearly indepen-

dent eigenvectors v1; v2; : : : ; vn associated with the eigenvalues �1; �2; : : : ; �n (not

necessarily distinct), then

A D PDP�1; (1)
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where

P D

2

6

6

4

v1 v2 � � � vn

3

7

7

5

and D D

2

6

6

6

4

�1 0 � � � 0

0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �n

3

7

7

7

5

:

Note that (1) yields

A2
D .PDP�1/.PDP�1/ D PD.P�1P/DP�1

D PD2P�1

because P�1P D I. More generally, for each positive integer k,

Ak
D .PDP�1/k

D .PDP�1/.PDP�1/ � � � .PDP�1/.PDP�1/

D PD.P�1P/D � � � .P�1P/DP�1
I

Ak
D PDkP�1: (2)

But the kth power Dk of the diagonal matrix D is easily computed:

Dk
D

2

6

6

6

4

�k

1
0 � � � 0

0 �k

2
� � � 0

:::
:::

: : :
:::

0 0 � � � �k

n

3

7

7

7

5

: (3)

Consequently the formula in (2) gives a quick and effective way to calculate any

desired power of the diagonalizable matrix A, once its eigenvalues and associated

eigenvectors—and hence the matrices P and D—have been found.

Example 1 Find A5 if

A D

2

4

4 �2 1

2 0 1

2 �2 3

3

5 :

Solution In Example 7 of Section 6.1, we found that the 3� 3matrix A has the eigenvalue �1 D 3 with

associated eigenvector v1 D
�

1 1 1
�

T

, and the repeated eigenvalue �2 D 2 with asso-

ciated eigenvectors v2 D
�

1 1 0
�

T

and v3 D
�

�1 0 2
�

T

. Therefore, A D PDP�1

with

P D

2

4

1 1 �1

1 1 0

1 0 2

3

5 and D D

2

4

3 0 0

0 2 0

0 0 2

3

5 :

We first calculate

P�1
D

2

4

2 �2 1

�2 3 �1

�1 1 0

3

5 and D5
D

2

4

243 0 0

0 32 0

0 0 32

3

5 :

Then the formula in (3) yields

A5
D

2

4

1 1 �1

1 1 0

1 0 2

3

5

2

4

243 0 0

0 32 0

0 0 32

3

5

2

4

2 �2 1

�2 3 �1

�1 1 0

3

5

D

2

4

243 32 �32

243 32 0

243 0 64

3

5

2

4

2 �2 1

�2 3 �1

�1 1 0

3

5

D

2

4

454 �422 211

422 �390 211

422 �422 243

3

5 :



356 Chapter 6 Eigenvalues and Eigenvectors

Transition Matrices

We want to apply this method of computing Ak to the analysis of a certain type of

physical system that can be described by means of the following kind of mathemat-

ical model. Suppose that the sequence

x0; x1; x2; : : : ; xk ; : : : (4)

of n-vectors is defined by its initial vector x0 and an n � n transition matrix A in

the following manner:

xkC1 D Axk for each k � 0. (5)

We envision a physical system—such as a population with n specified subpopula-

tions—that evolve through a sequence of successive states described by the vectors

in (4). Then our goal is to calculate the kth state vector xk . But using (5) repeatedly,

we find that

x1 D Ax0; x2 D Ax1 D A2x0; x3 D Ax2 D A3x0;

and in general that

xk D Akx0: (6)

Thus our task amounts to calculating the kth power Ak of the transition matrix A.

Example 2 Urban/suburban population Consider a metropolitan area with a constant total popula-

tion of 1 million individuals. This area consists of a city and its suburbs, and we want to

analyze the changing urban and suburban populations. Let C
k

denote the city population and

S
k

the suburban population after k years. Suppose that each year 15% of the people in the

city move to the suburbs, whereas 10% of the people in the suburbs move to the city. Then it

follows that

C
kC1
D 0:85C

k
C 0:10S

k

S
kC1
D 0:15C

k
C 0:90S

k

(7)

for each k � 0. (For instance, next year’s city population C
kC1

will equal 85% of this year’s

city population C
k

plus 10% of this year’s suburban population S
k

.) Thus the metropolitan

area’s population vector x
k
D
�

C
k

S
k

�

T

satisfies

x
kC1
D Ax

k
and hence x

k
D Akx0 (8)

(for each k � 0) with transition matrix

A D

�

0:85 0:10

0:15 0:90

�

:

The characteristic equation of the transition matrix A is

�

17

20
� �/

��

9

10
� �

�

�

�

3

20

��

1

10

�

D 0I

.17 � 20�/.9 � 10�/ � 3 D 0I

200�2
� 350�C 150 D 0I

4�2
� 7�C 3 D 0I

.� � 1/.4� � 3/ D 0:

Thus the eigenvalues of A are �1 D 1 and �2 D 0:75. For �1 D 1, the system .A � �I/v D 0

is
�

�0:15 0:10

0:15 �0:10

� �

x

y

�

D

�

0

0

�

;
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so an associated eigenvector is v1 D
�

2 3
�

T

. For �2 D 0:75, the system .A � �I/v D 0 is

�

0:10 0:10

0:15 0:15

� �

x

y

�

D

�

0

0

�

;

so an associated eigenvector is v2 D
�

�1 1
�

T

. It follows that A D PDP�1, where

P D

"

2 �1

3 1

#

; D D

"

1 0

0 3

4

#

; and P�1
D

1

5

�

1 1

�3 2

�

:

Now suppose that our goal is to determine the long-term distribution of population

between the city and its suburbs. Note first that .3

4
/k is “negligible” when k is sufficiently

large; for instance, .3

4
/40� 0:00001. It follows that if k � 40, then the formula Ak DPDkP�1

yields

Ak
D

�

2 �1

3 1

� �

1 0

0 .3

4
/k

�

�

1

5

�

�

1 1

�3 2

�

�
1

5

�

2 �1

3 1

� �

1 0

0 0

� �

1 1

�3 2

�

D
1

5

�

2 0

3 0

� �

1 1

�3 2

�

D
1

5

�

2 2

3 3

�

: (9)

Hence it follows that, if k is sufficiently large, then

x
k
D Akx0 �

1

5

�

2 2

3 3

� �

C0

S0

�

D .C0 C S0/

�

0:4

0:6

�

D

�

0:4

0:6

�

;

because C0 C S0 D 1 (million), the constant total population of the metropolitan area. Thus,

our analysis shows that, irrespective of the initial distribution of population between the city

and its suburbs, the long-term distribution consists of 40% in the city and 60% in the suburbs.

Remark The result in Example 2—that the long-term situation is independent of the initial

situation—is characteristic of a general class of common problems. Note that the transition

matrix A in (8) has the property that the sum of the elements in each column is 1. An n � n

matrix with nonnegative entries having this property is called a stochastic matrix. It can

be proved that, if A is a stochastic matrix having only positive entries, then �1 D 1 is one

eigenvalue of A and j�i j < 1 for the others. (See Problems 39 and 40.) Moreover, as k!1,

the matrix Ak approaches the constant matrix
�

v1 v1 � � � v1

�

;

each of whose identical columns is the eigenvector of A associated with �1 D 1 that has the

sum of its elements equal to 1. The 2 � 2 stochastic matrix A of Example 1 illustrates this

general result, with �1 D 1, �2 D
3

4
, and v1 D .

2

5
; 3

5
/.

Predator-Prey Models

Next, we consider a predator-prey population consisting of the foxes and rabbits

living in a certain forest. Initially, there are F0 foxes and R0 rabbits; after k months,

there are Fk foxes and Rk rabbits. We assume that the transition from each month

to the next is described by the equations

FkC1 D 0:4Fk C 0:3Rk

RkC1 D �rFk C 1:2Rk ,
(10)

where the constant r > 0 is the “capture rate” representing the average number of

rabbits consumed monthly by each fox. Thus

xkC1 D Axk and hence xk D Akx0; (11)
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where

xk D

�

Fk

Rk

�

and A D

�

0:4 0:3

�r 1:2

�

: (12)

The term 0:4Fk in the first equation in (10) indicates that, without rabbits to

eat, only 40% of the foxes would survive each month, while the term 0:3Rk repre-

sents the growth in the fox population due to the available food supply of rabbits.

The term 1:2Rk in the second equation indicates that, in the absence of any foxes,

the rabbit population would increase by 20% each month. We want to investigate

the long-term behavior of the fox and rabbit populations for different values of the

capture rate r of rabbits by foxes.

The characteristic equation of the transition matrix A in (12) is

.0:4 � �/.1:2 � �/C .0:3/r D 0I

.4 � 10�/.12 � 10�/C 30r D 0I

100�2
� 160�C .48C 30r/ D 0:

The quadratic formula then yields the equation

� D
1

200

h

160˙
p

.160/2 � .400/.48C 30r/
i

D
1

10

�

8˙
p
16 � 30r

�

; (13)

which gives the eigenvalues of A in terms of the capture rate r . Examples 3, 4, and

5 illustrate three possibilities (for different values of r) for what may happen to the

fox and rabbit populations as k increases:

� Fk and Rk may approach constant nonzero values. This is the case of stable

limiting populations that coexist in equilibrium with one another.

� Fk and Rk may both approach zero. This is the case of mutual extinction of

the two species.

� Fk and Rk may both increase without bound. This is the case of a population

explosion.

Example 3 Stable limiting population If r D 0:4, then Eq. (13) gives the eigenvalues �1 D 1 and

�2 D 0:6. For �1 D 1, the system .A � �I/v D 0 is

�

�0:6 0:3

�0:4 0:2

� �

x

y

�

D

�

0

0

�

;

so an associated eigenvector is v1 D
�

1 2
�

T

. For �2 D 0:6, the system .A � �I/v D 0 is

�

�0:2 0:3

�0:4 0:6

� �

x

y

�

D

�

0

0

�

;

so an associated eigenvector is v2 D
�

3 2
�

T

. It follows that A D PDP�1, where

P D

�

1 3

2 2

�

; D D

�

1 0

0 0:6

�

; and P�1
D �

1

4

�

2 �3

�2 1

�

:

We are now ready to calculate Ak . If k is sufficiently large that .0:6/k � 0—for
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instance, .0:6/25 � 0:000003—then the formula Ak D PDkP�1 yields

Ak
D

�

1 3

2 2

� �

1 0

0 .0:6/k

�

.�1

4
/

�

2 �3

�2 1

�

� �
1

4

�

1 3

2 2

� �

1 0

0 0

� �

2 �3

�2 1

�

D �
1

4

�

1 0

2 0

� �

2 �3

�2 1

�

D
1

4

�

�2 3

�4 6

�

:

Hence it follows that if k is sufficiently large, then

x
k
D Akx0 D

1

4

�

�2 3

�4 6

� �

F0

R0

�

D
1

4

�

3R0 � 2F0

6R0 � 4F0

�

—that is,
�

F
k

R
k

�

D ˛

�

1

2

�

; where ˛ D 1

4
.3R0 � 2F0/: (14)

Assuming that the initial populations are such that ˛ > 0 (that is, 3R0 > 2F0), (14)

implies that, as k increases, the fox and rabbit populations approach a stable situation in

which there are twice as many rabbits as foxes. For instance, if F0 D R0 D 100, then when k

is sufficiently large, there will be 25 foxes and 50 rabbits.

Example 4 Mutual extinction If r D 0:5, then Eq. (13) gives the eigenvalues �1 D 0:9 and �2 D 0:7.

For �1 D 0:9, the system .A � �I/v D 0 is

�

�0:5 0:3

�0:5 0:3

� �

x

y

�

D

�

0

0

�

;

so an associated eigenvector is v1 D
�

3 5
�

T

. For �2 D 0:7, the system .A � �I/v D 0 is

�

�0:3 0:3

�0:5 0:5

� �

x

y

�

D

�

0

0

�

;

so an associated eigenvector is v2 D
�

1 1
�

T

. It follows that A D PDP�1, with

P D

�

3 1

5 1

�

; D D

�

0:9 0

0 0:7

�

; and P�1
D �

1

2

�

1 �1

�5 3

�

:

Now both .0:9/k and .0:7/k approach 0 as k increases without bound (k!C1). Hence if k

is sufficiently large, then the formula Ak D PDkP�1 yields

Ak
D

�

3 1

5 1

�

"

.0:9/k 0

0 .0:7/k

#

.�1

2
/

�

1 �1

�5 3

�

� �
1

2

�

3 1

5 1

� �

0 0

0 0

� �

1 �1

�5 3

�

D

�

0 0

0 0

�

;

so
�

F
k

R
k

�

D Ak

�

F0

R0

�

�

�

0 0

0 0

� �

F0

R0

�

D

�

0

0

�

: (15)

Thus F
k

and R
k

both approach zero as k ! C1, so both the foxes and the rabbits die

out—mutual extinction occurs.

Example 5 Population explosion If r D 0:325, then Eq. (13) gives the eigenvalues �1 D 1:05 and

�2 D 0:55. For �1 D 1:05, the system .A � �I/v D 0 is

�

�0:650 0:30

�0:325 0:15

� �

x

y

�

D

�

0

0

�

:
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Each equation is a multiple of�13xC6yD 0, so an associated eigenvector is v1D
�

6 13
�

T

.

For �2 D 0:55, the system .A � �I/v D 0 is

�

�0:150 0:30

�0:325 0:65

� �

x

y

�

D

�

0

0

�

;

so an associated eigenvector is v2 D
�

2 1
�

T

. It follows that A D PDP�1 with

P D

�

6 2

13 1

�

; D D

�

1:05 0

0 0:55

�

; and P�1
D �

1

20

�

1 �2

�13 6

�

:

Note that .0:55/k approaches zero but that .1:05/k increases without bound as k !

C1. It follows that if k is sufficiently large, then the formula Ak D PDkP�1 yields

Ak
D

�

6 2

13 1

�

"

.1:05/k 0

0 .0:55/k

#

.� 1

20
/

�

1 �2

�13 6

�

� �
1

20

�

6 2

13 1

� �

.1:05/k 0

0 0

� �

1 �2

�13 6

�

D �
1

20

"

.6/.1:05/k 0

.13/.1:05/k 0

#

�

1 �2

�13 6

�

;

and therefore

Ak
� �

1

20
.1:05/k

�

6 �12

13 �26

�

: (16)

Hence, if k is sufficiently large, then

x
k
D Akx0 � �

1

20
.1:05/k

�

6 �12

13 �26

� �

F0

R0

�

D �
1

20
.1:05/k

�

6F0 � 12R0

13F0 � 26R0

�

;

and so
�

F
k

R
k

�

� .1:05/k

�

6

13

�

; where  D 1

20
.2R0 � F0/: (17)

If  > 0 (that is, if 2R0 > F0), then the factor .1:05/k in (17) implies that the fox

and rabbit populations both increase at a rate of 5% per month, and thus each increases

without bound as k ! C1. Moreover, when k is sufficiently large, the two populations

maintain a constant ratio of 6 foxes for every 13 rabbits. It is also of interest to note that the

monthly “population multiplier” is the larger eigenvalue �1 D 1:05 and that the limiting ratio

of populations is determined by the associated eigenvector v1 D
�

6 13
�

T

.

In summary, let us compare the results in Examples 3, 4, and 5. The critical

capture rate r D 0:4 of Example 3 represents a monthly consumption of 0.4 rabbits

per fox, resulting in stable limiting populations of both species. But if the foxes

are greedier and consume more than 0.4 rabbits per fox monthly, then the result is

extinction of both species (as in Example 4). If the rabbits become more skilled at

evading foxes, so that less than 0.4 rabbits per fox are consumed each month, then

both populations grow without bound, as in Example 5.

The Cayley-Hamilton Theorem

One of the more notable and important theorems in advanced linear algebra says

that every matrix satisfies its own characteristic equation (as proved for the 2 � 2

case in Problem 29 of Section 3.4).
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THEOREM 1 Cayley-Hamilton

If the n � n matrix A has the characteristic polynomial

p.�/ D .�1/n�n
C cn�1�

n�1
C � � � C c2�

2
C c1�C c0;

then

p.A/ D .�1/nAn
C cn�1An�1

C � � � C c2A2
C c1AC c0I D 0: (18)

Proof: We establish (18) only for the special case in which the matrix A is

diagonalizable; the general case will be discussed in Section 7.6. If �1; �2; : : : ; �n

are the eigenvalues of A, then

Ak
D PDkP�1; where Dk

D

2

6

6

6

6

4

�k

1
0 � � � 0

0 �k

2
� � � 0

:::
:::

: : :
:::

0 0 � � � �k

n

3

7

7

7

7

5

as in Eqs. (2) and (3) at the beginning of this section. First, we note that

p.D/ D .�1/nDn
C cn�1Dn�1

C � � � C c2D2
C c1DC c0I

D .�1/n

2

6

6

6

6

4

�n

1
0 � � � 0

0 �n

2
� � � 0

:::
:::

: : :
:::

0 0 � � � �n

n

3

7

7

7

7

5

C cn�1

2

6

6

6

6

4

�n�1

1
0 � � � 0

0 �n�1

2
� � � 0

:::
:::

: : :
:::

0 0 � � � �n�1

n

3

7

7

7

7

5

C � � � C c2

2

6

6

6

6

4

�2

1
0 � � � 0

0 �2

2
� � � 0

:::
:::

: : :
:::

0 0 � � � �2

n

3

7

7

7

7

5

C c1

2

6

6

6

6

4

�1 0 � � � 0

0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �n

3

7

7

7

7

5

C c0

2

6

6

6

6

4

1 0 � � � 0

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

3

7

7

7

7

5

D

2

6

6

6

6

4

p.�1/ 0 � � � 0

0 p.�2/ � � � 0
:::

:::
: : :

:::

0 0 � � � p.�n/

3

7

7

7

7

5

D 0;

because p.�k/ D 0 for k D 1; 2; : : : ; n. Thus the diagonal form D of the matrix A

satisfies the characteristic equation of A. It therefore follows that

p.A/ D .�1/nPDnP�1
C cn�1PDn�1P�1

C � � �

C c2PD2P�1
C c1PDP�1

C c0PIP�1

D Pp.D/P�1

D P 0 P�1
D 0;

as desired.
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Example 6 In Example 7 of Section 6.1, we found that the matrix

A D

2

4

4 �2 1

2 0 1

2 �2 3

3

5

has the characteristic polynomial

p.�/ D ��3
C 7�2

� 16�C 12;

so

�A3
C 7A2

� 16AC 12I D 0; (19)

by the Cayley-Hamilton theorem. Because

A2
D

2

4

14 �10 5

10 �6 5

10 �10 9

3

5 ;

it follows from (19) that

A3
D 7A2

� 16AC 12I

D 7

2

6

4

14 �10 5

10 �6 5

10 �10 9

3

7

5
� 16

2

4

4 �2 1

2 0 1

2 �2 3

3

5C 12

2

4

1 0 0

0 1 0

0 0 1

3

5

D

2

4

46 �38 19

38 �30 19

38 �38 27

3

5 :

Multiplication by A now gives

A4
D 7A3

� 16A2
C 12A

D 7.7A2
� 16AC 12I/ � 16A2

C 12A

D 33A2
� 100AC 84I

D 33

2

6

4

14 �10 5

10 �6 5

10 �10 9

3

7

5
� 100

2

4

4 �2 1

2 0 1

2 �2 3

3

5C 84

2

4

1 0 0

0 1 0

0 0 1

3

5

D

2

4

146 �130 65

130 �114 65

130 �130 81

3

5 :

Thus we can use the Cayley-Hamilton theorem to express (positive integral) powers

of the 3 � 3 matrix A in terms of A and A2. We also can use the Cayley-Hamilton theorem

to find the inverse matrix A�1. If we multiply Eq. (19) by A�1, we can solve the resulting

equation �A2 C 7A � 16IC 12A�1 D 0:

A�1
D

1

12
.A2
� 7AC 16I/

D
1

12

2

4

14 �10 5

10 �6 5

10 �10 9

3

5 �
7

12

2

4

4 �2 1

2 0 1

2 �2 3

3

5C
16

12

2

4

1 0 0

0 1 0

0 0 1

3

5

D
1

6

2

4

1 2 �1

�2 5 �1

�2 2 2

3

5 :
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6.3 Problems
In Problems 1 through 10, a matrix A is given. Use the method

of Example 1 to compute A5.

1.

�

3 �2

1 0

�

2.

�

5 �6

3 �4

�

3.

�

6 �6

4 �4

�

4.

�

4 �3

2 �1

�

5.

�

5 �4

3 �2

�

6.

�

6 �10

2 �3

�

7.

2

4

1 3 0

0 2 0

0 0 2

3

5 8.

2

4

1 �2 1

0 1 0

0 �2 2

3

5

9.

2

4

1 �3 1

0 2 0

0 0 2

3

5 10.

2

4

4 �3 1

2 �1 1

0 0 2

3

5

Find A10 for each matrix A given in Problems 11 through 14.

11.

2

4

1 0 0

6 5 2

21 �15 �6

3

5 12.

2

4

11 �6 �2

20 �11 �4

0 0 1

3

5

13.

2

4

1 �1 1

2 �2 1

4 �4 1

3

5 14.

2

4

5 �5 �3

2 �2 �1

4 �4 �3

3

5

15–24. Use the Cayley-Hamilton theorem (as in Example 6)

to find A�1, A3, and A4 for each matrix A given in

Problems 5–14 (respectively).

In Problems 25 through 30, a city-suburban population tran-

sition matrix A (as in Example 2) is given. Find the resulting

long-term distribution of a constant total population between

the city and its suburbs.

25. A D

�

0:9 0:1

0:1 0:9

�

26. A D

�

0:85 0:05

0:15 0:95

�

27. A D

�

0:75 0:15

0:25 0:85

�

28. A D

�

0:8 0:1

0:2 0:9

�

29. A D

�

0:9 0:05

0:1 0:95

�

30. A D

�

0:8 0:15

0:2 0:85

�

Predator-Prey

Problems 31 through 33 deal with a fox-rabbit population as

in Examples 3 through 5, except with the transition matrix

A D

�

0:6 0:5

�r 1:2

�

in place of the one used in the text.

31. If r D 0:16, show that in the long term the populations of

foxes and rabbits are stable, with 5 foxes for each 4 rab-

bits.

32. If r D 0:175, show that in the long term the populations of

foxes and rabbits both die out.

33. If r D 0:135, show that in the long term the fox and rab-

bit populations both increase at the rate of 5% per month,

maintaining a constant ratio of 10 foxes for each 9 rabbits.

34. Suppose that the 2 � 2 matrix A has eigenvalues �1 D 1

and �2 D�1with eigenvectors v1 D .3; 4/ and v2 D .5; 7/,

respectively. Find the matrix A and the powers A99 and

A100.

35. Suppose that j�j D 1 for each eigenvalue � of the diag-

onalizable matrix A. Show that An D I for every even

positive integer n.

36. Suppose that

A D

�

0 1

1 0

�

:

Show that A2n D I and that A2nC1 D A for every positive

integer n.

37. Suppose that

A D

�

0 1

�1 0

�

:

Show that A4n D I, A4nC1 D A, A4nC2 D �I, and

A4nC3 D �A for every positive integer n.

38. The matrix

A D

�

1 1

0 1

�

is not diagonalizable. (Why not?) Write AD ICB. Show

that B2 D 0 and thence that

An
D

�

1 n

0 1

�

:

39. Consider the stochastic matrix

A D

�

p 1 � q

1 � p q

�

;

where 0 < p < 1 and 0 < q < 1. Show that the eigenvalues

of A are �1 D 1 and �2 D p C q � 1, so that j�2j < 1.

40. Suppose that A is an n � n stochastic matrix—the sum

of the elements of each column vector is 1. If v D

.1; 1; : : : ; 1/, show that AT v D v. Why does it follow that

� D 1 is an eigenvalue of A?

41. In his Liber abaci (Book of Calculation) published in

1202, Leonardo Fibonacci� asked the following question:

How many pairs of rabbits are produced from a single

original pair in one year, if every month each pair begets

a new pair, which is similarly productive beginning in the

second succeeding month? The answer is provided by the

Fibonacci sequence

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : :

in which each term is the sum of its two immediate pre-

decessors. That is, the sequence is defined recursively as

follows:

s0 D 1 D s1; snC1 D sn C sn�1 for n � 1.

� “Leonardo, son of Bonacci,” 1175–1250?, one of the outstanding mathematicians of the middle ages. He is also known as Leonardo of Pisa
(Leonardo Pisano).
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Then sn is the number of rabbit pairs present after n

months. Note that if

xn D

�

snC1

sn

�

and A D

�

1 1

1 0

�

;

then

xn D Axn�1 and so xn D Anx0;

where x0 D .1; 1/.

(a) Show that A has eigenvalues �1 D
1

2
.1 C

p
5/ and

�2 D
1

2
.1 �

p
5/ with associated eigenvectors v1 D

.1C
p
5; 2/ and v2 D .1 �

p
5; 2/, respectively.

(b) Compute
�

snC1

sn

�

D Anx0 D PDnP�1

�

1

1

�

to derive the amazing formula

sn D
1
p
5

2

4

 

1C
p
5

2

!

nC1

�

 

1 �
p
5

2

!

nC1

3

5 :

Thus after 1 year the number of rabbit pairs is

s12 D
1
p
5

2

4

 

1C
p
5

2

!

13

�

 

1 �
p
5

2

!

13

3

5 D 233:

Show that there are 75,025 rabbit pairs after 2 years

and over 2.5 trillion rabbit pairs after 5 years.



77 Linear Systems of
Differential Equations

7.1 First-Order Systems and Applications

In Chapters 1 and 5 we discussed methods for solving an ordinary differential

equation that involves only one dependent variable. Many applications, however,

require the use of two or more dependent variables, each a function of a single in-

dependent variable (typically time). Such a problem leads naturally to a system of

simultaneous ordinary differential equations. We will usually denote the indepen-

dent variable by t and the dependent variables (the unknown functions of t) by x1,

x2, x3, : : : , or by x, y, ´, : : : . Primes will indicate derivatives with respect to t .

We will restrict our attention to systems in which the number of equations is

the same as the number of dependent variables (unknown functions). For instance,

a system of two first-order equations in the dependent variables x and y has the

general form
f .t; x; y; x0; y0/ D 0;

g.t; x; y; x0; y0/ D 0;
(1)

where the functions f and g are given. A solution of this system is a pair x.t/, y.t/

of functions of t that satisfy both equations identically over some interval of values

of t .

For an example of a second-order system, consider a particle of mass m that

moves in space under the influence of a force field F that depends on time t , the

position .x.t/; y.t/; ´.t// of the particle, and its velocity .x0.t/; y0.t/; ´0.t//. Writing

Newton’s law ma D F componentwise, we get the system

mx00
D F1.t; x; y; ´; x

0; y0; ´0/;

my00
D F2.t; x; y; ´; x

0; y0; ´0/;

m´00
D F3.t; x; y; ´; x

0; y0; ´0/

(2)

of three second-order equations with independent variable t and dependent variables

x, y, ´; the three right-hand side functions F1, F2, F3 are the components of the

vector-valued function F.

365
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Initial Applications

Examples 1 and 2 further illustrate how systems of differential equations arise nat-

urally in scientific problems.

Example 1 Dual mass-spring system Consider the system of two masses and two springs shown in

Fig. 7.1.1, with a given external force f .t/ acting on the right-hand mass m2. We denote by
k1 k2

m2m1

Equilibrium positions

y (t)

f (t)

x (t)

FIGURE 7.1.1. The mass-and-
spring system of Example 1.

x.t/ the displacement (to the right) of the mass m1 from its static equilibrium position [when

the system is motionless and in equilibrium and f .t/D 0] and by y.t/ the displacement of the

mass m2 from its static position. Thus the two springs are neither stretched nor compressed

when x and y are zero.

In the configuration in Fig. 7.1.1, the first spring is stretched x units and the second by

y � x units. We apply Newton’s law of motion to the two “free body diagrams” shown in

Fig. 7.1.2; we thereby obtain the system

m1x
00
D �k1x C k2.y � x/;

m2y
00
D �k2.y � x/C f .t/

(3)

of differential equations that the position functions x.t/ and y.t/ must satisfy. For instance,

if m1 D 2, m2 D 1, k1 D 4, k2 D 2, and f .t/ D 40 sin 3t in appropriate physical units, then

the system in (3) reduces tof (t)

k1x k2(y − x)

k2(y − x)

m1

m2

FIGURE 7.1.2. The free body
diagrams for the system of Example 1.

2x00
D �6x C 2y;

y00
D 2x � 2y C 40 sin 3t:

(4)

Example 2 Dual brine tanks Consider two brine tanks connected as shown in Fig. 7.1.3. Tank 1

contains x.t/ pounds of salt in 100 gal of brine and tank 2 contains y.t/ pounds of salt in 200

gal of brine. The brine in each tank is kept uniform by stirring, and brine is pumped from

each tank to the other at the rates indicated in Fig. 7.1.3. In addition, fresh water flows into20 gal/min

Fresh water

y (t ) lb

200 gal

20 gal/min

10 gal/min

30 gal/min
Tank 2Tank 1

x (t ) lb

100 gal

FIGURE 7.1.3. The two brine tanks

of Example 2.

tank 1 at 20 gal=min, and the brine in tank 2 flows out at 20 gal=min (so the total volume of

brine in the two tanks remains constant). The salt concentrations in the two tanks are x=100

pounds per gallon and y=200 pounds per gallon, respectively. When we compute the rates

of change of the amount of salt in the two tanks, we therefore get the system of differential

equations that x.t/ and y.t/ must satisfy:

x0
D �30 �

x

100
C 10 �

y

200
D �

3

10
x C

1

20
y;

y0
D 30 �

x

100
� 10 �

y

200
� 20 �

y

200
D

3

10
x �

3

20
y

—that is,

20x0
D �6x C y;

20y0
D 6x � 3y:

(5)

First-Order Systems

Consider a system of differential equations that can be solved for the highest-order

derivatives of the dependent variables that appear, as explicit functions of t and

lower-order derivatives of the dependent variables. For instance, in the case of a

system of two second-order equations, our assumption is that it can be written in the

form
x00

1
D f1.t; x1; x2; x

0
1
; x0

2
/;

x00
2
D f2.t; x1; x2; x

0
1
; x0

2
/:

(6)

It is of both practical and theoretical importance that any such higher-order system

can be transformed into an equivalent system of first-order equations.
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To describe how such a transformation is accomplished, we consider first the

“system” consisting of the single nth-order equation

x.n/
D f .t; x; x0; : : : ; x.n�1//: (7)

We introduce the dependent variables x1, x2, : : : , xn defined as follows:

x1 D x; x2 D x
0; x3 D x

00; : : : ; xn D x
.n�1/: (8)

Note that x0
1
D x0 D x2, x0

2
D x00 D x3, and so on. Hence the substitution of (8) in

Eq. (7) yields the system

x0
1
D x2;

x0
2
D x3;

:::

x0
n�1
D xn;

x0
n
D f .t; x1; x2; : : : ; xn/

(9)

of n first-order equations. Evidently, this system is equivalent to the original nth-

order equation in (7), in the sense that x.t/ is a solution of Eq. (7) if and only if the

functions x1.t/, x2.t/, : : : , xn.t/ defined in (8) satisfy the system of equations in (9).

Example 3 The third-order equation

x.3/
C 3x00

C 2x0
� 5x D sin 2t

is of the form in (7) with

f .t; x; x0; x00/ D 5x � 2x0
� 3x00

C sin 2t:

Hence the substitutions

x1 D x; x2 D x
0
D x0

1
; x3 D x

00
D x0

2

yield the system

x0
1
D x2;

x0
2
D x3;

x0
3
D 5x1 � 2x2 � 3x3 C sin 2t

of three first-order equations.

It may appear that the first-order system obtained in Example 3 offers little

advantage, because we could use the methods of Chapter 5 to solve the original

(linear) third-order equation. But suppose that we were confronted with the nonlin-

ear equation

x00
D x3

C .x0/3;

to which none of our earlier methods can be applied. The corresponding first-order

system is
x0

1
D x2;

x0
2
D .x1/

3
C .x2/

3;
(10)

and we will see in Section 7.7 that there exist effective numerical techniques for

approximating the solution of essentially any first-order system. So, in this case, the

transformation to a first-order system is advantageous. From a practical viewpoint,

large systems of higher-order differential equations typically are solved numerically

with the aid of the computer, and the first step is to transform such a system into a

first-order system for which a standard computer program is available.
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Example 4 The system

2x00 D �6x C 2y,

y00 D 2x � 2y C 40 sin 3t
(4)

of second-order equations was derived in Example 1. Transform this system into an equiva-

lent first-order system.

Solution Motivated by the equations in (8), we define

x1 D x; x2 D x
0
D x0

1
; y1 D y; y2 D y

0
D y0

1
:

Then the system in (4) yields the system

x0
1
D x2;

2x0
2
D �6x1 C 2y1;

y0
1
D y2;

y0
2
D 2x1 � 2y1 C 40 sin 3t

(11)

of four first-order equations in the dependent variables x1, x2, y1, and y2.

Simple Two-Dimensional Systems

The linear second-order differential equation

x00
C px0

C qx D 0 (12)

(with constant coefficients and independent variable t) transforms via the substitu-

tions x0 D y, x00 D y0 into the two-dimensional linear system

x0
D y;

y0
D �qx � py:

(13)

Conversely, we can solve this system in (13) by solving the familiar single equation

in (12).

Example 5 To solve the two-dimensional system

x0
D �2y;

y0
D

1

2
x;

(14)

we begin with the observation that

x00
D �2y0

D �2
�

1

2
x
�

D �x:

This gives the single second-order equation x00 C x D 0 having general solution

x.t/ D A cos t C B sin t D C cos.t � ˛/;

where A D C cos˛ and B D C sin˛. Then

y.t/ D �1

2
x0.t/ D �1

2
.�A sin t C B cos t /

D
1

2
C sin.t � ˛/:

The identity cos2 �Csin2 � D 1 therefore implies that, for each value of t , the point .x.t/; y.t//

lies on the ellipse

x2

C 2
C

y2

.C=2/2
D 1

with semiaxes C and C=2. Figure 7.1.4 shows several such ellipses in the xy-plane.

50−5 1−4 2−3 3−2 4−1
x

y

−5

5

0

− 4

1

−3

2

−2

3

−1

4

FIGURE 7.1.4. Direction field and
solution curves for the system

x
0 D �2y, y

0 D 1
2

x of Example 5.
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A solution .x.t/; y.t// of a two-dimensional system

x0
D f .t; x; y/;

y0
D g.t; x; y/

can be regarded as a parametrization of a solution curve or trajectory of the sys-

tem in the xy-plane. Thus the trajectories of the system in (14) are the ellipses of

Fig. 7.1.4. The choice of an initial point .x.0/; y.0// determines which one of these

trajectories a particular solution parametrizes.

The picture showing a system’s trajectories in the xy-plane—its so-called

phase plane portrait—fails to reveal precisely how the point .x.t/; y.t// moves

along its trajectory. If the functions f and g do not involve the independent variable

t , then a direction field—showing typical arrows representing vectors with compo-

nents (proportional to) the derivatives x0D f .x; y/ and y0D g.x; y/—can be plotted.

Because the moving point .x.t/; y.t// has velocity vector .x0.t/; y0.t//, this direc-

tion field indicates the point’s direction of motion along its trajectory. For instance,

the direction field plotted in Fig. 7.1.4 indicates that each such point moves coun-

terclockwise around its elliptical trajectory. Additional information can be shown

in the separate graphs of x.t/ and y.t/ as functions of t .

151050
t

x,
 y

−4

−3

−2

−1

4

3

2

1

0

x = 2 cos t

y = sin t

FIGURE 7.1.5. x- and y-solution
curves for the initial value problem

x
0 D �2y, y

0 D 1
2

x, x.0/ D 2,
y.0/ D 0.

Example 5 Continued With initial values x.0/D 2, y.0/D 0, the general solution in Example 5 yields

x.0/ D A D 2; y.0/ D �1

2
B D 0:

The resulting particular solution is given by

x.t/ D 2 cos t; y.t/ D sin t:

The graphs of the two functions are shown in Fig. 7.1.5. We see that x.t/ initially decreases

while y.t/ increases. It follows that, as t increases, the solution point .x.t/; y.t// traverses

the trajectory 1

4
x2 C y2 D 1 in the counterclockwise direction, as indicated by the direction

field vectors in Fig. 7.1.4.

Example 6 To find a general solution of the system

x0
D y;

y0
D 2x C y;

(15)

we begin with the observation that

x00
D y0

D 2x C y D x0
C 2x:

This gives the single linear second-order equation

x00
� x0
� 2x D 0

having the characteristic equation

r2
� r � 2 D .r C 1/.r � 2/ D 0

and the general solution

x.t/ D Ae�t
C Be2t : (16)

Therefore,

y.t/ D x0.t/ D �Ae�t
C 2Be2t : (17)

Typical phase plane trajectories of the system in (15) parametrized by Eqs. (16) and (17) are

shown in Fig. 7.1.6. These trajectories may resemble hyperbolas sharing common asymp-

0−4 2 4−2 1−3 3−1
x

y 0

−4

1

−3

2

−2

3

4

−1

FIGURE 7.1.6. Direction field and
solution curves for the system x

0 D y,
y

0 D 2x C y of Example 6.

totes, but Problem 23 shows that their actual form is somewhat more complicated.



370 Chapter 7 Linear Systems of Differential Equations

Example 7 To solve the initial value problem

x0
D �y;

y0
D .1:01/x � .0:2/y;

x.0/ D 0; y.0/ D 1;

(18)

we begin with the observation that

20−2 1−1
x

y

−2

2

0

−1

1

(0, −1)

FIGURE 7.1.7. Direction field and

solution curve for the system x
0 D �y,

y
0 D .1:01/x � .0:2/y of Example 7.

x00
D �y0

D �Œ.1:01/x � .0:2/y� D .�1:01/x � .0:2/x0:

This gives the single linear second-order equation

x00
C .0:2/x0

C .1:01/x D 0

having the characteristic equation

r2
C .0:2/r C 1:01 D .r C 0:1/2 C 1 D 0;

characteristic roots �0:1˙ i , and the general solution

x.t/ D e�t=10.A cos t C B sin t /:

Then x.0/ D A D 0, so

x.t/ D Be�t=10 sin t;

y.t/ D �x0.t/ D 1

10
Be�t=10 sin t � Be�t=10 cos t:

Finally, y.0/ D �B D 1, so the desired solution of the system in (18) is

x = x(t)

15105 3025200
t

x,
 y

−0.8

−0.4

0.8

0.4

0.0

−1.2

1.2

y = y(t)

FIGURE 7.1.8. x- and y-solution
curves for the initial value problem of

Example 7.

x.t/ D e�t=10 sin t;

y.t/ D 1

10
e�t=10.sin t C 10 cos t /:

(19)

These equations parametrize the spiral trajectory in Fig. 7.1.7; the trajectory approaches the

origin as t !C1. Figure 7.1.8 shows the x- and y-solution curves given in (19).

When we study linear systems in subsequent sections, we will learn why the

superficially similar systems in Examples 5 through 7 have the markedly different

trajectories shown in Figs. 7.1.4, 7.1.6, and 7.1.7.

Linear Systems

In addition to practical advantages for numerical computation, the general theory of

systems and systematic solution techniques are more easily and more concisely de-

scribed for first-order systems than for higher-order systems. For instance, consider

a linear first-order system of the form

x0
1
D p11.t/x1 C p12.t/x2 C � � � C p1n.t/xn C f1.t/;

x0
2
D p21.t/x1 C p22.t/x2 C � � � C p2n.t/xn C f2.t/;
:::

x0
n
D pn1.t/x1 C pn2.t/x2 C � � � C pnn.t/xn C fn.t/:

(20)

We say that this system is homogeneous if the functions f1, f2, : : : , fn are all

identically zero; otherwise, it is nonhomogeneous. Thus the linear system in (5) is

homogeneous, whereas the linear system in (11) is nonhomogeneous. The system

in (10) is nonlinear because the right-hand side of the second equation is not a linear

function of the dependent variables x1 and x2.
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A solution of the system in (20) is an n-tuple of functions x1.t/, x2.t/, : : : ,

xn.t/ that (on some interval) identically satisfy each of the equations in (20). We

will see that the general theory of a system of n linear first-order equations shares

many similarities with the general theory of a single nth-order linear differential

equation. Theorem 1 (proved in Appendix A) is analogous to Theorem 2 of Section

5.2. It tells us that if the coefficient functions pij and fj in (20) are continuous, then

the system has a unique solution satisfying given initial conditions.

THEOREM 1 Existence and Uniqueness for Linear Systems

Suppose that the functions p11, p12, : : : , pnn and the functions f1, f2, : : : , fn

are continuous on the open interval I containing the point a. Then, given the n

numbers b1, b2, : : : , bn, the system in (20) has a unique solution on the entire

interval I that satisfies the n initial conditions

x1.a/ D b1; x2.a/ D b2; : : : ; xn.a/ D bn: (21)

Thus n initial conditions are needed to determine a solution of a system of

n linear first-order equations, and we therefore expect a general solution of such a

system to involve n arbitrary constants. For instance, we saw in Example 4 that the

second-order linear system

2x00 D � 6x C 2y,

y00 D 2x � 2y C 40 sin 3t;

which describes the position functions x.t/ and y.t/ of Example 1, is equivalent to

the system of four first-order linear equations in (11). Hence four initial conditions

would be needed to determine the subsequent motions of the two masses in Example

1. Typical initial values would be the initial positions x.0/ and y.0/ and the initial

velocities x0.0/ and y0.0/. On the other hand, we found that the amounts x.t/ and

y.t/ of salt in the two tanks of Example 2 are described by the system

20x0 D � 6x C y,

20y0 D 6x � 3y

of two first-order linear equations. Hence the two initial values x.0/ and y.0/ should

suffice to determine the solution. Given a higher-order system, we often must trans-

form it into an equivalent first-order system to discover how many initial conditions

are needed to determine a unique solution. Theorem 1 tells us that the number of

such conditions is precisely the same as the number of equations in the equivalent

first-order system.

7.1 Problems
In Problems 1 through 10, transform the given differential

equation or system into an equivalent system of first-order dif-

ferential equations.

1. x00 C 3x0 C 7x D t2

2. x.4/ C 6x00 � 3x0 C x D cos 3t

3. t2x00 C tx0 C .t2 � 1/x D 0

4. t3x.3/ � 2t2x00 C 3tx0 C 5x D ln t

5. x.3/ D .x0/2 C cos x

6. x00 � 5x C 4y D 0, y00 C 4x � 5y D 0

7. x00 D �
kx

.x2 C y2/3=2

, y00 D �
ky

.x2 C y2/3=2

8. x00 C 3x0 C 4x � 2y D 0, y00 C 2y0 � 3x C y D cos t

9. x00 D 3x � y C 2´, y00 D x C y � 4´, ´00 D 5x � y � ´

10. x00 D .1 � y/x, y00 D .1 � x/y
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Use the method of Examples 5, 6, and 7 to find general solu-

tions of the systems in Problems 11 through 20. If initial con-

ditions are given, find the corresponding particular solution.

For each problem, use a computer system or graphing calcu-

lator to construct a direction field and typical solution curves

for the given system.

11. x0 D y, y0 D �x

12. x0 D y, y0 D x

13. x0 D �2y, y0 D 2x; x.0/ D 1, y.0/ D 0

14. x0 D 10y, y0 D �10x; x.0/ D 3, y.0/ D 4

15. x0 D
1

2
y, y0 D �8x

16. x0 D 8y, y0 D �2x

17. x0 D y, y0 D 6x � y; x.0/ D 1, y.0/ D 2

18. x0 D �y, y0 D 10x � 7y; x.0/ D 2, y.0/ D �7

19. x0 D �y, y0 D 13x C 4y; x.0/ D 0, y.0/ D 3

20. x0 D y, y0 D �9x C 6y

21. (a) Calculate Œx.t/�2 C Œy.t/�2 to show that the trajecto-

ries of the system x0 D y, y0 D �x of Problem 11 are

circles. (b) Calculate Œx.t/�2 � Œy.t/�2 to show that the

trajectories of the system x0 D y, y0 D x of Problem 12

are hyperbolas.

22. (a) Beginning with the general solution of the system

x0 D �2y, y0 D 2x of Problem 13, calculate x2 C y2 to

show that the trajectories are circles. (b) Show similarly

that the trajectories of the system x0 D
1

2
y, y0 D �8x

of Problem 15 are ellipses with equations of the form

16x2 C y2 D C 2.

23. First solve Eqs. (16) and (17) for e�t and e2t in terms of

x.t/, y.t/, and the constants A and B . Then substitute the

results in .e2t /.e�t /2 D 1 to show that the trajectories of

the system x0 D y, y0 D 2x C y in Example 6 satisfy an

equation of the form

4x3
� 3xy2

C y3
D C (constant):

Then show that C D 0 yields the straight lines y D�x and

y D 2x that are visible in Fig. 7.1.6.

24. Dual mass-spring system Derive the equations

m1x
00
1
D �.k1 C k2/x1 C k2x2,

m2x
00
2
D k2x1 � .k2 C k3/x2

for the displacements (from equilibrium) of the two

masses shown in Fig. 7.1.9.

k1 k2 k3
m2

x2

m1

x1

FIGURE 7.1.9. The system of

Problem 24.

25. Oscillating particles Two particles each of mass m are

attached to a string under (constant) tension T , as indi-

cated in Fig. 7.1.10. Assume that the particles oscillate

vertically (that is, parallel to the y-axis) with amplitudes

so small that the sines of the angles shown are accurately

approximated by their tangents. Show that the displace-

ments y1 and y2 satisfy the equations

ky00
1
D �2y1 C y2; ky00

2
D y1 � 2y2;

where k D mL=T .

26. Fermentation vats Three 100-gal fermentation vats are

connected as indicated in Fig. 7.1.11, and the mixtures in

each tank are kept uniform by stirring. Denote by xi .t/ the

amount (in pounds) of alcohol in tank Ti at time t (i D 1, 2,

3). Suppose that the mixture circulates between the tanks

at the rate of 10 gal=min. Derive the equations

10x0
1
D �x1 C x3

10x0
2
D x1 � x2

10x0
3
D x2 � x3.

27. A particle of mass m moves in the plane with coordinates

.x.t/; y.t// under the influence of a force that is directed

toward the origin and has magnitude k=.x2 C y2/—an

inverse-square central force field. Show that

mx00
D �

kx

r3
and my00

D �
ky

r3
;

where r D
p

x2 C y2.

28. Suppose that a projectile of mass m moves in a vertical

plane in the atmosphere near the surface of the earth un-

der the influence of two forces: a downward gravitational

force F
G

of magnitude mg, and a resistive force F
R

that

is directed opposite to the velocity vector v and has mag-

nitude kv2 (where v D jvj is the speed of the projectile;

see Fig. 7.1.12). Show that the equations of motion of the

projectile are

mx00
D �kvx0; my00

D �kvy0
�mg;

where v D
p

.x0/2 C .y0/2.

xL L L

y

m

m

θ1θ

θ1θ

θ2θ

θ2θ
θ3θ

θ3θ

FIGURE 7.1.10. The mechanical
system of Problem 25.

T1 T3

T2

FIGURE 7.1.11. The fermentation
tanks of Problem 26.

x

y

m

FR

v

FG

FIGURE 7.1.12. The trajectory of
the projectile of Problem 28.
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29. Suppose that a particle with massm and electrical charge q

moves in the xy-plane under the influence of the magnetic

field B D Bk (thus a uniform field parallel to the ´-axis),

so the force on the particle is F D qv � B if its velocity is

v. Show that the equations of motion of the particle are

mx00
D CqBy0; my00

D �qBx0:

Go to goo.gl/Ofe0JQ to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

7.1 Application Gravitation and Kepler’s Laws of Planetary Motion

Around the turn of the seventeenth century, Johannes Kepler analyzed a lifetime of

planetary observations by the astronomer Tycho Brahe. Kepler concluded that the

motion of the planets around the sun is described by the following three proposi-

tions, now known as Kepler’s laws of planetary motion:

1. The orbit of each planet is an ellipse with the sun at one focus.

2. The radius vector from the sun to each planet sweeps out area at a constant

rate.

3. The square of the planet’s period of revolution is proportional to the cube of

the major semiaxis of its elliptical orbit.

In his Principia Mathematica (1687) Isaac Newton deduced the inverse square

law of gravitation from Kepler’s laws. In this application we lead you (in the oppo-

site direction) through a derivation of Kepler’s first two laws from Newton’s law of

gravitation. Newton’s explanation of planetary motion in terms of gravitation is a

landmark of scientific and intellectual history.

Assume that the sun is located at the origin in the plane of motion of a planet,

and write the position vector of the planet in the form

r.t/ D .x.t/; y.t// D xiC yj; (1)

where i D .1; 0/ and j D .0; 1/ denote the unit vectors in the positive x- and y-

directions. Then the inverse-square law of gravitation implies (Problem 27) that the

acceleration vector r00.t/ of the planet is given by

r00
D �

kr

r3
; (2)

where r D
p

x2 C y2 is the distance from the sun to the planet. If the polar co-

ordinates of the planet at time t are .r.t/; �.t//, then the radial and transverse unit

vectors shown in Fig. 7.1.13 are given by

ur D i cos � C j sin � and u� D �i sin � C j cos �: (3)

The radial unit vector ur (when located at the planet’s position) always points di-

y

x

uθ (t)

ur(t)

θ(r(t), (t))

FIGURE 7.1.13. The radial and
transverse unit vectors ur and u� .

rectly away from the origin, so ur D r=r , and the transverse unit vector u� is ob-

tained from ur by a 90ı counterclockwise rotation.

STEP 1: Differentiate the equations in (3) componentwise to show that

dur

dt
D u�

d�

dt
and

du�

dt
D �ur

d�

dt
: (4)

STEP 2: Use the equations in (4) to differentiate the planet’s position vector r D

rur and thereby show that its velocity vector is given by

v D
dr

dt
D ur

dr

dt
C r

d�

dt
u� : (5)



374 Chapter 7 Linear Systems of Differential Equations

STEP 3: Differentiate again to show that the planet’s acceleration vector a D

dv=dt is given by

a D

"

d2r

dt2
� r

�

d�

dt

�

2

#

ur C

�

1

r

d

dt

�

r2
d�

dt

��

u� : (6)

STEP 4: The radial and transverse components on the right-hand sides in Eqs. (2)

and (6) must agree. Equating the transverse components—that is, the coefficients

of u� —we get
1

r

d

dt

�

r2
d�

dt

�

D 0; (7)

so it follows that

r2
d�

dt
D h; (8)

where h is a constant. Because the polar-coordinate area element—for computation

of the area A.t/ in Fig. 7.1.14—is given by dA D 1

2
r2d� , Eq. (8) implies that the

derivative A0.t/ is constant, which is a statement of Kepler’s second law.

A(t)

θ(r(0), (0))

θ(r(t), (t))

FIGURE 7.1.14. Area swept out by
the radius vector.

STEP 5: Equate radial components in (2) and (6), and then use the result in (8)

to show that the planet’s radial coordinate function r.t/ satisfies the second-order

differential equation

d2r

dt2
�
h2

r3
D �

k

r2
: (9)

STEP 6: Although the differential equation in (9) is nonlinear, it can be trans-

formed to a linear equation by means of a simple substitution. For this purpose,

assume that the orbit can be written in the polar-coordinate form r D r.�/, and first

use the chain rule and Eq. (8) to show that if r D 1=´, then

dr

dt
D �h

d´

d�
:

Differentiate again, to deduce from Eq. (9) that the function ´.�/ D 1=r.�/ satisfies

the second-order equation

d2´

d�2
C ´ D

k

h2
: (10)

STEP 7: Show that the general solution of Eq. (10) is

´.�/ D A cos � C B sin � C
k

h2
: (11)

STEP 8: Finally, deduce from Eq. (11) that r.�/ D 1=´.�/ is given by

r.�/ D
L

1C e cos.� � ˛/
; (12)

with e D Ch2=k, C cos˛ D A, C sin˛ D B , and L D h2=k. The polar-coordinate

graph of Eq. (12) is a conic section of eccentricity e—an ellipse if 0 5 e < 1, a

parabola if e D 1, and a hyperbola if e > 1—with focus at the origin. Planetary

=θ α

y

x

r1

Sun

r2

L

FIGURE 7.1.15. The elliptical orbit

r D
L

1 C e cos.� � ˛/

with perihelion distance
r1 D L=.1 C e/ and aphelion distance
r2 D L=.1 � e/.

orbits are bounded and therefore are ellipses, with eccentricity e < 1. As indicated

in Fig. 7.1.15, the major axis of the ellipse lies along the radial line � D ˛.
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STEP 9: Plot some typical elliptical orbits—as described by (12)—having differ-

ent eccentricities, sizes, and orientations. In rectangular coordinates you can write

x.t/ D r.t/ cos t; y.t/ D r.t/ sin t; 0 5 t 5 2�

to plot an elliptical orbit with eccentricity e, semilatus rectum L (Fig. 7.1.15), and

rotation angle ˛. The eccentricity of the earth’s orbit is e � 0:0167, so close

to zero that the orbit looks nearly circular (though with the sun off center), and

the eccentricities of the other planetary orbits range from 0:0068 for Venus and

0:0933 for Mars to 0.2056 for Mercury (and 0.2486 for Pluto, no longer classi-

fied a planet). But many comets have highly eccentric orbits—Halley’s comet has

e � 0:97 (Fig.7.1.16).

Sun

FIGURE 7.1.16. The shape of the
orbit of Halley’s comet.

7.2 Matrices and Linear Systems

A system of differential equations often can be simplified by expressing it as a

single differential equation involving a matrix-valued function. A matrix-valued

function, or simply matrix function, is a matrix such as

x.t/ D

2

6

6

6

6

6

6

4

x1.t/

x2.t/

:::

xn.t/

3

7

7

7

7

7

7

5

(1)

or

A.t/ D

2

6

6

6

6

6

6

4

a11.t/ a12.t/ � � � a1n.t/

a21.t/ a22.t/ � � � a2n.t/

:::
:::

:::

am1.t/ am2.t/ � � � amn.t/

3

7

7

7

7

7

7

5

; (2)

in which each entry is a function of t . We say that the matrix function A.t/ is

continuous (or differentiable) at a point (or on an interval) if each of its elements

has the same property. The derivative of a differentiable matrix function is defined

by elementwise differentiation; that is,

A0.t/ D
dA

dt
D

�

daij

dt

�

: (3)

Example 1 If

x.t/ D

2

4

t

t2

e�t

3

5 and A.t/ D

�

sin t 1

t cos t

�

;

then

dx

dt
D

2

4

1

2t

�e�t

3

5 and A0.t/ D

�

cos t 0

1 � sin t

�

:
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The differentiation rules

d

dt
.AC B/ D

dA

dt
C
dB

dt
(4)

and
d

dt
.AB/ D A

dB

dt
C
dA

dt
B (5)

follow readily by elementwise application of the analogous differentiation rules of

elementary calculus for real-valued functions. If c is a (constant) real number and

C is a constant matrix, then

d

dt
.cA/ D c

dA

dt
;

d

dt
.CA/ D C

dA

dt
; and

d

dt
.AC/ D

dA

dt
C: (6)

Because of the noncommutativity of matrix multiplication, it is important not to

reverse the order of the factors in Eqs. (5) and (6).

First-Order Linear Systems

The notation and terminology of matrices and vectors may seem rather elaborate

when first encountered, but it is readily assimilated with practice. Our main use for

matrix notation will be the simplification of computations with systems of differ-

ential equations, especially those computations that would be burdensome in scalar

notation.

We discuss here the general system of n first-order linear equations

x0
1
D p11.t/x1 C p12.t/x2 C � � � C p1n.t/xn C f1.t/;

x0
2
D p21.t/x1 C p22.t/x2 C � � � C p2n.t/xn C f2.t/;

x0
3
D p31.t/x1 C p32.t/x2 C � � � C p3n.t/xn C f3.t/;

:::

x0
n
D pn1.t/x1 C pn2.t/x2 C � � � C pnn.t/xn C fn.t/:

(7)

If we introduce the coefficient matrix

P.t/ D
�

pij .t/
�

and the column vectors

x D
�

xi

�

and f.t/ D
�

fi .t/
�

;

then—as illustrated in Example 2 below—the system in (7) takes the form of a

single matrix equation
dx

dt
D P.t/xC f.t/: (8)

We will see that the general theory of the linear system in (7) closely parallels that of

a single nth-order equation. The matrix notation used in Eq. (8) not only emphasizes

this analogy, but also saves a great deal of space.

A solution of Eq. (8) on the open interval I is a column vector function x.t/D
�

xi .t/
�

such that the component functions of x satisfy the system in (7) identically

on I. If the functions pij .t/ and fi .t/ are all continuous on I, then Theorem 1

of Section 7.1 guarantees the existence on I of a unique solution x.t/ satisfying

preassigned initial conditions x.a/ D b.
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Example 2 The first-order system

x0
1
D 4x1 � 3x2;

x0
2
D 6x1 � 7x2

can be recast as a matrix equation by writing

x0
D

"

x0
1

x0
2

#

D

"

4x1 � 3x2

6x1 � 7x2

#

D

"

4 �3

6 �7

#"

x1

x2

#

D

"

4 �3

6 �7

#

x:

Thus we obtain a matrix equation of the form in (8),

dx

dt
D P.t/xC f.t/ with P.t/ D

�

4 �3

6 �7

�

and f.t/ D

�

0

0

�

D 0:

To verify that the vector functions

x1.t/ D

�

3e2t

2e2t

�

and x2.t/ D

�

e�5t

3e�5t

�

are both solutions of the matrix differential equation with coefficient matrix P, we need only

calculate

Px1 D

�

4 �3

6 �7

� �

3e2t

2e2t

�

D

�

6e2t

4e2t

�

D x0
1

and

Px2 D

�

4 �3

6 �7

� �

e�5t

3e�5t

�

D

�

�5e�5t

�15e�5t

�

D x0
2
:

To investigate the general nature of the solutions of Eq. (8), we consider first

the associated homogeneous equation

dx

dt
D P.t/x; (9)

which has the form shown in Eq. (8), but with f.t/ � 0. We expect it to have n

solutions x1, x2, : : : , xn that are independent in some appropriate sense, and that

are such that every solution of Eq. (9) is a linear combination of these n particular

solutions. Given n solutions x1, x2, : : : , xn of Eq. (9), let us write

xj .t/ D

2

6

6

6

6

6

6

6

6

6

4

x1j .t/

:::

xij .t/

:::

xnj .t/

3

7

7

7

7

7

7

7

7

7

5

: (10)

Thus xij .t/ denotes the i th component of the vector xj .t/, so the second subscript

refers to the vector function xj .t/, whereas the first subscript refers to a component

of this function. Theorem 1 is analogous to Theorem 1 of Section 5.2.

THEOREM 1 Principle of Superposition

Let x1, x2, : : : , xn be n solutions of the homogeneous linear equation in (9) on

the open interval I. If c1, c2, : : : , cn are constants, then the linear combination

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (11)

is also a solution of Eq. (9) on I.
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Proof: We know that x0
i
D P.t/xi for each i (1 5 i 5 n), so it follows imme-

diately that

x0
D c1x0

1
C c2x0

2
C � � � C cnx0

n

D c1P.t/x1 C c2P.t/x2 C � � � C cnP.t/xn

D P.t/.c1x1 C c2x2 C � � � C cnxn/:

That is, x0 D P.t/x, as desired. The remarkable simplicity of this proof demonstrates

clearly one advantage of matrix notation.

Example 2 Continued If x1 and x2 are the two solutions of

dx

dt
D

�

4 �3

6 �7

�

x

discussed in Example 2, then the linear combination

x.t/ D c1x1.t/C c2x2.t/ D c1

�

3e2t

2e2t

�

C c2

�

e�5t

3e�5t

�

is also a solution. In scalar form with x D Œx1 x2�
T , this gives the solution

x1.t/ D 3c1e
2t
C c2e

�5t ;

x2.t/ D 2c1e
2t
C 3c2e

�5t :

Independence and General Solutions

Linear independence is defined in the same way for vector-valued functions as for

real-valued functions (Section 5.2). The vector-valued functions x1, x2, : : : , xn are

linearly dependent on the interval I provided that there exist constants c1, c2, : : : ,

cn, not all zero, such that

c1x1.t/C c2x2.t/C � � � C cnxn.t/ D 0 (12)

for all t in I. Otherwise, they are linearly independent. Equivalently, they are

linearly independent provided that no one of them is a linear combination of the

others. For instance, the two solutions x1 and x2 of Example 2 are linearly indepen-

dent because, clearly, neither is a scalar multiple of the other.

Just as in the case of a single nth-order equation, there is a Wronskian deter-

minant that tells us whether or not n given solutions of the homogeneous equation

in (9) are linearly dependent. If x1, x2, : : : , xn are such solutions, then their Wron-

skian is the n � n determinant

W.t/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x11.t/ x12.t/ � � � x1n.t/

x21.t/ x22.t/ � � � x2n.t/
:::

:::
:::

xn1.t/ xn2.t/ � � � xnn.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; (13)

using the notation in (10) for the components of the solutions. We may write either

W.t/ or W.x1; x2; : : : ; xn/. Note that W is the determinant of the matrix that has as

its column vectors the solutions x1, x2, : : : , xn. Theorem 2 is analogous to Theorem

3 of Section 5.2. Moreover, its proof is essentially the same, with the definition of

W.x1; x2; : : : ; xn/ in Eq. (13) substituted for the definition of the Wronskian of n

solutions of a single nth-order equation. (See Problems 34 through 36.)
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THEOREM 2 Wronskians of Solutions

Suppose that x1, x2, : : : , xn are n solutions of the homogeneous linear equation

x0 D P.t/x on an open interval I. Suppose also that P.t/ is continuous on I. Let

W D W.x1; x2; : : : ; xn/:

Then

� If x1, x2, : : : , xn are linearly dependent on I, then W D 0 at every point of

I.

� If x1, x2, : : : , xn are linearly independent on I, then W ¤ 0 at each point of

I.

Thus there are only two possibilities for solutions of homogeneous systems: Ei-

ther W D 0 at every point of I, or W D 0 at no point of I.

Example 3 It is readily verified (as in Example 2) that

x1.t/ D

2

4

2et

2et

et

3

5 ; x2.t/ D

2

4

2e3t

0

�e3t

3

5 ; and x3.t/ D

2

4

2e5t

�2e5t

e5t

3

5

are solutions of the equation

dx

dt
D

2

4

3 �2 0

�1 3 �2

0 �1 3

3

5 x: (14)

The Wronskian of these solutions is

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2et 2e3t 2e5t

2et 0 �2e5t

et �e3t e5t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D e9t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 2 2

2 0 �2

1 �1 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �16e9t ;

which is never zero. Hence Theorem 2 implies that the solutions x1, x2, and x3 are linearly

independent (on any open interval).

Theorem 3 is analogous to Theorem 4 of Section 5.2. It says that the general

solution of the homogeneous n � n system x0 D P.t/x is a linear combination

x D c1x1 C c2x2 C � � � C cnxn (15)

of any n given linearly independent solutions x1, x2, : : : , xn.

THEOREM 3 General Solutions of Homogeneous Systems

Let x1, x2, : : : , xn be n linearly independent solutions of the homogeneous linear

equation x0 D P.t/x on an open interval I where P.t/ is continuous. If x.t/ is any

solution whatsoever of the equation x0 D P.t/x on I, then there exist numbers c1,

c2, : : : , cn such that

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (15)

for all t in I.
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Proof: Let a be a fixed point of I. We first show that there exist numbers c1,

c2, : : : , cn such that the solution

y.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (16)

has the same initial values at t D a as does the given solution x.t/; that is, such that

c1x1.a/C c2x2.a/C � � � C cnxn.a/ D x.a/: (17)

Let X.t/ be the n � n matrix with column vectors x1, x2, : : : , xn, and let c be the

column vector with components c1, c2, : : : , cn. Then Eq. (17) may be written in the

form

X.a/c D x.a/: (18)

The Wronskian determinant W.a/ D jX.a/j is nonzero because the solutions x1,

x2, : : : , xn are linearly independent. Hence the matrix X.a/ has an inverse matrix

X.a/�1. Therefore the vector c D X.a/�1x.a/ satisfies Eq. (18), as desired.

Finally, note that the given solution x.t/ and the solution y.t/ of Eq. (16)—

with the values of ci determined by the equation c D X.a/�1x.a/—have the same

initial values (at t D a). It follows from the existence-uniqueness theorem of Section

7.1 that x.t/ D y.t/ for all t in I. This establishes Eq. (15).

Remark Every n � n system x0 D P.t/x with continuous coefficient matrix does have a set

of n linearly independent solutions x1, x2, : : : , xn as in the hypotheses of Theorem 3. It

suffices to choose for xj .t/ the unique solution such that

xj .a/ D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0

0

0

:::

0

1

0

:::

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

 � position j

—that is, the column vector with all elements zero except for a 1 in row j . (In other words,

xj .a/ is merely the j th column of the identity matrix.) Then

W.x1; x2; : : : ; xn/
ˇ

ˇ

tDa
D jIj 6D 0;

so the solutions x1, x2, : : : , xn are linearly independent by Theorem 2. How to actually find

these solutions explicitly is another matter—one that we address in Section 7.3 (for the case

of constant-coefficient matrices).

Initial Value Problems and Elementary Row Operations

The general solution in Eq. (15) of the homogeneous linear system x0 D P.t/x can

be written in the form

x.t/ D X.t/c; (19)

where

X.t/ D
�

x1.t/ x2.t/ � � � xn.t/
�

(20)

is the n � n matrix whose column vectors are the linearly independent solutions x1,

x2, : : : , xn, and where c D
�

c1 c2 � � � cn

�

T

is the vector of coefficients in the

linear combination

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/: (15)
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Suppose now that we wish to solve the initial value problem

dx

dt
D Px; x.a/ D b; (21)

where the initial vector b D
�

b1 b2 � � � bn

�

T

is given. Then, according to

Eq. (19), it suffices to solve the system

X.a/c D b (22)

to find the coefficients c1, c2, : : : , cn in Eq. (15). For instance, we can use the

row-reduction techniques of Sections 3.2 and 3.3.

Example 4 Use the solution vectors given in Example 3 to solve the initial value problem

dx

dt
D

2

4

3 �2 0

�1 3 �2

0 �1 3

3

5 x; x.0/ D

2

4

0

2

6

3

5 : (23)

Solution It follows from Theorem 3 that the linear combination

x.t/ D c1x1.t/C c2x2.t/C c3x3.t/

D c1

2

4

2et

2et

et

3

5C c2

2

4

2e3t

0

�e3t

3

5C c3

2

4

2e5t

�2e5t

e5t

3

5

is a general solution of the 3 � 3 linear system in (23). In scalar form, this gives the general

solution
x1.t/ D 2c1e

t C 2c2e
3t C 2c3e

5t ;

x2.t/ D 2c1e
t � 2c3e

5t ;

x3.t/ D c1e
t � c2e

3t C c3e
5t :

We seek the particular solution satisfying the initial conditions

x1.0/ D 0; x2.0/ D 2; x3.0/ D 6:

When we substitute these values in the preceding three scalar equations, we get the algebraic

linear system

2c1 C 2c2 C 2c3 D 0,

2c1 � 2c3 D 2,

c1 � c2 C c3 D 6

having the augmented coefficient matrix

2

4

2 2 2 0

2 0 �2 2

1 �1 1 6

3

5 :

Multiplication of each of the first two rows by 1

2
gives

2

4

1 1 1 0

1 0 �1 1

1 �1 1 6

3

5 I

then subtraction of the first row both from the second row and from the third row gives the

matrix
2

4

1 1 1 0

0 �1 �2 1

0 �2 0 6

3

5 :

The first column of this matrix now has the desired form.
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Now, we multiply the second row by �1, then add twice the result to the third row.

Thereby, we get the upper triangular augmented coefficient matrix

2

4

1 1 1 0

0 1 2 �1

0 0 4 4

3

5

that corresponds to the transformed system

c1 C c2 C c3 D 0,

c2 C 2c3 D �1,

4c3 D 4.

We finally solve in turn for c3 D 1, c2 D �3, and c1 D 2. Thus the desired particular solution

is given by

x.t/ D 2x1.t/ � 3x2.t/C x3.t/ D

2

4

4et � 6e3t C 2e5t

4et � 2e5t

2et C 3e3t C e5t

3

5 :

Nonhomogeneous Solutions

We finally turn our attention to a nonhomogeneous linear system of the form

dx

dt
D P.t/xC f.t/: (24)

The following theorem is analogous to Theorem 5 of Section 5.2 and is proved in

precisely the same way, substituting the preceding theorems in this section for the

analogous theorems of Section 5.2. In brief, Theorem 4 means that the general

solution of Eq. (24) has the form

x.t/ D xc.t/C xp.t/; (25)

where xp.t/ is a single particular solution of Eq. (24) and the complementary func-

tion xc.t/ is a general solution of the associated homogeneous equation x0 D P.t/x.

THEOREM 4 Solutions of Nonhomogeneous Systems

Let xp be a particular solution of the nonhomogeneous linear equation in (24)

on an open interval I on which the functions P.t/ and f.t/ are continuous. Let

x1, x2, : : : , xn be linearly independent solutions of the associated homogeneous

equation on I. If x.t/ is any solution whatsoever of Eq. (24) on I, then there exist

numbers c1, c2, : : : , cn such that

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/C xp.t/ (26)

for all t in I.

Thus, finding a general solution of a homogeneous linear system involves two

separate steps:

1. Finding the general solution xc.t/ of the associated homogeneous system;

2. Finding a single particular solution xp.t/ of the nonhomogeneous system.

The sum x.t/D xc.t/Cxp.t/will then be a general solution of the nonhomogeneous

system.
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Example 5 The nonhomogeneous linear system

x0
1
D 3x1 � 2x2 � 9t C 13 ,

x0
2
D �x1 C 3x2 � 2x3 C 7t � 15,

x0
3
D � x2 C 3x3 � 6t C 7

can be recast as a matrix equation by writing

dx

dt
D

2

6

4

x0
1

x0
2

x0
3

3

7

5
D

2

6

4

3x1 � 2x2 � 9t C 13

�x1 C 3x2 � 2x3 C 7t � 15

� x2 C 3x3 � 6t C 7

3

7

5

D

2

4

3x1 � 2x2

�x1 C 3x2 � 2x3

� x2 C 3x3

3

5C

2

4

�9t C 13

7t � 15

�6t C 7

3

5

D

2

4

3 �2 0

�1 3 �2

0 �1 3

3

5

2

4

x1

x2

x3

3

5C

2

4

�9t C 13

7t � 15

�6t C 7

3

5 :

Thus we get the form in (24) with

P.t/ D

2

4

3 �2 0

�1 3 �2

0 �1 3

3

5 ; f.t/ D

2

4

�9t C 13

7t � 15

�6t C 7

3

5 :

In Example 3 we saw that a general solution of the associated homogeneous linear system

dx

dt
D

2

4

3 �2 0

�1 3 �2

0 �1 3

3

5 x

is given by

xc.t/ D

2

4

2c1e
t C 2c2e

3t C 2c3e
5t

2c1e
t � 2c3e

5t

c1e
t � c2e

3t C c3e
5t

3

5 ;

and we can verify, by substitution, that the function

xp.t/ D

2

4

3t

5

2t

3

5

(found by using a computer algebra system, or perhaps by a human being using a method

discussed in Section 8.2) is a particular solution of the original nonhomogeneous system.

Consequently, Theorem 4 implies that a general solution of the nonhomogeneous system is

given by

x.t/ D xc.t/C xp.t/

—that is, by

x1.t/ D 2c1e
t C 2c2e

3t C 2c3e
5t C 3t ,

x2.t/ D 2c1e
t � 2c3e

5t C 5,

x3.t/ D c1e
t � c2e

3t C c3e
5t C 2t .
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7.2 Problems
In Problems 1 and 2, verify the product law for differentiation,

.AB/0 D A0BCAB0.

1. A.t/ D

"

t 2t � 1

t3
1

t

#

and B.t/ D

�

1 � t 1C t

3t2 4t3

�

:

2. A.t/ D

2

4

et t t2

�t 0 2

8t �1 t3

3

5 and B.t/ D

2

4

3

2e�t

3t

3

5 :

In Problems 3 through 12, write the given system in the form

x0 D P.t/xC f.t/.

3. x0 D �3y; y0 D 3x

4. x0 D 3x � 2y; y0 D 2x C y

5. x0 D 2x C 4y C 3et ; y0 D 5x � y � t2

6. x0 D tx � ety C cos t; y0 D e�tx C t2y � sin t

7. x0 D y C ´; y0 D ´C x; ´0 D x C y

8. x0 D 2x � 3y; y0 D x C y C 2´; ´0 D 5y � 7´

9. x0 D 3x � 4yC ´C t , y0 D x � 3´C t2, ´0 D 6y � 7´C t3

10. x0 D tx � y C et´, y0 D 2xC t2y � ´, ´0 D e�txC 3ty C

t3´

11. x0
1
D x2, x0

2
D 2x3, x0

3
D 3x4, x0

4
D 4x1

12. x0
1
D x2 C x3 C 1, x

0
2
D x3 C x4 C t ,

x0
3
D x1 C x4 C t

2, x0
4
D x1 C x2 C t

3

In Problems 13 through 22, first verify that the given vectors

are solutions of the given system. Then use the Wronskian to

show that they are linearly independent. Finally, write the gen-

eral solution of the system.

13. x0 D

�

4 2

�3 �1

�

x; x1 D

�

2et

�3et

�

, x2 D

�

e2t

�e2t

�

14. x0 D

�

�3 2

�3 4

�

x; x1 D

�

e3t

3e3t

�

, x2 D

�

2e�2t

e�2t

�

15. x0 D

�

3 �1

5 �3

�

x; x1 D e
2t

�

1

1

�

, x2 D e
�2t

�

1

5

�

16. x0 D

�

4 1

�2 1

�

x; x1 D e
3t

�

1

�1

�

, x2 D e
2t

�

1

�2

�

17. x0 D

�

4 �3

6 �7

�

x; x1 D

�

3e2t

2e2t

�

, x2 D

�

e�5t

3e�5t

�

18. x0 D

2

4

3 �2 0

�1 3 �2

0 �1 3

3

5 x; x1 D e
t

2

4

2

2

1

3

5,

x2 D e
3t

2

4

�2

0

1

3

5, x3 D e
5t

2

4

2

�2

1

3

5

19. x0 D

2

4

0 1 1

1 0 1

1 1 0

3

5 x; x1 D e
2t

2

4

1

1

1

3

5,

x2 D e
�t

2

4

1

0

�1

3

5, x3 D e
�t

2

4

0

1

�1

3

5

20. x0 D

2

4

1 2 1

6 �1 0

�1 �2 �1

3

5 x; x1 D

2

4

1

6

�13

3

5,

x2 D e
3t

2

4

2

3

�2

3

5, x3 D e
�4t

2

4

�1

2

1

3

5

21. x0 D

2

4

�8 �11 �2

6 9 2

�6 �6 1

3

5 x; x1 D e
�2t

2

4

3

�2

2

3

5,

x2 D e
t

2

4

1

�1

1

3

5, x3 D e
3t

2

4

1

�1

0

3

5

22. x0 D

2

6

6

4

1 �4 0 �2

0 1 0 0

6 �12 �1 �6

0 �4 0 �1

3

7

7

5

x; x1 D e
�t

2

6

6

4

1

0

0

1

3

7

7

5

,

x2 D e
�t

2

6

6

4

0

0

1

0

3

7

7

5

, x3 D e
t

2

6

6

4

0

1

0

�2

3

7

7

5

, x4 D e
t

2

6

6

4

1

0

3

0

3

7

7

5

In Problems 23 through 32, find a particular solution of the in-

dicated linear system that satisfies the given initial conditions.

23. The system of Problem 14: x1.0/ D 0, x2.0/ D 5

24. The system of Problem 15: x1.0/ D 5, x2.0/ D �3

25. The system of Problem 16: x1.0/ D 11, x2.0/ D �7

26. The system of Problem 17: x1.0/ D 8, x2.0/ D 0

27. The system of Problem 18: x1.0/D 0, x2.0/D 0, x3.0/D

4

28. The system of Problem 19: x1.0/ D 10, x2.0/ D 12,

x3.0/ D �1

29. The system of Problem 21: x1.0/D 1, x2.0/D 2, x3.0/D

3

30. The system of Problem 21: x1.0/ D 5, x2.0/ D �7,

x3.0/ D 11

31. The system of Problem 22: x1.0/ D x2.0/ D x3.0/ D

x4.0/ D 1

32. The system of Problem 22: x1.0/D 1, x2.0/D 3, x3.0/D

4, x4.0/ D 7

33. (a) Show that the vector functions

x1.t/ D

�

t

t2

�

and x2 D

�

t2

t3

�

are linearly independent on the real line. (b) Why does it

follow from Theorem 2 that there is no continuous matrix

P.t/ such that x1 and x2 are both solutions of x0 D P.t/x?

34. Suppose that one of the vector functions

x1.t/ D

�

x11.t/

x21.t/

�

and x2.t/ D

�

x12.t/

x22.t/

�

is a constant multiple of the other on the open interval I.

Show that their Wronskian W.t/ D jŒxij .t/�j must vanish

identically on I. This proves part (a) of Theorem 2 in the

case n D 2.
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35. Suppose that the vectors x1.t/ and x2.t/ of Problem 34 are

solutions of the equation x0 D P.t/x, where the 2 � 2 ma-

trix P.t/ is continuous on the open interval I. Show that if

there exists a point a of I at which their Wronskian W.a/

is zero, then there exist numbers c1 and c2 not both zero

such that c1x1.a/C c2x2.a/D 0. Then conclude from the

uniqueness of solutions of the equation x0 D P.t/x that

c1x1.t/C c2x2.t/ D 0

for all t in I ; that is, that x1 and x2 are linearly dependent.

This proves part (b) of Theorem 2 in the case n D 2.

36. Generalize Problems 34 and 35 to prove Theorem 2 for n

an arbitrary positive integer.

37. Let x1.t/, x2.t/, : : : , xn.t/ be vector functions whose i th

components (for some fixed i) xi1.t/, xi2.t/, : : : , xin.t/

are linearly independent real-valued functions. Conclude

that the vector functions are themselves linearly indepen-

dent.

7.3 The Eigenvalue Method for Linear Systems

We now introduce a powerful method for constructing the general solution of a

homogeneous first-order system with constant coefficients,

x0
1
D a11x1 C a12x2 C � � � C a1nxn;

x0
2
D a21x1 C a22x2 C � � � C a2nxn;
:::

x0
n
D an1x1 C an2x2 C � � � C annxn:

(1)

By Theorem 3 of Section 7.2, we know that it suffices to find n linearly independent

solution vectors x1, x2, : : :, xn; the linear combination

x.t/ D c1x1 C c2x2 C � � � C cnxn (2)

with arbitrary coefficients will then be a general solution of the system in (1).

To search for the n needed linearly independent solution vectors, we proceed

by analogy with the characteristic root method for solving a single homogeneous

equation with constant coefficients (Section 5.3). It is reasonable to anticipate solu-

tion vectors of the form

x.t/ D

2

6

6

6

6

6

4

x1

x2

x3

:::

xn

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

v1e
�t

v2e
�t

v3e
�t

:::

vne
�t

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

v1

v2

v3

:::

vn

3

7

7

7

7

7

5

e�t
D ve�t ; (3)

where �, v1, v2, v3, : : :, vn are appropriate scalar constants. For if we substitute

xi D vie
�t ; x0

i
D �vie

�t (i D 1; 2; : : : ; n)

in (1), then each term in the resulting equations will have the factor e�t , so we can

cancel it throughout. This will leave us with n linear equations that—for appropriate

values of �—we can hope to solve for values of the coefficients v1, v2, : : : , vn in

Eq. (3), so that x.t/ D ve�t is, indeed, a solution of the system in (1).

To investigate this possibility, it is more efficient to write the system in (1) in

the matrix form

x0
D Ax; (4)

where AD
�

aij

�

. When we substitute the trial solution xD ve�t (having derivative

x0 D �ve�t ) in Eq. (4), the result is

�ve�t
D Ave�t :
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We cancel the nonzero scalar factor e�t to get

Av D �v: (5)

Recall, from Section 6.1, that Eq. (5) means that v 6D 0 is an eigenvector of the

matrix A associated with the eigenvalue �. Our discussion of Eqs. (3)–(5) therefore

provides a proof of the following theorem, which is the basis for the eigenvalue

method of solving a first-order system with constant coefficients.

THEOREM 1 Eigenvalue Solutions of x0 = Ax

Let � be an eigenvalue of the [constant] coefficient matrix A of the first-order

linear system
dx

dt
D Ax:

If v is an eigenvector associated with �, then

x.t/ D ve�t

is a nontrivial solution of the system.

Recall that an eigenvalue � of the matrix A is a solution of the characteristic

equation

jA � �Ij D det.A � �I/ D 0 (6)

and that an eigenvector v associated with � is then a solution of the eigenvector

equation

.A � �I/v D 0: (7)

The Eigenvalue Method

In outline, this method for solving the n � n homogeneous constant-coefficient sys-

tem x0 D Ax proceeds as follows:

1. First, we solve the characteristic equation in (6) for the eigenvalues �1, �2,

: : : , �n of the matrix A.

2. Next, we attempt to find n linearly independent eigenvectors v1, v2, : : : , vn

associated with these eigenvalues.

3. Step 2 is not always possible, but, when it is, we get n linearly independent

solutions

x1.t/ D v1e
�1t ; x2.t/ D v2e

�2t ; : : : ; xn.t/ D vne
�nt : (8)

In this case the general solution of x0 D Ax is a linear combination

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/

of these n solutions.

We will discuss separately the various cases that can occur, depending on whether

the eigenvalues are distinct or repeated, real or complex. The case of repeated

eigenvalues—multiple roots of the characteristic equation—will be deferred to Sec-

tion 7.6.
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Distinct Real Eigenvalues

If the eigenvalues �1, �2, : : : , �n are real and distinct, then we substitute each of

them in turn in Eq. (7) and solve for the associated eigenvectors v1, v2, : : : , vn. It

then follows from Theorem 2 in Section 6.2 that the particular solutions given in

(8) are linearly independent. (In any particular example, such linear independence

can always be verified by using the Wronskian determinant of Section 7.2.) The

following example illustrates the eigenvalue method.

Example 1 Find a general solution of the system

x0
1
D 4x1 C 2x2,

x0
2
D 3x1 � x2.

(9)

Solution The matrix form of the system in (9) is

x0
D

�

4 2

3 �1

�

x: (10)

The characteristic equation of the coefficient matrix is

ˇ

ˇ

ˇ

ˇ

4 � � 2

3 �1 � �

ˇ

ˇ

ˇ

ˇ

D .4 � �/.�1 � �/ � 6

D �2
� 3� � 10 D .�C 2/.� � 5/ D 0;

so we have the distinct real eigenvalues �1 D �2 and �2 D 5.

For the coefficient matrix A in Eq. (10), the eigenvector equation .A � �I/v D 0 takes

the form
�

4 � � 2

3 �1 � �

� �

a

b

�

D

�

0

0

�

(11)

for the associated eigenvector v D
�

a b
�

T

.

CASE 1: �1 D �2. Substitution of the first eigenvalue �1 D �2 in Eq. (11) yields the

system
�

6 2

3 1

� �

a

b

�

D

�

0

0

�

—that is, the two scalar equations

6a C 2b D 0,

3a C b D 0.
(12)

In contrast with the typical nonsingular (algebraic) linear system that has a unique solu-

tion, the homogeneous linear system in (12) is singular—the two scalar equations obviously

are equivalent (each being a multiple of the other). Therefore, Eq. (12) has infinitely many

nonzero solutions—we can choose a arbitrarily (but nonzero) and then solve for b.

Substitution of an eigenvalue � in the eigenvector equation .A��I/vD 0 always yields

a singular homogeneous linear system, and among its infinity of solutions we generally seek

a “simple” solution with small integer values (if possible). Looking at the second equation in

(12), the choice a D 1 yields b D �3, and thus

v1 D

�

1

�3

�

is an eigenvector associated with �1 D �2 (as is any nonzero constant multiple of v1).

Remark If, instead of the “simplest” choice a D 1, b D �3, we had made another choice

a D c, b D �3c, we would have obtained the eigenvector

v1 D

�

c

�3c

�

D c

�

1

�3

�

:
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Because this is a constant multiple of our previous result, any choice we make leads to (a

constant multiple of ) the same solution

x1.t/ D

�

1

�3

�

e�2t :

CASE 2: �2 D 5. Substitution of the second eigenvalue � D 5 in (11) yields the pair

�a C 2b D 0,

3a � 6b D 0
(13)

of equivalent scalar equations. With b D 1 in the first equation we get a D 2, so

v2 D

�

2

1

�

is an eigenvector associated with �2 D 5. A different choice—a D 2c, b D c—would merely

give a [constant] multiple of v2.

These two eigenvalues and their associated eigenvectors yield the two solutions

x1.t/ D

�

1

�3

�

e�2t and x2.t/ D

�

2

1

�

e5t :

They are linearly independent, because their Wronskian

ˇ

ˇ

ˇ

ˇ

e�2t 2e5t

�3e�2t e5t

ˇ

ˇ

ˇ

ˇ

D 7e3t

is nonzero. Hence a general solution of the system in (10) is

x.t/ D c1x1.t/C c2x2.t/ D c1

�

1

�3

�

e�2t
C c2

�

2

1

�

e5t
I

in scalar form,

x1.t/ D c1e
�2t C 2c2e

5t ,

x2.t/ D �3c1e
�2t C c2e

5t .

Figure 7.3.1 shows some typical solution curves of the system in (10). We see two families of

hyperbolas sharing the same pair of asymptotes: the line x1 D 2x2 obtained from the general

solution with c1 D 0, and the line x2 D �3x1 obtained with c2 D 0. Given initial values

x1.0/ D b1, x2.0/ D b2, it is apparent from the figure that

� If .b1; b2/ lies to the right of the line x2 D�3x1, then x1.t/ and x2.t/ both tend toC1

as t !C1;

� If .b1; b2/ lies to the left of the line x2 D �3x1, then x1.t/ and x2.t/ both tend to �1

as t !C1.

Remark As in Example 1, it is convenient when discussing a linear system x0 D Ax to use

0−4 2 4−2 1−3 3−1

0

−4

1

−3

2

−2

3

4

−1

x1

x 2

FIGURE 7.3.1. Direction field and
solution curves for the linear system
x

0

1
D 4x1 C 2x2, x

0

2
D 3x1 � x2 of

Example 1.

vectors x1, x2, : : : , xn to denote different vector-valued solutions of the system, whereas the

scalars x1, x2, : : : , xn denote the components of a single vector-valued solution x.

Compartmental Analysis

Frequently, a complex process or system can be broken down into simpler subsys-

tems or “compartments” that can be analyzed separately. The whole system can

then be modeled by describing the interactions between the various compartments.

Thus a chemical plant may consist of a succession of separate stages (or even phys-

ical compartments) in which various reactants and products combine or are mixed.

It may happen that a single differential equation describes each compartment of

the system; then the whole physical system is modeled by a system of differential

equations.
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As a simple example of a three-stage system, Fig. 7.3.2 shows three brine

tanks containing V1, V2, and V3 gallons of brine, respectively. Fresh water flows

into tank 1, while mixed brine flows from tank 1 into tank 2, from tank 2 into tank

3, and out of tank 3. Let xi .t/ denote the amount (in pounds) of salt in tank i at

time t , for i D 1, 2, and 3. If each flow rate is r gallons per minute, then a simple

accounting of salt concentrations, as in Example 2 of Section 7.1, yields the first-

order system

x0
1
D �k1x1,

x0
2
D k1x1 � k2x2,

x0
3
D k2x2 � k3x3,

(14)

where

ki D
r

Vi

; i D 1, 2, 3. (15)

Example 2 Three brine tanks If V1 D 20, V2 D 40, V3 D 50, r D 10 (gal=min), and the initial amounts

of salt in the three brine tanks, in pounds, are

x1.0/ D 15; x2.0/ D x3.0/ D 0;

find the amount of salt in each tank at time t = 0.

Solution Substituting the given numerical values in (14) and (15), we get the initial value problem

x0.t/ D

2

4

�0:5 0:0 0:0

0:5 �0:25 0:0

0:0 0:25 �0:2

3

5 x; x.0/ D

2

4

15

0

0

3

5 (16)

for the vector x.t/ D
�

x1.t/ x2.t/ x3.t/
�

T

. The simple form of the matrix

r (gal/min)

r

r

r

Tank 1

V1 (gal)

Tank 2

V2

Tank 3

V3

FIGURE 7.3.2. The three brine

tanks of Example 2.

A � �I D

2

4

�0:5 � � 0:0 0:0

0:5 �0:25 � � 0:0

0:0 0:25 �0:2 � �

3

5 (17)

leads readily to the characteristic equation

jA � �Ij D .�0:5 � �/.�0:25 � �/.�0:2 � �/ D 0:

Thus, the coefficient matrix A in (16) has the distinct eigenvalues �1 D �0:5, �2 D �0:25,

and �3 D �0:2 and therefore has three linearly independent eigenvectors.

CASE 1: �1 D �0:5. Substituting � D �0:5 in (17), we get the equation

�

AC .0:5/ � I
�

v D

2

4

0:0 0:0 0:0

0:5 0:25 0:0

0:0 0:25 0:3

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5

for the associated eigenvector v D
�

a b c
�

T

. The last two rows, after division by 0:25

and 0:05, respectively, yield the scalar equations

2a C b D 0,

5b C 6c D 0.

The second equation is satisfied by b D �6 and c D 5, and then the first equation gives a D 3.

Thus the eigenvector

v1 D
�

3 �6 5
�

T

is associated with the eigenvalue �1 D �0:5.
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CASE 2: �2 D �0:25. Substituting � D �0:25 in (17), we get the equation

�

AC .0:25/ � I
�

v D

2

4

�0:25 0 0

0:5 0 0

0 0:25 0:05

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5

for the associated eigenvector v D
�

a b c
�

T

. Each of the first two rows implies that

a D 0, and division of the third row by 0:05 gives the equation

5b C c D 0;

which is satisfied by b D 1, c D �5. Thus the eigenvector

v2 D
�

0 1 �5
�

T

is associated with the eigenvalue �2 D �0:25.

CASE 3: �3 D �0:2. Substituting � D �0:2 in (17), we get the equation

�

AC .0:2/ � I
�

v D

2

4

�0:3 0:0 0:0

0:5 �0:05 0:0

0:0 0:25 0:0

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5

for the eigenvector v. The first and third rows imply that a D 0, and b D 0, respectively, but

the all-zero third column leaves c arbitrary (but nonzero). Thus

v3 D
�

0 0 1
�

T

is an eigenvector associated with �3 D �0:2.

The general solution

x.t/ D c1v1e
�1t
C c2v2e

�2t
C c3v3e

�3t

therefore takes the form

x.t/ D c1

2

4

3

�6

5

3

5 e.�0:5/t
C c2

2

4

0

1

�5

3

5 e.�0:25/t
C c3

2

4

0

0

1

3

5 e.�0:2/t :

The resulting scalar equations are

x1.t/ D 3c1e
.�0:5/t ,

x2.t/ D �6c1e
.�0:5/t C c2e

.�0:25/t ,

x3.t/ D 5c1e
.�0:5/t � 5c2e

.�0:25/t C c3e
.�0:2/t :

When we impose the initial conditions x1.0/ D 15, x2.0/ D x3.0/ D 0, we get the equations

3c1 D 15,

�6c1 C c2 D 0,

5c1 � 5c2 C c3 D 0

that are readily solved (in turn) for c1 D 5, c2 D 30, and c3 D 125. Thus, finally, the amounts

of salt at time t in the three brine tanks are given by

x1.t/ D 15e.�0:5/t ,

x2.t/ D �30e
.�0:5/t C 30e.�0:25/t ,

x3.t/ D 25e.�0:5/t � 150e.�0:25/t C 125e.�0:2/t .

Figure 7.3.3 shows the graphs of x1.t/, x2.t/, and x3.t/. As we would expect, tank 1 is

rapidly “flushed” by the incoming fresh water, and x1.t/ ! 0 as t ! C1. The amounts

x2.t/ and x3.t/ of salt in tanks 2 and 3 peak in turn and then approach zero as the whole

three-tank system is purged of salt as t !C1.

302520151050
t

x

0

5

15

10

x = x1(t)

x = x2(t)

x = x3(t)

FIGURE 7.3.3. The salt content
functions of Example 2.
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Complex Eigenvalues

Even if some of the eigenvalues are complex, so long as they are distinct the method

described previously still yields n linearly independent solutions. The only compli-

cation is that the eigenvectors associated with complex eigenvalues are ordinarily

complex-valued, so we will have complex-valued solutions.

To obtain real-valued solutions, we note that—because we are assuming that

the matrix A has only real entries—the coefficients in the characteristic equation

will all be real. Consequently any complex eigenvalues must appear in complex-

conjugate pairs. Suppose, then, that � D p C qi and � D p � qi are such a pair of

eigenvalues. If v is an eigenvector associated with �, so that

.A � �I/v D 0;

then taking complex conjugates in this equation yields

.A � �I/v D 0

since A D A and I D I (these matrices being real) and the conjugate of a complex

product is the product of the conjugates of the factors. Thus the conjugate v of v

is an eigenvector associated with �. Of course, the conjugate of a vector is defined

componentwise; if

v D

2

6

6

6

4

a1 C b1i

a2 C b2i
:::

an C bni

3

7

7

7

5

D

2

6

6

6

4

a1

a2

:::

an

3

7

7

7

5

C

2

6

6

6

4

b1

b2

:::

bn

3

7

7

7

5

i D aC bi; (18)

then v D a � bi . The complex-valued solution associated with � and v is then

x.t/ D ve�t
D ve.pCqi/t

D .aC bi/ept .cos qt C i sin qt/

—that is,

x.t/ D ept .a cos qt � b sin qt/C iept .b cos qt C a sin qt/: (19)

Because the real and imaginary parts of a complex-valued solution are also solu-

tions, we thus get the two real-valued solutions

x1.t/ D ReŒx.t/� D ept .a cos qt � b sin qt/;

x2.t/ D ImŒx.t/� D ept .b cos qt C a sin qt/
(20)

associated with the complex conjugate eigenvalues p ˙ qi . It is easy to check that

the same two real-valued solutions result from taking real and imaginary parts of

ve�t . Rather than memorizing the formulas in (20), it is preferable in a specific

example to proceed as follows:

� First, find explicitly a single complex-valued solution x.t/ associated with the

complex eigenvalue �;

� Then, find the real and imaginary parts x1.t/ and x2.t/, to get two independent

real-valued solutions corresponding to the two complex conjugate eigenvalues

� and �.
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Example 3 Find a general solution of the system

dx1

dt
D 4x1 � 3x2;

dx2

dt
D 3x1 C 4x2:

(21)

Solution The coefficient matrix

A D

�

4 �3

3 4

�

has the characteristic equation

jA � �Ij D

ˇ

ˇ

ˇ

ˇ

4 � � �3

3 4 � �

ˇ

ˇ

ˇ

ˇ

D .4 � �/2 C 9 D 0

and hence has the complex conjugate eigenvalues � D 4 � 3i and � D 4C 3i .

Substituting �D 4� 3i in the eigenvector equation .A� �I/vD 0, we get the equation

ŒA � .4 � 3i/ � I�v D

�

3i �3

3 3i

� �

a

b

�

D

�

0

0

�

for an associated eigenvalue v D
�

a b
�

T

. Division of each row by 3 yields the two scalar

equations

ia � b D 0,

a C ib D 0,

each of which is satisfied by a D 1 and b D i . Thus, v D
�

1 i
�

T

is a complex eigenvector

associated with the complex eigenvalue � D 4 � 3i .

The corresponding complex-valued solution x.t/ D ve�t of x0 D Ax is then

x.t/ D

�

1

i

�

e.4�3i/t
D

�

1

i

�

e4t .cos 3t � i sin 3t/ D e4t

�

cos 3t � i sin 3t

i cos 3t C sin 3t

�

:

The real and imaginary parts of x.t/ are the real-valued solutions

x1.t/ D e
4t

�

cos 3t

sin 3t

�

and x2.t/ D e
4t

�

� sin 3t

cos 3t

�

:

A real-valued general solution of x0 D Ax is then given by

x.t/ D c1x1.t/C c2x2.t/ D e
4t

�

c1 cos 3t � c2 sin 3t

c1 sin 3t C c2 cos 3t

�

:

Finally, a general solution of the system in (21) in scalar form is

x1.t/ D e
4t .c1 cos 3t � c2 sin 3t/;

x2.t/ D e
4t .c1 sin 3t C c2 cos 3t/:

Figure 7.3.4 shows some typical solution curves of the system in (21). Each appears to

spiral counterclockwise as it emanates from the origin in the x1x2-plane. Actually, because

of the factor e4t in the general solution, we see that

x1

x 2

100−10 2−8 4−6 6−4 8−2

−10

10

0

− 8

2

−6

4

−4

6

−2

8

FIGURE 7.3.4. Direction field and
solution curves for the linear system
x

0

1
D 4x1 � 3x2, x

0

2
D 3x1 C 4x2 of

Example 3.

� Along each solution curve, the point .x1.t/; x2.t// approaches the origin as t ! �1,

whereas

� The absolute values of x1.t/ and x2.t/ both increase without bound as t !C1.
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Figure 7.3.5 shows a “closed” system of three brine tanks with volumes V1,

r

Flow rate: r

r

T1 T3

T2

FIGURE 7.3.5. The three brine

tanks of Example 4.

V2, and V3. The difference between this system and the “open” system of Fig. 7.3.2

is that now the inflow to tank 1 is the outflow from tank 3. With the same notation

as in Example 2, the appropriate modification of Eq. (14) is

dx1

dt
D �k1x1 C k3x3,

dx2

dt
D k1x1 � k2x2,

dx3

dt
D k2x2 � k3x3,

(22)

where ki D r=Vi as in (15).

Example 4 Find the amounts x1.t/, x2.t/, and x3.t/ of salt at time t in the three brine tanks of Fig. 7.3.5

if V1 D 50 gal, V2 D 25 gal, V3 D 50 gal, and r D 10 gal=min.

Solution With the given numerical values, (22) takes the form

dx

dt
D

2

4

�0:2 0 0:2

0:2 �0:4 0

0 0:4 �0:2

3

5 x; (23)

where x D
�

x1 x2 x3

�

T

as usual. When we expand the determinant of the matrix

A � � � I D

2

4

�0:2 � � 0:0 0:2

0:2 �0:4 � � 0:0

0:0 0:4 �0:2 � �

3

5 (24)

along its first row, we find that the characteristic equation of A is

.�0:2 � �/.�0:4 � �/.�0:2 � �/C .0:2/.0:2/.0:4/

D ��3
� .0:8/ � �2

� .0:2/ � �

D ��
h

.�C 0:4/2 C .0:2/2
i

D 0:

Thus A has the zero eigenvalue �0 D 0 and the complex conjugate eigenvalues �, �D�0:4˙

.0:2/i . We anticipate one solution corresponding to the zero eigenvalue and two additional

linearly independent solutions corresponding to the complex conjugate eigenvalues.

CASE 1: �0 D 0. Substitution of � D 0 in Eq. (24) gives the eigenvector equation

.A � 0 � I/v D

2

4

�0:2 0:0 0:2

0:2 �0:4 0:0

0:0 0:4 �0:2

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 (25)

for v D
�

a b c
�

T

. The first row gives a D c and the second row gives a D 2b, so v0 D
�

2 1 2
�

T

is an eigenvector associated with the eigenvalue �0 D 0. The corresponding

solution x0.t/ D v0e
�0t of Eq. (23) is the constant solution

x0.t/ D

2

4

2

1

2

3

5 : (26)
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CASE 2: � D �0:4 � .0:2/i . Substitution of � D �0:4 � .0:2/i in Eq. (24) gives the

eigenvector equation

ŒA � .�0:4 � .0:2/i/I� v D

2

4

0:2C .0:2/i 0:0 0:2

0:2 .0:2/i 0:0

0:0 0:4 0:2C .0:2/i

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

The second equation .0:2/a C .0:2/ib D 0 is satisfied by a D 1 and b D i . Then the first

equation

Œ0:2C .0:2/i �aC .0:2/c D 0

gives c D �1 � i . Thus, v D
�

1 i .�1 � i/
�

T

is a complex eigenvector associated with

the complex eigenvalue � D �0:4 � .0:2/i .

The corresponding complex-valued solution x.t/ D ve�t of (23) is

x.t/ D
�

1 i �1 � i
�

T

e.�0:4�0:2i/t

D
�

1 i �1 � i
�

T

e.�0:4/t .cos 0:2t � i sin 0:2t/

D e.�0:4/t

2

6

4

cos 0:2t � i sin 0:2t

sin 0:2t C i cos 0:2t

� cos 0:2t � sin 0:2t � i cos 0:2t C i sin 0:2t

3

7

5
:

The real and imaginary parts of x.t/ are the real-valued solutions

x1.t/ D e
.�0:4/t

2

4

cos 0:2t

sin 0:2t

� cos 0:2t � sin 0:2t

3

5 ;

x2.t/ D e
.�0:4/t

2

4

� sin 0:2t

cos 0:2t

� cos 0:2t C sin 0:2t

3

5 :

(27)

The general solution

x.t/ D c0x0.t/C c1x1.t/C c2x2.t/

has scalar components

x1.t/ D 2c0 C e
.�0:4/t .c1 cos 0:2t � c2 sin 0:2t/;

x2.t/ D c0 C e
.�0:4/t .c1 sin 0:2t C c2 cos 0:2t/;

x3.t/ D 2c0 C e
.�0:4/t Œ.�c1 � c2/ cos 0:2t C .�c1 C c2/ sin 0:2t �

(28)

giving the amounts of salt in the three tanks at time t .

Observe that

x1.t/C x2.t/C x3.t/ � 5c0: (29)

Of course, the total amount of salt in the closed system is constant; the constant c0 in (29) is

one-fifth the total amount of salt. Because of the factors of e.�0:4/t in (28), we see that

lim
t!1

x1.t/ D 2c0; lim
t!1

x2.t/ D c0; and lim
t!1

x3.t/ D 2c0:

Thus, as t !C1 the salt in the system approaches a steady-state distribution with 40% of

the salt in each of the two 50-gallon tanks and 20% in the 25-gallon tank. So whatever the

initial distribution of salt among the three tanks, the limiting distribution is one of uniform

concentration throughout the system. Figure 7.3.6 shows the graphs of the three solution

functions with c0 D 10, c1 D 30, and c2 D �10, in which case

20151050
t

x

0

50

45

40

35

30

25

20

15

10

5

x = x1(t)

x = x2(t)

x = x3(t)

FIGURE 7.3.6. The salt content
functions of Example 4.

x1.0/ D 50 and x2.0/ D x3.0/ D 0:
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7.3 Problems
In Problems 1 through 16, apply the eigenvalue method of this

section to find a general solution of the given system. If initial

values are given, find also the corresponding particular solu-

tion. For each problem, use a computer system or graphing

calculator to construct a direction field and typical solution

curves for the given system.

1. x0
1
D x1 C 2x2, x0

2
D 2x1 C x2

2. x0
1
D 2x1 C 3x2, x0

2
D 2x1 C x2

3. x0
1
D 3x1 C 4x2, x0

2
D 3x1 C 2x2; x1.0/ D x2.0/ D 1

4. x0
1
D 4x1 C x2, x0

2
D 6x1 � x2

5. x0
1
D 6x1 � 7x2, x0

2
D x1 � 2x2

6. x0
1
D 9x1C 5x2, x0

2
D�6x1� 2x2; x1.0/D 1, x2.0/D 0

7. x0
1
D �3x1 C 4x2, x0

2
D 6x1 � 5x2

8. x0
1
D x1 � 5x2, x0

2
D x1 � x2

9. x0
1
D 2x1 � 5x2, x0

2
D 4x1 � 2x2; x1.0/ D 2, x2.0/ D 3

10. x0
1
D �3x1 � 2x2, x0

2
D 9x1 C 3x2

11. x0
1
D x1 � 2x2, x0

2
D 2x1 C x2; x1.0/ D 0, x2.0/ D 4

12. x0
1
D x1 � 5x2, x0

2
D x1 C 3x2

13. x0
1
D 5x1 � 9x2, x0

2
D 2x1 � x2

14. x0
1
D 3x1 � 4x2, x0

2
D 4x1 C 3x2

15. x0
1
D 7x1 � 5x2, x0

2
D 4x1 C 3x2

16. x0
1
D �50x1 C 20x2, x0

2
D 100x1 � 60x2

In Problems 17 through 25, the eigenvalues of the coefficient

matrix can be found by inspection and factoring. Apply the

eigenvalue method to find a general solution of each system.

17. x0
1
D 4x1 C x2 C 4x3, x0

2
D x1 C 7x2 C x3,

x0
3
D 4x1 C x2 C 4x3

18. x0
1
D x1 C 2x2 C 2x3, x0

2
D 2x1 C 7x2 C x3,

x0
3
D 2x1 C x2 C 7x3

19. x0
1
D 4x1 C x2 C x3, x0

2
D x1 C 4x2 C x3, x0

3
D

x1 C x2 C 4x3

20. x0
1
D 5x1 C x2 C 3x3, x0

2
D x1 C 7x2 C x3,

x0
3
D 3x1 C x2 C 5x3

21. x0
1
D 5x1� 6x3, x0

2
D 2x1�x2� 2x3, x0

3
D 4x1� 2x2�

4x3

22. x0
1
D 3x1 C 2x2 C 2x3, x0

2
D �5x1 � 4x2 � 2x3, x0

3
D

5x1 C 5x2 C 3x3

23. x0
1
D 3x1 C x2 C x3, x0

2
D �5x1 � 3x2 � x3,

x0
3
D 5x1 C 5x2 C 3x3

24. x0
1
D 2x1 C x2 � x3, x0

2
D �4x1 � 3x2 � x3,

x0
3
D 4x1 C 4x2 C 2x3

25. x0
1
D 5x1 C 5x2 C 2x3, x0

2
D �6x1 � 6x2 � 5x3, x0

3
D

6x1 C 6x2 C 5x3

26. Find the particular solution of the system

dx1

dt
D 3x1 C x3,

dx2

dt
D 9x1 � x2 C 2x3,

dx3

dt
D �9x1 C 4x2 � x3

that satisfies the initial conditions x1.0/ D 0, x2.0/ D 0,

x3.0/ D 17.

Cascading Brine Tanks

The amounts x1.t/ and x2.t/ of salt in the two brine tanks of

Fig. 7.3.7 satisfy the differential equations

dx1

dt
D �k1x1;

dx2

dt
D k1x1 � k2x2;

where ki D r=Vi for i D 1, 2. In Problems 27 and 28 the vol-

umes V1 and V2 are given. First solve for x1.t/ and x2.t/, as-

suming that r D 10 (gal=min), x1.0/ D 15 (lb), and x2.0/ D 0.

Then find the maximum amount of salt ever in tank 2. Finally,

construct a figure showing the graphs of x1.t/ and x2.t/.

Tank 1

Volume V1

Salt x1(t)

Fresh water

Flow rate r

Tank 2

Volume V2

Salt x2(t)

r

r

FIGURE 7.3.7. The two brine tanks of
Problems 27 and 28.

27. V1 D 50 (gal), V2 D 25 (gal)

28. V1 D 25 (gal), V2 D 40 (gal)

Interconnected Brine Tanks

The amounts x1.t/ and x2.t/ of salt in the two brine tanks of

Fig. 7.3.8 satisfy the differential equations

dx1

dt
D �k1x1 C k2x2;

dx2

dt
D k1x1 � k2x2;

where ki D r=Vi as usual. In Problems 29 and 30, solve for

x1.t/ and x2.t/, assuming that r D 10 (gal=min), x1.0/ D 15

(lb), and x2.0/ D 0. Then construct a figure showing the

graphs of x1.t/ and x2.t/.

r

r

Tank 2Tank 1

FIGURE 7.3.8. The two brine tanks of

Problems 29 and 30.

29. V1 D 50 (gal), V2 D 25 (gal)

30. V1 D 25 (gal), V2 D 40 (gal)
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Open Three-Tank System

Problems 31 through 34 deal with the open three-tank system

of Fig. 7.3.2. Fresh water flows into tank 1; mixed brine flows

from tank 1 into tank 2, from tank 2 into tank 3, and out of tank

3; all at the given flow rate r gallons per minute. The initial

amounts x1.0/ D x0 (lb), x2.0/ D 0, and x3.0/ D 0 of salt in

the three tanks are given, as are their volumes V1, V2, and V3

(in gallons). First solve for the amounts of salt in the three

tanks at time t , then determine the maximal amount of salt that

tank 3 ever contains. Finally, construct a figure showing the

graphs of x1.t/, x2.t/, and x3.t/.

31. r D 30, x0 D 27, V1 D 30, V2 D 15, V3 D 10

32. r D 60, x0 D 45, V1 D 20, V2 D 30, V3 D 60

33. r D 60, x0 D 45, V1 D 15, V2 D 10, V3 D 30

34. r D 60, x0 D 40, V1 D 20, V2 D 12, V3 D 60

Closed Three-Tank System

Problems 35 through 37 deal with the closed three-tank sys-

tem of Fig. 7.3.5, which is described by the equations in (24).

Mixed brine flows from tank 1 into tank 2, from tank 2 into

tank 3, and from tank 3 into tank 1, all at the given flow rate r

gallons per minute. The initial amounts x1.0/ D x0 (pounds),

x2.0/ D 0, and x3.0/ D 0 of salt in the three tanks are given,

as are their volumes V1, V2, and V3 (in gallons). First solve

for the amounts of salt in the three tanks at time t , then deter-

mine the limiting amount (as t ! C1) of salt in each tank.

Finally, construct a figure showing the graphs of x1.t/, x2.t/,

and x3.t/.

35. r D 120, x0 D 33, V1 D 20, V2 D 6, V3 D 40

36. r D 10, x0 D 18, V1 D 20, V2 D 50, V3 D 20

37. r D 60, x0 D 55, V1 D 60, V2 D 20, V3 D 30

For each matrix A given in Problems 38 through 40, the zeros

in the matrix make its characteristic polynomial easy to calcu-

late. Find the general solution of x0 D Ax.

38. A D

2

6

6

4

1 0 0 0

2 2 0 0

0 3 3 0

0 0 4 4

3

7

7

5

39. A D

2

6

6

4

�2 0 0 9

4 2 0 �10

0 0 �1 8

0 0 0 1

3

7

7

5

40. A D

2

6

6

4

2 0 0 0

�21 �5 �27 �9

0 0 5 0

0 0 �21 �2

3

7

7

5

41. The coefficient matrix A of the 4 � 4 system

x0
1
D 4x1 C x2 C x3 C 7x4,

x0
2
D x1 C 4x2 C 10x3 C x4,

x0
3
D x1 C 10x2 C 4x3 C x4,

x0
4
D 7x1 C x2 C x3 C 4x4

has eigenvalues �1 D�3, �2 D�6, �3 D 10, and �4 D 15.

Find the particular solution of this system that satisfies the

initial conditions

x1.0/ D 3; x2.0/ D x3.0/ D 1; x4.0/ D 3:

In Problems 42 through 50, use a calculator or computer

system to calculate the eigenvalues and eigenvectors (as

illustrated in Application 7.3) in order to find a general solu-

tion of the linear system x0 D Ax with the given coefficient

matrix A.

42. A D

2

4

�40 �12 54

35 13 �46

�25 �7 34

3

5

43. A D

2

4

�20 11 13

12 �1 �7

�48 21 31

3

5

44. A D

2

4

147 23 �202

�90 �9 129

90 15 �123

3

5

45. A D

2

6

6

4

9 �7 �5 0

�12 7 11 9

24 �17 �19 �9

�18 13 17 9

3

7

7

5

46. A D

2

6

6

4

13 �42 106 139

2 �16 52 70

1 6 �20 �31

�1 �6 22 33

3

7

7

5

47. A D

2

6

6

4

23 �18 �16 0

�8 6 7 9

34 �27 �26 �9

�26 21 25 12

3

7

7

5

48. A D

2

6

6

4

47 �8 5 �5

�10 32 18 �2

139 �40 �167 �121

�232 64 360 248

3

7

7

5

49. A D

2

6

6

6

6

4

139 �14 �52 �14 28

�22 5 7 8 �7

370 �38 �139 �38 76

152 �16 �59 �13 35

95 �10 �38 �7 23

3

7

7

7

7

5

50. A D

2

6

6

6

6

6

6

4

9 13 0 0 0 �13

�14 19 �10 �20 10 4

�30 12 �7 �30 12 18

�12 10 �10 �9 10 2

6 9 0 6 5 �15

�14 23 �10 �20 10 0

3

7

7

7

7

7

7

5
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Go to goo.gl/KzpK9g to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

7.3 Application Automatic Calculation of Eigenvalues and Eigenvectors

Most computational systems offer the capability to find eigenvalues and eigenvec-

tors readily. For instance, Fig. 7.3.9 shows a graphing calculator computation of the

eigenvalues and eigenvectors of the matrix

A D

2

4

�0:5 0:0 0:0

0:5 �0:25 0:0

0:0 0:25 �0:2

3

5

of Example 2. We see the three eigenvectors displayed as column vectors, appearing

FIGURE 7.3.9. TI-Nspire CX CAS

calculation of the eigenvalues and
eigenvectors of the matrix A.

in the same order as their corresponding eigenvalues. In this display the eigenvectors

are normalized, that is, multiplied by an appropriate scalar so as to have length 1.

You can verify, for example, that the displayed eigenvector corresponding to the

third eigenvalue � D �1

2
is a scalar multiple of v D

�

1 �2 5

3

�

T

. The Maple

commands

with(linalg)

A := matrix(3,3,[--0.5,0,0,0.5,--0.25,0,0,0.25,--0.2]);

eigenvects(A);

the Mathematica commands

A = {{--0.5,0,0},{0.5,--0.25,0},{0,0.25,--0.2}}

Eigensystem[A]

the WolframjAlpha query

((--0.5, 0, 0), (0.5, --0.25, 0), (0, 0.25, --0.2))

and the MATLAB commands

A = [--0.5,0,0; 0.5,--0.25,0; 0,0.25,--0.2]

[V,D] = eig(A)

(where D will be a diagonal matrix displaying the eigenvalues of A and the column

vectors of V are the corresponding eigenvectors) produce similar results. You can

use these commands to find the eigenvalues and eigenvectors needed for any of the

problems in this section.

For a more substantial investigation, choose a positive integer n < 10 (n D 5,

for instance) and let q1, q2, : : : , qn denote the first n nonzero digits in your student

ID number. Now consider an open system of brine tanks as in Fig. 7.3.2, except

with n rather than three successive tanks having volumes Vi D 10qi (i D 1, 2, : : : ,

n) in gallons. If each flow rate is r D 10 gallons per minute, then the salt amounts

x1.t/, x2.t/, : : : , xn.t/ satisfy the linear system

x0
1
D �k1x1;

x0
i
D ki�1xi�1 � kixi .i D 2; 3; : : : ; n/;

where ki D r=Vi . Apply the eigenvalue method to solve this system with initial

conditions

x1.0/ D 10; x2.0/ D x3.0/ D � � � D xn.0/ D 0:

Graph the solution functions and estimate graphically the maximum amount of salt

that each tank ever contains.

For an alternative investigation, suppose that the system of n tanks is closed

as in Fig. 7.3.5, so that tank 1 receives as inflow the outflow from tank n (rather than



398 Chapter 7 Linear Systems of Differential Equations

fresh water). Then the first equation should be replaced with x0
1
D knxn � k1x1.

Now show that, in this closed system, as t ! C1 the salt originally in tank 1

distributes itself with constant density throughout the various tanks. A plot like

Fig. 7.3.6 should make this fairly obvious.

7.4 A Gallery of Solution Curves of Linear Systems

In the preceding section we saw that the eigenvalues and eigenvectors of the

n� n matrix A are of central importance to the solutions of the homogeneous linear

constant-coefficient system

x0
D Ax: (1)

Indeed, according to Theorem 1 from Section 7.3, if � is an eigenvalue of A and v

is an eigenvector of A associated with �, then

x.t/ D ve�t (2)

is a nontrivial solution of the system (1). Moreover, if A has n linearly independent

eigenvectors v1, v2, : : : ; vn associated with its n eigenvalues �1, �2, : : : ; �n, then in

fact all solutions of the system (1) are given by linear combinations

x.t/ D c1v1e
�1t
C c2v2e

�2t
C � � � C cnvne

�nt ; (3)

where c1; c2; : : : ; cn are arbitrary constants. If the eigenvalues include complex con-

jugate pairs, then we can obtain a real-valued general solution from Eq. (3) by taking

real and imaginary parts of the terms in (3) corresponding to the complex eigen-

values.

Our goal in this section is to gain a geometric understanding of the role that the

eigenvalues and eigenvectors of the matrix A play in the solutions of the system (1).

We will see, illustrating primarily with the case n D 2, that particular arrangements

of eigenvalues and eigenvectors correspond to identifiable patterns—“fingerprints,”

so to speak—in the phase plane portrait of the system (1). Just as in algebra we

learn to recognize when an equation in x and y corresponds to a line or parabola,

we can predict the general appearance of the solution curves of the system (1) from

the eigenvalues and eigenvectors of the matrix A. By considering various cases

for these eigenvalues and eigenvectors we will create a “gallery”— Figure 7.4.16

appearing at the end of this section—of typical phase plane portraits that gives,

in essence, a complete catalog of the geometric behaviors that the solutions of a

2� 2 homogeneous linear constant-coefficient system can exhibit. This will help us

analyze not only systems of the form (1), but also more complicated systems that

can be approximated by linear systems, a topic we explore in Section 9.2.

Systems of Dimension n = 2

Until stated otherwise, we henceforth assume that n D 2, so that the eigenvalues of

the matrix A are �1 and �2. According to Theorem 2 of Section 6.2, if �1 and �2 are

distinct, then the associated eigenvectors v1 and v2 of A are linearly independent.

In this event, the general solution of the system (1) is given by

x.t/ D c1v1e
�1t
C c2v2e

�2t (4)

if �1 and �2 are real, and by

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/ (5)
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if �1 and �2 are the complex conjugate numbers p˙ iq; here the vectors a and b are

the real and imaginary parts, respectively, of a (complex-valued) eigenvector of A

associated with the eigenvalue p ˙ iq. If instead �1 and �2 are equal (to a common

value �, say), then as we will see in Section 7.6, the matrix A may or may not have

two linearly independent eigenvectors v1 and v2. If it does, then the eigenvalue

method of Section 7.3 applies once again, and the general solution of the system (1)

is given by the linear combination

x.t/ D c1v1e
�t
C c2v2e

�t (6)

as before. If A does not have two linearly independent eigenvectors, then—as we

will see—we can find a vector v2 such that the general solution of the system (1) is

given by

x.t/ D c1v1e
�t
C c2.v1t C v2/e

�t ; (7)

where v1 is an eigenvector of A associated with the lone eigenvalue �. The nature

of the vector v2 and other details of the general solution in (7) will be discussed in

Section 7.6, but we include this case here in order to make our gallery complete.

With this algebraic background in place, we begin our analysis of the solution

curves of the system (1). First we assume that the eigenvalues �1 and �2 of the ma-

trix A are real, and subsequently we take up the case where �1 and �2 are complex

conjugates.

Real Eigenvalues

We will divide the case where �1 and �2 are real into the following possibilities:

Distinct eigenvalues

� Nonzero and of opposite sign (�1 < 0 < �2)

� Both negative (�1 < �2 < 0)

� Both positive (0 < �2 < �1)

� One zero and one negative (�1 < �2 D 0)

� One zero and one positive (0 D �2 < �1)

Repeated eigenvalue

� Positive (�1 D �2 > 0)

� Negative (�1 D �2 < 0)

� Zero (�1 D �2 D 0)

Saddle Points

NONZERO DISTINCT EIGENVALUES OF OPPOSITE SIGN: The key observa-

tion when �1 < 0 < �2 is that the positive scalar factors e�1t and e�2t in the general

solution

x.t/ D c1v1e
�1t
C c2v2e

�2t (4)

of the system x0 D Ax move in opposite directions (on the real line) as t varies. For

example, as t grows large and positive, e�2t grows large, because �2 > 0, whereas

e�1t approaches zero, because �1 < 0; thus the term c1v1e
�1t in the solution x.t/

in (4) vanishes and x.t/ approaches c2v2e
�2t . If instead t grows large and negative,

then the opposite occurs: The factor e�1t grows large whereas e�2t becomes small,

and the solution x.t/ approaches c1v1e
�1t . If we assume for the moment that both c1

and c2 are nonzero, then loosely speaking, as t ranges from �1 toC1, the solution

x.t/ shifts from being “mostly” a multiple of the eigenvector v1 to being “mostly” a

multiple of v2.
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Geometrically, this means that all solution curves given by (4) with both c1

and c2 nonzero have two asymptotes, namely the lines l1 and l2 passing through the

origin and parallel to the eigenvectors v1 and v2, respectively; the solution curves

approach l1 as t ! �1 and l2 as t ! C1. Indeed, as Fig. 7.4.1 illustrates, the

lines l1 and l2 effectively divide the plane into four “quadrants” within which all

solution curves flow from the asymptote l1 to the asymptote l2 as t increases. (The

eigenvectors shown in Fig. 7.4.1—and in other figures—are scaled so as to have

equal length.) The particular quadrant in which a solution curve lies is determined

by the signs of the coefficients c1 and c2. If c1 and c2 are both positive, for example,

then the corresponding solution curve extends asymptotically in the direction of the

eigenvector v1 as t ! �1, and asymptotically in the direction of v2 as t ! 1.

If instead c1 > 0 but c2 < 0, then the corresponding solution curve still extends

asymptotically in the direction of v1 as t ! �1, but extends asymptotically in the

direction opposite v2 as t ! C1 (because the negative coefficient c2 causes the

vector c2v2 to point “backwards” from v2).

If c1 or c2 equals zero, then the solution curve remains confined to one of the

lines l1 and l2. For example, if c1 6D 0 but c2 D 0, then the solution (4) becomes

x.t/ D c1v1e
�1t , which means that the corresponding solution curve lies along the

line l1. It approaches the origin as t ! C1, because �1 < 0, and recedes farther

and farther from the origin as t ! �1, either in the direction of v1 (if c1 > 0) or

the direction opposite v1 (if c1 < 0). Similarly, if c1 D 0 and c2 6D 0, then because

�2 > 0, the solution curve flows along the line l2 away from the origin as t ! C1

and toward the origin as t ! �1.

x 2

x1

v1

v2

l2

l1

c1<0, c2>0

c1<0, c2<0

c1>0, c2<0

c1>0, c2>0

FIGURE 7.4.1. Solution curves
x.t/ D c1v1e

�1t C c2v2e
�2t for the

system x0 D Ax when the eigenvalues
�1, �2 of A are real with
�1 < 0 < �2.

Figure 7.4.1 illustrates typical solution curves corresponding to nonzero val-

ues of the coefficients c1 and c2. Because the overall picture of the solution curves

is suggestive of the level curves of a saddle-shaped surface (like ´ D xy), we call

the origin a saddle point for the system x0 D Ax.

Example 1 The solution curves in Fig. 7.4.1 correspond to the choice

A D

�

4 1

6 �1

�

(8)

in the system x0 D Ax; as you can verify, the eigenvalues of A are �1 D �2 and �2 D 5 (thus

�1 < 0 < �2), with associated eigenvectors

v1 D

�

�1

6

�

and v2 D

�

1

1

�

:

According to Eq. (4), the resulting general solution is

x.t/ D c1

�

�1

6

�

e�2t
C c2

�

1

1

�

e5t ; (9)

or, in scalar form,

x1.t/ D �c1e
�2t
C c2e

5t ;

x2.t/ D 6c1e
�2t
C c2e

5t :
(10)

Our gallery Fig. 7.4.16 at the end of this section shows a more complete set of solution curves,

together with a direction field, for the system x0 D Ax with A given by Eq. (8). (In Problem

29 we explore “Cartesian” equations for the solution curves (10) relative to the “axes” defined

by the lines l1 and l2, which form a natural frame of reference for the solution curves.)
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Nodes: Sinks and Sources

DISTINCT NEGATIVE EIGENVALUES: When �1 < �2 < 0, the factors e�1t and

e�2t both decrease as t increases. Indeed, as t !C1, both e�1t and e�2t approach

zero, which means that the solution curve

x.t/ D c1v1e
�1t
C c2v2e

�2t (4)

approaches the origin; likewise, as t!�1, both e�1t and e�2t grow without bound,

and so the solution curve “goes off to infinity.” Moreover, differentiation of the

solution in (4) gives

x0.t/ D c1�1v1e
�1t
C c2�2v2e

�2t
D e�2t

h

c1�1v1e
.�1��2/t

C c2�2v2

i

: (11)

This shows that the tangent vector x0.t/ to the solution curve x.t/ is a scalar mul-

tiple of the vector c1�1v1e
.�1��2/t C c2�2v2, which approaches the fixed nonzero

multiple c2�2v2 of the vector v2 as t !C1 (because e.�1��2/t approaches zero). It

follows that if c2 6D 0, then as t ! C1, the solution curve x.t/ becomes more and

more nearly parallel to the eigenvector v2. (More specifically, note that if c2 > 0, for

example, then x.t/ approaches the origin in the direction opposite to v2, because the

scalar c2�2 is negative.) Thus, if c2 6D 0, then with increasing t the solution curve

approaches the origin and is tangent there to the line l2 passing through the origin

and parallel to v2.

If c2 D 0, on the other hand, then the solution curve x.t/ flows similarly along

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 7.4.2. Solution curves
x.t/ D c1v1e

�1t C c2v2e
�2t for the

system x0 D Ax when the eigenvalues
�1, �2 of A are real with
�1 < �2 < 0.

the line l1 passing through the origin and parallel to the eigenvector v1. Once again,

the net effect is that the lines l1 and l2 divide the plane into four “quadrants” as

shown in Figure 7.4.2, which illustrates typical solution curves corresponding to

nonzero values of the coefficients c1 and c2.

To describe the appearance of phase portraits like Fig. 7.4.2, we introduce

some new terminology, which will be useful both now and in Chapter 9, when we

study nonlinear systems. In general, we call the origin a node of the system x0 DAx

provided that both of the following conditions are satisfied:

� Either every trajectory approaches the origin as t ! C1 or every trajectory

recedes from the origin as t !C1;

� Every trajectory is tangent at the origin to some straight line through the

origin.

Moreover, we say that the origin is a proper node provided that no two different

pairs of “opposite” trajectories are tangent to the same straight line through the

origin. This is the situation in Fig. 7.4.6, in which the trajectories are straight lines,

not merely tangent to straight lines; indeed, a proper node might be called a “star

point.” However, in Fig. 7.4.2, all trajectories—apart from those that flow along the

line l1—are tangent to the line l2; as a result we call the node improper.

Further, if every trajectory for the system x0 D Ax approaches the origin as

t ! C1 (as in Fig. 7.4.2), then the origin is called a sink; if instead every tra-

jectory recedes from the origin, then the origin is a source. Thus we describe the

characteristic pattern of the trajectories in Fig. 7.4.2 as an improper nodal sink.

Example 2 The solution curves in Fig. 7.4.2 correspond to the choice

A D

�

�8 3

2 �13

�

(12)
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in the system x0 D Ax. The eigenvalues of A are �1 D�14 and �2 D �7 (and thus �1 < �2 <

0), with associated eigenvectors

v1 D

�

�1

2

�

and v2 D

�

3

1

�

:

Equation (4) then gives the general solution

x.t/ D c1

�

�1

2

�

e�14t
C c2

�

3

1

�

e�7t ; (13)

or, in scalar form,

x1.t/ D �c1e
�14t

C 3c2e
�7t ;

x2.t/ D 2c1e
�14t

C c2e
�7t :

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together with a direc-

tion field, for the system x0 D Ax with A given by Eq. (12).

The case of distinct positive eigenvalues mirrors that of distinct negative eigen-

values. But instead of analyzing it independently, we can rely on the following

principle, whose verification is a routine matter of checking signs (Problem 30).

PRINCIPLE Time Reversal in Linear Systems

Let x.t/ be a solution of the 2-dimensional linear system

x0
D Ax (1)

Then the function Qx.t/ D x.�t / is a solution of the system

Qx0
D �AQx: (14)

We note furthermore that the two vector-valued functions x.t/ and Qx.t/ for

�1 < t < 1 have the same solution curve (or image) in the plane. However,

the chain rule gives Qx0.t/ D �x0.t/; since Qx.t/ and x.�t / represent the same point, it

follows that at each point of their common solution curve the velocity vectors of the

two functions x.t/ and Qx.t/ are negatives of each other. Therefore the two solutions

traverse their common solution curve in opposite directions as t increases—or, al-

ternatively, in the same direction as t increases for one solution and decreases for

the other. In short, we may say that the solutions of the systems (1) and (14) corre-

spond to each other under “time reversal,” since we get the solutions of one system

by letting time “run backwards” in the solutions of the other.

DISTINCT POSITIVE EIGENVALUES: If the matrix A has positive eigenvalues

with 0 < �2 < �1, then as you can verify (Problem 31), the matrix �A has negative

eigenvalues��1 <��2 <0 but the same eigenvectors v1 and v2. The preceding case

then shows that the system x0 D �Ax has an improper nodal sink at the origin. But

the system x0 D Ax has the same trajectories, except with the direction of motion

(as t increases) along each solution curve reversed. Thus the origin is now a source,

rather than a sink, for the system x0 DAx, and we call the origin an improper nodal

source. Figure 7.4.3 illustrates typical solution curves given by x.t/ D c1v1e
�1t C

c2v2e
�2t corresponding to nonzero values of the coefficients c1 and c2.

x 2

x1

c1<0, c2>0
c1<0, c2<0

c1>0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 7.4.3. Solution curves
x.t/ D c1v1e

�1t C c2v2e
�2t for the

system x0 D Ax when the eigenvalues
�1, �2 of A are real with
0 < �2 < �1.

Example 3 The solution curves in Fig. 7.4.3 correspond to the choice

A D �

�

�8 3

2 �13

�

D

�

8 �3

�2 13

�

(15)
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in the system x0 D Ax; thus A is the negative of the matrix in Example 2. Therefore we can

solve the system x0 DAx by applying the principle of time reversal to the solution in Eq. (13):

Replacing t with �t in the righthand side of (13) leads to

x.t/ D c1

�

�1

2

�

e14t
C c2

�

3

1

�

e7t : (16)

Of course, we could also have “started from scratch” by finding the eigenvalues �1, �2 and

eigenvectors v1, v2 of A. These can be found from the definition of eigenvalue, but it is easier

to note (see Problem 31 again) that because A is the negative of the matrix in Eq. (12), �1

and �2 are likewise the negatives of their values in Example 2, whereas we can take v1 and

v2 to be the same as in Example 2. By either means we find that �1 D 14 and �2 D 7 (so that

0 < �2 < �1), with associated eigenvectors

v1 D

�

�1

2

�

and v2 D

�

3

1

�

:

From Eq. (4), then, the general solution is

x.t/ D c1

�

�1

2

�

e14t
C c2

�

3

1

�

e7t

(in agreement with Eq. (16)), or, in scalar form,

x1.t/ D �c1e
14t
C 3c2e

7t ;

x2.t/ D 2c1e
14t
C c2e

7t :

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together with a direc-

tion field, for the system x0 D Ax with A given by Eq. (15).

Zero Eigenvalues and Straight-Line Solutions

ONE ZERO AND ONE NEGATIVE EIGENVALUE: When �1<�2D 0, the general

solution (4) becomes

x.t/ D c1v1e
�1t
C c2v2: (17)

For any fixed nonzero value of the coefficient c1, the term c1v1e
�1t in Eq. (17) is

a scalar multiple of the eigenvector v1, and thus (as t varies) travels along the line

l1 passing through the origin and parallel to v1; the direction of travel is toward the

origin as t ! C1 because �1 < 0. If c1 > 0, for example, then c1v1e
�1t extends

in the direction of v1, approaching the origin as t increases, and receding from

the origin as t decreases. If instead c1 < 0, then c1v1e
�1t extends in the direction

opposite v1 while still approaching the origin as t increases. Loosely speaking, we

can visualize the flow of the term c1v1e
�1t taken alone as a pair of arrows opposing

each other head-to-head at the origin. The solution curve x.t/ in Eq. (17) is simply

this same trajectory c1v1e
�1t , then shifted (or offset) by the constant vector c2v2.

Thus in this case the phase portrait of the system x0 D Ax consists of all lines

parallel to the eigenvector v1, where along each such line the solution flows (from

both directions) toward the line l2 passing through the origin and parallel to v1.

Figure 7.4.4 illustrates typical solution curves corresponding to nonzero values of

the coefficients c1 and c2.

It is noteworthy that each single point represented by a constant vector b lying

on the line l2 represents a constant solution of the system x0 D Ax. Indeed, if b lies

c1>0, c2<0

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 7.4.4. Solution curves
x.t/ D c1v1e

�1t C c2v2 for the
system x0 D Ax when the eigenvalues
�1, �2 of A are real with
�1 < �2 D 0.

on l2, then b is a scalar multiple k � v2 of the eigenvector v2 of A associated with the

eigenvalue �2 D 0. In this case, the constant-valued solution x.t/ � b is given by

Eq. (17) with c1 D 0 and c2 D k. This constant solution, with its “trajectory” being
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a single point lying on the line l2, is then the unique solution of the initial value

problem

x0
D Ax; x.0/ D b

guaranteed by Theorem 1 of Section 7.1. Note that this situation is in marked con-

trast with the other eigenvalue cases we have considered so far, in which x.t/ � 0

is the only constant solution of the system x0 D Ax. (In Problem 32 we explore the

general circumstances under which the system x0 D Ax has constant solutions other

than x.t/ � 0.)

Example 4 The solution curves in Fig. 7.4.4 correspond to the choice

A D

�

�36 �6

6 1

�

(18)

in the system x0 D Ax. The eigenvalues of A are �1 D �35 and �2 D 0, with associated

eigenvectors

v1 D

�

6

�1

�

and v2 D

�

1

�6

�

:

Based on Eq. (17), the general solution is

x.t/ D c1

�

6

�1

�

e�35t
C c2

�

1

�6

�

; (19)

or, in scalar form,

x1.t/ D 6c1e
�35t

C c2;

x2.t/ D �c1e
�35t

� 6c2:

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together with a direc-

tion field, for the system x0 D Ax with A given by Eq. (18).

ONE ZERO AND ONE POSITIVE EIGENVALUE: When 0D �2 <�1, the solution

of the system x0 D Ax is again given by

x.t/ D c1v1e
�1t
C c2v2: (17)

By the principle of time reversal, the trajectories of the system x0 D Ax are identical

to those of the system x0 D �Ax, except that they flow in the opposite direction.

Since the eigenvalues ��1 and ��2 of the matrix �A satisfy ��1 < ��2 D 0, by

the preceding case the trajectories of x0 D �Ax are lines parallel to the eigenvector

v1 and flowing toward the line l2 from both directions. Therefore the trajectories

of the system x0 D Ax are lines parallel to v1 and flowing away from the line l2.

Figure 7.4.5 illustrates typical solution curves given by x.t/ D c1v1e
�1t C c2v2 cor-

responding to nonzero values of the coefficients c1 and c2.

c1>0, c2<0

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 7.4.5. Solution curves
x.t/ D c1v1e

�1t C c2v2 for the
system x0 D Ax when the eigenvalues
�1, �2 of A are real with
0 D �2 < �1.

Example 5 The solution curves in Fig. 7.4.5 correspond to the choice

A D �

�

�36 �6

6 1

�

D

�

36 6

�6 �1

�

(20)

in the system x0 D Ax; thus A is the negative of the matrix in Example 4. Once again we can

solve the system using the principle of time reversal: Replacing t with �t in the right-hand

side of the solution in Eq. (19) of Example 4 leads to

x.t/ D c1

�

6

�1

�

e35t
C c2

�

1

�6

�

: (21)
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Alternatively, directly finding the eigenvalues and eigenvectors of A leads to �1 D 35 and

�2 D 0 , with associated eigenvectors

v1 D

�

6

�1

�

and v2 D

�

1

�6

�

:

Equation (17) gives the general solution of the system x0 D Ax as

x.t/ D c1

�

6

�1

�

e35t
C c2

�

1

�6

�

(in agreement with Eq. (21)), or, in scalar form,

x1.t/ D 6c1e
35t
C c2;

x2.t/ D �c1e
35t
� 6c2:

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together with a direc-

tion field, for the system x0 D Ax with A given by Eq. (20).

Repeated Eigenvalues; Proper and Improper Nodes

REPEATED POSITIVE EIGENVALUE: As we noted earlier, if the matrix A has

one repeated eigenvalue, then A may or may not have two associated linearly inde-

pendent eigenvectors. Because these two possibilities lead to quite different phase

portraits, we will consider them separately. We let � denote the repeated eigenvalue

of A with � > 0.

With two independent eigenvectors: First, if A does have two linearly inde-

pendent eigenvectors, then it is easy to show (Problem 33) that in fact every nonzero

vector is an eigenvector of A, from which it follows that A must be equal to the

scalar � times the identity matrix of order two, that is,

A D �

�

1 0

0 1

�

D

�

� 0

0 �

�

: (22)

Therefore the system x0 D Ax becomes (in scalar form)

x0
1
.t/ D �x1.t/;

x0
2
.t/ D �x2.t/:

(23)

The general solution of Eq. (23) is

x1.t/ D c1e
�t

x2.t/ D c2e
�t ;

(24)

or in vector format,

x.t/ D e�t

�

c1

c2

�

: (25)

We could also have arrived at Eq. (25) by starting, as in previous cases, from our

general solution (4): Because all nonzero vectors are eigenvectors of A, we are

free to take v1 D
�

1 0
�

T

and v2 D
�

0 1
�

T

as a representative pair of linearly

independent eigenvectors, each associated with the eigenvalue �. Then Eq. (4) leads

to the same result as Eq. (25):

x.t/ D c1v1e
�t
C c2v2e

�t
D e�t .c1v1 C c2v2/ D e

�t

�

c1

c2

�

:



406 Chapter 7 Linear Systems of Differential Equations

Either way, our solution in Eq. (25) shows that x.t/ is always a positive scalar

multiple of the fixed vector
�

c1 c2

�

T

. Thus apart from the case c1 D c2 D 0, the

trajectories of the system (1) are half-lines, or rays, emanating from the origin and

(because � > 0) flowing away from it. As noted above, the origin in this case repre-

sents a proper node, because no two pairs of “opposite” solution curves are tangent

to the same straight line through the origin. Moreover the origin is also a source

(rather than a sink), and so in this case we call the origin a proper nodal source.

Figure 7.4.6 shows the “exploding star” pattern characteristic of such points.

Example 6 The solution curves in Fig. 7.4.6 correspond to the case where the matrix A is given by

Eq. (22) with � D 2:

A D

�

2 0

0 2

�

: (26)

Equation (25) then gives the general solution of the system x0 D Ax as

c1>0, c2<0

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2>0

FIGURE 7.4.6. Solution curves

x.t/ D e
�t

�

c1

c2

�

for the system

x0 D Ax when A has one repeated

positive eigenvalue and two linearly
independent eigenvectors.

x.t/ D e2t

�

c1

c2

�

; (27)

or, in scalar form,

x1.t/ D c1e
2t ;

x2.t/ D c2e
2t :

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together with a direc-

tion field, for the system x0 D Ax with A given by Eq. (26).

Without two independent eigenvectors: The remaining possibility is that

the matrix A has a repeated positive eigenvalue yet fails to have two linearly inde-

pendent eigenvectors. In this event the general solution of the system x0 D Ax is

given by Eq. (7) above:

x.t/ D c1v1e
�t
C c2.v1t C v2/e

�t : (7)

Here v1 is an eigenvector of the matrix A associated with the repeated eigenvalue �

and v2 is a (nonzero) “generalized eigenvector” that will be described more fully in

Section 7.6. To analyze this trajectory, we first distribute the factor e�t in Eq. (7),

leading to

x.t/ D c1v1e
�t
C c2.v1te

�t
C v2e

�t /: (28)

Our assumption that � > 0 implies that both e�t and te�t approach zero as t !�1,

and so by Eq. (28) the solution x.t/ approaches the origin as t ! �1. Except for

the trivial solution given by c1 D c2 D 0, all trajectories given by Eq. (7) “emanate”

from the origin as t increases.

The direction of flow of these curves can be understood from the tangent vec-

tor x0.t/. Rewriting Eq. (28) as

x.t/ D e�t Œc1v1 C c2.v1t C v2/�

and applying the product rule for vector-valued functions gives

x0.t/ D e�tc2v1 C �e
�t Œc1v1 C c2.v1t C v2/�

D e�t .c2v1 C �c1v1 C �c2v1t C �c2v2/:
(29)

For t 6D 0, we can factor out t in Eq. (29) and rearrange terms to get

x0.t/ D te�t

�

�c2v1 C
1

t
.�c1v1 C �c2v2 C c2v1/

�

: (30)
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Equation (30) shows that for t 6D 0, the tangent vector x0.t/ is a nonzero scalar mul-

tiple of the vector �c2v1 C
1

t
.�c1v1 C �c2v2 C c2v1/, which, if c2 6D 0, approaches

the fixed nonzero multiple �c2v1 of the eigenvector v1 as t!C1 or as t!�1. In

this case it follows that as t gets larger and larger numerically (in either direction),

the tangent line to the solution curve at the point x.t/—since it is parallel to the tan-

gent vector x0.t/ which approaches �c2v1—becomes more and more nearly parallel

to the eigenvector v1. In short, we might say that as t increases numerically, the

point x.t/ on the solution curve moves in a direction that is more and more nearly

parallel to the vector v1, or still more briefly, that near x.t/ the solution curve itself

is virtually parallel to v1.

We conclude that if c2 6D 0, then as t !�1 the point x.t/ approaches the ori-

gin along the solution curve which is tangent there to the vector v1. But as t !C1

and the point x.t/ recedes farther and farther from the origin, the tangent line to the

trajectory at this point tends to differ (in direction) less and less from the (moving)

line through x.t/ that is parallel to the (fixed) vector v1. Speaking loosely but sug-

gestively, we might therefore say that at points sufficiently far from the origin, all

trajectories are essentially parallel to the single vector v1.

If instead c2 D 0, then our solution (7) becomes

x.t/ D c1v1e
�t ; (31)

and thus runs along the line l1 passing through the origin and parallel to the eigen-

vector v1. Because � > 0, x.t/ flows away from the origin as t increases; the flow is

in the direction of v1 if c1 > 0, and opposite v1 if c1 < 0.

We can further see the influence of the coefficient c2 by writing Eq. (7) in yet

a different way:

x.t/ D c1v1e
�t
C c2.v1t C v2/e

�t
D .c1 C c2t /v1e

�t
C c2v2e

�t : (32)

It follows from Eq. (32) that if c2 6D 0, then the solution curve x.t/ does not cross

the line l1. Indeed, if c2 > 0, then Eq. (32) shows that for all t , the solution curve

x.t/ lies on the same side of l1 as v2, whereas if c2 < 0, then x.t/ lies on the opposite

side of l1.

To see the overall picture, then, suppose for example that the coefficient

c2 > 0. Starting from a large negative value of t , Eq. (30) shows that as t increases,

the direction in which the solution curve x.t/ initially proceeds from the origin is

roughly that of the vector te�t�c2v1. Since the scalar te�t�c2 is negative (because

t < 0 and �c2 > 0), the direction of the trajectory is opposite that of v1. For large

positive values of t , on the other hand, the scalar te�t�c2 is positive, and so x.t/

flows in nearly the same direction as v1. Thus, as t increases from �1 to C1,

the solution curve leaves the origin flowing in the direction opposite v1, makes a

“U-turn” as it moves away from the origin, and ultimately flows in the direction of

v1.

Because all nonzero trajectories are tangent at the origin to the line l1, the ori-

gin represents an improper nodal source. Figure 7.4.7 illustrates typical solution

v2

c2=0, c1>0

c2=0, c1<0

x 2

x1

c2<0

c2>0

v1

l1

FIGURE 7.4.7. Solution curves
x.t/ D c1v1e

�t C c2.v1t C v2/e
�t

for the system x0 D Ax when A has
one repeated positive eigenvalue �

with associated eigenvector v1 and
“generalized eigenvector” v2.

curves given by x.t/ D c1v1e
�t C c2.v1t C v2/e

�t for the system x0 D Ax when A

has a repeated eigenvalue but does not have two linearly independent eigenvectors.

Example 7 The solution curves in Fig. 7.4.7 correspond to the choice

A D

�

1 �3

3 7

�

(33)
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in the system x0 DAx. In Examples 2 and 3 of Section 7.6 we will see that A has the repeated

eigenvalue � D 4 with associated eigenvector and generalized eigenvector given by

v1 D

�

�3

3

�

and v2 D

�

1

0

�

; (34)

respectively. According to Eq. (7) the resulting general solution is

x.t/ D c1

�

�3

3

�

e4t
C c2

�

�3t C 1

3t

�

e4t ; (35)

or, in scalar form,

x1.t/ D .�3c2t � 3c1 C c2/e
4t ;

x2.t/ D .3c2t C 3c1/e
4t :

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together with a direc-

tion field, for the system x0 D Ax with A given by Eq. (33).

REPEATED NEGATIVE EIGENVALUE: Once again the principle of time reversal

shows that the solutions x.t/ of the system x0DAx are identical to those of x0D�Ax

with t replaced by �t ; hence these two systems share the same trajectories while

flowing in opposite directions. Further, if the matrix A has the repeated negative

eigenvalue �, then the matrix �A has the repeated positive eigenvalue �� (Problem

31 again). Therefore, to construct phase portraits for the system x0DAx when A has

a repeated negative eigenvalue, we simply reverse the directions of the trajectories in

the phase portraits corresponding to a repeated positive eigenvalue. These portraits

are illustrated in Figs. 7.4.8 and 7.4.9. In Fig. 7.4.8 the origin represents a proper

nodal sink, whereas in Fig. 7.4.9 it represents an improper nodal sink.

c1>0, c2<0

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2>0

FIGURE 7.4.8. Solution curves

x.t/ D e
�t

�

c1

c2

�

for the system

x0 D Ax when A has one repeated
negative eigenvalue � and two linearly
independent eigenvectors.

v2

c2=0, c1>0

c2=0, c1<0

x 2

x1

c2<0

c2>0

v1

l1

FIGURE 7.4.9. Solution curves
x.t/ D c1v1e

�t C c2.v1t C v2/e
�t

for the system x0 D Ax when A has
one repeated negative eigenvalue �

with associated eigenvector v1 and
“generalized eigenvector” v2.

Example 8 The solution curves in Fig. 7.4.8 correspond to the choice

A D �

�

2 0

0 2

�

D

�

�2 0

0 �2

�

(36)

in the system x0 D Ax; thus A is the negative of the matrix in Example 6. We can solve this

system by applying the principle of time reversal to the solution found in Eq. (27): Replacing

t with �t in the right-hand side of Eq. (27) leads to

x.t/ D e�2t

�

c1

c2

�

; (37)
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or, in scalar form,

x1.t/ D c1e
�2t ;

x2.t/ D c2e
�2t :

Alternatively, because A is given by Eq. (22) with � D �2 , Eq. (25) leads directly to the

solution in Eq. (37). Our gallery Fig. 7.4.16 shows a more complete set of solution curves,

together with a direction field, for the system x0 D Ax with A given by Eq. (36).

Example 9 The solution curves in Fig. 7.4.9 correspond to the choice

A D �

�

1 �3

3 7

�

D

�

�1 3

�3 �7

�

(38)

in the system x0 D Ax. Thus A is the negative of the matrix in Example 7, and once again we

can apply the principle of time reversal to the solution found in Eq. (35): Replacing t with �t

in the right-hand side of Eq. (35) yields

x.t/ D c1

�

�3

3

�

e�4t
C c2

�

3t C 1

�3t

�

e�4t : (39)

We could also arrive at an equivalent form of the solution in Eq. (39) in the following way.

You can verify that A has the repeated eigenvalue � D �2 with eigenvector v1 given by

Eq. (34), that is,

v1 D

�

�3

3

�

:

However, as the methods of Section 7.6 will show, a generalized eigenvector v2 associated

with v1 is now given by

v2 D �

�

1

0

�

D

�

�1

0

�

I

that is, v2 is the negative of the generalized eigenvector in Eq. (34). Equation (7) then gives

the general solution of the system x0 D Ax as

x.t/ D c1

�

�3

3

�

e�4t
C c2

�

�3t � 1

3t

�

e�4t ; (40)

or, in scalar form,

x1.t/ D .�3c2t � 3c1 � c2/e
�4t ;

x2.t/ D .3c2t C 3c1/e
�4t :

Note that replacing c2 with �c2 in the solution (39) yields the solution (40), thus confirming

that the two solutions are indeed equivalent. Our gallery Fig. 7.4.16 shows a more complete

set of solution curves, together with a direction field, for the system x0 D Ax with A given by

Eq. (38).

The Special Case of a Repeated Zero Eigenvalue

REPEATED ZERO EIGENVALUE: Once again the matrix A may or may not have

two linearly independent eigenvectors associated with the repeated eigenvalue

�D 0. If it does, then (using Problem 33 once more) we conclude that every nonzero

vector is an eigenvector of A, that is, that Av D 0 � v D 0 for all two-dimensional

vectors v. It follows that A is the zero matrix of order two, that is,

A D

�

0 0

0 0

�

:

Therefore the system x0 D Ax reduces to x0
1
.t/ D x0

2
.t/ D 0, which is to say that

x1.t/ and x2.t/ are each constant functions. Thus the general solution of x0 D Ax is

simply

x.t/ D

�

c1

c2

�

; (41)
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where c1 and c2 are arbitrary constants, and the “trajectories” given by Eq. (41) are

simply the fixed points .c1; c2/ in the phase plane.

If instead A does not have two linearly independent eigenvectors associated

with � D 0, then the general solution of the system x0 D Ax is given by Eq. (7) with

� D 0:

x.t/ D c1v1 C c2.v1t C v2/ D .c1v1 C c2v2/C c2v1t: (42)

Once again v1 denotes an eigenvector of the matrix A associated with the repeated

eigenvalue �D 0 and v2 denotes a corresponding nonzero “generalized eigenvector.”

If c2 6D 0, then the trajectories given by Eq. (42) are lines parallel to the eigenvector

v1 and “starting” at the point c1v1 C c2v2 (when t D 0). When c2 > 0 the trajectory

proceeds in the same direction as v1, whereas when c2 < 0 the solution curve flows

in the direction opposite v1. Once again the lines l1 and l2 passing through the origin

and parallel to the vectors v1 and v2, respectively, divide the plane into “quadrants”

corresponding to the signs of the coefficients c1 and c2. The particular quadrant in

which the “starting point” c1v1 C c2v2 of the trajectory falls is determined by the

signs of c1 and c2. Finally, if c2 D 0, then Eq. (42) gives x.t/� c1v1 for all t , which

means that each fixed point c1v1 along the line l1 corresponds to a solution curve.

(Thus the line l1 could be thought of as a median strip dividing two opposing lanes

of traffic.) Figure 7.4.10 illustrates typical solution curves corresponding to nonzero

values of the coefficients c1 and c2.

Example 10 The solution curves in Fig. 7.4.10 correspond to the choice

A D

�

2 4

�1 �2

�

(43)

in the system x0 DAx. You can verify that v1 D
�

2 �1
�

T

is an eigenvector of A associated

v2

c1<0, c2>0

c1<0, c2<0
c1>0, c2<0

c1>0, c2>0

x 2

x1

v1

l1

l2

FIGURE 7.4.10. Solution curves

x.t/ D .c1v1 C c2v2/ C c2v1t for the
system x0 D Ax when A has a repeated

zero eigenvalue with associated
eigenvector v1 and “generalized

eigenvector” v2. The emphasized point
on each solution curve corresponds to

t D 0.

with the repeated eigenvalue � D 0. Further, using the methods of Section 7.6 we can show

that v2 D
�

1 0
�

T

is a corresponding “generalized eigenvector” of A. According to Eq. (42)

the general solution of the system x0 D Ax is therefore

x.t/ D c1

�

2

�1

�

C c2

��

2

�1

�

t C

�

1

0

��

; (44)

or, in scalar form,

x1.t/ D 2c1 C .2t C 1/c2;

x2.t/ D �c1 � tc2:

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together with a direc-

tion field, for the system x0 D Ax with A given by Eq. (43).

Complex Conjugate Eigenvalues and Eigenvectors

We turn now to the situation in which the eigenvalues �1 and �2 of the matrix A

are complex conjugate. As we noted at the beginning of this section, the general

solution of the system x0 D Ax is given by Eq. (5):

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/: (5)

Here the vectors a and b are the real and imaginary parts, respectively, of a (complex-

valued) eigenvector of A associated with the eigenvalue �1D pC iq. We will divide

the case of complex conjugate eigenvalues according to whether the real part p of

�1 and �2 is zero, positive, or negative:

� Pure imaginary (�1, �2 D ˙iq with q 6D 0)

� Complex with negative real part (�1, �2 D p ˙ iq with p < 0 and q 6D 0)

� Complex with positive real part (�1, �2 D p ˙ iq with p > 0 and q 6D 0)
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Pure Imaginary Eigenvalues: Centers and Elliptical Orbits

PURE IMAGINARY EIGENVALUES: Here we assume that the eigenvalues of the

matrix A are given by �1 �2 D ˙iq with q 6D 0. Taking p D 0 in Eq. (5) gives the

general solution

x.t/ D c1.a cos qt � b sin qt/C c2.b cos qt C a sin qt/ (45)

for the system x0 D Ax. Rather than directly analyze the trajectories given by

Eq. (45), as we have done in the previous cases, we begin instead with an exam-

ple that will shed light on the nature of these solution curves.

Example 11 Solve the initial value problem

x0
D

�

6 �17

8 �6

�

x; x.0/ D

�

4

2

�

: (46)

Solution The coefficient matrix

A D

�

6 �17

8 �6

�

(47)

has characteristic equation

jA � �Ij D

�

6 � � �17

8 �6 � �

�

D �2
C 100 D 0;

and hence has the complex conjugate eigenvalues �1, �2 D ˙10i . If v D
�

a b
�

T

is an

eigenvector associated with � D 10i , then the eigenvector equation .A � �I/v D 0 yields

�

A � 10i � I
�

v D

�

6 � 10i �17

8 �6 � 10i

� �

a

b

�

D

�

0

0

�

:

Upon division of the second row by 2, this gives the two scalar equations

.6 � 10i/a � 17b D 0;

4a � .3C 5i/b D 0;
(48)

each of which is satisfied by a D 3 C 5i and b D 4. Thus the desired eigenvector is v D
�

3C 5i 4
�

T

, with real and imaginary parts

a D

�

3

4

�

and b D

�

5

0

�

; (49)

respectively. Taking q D 10 in Eq. (45) therefore gives the general solution of the system

x0 D Ax:

x.t/ D c1

��

3

4

�

cos 10t �

�

5

0

�

sin 10t

�

C c2

��

5

0

�

cos 10t C

�

3

4

�

sin 10t

�

D

�

c1.3 cos 10t � 5 sin 10t/C c2.5 cos 10t C 3 sin 10t/

4c1 cos 10t C 4c2 sin 10t

�

:

(50)

To solve the given initial value problem it remains only to determine values of the coefficients

c1 and c2. The initial condition x.0/ D
�

4 2
�

T

readily yields c1 D c2 D
1

2
, and with these

values Eq. (50) becomes (in scalar form)

x1.t/ D 4 cos 10t � sin 10t;

x2.t/ D 2 cos 10t C 2 sin 10t:
(51)

Figure 7.4.11 shows the trajectory given by Eq. (51) together with the initial

point .4; 2/.

θ

v

(4, 2)

u

x 2

x1

FIGURE 7.4.11. Solution curve
x1.t/ D 4 cos 10t � sin 10t ,
x2.t/ D 2 cos 10t C 2 sin 10t for the
initial value problem in Eq. (46).
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This solution curve appears to be an ellipse rotated counterclockwise by the

angle � D arctan 2

4
� 0:4636. We can verify this by finding the equations of the

solution curve relative to the rotated u- and v-axes shown in Fig. 7.4.11. By a

standard formula from analytic geometry, these new equations are given by

u D x1 cos � C x2 sin � D
2
p
5
x1 C

1
p
5
x2;

v D �x1 sin � C x2 cos � D �
1
p
5
x1 C

2
p
5
x2:

(52)

In Problem 34 we ask you to substitute the expressions for x1 and x2 from Eq. (51)

into Eq. (52), leading (after simplification) to

u D 2
p
5 cos 10t; v D

p
5 sin 10t: (53)

Equation (53) not only confirms that the solution curve in Eq. (51) is indeed an

ellipse rotated by the angle � , but it also shows that the lengths of the semi-major

and semi-minor axes of the ellipse are 2
p
5 and

p
5, respectively.

Furthermore, we can demonstrate that any choice of initial point (apart from

the origin) leads to a solution curve that is an ellipse rotated by the same angle � and

“concentric” (in an obvious sense) with the trajectory in Fig. 7.4.11 (see Problems

35–37). All these concentric rotated ellipses are centered at the origin .0; 0/, which

is therefore called a center for the system x0 D Ax whose coefficient matrix A has

pure imaginary eigenvalues. Our gallery Fig. 7.4.16 shows a more complete set of

solution curves, together with a direction field, for the system x0 D Ax with A given

by Eq. (47).

Further investigation: Geometric significance of the eigenvector. Our general

solution in Eq. (50) was based upon the vectors a and b in Eq. (49), that is, the real

and imaginary parts of the complex eigenvector vD
�

3C 5i 4
�

T

of the matrix A.

We might therefore expect a and b to have some clear geometric connection to the

solution curve in Fig. 7.4.11. For example, we might guess that a and b would be

parallel to the major and minor axes of the elliptical trajectory. However, it is clear

from Fig. 7.4.12—which shows the vectors a and b together with the solution curve

given by Eq. (51)—that this is not the case. Do the eigenvectors of A, then, play

any geometric role in the phase portrait of the system x0 D Ax?

The (affirmative) answer lies in the fact that any nonzero real or complex

multiple of a complex eigenvector of the matrix A is still an eigenvector of A as-

x 2

x1

a

b

(4, 2)
u

v

θã

b̃

FIGURE 7.4.12. Solution curve for
the initial value problem in Eq. (46)

showing the vectors a, b, Qa, and Qb.

sociated with that eigenvalue. Perhaps, then, if we multiply the eigenvector v D
�

3C 5i 4
�

T

by a suitable nonzero complex constant ´, the resulting eigenvector

Qv will have real and imaginary parts Qa and Qb that can be readily identified with ge-

ometric features of the ellipse. To this end, let us multiply v by the complex scalar

´ D 1

2
.1C i/. (The reason for this particular choice will become clear shortly.) The

resulting new complex eigenvector Qv of the matrix A is

Qv D ´ � v D
1

2
.1C i/ �

�

3C 5i

4

�

D

�

�1C 4i

2C 2i

�

;

and has real and imaginary parts

Qa D

�

�1

2

�

and Qb D

�

4

2

�

:
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It is clear that the vector Qb is parallel to the major axis of our elliptical trajectory.

Further, you can easily check that Qa � Qb D 0, which means that Qa is perpendicular

to Qb, and hence is parallel to the minor axis of the ellipse, as Fig. 7.4.12 illustrates.

Moreover, the length of Qb is twice that of Qa, reflecting the fact that the lengths of

the major and minor axes of the ellipse are in this same ratio. Thus for a matrix A

with pure imaginary eigenvalues, the complex eigenvector of A used in the general

solution (45)—if suitably chosen—is indeed of great significance to the geometry

of the elliptical solution curves of the system x0 D Ax.

How was the value 1

2
.1 C i/ chosen for the scalar ´? In order that the real

and imaginary parts Qa and Qb of Qv D ´ � v be parallel to the axes of the ellipse, at a

minimum Qa and Qb must be perpendicular to each other. In Problem 38 we ask you

to show that this condition is satisfied if and only if ´ is of the form r.1˙ i/, where

r is a nonzero real number, and that if ´ is chosen in this way, then Qa and Qb are in

fact parallel to the axes of the ellipse. The value r D 1

2
then aligns the lengths of

Qa and Qb with those of the semi-minor and -major axes of the elliptical trajectory.

More generally, we can show that given any eigenvector v of a matrix A with pure

imaginary eigenvalues, there exists a constant ´ such that the real and imaginary

parts Qa and Qb of the eigenvector Qv D ´ � v are parallel to the axes of the (elliptical)

trajectories of the system x0 D Ax.

Further investigation: Direction of flow. Figs. 7.4.11 and 7.4.12 suggest that the

solution curve in Eq. (51) flows in a counterclockwise direction with increasing t .

However, you can check that the matrix

�A D

�

�6 17

�8 6

�

has the same eigenvalues and eigenvectors as the matrix A in Eq. (47) itself, and yet

(by the principle of time reversal) the trajectories of the system x0 D �Ax are iden-

tical to those of x0 D Ax while flowing in the opposite direction, that is, clockwise.

Clearly, mere knowledge of the eigenvalues and eigenvectors of the matrix A is not

sufficient to predict the direction of flow of the elliptical trajectories of the system

x0 D Ax as t increases. How then can we determine this direction of flow?

One simple approach is to use the tangent vector x0 to monitor the direction in

which the solution curves flow as they cross the positive x1-axis. If s is any positive

number (so that the point .s; 0/ lies on the positive x1-axis), and if the matrix A is

given by

A D

�

a b

c d

�

;

then any trajectory for the system x0 D Ax passing through .s; 0/ satisfies

x0
D Ax D

�

a b

c d

� �

s

0

�

D

�

as

cs

�

D s

�

a

c

�

at the point .s; 0/. Therefore, at this point the direction of flow of the solution curve

is a positive scalar multiple of the vector
�

a c
�

T

. Since c cannot be zero (see

Problem 39), this vector either points “upward” into the first quadrant of the phase

plane (if c > 0 ), or “downward” into the fourth quadrant (if c < 0). If upward, then

the flow of the solution curve is counterclockwise; if downward, then clockwise.

For the matrix A in Eq. (47), the vector
�

a c
�

T

D
�

6 8
�

T

points into the first

quadrant because c D 8 > 0, thus indicating a counterclockwise direction of flow

(as Figs. 7.4.11 and 7.4.12 suggest).
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Complex Eigenvalues: Spiral Sinks and Sources

COMPLEX EIGENVALUES WITH NEGATIVE REAL PART: Now we assume that

the eigenvalues of the matrix A are given by �1, �2 D p˙ iq with q 6D 0 and p < 0.

In this case the general solution of the system x0 D Ax is given directly by Eq. (5):

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/; (5)

where the vectors a and b have their usual meaning. Once again we begin with an

example to gain an understanding of these solution curves.

Example 12 Solve the initial value problem

x0
D

�

5 �17

8 �7

�

x; x.0/ D

�

4

2

�

: (54)

Solution The coefficient matrix

A D

�

5 �17

8 �7

�

(55)

has characteristic equation

jA � �Ij D

ˇ

ˇ

ˇ

ˇ

5 � � �17

8 �7 � �

ˇ

ˇ

ˇ

ˇ

D .�C 1/2 C 100 D 0;

and hence has the complex conjugate eigenvalues �1, �2 D �1˙ 10i . If v D
�

a b
�

T

is

an eigenvector associated with � D �1C 10i , then the eigenvector equation .A � �I/v D 0

yields the same system (48) of equations found in Example 11:

.6 � 10i/a � 17b D 0;

4a � .3C 5i/b D 0:
(48)

As in Example 11, each of these equations is satisfied by a D 3C 5i and b D 4. Thus the

desired eigenvector, associated with �1 D �1C 10i , is once again v D
�

3C 5i 4
�

T

, with

real and imaginary parts

a D

�

3

4

�

and b D

�

5

0

�

; (56)

respectively. Taking p D �1 and q D 10 in Eq. (5) therefore gives the general solution of the

system x0 D Ax:

x.t/ D c1e
�t

��

3

4

�

cos 10t �

�

5

0

�

sin 10t

�

C c2e
�t

��

5

0

�

cos 10t C

�

3

4

�

sin 10t

�

D

�

c1e
�t .3 cos 10t � 5 sin 10t/C c2e

�t .5 cos 10t C 3 sin 10t/

4c1e
�t cos 10t C 4c2e

�t sin 10t

�

:

(57)

The initial condition x.0/ D
�

4 2
�

T

gives c1 D c2 D
1

2
once again, and with these values

Eq. (57) becomes (in scalar form)

x1.t/ D e
�t .4 cos 10t � sin 10t/;

x2.t/ D e
�t .2 cos 10t C 2 sin 10t/:

(58)

Figure 7.4.13 shows the trajectory given by Eq. (58) together with the initial

point .4; 2/. It is noteworthy to compare this spiral trajectory with the elliptical

(4, 2)

x 2

x1

FIGURE 7.4.13. Solution curve
x1.t/ D e

�t
.4 cos 10t � sin 10t/,

x2.t/ D e
�t

.2 cos 10t C 2 sin 10t/

for the initial value problem in
Eq. (54). The dashed and solid portions
of the curve correspond to negative and
positive values of t , respectively.

trajectory in Eq. (51). The equations for x1.t/ and x2.t/ in (58) are obtained by

multiplying their counterparts in (51) by the common factor e�t , which is positive

and decreasing with increasing t . Thus for positive values of t , the spiral trajectory

is generated, so to speak, by standing at the origin and “reeling in” the point on the

elliptical trajectory (51) as it is traced out. When t is negative, the picture is rather
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one of “casting away” the point on the ellipse farther out from the origin to create

the corresponding point on the spiral.

Our gallery Fig. 7.4.16 shows a more complete set of solution curves, together

with a direction field, for the system x0 D Ax with A given by Eq. (55). Because the

solution curves all “spiral into” the origin, we call the origin in this a case a spiral

sink.

COMPLEX EIGENVALUES WITH POSITIVE REAL PART: We conclude with the

case where the eigenvalues of the matrix A are given by �1, �2 D p˙ iq with q 6D 0

and p > 0. Just as in the preceding case, the general solution of the system x0 D Ax

is given by Eq. (5):

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/: (5)

An example will illustrate the close relation between the cases p > 0 and p < 0.

Example 13 Solve the initial value problem

x0
D

�

�5 17

�8 7

�

x; x.0/ D

�

4

2

�

: (59)

Solution Although we could directly apply the eigenvalue/eigenvector method as in previous cases

(see Problem 40), here it is more convenient to notice that the coefficient matrix

A D

�

�5 17

�8 7

�

(60)

is the negative of the matrix in Eq. (55) used in Example 12. By the principle of time reversal,

x1

x 2

(4, 2)

FIGURE 7.4.14. Solution curve

x1.t/ D e
t
.4 cos 10t C sin 10t/,

x2.t/ D e
t
.2 cos 10t � 2 sin 10t/ for

the initial value problem in Eq. (59).
The dashed and solid portions of the

curve correspond to negative and
positive values of t , respectively.

therefore, the solution of the initial value problem (59) is given by simply replacing t with �t

in the right-hand sides of the solution (58) of the initial value problem in that example:

x1.t/ D e
t .4 cos 10t C sin 10t/;

x2.t/ D e
t .2 cos 10t � 2 sin 10t/:

(61)

Figure 7.4.14 shows the trajectory given by Eq. (61) together with the initial

point .4; 2/. Our gallery Fig. 7.4.16 shows this solution curve together with a direc-

tion field for the system x0 D Ax with A given by Eq. (60). Because the solution

curve “spirals away from” the origin, we call the origin in this case a spiral source.

A 3-Dimensional Example

Figure 7.4.15 illustrates the space trajectories of solutions of the 3-dimensional sys-

tem x0 D Ax with constant coefficient matrix

A D

2

4

4 10 0

�5 �6 0

0 0 1

3

5 : (62)

To portray the motion in space of a point x.t/ moving on a trajectory of this system,

we can regard this trajectory as a necklace string on which colored beads are placed

to mark its successive positions at fixed increments of time (so the point is moving

fastest where the spacing between beads is greatest). In order to aid the eye in

following the moving point’s progress, the size of the beads decreases continuously

with the passage of time and motion along the trajectory.
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FIGURE 7.4.15. Three-dimensional trajectories for the system x0 D Ax

with the matrix A given by Eq. (62).

The matrix A has the single real eigenvalue �1 with the single (real) eigen-

vector
�

0 0 1
�

T

and the complex conjugate eigenvalues �1˙ 5i . The negative

real eigenvalue corresponds to trajectories that lie on the x3-axis and approach the

origin as t ! 0 (as illustrated by the beads on the vertical axis of the figure). Thus

the origin .0; 0; 0/ is a sink that “attracts” all the trajectories of the system.

The complex conjugate eigenvalues with negative real part correspond to tra-

jectories in the horizontal x1x2-plane that spiral around the origin while approaching

it. Any other trajectory—one which starts at a point lying neither on the ´-axis nor in

the x1x2-plane—combines the preceding behaviors by spiraling around the surface

of a cone while approaching the origin at its vertex.
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Gallery of Typical Phase Portraits for the System x0 D Ax: Nodes

Proper Nodal Source: A repeated posi-

tive real eigenvalue with two linearly in-

dependent eigenvectors.

Proper Nodal Sink: A repeated negative

real eigenvalue with two linearly indepen-

dent eigenvectors.

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real

eigenvalue without two linearly independent eigenvectors (right).

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real

eigenvalue without two linearly independent eigenvectors (right).

FIGURE 7.4.16. Gallery of typical phase plane portraits for the system x0 D Ax.
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Gallery of Typical Phase Portraits for the System x0 D Ax:
Saddles, Centers, Spirals, and Parallel Lines

Saddle Point: Real eigenvalues of oppo-

site sign.
Center: Pure imaginary eigenvalues.

Spiral Source: Complex conjugate

eigenvalues with positive real part.

Spiral Sink: Complex conjugate eigen-

values with negative real part.

Parallel Lines: One zero and one neg-

ative real eigenvalue. (If the nonzero

eigenvalue is positive, then the trajecto-

ries flow away from the dotted line.)

Parallel Lines: A repeated zero eigen-

value without two linearly independent

eigenvectors.

FIGURE 7.4.16. (Continued)
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7.4 Problems
For each of the systems in Problems 1 through 16 in Section

7.3, categorize the eigenvalues and eigenvectors of the coeffi-

cient matrix A according to Fig. 7.4.16 and sketch the phase

portrait of the system by hand. Then use a computer system or

graphing calculator to check your answer.

The phase portraits in Problems 17 through 28 corre-

spond to linear systems of the form x0 D Ax in which the ma-

trix A has two linearly independent eigenvectors. Determine

the nature of the eigenvalues and eigenvectors of each system.

For example, you may discern that the system has pure imag-

inary eigenvalues, or that it has real eigenvalues of opposite

sign; that an eigenvector associated with the positive eigen-

value is roughly
�

2 �1
�

T

, etc.

17.

18.

19.

20.

21.

22.

23.
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24.

25.

26.

27.

28.

29. We can give a simpler description of the general solution

x.t/ D c1

�

�1

6

�

e�2t
C c2

�

1

1

�

e5t (9)

of the system

x0
D

�

4 1

6 �1

�

x

in Example 1 by introducing the oblique uv-coordinate

system indicated in Fig. 7.4.17, in which the u- and v-

axes are determined by the eigenvectors v1 D

�

�1

6

�

and

v2 D

�

1

1

�

, respectively.

v1

v2

u

v

u

v

FIGURE 7.4.17. The oblique uv-coordinate system
determined by the eigenvectors v1 and v2.

The uv-coordinate functions u.t/ and v.t/ of the

moving point x.t/ are simply its distances from the origin

measured in the directions parallel to v1 and v2. It follows

from (9) that a trajectory of the system is described by

u.t/ D u0e
�2t ; v.t/ D v0e

5t (63)

where u0 D u.0/ and v0 D v.0/. (a) Show that if v0 D 0,

then this trajectory lies on the u-axis, whereas if u0 D 0,

then it lies on the v-axis. (b) Show that if u0 and v0 are

both nonzero, then a “Cartesian” equation of the paramet-

ric curve in Eq. (63) is given by v D Cu�5=2.

30. Use the chain rule for vector-valued functions to verify the

principle of time reversal.
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In Problems 31–33 A represents a 2 � 2 matrix.

31. Use the definitions of eigenvalue and eigenvector (Section

7.3) to prove that if � is an eigenvalue of A with associ-

ated eigenvector v, then �� is an eigenvalue of the ma-

trix �A with associated eigenvector v. Conclude that if

A has positive eigenvalues 0 < �2 < �1 with associated

eigenvectors v1 and v2, then �A has negative eigenvalues

��1 < ��2 < 0 with the same associated eigenvectors.

32. Show that the system x0 DAx has constant solutions other

than x.t/ � 0 if and only if there exists a (constant) vector

x 6D 0 with AxD 0. (It is shown in linear algebra that such

a vector x exists exactly when det.A/ D 0.)

33. (a) Show that if A has the repeated eigenvalue � with two

linearly independent associated eigenvectors, then every

nonzero vector v is an eigenvector of A. (Hint: Express v

as a linear combination of the linearly independent eigen-

vectors and multiply both sides by A.) (b) Conclude that

A must be given by Eq. (22). (Suggestion: In the equation

Av D �v take v D
�

1 0
�

T

and v D
�

0 1
�

T

.)

34. Verify Eq. (53) by substituting the expressions for x1.t/

and x2.t/ from Eq. (51) into Eq. (52) and simplifying.

Problems 35–37 show that all nontrivial solution curves of the

system in Example 11 are ellipses rotated by the same angle

as the trajectory in Fig. 7.4.11.

35. The system in Example 11 can be rewritten in scalar form

as

x0
1
D 6x1 � 17x2;

x0
2
D 8x1 � 6x2;

leading to the first-order differential equation

dx2

dx1

D
dx2=dt

dx1=dt
D

8x1 � 6x2

6x1 � 17x2

;

or, in differential form,

.6x2 � 8x1/ dx1 C .6x1 � 17x2/ dx2 D 0:

Verify that this equation is exact with general solution

�4x2

1
C 6x1x2 �

17

2
x2

2
D k; (64)

where k is a constant.

36. In analytic geometry it is shown that the general quadratic

equation

Ax2

1
C Bx1x2 C Cx

2

2
D k (65)

represents an ellipse centered at the origin if and only if

Ak > 0 and the discriminant B2 � 4AC < 0 . Show that

Eq. (64) satisfies these conditions if k < 0, and thus con-

clude that all nondegenerate solution curves of the system

in Example 11 are elliptical.

37. It can be further shown that Eq. (65) represents in general

a conic section rotated by the angle � given by

tan 2� D
B

A � C
:

Show that this formula applied to Eq. (64) leads to the an-

gle � D arctan 2

4
found in Example 11, and thus conclude

that all elliptical solution curves of the system in Exam-

ple 11 are rotated by the same angle � . (Suggestion: You

may find useful the double-angle formula for the tangent

function.)

38. Let vD
�

3C 5i 4
�

T

be the complex eigenvector found

in Example 11 and let ´ be a complex number. (a) Show

that the real and imaginary parts Qa and Qb, respectively,

of the vector Qv D ´ � v are perpendicular if and only if

´ D r.1˙ i/ for some nonzero real number r . (b) Show

that if this is the case, then Qa and Qb are parallel to the

axes of the elliptical trajectory found in Example 11 (as

Fig. 7.4.12 indicates).

39. Let A denote the 2 � 2 matrix

A D

�

a b

c d

�

:

(a) Show that the characteristic equation of A (Eq. (3),

Section 6.1) is given by

�2
� .aC d/�C .ad � bc/ D 0:

(b) Suppose that the eigenvalues of A are pure imaginary.

Show that the trace T .A/ D aC d of A must be zero

and that the determinant D.A/ D ad � bc must be

positive. Conclude that c 6D 0.

40. Use the eigenvalue/eigenvector method to confirm the so-

lution in Eq. (61) of the initial value problem in Eq. (59).

7.4 Application Dynamic Phase Plane Graphics

Using computer systems we can “bring to life” the static gallery of phase portraits

in Fig. 7.4.16 by allowing initial conditions, eigenvalues, and even eigenvectors to

vary in “real time.” Such dynamic phase plane graphics afford additional insight

into the relationship between the algebraic properties of the 2 � 2 matrix A and the

phase plane portrait of the system x0 D Ax.
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For example, the basic linear system

dx1

dt
D �x1;

dx2

dt
D �kx2 (k a nonzero constant),

has general solution

x1.t/ D ae
�t ; x2.t/ D be

�kt ;

where .a; b/ is the initial point. If a 6D 0, then we can write

x2 D be
�kt
D

b

ak

.ae�t / D cxk

1
; (1)

where c D b=ak . A version of the Maple commands

with(plots):

createPlot := proc(k)

soln := plot([exp(--t), exp(--k*t),

t = --10..10], x = --5..5, y = --5..5):

return display(soln):

end proc:

Explore(createPlot(k),

parameters = [k = --2.0..2.0])

produces Fig. 7.4.18, which allows the user to vary the parameter k continuously

from k D �2 to k D 2, thus showing dynamically the changes in the solution curves

(1) in response to changes in k.

–4 –2

–2

–4

0

0.0 1.0–1.0–2.0 2.0

0

x1

x 2

2

2

4

4

k: –2.000

FIGURE 7.4.18. Interactive display
of the solution curves in Eq. (1). Using
the slider, the value of k can be varied
continuously from �2 to 2.

Figure 7.4.19 shows snapshots of the interactive display in Fig. 7.4.18 corre-

sponding to the values �1 , 1

2
, and 2 for the parameter k. Based on this progression,

how would you expect the solution curves in Eq. (1) to look when k D 1? Does

Eq. (1) corroborate your guess?

–4 –2

–2

–4

0

0

x1

x 2

2

2

4

4 –4 –2

–2

–4

0

0

x1

x 2

2

2

4

4 –4 –2

–2

–4

0

0

x1

x 2

2

2

4

4

FIGURE 7.4.19. Snapshots of the interactive display in Fig. 7.4.18 with the initial conditions held
fixed and the parameter k equal to �1 , 1

2
, and 2, respectively.

As another example, a version of the Mathematica commands

a = {{--5, 17}, {--8, 7}};

x[t ] := {x1[t], x2[t]};

Manipulate[

soln = DSolve[{x’[t] == a.x[t],

x[0] == pt[[1]]}, x[t], t];

ParametricPlot[x[t]/.soln, {t, --3.5, 10},
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PlotRange --> 5],

{{pt, {{4, 2}}}, Locator}]

was used to generate Fig. 7.4.20, which (like Figs. 7.4.13 and 7.4.14) shows the

solution curve of the initial value problem

x0
D

�

�5 17

�8 7

�

x; x.0/ D

�

4

2

�

(2)

from Example 13 of the preceding section. However, in Fig. 7.4.20 the initial condi-

tion .4; 2/ is attached to a “locator point” which can be freely dragged to any desired

position in the phase plane, with the corresponding solution curve being instantly

redrawn—thus illustrating dynamically the effect of varying the initial conditions.

–4 –2

–2

–4

0

0

x1

x 2

2

2

4
(4, 2)

4

FIGURE 7.4.20. Interactive display
of the initial value problem in Eq. (2).
As the “locator point” is dragged to
different positions, the solution curve is
immediately redrawn, showing the
effect of changing the initial conditions.

–4 –2

–2

–4
0

0

x1

x 2

2

k

2

4

4

FIGURE 7.4.21. Interactive display
of the initial value problem x0 D Ax
with A given by Eq. (3). Both the
initial conditions and the value of the
parameter k can be varied dynamically.

Finally, Fig. 7.4.21 shows a more sophisticated, yet perhaps more revealing,

demonstration. As you can verify, the matrix

A D
1

10

�

k C 9 3 � 3k

3 � 3k 9k C 1

�

(3)

has the variable eigenvalues 1 and k but with fixed associated eigenvectors
�

3 1
�

T

and
�

1 �3
�

T

, respectively. Figure 7.4.21, which was generated by a version of

the Mathematica commands

a[k ] := (1/10){{k + 9, 3 -- 3k}, {3 -- 3k, 9k + 1}}

x[t ] := {x1[t], x2[t]}

Manipulate[

soln[k ] = DSolve[{x’[t] == a[k].x[t],

x[0] == #}, x[t], t]&/@pt;

curve = ParametricPlot

[Evaluate[x[t]/.soln[k]], {t, --10, 10},

PlotRange --> 4], {k, --1, 1},

{{pt, {{2, --1}, {1, 2}, {--1, --2}, {--2, 1}}},

Locator}]
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shows the phase portrait of the system x0 DAx with A given by Eq. (3). Not only are

the initial conditions of the individual trajectories controlled independently by the

“locator points,” but using the slider we can also vary the value of k continuously

from �1 to 1, with the solution curves being instantly redrawn. Thus for a fixed

value of k we can experiment with changing initial conditions throughout the phase

plane, or, conversely, we can hold the initial conditions fixed and observe the effect

of changing the value of k.

As a further example of what such a display can reveal, Fig. 7.4.22 consists

of a series of snapshots of Fig. 7.4.21 where the initial conditions are held fixed and

k progresses through the specific values �1, �0:25, 0, 0.5, 0.65, and 1. The result

is a “video” showing stages in a transition from a saddle point with “hyperbolic”

trajectories, to a pair of parallel lines, to an improper nodal source with “parabolic”

trajectories, and finally to the exploding star pattern of a proper nodal source with

straight-line trajectories. Perhaps these frames provide a new interpretation of the

description “dynamical system” for a collection of interdependent differential equa-

tions.
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FIGURE 7.4.22. Snapshots of the interactive display in Fig. 7.4.21 with the initial conditions held
fixed and the parameter k increasing from �1 to 1.

7.5 Second-Order Systems and Mechanical Applications
�

In this section we apply the matrix methods of Sections 7.2 and 7.3 to investigate

the oscillations of typical mass-and-spring systems having two or more degrees of

freedom. Our examples are chosen to illustrate phenomena that are generally char-

acteristic of complex mechanical systems.

� This optional section may be omitted without loss of continuity. It provides a sample of the more
technical applications of eigenvalues to physics and engineering problems.
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Figure 7.5.1 shows three masses connected to each other and to two walls byk1

x1 x2 x3

k2 k3 k4
m1 m2 m3

FIGURE 7.5.1. Three

spring-coupled masses.

the four indicated springs. We assume that the masses slide without friction and

that each spring obeys Hooke’s law—its extension or compression x and force F

of reaction are related by the formula F D �kx. We further assume that when

the system is at equilibrium (so the masses are stationary) none of the springs is

stretched or compressed. If the rightward displacements x1, x2, and x3 of the three

masses (from their respective equilibrium positions) are all positive, then

� The first spring is stretched the distance x1;

� The second spring is stretched the distance x2 � x1;

� The third spring is stretched the distance x3 � x2;

� The fourth spring is compressed the distance x3.

Therefore, application of Newton’s law F D ma to the three masses (as in Example

1 of Section 7.1) yields their equations of motion:

m1x
00
1
D �k1x1 C k2.x2 � x1/,

m2x
00
2
D �k2.x2 � x1/ C k3.x3 � x2/,

m3x
00
3
D �k3.x3 � x2/ � k4x3.

(1)

Although we assumed in writing these equations that the displacements of the masses

are all positive, they actually follow similarly from Hooke’s and Newton’s laws,

whatever the signs of these displacements.

In terms of the displacement vector x D
�

x1 x2 x3

�

T

, the mass matrix

M D

2

4

m1 0 0

0 m2 0

0 0 m3

3

5 (2)

and the stiffness matrix

K D

2

4

�.k1 C k2/ k2 0

k2 �.k2 C k3/ k3

0 k3 �.k3 C k4/

3

5 ; (3)

the system in (1) takes the matrix form

Mx00
D Kx: (4)

The notation in Eqs. (1) through (4) generalizes in a natural way to the system

of n spring-coupled masses shown in Fig. 7.5.2. We need only write

x1 xn – 1

k2

xn

m1 m2

k1 kn
mnmn –1

kn + 1

x2

…

…

FIGURE 7.5.2. A system of n

spring-coupled masses.

M D

2

6

6

6

4

m1 0 � � � 0

0 m2 � 0
:::

:::
:::

0 0 � � � mn

3

7

7

7

5

(5)
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and

K D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�.k1 C k2/ k2 0 � � � 0

k2 �.k2 C k3/ k3 � � � 0

0 k3 �.k3 C k4/ � � � 0

0 0 k4 � � � 0

:::
:::

:::

0 0 � � � �.kn�1 C kn/ kn

0 0 � � � kn �.kn C knC1/

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(6)

for the mass and stiffness matrices in Eq. (4).

The diagonal matrix M is obviously nonsingular; to get its inverse M�1 we

need only replace each diagonal element with its reciprocal. Hence multiplication

of each side in Eq. (4) by M�1 yields the homogeneous second-order system

x00
D Ax; (7)

where A D M�1K. There is a wide variety of frictionless mechanical systems for

which a displacement or position vector x, a nonsingular mass matrix M, and a

stiffness matrix K satisfying Eq. (4) can be defined.

Solution of Second-Order Systems

To seek a solution of Eq. (7), we substitute (as in Section 7.3 for a first-order system)

a trial solution of the form

x.t/ D ve˛t ; (8)

where v is a constant vector. Then x00 D ˛2ve˛t , so substitution of Eq. (8) in (7)

gives

˛2ve˛t
D Ave˛t ;

which implies that

Av D ˛2v: (9)

Therefore x.t/ D ve˛t is a solution of x00 D Ax if and only if ˛2 D �, an eigenvalue

of the matrix A, and v is an associated eigenvector.

If x00 D Ax models a mechanical system, then it is typical that the eigenvalues

of A are negative real numbers. If

˛2
D � D �!2 < 0;

then ˛ D ˙!i . In this case the solution given by Eq. (8) is

x.t/ D vei!t
D v.cos!t C i sin!t/:

The real and imaginary parts

x1.t/ D v cos!t and x2.t/ D v sin!t (10)

of x.t/ are then linearly independent real-valued solutions of the system. This anal-

ysis leads to the following theorem.
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THEOREM 1 Second-Order Homogeneous Linear Systems

If the n � n matrix A has distinct negative eigenvalues �!2

1
, �!2

2
, : : : ; �!2

n
with

associated [real] eigenvectors v1, v2, : : : ; vn, then a general solution of

x00
D Ax

is given by

x.t/ D

n
X

iD1

.ai cos!i t C bi sin!i t /vi (11)

with ai and bi arbitrary constants. In the special case of a nonrepeated zero

eigenvalue �0 with associated eigenvector v0,

x0.t/ D .a0 C b0t /v0 (12)

is the corresponding part of the general solution.

Remark The nonzero vector v0 is an eigenvector corresponding to �0 D 0 provided that

Av0 D 0. If x.t/ D .a0 C b0t /v0, then

x00
D 0 � v0 D .a0 C b0t / � 0 D .a0 C b0t / � .Av0/ D Ax;

thus verifying the form in Eq. (12).

Example 1 Mass-spring system Consider the mass-and-spring system with nD 2 shown in Fig. 7.5.3.

Because there is no third spring connected to a right-hand wall, we set k3 D 0. If m1 D 2,

m2 D 1, k1 D 100, and k2 D 50, then the equation Mx00 D Kx is

k1 k2

Equilibrium positions

x2(t)x1(t)

m1 m2

FIGURE 7.5.3. The mass-and-
spring system of Example 1.

�

2 0

0 1

�

x00
D

�

�150 50

50 �50

�

x; (13)

which reduces to x00 D Ax with

A D

�

�75 25

50 �50

�

:

The characteristic equation of A is

.�75 � �/.�50 � �/ � 50 � 25 D �2
C 125�C 2500

D .�C 25/.�C 100/ D 0;

so A has the negative eigenvalues �1 D �25 and �2 D �100. By Theorem 1, the system in

(13) therefore has solutions with [circular] frequencies !1 D 5 and !2 D 10.

CASE 1: �1 D �25. The eigenvector equation .A � �I/v D 0 is

�

�50 25

50 �25

� �

a

b

�

D

�

0

0

�

;

so an eigenvector associated with �1 D �25 is v1 D
�

1 2
�

T

.
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CASE 2: �2 D �100. The eigenvector equation .A � �I/v D 0 is

�

25 25

50 50

� �

a

b

�

D

�

0

0

�

;

so an eigenvector associated with �2 D �100 is v2 D
�

1 �1
�

T

.

By Eq. (11) it follows that a general solution of the system in (13) is given by

x.t/ D .a1 cos 5t C b1 sin 5t/v1 C .a2 cos 10t C b2 sin 10t/v2: (14)

The two terms on the right in Eq. (14) represent free oscillations of the mass-and-spring

system. They describe the physical system’s two natural modes of oscillation at its two

[circular] natural frequencies !1 D 5 and !2 D 10. The natural mode

x1.t/ D .a1 cos 5t C b1 sin 5t/v1 D c1 cos.5t � ˛1/

�

1

2

�

(with c1 D
p

a2

1
C b2

1
, cos˛1 D a1=c1, and sin˛1 D b1=c1) has the scalar component equa-

x = x2(t)

x = x1(t)

0 2ππ

t

x

FIGURE 7.5.4. Oscillations in the
same direction with frequency !1 D 5;
the amplitude of motion of mass 2 is
twice that of mass 1.

tions

x1.t/ D c1 cos.5t � ˛1/;

x2.t/ D 2c1 cos.5t � ˛1/;
(15)

and therefore describes a free oscillation in which the two masses move in synchrony in the

same direction and with the same frequency !1 D 5, but with the amplitude of motion of m2

twice that of m1 (see Fig. 7.5.4). The natural mode

x2.t/ D .a2 cos 10t C b2 sin 10t/v2 D c2 cos.10t � ˛2/

�

1

�1

�

has the scalar component equations

x1.t/ D c2 cos.10t � ˛2/;

x2.t/ D �c2 cos.10t � ˛2/;
(16)

and therefore describes a free oscillation in which the two masses move in synchrony in

opposite directions with the same frequency !2 D 10 and with equal amplitudes of oscillation

x = x2(t)

x = x1(t)

π

t

x

0 3π/2π/2

FIGURE 7.5.5. Oscillations in
opposite directions with frequency
!2 D 10; the amplitudes of motion of
the two masses are the same.

(see Fig. 7.5.5).

Example 2 Railway cars Figure 7.5.6 shows three railway cars connected by buffer springs that react

when compressed, but disengage instead of stretching. With n D 3, k2 D k3 D k, and

k1 D k4 D 0 in Eqs. (2) through (4), we get the system

2

4

m1 0 0

0 m2 0

0 0 m3

3

5 x00
D

2

4

�k k 0

k �2k k

0 k �k

3

5 x; (17)

which is equivalent to

m1 m2 m3

k2 k3

FIGURE 7.5.6. The three railway
cars of Example 2.

x00
D

2

4

�c1 c1 0

c2 �2c2 c2

0 c3 �c3

3

5 x (18)

with

ci D
k

mi

.i D 1; 2; 3/: (19)

If we assume further that m1 D m3, so that c1 D c3, then a brief computation gives

��.�C c1/.�C c1 C 2c2/ D 0 (20)
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for the characteristic equation of the coefficient matrix A in Eq. (18). Hence the matrix A has

eigenvalues

�1 D 0; �2 D �c1; �3 D �c1 � 2c2 (21a)

corresponding to the natural frequencies

!1 D 0; !2 D
p
c1; !3 D

p

c1 C 2c2 (21b)

of the physical system.

For a numerical example, suppose that the first and third railway cars weigh 12 tons

each, that the middle car weighs 8 tons, and that the spring constant is k D 1:5 tons=ft; i.e.,

k D 3000 lb=ft. Then, using fps units with mass measured in slugs (a weight of 32 pounds

has a mass of 1 slug), we have

m1 D m3 D 750; m2 D 500;

and

c1 D
3000

750
D 4; c2 D

3000

500
D 6:

Hence the coefficient matrix A is

A D

2

4

�4 4 0

6 �12 6

0 4 �4

3

5 ; (22)

and the eigenvalue-frequency pairs given by (21a) and (21b) are �1 D 0, !1 D 0; �2 D �4,

!2 D 2; and �3 D �16, !3 D 4.

CASE 1: �1 D 0, !1 D 0. The eigenvector equation .A � �I/v D 0 is

Av D

2

4

�4 4 0

6 �12 6

0 4 �4

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 ;

so it is clear that v1 D
�

1 1 1
�

T

is an eigenvector associated with �1 D 0. According to

Theorem 1, the corresponding part of a general solution of x00 D Ax is

x1.t/ D .a1 C b1t /v1:

CASE 2: �2 D �4, !2 D 2. The eigenvector equation .A � �I/v D 0 is

.AC 4I/v D

2

4

0 4 0

6 �8 6

0 4 0

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 ;

so it is clear that v2D
�

1 0 �1
�

T

is an eigenvector associated with �2D�4. According

to Theorem 1, the corresponding part of a general solution of x00 D Ax is

x2.t/ D .a2 cos 2t C b2 sin 2t/v2:

CASE 3: �3 D �16, !3 D 4. The eigenvector equation .A � �I/v D 0 is

.AC 16I/v D

2

4

12 4 0

6 4 6

0 4 12

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 ;

so it is clear that v3 D
�

1 �3 1
�

T

is an eigenvector associated with �3 D�16. Accord-

ing to Theorem 1, the corresponding part of a general solution of x00 D Ax is

x3.t/ D .a3 cos 4t C b3 sin 4t/v3:
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The general solution x D x1 C x2 C x3 of x00 D Ax is therefore given by

x.t/ D a1

2

4

1

1

1

3

5C b1t

2

4

1

1

1

3

5C a2

2

4

1

0

�1

3

5 cos 2t

C b2

2

4

1

0

�1

3

5 sin 2t C a3

2

4

1

�3

1

3

5 cos 4t C b3

2

4

1

�3

1

3

5 sin 4t: (23)

To determine a particular solution, let us suppose that the leftmost car is moving to the right

with velocity v0 and at time t D 0 strikes the other two cars, which are together but at rest.

The corresponding initial conditions are

x1.0/ D x2.0/ D x3.0/ D 0; (24a)

x0
1
.0/ D v0; x0

2
.0/ D x0

3
.0/ D 0: (24b)

Then substitution of (24a) in (23) gives the scalar equations

a1 C a2 C a3 D 0,

a1 � 3a3 D 0,

a1 � a2 C a3 D 0,

which readily yield a1 D a2 D a3 D 0. Hence the position functions of the three cars are

x1.t/ D b1t C b2 sin 2t C b3 sin 4t ,

x2.t/ D b1t � 3b3 sin 4t ,

x3.t/ D b1t � b2 sin 2t C b3 sin 4t ,

(25)

and their velocity functions are

x0
1
.t/ D b1 C 2b2 cos 2t C 4b3 cos 4t;

x0
2
.t/ D b1 � 12b3 cos 4t ,

x0
3
.t/ D b1 � 2b2 cos 2t C 4b3 cos 4t .

(26)

Substitution of (24b) in (26) gives the equations

b1 C 2b2 C 4b3 D v0,

b1 � 12b3 D 0,

b1 � 2b2 C 4b3 D 0

that readily yield b1 D
3

8
v0, b2 D

1

4
v0, and b3 D

1

32
v0. Finally, the position functions in (25)

are

x1.t/ D
1

32
v0.12t C 8 sin 2t C sin 4t/,

x2.t/ D
1

32
v0.12t � 3 sin 4t/,

x3.t/ D
1

32
v0.12t � 8 sin 2t C sin 4t/.

(27)

But these equations hold only so long as the two buffer springs remain compressed;

that is, while both

x2 � x1 < 0 and x3 � x2 < 0:

To discover what this implies about t , we compute

x2.t/ � x1.t/ D
1

32
v0.�8 sin 2t � 4 sin 4t/

D �
1

32
v0.8 sin 2t C 8 sin 2t cos 2t/

D �
1

4
v0.sin 2t/.1C cos 2t/
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and, similarly,

x3.t/ � x2.t/ D �
1

4
v0.sin 2t/.1 � cos 2t/:

It follows that x2 � x1 < 0 and x3 � x2 < 0 until t D �=2 � 1:57 (seconds), at which time

the equations in (26) and (27) give the values

x1

��

2

�

D x2

��

2

�

D x3

��

2

�

D
3�v0

16
;

x0
1

��

2

�

D x0
2

��

2

�

D 0; x0
3

��

2

�

D v0:

We conclude that the three railway cars remain engaged and moving to the right until dis-

engagement occurs at time t D �=2. Thereafter, cars 1 and 2 remain at rest (!), while car 3

continues to the right with speed v0. If, for instance, v0 D 48 feet per second (about 33 miles

per hour), then the three cars travel a distance of 9� � 28:27 (ft) during their 1:57 seconds of

engagement, and

x1.t/ D x2.t/ D 9�; x3.t/ D 48t � 15� (270)

for t > �=2. Figure 7.5.7 illustrates the “before”and “after”situations, and Fig. 7.5.8 shows

the graphs of the functions x1.t/, x2.t/, and x3.t/ in Eqs. (27) and (270).

(b)

At rest

(a)

At rest

FIGURE 7.5.7. (a) Before; (b) after.

2.52.01.51.00.50
t

x

0

25

75

50

Cars 1 and 2
stop here

Car 3
continues

x = x1(t ) = x2(t )

x 
=
 x

3
(t

)

x 1
(t

)

x 2
(t

)

x 3
(t

)

FIGURE 7.5.8. Position functions
of the three railway cars of Example 2.

Forced Oscillations and Resonance

Suppose now that the i th mass of the mass-and-spring system in Fig. 7.5.2 is subject

to an external force Fi (i D 1; 2; : : : ; n) in addition to the forces exerted by the

springs attached to it. Then the homogeneous equation Mx00 D Kx is replaced with

the nonhomogeneous equation

Mx00
D KxC F; (28)

where FD
�

F1 F2 : : : Fn

�

T

is the external force vector for the system. Mul-

tiplication by M�1 yields

x00
D AxC f; (29)

where f is the external force vector per unit mass. We are especially interested in

the case of a periodic external force

f.t/ D F0 cos!t (30)
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(where F0 is a constant vector). We then anticipate a periodic particular solution

xp.t/ D c cos!t (31)

with the known external frequency ! and with a coefficient vector c yet to be deter-

mined. Because x00
p
D �!2c cos!t , substitution of (30) and (31) in (29), followed

by cancellation of the common factor cos!t , gives the linear system

.AC !2I/c D �F0 (32)

to be solved for c.

Observe that the matrix AC !2I is nonsingular—in which case Eq. (32) can

be solved for c—unless �!2 D �, an eigenvalue of A. Thus a periodic particular

solution of the form in Eq. (31) exists provided that the external forcing frequency

does not equal one of the natural frequencies !1; !2; : : : ; !n of the system. The case

in which ! is a natural frequency corresponds to the phenomenon of resonance

discussed in Section 5.6.

Example 3 Mass-spring resonance Suppose that the second mass in Example 1 is subjected to the

external periodic force 50 cos!t . Then with m1 D 2, m2 D 1, k1 D 100, k2 D 50, and

F0 D 50 in Fig. 7.5.9, Eq. (29) takes the form

x00
D

�

�75 25

50 �50

�

xC

�

0

50

�

cos!t; (33)

and the substitution x D c cos!t leads to the equationk1 k2

x2x1

m1 m2

F (t)

FIGURE 7.5.9. The forced

mass-and-spring system of Example 3.

�

!2 � 75 25

50 !2 � 50

�

c D

�

0

�50

�

(34)

for the coefficient vector c D
�

c1 c2

�

T

. This system is readily solved for

c1 D
1250

.!2 � 25/.!2 � 100/
; c2 D �

50.!2 � 75/

.!2 � 25/.!2 � 100/
: (35)

For instance, if the external squared frequency is !2 D 50, then (35) yields c1 D �1,

c2 D �1. The resulting forced periodic oscillation is described by

x1.t/ D � cos!t; x2.t/ D � cos!t:

Thus the two masses oscillate in synchrony with equal amplitudes and in the same direction.

If the external squared frequency is !2 D 125, then (35) yields c1 D
1

2
, c2 D �1. The

resulting forced periodic oscillation is described by

x1.t/ D
1

2
cos!t; x2.t/ D � cos!t;

and now the two masses oscillate in synchrony in opposite directions, but with the amplitude

of motion of m2 twice that of m1.

It is evident from the denominators in (35) that c1 and c2 approach C1 as ! ap-

proaches either of the two natural frequencies !1 D 5 and !2 D 10 (found in Example

1). Figure 7.5.10 shows a plot of the amplitude
p

c2

1
C c2

2
of the forced periodic solution

x.t/ D c cos!t as a function of the forced frequency !. The peaks at !2 D 5 and !2 D 10

exhibit visually the phenomenon of resonance.

151050
Forced frequency

A
m

p
li

tu
d
e

0

5

15

10

FIGURE 7.5.10. Frequency–
amplitude plot for Example 3.
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Periodic and Transient Solutions

It follows from Theorem 4 of Section 7.2 that a particular solution of the forced

system

x00
D AxC F0 cos!t (36)

will be of the form

x.t/ D xc.t/C xp.t/; (37)

where xp.t/ is a particular solution of the nonhomogeneous system and xc.t/ is a

solution of the corresponding homogeneous system. It is typical for the effects of

frictional resistance in mechanical systems to damp out the complementary function

solution xc.t/, so that

xc.t/! 0 as t !C1: (38)

Hence xc.t/ is a transient solution that depends only on the initial conditions; it

dies out with time, leaving the steady periodic solution xp.t/ resulting from the

external driving force:

x.t/! xp.t/ as t !C1: (39)

As a practical matter, every physical system includes frictional resistance (however

small) that damps out transient solutions in this manner.

7.5 Problems
Problems 1 through 7 deal with the mass-and-spring system

shown in Fig. 7.5.11 with stiffness matrix

K D

�

�.k1 C k2/ k2

k2 �.k2 C k3/

�

and with the given mks values for the masses and spring con-

stants. Find the two natural frequencies of the system and de-

scribe its two natural modes of oscillation.

x1 x2

k1 k2 k3
m2m1

FIGURE 7.5.11. The

mass-and-spring system for Problems 1
through 6.

1. m1 D m2 D 1; k1 D 0, k2 D 2, k3 D 0 (no walls)

2. m1 D m2 D 1; k1 D 1, k2 D 4, k3 D 1

3. m1 D 1, m2 D 2; k1 D 1, k2 D k3 D 2

4. m1 D m2 D 1; k1 D 1, k2 D 2, k3 D 1

5. m1 D m2 D 1; k1 D 2, k2 D 1, k3 D 2

6. m1 D 1, m2 D 2; k1 D 2, k2 D k3 D 4

7. m1 D m2 D 1; k1 D 4, k2 D 6, k3 D 4

In Problems 8 through 10 the indicated mass-and-spring sys-

tem is set in motion from rest .x0
1
.0/ D x0

2
.0/ D 0) in its equi-

librium position (x1.0/ D x2.0/ D 0) with the given external

forces F1.t/ and F2.t/ acting on the masses m1 and m2, re-

spectively. Find the resulting motion of the system and de-

scribe it as a superposition of oscillations at three different

frequencies.

8. The mass-and-spring system of Problem 2, with F1.t/ D

96 cos 5t , F2.t/ � 0

9. The mass-and-spring system of Problem 3, with F1.t/� 0,

F2.t/ D 120 cos 3t

10. The mass-and-spring system of Problem 7, with F1.t/ D

30 cos t , F2.t/ D 60 cos t

11. Consider a mass-and-spring system containing two

massesm1 D 1 andm2 D 1 whose displacement functions

x.t/ and y.t/ satisfy the differential equations

x00 D �40x C 8y,

y00 D 12x � 60y.

(a) Describe the two fundamental modes of free oscilla-

tion of the system. (b) Assume that the two masses start

in motion with the initial conditions

x.0/ D 19; x0.0/ D 12

and

y.0/ D 3; y0.0/ D 6



434 Chapter 7 Linear Systems of Differential Equations

and are acted on by the same force, F1.t/ D F2.t/ D

�195 cos 7t . Describe the resulting motion as a superpo-

sition of oscillations at three different frequencies.

In Problems 12 and 13, find the natural frequencies of the

three-mass system of Fig. 7.5.1, using the given masses and

spring constants. For each natural frequency !, give the ra-

tio a1:a2:a3 of amplitudes for a corresponding natural mode

x1 D a1 cos!t , x2 D a2 cos!t , x3 D a3 cos!t .

12. m1 D m2 D m3 D 1; k1 D k2 D k3 D k4 D 1

13. m1 D m2 D m3 D 1; k1 D k2 D k3 D k4 D 2

(Hint: One eigenvalue is � D �4.)

14. In the system of Fig. 7.5.12, assume thatm1 D 1, k1 D 50,

k2 D 10, and F0 D 5 in mks units, and that ! D 10. Then

findm2 so that in the resulting steady periodic oscillations,

the mass m1 will remain at rest(!). Thus the effect of the

second mass-and-spring pair will be to neutralize the ef-

fect of the force on the first mass. This is an example of

a dynamic damper. It has an electrical analogy that some

cable companies use to prevent your reception of certain

cable channels.

x1 x2

k1 k2

F (t ) = F0 cos ω t

m1 m2

FIGURE 7.5.12. The mechanical system
of Problem 14.

15. Suppose thatm1D 2,m2D
1

2
, k1D 75, k2D 25, F0D 100,

and ! D 10 (all in mks units) in the forced mass-and-

spring system of Fig. 7.5.9. Find the solution of the sys-

tem Mx00 D Kx C F that satisfies the initial conditions

x.0/ D x0.0/ D 0.

In Problems 16 through 19 we apply the analysis of Example

2 to a system of two railway cars.

16. Figure 7.5.13 shows two railway cars with a buffer spring.

We want to investigate the transfer of momentum that oc-

curs after car 1 with initial velocity v0 impacts car 2 at

rest. The analog of Eq. (18) in the text is

x00
D

�

�c1 c1

c2 �c2

�

x

with ci D k=mi for i D 1, 2. Show that the eigenvalues

of the coefficient matrix A are �1 D 0 and �2 D �c1 � c2,

with associated eigenvectors v1 D
�

1 1
�

T

and v2 D
�

c1 �c2

�

T

.

k

m1 m2

x1' (0) = 0 x2' (0) = 0

x1(t ) x2(t )

FIGURE 7.5.13. The two railway cars of

Problems 16 through 19.

17. If the two cars of Problem 16 both weigh 16 tons (so that

m1 D m2 D 1000 (slugs)) and k D 1 ton=ft (that is, 2000

lb=ft), show that the cars separate after �=2 seconds, and

that x0
1
.t/D 0 and x0

2
.t/D v0 thereafter. Thus the original

momentum of car 1 is completely transferred to car 2.

18. If cars 1 and 2 weigh 8 and 16 tons, respectively, and

k D 3000 lb=ft, show that the two cars separate after �=3

seconds, and that

x0
1
.t/ D �1

3
v0 and x0

2
.t/ D C2

3
v0

thereafter. Thus the two cars rebound in opposite direc-

tions.

19. If cars 1 and 2 weigh 24 and 8 tons, respectively, and

k D 1500 lb=ft, show that the cars separate after �=2 sec-

onds, and that

x0
1
.t/ D C1

2
v0 and x0

2
.t/ D C3

2
v0

thereafter. Thus both cars continue in the original direc-

tion of motion, but with different velocities.

Problems 20 through 23 deal with the same system of three

railway cars (same masses) and two buffer springs (same

spring constants) as shown in Fig. 7.5.6 and discussed in

Example 2. The cars engage at time t D 0 with x1.0/ D

x2.0/ D x3.0/ D 0 and with the given initial velocities (where

v0 D 48 ft=s). Show that the railway cars remain engaged

until t D �=2 (s), after which time they proceed in their re-

spective ways with constant velocities. Determine the values

of these constant final velocities x0
1
.t/, x0

2
.t/, and x0

3
.t/ of the

three cars for t > �=2. In each problem you should find (as

in Example 2) that the first and third railway cars exchange

behaviors in some appropriate sense.

20. x0
1
.0/ D v0, x0

2
.0/ D 0, x0

3
.0/ D �v0

21. x0
1
.0/ D 2v0, x0

2
.0/ D 0, x0

3
.0/ D �v0

22. x0
1
.0/ D v0, x0

2
.0/ D v0, x0

3
.0/ D �2v0

23. x0
1
.0/ D 3v0, x0

2
.0/ D 2v0, x0

3
.0/ D 2v0

24. In the three-railway-car system of Fig. 7.5.6, suppose that

cars 1 and 3 each weigh 32 tons, that car 2 weighs 8 tons,

and that each spring constant is 4 tons=ft. If x0
1
.0/ D v0

and x0
2
.0/D x0

3
.0/D 0, show that the two springs are com-

pressed until t D �=2 and that

x0
1
.t/ D �1

9
v0 and x0

2
.t/ D x0

3
.t/ D C8

9
v0

thereafter. Thus car 1 rebounds, but cars 2 and 3 continue

with the same velocity.

The Two-Axle Automobile

In Example 4 of Section 5.6 we investigated the vertical oscil-

lations of a one-axle car—actually a unicycle. Now we can

analyze a more realistic model: a car with two axles and with

separate front and rear suspension systems. Figure 7.5.14 rep-

resents the suspension system of such a car. We assume that

the car body acts as would a solid bar of mass m and length

L D L1 C L2. It has moment of inertia I about its center of

mass C , which is at distance L1 from the front of the car. The

car has front and back suspension springs with Hooke’s con-

stants k1 and k2, respectively. When the car is in motion, let
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x.t/ denote the vertical displacement of the center of mass of

the car from equilibrium; let �.t/ denote its angular displace-

ment (in radians) from the horizontal. Then Newton’s laws of

motion for linear and angular acceleration can be used to de-

rive the equations

mx00
D �.k1 C k2/x C .k1L1 � k2L2/�;

I� 00
D .k1L1 � k2L2/x � .k1L

2

1
C k2L

2

2
/�:

(40)

Equilibrium
positionk1 k2

x1

x2

L1

L2

C
q

x

FIGURE 7.5.14. Model of the
two-axle automobile.

25. Suppose that m D 75 slugs (the car weighs 2400 lb),

L1D 7 ft,L2D 3 ft (it’s a rear-engine car), k1D k2D 2000

lb=ft, and I D 1000 ft�lb�s2. Then the equations in (40)

take the form

75x00 C 4000x � 8000� D 0,

1000� 00 � 8000x C 116;000� D 0.

(a) Find the two natural frequencies !1 and !2 of the car.

(b) Now suppose that the car is driven at a speed of v feet

per second along a washboard surface shaped like a sine

curve with a wavelength of 40 ft. The result is a periodic

force on the car with frequency ! D 2�v=40 D �v=20.

Resonance occurs when ! D !1 or ! D !2. Find the

corresponding two critical speeds of the car (in feet per

second and in miles per hour).

26. Suppose that k1 D k2 D k and L1 D L2 D
1

2
L in

Fig. 7.5.14 (the symmetric situation). Then show that ev-

ery free oscillation is a combination of a vertical oscilla-

tion with frequency

!1 D
p

2k=m

and an angular oscillation with frequency

!2 D

q

kL2=.2I /:

In Problems 27 through 29, the system of Fig. 7.5.14 is taken

as a model for an undamped car with the given parameters in

fps units. (a) Find the two natural frequencies of oscillation

(in hertz). (b) Assume that this car is driven along a sinu-

soidal washboard surface with a wavelength of 40 ft. Find the

two critical speeds.

27. m D 100, I D 800, L1 D L2 D 5, k1 D k2 D 2000

28. m D 100, I D 1000, L1 D 6, L2 D 4, k1 D k2 D 2000

29. m D 100, I D 800, L1 D L2 D 5, k1 D 1000, k2 D 2000

Go to goo.gl/kUp8UN to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

7.5 Application Earthquake-Induced Vibrations of Multistory Buildings

In this application you are to investigate the response to transverse earthquake

ground oscillations of the seven-story building illustrated in Fig. 7.5.15. Suppose

that each of the seven (above-ground) floors weighs 16 tons, so the mass of each is

m D 1000 (slugs). Also assume a horizontal restoring force of k D 5 (tons per foot)

between adjacent floors. That is, the internal forces in response to horizontal dis-

placements of the individual floors are those shown in Fig. 7.5.16. It follows that the

free transverse oscillations indicated in Fig. 7.5.15 satisfy the equation Mx00 D Kx

with n D 7, mi D 1000 (for each i), and ki D 10; 000 (lb=ft) for 1 5 i 5 7. The

system then reduces to the form x00 D Ax with

A D

2

6

6

6

6

6

6

6

6

4

�20 10 0 0 0 0 0

10 �20 10 0 0 0 0

0 10 �20 10 0 0 0

0 0 10 �20 10 0 0

0 0 0 10 �20 10 0

0 0 0 0 10 �20 10

0 0 0 0 0 10 �10

3

7

7

7

7

7

7

7

7

5

: (1)

Once the matrix A has been entered, the TI-Nspire command eigVl(A)

instantly computes the seven eigenvalues shown in the �-column of the table in

Fig. 7.5.17. Alternatively, you can use the Maple command eigenvals(A), the

MATLAB command eig(A), or the Mathematica command Eigenvalues[A].

x7(t )

x6(t )

x5(t )

x4(t )

x3(t )

x2(t )

x1(t )m

Earthquake
oscillation

Ground

m

m

m

m

m

m

FIGURE 7.5.15. The seven-story
building.
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k (x i + 1 – x i)k (x i – x i –1)
m

FIGURE 7.5.16. Forces on the
i th floor.

Eigenvalue Frequency Period

i � ! D

p

�� P D

2�

!
(sec)

1

2

3

4

5

6

7

�38:2709

�33:3826

�26:1803

�17:9094

�10:0000

�3:8197

�0:4370

6.1863

5.7778

5.1167

4.2320

3.1623

1.9544

0.6611

1.0157

1.0875

1.2280

1.4847

1.9869

3.2149

9.5042

FIGURE 7.5.17. Frequencies and periods of natural oscillations of the
seven-story building.

Then calculate the entries in the remaining columns of the table showing the nat-

ural frequencies and periods of oscillation of the seven-story building. Note that a

typical earthquake producing ground oscillations with a period of 2 seconds is un-

comfortably close to the fifth natural frequency (with period 1:9869 seconds) of the

building.

A horizontal earthquake oscillation E cos!t of the ground, with amplitude E

and acceleration a D �E!2 cos!t , produces an opposite inertial force F D ma D

mE!2 cos!t on each floor of the building. The resulting nonhomogeneous system

is

x00
D AxC .E!2 cos!t/b; (2)

where b D
�

1 1 1 1 1 1 1
�

T

and A is the matrix of Eq. (1). Figure 7.5.18

shows a plot of maximal amplitude (for the forced oscillations of any single floor)

543210
Period (s)

M
ax

im
al

 a
m

p
li

tu
d
e

0

10

8

6

4

2

FIGURE 7.5.18. Resonance
vibrations of a seven-story

building—maximal amplitude as a
function of period.

versus the period of the earthquake vibrations. The spikes correspond to the first

six of the seven resonant frequencies. We see, for instance, that whereas an earth-

quake with period 2 (s) likely would produce destructive resonance vibrations in

the building, it probably would be unharmed by an earthquake with period 2:5 (s).

Different buildings have different natural frequencies of vibration, and so a given

earthquake may demolish one building but leave untouched the one next door. This

seeming anomaly was observed in Mexico City after the devastating earthquake of

September 19, 1985.

For your personal seven-story building to investigate, let the weight (in tons)

of each story equal the largest digit of your student ID number and let k (in tons=ft)

equal the smallest nonzero digit. Produce numerical and graphical results like those

illustrated in Figs. 7.5.17 and 7.5.18. Is your building susceptible to likely damage

from an earthquake with period in the 2- to 3-second range?

You might like to begin by working manually the following warm-up prob-

lems.

1. Find the periods of the natural vibrations of a building with two above-ground

floors, each weighing 16 tons and with each restoring force being k D 5

tons=ft.

2. Find the periods of the natural vibrations of a building with three above-

ground floors, with each weighing 16 tons and with each restoring force being

k D 5 tons=ft.
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3. Find the natural frequencies and natural modes of vibration of a building with

three above-ground floors as in Problem 2, except that the upper two floors

weigh 8 tons each instead of 16. Give the ratios of the amplitudes A, B , and

C of oscillations of the three floors in the form A :B :C with A D 1.

4. Suppose that the building of Problem 3 is subject to an earthquake in which

the ground undergoes horizontal sinusoidal oscillations with a period of 3 s

and an amplitude of 3 in. Find the amplitudes of the resulting steady periodic

oscillations of the three above-ground floors. Assume the fact that a motion

E sin!t of the ground, with acceleration a D �E!2 sin!t , produces an op-

posite inertial force F D �ma D mE!2 sin!t on a floor of mass m.

7.6 Multiple Eigenvalue Solutions

In Section 7.3 we saw that if the n � n matrix A has n distinct (real or complex)

eigenvalues �1, �2, : : : , �n with respective associated eigenvectors v1, v2, : : : , vn,

then a general solution of the system

dx

dt
D Ax (1)

is given by

x.t/ D c1v1e
�1t
C c2v2e

�2t
C � � � C cnvne

�nt (2)

with arbitrary constants c1, c2, : : : , cn. In this section we discuss the situation when

the characteristic equation

jA � �Ij D 0 (3)

does not have n distinct roots, and thus has at least one repeated root.

An eigenvalue is of multiplicity k if it is a k-fold root of Eq. (3). For each

eigenvalue �, the eigenvector equation

.A � �I/v D 0 (4)

has at least one nonzero solution v, so there is at least one eigenvector associated

with �. But an eigenvalue of multiplicity k > 1 may have fewer than k linearly

independent associated eigenvectors. In this case we are unable to find a “complete

set” of n linearly independent eigenvectors of A, as needed to form the general

solution in (2).

Let us call an eigenvalue of multiplicity k complete if it has k linearly in-

dependent associated eigenvectors. If every eigenvalue of the matrix A is com-

plete, then—because eigenvectors associated with different eigenvalues are linearly

independent—it follows that A does have a complete set of n linearly independent

eigenvectors v1, v2, : : : , vn associated with the eigenvalues �1, �2, : : : , �n (each

repeated with its multiplicity). In this case a general solution of x0 D Ax is still

given by the usual combination in (2).

Example 1 Find a general solution of the system

x0
D

2

4

9 4 0

�6 �1 0

6 4 3

3

5 x: (5)
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Solution The characteristic equation of the coefficient matrix A in Eq. (5) is

jA � �Ij D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

9 � � 4 0

�6 �1 � � 0

6 4 3 � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .3 � �/Œ.9 � �/.�1 � �/C 24�

D .3 � �/.15 � 8�C �2/

D .5 � �/.3 � �/2 D 0:

Thus A has the distinct eigenvalue �1 D 5 and the repeated eigenvalue �2 D 3 of multiplicity

k D 2.

CASE 1: �1 D 5. The eigenvector equation .A � �I/v D 0, where v D Œa b c�T , is

.A � 5I/v D

2

4

4 4 0

�6 �6 0

6 4 �2

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

Each of the first two equations, 4aC 4b D 0 and �6a� 6b D 0, yields b D�a. Then the third

equation reduces to 2a � 2c D 0, so that c D a. The choice a D 1 then yields the eigenvector

v1 D
�

1 �1 1
�

T

associated with the eigenvalue �1 D 5.

CASE 2: �2 D 3. Now the eigenvector equation is

.A � 3I/v D

2

4

6 4 0

�6 �4 0

6 4 0

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 ;

so the nonzero vector v D
�

a b c
�

T

is an eigenvector if and only if

6aC 4b D 0I (6)

that is, b D �3

2
a. The fact that Eq. (6) does not involve c means that c is arbitrary, subject to

the condition v 6D 0. If c D 1, then we may choose a D b D 0; this gives the eigenvector

v2 D
�

0 0 1
�

T

associated with �2 D 3. If c D 0, then we must choose a to be nonzero. For instance, if a D 2

(to avoid fractions), then b D �3, so

v3 D
�

2 �3 0
�

T

is a second linearly independent eigenvector associated with the multiplicity 2 eigenvalue

�2 D 3.

Thus we have found a complete set v1, v2, v3 of three eigenvectors associated with the

eigenvalues 5, 3, 3. The corresponding general solution of Eq. (5) is

x.t/ D c1v1e
5t
C c2v2e

3t
C c3v3e

3t (7)

D c1

2

4

1

�1

1

3

5 e5t
C c2

2

4

0

0

1

3

5 e3t
C c3

2

4

2

�3

0

3

5 e3t ;

with scalar component functions given by

x1.t/ D c1e
5t
C 2c3e

3t ;

x2.t/ D �c1e
5t

� 3c3e
3t ;

x3.t/ D c1e
5t
C c2e

3t :
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Remark Our choice in Example 1 of the two eigenvectors

v2 D
�

0 0 1
�

T

and v3 D
�

2 �3 0
�

T

associated with the repeated eigenvalue �2 D 3 bears comment. The fact that b D �3

2
a for

any eigenvector associated with �2 D 3 means that any such eigenvector can be written as

v D

2

6

6

6

4

a

�
3

2
a

c

3

7

7

7

5

D c

2

6

6

6

4

0

0

1

3

7

7

7

5

C
1

2
a

2

6

6

6

4

2

�3

0

3

7

7

7

5

D cv2 C
1

2
av3;

and thus is a linear combination of v2 and v3. Therefore, given a and c not both zero, we

could choose v rather than v3 as our third eigenvector, and the new general solution

x.t/ D c1v1e
5t
C c2v2e

3t
C c3ve3t

would be equivalent to the one in Eq. (7). Thus we need not worry about making the “right”

choice of independent eigenvectors associated with a multiple eigenvalue. Any choice will

do; we generally make the simplest one we can.

Defective Eigenvalues

The following example shows that—unfortunately—not all multiple eigenvalues are

complete.

Example 2 The matrix

A D

�

1 �3

3 7

�

(8)

has characteristic equation

jA � �Ij D

ˇ

ˇ

ˇ

ˇ

1 � � �3

3 7 � �

ˇ

ˇ

ˇ

ˇ

D .1 � �/.7 � �/C 9

D �2
� 8�C 16 D .� � 4/2 D 0:

Thus A has the single eigenvalue �1 D 4 of multiplicity 2. The eigenvector equation

.A � 4I/v D

�

�3 �3

3 3

� �

a

b

�

D

�

0

0

�

then amounts to the equivalent scalar equations

�3a � 3b D 0; 3aC 3b D 0:

Hence b D �a if v D
�

a b
�

T

is to be an eigenvector of A. Therefore, any eigenvector

associated with �1 D 4 is a nonzero multiple of v D
�

1 �1
�

T

. Thus the multiplicity 2

eigenvalue �1 D 4 has only one independent eigenvector, and hence is incomplete.

An eigenvalue � of multiplicity k > 1 is called defective if it is not complete.

If � has only p < k linearly independent eigenvectors, then the number

d D k � p (9)

of “missing” eigenvectors is called the defect of the defective eigenvalue �. Thus

the defective eigenvalue �1 D 4 in Example 2 has multiplicity k D 2 and defect

d D 1, because we saw that it has only p D 1 associated eigenvector.

If the eigenvalues of the n � n matrix A are not all complete, then the eigen-

value method as yet described will produce fewer than the needed n linearly inde-

pendent solutions of the system x0 D Ax. We therefore need to discover how to find

the “missing solutions” corresponding to a defective eigenvalue � of multiplicity

k > 1.
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The Case of Multiplicity k D 2

Let us begin with the case k D 2, and suppose that we have found (as in Example 2)

that there is only a single eigenvector v1 associated with the defective eigenvalue �.

Then at this point we have found only the single solution

x1.t/ D v1e
�t (10)

of x0 D Ax. By analogy with the case of a repeated characteristic root for a single

linear differential equation (Section 5.3), we might hope to find a second solution

of the form

x2.t/ D .v2t /e
�t
D v2te

�t : (11)

When we substitute x D v2te
�t in x0 D Ax, we get the equation

v2e
�t
C �v2te

�t
D Av2te

�t :

But because the coefficients of both e�t and te�t must balance, it follows that v2D 0,

and hence that x2.t/ � 0. This means that—contrary to our hope—the system

x0 D Ax does not have a nontrivial solution of the form assumed in (11).

Instead of simply giving up on the idea behind Eq. (11), let us extend it slightly

and replace v2t with v1t C v2. Thus we explore the possibility of a second solution

of the form

x2.t/ D .v1t C v2/e
�t
D v1te

�t
C v2e

�t ; (12)

where v1 and v2 are nonzero constant vectors. When we substitute x D v1te
�t C

v2e
�t in x0 D Ax, we get the equation

v1e
�t
C �v1te

�t
C �v2e

�t
D Av1te

�t
CAv2e

�t : (13)

We equate coefficients of e�t and te�t here, and thereby obtain the two equations

.A � �I/v1 D 0 (14)

and

.A � �I/v2 D v1 (15)

that the vectors v1 and v2 must satisfy in order for (12) to give a solution of x0 DAx.

Note that Eq. (14) merely confirms that v1 is an eigenvector of A associated

with the eigenvalue �. Then Eq. (15) says that the vector v2 satisfies the equation

.A � �I/2v2 D .A � �I/Œ.A � �I/v2� D .A � �I/v1 D 0:

It follows that, in order to solve simultaneously the two equations in (14) and (15),

it suffices to find a solution v2 of the single equation .A � �I/2v2 D 0 such that the

resulting vector v1 D .A� �I/v2 is nonzero. It turns out that this is always possible

if the defective eigenvalue � of A is of multiplicity 2. Consequently, the procedure

described in the following algorithm always succeeds in finding two independent

solutions associated with such an eigenvalue.
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ALGORITHM Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution v2 of the equation

.A � �I/2v2 D 0 (16)

such that

.A � �I/v2 D v1 (17)

is nonzero, and therefore is an eigenvector v1 associated with �.

2. Then form the two independent solutions

x1.t/ D v1e
�t (18)

and

x2.t/ D .v1t C v2/e
�t (19)

of x0 D Ax corresponding to �.

Example 3 Find a general solution of the system

x0
D

�

1 �3

3 7

�

x: (20)

Solution In Example 2 we found that the coefficient matrix A in Eq. (20) has the defective eigenvalue

� D 4 of multiplicity 2. We therefore begin by calculating

.A � 4I/2 D

�

�3 �3

3 3

� �

�3 �3

3 3

�

D

�

0 0

0 0

�

:

Hence Eq. (16) is
�

0 0

0 0

�

v2 D 0;

and therefore is satisfied by any choice of v2. In principle, it could happen that .A� 4I/v2 is

nonzero (as desired) for some choices of v2 though not for others. If we try v2 D
�

1 0
�

T

we find that

.A � 4I/v2 D

�

�3 �3

3 3

� �

1

0

�

D

�

�3

3

�

D v1

is nonzero, and therefore is an eigenvector associated with � D 4. (It is �3 times the eigen-

vector found in Example 2.) Therefore, the two solutions of Eq. (20) given by Eqs. (18) and

(19) are

x1.t/ D v1e
4t
D

�

�3

3

�

e4t ;

x2.t/ D .v1t C v2/e
4t
D

�

�3t C 1

3t

�

e4t :

The resulting general solution

x.t/ D c1x1.t/C c2x2.t/

has scalar component functions

x1.t/ D .�3c2t C c2 � 3c1/e
4t ;

x2.t/ D .3c2t C 3c1/e
4t :
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With c2 D 0 these solution equations reduce to the equations x1.t/ D �3c1e
4t , x2.t/ D

3c1e
4t , which parametrize the line x1 D�x2 in the x1x2-plane. The point .x1.t/; x2.t// then

recedes along this line away from the origin as t ! C1, to the northwest if c1 > 0 and to

x
2

x1

0−4 2 4−2 1−3 3−1

0

−4

1

−3

2

−2

3

4

−1

FIGURE 7.6.1. Direction field and
solution curves for the linear system

x
0

1 D x1 � 3x2, x
0

2 D 3x1 C 7x2 of
Example 3.

the southeast if c1 < 0. As indicated in Fig. 7.6.1, each solution curve with c2 ¤ 0 is tangent

to the line x1 D �x2 at the origin; the point .x1.t/; x2.t// approaches the origin as t ! �1

and approaches C1 along the solution curve as t !C1.

Generalized Eigenvectors

The vector v2 in Eq. (16) is an example of a generalized eigenvector. If � is an

eigenvalue of the matrix A, then a rank r generalized eigenvector associated with

� is a vector v such that

.A � �I/rv D 0 but .A � �I/r�1v ¤ 0: (21)

If r D 1, then (21) simply means that v is an eigenvector associated with � (recalling

the convention that the 0th power of a square matrix is the identity matrix). Thus a

rank 1 generalized eigenvector is an ordinary eigenvector. The vector v2 in (16) is a

rank 2 generalized eigenvector (and not an ordinary eigenvector).

The multiplicity 2 method described earlier boils down to finding a pair

fv1; v2g of generalized eigenvectors, one of rank 1 and one of rank 2, such that

.A � �I/v2 D v1. Higher multiplicity methods involve longer “chains” of gener-

alized eigenvectors. A length k chain of generalized eigenvectors based on the

eigenvector v1 is a set fv1; v2; : : : ; vkg of k generalized eigenvectors such that

.A � �I/vk D vk�1;

.A � �I/vk�1 D vk�2;

:::

.A � �I/v2 D v1:

(22)

Because v1 is an ordinary eigenvector, .A � �I/v1 D 0. Therefore, it follows from

(22) that

.A � �I/kvk D 0: (23)

If fv1; v2; v3g is a length 3 chain of generalized eigenvectors associated with

the multiple eigenvalue � of the matrix A, then it is easy to verify that three linearly

independent solutions of x0 D Ax are given by

x1.t/ D v1e
�t ;

x2.t/ D .v1t C v2/e
�t ;

x3.t/ D
�

1

2
v1t

2
C v2t C v3

�

e�t :

(24)

For instance, the equations in (22) give

Av3 D v2 C �v3; Av2 D v1 C �v2; Av1 D �v1;

so

Ax3 D
�

1

2
Av1t

2
CAv2t CAv3

�

e�t

D
�

1

2
�v1t

2
C .v1 C �v2/t C .v2 C �v3/

�

e�t

D .v1t C v2/e
�t
C �

�

1

2
v1t

2
C v2t C v3

�

e�t

D x0
3
:

Therefore, x3.t/ in (24) does, indeed, define a solution of x0 D Ax.
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Consequently, in order to “handle” a multiplicity 3 eigenvalue �, it suffices

to find a length 3 chain fv1; v2; v3g of generalized eigenvalues associated with �.

Looking at Eq. (23), we see that we need only find a solution v3 of

.A � �I/3v3 D 0

such that the vectors

v2 D .A � �I/v3 and v1 D .A � �I/v2

are both nonzero (although, as we will see, this is not always possible).

Example 4 Find three linearly independent solutions of the system

x0
D

2

4

0 1 2

�5 �3 �7

1 0 0

3

5 x: (25)

Solution The characteristic equation of the coefficient matrix in Eq. (25) is

jA � �Ij D

2

4

�� 1 2

�5 �3 � � �7

1 0 ��

3

5

D 1 � Œ�7 � 2 � .�3 � �/�C .��/Œ.��/.�3 � �/C 5�

D ��3
� 3�2

� 3� � 1 D �.�C 1/3 D 0;

and thus A has the eigenvalue �D�1 of multiplicity 3. The eigenvector equation .A��I/vD

0 for an eigenvector v D
�

a b c
�

T

is

.AC I/v D

2

4

1 1 2

�5 �2 �7

1 0 1

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

The third row aC c D 0 gives c D�a; then the first row aC bC 2c D 0 gives b D a. Thus, to

within a constant multiple, the eigenvalue � D �1 has only the single associated eigenvector

v D
�

a a �a
�

T

with a 6D 0, and so the defect of � D �1 is 2.

To apply the method described here for triple eigenvalues, we first calculate

.AC I/2 D

2

4

1 1 2

�5 �2 �7

1 0 1

3

5

2

4

1 1 2

�5 �2 �7

1 0 1

3

5 D

2

4

�2 �1 �3

�2 �1 �3

2 1 3

3

5

and

.AC I/3 D

2

4

1 1 2

�5 �2 �7

1 0 1

3

5

2

4

�2 �1 �3

�2 �1 �3

2 1 3

3

5 D

2

4

0 0 0

0 0 0

0 0 0

3

5 :

Thus any nonzero vector v3 will be a solution of the equation .AC I/3v3 D 0. Beginning

with v3 D
�

1 0 0
�

T

, for instance, we calculate

v2 D .AC I/v3 D

2

4

1 1 2

�5 �2 �7

1 0 1

3

5

2

4

1

0

0

3

5 D

2

4

1

�5

1

3

5 ;

v1 D .AC I/v2 D

2

4

1 1 2

�5 �2 �7

1 0 1

3

5

2

4

1

�5

1

3

5 D

2

4

�2

�2

2

3

5 :

Note that v1 is the previously found eigenvector v with a D �2; this agreement serves as a

check of the accuracy of our matrix computations.
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Thus we have found a length 3 chain fv1; v2; v3g of generalized eigenvectors associated

with the triple eigenvalue � D �1. Substitution in (24) now yields the linearly independent

solutions

x1.t/ D v1e
�t
D

2

4

�2

�2

2

3

5 e�t ;

x2.t/ D .v1t C v2/e
�t
D

2

4

�2t C 1

�2t � 5

2t C 1

3

5 e�t ;

x3.t/ D
�

1

2
v1t

2
C v2t C v3

�

e�t
D

2

4

�t2 C t C 1

�t2 � 5t

t2 C t

3

5 e�t

of the system x0 D Ax.

The General Case

A fundamental theorem of linear algebra states that every n � n matrix A has n

linearly independent generalized eigenvectors. These n generalized eigenvectors

may be arranged in chains, with the sum of the lengths of the chains associated

with a given eigenvalue � equal to the multiplicity of �. But the structure of these

chains depends on the defect of �, and can be quite complicated. For instance, a

multiplicity 4 eigenvalue can correspond to

� Four length 1 chains (defect 0);

� Two length 1 chains and a length 2 chain (defect 1);

� Two length 2 chains (defect 2);

� A length 1 chain and a length 3 chain (defect 2); or

� A length 4 chain (defect 3).

Note that, in each of these cases, the length of the longest chain is at most d C 1,

where d is the defect of the eigenvalue. Consequently, once we have found all the

ordinary eigenvectors associated with a multiple eigenvalue �, and therefore know

the defect d of �, we can begin with the equation

.A � �I/dC1u D 0 (26)

to start building the chains of generalized eigenvectors associated with �.

ALGORITHM Chains of Generalized Eigenvectors

Begin with a nonzero solution u1 of Eq. (26) and successively multiply by the

matrix A � �I until the zero vector is obtained. If

.A � �I/u1 D u2 ¤ 0;

:::

.A � �I/uk�1 D uk ¤ 0;

but .A � �I/uk D 0, then the vectors

fv1; v2; : : : ; vkg D fuk ;uk�1; : : : ;u2;u1g

(listed in reverse order of their appearance) form a length k chain of generalized

eigenvectors based on the (ordinary) eigenvector v1.
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Each length k chain fv1; v2; : : : ; vkg of generalized eigenvectors (with v1 an

ordinary eigenvector associated with �) determines a set of k independent solutions

of x0 D Ax corresponding to the eigenvalue �:

x1.t/ D v1e
�t ;

x2.t/ D .v1t C v2/e
�t ;

x3.t/ D
�

1

2
v1t

2
C v2t C v3

�

e�t ;

:::

xk.t/ D

 

v1t
k�1

.k � 1/Š
C � � � C

vk�2t
2

2Š
C vk�1t C vk

!

e�t :

(27)

Note that (27) reduces to Eqs. (18) through (19) and (24) in the cases k D 2 and

k D 3, respectively.

To ensure that we obtain n generalized eigenvectors of the n� n matrix A that

are actually linearly independent, and therefore produce a complete set of n linearly

independent solutions of x0 D Ax when we amalgamate all the “chains of solutions”

corresponding to different chains of generalized eigenvectors, we may rely on the

following two facts:

� Any chain of generalized eigenvectors constitutes a linearly independent set

of vectors.

� If two chains of generalized eigenvectors are based on linearly independent

eigenvectors, then the union of these two chains is a linearly independent set

of vectors (whether the two base eigenvectors are associated with different

eigenvalues or with the same eigenvalue).

Example 5 Suppose that the 6 � 6 matrix A has two multiplicity 3 eigenvalues �1 D �2 and �2 D 3

with defects 1 and 2, respectively. Then �1 must have an associated eigenvector u1 and a

length 2 chain fv1; v2g of generalized eigenvectors (with the eigenvectors u1 and v1 being

linearly independent), whereas �2 must have a length 3 chain fw1;w2;w3g of generalized

eigenvectors based on its single eigenvector w1. The six generalized eigenvectors u1, v1,

v2, w1, w2, and w3 are then linearly independent and yield the following six independent

solutions of x0 D Ax:

x1.t/ D u1e
�2t ;

x2.t/ D v1e
�2t ;

x3.t/ D .v1t C v2/e
�2t ;

x4.t/ D w1e
3t ;

x5.t/ D .w1t Cw2/e
3t ;

x6.t/ D
�

1

2
w1t

2
Cw2t Cw3

�

e3t :

As Example 5 illustrates, the computation of independent solutions corre-

sponding to different eigenvalues and chains of generalized eigenvalues is a routine

matter. The determination of the chain structure associated with a given multiple

eigenvalue can be more interesting (as in Example 6).
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An Application

Figure 7.6.2 shows two railway cars that are connected with a spring (permanently

k

c

x1(t ) x2(t )

c2x2'c1x1'

m1 m2

FIGURE 7.6.2. The railway cars of
Example 6.

attached to both cars) and with a damper that exerts opposite forces on the two cars,

of magnitude c.x0
1
� x0

2
/ proportional to their relative velocity. The two cars are also

subject to frictional resistance forces c1x
0
1

and c2x
0
2

proportional to their respective

velocities. An application of Newton’s law ma D F (as in Example 1 of Section

7.1) yields the equations of motion

m1x
00
1
D k.x2 � x1/ � c1x

0
1
� c.x0

1
� x0

2
/,

m2x
00
2
D k.x1 � x2/ � c2x

0
2
� c.x0

2
� x0

1
/.

(28)

In terms of the position vector x.t/ D
�

x1.t/ x2.t/
�

T

, these equations can be

written in the matrix form

Mx00
D KxCRx0; (29)

where M and K are mass and stiffness matrices (as in Eqs. (2) and (3) of Section

7.4), and

R D

�

�.c C c1/ c

c �.c C c2/

�

is the resistance matrix. Unfortunately, because of the presence of the term involv-

ing x0, the methods of Section 7.4 cannot be used.

Instead, we write (28) as a first-order system in the four unknown functions

x1.t/, x2.t/, x3.t/ D x
0
1
.t/, and x4.t/ D x

0
2
.t/. If m1 D m2 D 1 we get

x0
D Ax; (30)

where now x D
�

x1 x2 x3 x4

�

T

and

A D

2

6

6

4

0 0 1 0

0 0 0 1

�k k �.c C c1/ c

k �k c �.c C c2/

3

7

7

5

: (31)

Example 6 Two railway cars With m1 D m2 D c D 1 and k D c1 D c2 D 2, the system in Eq. (30) is

x0
D

2

6

6

4

0 0 1 0

0 0 0 1

�2 2 �3 1

2 �2 1 �3

3

7

7

5

x: (32)

It is not too tedious to calculate manually—although a computer algebra system such as

Maple, Mathematica, or MATLAB is useful here—the characteristic equation

�4
C 6�3

C 12�2
C 8� D �.�C 2/3 D 0

of the coefficient matrix A in Eq. (32). Thus A has the distinct eigenvalue �0 D 0 and the

triple eigenvalue �1 D �2.
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CASE 1: �0 D 0. The eigenvalue equation .A � �I/v D 0 for the eigenvector v D
�

a b c d
�

T

is

Av D

2

6

6

4

0 0 1 0

0 0 0 1

�2 2 �3 1

2 �2 1 �3

3

7

7

5

2

6

6

4

a

b

c

d

3

7

7

5

D

2

6

6

4

0

0

0

0

3

7

7

5

:

The first two rows give c D d D 0; then the last two rows yield a D b. Thus

v0 D
�

1 1 0 0
�

T

is an eigenvector associated with �0 D 0.

CASE 2: �1 D �2. The eigenvalue equation .A � �I/v D 0 is

.AC 2I/v D

2

6

6

4

2 0 1 0

0 2 0 1

�2 2 �1 1

2 �2 1 �1

3

7

7

5

2

6

6

4

a

b

c

d

3

7

7

5

D

2

6

6

4

0

0

0

0

3

7

7

5

:

The third and fourth scalar equations here are the differences of the first and second equations,

and therefore are redundant. Hence v is determined by the first two equations,

2aC c D 0 and 2b C d D 0:

We can choose a and b independently, then solve for c and d . Thereby we obtain two eigen-

vectors associated with the triple eigenvalue �1 D�2. The choice aD 1, b D 0 yields c D�2,

d D 0 and thereby the eigenvector

u1 D
�

1 0 �2 0
�

T

:

The choice a D 0, b D 1 yields c D 0, d D �2 and thereby the eigenvector

u2 D
�

0 1 0 �2
�

T

:

Because �1 D �2 has defect 1, we need a generalized eigenvector of rank 2, and hence

a nonzero solution v2 of the equation

.AC 2I/2v2 D

2

6

6

4

2 2 1 1

2 2 1 1

0 0 0 0

0 0 0 0

3

7

7

5

v2 D 0:

Obviously,

v2 D
�

0 0 1 �1
�

T

is such a vector, and we find that

.AC 2I/v2 D

2

6

6

4

2 0 1 0

0 2 0 1

�2 2 �1 1

2 �2 1 �1

3

7

7

5

2

6

6

4

0

0

1

�1

3

7

7

5

D

2

6

6

4

1

�1

�2

2

3

7

7

5

D v1

is nonzero, and therefore is an eigenvector associated with �1 D �2. Then fv1; v2g is the

length 2 chain we need.

The eigenvector v1 just found is neither of the two eigenvectors u1 and u2 found pre-

viously, but we observe that v1 D u1 � u2. For a length 1 chain w1 to complete the picture,

we can choose any linear combination of u1 and u2 that is independent of v1. For instance,

we could choose either w1 D u1 or w1 D u2. However, we will see momentarily that the

particular choice

w1 D u1 C u2 D
�

1 1 �2 �2
�

T

yields a solution of the system that is of physical interest.
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Finally, the chains fv0g, fw1g, and fv1; v2g yield the four independent solutions

x1.t/ D v0e
0�t
D
�

1 1 0 0
�

T

;

x2.t/ D w1e
�2t
D
�

1 1 �2 �2
�

T

e�2t ;

x3.t/ D v1e
�2t
D
�

1 �1 �2 2
�

T

e�2t ;

x4.t/ D .v1t C v2/e
�2t

D
�

t �t �2t C 1 2t � 1
�

T

e�2t

(33)

of the system x0 D Ax in (32).

The four scalar components of the general solution

x.t/ D c1x1.t/C c2x2.t/C c3x3.t/C c4x4.t/

are described by the equations

x1.t/ D c1 C e
�2t .c2 C c3 C c4t /;

x2.t/ D c1 C e
�2t .c2 � c3 � c4t /;

x3.t/ D e
�2t .�2c2 � 2c3 C c4 � 2c4t /;

x4.t/ D e
�2t .�2c2 C 2c3 � c4 C 2c4t /:

(34)

Recall that x1.t/ and x2.t/ are the position functions of the two masses, whereas x3.t/D x
0
1
.t/

and x4.t/ D x
0
2
.t/ are their respective velocity functions.

For instance, suppose that x1.0/ D x2.0/ D 0 and that x0
1
.0/ D x0

2
.0/ D v0. Then the

equations

x1.0/ D c1 C c2 C c3 D 0,

x2.0/ D c1 C c2 � c3 D 0,

x0
1
.0/ D � 2c2 � 2c3 C c4 D v0,

x0
2
.0/ D � 2c2 C 2c3 � c4 D v0

are readily solved for c1 D
1

2
v0, c2 D �

1

2
v0, and c3 D c4 D 0, so

x1.t/ D x2.t/ D
1

2
v0

�

1 � e�2t

�

;

x0
1
.t/ D x0

2
.t/ D v0e

�2t :

In this case the two railway cars continue in the same direction with equal but exponentially

damped velocities, approaching the displacements x1 D x2 D
1

2
v0 as t !C1.

It is of interest to interpret physically the individual generalized eigenvector solutions

given in (33). The degenerate (�0 D 0) solution

x1.t/ D
�

1 1 0 0
�

T

describes the two masses at rest with position functions x1.t/� 1 and x2.t/� 1. The solution

x2.t/ D
�

1 1 �2 �2
�

T

e�2t

corresponding to the carefully chosen eigenvector w1 describes damped motions x1.t/ D

e�2t and x2.t/D e
�2t of the two masses, with equal velocities in the same direction. Finally,

the solutions x3.t/ and x4.t/ resulting from the length 2 chain fv1; v2g both describe damped

motion with the two masses moving in opposite directions.

The methods of this section apply to complex multiple eigenvalues just as to

real multiple eigenvalues (although the necessary computations tend to be somewhat

lengthy). Given a complex conjugate pair ˛ ˙ ˇi of eigenvalues of multiplicity k,

we work with one of them (say, ˛ � ˇi) as if it were real to find k independent

complex-valued solutions. The real and imaginary parts of these complex-valued

solutions then provide 2k real-valued solutions associated with the two eigenvalues

� D ˛ � ˇi and � D ˛ C ˇi each of multiplicity k. See Problems 33 and 34.
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The Jordan Normal Form

In Section 6.2 we saw that if the n � n matrix A has a complete set v1; v2; : : : ; vn

of n linearly independent eigenvectors, then it is similar to a diagonal matrix. In

particular,

P�1AP D D; (35)

where P D
�

v1 v2 � � � vn

�

and the diagonal elements of the diagonal matrix

D are the corresponding eigenvalues �1; �2; : : : ; �n (not necessarily distinct). This

result is a special case of the following general theorem, a proof of which can be

found in Appendix B of Gilbert Strang, Linear Algebra and Its Applications (4th

edition, Brooks Cole, 2006).

THEOREM 1 Jordan Normal Form

If the n � n matrix A has s linearly independent eigenvectors v1; v2; : : : ; vs , then

it is similar to a block-diagonal matrix of the Jordan normal form

J D

2

6

6

6

6

4

J1 0 � � � 0

0 J2 � � � 0
:::

:::
: : :

:::

0 0 � � � Js

3

7

7

7

7

5

; (36)

where each submatrix Ji is a k � k Jordan block of the form

Ji D

2

6

6

6

6

6

6

6

4

�i 1 0 � � � 0

0 �i 1 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � �i 1

0 0 0 � � � �i

3

7

7

7

7

7

7

7

5

; (37)

with �i being the eigenvalue of A corresponding to the eigenvector vi ; if k D 1,

then Ji D
�

�i

�

.

If the Jordan block Ji in (37) is of size k � k, then it corresponds to a length

k chain of generalized eigenvectors based on the (ordinary) eigenvector vi . If all

these generalized eigenvectors are arranged as column vectors in proper order cor-

responding to the appearance of the Jordan blocks in (36), the result is a nonsingular

n � n matrix Q such that

Q�1AQ D J: (38)

The block-diagonal matrix J such that A D QJQ�1 is called the Jordan normal

form of the matrix A and is unique [except for the order of appearance of the Jordan

blocks in (36)].

Example 7 In Example 3 we saw that the matrix

A D

�

1 �3

3 7

�

has the single eigenvalue � D 4 and the associated length 2 chain of generalized eigenvectors

fv1; v2g, where v1 D
�

�3 3
�

T

and v2 D
�

1 0
�

T

, based on the eigenvector v1 D Av2.
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If we define

Q D
�

v1 v2

�

D

�

�3 1

3 0

�

;

then we find that the Jordan normal form of A is

J D Q�1AQ D

�

4 1

0 4

�

:

Here J D J1 is a single 2 � 2 Jordan block corresponding to the single eigenvalue � D 4 of

A.

Example 8 In Example 6 we saw that the matrix

A D

2

6

6

4

0 0 1 0

0 0 0 1

�2 2 �3 1

2 �2 1 �3

3

7

7

5

has the distinct eigenvalue �1 D 0 corresponding to the eigenvector

v1 D
�

1 1 0 0
�

T

and the triple eigenvalue �2 D �2 corresponding both to the eigenvector v2 D
�

1 0 �2 0
�

T

and to the length 2 chain of generalized eigenvectors fv3; v4g with

v3 D
�

1 �1 �2 2
�

T

and v4 D
�

0 0 1 �1
�

T

, such that v3 D .AC 2I/v4. If

we define

Q D
�

v1 v2 v3 v4

�

D

2

6

6

4

1 1 1 0

1 0 �1 0

0 �2 �2 1

0 0 2 �1

3

7

7

5

;

then (using a computer algebra system to ease the labor of calculation) we find that the Jordan

normal form of A is

J D Q�1AQ D

2

6

6

4

0 0 0 0

0 �2 0 0

0 0 �2 1

0 0 0 �2

3

7

7

5

:

Here we see the 1 � 1 Jordan block J1 D
�

0
�

corresponding to the eigenvalue �1 D 0 of A,

as well as the two Jordan blocks J2 D
�

�2
�

and J3 D

�

�2 1

0 �2

�

corresponding to the two

linearly independent eigenvectors v2 and v3 associated with the eigenvalue �2 D �2.

The General Cayley-Hamilton Theorem

In Section 6.3, we showed that every diagonalizable matrix A satisfies its character-

istic equation p.�/ D jA � �Ij D 0, that is, p.A/ D 0. We can now use the Jordan

normal form to show that this is true whether or not A is diagonalizable.

If J D Q�1AQ is the Jordan normal form of the matrix A, then p.A/ D

Qp.J/Q�1, just as in the conclusion to the proof of Theorem 1 in Section 6.3.

It therefore suffices to show that p.J/ D 0. If the Jordan blocks J1; J2; : : : ; Js in

(36) have sizes k1; k2; : : : ; ks—that is, Ji is a ki � ki matrix—and corresponding

eigenvalues �1; �2; : : : ; �s (respectively), then

p.�/ D .�1 � �/
k1.�2 � �/

k2 � � � .�s � �/
ks ;

and so

p.J/ D .�1I � J/k1.�2I � J/k2 � � � .�sI � J/ks : (39)
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Now p.J/ has the same block-diagonal structure as J itself, and we see from (39)

that the i th block of p.J/ involves the factor

.�i I � Ji /
ki D

2

6

6

6

6

6

6

6

4

0 �1 0 � � � 0

0 0 �1 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � 0 �1

0 0 0 � � � 0

3

7

7

7

7

7

7

7

5

ki

;

where the ki � ki matrix �i I� Ji has all elements zero except on its first superdiag-

onal. It is easily seen that .�i I � Ji /
2 then has nonzero elements only on its second

superdiagonal; .�i I�Ji /
3 has nonzero elements only on its third superdiagonal; and

so on, in turn, until we see that .�i I� Ji /
ki D 0. Hence it follows from (39) that the

i th block of p.J/ is the ki � ki zero matrix. This being true for each i D 1; 2; : : : ; s,

we conclude that p.J/ D 0, as desired. This completes the proof of the general case

of the Cayley-Hamilton theorem.

7.6 Problems
Find general solutions of the systems in Problems 1 through

22. In Problems 1 through 6, use a computer system or graph-

ing calculator to construct a direction field and typical solution

curves for the given system.

1. x0 D

�

�2 1

�1 �4

�

x 2. x0 D

�

3 �1

1 1

�

x

3. x0 D

�

1 �2

2 5

�

x 4. x0 D

�

3 �1

1 5

�

x

5. x0 D

�

7 1

�4 3

�

x 6. x0 D

�

1 �4

4 9

�

x

7. x0 D

2

4

2 0 0

�7 9 7

0 0 2

3

5 x

8. x0 D

2

4

25 12 0

�18 �5 0

6 6 13

3

5 x

9. x0 D

2

4

�19 12 84

0 5 0

�8 4 33

3

5 x

10. x0 D

2

4

�13 40 �48

�8 23 �24

0 0 3

3

5 x

11. x0 D

2

4

�3 0 �4

�1 �1 �1

1 0 1

3

5 x

12. x0 D

2

4

�1 0 1

0 �1 1

1 �1 �1

3

5 x

13. x0 D

2

4

�1 0 1

0 1 �4

0 1 �3

3

5 x

14. x0 D

2

4

0 0 1

�5 �1 �5

4 1 �2

3

5 x

15. x0 D

2

4

�2 �9 0

1 4 0

1 3 1

3

5 x

16. x0 D

2

4

1 0 0

�2 �2 �3

2 3 4

3

5 x

17. x0 D

2

4

1 0 0

18 7 4

�27 �9 �5

3

5 x

18. x0 D

2

4

1 0 0

1 3 1

�2 �4 �1

3

5 x

19. x0 D

2

6

6

4

1 �4 0 �2

0 1 0 0

6 �12 �1 �6

0 �4 0 �1

3

7

7

5

x

20. x0 D

2

6

6

4

2 1 0 1

0 2 1 0

0 0 2 1

0 0 0 2

3

7

7

5

x

21. x0 D

2

6

6

4

�1 �4 0 0

1 3 0 0

1 2 1 0

0 1 0 1

3

7

7

5

x
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22. x0 D

2

6

6

4

1 3 7 0

0 �1 �4 0

0 1 3 0

0 �6 �14 1

3

7

7

5

x

In Problems 23 through 32 the eigenvalues of the coefficient

matrix A are given. Find a general solution of the indicated

system x0 D Ax. Especially in Problems 29 through 32, use of

a computer algebra system (as in the application material for

this section) may be useful.

23. x0 D

2

4

39 8 �16

�36 �5 16

72 16 �29

3

5 x; � D �1, 3, 3

24. x0 D

2

4

28 50 100

15 33 60

�15 �30 �57

3

5 x; � D �2, 3, 3

25. x0 D

2

4

�2 17 4

�1 6 1

0 1 2

3

5 x; � D 2, 2, 2

26. x0 D

2

4

5 �1 1

1 3 0

�3 2 1

3

5 x; � D 3, 3, 3

27. x0 D

2

4

�3 5 �5

3 �1 3

8 �8 10

3

5 x; � D 2, 2, 2

28. x0 D

2

4

�15 �7 4

34 16 �11

17 7 5

3

5 x; � D 2, 2, 2

29. x0 D

2

6

6

4

�1 1 1 �2

7 �4 �6 11

5 �1 1 3

6 �2 �2 6

3

7

7

5

x; � D �1, �1, 2, 2

30. x0 D

2

6

6

4

2 1 �2 1

0 3 �5 3

0 �13 22 �12

0 �27 45 �25

3

7

7

5

x; � D �1, �1, 2, 2

31. x0 D

2

6

6

4

35 �12 4 30

22 �8 3 19

�10 3 0 �9

�27 9 �3 �23

3

7

7

5

x; � D 1, 1, 1, 1

32. x0 D

2

6

6

6

6

4

11 �1 26 6 �3

0 3 0 0 0

�9 0 �24 �6 3

3 0 9 5 �1

�48 �3 �138 �30 18

3

7

7

7

7

5

x;

� D 2, 2, 3, 3, 3

33. The characteristic equation of the coefficient matrix A of

the system

x0
D

2

6

6

4

3 �4 1 0

4 3 0 1

0 0 3 �4

0 0 4 3

3

7

7

5

x

is

�.�/ D .�2
� 6�C 25/2 D 0:

Therefore, A has the repeated complex conjugate pair

3 ˙ 4i of eigenvalues. First show that the complex vec-

tors

v1 D
�

1 i 0 0
�

T

and v2 D
�

0 0 1 i
�

T

form a length 2 chain fv1; v2g associated with the eigen-

value � D 3 � 4i . Then calculate the real and imaginary

parts of the complex-valued solutions

v1e
�t and .v1t C v2/e

�t

to find four independent real-valued solutions of x0 D Ax.

34. The characteristic equation of the coefficient matrix A of

the system

x0
D

2

6

6

4

2 0 �8 �3

�18 �1 0 0

�9 �3 �25 �9

33 10 90 32

3

7

7

5

x

is

�.�/ D .�2
� 4�C 13/2 D 0:

Therefore, A has the repeated complex conjugate pair

2 ˙ 3i of eigenvalues. First show that the complex vec-

tors

v1 D
�

�i 3C 3i 0 �1
�

T

;

v2 D
�

3 �10C 9i �i 0
�

T

form a length 2 chain fv1; v2g associated with the eigen-

value � D 2C 3i . Then calculate (as in Problem 33) four

independent real-valued solutions of x0 D Ax.

35. Railway cars Find the position functions x1.t/ and

x2.t/ of the railway cars of Fig. 7.5.2 if the physical pa-

rameters are given by

m1 D m2 D c1 D c2 D c D k D 1

and the initial conditions are

x1.0/ D x2.0/ D 0; x0
1
.0/ D x0

2
.0/ D v0:

How far do the cars travel before stopping?

36. Railway cars Repeat Problem 35 under the assumption

that car 1 is shielded from air resistance by car 2, so now

c1 D 0. Show that, before stopping, the cars travel twice

as far as those of Problem 35.

37–46. Use the method of Examples 7 and 8 to find the Jor-

dan normal form J of each coefficient matrix A given

in Problems 23 through 32 (respectively).
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Go to goo.gl/Ise1HB to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

7.6 Application Defective Eigenvalues and Generalized Eigenvectors

A typical computer algebra system can calculate both the eigenvalues of a given

matrix A and the linearly independent (ordinary) eigenvectors associated with each

eigenvalue. For instance, consider the 4 � 4 matrix

A D

2

6

6

4

35 �12 4 30

22 �8 3 19

�10 3 0 �9

�27 9 �3 �23

3

7

7

5

(1)

of Problem 31 in this section. When the matrix A has been entered, the Maple

calculation

with(linalg): eigenvectors(A);

[1, 4, {[--1, 0, 1, 1], [0, 1, 3, 0]}]

or the Mathematica calculation

Eigensystem[A]

{{1,1,1,1},

{{--3,--1,0,3}, {0,1,3,0}, {0,0,0,0}, {0,0,0,0}}}

reveals that the matrix A in Eq. (1) has the single eigenvalue � D 1 of multiplic-

ity 4 with only two independent associated eigenvectors v1 and v2. The MATLAB

command

[V, D] = eig(sym(A))

provides the same information. The eigenvalue � D 1 therefore has defect d D 2. If

B D A � .1/I, you should find that B2 6D 0 but B3 D 0. If

u1 D
�

1 0 0 0
�

T

; u2 D Bu1; u3 D Bu2;

then fu1;u2;u3g should be a length 3 chain of generalized eigenvectors based on

the ordinary eigenvector u3 (which should be a linear combination of the original

eigenvectors v1 and v2). Use your computer algebra system to carry out this con-

struction, and finally write four linearly independent solutions of the linear system

x0 D Ax.

For a more exotic matrix to investigate, consider the MATLAB’s gallery(5)

example matrix

A D

2

6

6

6

6

6

4

�9 11 �21 63 �252

70 �69 141 �421 1684

�575 575 �1149 3451 �13801

3891 �3891 7782 �23345 93365

1024 �1024 2048 �6144 24572

3

7

7

7

7

7

5

: (2)

Use appropriate commands like those illustrated here to show that A has a single

eigenvalue � D 0 of multiplicity 5 and defect 4. Noting that A � .0/I D A, you

should find that A4 6D 0 but that A5 D 0. Hence calculate the vectors

u1 D
�

1 0 0 0 0
�

T

; u2 D Au1; u3 D Au2; u4 D Au3; u5 D Au4:

You should find that u5 is a nonzero vector such that Au5 D 0, and is there-

fore an (ordinary) eigenvector of A associated with the eigenvalue � D 0. Thus

fu1;u2;u3;u4;u5g is a length 5 chain of generalized eigenvectors of the matrix A

in Eq. (2), and you can finally write five linearly independent solutions of the linear

system x0 D Ax.
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7.7 Numerical Methods for Systems

We now discuss the numerical approximation of solutions of systems of differential

equations. Our goal is to apply the methods of Sections 2.4 through 2.6 to the initial

value problem

x0
D f.t; x/; x.t0/ D x0 (1)

for a system of m first-order differential equations. In (1) the independent variable

is the scalar t , and

x D .x1; x2; : : : ; xm/ and f D .f1; f2; : : : ; fm/

are vector-valued functions. If the component functions of f and their first-order

partial derivatives are all continuous in a neighborhood of the point .t0; x0/, then

Theorems 3 and 4 of Appendix A guarantee the existence and uniqueness of a so-

lution x D x.t/ of (1) on some subinterval [of the t-axis] containing t0. With this

assurance we can proceed to discuss the numerical approximation of this solution.

Beginning with step size h, we want to approximate the values of x.t/ at the

points t1, t2, t3, : : : ; where tnC1 D tn C h for n = 0. Suppose that we have already

computed the approximations

x1; x2; x3; : : : ; xn

to the actual values

x.t1/; x.t2/; x.t3/; : : : ; x.tn/

of the exact solution of the system in (1). We can then make the step from xn to

the next approximation xnC1 � x.tnC1/ by any one of the methods of Sections 2.4

through 2.6. Essentially all that is required is to write the iterative formula of the

selected method in the vector notation of the present discussion.

Euler Methods for Systems

For example, the iterative formula of Euler’s method for systems is

xnC1 D xn C hf.t; xn/: (2)

To examine the case mD 2 of a pair of first-order differential equations, let us write

x D

�

x

y

�

and f D

�

f

g

�

:

Then the initial value problem in (1) is

x0
D f .t; x; y/;

y0
D g.t; x; y/;

x.t0/ D x0;

y.t0/ D y0;
(3)

and the scalar components of the vector formula in (2) are

xnC1 D xn C hf .tn; xn; yn/;

ynC1 D yn C hg.tn; xn; yn/:
(4)

Note that each iterative formula in (4) has the form of a single Euler iteration, but

with yn inserted like a parameter in the first formula (for xnC1) and with xn inserted

like a parameter in the second formula (for ynC1). The generalization to the system

in (3) of each of the other methods in Sections 2.4 through 2.6 follows a similar

pattern.
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The improved Euler method for systems consists at each step of calculating

first the predictor

unC1 D xn C hf.tn; xn/ (5)

and then the corrector

xnC1 D xn C
h

2
Œf.tn; xn/C f.tnC1;unC1/�: (6)

For the case of the two-dimensional initial value problem in (3), the scalar compo-

nents of the formulas in (5) and (6) are

unC1 D xn C hf .tn; xn; yn/;

vnC1 D yn C hg.tn; xn; yn/
(7)

and

xnC1 D xn C
h

2
Œf .tn; xn; yn/C f .tnC1; unC1; vnC1/�;

ynC1 D yn C
h

2
Œg.tn; xn; yn/C g.tnC1; unC1; vnC1/�:

(8)

Example 1 Consider the initial value problem

x0
D 3x � 2y;

y0
D 5x � 4y;

x.0/ D 3I

y.0/ D 6:
(9)

The exact solution of the system in (9) is

x.t/ D 2e�2t
C et ; y.t/ D 5e�2t

C et : (10)

Here we have f .x; y/D 3x � 2y and g.x; y/D 5x � 4y in (3), so the Euler iterative formulas

in (4) are

xnC1 D xn C h � .3xn � 2yn/; ynC1 D yn C h � .5xn � 4yn/:

With step size h D 0:1 we calculate

x1 D 3C .0:1/ � Œ3 � 3 � 2 � 6� D 2:7;

y1 D 6C .0:1/ � Œ5 � 3 � 4 � 6� D 5:1

and

x2 D 2:7C .0:1/ � Œ3 � .2:7/ � 2 � .5:1/� D 2:49;

y2 D 5:1C .0:1/ � Œ5 � .2:7/ � 4 � .5:1/� D 4:41:

The actual values at t2 D 0:2 given by (10) are x.0:2/ � 2:562 and y.0:2/ � 4:573.

To compute the improved Euler approximations to x.0:2/ and y.0:2/ with a single step

of size h D 0:2, we first calculate the predictors

u1 D 3C .0:2/ � Œ3 � 3�2 � 6� D 2:4;

v1 D 6C .0:2/ � Œ5 � 3�4 � 6� D 4:2:

Then the corrector formulas in (8) yield

x1 D 3 C .0:1/ � .Œ3 � 3 � 2 � 6� C Œ3 � .2:4/ � 2 � .4:2/�/ D 2:58,

y1 D 6 C .0:1/ � .Œ5 � 3 � 4 � 6� C Œ5 � .2:4/ � 4 � .4:2/�/ D 4:62.

As we would expect, a single improved Euler step gives better accuracy than two ordinary

Euler steps.
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The Runge–Kutta Method and Second-Order Equations

The vector version of the iterative formula for the Runge–Kutta method is

xnC1 D xn C
h

6
.k1 C 2k2 C 2k3 C k4/; (11)

where the vectors k1, k2, k3, and k4 are defined (by analogy with Eqs. (5a)–(5d) of

Section 2.6) as follows:

k1 D f.tn; xn/;

k2 D f
�

tn C
1

2
h; xn C

1

2
hk1

�

;

k3 D f
�

tn C
1

2
h; xn C

1

2
hk2

�

;

k4 D f.tn C h; xn C hk3/:

(12)

To describe in scalar notation the Runge–Kutta method for the two-

dimensional initial value problem

x0
D f .t; x; y/;

y0
D g.t; x; y/;

x.t0/ D x0;

y.t0/ D y0;
(3)

let us write

x D

�

x

y

�

; f D

�

f

g

�

; and ki D

�

Fi

Gi

�

:

Then the Runge–Kutta iterative formulas for the step from .xn; yn/ to the next ap-

proximation .xnC1; ynC1/ � .x.tnC1/; y.tnC1// are

xnC1 D xn C
h

6
.F1 C 2F2 C 2F3 C F4/;

ynC1 D yn C
h

6
.G1 C 2G2 C 2G3 CG4/;

(13)

where the values F1, F2, F3, and F4 of the function f are

F1 D f .tn; xn; yn/;

F2 D f
�

tn C
1

2
h; xn C

1

2
hF1; yn C

1

2
hG1

�

;

F3 D f
�

tn C
1

2
h; xn C

1

2
hF2; yn C

1

2
hG2

�

;

F4 D f .tn C h; xn C hF3; yn C hG3/I

(14)

G1, G2, G3, and G4 are the similarly defined values of the function g.

Perhaps the most common application of the two-dimensional Runge–Kutta

method is to the numerical solution of second-order initial value problems of the

form

x00
D g.t; x; x0/;

x.t0/ D x0; x0.t0/ D y0:
(15)

If we introduce the auxiliary variable y D x0, then the problem in (15) translates

into the two-dimensional first-order problem

x0
D y;

y0
D g.t; x; y/;

x.t0/ D x0;

y.t0/ D y0:
(16)

This is a problem of the form in (3) with f .t; x; y/ D y.
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If the functions f and g are not too complicated, then it is feasible to carry

out manually a reasonable number of steps of the two-dimensional Runge–Kutta

method described here. But the first operating electronic computers were con-

structed (during World War II) specifically to implement methods similar to the

Runge–Kutta method for the numerical computation of trajectories of artillery pro-

jectiles. The application material for this section lists TI-Nspire CX CAS and

Python versions of Program RK2DIM that can be used with two-dimensional sys-

tems.

Example 2 The exact solution of the initial value problem

x00
D �xI x.0/ D 0; x0.0/ D 1 (17)

is x.t/ D sin t . The substitution y D x0 translates (17) into the two-dimensional problem

x0
D y;

y0
D �x;

x.0/ D 0I

y.0/ D 1;
(18)

which has the form in (3) with f .t; x; y/ D y and g.t; x; y/ D �x. The table in Fig. 7.7.1

shows the results produced for 0 5 t 5 5 (radians) using Program RK2DIM with step size

h D 0:05. The values shown for x D sin t and y D cos t are all accurate to five decimal

places.

Example 3 Lunar lander In Example 4 of Section 2.3 we considered a lunar lander that initially is

falling freely toward the surface of the moon. Its retrorockets, when fired, provide a decel-

eration of T D 4 m=s2. We found that a soft touchdown at the lunar surface is achieved by

igniting these retrorockets when the lander is at a height of 41,870 meters (just over 26 miles)

above the surface and is then descending at the rate of 450 m=s.
t x D sin t y D cos t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C0:47943

C0:84147

C0:99749

C0:90930

C0:59847

C0:14112

�0:35078

�0:75680

�0:97753

�0:95892

C0:87758

C0:54030

C0:07074

�0:41615

�0:80114

�0:98999

�0:93646

�0:65364

�0:21080

C0:28366

FIGURE 7.7.1. Runge–Kutta values

(with h D 0:05) for the problem in
Eq. (18).

Now we want to compute the descent time of the lunar lander. Let the distance x.t/ of

the lander from the center of the moon be measured in meters and measure time t in seconds.

According to the analysis in Section 2.3 (where we used r.t/ instead of x.t/), x.t/ satisfies

the initial value problem

d2x

dt2
D T �

GM

x2
D 4 �

4:9044 � 1012

x2
;

x.0/ D RC 41870 D 1;781;870; x0.0/ D �450

(19)

whereG � 6:6726� 10�11 N�(m=kg)2 is the universal gravitational constant andM D 7:35�

1022 kg and R D 1:74 � 106 m are the mass and radius of the moon. We seek the value of t

when x.t/ D R D 1;740;000.

The problem in (19) is equivalent to the first-order system

dx

dt
D y; x.0/ D 1;781;870I

dy

dt
D 4 �

4:9044 � 1012

x2
; y.0/ D �450:

(20)

The table in Fig. 7.7.2 shows the result of a Runge–Kutta approximation with step size h D 1

(the indicated data agreeing with those obtained with step size h D 2). Evidently, touchdown

on the lunar surface (x D 1;740;000) occurs at some time between t D 180 and t D 190

seconds. The table in Fig. 7.7.3 shows a second Runge–Kutta approximation with t .0/D 180,

x.0/ D 1;740;059, y.0/ D �16:83, and h D 0:1. Now it is apparent that the lander’s time

of descent to the lunar surface is very close to 187 seconds; that is, 3 min 7 s. (The final

velocity terms in these two tables are positive because the lander would begin to ascend if its

retrorockets were not turned off at touchdown.)
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t (s) x (m) v (m=s)

0

20

40

60

80

100

120

140

160

180

200

1,781,870

1,773,360

1,765,826

1,759,264

1,753,667

1,749,033

1,745,357

1,742,637

1,740,872

1,740,059

1,740,199

�450:00

�401:04

�352:37

�303:95

�255:74

�207:73

�159:86

�112:11

�64:45

�16:83

30.77

FIGURE 7.7.2. The lander’s descent to
the lunar surface.

t (s) x (m) v (m=s)

180

181

182

183

184

185

186

187

188

189

190

1,740,059

1,740,044

1,740,030

1,740,019

1,740,011

1,740,005

1,740,001

1,740,000

1,740,001

1,740,004

1,740,010

�16:83

�14:45

�12:07

�9:69

�7:31

�4:93

�2:55

�0:17

2.21

4.59

6.97

FIGURE 7.7.3. Focusing on the lunar
lander’s soft touchdown.

Higher-Order Systems

As we saw in Section 7.1, any system of higher-order differential equations can be

replaced with an equivalent system of first-order differential equations. For exam-

ple, consider the system

x00
D F.t; x; y; x0; y0/;

y00
D G.t; x; y; x0; y0/

(21)

of second-order equations. If we substitute

x D x1; y D x2; x0
D x3 D x

0
1
; y0

D x4 D x
0
2
;

then we get the equivalent system

x0
1
D x3;

x0
2
D x4;

x0
3
D F.t; x1; x2; x3; x4/;

x0
4
D G.t; x1; x2; x3; x4/

(22)

of four first-order equations in the unknown functions x1.t/ D x.t/, x2.t/ D y.t/,

x3.t/, and x4.t/. It would be a routine (if slightly tedious) matter to write a four-

dimensional version of program RK2DIM for the purpose of solving such a sys-

tem. But in a programming language that accommodates vectors, an n-dimensional

Runge–Kutta program is scarcely more complicated than a one-dimensional pro-

gram. For instance, the application material for this section lists the n-dimensional

MATLAB program rkn that closely resembles the one-dimensional program rk of

Fig. 2.6.11.

Example 4 Batted baseball Suppose that a batted ball starts at x0 D 0, y0 D 0 with initial velocity

v0 D 160 ft=s and with initial angle of inclination � D 30ı. If air resistance is ignored, we

find by the elementary methods of Section 1.2 that the baseball travels a [horizontal] distance

of 400
p
3 ft (approximately 693 ft) in 5 s before striking the ground. Now suppose that in

addition to a downward gravitational acceleration (g D 32 ft=s2), the baseball experiences

an acceleration due to air resistance of .0:0025/v2 feet per second per second, directed op-

posite to its instantaneous direction of motion. Determine how far the baseball will travel

horizontally under these conditions.
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Solution According to Problem 30 of Section 7.1, the equations of motion of the baseball are

d2x

dt2
D �cv

dx

dt
;

d2y

dt2
D �cv

dy

dt
� g (23)

where v D
p

.x0/2 C .y0/2 is the speed of the ball, and where c D 0:0025 and g D 32 in fps

units. We convert to a first-order system as in (22) and thereby obtain the system

x0
1
D x3;

x0
2
D x4;

x0
3
D �cx3

q

x2

3
C x2

4
;

x0
4
D �cx4

q

x2

3
C x2

4
� g

(24)

of four first-order differential equations with

x1.0/ D x2.0/ D 0;

x3.0/ D 80
p
3; x4.0/ D 80:

(25)

Note that x3.t/ and x4.t/ are simply the x- and y-components of the baseball’s velocity

vector, so v D
p

x2

3
C x2

4
. We proceed to apply the Runge–Kutta method to investigate the

motion of the batted baseball described by the initial value problem in (24) and (25), first

taking c D 0 to ignore air resistance and then using c D 0:0025 to take air resistance into

account.

WITHOUT AIR RESISTANCE: Figure 7.7.4 shows the numerical results obtained when

a Runge–Kutta program such as rkn is applied with step size h D 0:1 and with c D 0 (no

air resistance). For convenience in interpreting the results, the printed output at each selected

step consists of the horizontal and vertical coordinates x and y of the baseball, its velocity v,

and the angle of inclination ˛ of its velocity vector (in degrees measured from the horizontal).

These results agree with the exact solution when c D 0. The ball travels a horizontal distance

of 400
p
3 � 692:82 ft in exactly 5 s, having reached a maximum height of 100 ft after 2:5 s.

Note also that the ball strikes the ground at the same angle and with the same speed as its

initial angle and speed.

t x y v ˛
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96.00
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64.00

36.00

0.00

160.00
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139.48
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160.00

C30

C25
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C0

�7

�13
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�25

�30

FIGURE 7.7.4. The batted baseball with no air
resistance (c D 0).
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t x y v ˛
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3.5

4.0

0.00

63.25

117.11

164.32

206.48

244.61

279.29

310.91

339.67

0.00

32.74

53.20

63.60

65.30

59.22

46.05

26.41

0.91

160.00

127.18

104.86

89.72

80.17

75.22

73.99

75.47

78.66
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�15

�27

�37
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FIGURE 7.7.5. The batted baseball with air
resistance (c D 0:0025).

t x y v ˛
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:::
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0.91

�4:84
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:::

77.24

77.93
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�3
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�42
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�49

 � Apex

 � Impact

FIGURE 7.7.6. The batted ball’s apex and its impact with the ground.

WITH AIR RESISTANCE: Figure 7.7.5 shows the results obtained with the fairly real-

istic value of c D 0:0025 for the air resistance for a batted baseball. To within a hundredth of

a foot in either direction, the same results are obtained with step sizes hD 0:05 and hD 0:025.

We now see that with air resistance the ball travels a distance well under 400 ft in just over

4 s. The more refined data in Fig. 7.7.6 show that the ball travels horizontally only about 340

ft and that its maximum height is only about 66 ft. As illustrated in Fig. 7.7.7, air resistance

has converted a massive home run into a routine fly ball (if hit straightaway to center field).

Note also that when the ball strikes the ground, it has slightly under half its initial speed (only

about 79 ft=s) and is falling at a steeper angle (about 46ı). Every baseball fan has observed

empirically these aspects of the trajectory of a fly ball.

The easy out

The massive home run

FIGURE 7.7.7. An “easy out” or a
home run?

Variable Step Size Methods

The Runge–Kutta method for a large system requires an appreciable amount of com-

putational labor, even when a computer is employed. Therefore, just as the step

size h should not be so large that the resulting error in the solution is unaccept-

able, h ought not to be so small that too many steps are needed, hence requiring

an unacceptable amount of computation. Thus the practical numerical solution of

differential equations involves a tradeoff between accuracy and efficiency.

To facilitate this tradeoff, modern variable step size methods vary the step

size h as the solution process proceeds. Large steps are taken in regions where

the dependent variables are changing slowly; smaller steps are taken when these

variables are changing rapidly, in order to prevent large errors.

An adaptable or variable step size Runge–Kutta method employs both a pre-

assigned minimum error tolerance MinTol and a maximum error tolerance MaxTol

to attempt to ensure that the error made in the typical step from xn to xnC1 is nei-

ther too large (and hence inaccurate) nor too small (and hence inefficient). A fairly

simple scheme for doing this may be outlined as follows:

� Having reached xn with a Runge–Kutta step of length tn � tn�1 D h, let x.1/

denote the result of a further Runge–Kutta step of length h and let x.2/ denote

the result of two successive Runge–Kutta steps each of length h=2.
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� On the grounds that x.2/ should be a more accurate approximation to x.tnC h/

than is x.1/, take

Err D jx.1/
� x.2/

j

as an estimate of the error in x.1/.

� If MinTol 5 Err 5 MaxTol, then let xnC1 D x.1/, tnC1 D tn C h, and proceed

to the next step.

� If Err < MinTol, then the error is too small! Hence let xnC1 D x.1/, tnC1 D

tn C h, but double the step size to 2h before making the next step.

� If Err > MaxTol, then the error is too large. Hence reject x.1/ and start afresh

at xn with the halved step size h=2.

The detailed implementation of such a scheme can be complicated. For a

much more complete but readable discussion of adaptive Runge–Kutta methods,

see Section 17.2 of William H. Press et al., Numerical Recipes: The Art of Scientific

Computing (Cambridge: Cambridge University Press, 2007).

Several widely available scientific computing packages (such as Maple, Math-

ematica, and MATLAB) include sophisticated variable step size programs that will

accommodate an essentially arbitrary number of simultaneous differential equa-

tions. Such a general-purpose program might be used, for example, to model nu-

merically the major components of the solar system: the sun and the nine (known)

major planets. If mi denotes the mass and ri D .xi ; yi ; ´i / denotes the position

vector of the i th one of these 10 bodies, then—by Newton’s laws—the equation of

motion of mi is

mi r
00
i
D

X

j 6Di

Gmimj

.rij /3
.rj � ri /; (26)

where rij D jrj �ri j denotes the distance betweenmi andmj . For each i D 1, 2, : : : ;

10, the summation in Eq. (26) is over all values of j 6D i from 1 to 10. The 10 vector

equations in (26) constitute a system of 30 second-order scalar equations, and the

equivalent first-order system consists of 60 differential equations in the coordinates

and velocity components of the 10 major bodies in the solar system. Mathematical

models that involve this many (or more) differential equations—and that require so-

phisticated software and hardware for their numerical analysis—are quite common

in science, engineering, and applied technology.

Earth–Moon Satellite Orbits

For an example of a program whose efficient solution requires adaptive step size

methods, we consider an Apollo satellite in orbit about the Earth E and Moon M .

Figure 7.7.8 shows an x1x2-coordinate system whose origin lies at the center of

mass of the Earth and the Moon and which rotates at the rate of one revolution

per “moon month” of approximately � D 27:32 days, so the Earth and Moon re-

main fixed in their positions on the x1-axis. If we take as unit distance the distance

(about 384;000 kilometers, assumed constant) between the Earth and Moon centers,

then their coordinates are E.��; 0/ and M.1 � �; 0/, where � D mM=.mE CmM /

in terms of the Earth mass mE and Moon mass mM . If we take the total mass

mE C mM as the unit of mass and �=.2�/ � 4:35 days as the unit of time, then

the gravitational constant is G D 1 in Eq. (26), and the equations of motion of the

x1

x2

E(– µ, 0)

S (x1, x2)

M(1 – µ, 0)

rE

rM

FIGURE 7.7.8. The Earth–Moon
center-of-mass coordinate system.
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satellite position S.x1; x2/ are

x00
1
D x1 C 2x

0
2
�
.1 � �/.x1 C �/

.rE /3
�
�.x1 � 1C �/

.rM /3
;

x00
2
D x2 � 2x

0
1
�
.1 � �/x2

.rE /3
�

�x2

.rM /3
;

(27)

where rE and rM denote the satellite’s distance to the Earth and Moon (indicated

in Fig. 7.7.8). The initial two terms on the right-hand side of each equation result

from the rotation of the coordinate system. In the system of units described here, the

lunar mass is approximately mM D 0:012277471. The second-order system in (27)

can be converted to an equivalent first-order system (of four differential equations)

by substituting

x0
1
D x3; x0

2
D x4; so that x00

1
D x0

3
; x00

2
D x0

4
:

Suppose that the satellite initially is in a clockwise circular orbit of ra-

dius about 2400 kilometers about the Moon. At its farthest point from the Earth

(x1 D 0:994) it is “launched” into Earth–Moon orbit with initial velocity v0. The

corresponding initial conditions are

x1.0/ D 0:994; x2.0/ D 0; x3.0/ D 0; x4.0/ D �v0:

An adaptive step size method (ode45) in the MATLAB software system was used

x1

Moon

Satellite

Earth

x2

FIGURE 7.7.9. Apollo Moon–Earth
bus orbit with insertion velocity
v0 D 7476 km=h.

to solve numerically the system in (27). The orbits in Figs. 7.7.9 and 7.7.10 were

obtained with

Earth
x1

x2

Satellite

Moon

FIGURE 7.7.10. Apollo
Moon–Earth bus orbit with insertion

velocity v0 D 7365 km=h.

v0 D 2:031732629557 and v0 D 2:001585106379;

respectively. [In the system of units used here, the unit of velocity is approxi-

mately 3680 km=h.] In each case a closed but multilooped periodic trajectory about

the Earth and the Moon—a so-called bus orbit—is obtained, but a relatively small

change in the initial velocity changes the number of loops! For more information,

see NASA Contractor Report CR-61139, “Study of the Methods for the Numerical

Solution of Ordinary Differential Equations,” prepared by O. B. Francis, Jr. et al. for

the NASA–George C. Marshall Space Flight Center, June 7, 1966.

So-called Moon–Earth “bus orbits” are periodic—that is, are closed trajecto-

ries traversed repeatedly by the satellite—only in a rotating x1x2-coordinate system

as discussed above. The satellite of Fig. 7.7.9 traverses its closed orbit and returns

to rendezvous with the Moon about 48.4 days after its insertion into orbit. Figures

7.7.11 and 7.7.12 illustrate the motion of the same satellite—but in an ordinary non-

rotating xy-coordinate system centered at the Earth, in which the Moon encircles

the Earth counterclockwise in a near-circular orbit, completing one revolution in

about 27.3 days. The Moon starts at point S , and after 48.4 days it has completed

a bit over 1.75 revolutions about the Earth and reaches the point R at which its ren-

dezvous with the satellite occurs. Figure 7.7.11 shows the positions of Moon and

satellite a day and a half after the satellite’s insertion into its orbit, each traveling in

a generally counterclockwise direction around the Earth. Figure 7.7.12 shows their

positions a day and a half before their rendezvous at point R, the satellite mean-

while having encircled the Earth about 2.5 times in an orbit that (in the indicated

xy-coordinate system) appears to resemble a slowly varying ellipse.
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x 

y

Earth

Moon

Satellite
S

R

FIGURE 7.7.11. The moon and satellite
in a nonrotating coordinate system, 1.5
days after orbital insertion of the satellite
at starting point S .

x

y

Earth

Moon

Satellite

S

R

FIGURE 7.7.12. The moon and
satellite in a nonrotating coordinate
system, 1.5 days before their rendezvous
at point R.

7.7 Problems
A hand-held calculator will suffice for Problems 1 through 8.

In each problem an initial value problem and its exact solution

are given. Approximate the values of x.0:2/ and y.0:2/ in three

ways: (a) by the Euler method with two steps of size h D 0:1;

(b) by the improved Euler method with a single step of size

h D 0:2; and (c) by the Runge–Kutta method with a single

step of size h D 0:2. Compare the approximate values with the

actual values x.0:2/ and y.0:2/.

1. x0 D x C 2y, x.0/ D 0,

y0 D 2x C y, y.0/ D 2;

x.t/ D e3t � e�t , y.t/ D e3t C e�t

2. x0 D 2x C 3y, x.0/ D 1,

y0 D 2x C y, y.0/ D �1;

x.t/ D e�t , y.t/ D �e�t

3. x0 D 3x C 4y, x.0/ D 1,

y0 D 3x C 2y, y.0/ D 1;

x.t/ D 1

7
.8e6t � e�t /, y.t/ D 1

7
.6e6t C e�t /

4. x0 D 9x C 5y, x.0/ D 1,

y0 D �6x � 2y, y.0/ D 0;

x.t/ D �5e3t C 6e4t , y.t/ D 6e3t � 6e4t

5. x0 D 2x � 5y, x.0/ D 2,

y0 D 4x � 2y, y.0/ D 3;

x.t/ D 2 cos 4t � 11

4
sin 4t , y.t/ D 3 cos 4t C 1

2
sin 4t

6. x0 D x � 2y, x.0/ D 0,

y0 D 2x C y, y.0/ D 4;

x.t/ D �4et sin 2t , y.t/ D 4et cos 2t

7. x0 D 3x � y, x.0/ D 2,

y0 D x C y, y.0/ D 1;

x.t/ D .t C 2/e2t , y.t/ D .t C 1/e2t

8. x0 D 5x � 9y, x.0/ D 0,

y0 D 2x � y, y.0/ D �1;

x.t/ D 3e2t sin 3t , y.t/ D e2t .sin 3t � cos 3t/

A computer will be required for the remaining problems in this

section. In Problems 9 through 12, an initial value problem

and its exact solution are given. In each of these four prob-

lems, use the Runge–Kutta method with step sizes h D 0:1 and

h D 0:05 to approximate to five decimal places the values x.1/

and y.1/. Compare the approximations with the actual values.

9. x0 D 2x � y, x.0/ D 1,

y0 D x C 2y, y.0/ D 0;

x.t/ D e2t cos t , y.t/ D e2t sin t

10. x0 D x C 2y, x.0/ D 0,

y0 D x C e�t , y.0/ D 0;

x.t/ D 1

9
.2e2t � 2e�t C 6te�t /,

y.t/ D 1

9
.e2t � e�t C 6te�t /

11. x0 D �x C y � .1C t3/e�t , x.0/ D 0,

y0 D �x � y � .t � 3t2/e�t , y.0/ D 1;

x.t/ D e�t .sin t � t /, y.t/ D e�t .cos t C t3/

12. x00 C x D sin t , x.0/ D 0I

x.t/ D 1

2
.sin t � t cos t /

13. Crossbow bolt Suppose that a crossbow bolt is shot

straight upward with initial velocity 288 ft=s. If its de-

celeration due to air resistance is .0:04/v, then its height

x.t/ satisfies the initial value problem

x00
D �32 � .0:04/x0

I x.0/ D 0; x0.0/ D 288:

Find the maximum height that the bolt attains and the time

required for it to reach this height.

14. Repeat Problem 13, but assume instead that the decelera-

tion of the bolt due to air resistance is .0:0002/v2.

15. Height of projectile Suppose that a projectile is fired

straight upward with initial velocity v0 from the surface

of the earth. If air resistance is not a factor, then its height

x.t/ at time t satisfies the initial value problem

d2x

dt2
D �

gR2

.x CR/2
I x.0/ D 0; x0.0/ D v0:

Use the values g D 32:15 ft=s2 � 0:006089 mi=s2 for the

gravitational acceleration of the earth at its surface and

R D 3960 mi as the radius of the earth. If v0 D 1 mi=s,

find the maximum height attained by the projectile and its

time of ascent to this height.
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Batted Baseball

Problems 16 through 18 deal with the batted baseball of Ex-

ample 4, having initial velocity 160 ft=s and air resistance co-

efficient c D 0:0025.

16. Find the range—the horizontal distance the ball travels be-

fore it hits the ground—and its total time of flight with

initial inclination angles 40ı, 45ı, and 50ı.

17. Find (to the nearest degree) the initial inclination that

maximizes the range. If there were no air resistance it

would be exactly 45ı, but your answer should be less than

45ı.

18. Find (to the nearest half degree) the initial inclination an-

gle greater than 45ı for which the range is 300 ft.

19. Home run Find the initial velocity of a baseball hit by

Babe Ruth (with c D 0:0025 and initial inclination 40ı) if

it hit the bleachers at a point 50 ft high and 500 horizontal

feet from home plate.

20. Crossbow bolt Consider the crossbow bolt of Problem

14, fired with the same initial velocity of 288 ft=s and with

the air resistance deceleration .0:0002/v2 directed oppo-

site its direction of motion. Suppose that this bolt is fired

from ground level at an initial angle of 45ı. Find how high

vertically and how far horizontally it goes, and how long

it remains in the air.

21. Artillery projectile Suppose that an artillery projectile

is fired from ground level with initial velocity 3000 ft=s

and initial inclination angle 40ı. Assume that its air resis-

tance deceleration is .0:0001/v2. (a) What is the range

of the projectile and what is its total time of flight? What

is its speed at impact with the ground? (b) What is the

maximum altitude of the projectile, and when is that al-

titude attained? (c) You will find that the projectile is

still losing speed at the apex of its trajectory. What is the

minimum speed that it attains during its descent?

Go to goo.gl/1g94fA to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

7.7 Application Comets and Spacecraft

Figure 7.7.13 lists TI-Nspire CX CAS and Python versions of the two-dimensional

Runge–Kutta program RK2DIM. You should note that it closely parallels the one-

dimensional Runge–Kutta program listed in Fig. 2.6.11, with a single line there

replaced (where appropriate) with two lines here to calculate a pair of x- and y-

values or slopes. Note also that the notation used is essentially that of Eqs. (13)

and (14) in this section. The first several lines define the functions and initial data

needed for Example 1.

Figure 7.7.14 exhibits an n-dimensional MATLAB implementation of the

Runge–Kutta method. The MATLAB function f defines the vector of right-hand

sides of the differential equations in the system x0 D f.t; x/ to be solved. The rkn

function then takes as input the initial t-value t, the column vector x of initial x-

values, the final t-value t1, and the desired number n of subintervals. As output

it produces the resulting column vector T of t-values and the matrix X whose rows

give the corresponding x-values. For instance, with f as indicated in the figure, the

MATLAB command

[T,X] = rkn(0, [0;1], 5, 50)

then generates the data shown in the table of Fig. 7.7.1 (which lists only every fifth

value of each variable).

You can use Examples 1 through 3 in this section to test your own imple-

mentation of the Runge–Kutta method. Then investigate the comet and spacecraft

problems described next. Additional application material at the Expanded Applica-

tions site indicated in the margin describes additional numerical ODE investigations

ranging from batted baseballs to the Apollo orbits shown in Figs. 7.7.9 and 7.7.10.

Your Spacecraft Landing

Your spacecraft is traveling at constant velocity V , approaching a distant earthlike

planet with mass M and radius R. When activated, your deceleration system pro-

vides a constant thrust T until impact with the surface of the planet. During the

period of deceleration, your distance x.t/ from the center of the planet satisfies the
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TI-Nspire CX CAS Python Comment

Define rk2dim()=Prgm

f(t,x,y):=y

g(t,x,y):=--x

n:=50

t:=0.0

x:=0.0

y:=1.0

t1:=5.0

h:=(t1--t)/n

For i,1,n

t0:=t

x0:=x

y0:=y

f1:=f(t,x,y)

g1:=g(t,x,y)

t:=t0+h/2

x:=x0+(h*f1)/2

y:=y0+(h*g1)/2

f2:=f(t,x,y)

g2:=g(t,x,y)

x:=x0+(h*f2)/2

y:=y0+(h*g2)/2

f3:=f(t,x,y)

g3:=g(t,x,y)

t:=t0+h

x:=x0+h*f3

y:=y0+h*g3

f4:=f(t,x,y)

g4:=g(t,x,y)

fa:=(f1+2*f2+2*f3+f4)/6

ga:=(g1+2*g2+2*g3+g4)/6

x:=x0+h*fa

y:=y0+h*ga

Disp t,x,y

EndFor

EndPrgm

# Program RK2DIM

def F(T,X,Y): return Y

def G(T,X,Y): return --X

N = 50

T = 0.0

X = 0.0

Y = 1.0

T1 = 5

H = (T1--T)/N

for I in range(N):

T0 = T

X0 = X

Y0 = Y

F1 = F(T,X,Y)

G1 = G(T,X,Y)

T = T0 + H/2

X = X0 + H*F1/2

Y = Y0 + H*G1/2

F2 = F(T,X,Y)

G2 = G(T,X,Y)

X = X0 + H*F2/2

Y = Y0 + H*G2/2

F3 = F(T,X,Y)

G3 = G(T,X,Y)

T = T0 + H

X = X0 + H*F3

Y = Y0 + H*G3

F4 = F(T,X,Y)

G4 = G(T,X,Y)

FA = (F1+2*F2+2*F3+F4)/6

GA = (G1+2*G2+2*G3+G4)/6

X = Y0 + H*FA

Y = Y0 + H*GA

print (T,X,Y)

# END

Program title

Define function f

Define function g

No. of steps

Initial t

Initial x

Initial y

Final t

Step size

Begin loop

Save previous t

Save previous x

Save previous y

First f-slope

First g-slope

Midpoint t

Midpt x-predictor

Midpt y-predictor

Second f-slope

Second g-slope

Midpt x-predictor

Midpt y-predictor

Third f-slope

Third g-slope

New t

Endpt x-predictor

Endpt y-predictor

Fourth f-slope

Fourth g-slope

Average f-slope

Average g-slope

x-corrector

y-corrector

Display results

End loop

FIGURE 7.7.13. TI-Nspire CX CAS and Python two-dimensional Runge–Kutta programs.
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function xp = f(t,x)

xp = x;

xp(1) = x(2);

xp(2) = --x(1);

function [T,Y] = rkn(t,x,t1,n)

h = (t1 -- t)/n; % step size

T = t; % initial t

X = x’; % initial x-vector

for i = 1:n % begin loop

k1 = f(t,x); % first k-vector

k2 = f(t+h/2,x+h*k1/2); % second k-vector

k3 = f(t+h/2,x+h*k2/2); % third k-vector

k4 = f(t+h ,x+h*k3 ); % fourth k-vector

k = (k1+2*k2+2*k3+k4)/6; % average k-vector

t = t + h; % new t

x = x + h*k; % new x

T = [T;t]; % update t-column

X = [X;x’]; % update x-matrix

end % end loop

FIGURE 7.7.14. MATLAB implementation of the Runge–Kutta method.

differential equation

d2x

dt2
D T �

GM

x2
; (1)

where G � 6:6726 � 10�11 N�(m=kg)2 as in Example 3. Your question is this: At

what altitude above the surface should your deceleration system be activated in order

to achieve a soft touchdown? For a reasonable problem, you can take

M D 5:97 � 1024 (kg);

R D 6:38 � 106 (m);

V D p � 104 (km=h);

T D g C q (m=s2)

where g D GM=R2 is the surface gravitational acceleration of the planet. Choose p

to be the smallest nonzero digit and q the next-to-smallest nonzero digit in your ID

number. Find the “ignition altitude” accurate to the nearest meter and the resulting

“descent time” accurate to the nearest tenth of a second.

Kepler’s Law of Planetary (or Satellite) Motion

Consider a satellite in elliptical orbit around a planet of mass M , and suppose that

physical units are so chosen that GM D 1 (where G is the gravitational constant). If

the planet is located at the origin in the xy-plane, then the equations of motion of

the satellite are

d2x

dt2
D �

x

.x2 C y2/3=2

;
d2y

dt2
D �

y

.x2 C y2/3=2

: (2)
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Let T denote the period of revolution of the satellite. Kepler’s third law says that

the square of T is proportional to the cube of the major semiaxis a of its elliptical

orbit. In particular, if GM D 1, then

T 2
D 4�2a3: (3)

(For details, see Section 11.6 of Edwards and Penney, Calculus: Early Transcenden-

tals, 7th ed., Hoboken, NJ: Pearson, 2008).) If the satellite’s x- and y-components

of velocity, x3 D x
0 D x0

1
and x4 D y

0 D x0
2
, are introduced, then the system in (2)

translates into a system of four first-order differential equations having the form of

those in Eq. (22) of this section.

(a) Solve this 4 � 4 system numerically with the initial conditions

x.0/ D 1; y.0/ D 0; x0.0/ D 0; y0.0/ D 1

that correspond theoretically to a circular orbit of radius a D 1, so Eq. (3) gives

T D 2� . Is this what you get?

(b) Now solve the system numerically with the initial conditions

x.0/ D 1; y.0/ D 0; x0.0/ D 0; y0.0/ D 1

2

p
6

that correspond theoretically to an elliptical orbit with major semiaxis a D 2, so

Eq. (3) gives T D 4�
p
2. Is this what you get?

Halley’s Comet

Halley’s comet last reached perihelion (its point of closest approach to the sun at the

origin) on February 9, 1986. Its position and velocity components at that time were

p0 D .0:325514;�0:459460; 0:166229/ and

v0 D .�9:096111;�6:916686;�1:305721/

(respectively), with position in AU (astronomical units, in which the unit of distance

is the major semiaxis of the earth’s orbit) and time in years. In this system, the three-

dimensional equations of motion of the comet are

d2x

dt2
D �

�x

r3
;

d2y

dt2
D �

�y

r3
;

d2´

dt2
D �

�´

r3
(4)

where

� D 4�2 and r D
p

x2 C y2 C ´2:

Solve the equations in (4) numerically to verify the appearance of the y´-projection

of the orbit of Halley’s comet shown in Fig. 7.7.15. Plot the xy- and x´-projections

y

z

5

–5

–10

10 15 20 25 30

FIGURE 7.7.15. y´-projection of
the orbit of Halley’s comet.

as well.

Figure 7.7.16 shows the graph of the distance r.t/ of Halley’s comet from

the sun. Inspection of this graph indicates that Halley’s comet reaches a maximum

distance (at aphelion) of about 35 AU in a bit less than 40 years and returns to

perihelion after about three-quarters of a century. The closer look in Fig. 7.7.17

indicates that the period of revolution of Halley’s comet is about 76 years. Use your

numerical solution to refine these observations. What is your best estimate of the

calendar date of the comet’s next perihelion passage?
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t

r
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50 75 100 150125 175 200

FIGURE 7.7.16. 200-year plot of the distance r.t/ of Halley’s comet from the sun. Is there a

cusp near t D 75?

t

r
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10

15

7675 77 7874

FIGURE 7.7.17. A closer look at Halley’s perihelion
passage after about 76 years.

Your Own Comet

The night before your birthday in 2007 you set up your telescope on a nearby moun-

taintop. It was a clear night, and you had a stroke of luck: At 12:30 A.M. you

spotted a new comet. After repeating the observation on successive nights, you

were able to calculate its solar system coordinates p0 D .x0; y0; ´0/ and its velocity

vector v0 D .vx0; vy0; v´0/ on that first night. Using this information, determine the

following:

� the comet’s perihelion (point nearest the sun) and aphelion (point farthest from

the sun),

� the comet’s velocity at perihelion and at aphelion,

� the comet’s period of revolution around the sun, and

� the comet’s next two dates of perihelion passage.

Using units of length in AU and time in earth years, the equations of motion

of your comet are given in (4). For your personal comet, begin with random initial

position and velocity vectors with the same order of magnitude as those of Halley’s

comet. Repeat the random selection of initial position and velocity vectors, if nec-

essary, until you get a plausible eccentric orbit that ranges well outside the earth’s

orbit (as most real comets do).



88 Matrix Exponential
Methods

8.1 Matrix Exponentials and Linear Systems

The solution vectors of an n � n homogeneous linear system

x0
D Ax (1)

can be used to construct a square matrix X D ˆ.t/ that satisfies the matrix differen-

tial equation

X0
D AX .10/

associated with Eq. (1). Suppose that x1.t/; x2.t/; : : : ; xn.t/ are n linearly indepen-

dent solutions of Eq. (1). Then the n � n matrix

ˆ.t/ D

2

6

6

4

x1.t/ x2.t/ � � � xn.t/

3

7

7

5

(2)

having these solution vectors as its column vectors, is called a fundamental matrix

for the system in (1).

Fundamental Matrix Solutions

Because the column vector xD xj .t/ of the fundamental matrix ˆ.t/ in (2) satisfies

the differential equation x0 D Ax, it follows (from the definition of matrix multi-

plication) that the matrix X D ˆ.t/ itself satisfies the matrix differential equation

X0 D AX. Because its column vectors are linearly independent, it also follows that

the fundamental matrix ˆ.t/ is nonsingular, and therefore has an inverse matrix

ˆ.t/�1. Conversely, any nonsingular matrix solution ‰.t/ of Eq. (10) has linearly

independent column vectors that satisfy Eq. (1), so ‰.t/ is a fundamental matrix for

the system in (1).

469
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In terms of the fundamental matrix ˆ.t/ in (2), the general solution

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (3)

of the system x0 D Ax can be written in the form

x.t/ D ˆ.t/c (4)

where c D Œc1 c2 : : : cn�
T is an arbitrary constant vector. If ‰.t/ is any other

fundamental matrix for (1), then each column vector of ‰.t/ is a linear combination

of the column vectors of ˆ.t/, so it follows from Eq. (4) that

‰.t/ D ˆ.t/C .40/

for some n � n matrix C of constants.

In order that the solution x.t/ in (3) satisfy a given initial condition

x.0/ D x0; (5)

it suffices that the coefficient vector c in (4) be such that ˆ.0/c D x0; that is, that

c D ˆ.0/�1x0: (6)

When we substitute (6) in Eq. (4), we get the conclusion of the following theorem.

THEOREM 1 Fundamental Matrix Solutions

Let ˆ.t/ be a fundamental matrix for the homogeneous linear system x0 D Ax.

Then the [unique] solution of the initial value problem

x0
D Ax; x.0/ D x0 (7)

is given by

x.t/ D ˆ.t/ˆ.0/�1x0: (8)

Section 7.3 tells us how to find a fundamental matrix for the system

x0
D Ax (9)

with constant n � n coefficient matrix A, at least in the case where A has a com-

plete set of n linearly independent eigenvectors v1, v2, : : : ; vn associated with the

(not necessarily distinct) eigenvalues �1, �2, : : : ; �n, respectively. In this event the

corresponding solution vectors of Eq. (9) are given by

xi .t/ D vie
�i t

for i D 1, 2, : : : ; n. Therefore, the n � n matrix

ˆ.t/ D

2

6

6

4

v1e
�1t v2e

�2t � � � vne
�nt

3

7

7

5

(10)
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having the solutions x1, x2, : : : ; xn as column vectors is a fundamental matrix for

the system x0 D Ax.

In order to apply Eq. (8), we must be able to compute the inverse matrix

ˆ.0/�1. The inverse of the nonsingular 2 � 2 matrix

A D

�

a b

c d

�

is

A�1
D
1

�

�

d �b

�c a

�

; (11)

where � D det.A/ D ad � bc ¤ 0. The inverse of the nonsingular 3 � 3 matrix

A D Œaij � is given by

A�1
D
1

�

2

6

6

6

4

CA11 �A12 CA13

�A21 CA22 �A23

CA31 �A32 CA33

3

7

7

7

5

T

; (12)

where � D det.A/ 6D 0 and Aij denotes the determinant of the 2� 2 submatrix of A

obtained by deleting the i th row and j th column of A. (Do not overlook the symbol

T for transpose in Eq. (12).) The formula in (12) is also valid upon generalization to

n � n matrices, but in practice inverses of larger matrices are usually computed in-

stead by row reduction methods (see any linear algebra text) or by using a calculator

or computer algebra system.

Example 1 Find a fundamental matrix for the system

x0
D 4x C 2y;

y0
D 3x � y;

(13)

and then use it to find the solution of (13) that satisfies the initial conditions x.0/D 1, y.0/D

�1.

Solution The linearly independent solutions

x1.t/ D

�

e�2t

�3e�2t

�

and x2.t/ D

�

2e5t

e5t

�

found in Example 1 of Section 7.3 yield the fundamental matrix

ˆ.t/ D

�

e�2t 2e5t

�3e�2t e5t

�

: (14)

Then

ˆ.0/ D

�

1 2

�3 1

�

;

and the formula in (11) gives the inverse matrix

ˆ.0/�1
D
1

7

�

1 �2

3 1

�

: (15)

Hence the formula in (8) gives the solution

x.t/ D

�

e�2t 2e5t

�3e�2t e5t

��

1

7

��

1 �2

3 1

� �

1

�1

�

D

�

1

7

��

e�2t 2e5t

�3e�2t e5t

� �

3

2

�

;

and so

x.t/ D
1

7

�

3e�2t C 4e5t

�9e�2t C 2e5t

�

:

Thus the solution of the original initial value problem is given by

x.t/ D 3

7
e�2t

C
4

7
e5t ; y.t/ D �9

7
e�2t

C
2

7
e5t :
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Remark An advantage of the fundamental matrix approach is this: Once we know the fun-

damental matrix ˆ.t/ and the inverse matrix ˆ.0/�1, we can calculate rapidly by matrix

multiplication the solutions corresponding to different initial conditions. For example, sup-

pose that we seek the solution of the system in (13) satisfying the new initial conditions

x.0/ D 77, y.0/ D 49. Then substitution of (14) and (15) in (8) gives the new particular

solution

x.t/ D
1

7

�

e�2t 2e5t

�3e�2t e5t

� �

1 �2

3 1

� �

77

49

�

D
1

7

�

e�2t 2e5t

�3e�2t e5t

� �

�21

280

�

D

�

�3e�2t C 80e5t

9e�2t C 40e5t

�

:

Exponential Matrices

We now discuss the possibility of constructing a fundamental matrix for the constant-

coefficient linear system x0 D Ax directly from the coefficient matrix A—that is,

without first applying the methods of earlier sections to find a linearly independent

set of solution vectors.

We have seen that exponential functions play a central role in the solution of

linear differential equations and systems, ranging from the scalar equation x0 D kx

with solution x.t/ D x0e
kt to the vector solution x.t/ D ve�t of the linear system

x0 D Ax whose coefficient matrix A has eigenvalue � with associated eigenvector v.

We now define exponentials of matrices in such a way that

X.t/ D eAt

is a matrix solution of the matrix differential equation

X0
D AX

with n � n coefficient matrix A—in analogy with the fact that the ordinary expo-

nential function x.t/D eat is a scalar solution of the first-order differential equation

x0 D ax.

The exponential e´ of the complex number ´ may be defined (as in Section

5.3) by means of the exponential series

e´
D 1C ´C

´2

2Š
C
´3

3Š
C � � � C

´n

nŠ
C � � � : (16)

Similarly, if A is an n�nmatrix, then the exponential matrix eA is the n�nmatrix

defined by the series

eA
D ICAC

A2

2Š
C � � � C

An

nŠ
C � � � ; (17)

where I is the identity matrix. The meaning of the infinite series on the right in (17)

is given by
1
X

nD0

An

nŠ
D lim

k!1

 

k
X

nD0

An

nŠ

!

; (18)

where A0 D I, A2 D AA, A3 D AA2, and so on; inductively, AnC1 D AAn if n = 0.

It can be shown that the limit in (18) exists for every n� n square matrix A. That is,

the exponential matrix eA is defined (by Eq. (17)) for every square matrix A.
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Example 2 Consider the 2 � 2 diagonal matrix

A D

�

a 0

0 b

�

:

Then it is apparent that

An
D

�

an 0

0 bn

�

for each integer n = 1. It therefore follows that

eA
D ICAC

A2

2Š
C � � �

D

"

1 0

0 1

#

C

"

a 0

0 b

#

C

"

a2=2Š 0

0 b2=2Š

#

C � � �

D

"

1C aC a2=2ŠC � � � 0

0 1C b C b2=2ŠC � � �

#

:

Thus

eA
D

�

ea 0

0 eb

�

;

so the exponential of the diagonal 2 � 2 matrix A is obtained simply by exponentiating each

diagonal element of A.

The n � n analog of the 2 � 2 result in Example 2 is established in the same

way. The exponential of the n � n diagonal matrix

D D

2

6

6

6

4

a1 0 � � � 0

0 a2 � � � 0
:::

:::
:::

0 0 � � � an

3

7

7

7

5

(19)

is the n � n diagonal matrix

eD
D

2

6

6

6

4

ea1 0 � � � 0

0 ea2 � � � 0
:::

:::
:::

0 0 � � � ean

3

7

7

7

5

; (20)

obtained by exponentiating each diagonal element of D.

The exponential matrix eA satisfies most of the exponential relations that are

familiar in the case of scalar exponents. For instance, if 0 is the n � n zero matrix,

then Eq. (17) yields

e0
D I; (21)

the n � n identity matrix. In Problem 31 we ask you to show that a useful law of

exponents holds for n � n matrices that commute:

If AB D BA, then eACB
D eAeB. (22)

In Problem 32 we ask you to conclude that

�

eA
��1

D e�A: (23)
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In particular, the matrix eA is nonsingular for every n � n matrix A (reminiscent of

the fact that e´ ¤ 0 for all ´). It follows from elementary linear algebra that the

column vectors of eA are always linearly independent.

If t is a scalar variable, then substitution of At for A in Eq. (17) gives

eAt
D ICA t CA2

t2

2Š
C � � � CAn

tn

nŠ
C � � � : (24)

(Of course, At is obtained simply by multiplying each element of A by t .)

Example 3 If

A D

2

4

0 3 4

0 0 6

0 0 0

3

5 ;

then

A2
D

2

4

0 0 18

0 0 0

0 0 0

3

5 and A3
D

2

4

0 0 0

0 0 0

0 0 0

3

5 ;

so An D 0 for n = 3. It therefore follows from Eq. (24) that

eAt
D ICA t C 1

2
A2 t2

D

2

4

1 0 0

0 1 0

0 0 1

3

5C

2

4

0 3 4

0 0 6

0 0 0

3

5 t C 1

2

2

4

0 0 18

0 0 0

0 0 0

3

5t2I

that is,

eAt
D

2

4

1 3t 4t C 9t2

0 1 6t

0 0 1

3

5 :

Remark If AnD 0 for some positive integer n, then the exponential series in (24) terminates

after a finite number of terms, so the exponential matrix eA (or eAt ) is readily calculated as

in Example 3. Such a matrix—with a vanishing power—is said to be nilpotent.

Example 4 If

A D

2

4

2 3 4

0 2 6

0 0 2

3

5 ;

then

A D

2

4

2 0 0

0 2 0

0 0 2

3

5C

2

4

0 3 4

0 0 6

0 0 0

3

5 D DC B;

where D D 2I is a diagonal matrix and B is the nilpotent matrix of Example 3. Therefore,

(20) and (22) give

eAt
D e.DCB/t

D eDt eBt
D

2

4

e2t 0 0

0 e2t 0

0 0 e2t

3

5

2

4

1 3t 4t C 9t2

0 1 6t

0 0 1

3

5 I

thus

eAt
D

2

4

e2t 3te2t .4t C 9t2/e2t

0 e2t 6te2t

0 0 e2t

3

5 :
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Matrix Exponential Solutions

It happens that term-by-term differentiation of the series in (24) is valid, with the

result

d

dt

�

eAt

�

D ACA2t CA3
t2

2Š
C � � � D A

�

ICAt CA2
t2

2Š
C � � �

�

I

that is,

d

dt

�

eAt

�

D AeAt ; (25)

in analogy to the formula Dt

�

ekt

�

D kekt from elementary calculus. Thus the

matrix-valued function

X.t/ D eAt

satisfies the matrix differential equation

X0
D AX:

Because the matrix eAt is nonsingular, it follows that the matrix exponential eAt is a

fundamental matrix for the linear system x0DAx. In particular, it is the fundamental

matrix X.t/ such that X.0/ D I. Therefore, Theorem 1 implies the following result.

THEOREM 2 Matrix Exponential Solutions

If A is an n � n matrix, then the solution of the initial value problem

x0
D Ax; x.0/ D x0 (26)

is given by

x.t/ D eAt x0; (27)

and this solution is unique.

Thus the solution of homogeneous linear systems reduces to the task of com-

puting exponential matrices. Conversely, if we already know a fundamental matrix

ˆ.t/ for the linear system x0 D Ax, then the facts that eAt Dˆ.t/C (by Eq. (40)) and

eA�0 D e0 D I (the identity matrix) yield

eAt
D ˆ.t/ˆ.0/�1: (28)

So we can find the matrix exponential eAt by solving the linear system x0 D Ax.

Example 5 In Example 1 we found that the system x0 D Ax with

A D

�

4 2

3 �1

�

has fundamental matrix

ˆ.t/ D

�

e�2t 2e5t

�3e�2t e5t

�

with ˆ.0/�1
D

1

7

�

1 �2

3 1

�

:
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Hence Eq. (28) gives

eAt
D

1

7

�

e�2t 2e5t

�3e�2t e5t

� �

1 �2

3 1

�

D
1

7

�

e�2t C 6e5t �2e�2t C 2e5t

�3e�2t C 3e5t 6e�2t C e5t

�

:

Example 6 Use an exponential matrix to solve the initial value problem

x0
D

2

4

2 3 4

0 2 6

0 0 2

3

5 x; x.0/ D

2

4

19

29

39

3

5 : (29)

Solution The coefficient matrix A in (29) evidently has characteristic equation .2 � �/3 D 0 and thus

the triple eigenvalue � D 2, 2, 2. It is easy to see that the eigenvector equation

.A � 2I/v D

2

4

0 3 4

0 0 6

0 0 0

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5

has (to within a constant multiple) the single solution vD
�

1 0 0
�

T

. Thus there is only a

single eigenvector associated with the eigenvalue � D 2, and so we do not yet have the three

linearly independent solutions needed for a fundamental matrix. But we note that A is the

same matrix whose matrix exponential

eAt
D

2

6

4

e2t 3te2t .4t C 9t2/e2t

0 e2t 6te2t

0 0 e2t

3

7

5

was calculated in Example 4. Hence, using Theorem 2, the solution of the initial value

problem in (29) is given by

x.t/ D eAt x.0/ D

2

6

4

e2t 3te2t .4t C 9t2/e2t

0 e2t 6te2t

0 0 e2t

3

7

5

2

6

4

19

29

39

3

7

5

D

2

6

4

.19C 243t C 351t2/e2t

.29C 234t/e2t

39e2t

3

7

5
:

Remark The same particular solution x.t/ as in Example 6 could be found using the gener-

alized eigenvector method of Section 7.6. One would start by finding the chain of generalized

eigenvectors

v1 D

2

4

18

0

0

3

5 ; v2 D

2

4

4

6

0

3

5 ; v3 D

2

4

0

0

1

3

5

corresponding to the triple eigenvalue � D 2 of the matrix A. Then one would—using

Eqs. (27) in Section 7.6—assemble the linearly independent solutions

x1.t/ D v1e
2t ; x2.t/ D .v1t C v2/e

2t ; x3.t/ D
�

1

2
v1t

2
C v2t C v3

�

e2t

of the differential equation x0 D Ax in (29). The final step would be to determine values of

the coefficients c1, c2, c3 so that the particular solution x.t/ D c1x1.t/C c2x2.t/C c3x3.t/

satisfies the initial condition in (29). At this point it should be apparent that—especially if the

matrix exponential eAt is readily available (for instance, from a computer algebra system)—

the method illustrated in Example 6 can well be more “computationally routine” than the

generalized eigenvector method.
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General Matrix Exponentials

The relatively simple calculation of eAt carried out in Example 4 (and used in Ex-

ample 6) was based on the observation that if

A D

2

4

2 3 4

0 2 6

0 0 2

3

5 ;

then A � 2I is nilpotent:

.A � 2I/3 D

2

4

0 3 4

0 0 6

0 0 0

3

5

3

D

2

4

0 0 0

0 0 0

0 0 0

3

5 D 0: (30)

A similar result holds for any 3 � 3 matrix A having a triple eigenvalue r , in

which case its characteristic equation reduces to .�� r/3 D 0. For such a matrix, an

explicit computation similar to that in Eq. (30) will show that

.A � rI/3 D 0: (31)

(This particular result is a special case of the Cayley-Hamilton theorem of Section

6.3, according to which every matrix satisfies its own characteristic equation.) Thus

the matrix A � rI is nilpotent, and it follows that

eAt
D e.rICA�rI/t

D erIt
� e.A�rI/t

D ert I �
�

IC .A � rI/t C 1

2
.A � rI/2t2

�

; (32)

the exponential series here terminating because of Eq. (31). In this way, we can

rather easily calculate the matrix exponential eAt for any square matrix having only

a single eigenvalue.

The calculation in Eq. (32) motivates a method of calculating eAt for any n�n

matrix A whatsoever. As we saw in Section 7.6, A has n linearly independent gen-

eralized eigenvectors u1, u2, : : : ; un. Each generalized eigenvector u is associated

with an eigenvalue � of A and has a rank r = 1 such that

.A � �I/ru D 0 but .A � �I/r�1u ¤ 0: (33)

(If r D 1, then u is an ordinary eigenvector such that Au D �u.)

Even if we do not yet know eAt explicitly, we can consider the function x.t/D

eAt u, which is a linear combination of the column vectors of eAt and is therefore

a solution of the linear system x0 D Ax with x.0/ D u. Indeed, we can calculate x

explicitly in terms of A, u, �, and r :

x.t/ D eAt u D e.�ICA��I/t u D e�Ite.A��I/t u

D e�t I

�

IC .A � �I/t C � � � C .A � �I/r�1
t r�1

.r � 1/Š
C � � �

�

u;

so

x.t/ D e�t

�

uC .A � �I/ut C .A � �I/2u
t2

2Š
C � � �

C .A � �I/r�1u
t r�1

.r � 1/Š

�

; (34)

using (33) and the fact that e�It D e�t I.
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If the linearly independent solutions x1.t/, x2.t/, : : : , xn.t/ of x0 D Ax are

calculated using (34) with the linearly independent generalized eigenvectors u1, u2,

: : : ; un, then the n � n matrix

ˆ.t/ D
�

x1.t/ x2.t/ � � � xn.t/
�

(35)

is a fundamental matrix for the system x0 D Ax. Finally, the specific fundamental

matrix X.t/ D ˆ.t/ˆ.0/�1 satisfies the initial condition X.0/ D I, and thus is the

desired matrix exponential eAt . We have therefore outlined a proof of the following

theorem.

THEOREM 3 Computation of e
At

Let u1, u2, : : : ; un be n linearly independent generalized eigenvectors of the n�n

matrix A. For each i , 15 i 5 n, let xi .t/ be the solution of x0 DAx given by (34),

substituting uD ui and the associated eigenvalue � and rank r of the generalized

eigenvector ui . If the fundamental matrix ˆ.t/ is defined by (35), then

eAt
D ˆ.t/ˆ.0/�1: (36)

Example 7 Find eAt if

A D

2

4

3 4 5

0 5 4

0 0 3

3

5 : (37)

Solution Theorem 3 would apply even if the matrix A were not upper triangular. But because A is

upper triangular, this fact enables us to see quickly that its characteristic equation is

.5 � �/.3 � �/2 D 0:

Thus A has the distinct eigenvalue �1 D 5 and the repeated eigenvalue �2 D 3.

CASE 1: �1 D 5. The eigenvector equation .A � �I/u D 0 for u D
�

a b c
�

T

is

.A � 5I/u D

2

4

�2 4 5

0 0 4

0 0 �2

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

The last two scalar equations 4c D 0 and �2c D 0 give c D 0. Then the first equation

�2aC 4b D 0 is satisfied by a D 2 and b D 1. Thus the eigenvalue �1 D 5 has the (ordinary)

eigenvector u1 D
�

2 1 0
�

T

. The corresponding solution of the system x0 D Ax is

x1.t/ D e
5t u1 D e

5t
�

2 1 0
�

T

: (38)

CASE 2: �2 D 3. The eigenvector equation .A � �I/u D 0 for u D
�

a b c
�

T

is

.A � 3I/u D

2

4

0 4 5

0 2 4

0 0 0

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

The first two equations 4bC5cD 0 and 2bC4cD 0 imply that bD cD 0, but leave a arbitrary.

Thus the eigenvalue �2 D 3 has the single (ordinary) eigenvector u2 D
�

1 0 0
�

T

. The

corresponding solution of the system x0 D Ax is

x2.t/ D e
3t u2 D e

3t
�

1 0 0
�

T

: (39)
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To look for a generalized eigenvector of rank r D 2 in Eq. (33), we consider the equation

.A � 3I/2u D

2

4

0 8 16

0 4 8

0 0 0

3

5

2

4

a

b

c

3

5 D

2

4

0

0

0

3

5 :

The first two equations 8b C 16c D 0 and 4b C 8c D 0 are satisfied by b D 2 and c D �1,

but leave a arbitrary. With a D 0 we get the generalized eigenvector u3 D
�

0 2 �1
�

T

of

rank r D 2 associated with the eigenvalue � D 3. Because .A � 3I/2u D 0, Eq. (34) yields

the third solution

x3.t/ D e
3t Œu3 C .A � 3I/u3t �

D e3t

0

@

2

4

0

2

�1

3

5C

2

4

0 4 5

0 2 4

0 0 0

3

5

2

4

0

2

�1

3

5 t

1

A D e3t

2

4

3t

2

�1

3

5 : (40)

With the solutions listed in Eqs. (39) and (40), the fundamental matrix

ˆ.t/ D
�

x1.t/ x2.t/ x3.t/
�

defined by Eq. (35) is

ˆ.t/ D

2

4

2e5t e3t 3te3t

e5t 0 2e3t

0 0 �e3t

3

5 with ˆ.0/�1
D

2

4

0 1 2

1 �2 �4

0 0 �1

3

5 :

Hence Theorem 3 finally yields

eAt
D ˆ.t/ˆ.0/�1

D

2

4

2e5t e3t 3te3t

e5t 0 2e3t

0 0 �e3t

3

5

2

4

0 1 2

1 �2 �4

0 0 �1

3

5

D

2

4

e3t 2e5t � 2e3t 4e5t � .4C 3t/e3t

0 e5t 2e5t � 2e3t

0 0 e3t

3

5 :

Remark As in Example 7, Theorem 3 suffices for the computation of eAt provided that a

basis consisting of generalized eigenvectors of A can be found. Alternatively, a computer

algebra system can be used as indicated in the project material for this section.

8.1 Problems
Find a fundamental matrix of each of the systems in Problems

1 through 8, then apply Eq. (8) to find a solution satisfying the

given initial conditions.

1. x0 D

�

2 1

1 2

�

x, x.0/ D

�

3

�2

�

2. x0 D

�

2 �1

�4 2

�

x, x.0/ D

�

2

�1

�

3. x0 D

�

2 �5

4 �2

�

x, x.0/ D

�

0

1

�

4. x0 D

�

3 �1

1 1

�

x, x.0/ D

�

1

0

�

5. x0 D

�

�3 �2

9 3

�

x, x.0/ D

�

1

�1

�

6. x0 D

�

7 �5

4 3

�

x, x.0/ D

�

2

0

�

7. x0 D

2

4

5 0 �6

2 �1 �2

4 �2 �4

3

5 x, x.0/ D

2

4

2

1

0

3

5

8. x0 D

2

4

3 2 2

�5 �4 �2

5 5 3

3

5 x, x.0/ D

2

4

1

0

�1

3

5
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Compute the matrix exponential eAt for each system x0 D Ax

given in Problems 9 through 20.

9. x0
1
D 5x1 � 4x2, x0

2
D 2x1 � x2

10. x0
1
D 6x1 � 6x2, x0

2
D 4x1 � 4x2

11. x0
1
D 5x1 � 3x2, x0

2
D 2x1

12. x0
1
D 5x1 � 4x2, x0

2
D 3x1 � 2x2

13. x0
1
D 9x1 � 8x2, x0

2
D 6x1 � 5x2

14. x0
1
D 10x1 � 6x2, x0

2
D 12x1 � 7x2

15. x0
1
D 6x1 � 10x2, x0

2
D 2x1 � 3x2

16. x0
1
D 11x1 � 15x2, x0

2
D 6x1 � 8x2

17. x0
1
D 3x1 C x2, x0

2
D x1 C 3x2

18. x0
1
D 4x1 C 2x2, x0

2
D 2x1 C 4x2

19. x0
1
D 9x1 C 2x2, x0

2
D 2x1 C 6x2

20. x0
1
D 13x1 C 4x2, x0

2
D 4x1 C 7x2

In Problems 21 through 24, show that the matrix A is nilpo-

tent and then use this fact to find (as in Example 3) the matrix

exponential eAt .

21. A D

�

1 �1

1 �1

�

22. A D

�

6 4

�9 �6

�

23. A D

2

4

1 �1 �1

1 �1 1

0 0 0

3

5 24. A D

2

4

3 0 �3

5 0 7

3 0 �3

3

5

Each coefficient matrix A in Problems 25 through 30 is the

sum of a nilpotent matrix and a multiple of the identity matrix.

Use this fact (as in Example 6) to solve the given initial value

problem.

25. x0 D

�

2 5

0 2

�

x; x.0/ D

�

4

7

�

26. x0 D

�

7 0

11 7

�

x; x.0/ D

�

5

�10

�

27. x0 D

2

4

1 2 3

0 1 2

0 0 1

3

5 x; x.0/ D

2

4

4

5

6

3

5

28. x0 D

2

4

5 0 0

10 5 0

20 30 5

3

5 x; x.0/ D

2

4

40

50

60

3

5

29. x0 D

2

6

6

4

1 2 3 4

0 1 6 3

0 0 1 2

0 0 0 1

3

7

7

5

x; x.0/ D

2

6

6

4

1

1

1

1

3

7

7

5

30. x0 D

2

6

6

4

3 0 0 0

6 3 0 0

9 6 3 0

12 9 6 3

3

7

7

5

x; x.0/ D

2

6

6

4

1

1

1

1

3

7

7

5

31. Suppose that the n � n matrices A and B commute; that

is, that AB D BA. Prove that eACB D eAeB. (Suggestion:

Group the terms in the product of the two series on the

right-hand side to obtain the series on the left.)

32. Deduce from the result of Problem 31 that, for ev-

ery square matrix A, the matrix eA is nonsingular with
�

eA
��1

D e�A.

33. Suppose that

A D

�

0 1

1 0

�

:

Show that A2n D I and that A2nC1 D A if n is a positive

integer. Conclude that

eAt
D I cosh t CA sinh t;

and apply this fact to find a general solution of x0 D Ax.

Verify that it is equivalent to the general solution found by

the eigenvalue method.

34. Suppose that

A D

�

0 2

�2 0

�

:

Show that eAt D I cos 2t C 1

2
A sin 2t . Apply this fact to

find a general solution of x0 D Ax, and verify that it is

equivalent to the solution found by the eigenvalue method.

Apply Theorem 3 to calculate the matrix exponential eAt for

each of the matrices in Problems 35 through 40.

35. A D

�

3 4

0 3

�

36. A D

2

4

1 2 3

0 1 4

0 0 1

3

5

37. A D

2

4

2 3 4

0 1 3

0 0 1

3

5 38. A D

2

4

5 20 30

0 10 20

0 0 5

3

5

39. A D

2

6

6

4

1 3 3 3

0 1 3 3

0 0 2 3

0 0 0 2

3

7

7

5

40. A D

2

6

6

4

2 4 4 4

0 2 4 4

0 0 2 4

0 0 0 3

3

7

7

5

Go to goo.gl/cSFGFU to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

8.1 Application Automated Matrix Exponential Solutions

If A is an n� nmatrix, then a computer algebra system can be used first to calculate

the fundamental matrix eAt for the system

x0
D Ax; (1)

then to calculate the matrix product x.t/ D eAt x0 to obtain a solution satisfying the

initial condition x.0/ D x0. For instance, suppose that we want to solve the initial
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value problem

x0
1
D 13x1 C 4x2;

x0
2
D 4x1 C 7x2I

x1.0/ D 11; x2.0/ D 23:

After the matrices

A D

�

13 4

4 7

�

; x0 D

�

11

23

�

(2)

have been entered, either the Maple command

with(linalg): exponential(A*t)

the Mathematica command

MatrixExp[A t]

or the MATLAB command

syms t, expm(A*t)

yields the matrix exponential

expAt D 1

5

"

e5t C 4e15t �2e5t C 2e15t

�2e5t C 2e15t 4e5t C e15t

#

:

Then either the Maple product multiply(expAt,x0), the Mathematica product

expAt.x0, or the MATLAB product expAt*x0 gives the solution vector

x D

"

�7e5t C 18e15t

14e5t C 9e15t

#

:

Obviously this, finally, is the way to do it!

Matrix exponentials also allow for convenient interactive exploration of the

system (1). For example, a version of the Mathematica commands

A = {{13, 4}, {4, 7}};

field = VectorPlot[A.{x, y}, {x, --25, 25},

{y, --25, 25}];

Manipulate[

curves = ParametricPlot[

MatrixExp[A t, #]&/@pt, {t, --1, 1},

PlotRange --> 25];

Show[curves, field],

{{pt, {{11, 23}, {20, --10}, {--20, --10},

{--20, 10}}}, Locator}]

was used to generate Fig. 8.1.1, which shows four solution curves of the system

(1) with the matrix A chosen as in Eq. (2). The initial conditions for each solution

curve—one of which initially passes through the point .11; 23/ of our initial value

problem, while the other three pass through the points .20;�10/, .�20;�10/, and

.20; 10/—are specified by a “locator point” which can be freely dragged to any

desired position in the phase plane, with the corresponding solution curve being

instantly redrawn.

(11, 23)

(20, –10)(–20, –10)

(–20, 10)

10–10

–10

10

20

–20

–20 20

FIGURE 8.1.1. Interactive display of
the linear system (1). As the “locator
points” are dragged to different
positions, the solution curves are
immediately redrawn, illustrating the
behavior of the system.



482 Chapter 8 Matrix Exponential Methods

Experimenting with such interactive displays can shed considerable light on

the behavior of linear systems. For example, notice the straight line solution in

Fig. 8.1.1; if you could drag the corresponding locator point around the phase plane,

what other straight line solution could you find? How could you have predicted this

by examining the matrix A?

For a three-dimensional example, solve the initial value problem

x0
1
D �149x1 � 50x2 � 154x3,

x0
2
D 537x1 C 180x2 C 546x3,

x0
3
D �27x1 � 9x2 � 25x3;

x1.0/ D 17; x2.0/ D 43; x3.0/ D 79:

And here’s a four-dimensional problem:

x0
1
D 4x1 C x2 C x3 C 7x4,

x0
2
D x1 C 4x2 C 10x3 C x4,

x0
3
D x1 C 10x2 C 4x3 C x4,

x0
4
D 7x1 C x2 C x3 C 4x4;

x1.0/ D 15; x2.0/ D 35; x3.0/ D 55; x4.0/ D 75:

If at this point you’re having too much fun with matrix exponentials to stop,

make up some problems of your own. For instance, choose any homogeneous linear

system appearing in this chapter and experiment with different initial conditions.

The exotic 5� 5 matrix A of the Section 7.6 application may suggest some interest-

ing possibilities.

8.2 Nonhomogeneous Linear Systems

In Section 5.5 we exhibited two techniques for finding a single particular solution

of a single nonhomogeneous nth-order linear differential equation—the method of

undetermined coefficients and the method of variation of parameters. Each of these

may be generalized to nonhomogeneous linear systems. In a linear system mod-

eling a physical situation, nonhomogeneous terms typically correspond to external

influences, such as the inflow of liquid to a cascade of brine tanks or an external

force acting on a mass-and-spring system.

Given the nonhomogeneous first-order linear system

x0
D AxC f.t/ (1)

where A is an n� n constant matrix and the “nonhomogeneous term” f.t/ is a given

continuous vector-valued function, we know from Theorem 4 of Section 7.2 that a

general solution of Eq. (1) has the form

x.t/ D xc.t/C xp.t/; (2)

where

� xc.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ is a general solution of the associ-

ated homogeneous system x0 D Ax, and

� xp.t/ is a single particular solution of the original nonhomogeneous system in

(1).

Preceding sections have dealt with xc.t/, so our task now is to find xp.t/.
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Undetermined Coefficients

First we suppose that the nonhomogeneous term f.t/ in (1) is a linear combination

(with constant vector coefficients) of products of polynomials, exponential func-

tions, and sines and cosines. Then the method of undetermined coefficients for

systems is essentially the same as for a single linear differential equation. We make

an intelligent guess as to the general form of a particular solution xp, then attempt

to determine the coefficients in xp by substitution in Eq. (1). Moreover, the choice

of this general form is essentially the same as in the case of a single equation (dis-

cussed in Section 5.5); we modify it only by using undetermined vector coefficients

rather than undetermined scalars. We will therefore confine the present discussion

to illustrative examples.

Example 1 Find a particular solution of the nonhomogeneous system

x0
D

�

3 2

7 5

�

xC

�

3

2t

�

: (3)

Solution The nonhomogeneous term f D
�

3 2t
�

T

is linear, so it is reasonable to select a linear trial

particular solution of the form

xp.t/ D at C b D

�

a1

a2

�

t C

�

b1

b2

�

: (4)

Upon substitution of x D xp in Eq. (3), we get

�

a1

a2

�

D

�

3 2

7 5

� �

a1t C b1

a2t C b2

�

C

�

3

2t

�

D

�

3a1 C 2a2

7a1 C 5a2 C 2

�

t C

�

3b1 C 2b2 C 3

7b1 C 5b2

�

:

We equate the coefficients of t and the constant terms (in both x1- and x2-components) and

thereby obtain the equations

3a1 C 2a2 D 0;

7a1 C 5a2 C 2 D 0;

3b1 C 2b2 C 3 D a1;

7b1 C 5b2 D a2:

(5)

We solve the first two equations in (5) for a1 D 4 and a2 D �6. With these values we can

then solve the last two equations in (5) for b1 D 17 and b2 D �25. Substitution of these

coefficients in Eq. (4) gives the particular solution xD
�

x1 x2

�

T

of (3) described in scalar

form by

r (gal/min)

r

r

r

Tank 1
V1 (gal)

Tank 2
V2

Tank 3
V3

FIGURE 8.2.1. The three brine
tanks of Example 2.

x1.t/ D 4t C 17;

x2.t/ D �6t � 25:

Example 2 Cascading brine tanks Figure 8.2.1 shows the system of three brine tanks investigated in

Example 2 of Section 7.3. The volumes of the three tanks are V1 D 20, V2 D 40, and V3 D 50

(gal), and the common flow rate is r D 10 (gal=min). Suppose that all three tanks contain

fresh water initially, but that the inflow to tank 1 is brine containing 2 pounds of salt per

gallon, so that 20 pounds of salt flow into tank 1 per minute. Referring to Eq. (18) in Section

7.3, we see that the vector x.t/D
�

x1.t/ x2.t/ x3.t/
�

T

of amounts of salt (in pounds) in

the three tanks at time t satisfies the nonhomogeneous initial value problem

dx

dt
D

2

4

�0:5 0 0

0:5 �0:25 0

0 0:25 �0:2

3

5 xC

2

4

20

0

0

3

5 ; x.0/ D

2

4

0

0

0

3

5 : (6)
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The nonhomogeneous term f D
�

20 0 0
�

T

here corresponds to the 20 lb=min inflow of

salt to tank 1, with no (external) inflow of salt into tanks 2 and 3.

Because the nonhomogeneous term is constant, we naturally select a constant trial

function xp D
�

a1 a2 a3

�

T

, for which x0
p
� 0. Then substitution of xD xp in (6) yields

the system
2

4

0

0

0

3

5 D

2

4

�0:5 0 0

0:5 �0:25 0

0 0:25 �0:2

3

5

2

4

a1

a2

a3

3

5C

2

4

20

0

0

3

5

that we readily solve for a1 D 40, a2 D 80, and a3 D 100 in turn. Thus our particular solution

is xp.t/ D
�

40 80 100
�

T

.

In Example 2 of Section 7.3 we found the general solution

xc.t/ D c1

2

4

3

�6

5

3

5 e�t=2
C c2

2

4

0

1

�5

3

5 e�t=4
C c3

2

4

0

0

1

3

5 e�t=5

of the associated homogeneous system, so a general solution x D xc C xp of the nonhomo-

geneous system in (6) is given by

x.t/ D c1

2

4

3

�6

5

3

5 e�t=2
C c2

2

4

0

1

�5

3

5 e�t=4
C c3

2

4

0

0

1

3

5 e�t=5
C

2

4

40

80

100

3

5 : (7)

When we apply the zero initial conditions in (6), we get the scalar equations

3c1 C 40 D 0,

�6c1 C c2 C 80 D 0,

5c1 � 5c2 C c3 C 100 D 0

that are readily solved for c1 D �
40

3
, c2 D �160, and c3 D �

2500

3
. Substituting these

coefficients in Eq. (7), we find that the amounts of salt in the three tanks at time t are given

by

x1.t/ D 40 � 40e
�t=2;

x2.t/ D 80C 80e
�t=2

� 160e�t=4;

x3.t/ D 100C
100

3

�

�2e�t=2
C 24e�t=4

� 25e�t=5

�

:

(8)

As illustrated in Fig. 8.2.2, we see the salt in each of the three tanks approaching, as t!C1,

a uniform density of 2 lb=gal—the same as the salt density in the inflow to tank 1.

6050403020100
t

x

0

40

120

80

20

100

60

x3(t) �  100

x2(t) �  80

x1(t) �  40

FIGURE 8.2.2. Solution curves for
the amount of salt defined in (8).

In the case of duplicate expressions in the complementary function and the

nonhomogeneous terms, there is one difference between the method of undeter-

mined coefficients for systems and for single equations (Rule 2 in Section 5.5). For

a system, the usual first choice for a trial solution must be multiplied not only by

the smallest integral power of t that will eliminate duplication, but also by all lower

(nonnegative integral) powers of t as well, and all the resulting terms must be in-

cluded in the trial solution.

Example 3 Consider the nonhomogeneous system

x0
D

�

4 2

3 �1

�

x �

�

15

4

�

te�2t : (9)

In Example 1 of Section 7.3 we found the solution

xc.t/ D c1

�

1

�3

�

e�2t
C c2

�

2

1

�

e5t (10)
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of the associated homogeneous system. A preliminary trial solution xp.t/D ate�2t C be�2t

exhibits duplication with the complementary function in (10). We would therefore select

xp.t/ D at2e�2t
C bte�2t

C ce�2t

as our trial solution, and we would then have six scalar coefficients to determine. It is simpler

to use the method of variation of parameters, our next topic.

Variation of Parameters

Recall from Section 5.5 that the method of variation of parameters may be applied

to a linear differential equation with variable coefficients and is not restricted to

nonhomogeneous terms involving only polynomials, exponentials, and sinusoidal

functions. The method of variation of parameters for systems enjoys the same flexi-

bility and has a concise matrix formulation that is convenient for both practical and

theoretical purposes.

We want to find a particular solution xp of the nonhomogeneous linear system

x0
D P.t/xC f.t/; (11)

given that we have already found a general solution

xc.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (12)

of the associated homogeneous system

x0
D P.t/x: (13)

We first use the fundamental matrix ˆ.t/ with column vectors x1, x2, : : : ; xn

to rewrite the complementary function in (12) as

xc.t/ D ˆ.t/c; (14)

where c denotes the column vector whose entries are the coefficients c1; c2; : : : ; cn.

Our idea is to replace the vector “parameter” c with a variable vector u.t/. Thus we

seek a particular solution of the form

xp.t/ D ˆ.t/u.t/: (15)

We must determine u.t/ so that xp does, indeed, satisfy Eq. (11).

The derivative of xp.t/ is (by the product rule)

x0
p
.t/ D ˆ0.t/u.t/Cˆ.t/u0.t/: (16)

Hence substitution of Eqs. (15) and (16) in (11) yields

ˆ0.t/u.t/Cˆ.t/u0.t/ D P.t/ˆ.t/u.t/C f.t/: (17)

But

ˆ0.t/ D P.t/ˆ.t/ (18)

because each column vector of ˆ.t/ satisfies Eq. (13). Therefore, Eq. (17) reduces

to

ˆ.t/u0.t/ D f.t/: (19)
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Thus it suffices to choose u.t/ so that

u0.t/ D ˆ.t/�1f.t/I (20)

that is, so that

u.t/ D

Z

ˆ.t/�1f.t/ dt: (21)

Upon substitution of (21) in (15), we finally obtain the desired particular solution,

as stated in the following theorem.

THEOREM 1 Variation of Parameters

If ˆ.t/ is a fundamental matrix for the homogeneous system x0 D P.t/x on some

interval where P.t/ and f.t/ are continuous, then a particular solution of the non-

homogeneous system

x0
D P.t/xC f.t/

is given by

xp.t/ D ˆ.t/

Z

ˆ.t/�1f.t/ dt: (22)

This is the variation of parameters formula for first-order linear systems. If

we add this particular solution and the complementary function in (14), we get the

general solution

x.t/ D ˆ.t/cCˆ.t/

Z

ˆ.t/�1f.t/ dt (23)

of the nonhomogeneous system in (11).

The choice of the constant of integration in Eq. (22) is immaterial, for we

need only a single particular solution. In solving initial value problems it often is

convenient to choose the constant of integration so that xp.a/D 0, and thus integrate

from a to t :

xp.t/ D ˆ.t/

Z

t

a

ˆ.s/�1f.s/ ds: (24)

If we add the particular solution of the nonhomogeneous problem

x0
D P.t/xC f.t/; x.a/ D 0

in (24) to the solution xc.t/ D ˆ.t/ˆ.a/�1xa of the associated homogeneous prob-

lem x0 D P.t/x, x.a/ D xa, we get the solution

x.t/ D ˆ.t/ˆ.a/�1xa Cˆ.t/

Z

t

a

ˆ.s/�1f.s/ ds (25)

of the nonhomogeneous initial value problem

x0
D P.t/xC f.t/; x.a/ D xa: (26)
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Equations (22) and (25) hold for any fundamental matrix ˆ.t/ of the homo-

geneous system x0 D P.t/x. In the constant-coefficient case P.t/ � A we can use

for ˆ.t/ the exponential matrix eAt —that is, the particular fundamental matrix such

that ˆ.0/ D I. Then, because .eAt /�1 D e�At , substitution of ˆ.t/ D eAt in (22)

yields the particular solution

xp.t/ D e
At

Z

e�At f.t/ dt (27)

of the nonhomogeneous system x0 D P.t/xC f.t/. Similarly, substitution of ˆ.t/ D

eAt in Eq. (25) with a D 0 yields the solution

x.t/ D eAt x0 C e
At

Z

t

0

e�At f.t/ dt (28)

of the initial value problem

x0
D P.t/xC f.t/; x.0/ D x0: (29)

Remark If we retain t as the independent variable but use s for the variable of integration,

then the solutions in (27) and (28) can be rewritten in the forms

xp.t/ D

Z

e�A.s�t/f.s/ ds and x.t/ D eAt x0 C

Z

t

0

e�A.s�t/f.s/ ds:

Example 4 Solve the initial value problem

x0
D

�

4 2

3 �1

�

x �

�

15

4

�

te�2t ; x.0/ D

�

7

3

�

: (30)

Solution The solution of the associated homogeneous system is displayed in Eq. (10). It gives the

fundamental matrix

ˆ.t/ D

�

e�2t 2e5t

�3e�2t e5t

�

with ˆ.0/�1
D

1

7

�

1 �2

3 1

�

:

It follows by Eq. (28) in Section 8.1 that the matrix exponential for the coefficient matrix A

in (30) is

eAt
D ˆ.t/ˆ.0/�1

D

�

e�2t 2e5t

�3e�2t e5t

�

�
1

7

�

1 �2

3 1

�

D
1

7

�

e�2t C 6e5t �2e�2t C 2e5t

�3e�2t C 3e5t 6e�2t C e5t

�

:

Then the variation of parameters formula in Eq. (28) gives

e�At x.t/ D x0 C

Z

t

0

e�Asf.s/ ds

D

�

7

3

�

C

Z

t

0

1

7

�

e2s C 6e�5s �2e2s C 2e�5s

�3e2s C 3e�5s 6e2s C e�5s

� �

�15se�2s

�4se�2s

�

ds

D

�

7

3

�

C

Z

t

0

�

�s � 14se�7s

3s � 7se�7s

�

ds

D

�

7

3

�

C
1

14

�

�4 � 7t2 C 4e�7t C 28te�7t

�2C 21t2 C 2e�7t C 14te�7t

�

:
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Therefore,

e�At x.t/ D 1

14

�

94 � 7t2 C 4e�7t C 28te�7t

40C 21t2 C 2e�7t C 14te�7t

�

:

Upon multiplication of the right-hand side here by eAt , we find that the solution of the initial

value problem in (30) is given by

x.t/ D 1

7

�

e�2t C 6e5t �2e�2t C 2e5t

�3e�2t C 3e5t 6e�2t C e5t

�

�
1

14

�

94 � 7t2 C 4e�7t C 28te�7t

40C 21t2 C 2e�7t C 14te�7t

�

D
1

14

�

.6C 28t � 7t2/e�2t C 92e5t

.�4C 14t C 21t2/e�2t C 46e5t

�

:

In conclusion, let us investigate how the variation of parameters formula in

(22) “reconciles” with the variation of parameters formula in Theorem 1 of Sec-

tion 5.5 for the second-order linear differential equation

y00
C Py0

CQy D f .t/: (31)

If we write y D x1, y0 D x0
1
D x2, y00 D x00

1
D x0

2
, then the single equation in (31) is

equivalent to the linear system x0
1
D x2, x0

2
D �Qx1 � Px2 C f .t/, that is,

x0
D P.t/xC f.t/; (32)

where

x D

�

x1

x2

�

D

�

y

y0

�

; P.t/ D

�

0 1

�Q �P

�

; and f.t/ D

�

0

f .t/

�

:

Now two linearly independent solutions y1 and y2 of the homogeneous system

y00CPy0CQy D 0 associated with (31) provide two linearly independent solutions

x1 D

�

y1

y0
1

�

and x2 D

�

y2

y0
2

�

of the homogeneous system x0 D P.t/x associated with (32). Observe that the de-

terminant of the fundamental matrix ˆ D
�

x1 x2

�

is simply the Wronskian

W D

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2

y0
1
y0

2

ˇ

ˇ

ˇ

ˇ

ˇ

of the solutions y1 and y2, so the inverse fundamental matrix is

ˆ�1
D

1

W

ˇ

ˇ

ˇ

ˇ

ˇ

y0
2
�y2

�y0
1

y1

ˇ

ˇ

ˇ

ˇ

ˇ

:

Therefore the variation of parameters formula xp D ˆ
R

ˆ�1fdt in (22) yields

"

yp

y0
p

#

D

"

y1 y2

y0
1

y0
2

#

Z

1

W

"

y0
2
�y2

�y0
1

y1

#"

0

f

#

dt

D

"

y1 y2

y0
1

y0
2

#

Z

1

W

"

�y2f

y1f

#

dt:
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The first component of this column vector is

yp D
�

y1 y2

�

Z

1

W

"

�y2f

y1f

#

dt D �y1

Z

y2f

W
dt C y2

Z

y1f

W
dt:

If, finally, we supply the independent variable t throughout, the final result on the

right-hand side here is simply the variation of parameters formula in Eq. (33) of

Section 5.5 (where, however, the independent variable is denoted by x).

8.2 Problems
Apply the method of undetermined coefficients to find a par-

ticular solution of each of the systems in Problems 1 through

14. If initial conditions are given, find the particular solution

that satisfies these conditions. Primes denote derivatives with

respect to t .

1. x0 D x C 2y C 3, y0 D 2x C y � 2

2. x0 D 2x C 3y C 5, y0 D 2x C y � 2t

3. x0 D 3x C 4y, y0 D 3x C 2y C t2I x.0/ D y.0/ D 0

4. x0 D 4x C y C et , y0 D 6x � y � et I x.0/ D y.0/ D 1

5. x0 D 6x � 7y C 10, y0 D x � 2y � 2e�t

6. x0 D 9x C y C 2et , y0 D �8x � 2y C tet

7. x0 D �3x C 4y C sin t , y0 D 6x � 5yI x.0/ D 1, y.0/ D 0

8. x0 D x � 5y C 2 sin t , y0 D x � y � 3 cos t

9. x0 D x � 5y C cos 2t , y0 D x � y

10. x0 D x � 2y, y0 D 2x � y C et sin t

11. x0 D 2x C 4y C 2, y0 D x C 2y C 3I x.0/ D 1, y.0/ D �1

12. x0 D x C y C 2t , y0 D x C y � 2t

13. x0 D 2x C y C 2et , y0 D x C 2y � 3et

14. x0 D 2x C y C 1, y0 D 4x C 2y C e4t

Two Brine Tanks

Problems 15 and 16 are similar to Example 2, but with two

brine tanks (having volumes V1 and V2 gallons as in Fig. 8.2.1)

instead of three tanks. Each tank initially contains fresh water,

and the inflow to tank 1 at the rate of r gallons per minute has

a salt concentration of c0 pounds per gallon. (a) Find the

amounts x1.t/ and x2.t/ of salt in the two tanks after t min-

utes. (b) Find the limiting (long-term) amount of salt in each

tank. (c) Find how long it takes for each tank to reach a salt

concentration of 1 lb=gal.

15. V1 D 100, V2 D 200, r D 10, c0 D 2

16. V1 D 200, V2 D 100, r D 10, c0 D 3

In Problems 17 through 34, use the method of variation of pa-

rameters (and perhaps a computer algebra system) to solve the

initial value problem

x0
D AxC f.t/; x.a/ D xa:

In each problem we provide the matrix exponential eAt as pro-

vided by a computer algebra system.

17. A D

�

6 �7

1 �2

�

, f.t/ D

�

60

90

�

, x.0/ D

�

0

0

�

,

eAt D
1

6

�

�e�t C 7e5t 7e�t � 7e5t

�e�t C e5t 7e�t � e5t

�

18. Repeat Problem 17, but with f.t/ replaced with

�

100t

�50t

�

.

19. A D

�

1 2

2 �2

�

, f.t/ D

�

180t

90

�

, x.0/ D

�

0

0

�

,

eAt D
1

5

�

e�3t C 4e2t �2e�3t C 2e2t

�2e�3t C 2e2t 4e�3t C e2t

�

20. Repeat Problem 19, but with f.t/ replaced with

�

75e2t

0

�

.

21. A D

�

4 �1

5 �2

�

, f.t/ D

�

18e2t

30e2t

�

, x.0/ D

�

0

0

�

,

eAt D
1

4

�

�e�t C 5e3t e�t � e3t

�5e�t C 5e3t 5e�t � e3t

�

22. Repeat Problem 21, but with f.t/ replaced with

�

28e�t

20e3t

�

.

23. A D

�

3 �1

9 �3

�

, f.t/ D

�

7

5

�

, x.0/ D

�

3

5

�

,

eAt D

�

1C 3t �t

9t 1 � 3t

�

24. Repeat Problem 23, but with f.t/ D

�

0

t�2

�

and x.1/ D
�

3

7

�

.

25. A D

�

2 �5

1 �2

�

, f.t/ D

�

4t

1

�

, x.0/ D

�

0

0

�

,

eAt D

�

cos t C 2 sin t �5 sin t

sin t cos t � 2 sin t

�

26. Repeat Problem 25, but with f.t/ D

�

4 cos t

6 sin t

�

and x.0/ D
�

3

5

�

.

27. A D

�

2 �4

1 �2

�

, f.t/ D

�

36t2

6t

�

, x.0/ D

�

0

0

�

,

eAt D

�

1C 2t �4t

t 1 � 2t

�
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28. Repeat Problem 27, but with f.t/ D

�

4 ln t

t�1

�

and x.1/ D
�

1

�1

�

.

29. A D

�

0 �1

1 0

�

, f.t/ D

�

sec t

0

�

, x.0/ D

�

0

0

�

,

eAt D

�

cos t � sin t

sin t cos t

�

30. A D

�

0 �2

2 0

�

, f.t/ D

�

t cos 2t

t sin 2t

�

, x.0/ D

�

0

0

�

,

eAt D

�

cos 2t � sin 2t

sin 2t cos 2t

�

31. A D

2

4

1 2 3

0 1 2

0 0 1

3

5, f.t/ D

2

4

0

0

6et

3

5, x.0/ D

2

4

0

0

0

3

5,

eAt D

2

4

et 2tet .3t C 2t2/et

0 et 2tet

0 0 et

3

5

32. A D

2

4

1 3 4

0 1 3

0 0 2

3

5, f.t/ D

2

4

0

0

2e2t

3

5, x.0/ D

2

4

0

0

0

3

5,

eAt D

2

4

et 3tet .�13 � 9t/et C 13e2t

0 et �3et C 3e2t

0 0 e2t

3

5

33. A D

2

6

6

4

0 4 8 0

0 0 3 8

0 0 0 4

0 0 0 0

3

7

7

5

, f.t/ D 30

2

6

6

4

t

t

t

t

3

7

7

5

, x.0/ D

2

6

6

4

0

0

0

0

3

7

7

5

,

eAt D

2

6

6

4

1 4t 8t C 6t2 32t2 C 8t3

0 1 3t 8t C 6t2

0 0 1 4t

0 0 0 1

3

7

7

5

34. A D

2

6

6

4

0 4 8 0

0 0 0 8

0 0 2 4

0 0 0 2

3

7

7

5

, f.t/ D

2

6

6

4

0

6t

0

e2t

3

7

7

5

, x.0/ D

2

6

6

4

4

2

2

1

3

7

7

5

,

eAt D

2

6

6

4

1 4t 4.�1C e2t / 16t.�1C e2t /

0 1 0 4.�1C e2t /

0 0 e2t 4te2t

0 0 0 e2t

3

7

7

5

Go to goo.gl/EEXGSc to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

8.2 Application Automated Variation of Parameters

The application of the variation of parameters formula in Eq. (28) encourages so

mechanical an approach as to encourage especially the use of a computer algebra

system. The following Mathematica commands were used to check the results in

Example 4 of this section.

A = {{4,2}, {3,--1}};

x0 = {{7}, {3}};

f[t ] := {{--15 t Exp[--2t]},{--4 t Exp[--2t]}};

exp[A ] := MatrixExp[A]

x = exp[A*t].(x0 + Integrate[exp[--A*s].f[s], {s,0,t}])

The matrix exponential commands illustrated in the Section 5.6 application provide

the basis for analogous Maple and MATLAB computations. You can then check

routinely the answers for Problems 17 through 34 of this section.

8.3 Spectral Decomposition Methods

Here, we present an alternative approach to the computation of the matrix exponen-

tial eAt , one that does not require that eigenvectors (including generalized ones) of

the n � n matrix A be found first. Assume that the characteristic polynomial of A is

written in the form

p.�/ D .�1/njA � �Ij; (1)

with leading term C�n. [Compare Eqs. (4) and (5) in Section 6.1.] If the (not

necessarily distinct) eigenvalues of A are �1; �2; : : : ; �n, then

p.�/ D .� � �1/.� � �2/ � � � .� � �n/: (2)
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The Cayley-Hamilton theorem (Section 6.3) says that any matrix A satisfies its own

characteristic equation; that is,

p.A/ D

n
Y

iD1

.A � �i I/ D 0 (3)

(where I denotes the n�n identity matrix). This crucial fact is the key to our method

in this section.

The way we proceed to calculate the matrix exponential eAt depends on

whether or not the eigenvalues of A are distinct.

The Case of Distinct Eigenvalues

If the eigenvalues of A are distinct (whether real or complex), the reciprocal 1=p.�/

has a partial fraction decomposition of the form

1

p.�/
D

a1

� � �1

C
a2

� � �2

C � � � C
an

� � �n

; (4)

where the numerators a1; a2; : : : ; an are constants. Indeed, these constants can be

found by multiplying Eq. (4) by p.�/ to get

1 D

n
X

iD1

aibi .�/ D a1b1.�/C a2b2.�/C � � � C anbn.�/; (5)

where the polynomial

bi .�/ D
p.�/

� � �i

D
Y

j 6Di

.� � �j / (6)

is obtained from the characteristic polynomial p.�/ upon deletion of the factor

.� � �i / corresponding to the i th eigenvalue.

It follows immediately from (6) that bi .�i / 6D 0, whereas bj .�i / D 0 if i 6D j

[because in this case bj .�i / includes the factor .�i ��i /]. Consequently, substitution

of � D �i into Eq. (5) gives the value

ai D
1

bi .�i /
D

1
Y

j 6Di

.�i � �j /
(7)

for i D 1; 2; : : : ; n. Given these coefficient values, we define the projection matrices

P1;P2; : : : ;Pn of the fixed n � n matrix A by writing

Pi D aibi .A/ D ai

Y

j 6Di

.A � �j I/ D

Y

j 6Di

.A � �j I/

Y

j 6Di

.�i � �j /
: (8)

These matrices have very special properties that are summarized by the following

proposition.
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PROPOSITION 1 The Projection Matrices of AA

If the eigenvalues of A are distinct, then the projection matrices P1;P2; : : : ;Pn

defined by (8) satisfy the relations

(i) P1 C P2 C � � � C Pn D I; (9)

(ii) Pi Pj D 0 if i 6D j ; (10)

(iii) P2

i
D Pi for each i D 1; 2; : : : ; n; (11)

(iv) Pi A D �i Pi for each i D 1; 2; : : : ; n. (12)

Remark In terms of the Kronecker delta defined by

ıij D

(

1 if i D j

0 if i 6D j
;

the conditions in (10) and (11) say that

Pi Pj D ıij Pi : (13)

Also, note that (12) says that Pi is effectively an “eigenmatrix” associated with the eigenvalue

�i of the matrix A—that is, multiplication of Pi by the matrix A (on the right) gives a scalar

multiple of Pi .

Proof: We get (9) when we substitute A for � in the algebraic identity (5)

and recall the definition in (8). If i 6D j , then the product

Pi Pj D aibi .A/ � aj bj .A/ D aiaj �

Y

r 6Di

.A � �rI/ �
Y

s 6Dj

.A � �sI/

evidently has the product p.A/D

n
Y

rD1

.A��rI/ as a factor. Hence (10) follows from

the Cayley-Hamilton result p.A/ D 0 in (3). Next, (11) follows when we multiply

(9) by Pi :

Pi D Pi I D Pi .P1 C P2 C � � � C Pn/ D

n
X

j D1

Pi Pj D P2

i
;

because of (10). Finally, to verify (12), we note that

Pi A � �i Pi D Pi � .A � �i I/

D ai

Y

j 6Di

.A � �j I/ � .A � �i I/

D ai

n
Y

j D1

.A � �j I/

D aip.A/

Pi A � �i Pi D 0;

by the use first of (8) and then of (2).
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The following theorem expresses the matrix A in terms of its projection ma-

trices.

THEOREM 1 The Spectral Decomposition of AA

If the n� nmatrix A has distinct eigenvalues �1; �2; : : : ; �n, and if the projection

matrices P1;P2; : : : ;Pn are defined as in (8), then

A D

n
X

iD1

�i Pi D �1P1 C �2P2 C � � � C �nPn: (14)

Proof: First, we multiply both sides in (9) on the right by A and get

A D P1AC P2AC � � � C PnA

D P1.A � �1IC �1I/C P2.A � �2IC �2I/C � � � C Pn.A � �nIC �nI/:

Then, we notice using (12) that

Pi .A � �i IC �i I/ D Pi .A � �i I/C �i Pi I D 0C �i Pi D �i Pi I

so (14) follows.

Remark 1 If we square both sides in (14) and then use (13), we get

.�1P1 C �2P2 C � � � C �nPn/ � .�1P1 C �2P2 C � � � C �nPn/ D

n
X

i;j D1

�i�j Pi Pj ;

or

A2
D

n
X

iD1

�2

i
Pi D �

2

1
P2 C �

2

2
P2 C � � � C �

2

n
Pn:

Continuing in this fashion, we deduce by repeated multiplication that

Ak
D

n
X

iD1

�k

i
Pi D �

k

1
P1 C �

k

2
P2 C � � � C �

k

n
Pn (15)

for any positive integer k. We will see in the proof of Theorem 2 that this single fact is all we

need to express the matrix exponential eAt simply and explicitly in terms of the eigenvalues

and projection matrices of the matrix A.

Remark 2 The relation in (15) holds also if k D 1

2
. For instance, if n D 2 and B D

p
�1 P1 C

p
�2 P2, then the basic properties of projection matrices (Proposition 1) and (14)

yield

B2
D

�

p

�1P1 C
p

�2P2

� �

p

�1P1 C
p

�2P2

�

D �1P2

1
C
p

�1�2 P1P2 C
p

�2�1 P2P1 C �2P2

2

D �1P1 C �2P2 D A:

It follows that if (for each i)
p

�i denotes either square root of the eigenvalue �i of A, then

p
A D

p

�1 P1 C
p

�2 P2 (16)

is a square root of the matrix A.
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THEOREM 2 The Matrix Exponential e
AAt

If the n� n matrix A has distinct eigenvalues and has the spectral decomposition

in (14), then

eAt
D

n
X

iD1

e�i t Pi D e
�1t P1 C e

�2t P2 C � � � C e
�nt Pn: (17)

Proof: By using (15) for k D 0; 1; 2; 3; : : : ; we find that

eAt
D

1
X

kD0

Aktk

kŠ
D

1
X

kD0

�

�k

1
P1 C �

k

2
P2 C � � � C �

k

n
Pn

� tk

kŠ

D

 

1
X

kD0

�k

1
tk

kŠ

!

P1 C

 

1
X

kD0

�k

2
tk

kŠ

!

P2 C � � � C

 

1
X

kD0

�k

n
tk

kŠ

!

Pn

D e�1t P1 C e
�2t P2 C � � � C e

�nt Pn;

so

eAt
D

n
X

iD1

e�i t Pi ;

as desired.

Example 1 If A is a 2 � 2 matrix with distinct eigenvalues �1 and �2, then Eqs. (7), (8), and (17) give

first

a1 D
1

�1 � �2

and a2 D
1

�2 � �1

; (18)

then

P1 D
A � �2I

�1 � �2

and P2 D
A � �1I

�2 � �1

; (19)

and finally

eAt
D e�1t P1 C e

�2t P2: (20)

Thus the calculation of the matrix exponential eAt using the projection matrices P1 and P2

reduces to a routine matter of numerical substitution.

Example 2 The matrix

A D

�

10 1

3 8

�

has the characteristic polynomial

p.�/ D .10 � �/.8 � �/ � 3 D �2
� 18�C 77 D .� � 7/.� � 11/;

so its eigenvalues are �1 D 7 and �2 D 11. Hence Eq. (19) gives

P1 D �
1

4

�

10 � 11 1

3 8 � 11

�

D �
1

4

�

�1 1

3 �3

�

and

P2 D
1

4

�

10 � 7 1

3 8 � 7

�

D
1

4

�

3 1

3 1

�

;

so Eq. (20) gives

eAt
D �

1

4
e7t

�

�1 1

3 �3

�

C
1

4
e11t

�

3 1

3 1

�

D
1

4

�

e7t C 3e11t �e7t C e11t

�3e7t C 3e11t 3e7t C e11t

�

:
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Example 3 The 3 � 3 matrix

A D

2

4

3 0 0

�4 6 2

16 �15 �5

3

5

has the characteristic polynomial

p.�/ D �jA � �Ij

D �.3 � �/Œ.6 � �/.�5 � �/C 30�

D �.3 � �/Œ�2
� ��

p.�/ D �.� � 1/.� � 3/:

Hence the eigenvalues of A are �1 D 0, �2 D 1, and �3 D 3. To find the matrix exponential

eAt
D e�1t P1 C e

�2t P2 C e
�3t P3; (21)

we need only calculate the three projections matrices P1, P2, and P3 defined by Eq. (8). But

first we need the coefficients

a1 D
1

.�1 � �2/.�1 � �3/
D

1

.0 � 1/.0 � 3/
D
1

3
;

a2 D
1

.�2 � �1/.�2 � �3/
D

1

.1 � 0/.1 � 3/
D �

1

2
; and

a3 D
1

.�3 � �1/.�3 � �2/
D

1

.3 � 0/.3 � 1/
D
1

6

that are given by Eq. (7). Then

P1 D a1.A � �2I/.A � �3I/

D
1

3

2

4

2 0 0

�4 5 2

16 �15 �6

3

5

2

4

0 0 0

�4 3 2

16 �15 �8

3

5 D

2

4

0 0 0

4 �5 2

�12 15 6

3

5 ;

P2 D a2.A � �1I/.A � �3I/

D �
1

2

2

4

3 0 0

�4 6 2

16 �15 �5

3

5

2

4

0 0 0

�4 3 2

16 �15 �8

3

5 D

2

4

0 0 0

�4 6 2

10 �15 �5

3

5 ;

and

P3 D a3.A � �1I/.A � �2I/

D
1

6

2

4

3 0 0

�4 6 2

16 �15 �5

3

5

2

4

2 0 0

�4 5 2

16 �15 �6

3

5 D

2

4

1 0 0

0 0 0

2 0 0

3

5 :

Finally, (17) gives the desired matrix exponential

eAt
D e0t

2

4

0 0 0

4 �5 2

�12 15 6

3

5C e1t

2

4

0 0 0

�4 6 2

10 �15 �5

3

5C e3t

2

4

1 0 0

0 0 0

2 0 0

3

5

D

2

4

e3t 0 0

4 � 4et �5C 6et �2C 2et

�12C 10et C 2e3t 15 � 15et 6 � 5et

3

5 :

As an application, the solution of the initial value problem

x0.t/ D Ax; x.0/ D x0 D
�

3 7 11
�

T
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is (by Theorem 2 in Section 8.1) given by

x.t/ D eAt x0 D

2

4

e3t 0 0

4 � 4et �5C 6et �2C 2et

�12C 10et C 2e3t 15 � 15et 6 � 5et

3

5

2

4

3

7

11

3

5

D

2

4

3e3t

�45C 52et

135 � 130et C 6e3t

3

5 :

Second-Order Linear Systems

Spectral decompositions of matrices also yield convenient solutions of second-order

matrix linear systems.

THEOREM 3 The Second-Order System x00 = AAx

If
p

A is a square root of the n � n constant coefficient matrix A, then a general

solution of the system x00.t/ D Ax is given by

x.t/ D e
p

A t c1 C e
�

p
A t c2; (22)

with c1 and c2 being arbitrary constant column vectors.

Proof: We need only note that, if x is given by (22), then

x0.t/ D
p

A e
p

A t c1 �
p

A e�
p

A t c2;

so that

x00.t/ D
p

A �
p

A e
p

A t c1 �
�

�
p

A
�

�
p

A e�
p

A t c2

D A
�

e
p

A t c1 C e
�

p
A t c2

�

D Ax:

Example 4 Mass-spring system Consider the mass-and-spring system shown in Fig. 8.3.1, withm1 D

2, m2 D 1, k1 D 100, and k2 D 50. As in Example 1 of Section 7.4, the position vector

x.t/D
�

x1.t/ x2.t/
�

T

satisfies the second-order system x00 DAx having coefficient matrix
k1 k2

Equilibrium positions

m1 m2

x1(t) x2(t)

FIGURE 8.3.1. The mass-and-

spring system of Example 4.

A D

�

�75 25

50 �50

�

:

We find that A has characteristic polynomial p.�/ D �2 C 125�C 2500 D .�C 25/.�C 100/

and hence has eigenvalues �1 D �25 and �2 D �100. By using (19), we calculate the

projection matrices

P1 D
A � �2I

�1 � �2

D
1

75

�

25 25

50 50

�

D
1

3

�

1 1

2 2

�

and

P2 D
A � �1I

�2 � �1

D �
1

75

�

�50 25

50 �25

�

D
1

3

�

2 �1

�2 1

�

of A. Starting with the spectral decomposition

p
A D

p

�1 P1 C
p

�2 P2 D 5iP1 C 10iP2

of
p

A, Theorem 2 yields

e
p

A t
D e5it P1 C e

10it P2 and e�
p

A t
D e�5it P1 C e

�10it P2:
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Consequently, Eq. (22) in Theorem 3 gives the following general solution:

x.t/ D e
p

A t c1 C e
�

p
A t c2 D

�

e5it P1 C e
10it P2

�

c1 C

�

e�5it P1 C e
�10it P2

�

c2

D P1

�

c1e
5it
C c2e

�5it

�

C P2

�

c1e
10it
C c2e

�10it

�

x.t/ D P1.a cos 5t C b sin 5t/C P2.a cos 10t C b sin 10t/; (23)

where a D c1 C c2 and b D i.c1 � c2/. Now

P1a D
1

3

�

1 1

2 2

� �

a1

a2

�

D
1

3
.a1 C a2/

�

1

2

�

and P1b D
1

3
.b1 C b2/

�

1

2

�

;

P2a D
1

3

�

2 �1

�2 1

� �

a1

a2

�

D
1

3
.2a1 � a2/

�

1

�1

�

and

P2b D
1

3
.2b1 � b2/

�

1

�1

�

:

Hence (23) finally takes the form

x.t/ D .a cos 5t C b sin 5t/

�

1

2

�

C .c cos 10t C d sin 10t/

�

1

�1

�

: (24)

This last equation expresses the motion x.t/ of the mass-spring system in Fig. 8.3.1 as a linear

combination of two natural modes of free oscillation. In the first mode, the two masses move

with frequency !1 D 5 in the same direction and with the amplitude ofm2 being twice that of

m1. In the second mode, the two masses move with frequency !2 D 10 in opposite directions

and with equal amplitudes of motion.

The General Case

Now we want to take into account the possibility of multiple eigenvalues. If the n�n

matrix A has distinct eigenvalues �1; �2; : : : ; �q having multiplicities m1; m2; : : : ;

mq (respectively), then the reciprocal 1=p.�/ has a partial-fraction decomposition

of the form

1

p.�/
D

a1.�/

.� � �1/m1
C

a2.�/

.� � �2/m2
C � � � C

aq.�/

.� � �q/mq
; (25)

where (for each i D 1; 2; : : : ; q) the numerator ai .�/ is a polynomial in � of degree

at most mi � 1. Once these numerator polynomials have been found, we can define

the projection matrices P1;P2; : : : ;Pq of A by the formula

Pi D ai .A/bi .A/ D ai .A/
Y

j 6Di

.A � �j I/mj ; (26)

analogous to Eq. (8), with the polynomial

bi .�/ D
p.�/

.� � �i /mi
D
Y

j 6Di

.� � �j /
mj (27)

being obtained from the characteristic polynomial p.�/ upon deletion of the factor

.� � �i /
mi corresponding to the i th eigenvalue. It follows immediately from (27)

that bi .�i / 6D 0, whereas bj .�i /D 0 if i 6D j [in which case bj .�i / includes the factor

.�i � �i /
mi ]. The following properties of the projection matrices P1;P2; : : : ;Pq are

established in essentially the same way as in the proof of Proposition 1.
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PROPOSITION 2 The Projection Matrices of AA

If the n � n matrix A has q distinct eigenvalues, then its projection matrices P1,

P2; : : : , Pq defined by (26) satisfy the conditions

(i) P1 C P2 C � � � C Pq D I; (28)

(ii) P2

i
D Pi for each i D 1; 2; : : : ; q; (29)

(iii) Pi Pj D 0 if i 6D j . (30)

In the distinct-eigenvalue case we saw in part (iv) of Proposition 1 that

Pi .A � �i I/ D 0 for each i . This may no longer be so if mi > 1, so we define

Ni D Pi .A � �i I/ (31)

for each i D 1; 2; : : : ; q. Part (ii) of the following proposition asserts that these

matrices are nilpotent. Note that Ni D 0 if mi D 1 (so that �i is a nonrepeated

eigenvalue).

PROPOSITION 3 The Nilpotent Matrices of AA

If the n� nmatrix A has q distinct eigenvalues, then the matrices N1;N2; : : : ;Nq

defined by (31) satisfy the conditions

(i) Ni Nj D 0 if i 6D j ; (32)

(ii) N
mi

i
D 0 for each i D 1; 2; : : : ; q. (33)

Proof: The product

Ni Nj D Pi .A � �i I/ � Pj .A � �j I/

D ai .A/
Y

r 6Di

.A � �rI/mr � .A � �i I/ � aj .A/
Y

s 6Dj

.A � �sI/ms � .A � �j I/

evidently has the characteristic polynomial

p.A/ D

q
Y

rD1

.A � �rI/mr D 0

as a factor, so (32) follows from the Cayley-Hamilton theorem. To verify (33), we

write

N
mi

i
D .Pi .A � �i I//

mi D P
mi

i
.A � �i I/

mi

D Pi � .A � �i I/
mi

D ai .A/
Y

j 6Di

.A � �j I/mj � .A � �i I/
mi

N
mi

i
D ai .A/p.A/ D 0;

using the Cayley-Hamilton theorem once again.

The following theorem expresses the matrix A in terms of its projection and

nilpotent matrices in the general case (allowing multiple eigenvalues).



8.3 Spectral Decomposition Methods 499

THEOREM 4 The Spectral Decomposition of AA

If the n � n matrix A has distinct eigenvalues �1; �2; : : : ; �q , the projection ma-

trices P1;P2; : : : ;Pq defined in (26), and the nilpotent matrices N1;N2; : : : ;Nq

defined in (31), then

A D

q
X

iD1

.�i Pi CNi /: (34)

(Note that this spectral decomposition reduces to A D

q
X

iD1

�i Pi in the distinct-

eigenvalue case of Theorem 1, where each Ni D 0.)

Proof: First, we multiply Eq. (28) by A,

A D P1AC P2AC � � � C PqA

D P1.�1ICA � �1I/C P2.�2ICA � �2I/C � � � C Pq.�qICA � �qI/:

Then we note from (31) that

Pi .�i ICA � �i I/ D �i Pi IC Pi .A � �i I/ D �i Pi CNi ;

so (34) follows.

As in the distinct-eigenvalue case of Theorem 2, the spectral decomposition of

Theorem 4 can be used to calculate the matrix exponential eAt in the general case.

THEOREM 5 The Matrix Exponential e
AAt

If the n � n matrix A has distinct eigenvalues �1; �2; : : : ; �q , the projection ma-

trices P1;P2; : : : ;Pq defined in (26), and the nilpotent matrices N1;N2; : : : ;Nq

defined in (31), then

eAt
D

q
X

iD1

 

e�i t Pi

mi �1
X

kD0

.A � �i I/
k
tk

kŠ

!

: (35)

Proof: First, we apply the fact that

q
X

iD1

Pi D I and write

eAt
D I eAt

D

q
X

iD1

Pi e
At : (36)

Then, the typical term in (36) is

Pi e
At
D Pi e

.�i ICA��i I/t
D e�i t I Pie

.A��i I/t

D e�i t Pi

 

IC

1
X

kD1

.A � �i I/
k
tk

kŠ

!

D e�i t

 

Pi C

1
X

kD1

Pi .A � �i I/
k
tk

kŠ

!
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D e�i t

 

Pi C

1
X

kD1

Pk

i
.A � �i I/

k
tk

kŠ

!

(because Pk

i
D Pi )

D e�i t

 

Pi C

1
X

kD1

Nk

i

tk

kŠ

!

(because Ni D Pi .A � �i I/)

D e�i t

 

Pi C

mi �1
X

kD1

Nk

i

tk

kŠ

!

(because N
mi

i
D 0)

D e�i t

 

Pi C

mi �1
X

kD1

Pi .A � �i I/
k
tk

kŠ

!

; so

Pie
At
D e�i t Pi

 

IC

mi �1
X

kD1

.A � �i I/
k
tk

kŠ

!

:

Finally, we get (35) upon substitution of this last expression for Pi e
At in (36).

The complicated formula in (35) looks much simpler in low-dimensional spe-

cial cases.

Example 5 If A is a 2 � 2 matrix with a single eigenvalue �1 of multiplicity 2 and corresponding

projection matrix P1, then (35) reduces to eAt D e�1t P1ŒI C .A � �1I/t �. In this case,

p.�/ D .� � �1/
2 so Eqs. (25)–(27) give a1.�/ D b1.�/ D 1, and hence P1 D I. It therefore

follows that

eAt
D e�1t ŒIC .A � �1I/t �:

Example 6 If A is a 3� 3matrix with an eigenvalue �1 of multiplicity 1, an eigenvalue �2 of multiplicity

2, and corresponding projection matrices P1 and P2, then (35) reduces to

eAt
D e�1t P1 C e

�2t P2ŒIC .A � �2I/t �:

Example 7 If A is a 5 � 5 matrix with an eigenvalue �1 of multiplicity 2 and an eigenvalue �2 of multi-

plicity 3, then (35) reduces to

eAt
D e�1t P1

�

IC .A � �1I/t
�

C e�2t P2

h

IC .A � �2I/t C 1

2
.A � �2I/2t2

i

:

In this case, the principal labor may consist of finding the characteristic polynomial and its

partial-fractions decomposition (25), so that Eqs. (26)–(27) can be used to find the projection

matrices P1 and P2.

Example 8 The matrix

A D

2

4

4 �2 1

2 0 1

2 �2 3

3

5 (37)

has the characteristic polynomial

p.�/ D �jA � �Ij D �3
� 7�2

C 16� � 12 D .� � 3/.� � 2/2

and thus has eigenvalues �1 D 3 of multiplicity 1 and �2 D 2 of multiplicity 2. The partial-

fractions decomposition

1

.� � 3/.� � 2/2
D

1

� � 3
C

1 � �

.� � 2/2

shows that a1.�/D 1 and a2 D 1��. Now b1.�/D .�� 2/
2 and b2.�/D �� 3, so (26) gives

P1 D a1.A/b1.A/ D .A � 2I/
2
D

2

4

2 �2 1

2 �2 1

2 �2 1

3

5

2

D

2

4

2 �2 1

2 �2 1

2 �2 1

3

5
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and

P2 D a2.A/b2.A/ D .I �A/.A � 3I/

D

2

4

�3 2 �1

�2 1 �1

�2 2 �2

3

5

2

4

1 �2 1

2 �3 1

2 �2 0

3

5 D

2

4

�1 2 �1

�2 3 �1

�2 2 0

3

5 :

The result of Example 6 therefore gives

eAt
D e�1t P1 C e

�2t P2

�

IC .A � �2I/t
�

D e3t

2

4

2 �2 1

2 �2 1

2 �2 1

3

5

C e2t

2

4

�1 2 �1

�2 3 �1

�2 2 0

3

5

0

@

2

4

1 0 0

0 1 0

0 0 1

3

5C

2

4

2 �2 1

2 �2 1

2 �2 1

3

5 t

1

A

eAt
D

2

4

2e3t � e2t �2e3t C 2e2t e3t � e2t

2e3t � 2e2t �2e3t C 3e2t e3t � e2t

2e3t � 2e2t �2e3t C 2e2t e3t

3

5 :

For instance, suppose we want to solve the initial value problem

x0.t/ D AxC f; x.0/ D x0; (38)

where A is the matrix in (37), x0 D
�

29 37 43
�

T

, and f D
�

60 0 0
�

T

. In this case,

the variation of parameters formula in Eq. (28) of Section 8.2 gives

e�At x.t/ D x0 C

Z

t

0

e�Asf ds

D

2

4

29

37

43

3

5

C

ˇ
t

0

2

4

2e�3s � e�2s �2e�3s C 2e�2s e�3s � e�2s

2e�3s � 2e�2s �2e�3s C 3e�2s e�3s � e�2s

2e�3s � 2e�2s �2e�3s C 2e�2s e�3s

3

5

2

4

60

0

0

3

5ds

D

2

4

29

37

43

3

5C

ˇ
t

0

2

4

120e�3s � 60e�2s

120e�3s � 120e�2s

120e�3s � 120e�2s

3

5ds

e�At x.t/ D

2

4

29

37

43

3

5C

2

4

10 � 40e�3t C 30e�2t

�20 � 40e�3t C 60e�2t

�20 � 40e�3t C 60e�2t

3

5 D

2

4

39 � 40e�3t C 30e�2t

17 � 40e�3t C 60e�2t

23 � 40e�3t C 60e�2t

3

5 :

Finally, multiplication by eAt yields the solution

x.t/ D

2

6

4

2e3t � e2t �2e3t C 2e2t e3t � e2t

2e3t � 2e2t �2e3t C 3e2t e3t � e2t

2e3t � 2e2t �2e3t C 2e2t e3t

3

7

5

2

6

4

39 � 40e�3t C 30e�2t

17 � 40e�3t C 60e�2t

23 � 40e�3t C 60e�2t

3

7

5

D

2

6

4

�10C 67e3t � 28e2t

20C 67e3t � 50e2t

20C 67e3t � 44e2t

3

7

5

of the initial value problem in (38).



502 Chapter 8 Matrix Exponential Methods

8.3 Problems
1–20. Use projection matrices to find a fundamental ma-

trix solution x.t/ D eAt of each of the linear systems

x0 D Ax given in Problems 1 through 20 of Section

7.3.

21–30. Use projection matrices to find a fundamental matrix

solution of each of the linear systems given in Prob-

lems 1 through 10 of Section 7.5.

31–40. Use projection matrices, as in Example 8 of this sec-

tion, to find the matrix exponentials and particular so-

lutions desired in Problems 21 through 30 (respec-

tively) of Section 8.2.

In each of Problems 41 through 46, use the spectral decom-

position methods of this section to find a fundamental matrix

solution x.t/ D eAt for the linear system x0 D Ax given in the

problem.

41. Problem 23 in Section 7.5

42. Problem 24 in Section 7.5

43. Problem 25 in Section 7.5

44. Problem 26 in Section 7.5

45. Problem 29 in Section 7.5

46. Problem 31 in Section 7.5

Use projection matrices as in Example 4 of this section to solve

Problems 47 through 50. You can simplify matters by taking

c1 D
�

1 0
�

T

and c2 D
�

0 1
�

T

to calculate a typical par-

ticular solution x.t/ D e
p

A t c1 C e
�

p
A t c2 that exhibits the

fundamental frequencies and modes of oscillation.

47. Problem 2 in Section 7.4

48. Problem 4 in Section 7.4

49. Problem 5 in Section 7.4

50. Problem 7 in Section 7.4
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9.1 Stability and the Phase Plane

Awide variety of natural phenomena are modeled by two-dimensional first-order

systems of the form

dx

dt
D F.x; y/;

dy

dt
D G.x; y/

(1)

in which the independent variable t does not appear explicitly. We usually think

of the dependent variables x and y as position variables in the xy-plane and of t

as a time variable. We will see that the absence of t on the right-hand sides in (1)

makes the system easier to analyze and its solutions easier to visualize. Using the

terminology of Section 2.2, such a system of differential equations in which the

derivative values are independent (or “autonomous”) of time t is often called an

autonomous system.

We generally assume that the functions F and G are continuously differen-

tiable in some region R of the xy-plane. Then according to the existence and

uniqueness theorems of Appendix A, given t0 and any point .x0; y0/ of R, there

is a unique solution x D x.t/, y D y.t/ of (1) that is defined on some open interval

.a; b/ containing t0 and satisfies the initial conditions

x.t0/ D x0; y.t0/ D y0: (2)

The equations x D x.t/, y D y.t/ then describe a parametrized solution curve in the

phase plane. Any such solution curve is called a trajectory of the system in (1), and

precisely one trajectory passes through each point of the region R (Problem 29). A

critical point of the system in (1) is a point .x?; y?/ such that

F.x?; y?/ D G.x?; y?/ D 0: (3)

503
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If .x?; y?/ is a critical point of the system, then the constant-valued functions

x.t/ � x?; y.t/ � y? (4)

have derivatives x0.t/ � 0 and y0.t/ � 0, and therefore automatically satisfy the

equations in (1). Such a constant-valued solution is called an equilibrium solution

of the system. Note that the trajectory of the equilibrium solution in (4) consists of

the single point .x?; y?/.

In some practical situations these very simple solutions and trajectories are

the ones of greatest interest. For example, suppose that the system x0 D F.x; y/,

y0 DG.x; y/models two populations x.t/ and y.t/ of animals that cohabit the same

environment, and perhaps compete for the same food or prey on one another; x.t/

might denote the number of rabbits and y.t/ the number of squirrels present at time

t . Then a critical point .x?; y?/ of the system specifies a constant population x? of

rabbits and a constant population y? of squirrels that can coexist with one another

in the environment. If .x0; y0/ is not a critical point of the system, then it is not

possible for constant populations of x0 rabbits and y0 squirrels to coexist; one or

both must change with time.

Example 1 Find the critical points of the system

dx

dt
D 14x � 2x2

� xy;

dy

dt
D 16y � 2y2

� xy:

(5)

Solution When we look at the equations

14x � 2x2
� xy D x.14 � 2x � y/ D 0;

16y � 2y2
� xy D y.16 � 2y � x/ D 0

that a critical point .x; y/ must satisfy, we see that either

x D 0 or 14 � 2x � y D 0; (6a)

and either

y D 0 or 16 � 2y � x D 0: (6b)

If x D 0 and y ¤ 0, then the second equation in (6b) gives y D 8. If y D 0 and x ¤ 0,

then the second equation in (6a) gives x D 7. If both x and y are nonzero, then we solve the

simultaneous equations

2x C y D 14; x C 2y D 16

for x D 4, y D 6. Thus the system in (5) has the four critical points .0; 0/, .0; 8/, .7; 0/, and

.4; 6/. If x.t/ and y.t/ denote the number of rabbits and the number of squirrels, respectively,

and if both populations are constant, it follows that the equations in (5) allow only three

nontrivial possibilities: either no rabbits and 8 squirrels, or 7 rabbits and no squirrels, or 4

rabbits and 6 squirrels. In particular, the critical point .4; 6/ describes the only possibility for

the coexistence of constant nonzero populations of both species.

Phase Portraits

If the initial point .x0; y0/ is not a critical point, then the corresponding trajectory is

a curve in the xy-plane along which the point .x.t/; y.t// moves as t increases. It

turns out that any trajectory not consisting of a single point is a nondegenerate curve

with no self-intersections (Problem 30). We can exhibit qualitatively the behavior

of solutions of the autonomous system in (1) by constructing a picture that shows
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its critical points together with a collection of typical solution curves or trajectories

in the xy-plane. Such a picture is called a phase portrait (or phase plane picture)

because it illustrates “phases” or xy-states of the system, and indicates how they

change with time.

Another way of visualizing the system is to construct a slope field in the xy-

phase plane by drawing typical line segments having slope

dy

dx
D
y0

x0
D
G.x; y/

F.x; y/
;

or a direction field by drawing typical vectors pointing the same direction at each

point .x; y/ as does the vector .F.x; y/;G.x; y//. Such a vector field then indicates

which direction along a trajectory to travel in order to “go with the flow” described

by the system.

Remark It is worth emphasizing that if our system of differential equations were not au-

tonomous, then its critical points, trajectories, and direction vectors would generally be

changing with time. In this event, the concrete visualization afforded by a (fixed) phase

portrait or direction field would not be available to us. Indeed, this is a principal reason why

an introductory study of nonlinear systems concentrates on autonomous ones.

Figure 9.1.1 shows a direction field and phase portrait for the rabbit-squirrel

system of Example 1. The direction field arrows indicate the direction of motion of

the point .x.t/; y.t//. We see that, given any positive initial numbers x0 6D 4 and

0 2 4 106 8
x

y

0

2

4

10

6

8

(0, 0)

(0, 8)

(7, 0)

(4, 6)

FIGURE 9.1.1. Direction field and

phase portrait for the rabbit–squirrel
system x

0 D 14x � 2x
2 � xy,

y
0 D 16y � 2y

2 � xy

of Example 1.

y0 6D 6 of rabbits and squirrels, this point moves along a trajectory approaching the

critical point .4; 6/ as t increases.

Example 2 For the system

x0
D x � y;

y0
D 1 � x2

(7)

we see from the first equation that x D y and from the second that x D ˙1 at each critical

point. Thus this system has the two critical points .�1;�1/ and .1; 1/. The direction field in

Fig. 9.1.2 suggests that trajectories somehow “circulate” counterclockwise around the critical

point .�1;�1/, whereas it appears that some trajectories may approach, while others recede

from, the critical point .1; 1/. These observations are corroborated by the phase portrait in

Fig. 9.1.3 for the system in (7).

0 1 2 3
x

y

–3 –2 –1
–3

–2

–1

3

0

1

2

(–1, –1)

(1, 1)

FIGURE 9.1.2. Direction field for
the system in Eq. (7).

0 4321
x

y

–4 –3 –2 –1
–4

–3

–2

–1

4

3

2

1

0

FIGURE 9.1.3. Phase portrait for
the system in Eq. (7).

Remark One could carelessly write the critical points in Example 2 as .˙1;˙1/ and then

jump to the erroneous conclusion that the system in (7) has four rather than just two criti-

cal points. When feasible, a sure-fire way to determine the number of critical points of an
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autonomous system is to plot the curves F.x; y/ D 0 and G.x; y/ D 0 and then note their

x = y

x = +1

x = –1

(+1, +1)

(–1, –1)

x 

F (x, y) = x – y = 0

G (x, y) = 1 – x2 = 0

G (x, y) = 1 – x2 = 0

y

FIGURE 9.1.4. The two critical
points .�1; �1/ and .C1; C1/ in

Example 2 as the intersection of the
curves F .x; y/ D x � y D 0 and

G.x; y/ D 1 � x
2 D 0.

intersections, each of which represents a critical point of the system. For instance, Fig. 9.1.4

shows the curve (line) F.x; y/ D x � y D 0 and the pair of lines x D C1 and x D �1 that

constitute the “curve” G.x; y/ D 1 � x2 D 0. The (only) two points of intersection .�1;�1/

and .C1;C1/ are then apparent.

Critical Point Behavior

The behavior of the trajectories near an isolated critical point of an autonomous

system is of particular interest. Figure 9.1.5 is a close-up view of Fig. 9.1.1 near the

critical point .4; 6/, and similarly Figs. 9.1.6 and 9.1.7 are close-ups of Fig. 9.1.3

near the critical points .�1;�1/ and .1; 1/, respectively. We notice immediately that

although the systems underlying these phase portraits are nonlinear, each of these

three magnifications bears a striking resemblance to one of the cases in our “gallery”

Fig. 7.4.16 of phase plane portraits for linear constant-coefficient systems. Indeed,

the three figures strongly resemble a nodal sink, a spiral source, and a saddle point,

respectively.

6.5

5.5
3.5 4 4.5

6

FIGURE 9.1.5. Close-up view of
Fig. 9.1.1 near the critical point .4; 6/.

–1.5 −1 –0.5
−1.5

−1

−0.5

FIGURE 9.1.6. Close-up view of
Fig. 9.1.3 near the critical point
.�1; �1/.

0.5 1 1.5
0.5

1

1.5

FIGURE 9.1.7. Close-up view of
Fig. 9.1.3 near the critical point .1; 1/.

These similarities are not a coincidence. Indeed, as we will explore in detail in

the next section, the behavior of a nonlinear system near a critical point is generally

similar to that of a corresponding linear constant-coefficient system near the origin.

For this reason it is useful to extend the language of nodes, sinks, etc., introduced in

Section 7.4 for linear constant-coefficient systems to the broader context of critical

points of the two-dimensional system (1).

In general, the critical point .x?; y?/ of the autonomous system in (1) is called

a node provided that

� Either every trajectory approaches .x?; y?/ as t ! C1 or every trajectory

recedes from .x?; y?/ as t !C1, and

� Every trajectory is tangent at .x?; y?/ to some straight line through the critical

point.

As with linear constant-coefficient systems, a node is said to be proper pro-

vided that no two different pairs of “opposite” trajectories are tangent to the same

straight line through the critical point. On the other hand, the critical point .4; 6/ of

the system in Eq. (5), shown in Figs. 9.1.1 and 9.1.5, is an improper node; as those

figures suggest, virtually all of the trajectories approaching this critical point share

a common tangent line at that point.
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Likewise, a node is further called a sink if all trajectories approach the critical

point, a source if all trajectories recede (or emanate) from it. Thus the critical point

.4; 6/ in Figs. 9.1.1 and 9.1.5 is a nodal sink, whereas the critical point .�1;�1/ in

Figs. 9.1.3 and 9.1.6 is a source (more specifically, a spiral source). The critical

point .1; 1/ in Figs. 9.1.3 and 9.1.7, on the other hand, is a saddle point.

Stability

A critical point .x?; y?/ of the autonomous system in (1) is said to be stable provided

that if the initial point .x0; y0/ is sufficiently close to .x?; y?/, then .x.t/; y.t// re-

mains close to .x?; y?/ for all t > 0. In vector notation, with x.t/ D .x.t/; y.t//, the

distance between the initial point x0 D .x0; y0/ and the critical point x? D .x?; y?/

is

jx0 � x?j D
p

.x0 � x?/2 C .y0 � y?/2 :

Thus the critical point x? is stable provided that, for each � > 0, there exists ı > 0

such that

jx0 � x?j < ı implies that jx.t/ � x?j < � (8)

for all t > 0. Note that the condition in (8) certainly holds if x.t/! x? as t !C1,

as in the case of a nodal sink such as the critical point .4; 6/ in Figs. 9.1.1 and 9.1.5.

Thus this nodal sink can also be described as a stable node.

The critical point .x?; y?/ is called unstable if it is not stable. The two critical

points at .�1;�1/ and .1; 1/ shown in Figs. 9.1.3, 9.1.6, and 9.1.7 are both unstable,

because, loosely speaking, in neither of these cases can we guarantee that a trajec-

tory will remain near the critical point simply by requiring the trajectory to begin

near the critical point.

If .x?; y?/ is a critical point, then the equilibrium solution x.t/ � x?, y.t/ �

y? is called stable or unstable depending on the nature of the critical point. In

applications the stability of an equilibrium solution is often a crucial matter. For

instance, suppose in Example 1 that x.t/ and y.t/ denote the rabbit and squirrel

populations, respectively, in hundreds. We will see in Section 9.3 that the critical

point .4; 6/ in Fig. 9.1.1 is stable. It follows that if we begin with close to 400

rabbits and 600 squirrels—rather than exactly these equilibrium values—then for

all future time there will remain close to 400 rabbits and close to 600 squirrels. Thus

the practical consequence of stability is that slight changes (perhaps due to random

births and deaths) in the equilibrium populations will not so upset the equilibrium

as to result in large deviations from the equilibrium solutions.

It is possible for trajectories to remain near a stable critical point without ap-

proaching it, as Example 3 shows.

Example 3 Undamped mass-spring system Consider a mass m that oscillates without damping on

a spring with Hooke’s constant k, so that its position function x.t/ satisfies the differential

equation x00 C !2x D 0 (where !2 D k=m). If we introduce the velocity y D dx=dt of the

mass, we get the system

dx

dt
D y;

dy

dt
D �!2x

(9)

with general solution

x.t/ D A cos!t C B sin!t; (10a)

y.t/ D �A! sin!t C B! cos!t: (10b)
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With C D
p
A2 C B2, A D C cos˛, and B D C sin˛, we can rewrite the solution in (10) in

the form

x.t/ D C cos.!t � ˛/; (11a)

y.t/ D �!C sin.!t � ˛/; (11b)

so it becomes clear that each trajectory other than the critical point .0; 0/ is an ellipse with

equation of the form

x2

C 2
C

y2

!2C 2
D 1: (12)

As illustrated by the phase portrait in Fig. 9.1.8 (where ! D 1

2
), each point .x0; y0/ other than

the origin in the xy-plane lies on exactly one of these ellipses, and each solution .x.t/; y.t//

traverses the ellipse through its initial point .x0; y0/ in the clockwise direction with period

P D 2�=!. (It is clear from (11) that x.t C P / D x.t/ and y.t C P / D y.t/ for all t .) Thus

each nontrivial solution of the system in (9) is periodic and its trajectory is a simple closed
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FIGURE 9.1.8. Direction field and
elliptical trajectories for the system

x
0 D y, y

0 D � 1
4

x. The origin is a
stable center.

curve enclosing the critical point at the origin.

Figure 9.1.9 shows a typical elliptical trajectory in Example 3, with its minor

x

y

ε

δ

FIGURE 9.1.9. If the initial point

.x0; y0/ lies within distance ı of the
origin, then the point .x.t/; y.t//

stays within distance � of the origin.

semiaxis denoted by ı and its major semiaxis by �. We see that if the initial point

.x0; y0/ lies within distance ı of the origin—so that its elliptical trajectory lies in-

side the one shown—then the point .x.t/; y.t// always remains within distance � of

the origin. Hence the origin .0; 0/ is a stable critical point of the system x0 D y,

y0 D �!2x, despite the fact that no single trajectory approaches the point .0; 0/. A

stable critical point surrounded by simple closed trajectories representing periodic

solutions is called a (stable) center.

Asymptotic Stability

The critical point .x?; y?/ is called asymptotically stable if it is stable and, more-

over, every trajectory that begins sufficiently close to .x?; y?/ also approaches

.x?; y?/ as t !C1. That is, there exists ı > 0 such that

jx � x?j < ı implies that lim
t!1

x.t/ D x?; (13)

where x0 D .x0; y0/, x? D .x?; y?/, and x.t/D .x.t/; y.t// is a solution with x.0/D

x0.

Remark The stable node shown in Figs. 9.1.1 and 9.1.5 is asymptotically stable because

every trajectory approaches the critical point .4; 6/ as t ! C1. The center .0; 0/ shown

in Fig. 9.1.8 is stable but not asymptotically stable, because however small an elliptical tra-

jectory we consider, a point moving around this ellipse does not approach the origin. Thus

asymptotic stability is a stronger condition than mere stability.

Now suppose that x.t/ and y.t/ denote coexisting populations for which

.x?; y?/ is an asymptotically stable critical point. Then if the initial populations

x0 and y0 are sufficiently close to x? and y?, respectively, it follows that both

lim
t!1

x.t/ D x? and lim
t!1

y.t/ D y?: (14)

That is, x.t/ and y.t/ actually approach the equilibrium populations x? and y? as

t !C1, rather than merely remaining close to those values.

For a mechanical system as in Example 3, a critical point represents an equi-

librium state of the system—if the velocity y D x0 and the acceleration y0 D x00

vanish simultaneously, then the mass remains at rest with no net force acting on

it. Stability of a critical point concerns the question whether, when the mass is

displaced slightly from its equilibrium, it
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1. Moves back toward the equilibrium point as t !C1,

2. Merely remains near the equilibrium point without approaching it, or

3. Moves farther away from equilibrium.

In Case 1 the critical [equilibrium] point is asymptotically stable; in Case 2

it is stable but not asymptotically so; in Case 3 it is an unstable critical point. A

marble balanced on the top of a soccer ball is an example of an unstable critical

point. A mass on a spring with damping illustrates the case of asymptotic stability

of a mechanical system. The mass-and-spring without damping in Example 3 is an

example of a system that is stable but not asymptotically stable.

Example 4 Damped mass-spring system Suppose that m D 1 and k D 2 for the mass and spring of

Example 3 and that the mass is attached also to a dashpot with damping constant c D 2. Then

its displacement function x.t/ satisfies the second-order equation

x00.t/C 2x0.t/C 2x.t/ D 0: (15)

With y D x0 we obtain the equivalent first-order system

dx

dt
D y;

dy

dt
D �2x � 2y

(16)

with critical point .0; 0/. The characteristic equation r2 C 2r C 2 D 0 of Eq. (15) has roots

�1C i and �1 � i , so the general solution of the system in (16) is given by

x.t/ D e�t .A cos t C B sin t / D Ce�t cos.t � ˛/; (17a)

y.t/ D e�t Œ.B � A/ cos t � .AC B/ sin t �

D �C
p
2e�t sin

�

t � ˛ C 1

4
�
�

;
(17b)

where C D
p
A2 C B2 and ˛ D tan�1.B=A/. We see that x.t/ and y.t/ oscillate between

positive and negative values and that both approach zero as t!C1. Thus a typical trajectory

spirals inward toward the origin, as illustrated by the spiral in Fig. 9.1.10.

x

y

FIGURE 9.1.10. A stable spiral
point and one nearby trajectory.

It is clear from (17) that the point .x.t/; y.t// approaches the origin as t !

C1, so it follows that .0; 0/ is an asymptotically stable critical point for the system

x0 D y, y0 D�2x � 2y of Example 4. Such an asymptotically stable critical point—

around which the trajectories spiral as they approach it—is called a stable spiral

point (or a spiral sink). In the case of a mass–spring–dashpot system, a spiral sink

is the manifestation in the phase plane of the damped oscillations that occur because

of resistance.

If the arrows in Fig. 9.1.10 were reversed, we would see a trajectory spiraling

outward from the origin. An unstable critical point—around which the trajectories

spiral as they emanate and recede from it—is called an unstable spiral point (or

a spiral source). Example 5 shows that it also is possible for a trajectory to spiral

into a closed trajectory—a simple closed solution curve that represents a periodic

solution (like the elliptical trajectories in Fig. 9.1.8).

Example 5 Consider the system

dx

dt
D �ky C x.1 � x2

� y2/;

dy

dt
D kx C y.1 � x2

� y2/:

(18)
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In Problem 21 we ask you to show that .0; 0/ is its only critical point. This system can be

solved explicitly by introducing polar coordinates x D r cos � , y D r sin � , as follows. First

note that
d�

dt
D

d

dt

�

arctan
y

x

�

D
xy0 � x0y

x2 C y2
:

Then substitute the expressions given in (18) for x0 and y0 to obtain

d�

dt
D
k.x2 C y2/

x2 C y2
D k:

It follows that

�.t/ D kt C �0; where �0 D �.0/: (19)

Then differentiation of r2 D x2 C y2 yields

2r
dr

dt
D 2x

dx

dt
C 2y

dy

dt

D 2.x2
C y2/.1 � x2

� y2/ D 2r2.1 � r2/;

so r D r.t/ satisfies the differential equation

dr

dt
D r.1 � r2/: (20)

In Problem 22 we ask you to derive the solution

r.t/ D
r0

q

r2

0
C .1 � r2

0
/e�2t

; (21)

where r0 D r.0/. Thus the typical solution of Eq. (18) may be expressed in the form

x.t/ D r.t/ cos.kt C �0/;

y.t/ D r.t/ sin.kt C �0/:
(22)

If r0 D 1, then Eq. (21) gives r.t/ � 1 (the unit circle). Otherwise, if r0 > 0, then Eq. (21)

implies that r.t/! 1 as t ! C1. Hence the trajectory defined in (22) spirals in toward the

unit circle if r0 > 1 and spirals out toward this closed trajectory if 0 < r0 < 1. Figure 9.1.11

shows a trajectory spiraling outward from the origin and four trajectories spiraling inward,

all approaching the closed trajectory r.t/ � 1.
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FIGURE 9.1.11. Spiral trajectories
of the system in Eq. (18) with k D 5.

Under rather general hypotheses it can be shown that there are four possibili-

ties for a nondegenerate trajectory of the autonomous system

dx

dt
D F.x; y/;

dy

dt
D G.x; y/:

The four possibilities are these:

1. .x.t/; y.t// approaches a critical point as t !C1.

2. .x.t/; y.t// is unbounded with increasing t .

3. .x.t/; y.t// is a periodic solution with a closed trajectory.

4. .x.t/; y.t// spirals toward a closed trajectory as t !C1.

As a consequence, the qualitative nature of the phase plane picture of the

trajectories of an autonomous system is determined largely by the locations of its

critical points and by the behavior of its trajectories near its critical points. We will

see in Section 9.2 that, subject to mild restrictions on the functions F and G, each

isolated critical point of the system x0 D F.x; y/, y0 D G.x; y/ resembles qualita-

tively one of the examples of this section—it is either a node (proper or improper),

a saddle point, a center, or a spiral point.
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9.1 Problems
In Problems 1 through 8, find the critical point or points of the

given autonomous system, and thereby match each system with

its phase portrait among Figs. 9.1.12 through 9.1.19.

1.
dx

dt
D 2x � y,

dy

dt
D x � 3y

2.
dx

dt
D x � y,

dy

dt
D x C 3y � 4

3.
dx

dt
D x � 2y C 3,

dy

dt
D x � y C 2

4.
dx

dt
D 2x � 2y � 4,

dy

dt
D x C 4y C 3

5.
dx

dt
D 1 � y2,

dy

dt
D x C 2y

6.
dx

dt
D 2 � 4x � 15y,

dy

dt
D 4 � x2
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FIGURE 9.1.12. Spiral point .�2; 1/

and saddle point .2; �1/.
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FIGURE 9.1.13. Spiral point
.1; �1/.
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FIGURE 9.1.14. Saddle point .0; 0/.
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FIGURE 9.1.15. Spiral point .0; 0/;
saddle points .�2; �1/ and .2; 1/.
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FIGURE 9.1.16. Node .1; 1/.
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FIGURE 9.1.17. Spiral point
.�1; �1/, saddle point .0; 0/, and
node .1; �1/.
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FIGURE 9.1.19. Stable center
.�1; 1/.
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7.
dx

dt
D x � 2y,

dy

dt
D 4x � x3

8.
dx

dt
D x � y � x2 C xy,

dy

dt
D �y � x2

In Problems 9 through 12, find each equilibrium solution

x.t/ � x0 of the given second-order differential equation

x00 C f .x; x0/ D 0. Use a computer system or graphing cal-

culator to construct a phase portrait and direction field for the

equivalent first-order system x0 D y, y0 D �f .x; y/. Thereby

ascertain whether the critical point .x0; 0/ looks like a center,

a saddle point, or a spiral point of this system.

9. x00 C 4x � x3 D 0

10. x00 C 2x0 C x C 4x3 D 0

11. x00 C 3x0 C 4 sin x D 0

12. x00 C .x2 � 1/x0 C x D 0

Solve each of the linear systems in Problems 13 through 20 to

determine whether the critical point .0; 0/ is stable, asymptot-

ically stable, or unstable. Use a computer system or graphing

calculator to construct a phase portrait and direction field for

the given system. Thereby ascertain the stability or instabil-

ity of each critical point, and identify it visually as a node, a

saddle point, a center, or a spiral point.

13.
dx

dt
D �2x,

dy

dt
D �2y

14.
dx

dt
D 2x,

dy

dt
D �2y

15.
dx

dt
D �2x,

dy

dt
D �y

16.
dx

dt
D x,

dy

dt
D 3y

17.
dx

dt
D y,

dy

dt
D �x

18.
dx

dt
D �y,

dy

dt
D 4x

19.
dx

dt
D 2y,

dy

dt
D �2x

20.
dx

dt
D y,

dy

dt
D �5x � 4y

21. Verify that .0; 0/ is the only critical point of the system in

Example 6.

22. Separate variables in Eq. (20) to derive the solution in

(21).

In Problems 23 through 26, a system dx=dt DF.x; y/, dy=dt D

G.x; y/ is given. Solve the equation

dy

dx
D
G.x; y/

F.x; y/

to find the trajectories of the given system. Use a computer sys-

tem or graphing calculator to construct a phase portrait and

direction field for the system, and thereby identify visually the

apparent character and stability of the critical point .0; 0/ of

the given system.

23.
dx

dt
D y,

dy

dt
D �x

24.
dx

dt
D y.1C x2 C y2/,

dy

dt
D x.1C x2 C y2/

25.
dx

dt
D 4y.1C x2 C y2/,

dy

dt
D �x.1C x2 C y2/

26.
dx

dt
D y3exCy ,

dy

dt
D �x3exCy

27. Let .x.t/; y.t// be a nontrivial solution of the nonau-

tonomous system

dx

dt
D y;

dy

dt
D tx:

Suppose that �.t/D x.t C / and  .t/D y.t C /, where

 6D 0. Show that .�.t/;  .t// is not a solution of the sys-

tem.

Problems 28 through 30 deal with the system

dx

dt
D F.x; y/;

dy

dt
D G.x; y/

in a region where the functions F and G are continuously dif-

ferentiable, so for each number a and point .x0; y0/, there is

a unique solution with x.a/ D x0 and y.a/ D y0.

28. Suppose that .x.t/; y.t// is a solution of the autonomous

system and that  6D 0. Define �.t/ D x.t C / and

 .t/ D y.t C /. Then show (in contrast with the situ-

ation in Problem 27) that .�.t/;  .t// is also a solution

of the system. Thus autonomous systems have the simple

but important property that a “t-translate” of a solution is

again a solution.

29. Let .x1.t/; y1.t// and .x2.t/; y2.t// be two solutions hav-

ing trajectories that meet at the point .x0; y0/; thus

x1.a/ D x2.b/ D x0 and y1.a/ D y2.b/ D y0 for some

values a and b of t . Define

x3.t/ D x2.t C / and y3.t/ D y2.t C /;

where  D b � a, so .x2.t/; y2.t// and .x3.t/; y3.t// have

the same trajectory. Apply the uniqueness theorem to

show that .x1.t/; y1.t// and .x3.t/; y3.t// are identical so-

lutions. Hence the original two trajectories are identical.

Thus no two different trajectories of an autonomous sys-

tem can intersect.

30. Suppose that the solution .x1.t/; y1.t// is defined for all t

and that its trajectory has an apparent self-intersection:

x1.a/ D x1.aC P / D x0; y1.a/ D y1.aC P / D y0

for some P > 0. Introduce the solution

x2.t/ D x1.t C P /; y2.t/ D y1.t C P /;

and then apply the uniqueness theorem to show that

x1.t C P / D x1.t/ and y1.t/ D y1.t C P /

for all t . Thus the solution .x1.t/; y1.t// is periodic with

period P and has a closed trajectory. Consequently a so-

lution of an autonomous system either is periodic with

a closed trajectory, or else its trajectory never passes

through the same point twice.
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Go to goo.gl/h1CNvC to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

9.1 Application Phase Plane Portraits and First-Order Equations

Consider a first-order differential equation of the form

dy

dx
D
G.x; y/

F.x; y/
; (1)

which may be difficult or impossible to solve explicitly. Its solution curves can

nevertheless be plotted as trajectories of the corresponding autonomous two-dimen-

sional system

dx

dt
D F.x; y/;

dy

dt
D G.x; y/: (2)

Most ODE plotters can routinely generate phase portraits for autonomous systems.

Those appearing in this chapter were plotted using programs that are free for edu-

cational use. For instance, the MATLAB program pplane illustrated in Fig. 9.1.20

can be found at math.rice.edu/~dfield. Another freely available and user-

friendly MATLAB-based ODE package with similar graphical capabilities is Iode

(www.math.uiuc.edu/iode).

FIGURE 9.1.20. MATLAB pplane menu entries to plot a direction field and phase

portrait for the system x
0 D y, y

0 D � 1
4

x (as shown in Fig. 9.1.8).

For example, to plot solution curves for the differential equation

dy

dx
D
2xy � y2

x2 � 2xy
; (3)

we plot trajectories of the system

dx

dt
D x2

� 2xy;
dy

dt
D 2xy � y2: (4)

The result is shown in Fig. 9.1.21.
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FIGURE 9.1.21. Phase portrait for
the system in Eq. (4).

http://www.math.uiuc.edu/iode
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Plot similarly some solution curves for the following differential equations.

1.
dy

dx
D
4x � 5y

2x C 3y

2.
dy

dx
D
4x � 5y

2x � 3y

3.
dy

dx
D
4x � 3y

2x � 5y

4.
dy

dx
D

2xy

x2 � y2

5.
dy

dx
D
x2 C 2xy

y2 C 2xy

Now construct some examples of your own. Homogeneous functions like

those in Problems 1 through 5—rational functions with numerator and denominator

of the same degree in x and y—work well. The differential equation

dy

dx
D

25x C y.1 � x2 � y2/.4 � x2 � y2/

�25y C x.1 � x2 � y2/.4 � x2 � y2/
(5)

of this form generalizes Example 5 in this section but would be inconvenient to solve

explicitly. Its phase portrait (Fig. 9.1.22) shows two periodic closed trajectories—

the circles r D 1 and r D 2. Anyone want to try for three circles?
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FIGURE 9.1.22. Phase portrait for
the system corresponding to Eq. (5).

9.2 Linear and Almost Linear Systems

We now discuss the behavior of solutions of the autonomous system

dx

dt
D f .x; y/;

dy

dt
D g.x; y/ (1)

near an isolated critical point .x0; y0/ where f .x0; y0/ D g.x0; y0/ D 0. A critical

point is called isolated if some neighborhood of it contains no other critical point.

We assume throughout that the functions f and g are continuously differentiable in

a neighborhood of .x0; y0/.

We can assume without loss of generality that x0 D y0 D 0. Otherwise, we

make the substitutions u D x � x0, v D y � y0. Then dx=dt D du=dt and dy=dt D

dv=dt , so (1) is equivalent to the system

du

dt
D f .uC x0; v C y0/ D f1.u; v/;

dv

dt
D g.uC x0; v C y0/ D g1.u; v/

(2)

that has .0; 0/ as an isolated critical point.

Example 1 The system

dx

dt
D 3x � x2

� xy D x.3 � x � y/;

dy

dt
D y C y2

� 3xy D y.1 � 3x C y/

(3)



9.2 Linear and Almost Linear Systems 515

has .1; 2/ as one of its critical points. We substitute u D x � 1, v D y � 2; that is, x D uC 1,

y D v C 2. Then

3 � x � y D 3 � .uC 1/ � .v C 2/ D �u � v

and

1 � 3x C y D 1 � 3.uC 1/C .v C 2/ D �3uC v;

so the system in (3) takes the form

du

dt
D .uC 1/.�u � v/ D �u � v � u2

� uv;

dv

dt
D .v C 2/.�3uC v/ D �6uC 2v C v2

� 3uv

(4)

and has .0; 0/ as a critical point. If we can determine the trajectories of the system in (4)

near .0; 0/, then their translations under the rigid motion that carries .0; 0/ to .1; 2/ will be

the trajectories near .1; 2/ of the original system in (3). This equivalence is illustrated by

Fig. 9.2.1 (which shows computer-plotted trajectories of the system in (3) near the critical

point .1; 2/ in the xy-plane) and Fig. 9.2.2 (which shows computer-plotted trajectories of the

system in (4) near the critical point .0; 0/ in the uv-plane).

0 21
x

y

3

2

(1, 2)

1

FIGURE 9.2.1. The saddle point
.1; 2/ for the system

x
0 D 3x � x

2 � xy,
y

0 D y C y
2 � 3xy

of Example 1.

0 1
u

v

–1
–1

1

0

(0, 0)

FIGURE 9.2.2. The saddle point
.0; 0/ for the equivalent system

u
0 D �u � v � u

2 � uv,
v

0 D �6u C 2v C v
2 � 3uv.

Figures 9.2.1 and 9.2.2 illustrate the fact that the solution curves of the xy-

system in (1) are simply the images under the translation .u; v/! .uC x0; v C y0/

of the solution curves of the uv-system in (2). Near the two corresponding critical

points—.x0; y0/ in the xy-plane and .0; 0/ in the uv-plane—the two phase portraits

therefore look precisely the same.

Linearization Near a Critical Point

Taylor’s formula for functions of two variables implies that—if the function f .x; y/

is continuously differentiable near the fixed point .x0; y0/—then

f .x0 C u; y0 C v/ D f .x0; y0/C fx.x0; y0/uC fy.x0; y0/v C r.u; v/

where the “remainder term” r.u; v/ satisfies the condition

lim
.u;v/!.0;0/

r.u; v/
p
u2 C v2

D 0:

(Note that this condition would not be satisfied if r.u; v/ were a sum containing

either constants or terms linear in u or v. In this sense, r.u; v/ consists of the

“nonlinear part” of the function f .x0 C u; y0 C v/ of u and v.)
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If we apply Taylor’s formula to both f and g in (2) and assume that .x0; y0/

is an isolated critical point so f .x0; y0/ D g.x0; y0/ D 0, the result is

du

dt
D fx.x0; y0/uC fy.x0; y0/v C r.u; v/;

dv

dt
D gx.x0; y0/uC gy.x0; y0/v C s.u; v/

(5)

where r.u; v/ and the analogous remainder term s.u; v/ for g satisfy the condition

lim
.u;v/!.0;0/

r.u; v/
p
u2 C v2

D lim
.u;v/!.0;0/

s.u; v/
p
u2 C v2

D 0: (6)

Then, when the values u and v are small, the remainder terms r.u; v/ and s.u; v/ are

very small (being small even in comparison with u and v).

If we drop the presumably small nonlinear terms r.u; v/ and s.u; v/ in (5), the

result is the linear system

du

dt
D fx.x0; y0/uC fy.x0; y0/v;

dv

dt
D gx.x0; y0/uC gy.x0; y0/v

(7)

whose constant coefficients (of the variables u and v) are the values fx.x0; y0/,

fy.x0; y0/ and gx.x0; y0/, gy.x0; y0/ of the functions f and g at the critical point

.x0; y0/. Because (5) is equivalent to the original (and generally) nonlinear system

u0 D f .x0 C u; y0 C v/, v
0 D g.x0 C u; y0 C v/ in (2), the conditions in (6) suggest

that the linearized system in (7) closely approximates the given nonlinear system

when .u; v/ is close to .0; 0/.

Assuming that .0; 0/ is also an isolated critical point of the linear system,

and that the remainder terms in (5) satisfy the condition in (6), the original system

x0 D f .x; y/, y0 D g.x; y/ is said to be almost linear at the isolated critical point

.x0; y0/. In this case, its linearization at .x0; y0/ is the linear system in (7). In

short, this linearization is the linear system u0 D Ju (where u D
�

u v
�

T

) whose

coefficient matrix is the so-called Jacobian matrix

J.x0; y0/ D

�

fx.x0; y0/ fy.x0; y0/

gx.x0; y0/ gy.x0; y0/

�

(8)

of the functions f and g, evaluated at the point .x0; y0/.

Example 1 Continued In (3) we have f .x; y/ D 3x � x2 � xy and g.x; y/ D y C y2 � 3xy. Then

J.x; y/ D

�

3 � 2x � y �x

�3y 1C 2y � 3x

�

; so J.1; 2/ D

�

�1 �1

�6 2

�

:

Hence the linearization of the system x0 D 3x � x2 � xy, y0 D y C y2 � 3xy at its critical

point .1; 2/ is the linear system

u0
D �u � v;

v0
D �6uC 2v

that we get when we drop the nonlinear (quadratic) terms in (4).

It turns out that in most (though not all) cases, the phase portrait of an al-

most linear system near an isolated critical point .x0; y0/ strongly resembles—

qualitatively—the phase portrait of its linearization near the origin. Consequently,

the first step toward understanding general autonomous systems is to characterize

the isolated critical points of linear systems.
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Isolated Critical Points of Linear Systems

In Section 7.4 we used the eigenvalue-eigenvector method to study the 2 � 2 linear

system
�

x0

y0

�

D

�

a b

c d

� �

x

y

�

(9)

with constant-coefficient matrix A. The origin .0; 0/ is a critical point of the system

regardless of the matrix A, but if we further require the origin to be an isolated

critical point, then (by a standard theorem of linear algebra) the determinant ad �bc

of A must be nonzero. From this we can conclude that the eigenvalues �1 and �2 of

A must be nonzero. Indeed, �1 and �2 are the solutions of the characteristic equation

det.A � �I/ D

ˇ

ˇ

ˇ

ˇ

a � � b

c d � �

ˇ

ˇ

ˇ

ˇ

D .a � �/.d � �/ � bc

D �2
� .aC d/�C .ad � bc/

D 0;

(10)

and the fact that ad � bc 6D 0 implies that � D 0 cannot satisfy Eq. (10); hence �1

and �2 are nonzero. The converse also holds: If the characteristic equation (10) has

no zero solution—that is, if all eigenvalues of the matrix A are nonzero—then the

determinant ad � bc is nonzero. Altogether, we conclude that the origin .0; 0/ is an

isolated critical point of the system in Eq. (9) if and only if the eigenvalues of A are

all nonzero. Our study of this critical point can be divided, therefore, into the five

cases listed in the table in Fig. 9.2.3. This table also gives the type of each critical

point as found in Section 7.4 and shown in our gallery Fig. 7.4.16 of typical phase

plane portraits:

Eigenvalues of A Type of Critical Point

Real, unequal, same sign

Real, unequal, opposite sign

Real and equal

Complex conjugate

Pure imaginary

Improper node

Saddle point

Proper or improper node

Spiral point

Center

FIGURE 9.2.3. Classification of the isolated critical point .0; 0/

of the two-dimensional system x0 D Ax.

Closer inspection of that gallery, however, reveals a striking connection be-

tween the stability properties of the critical point and the eigenvalues �1 and �2

of A. For example, if �1 and �2 are real, unequal, and negative, then the origin

represents an improper nodal sink; because all trajectories approach the origin as

t !C1, the critical point is asymptotically stable. Likewise, if �1 and �2 are real,

equal, and negative, then the origin is a proper nodal sink, and is again asymptot-

ically stable. Further, if �1 and �2 are complex conjugate with negative real part,

then the origin is a spiral sink, and is once more asymptotically stable. All three of

these cases can be captured as follows: If the real parts of �1 and �2 are negative,

then the origin is an asymptotically stable critical point. (Of course, if �1 and �2

are real, then they are themselves their real parts.)

Similar generalizations can be made for other combinations of signs of the real

parts of �1 and �2. Indeed, as the table in Fig. 9.2.4 shows, the stability properties
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Real Parts of �1 and �2 Type of Critical Point Stability

Both negative

� Proper or improper

nodal sink, or

� Spiral sink

Asymptotically

stable

Both zero (i.e., �1 and �2 are

given by ˙iq with q 6D 0)
� Center

Stable but not

asymptotically

stable

At least one positive

� Proper or improper

nodal source, or

� Spiral source, or

� Saddle point

Unstable

FIGURE 9.2.4. Stability properties of the isolated critical point .0; 0/ of the system in Eq. (9) with
nonzero eigenvalues �1 and �2.

of the isolated critical point .0; 0/ of the system in Eq. (9) are always determined

by the signs of the real parts of �1 and �2. (We invite you to use the gallery in

Fig. 7.4.16 to verify the conclusions in the table.)

These findings are summarized in Theorem 1:

THEOREM 1 Stability of Linear Systems

Let �1 and �2 be the eigenvalues of the coefficient matrix A of the two-

dimensional linear system

dx

dt
D ax C by;

dy

dt
D cx C dy

(11)

with ad � bc 6D 0. Then the critical point .0; 0/ is

1. Asymptotically stable if the real parts of �1 and �2 are both negative;

2. Stable but not asymptotically stable if the real parts of �1 and �2 are both

zero (so that �1, �2 D ˙qi);

3. Unstable if either �1 or �2 has a positive real part.

It is worthwhile to consider the effect of small perturbations in the coefficients

a, b, c, and d of the linear system in (11), which result in small perturbations of the

eigenvalues �1 and �2. If these perturbations are sufficiently small, then positive

real parts (of �1 and �2) remain positive and negative real parts remain negative.

Hence an asymptotically stable critical point remains asymptotically stable and an

unstable critical point remains unstable. Part 2 of Theorem 1 is therefore the only

case in which arbitrarily small perturbations can affect the stability of the critical

point .0; 0/. In this case pure imaginary roots �1, �2 D ˙qi of the characteristic

equation can be changed to nearby complex roots �1, �2 D r ˙ si , with r either

positive or negative (see Fig. 9.2.5). Consequently, a small perturbation of the coef-

ficients of the linear system in (11) can change a stable center to a spiral point that

is either unstable or asymptotically stable.

λ1 = qiλ

µ1 = r + siµ

µ2 = r– si

λ2 = – qiλ

µ

FIGURE 9.2.5. The effects of
perturbation of pure imaginary roots.

There is one other exceptional case in which the type, though not the stability,

of the critical point .0; 0/ can be altered by a small perturbation of its coefficients.
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This is the case with �1 D �2, equal roots that (under a small perturbation of the

x

y

λ1 = λ2µ1 µ2

Distinct
real roots

Complex
conjugate
roots

λ λ µ

µ2µ

µ

µ1µ

FIGURE 9.2.6. The effects of
perturbation of real equal roots.

coefficients) can split into two roots �1 and �2, which are either complex conjugates

or unequal real roots (see Fig. 9.2.6). In either case, the sign of the real parts of the

roots is preserved, so the stability of the critical point is unaltered. Its nature may

change, however; the table in Fig. 9.2.3 shows that a node with �1 D �2 can either

remain a node (if �1 and �2 are real) or change to a spiral point (if �1 and �2 are

complex conjugates).

Suppose that the linear system in (11) is used to model a physical situation. It

is unlikely that the coefficients in (11) can be measured with total accuracy, so let

the unknown precise linear model be

dx

dt
D a?x C b?y;

dy

dt
D c?x C d?y:

(11?)

If the coefficients in (11) are sufficiently close to those in (11?), it then follows from

the discussion in the preceding paragraph that the origin .0; 0/ is an asymptotically

stable critical point for (11) if it is an asymptotically stable critical point for (11?),

and is an unstable critical point for (11) if it is an unstable critical point for (11?).

Thus in this case the approximate model in (11) and the precise model in (11?)

predict the same qualitative behavior (with respect to asymptotic stability versus

instability).

Almost Linear Systems

Recall that we first encountered an almost linear system at the beginning of this

section, when we used Taylor’s formula to write the nonlinear system (2) in the

almost linear form (5) which led to the linearization (7) of the original nonlinear

system. In case the nonlinear system x0 D f .x; y/, y0 D g.x; y/ has .0; 0/ as an

isolated critical point, the corresponding almost linear system is

dx

dt
D ax C by C r.x; y/;

dy

dt
D cx C dy C s.x; y/;

(12)

where a D fx.0; 0/, b D fy.0; 0/ and c D gx.0; 0/, d D gy.0; 0/; we assume also

that ad � bc 6D 0. Theorem 2, which we state without proof, essentially implies

that—with regard to the type and stability of the critical point .0; 0/—the effect of

the small nonlinear terms r.x; y/ and s.x; y/ is equivalent to the effect of a small

perturbation in the coefficients of the associated linear system in (11).

THEOREM 2 Stability of Almost Linear Systems

Let �1 and �2 be the eigenvalues of the coefficient matrix of the linear system in

(11) associated with the almost linear system in (12). Then

1. If �1 D �2 are equal real eigenvalues, then the critical point .0; 0/ of (12) is

either a node or a spiral point, and is asymptotically stable if �1 D �2 < 0,

unstable if �1 D �2 > 0.

2. If �1 and �2 are pure imaginary, then .0; 0/ is either a center or a spiral

point, and may be either asymptotically stable, stable, or unstable.
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THEOREM 2 Stability of Almost Linear Systems (Continued)

3. Otherwise—that is, unless �1 and �2 are either real equal or pure

imaginary—the critical point .0; 0/ of the almost linear system in (12) is

of the same type and stability as the critical point .0; 0/ of the associated

linear system in (11).

Thus, if �1 6D �2 and Re.�1/ 6D 0, then the type and stability of the critical point

of the almost linear system in (12) can be determined by analysis of its associated

linear system in (11), and only in the case of pure imaginary eigenvalues is the

stability of .0; 0/ not determined by the linear system. Except in the sensitive cases

�1 D �2 and Re.�i / D 0, the trajectories near .0; 0/ will resemble qualitatively

those of the associated linear system—they enter or leave the critical point in the

same way, but may be “deformed” in a nonlinear manner. The table in Fig. 9.2.7

summarizes the situation.

Eigenvalues �1, �2 Type of Critical Point of

for the Linearized System the Almost Linear System

�1 < �2 < 0

�1 D �2 < 0

�1 < 0 < �2

�1 D �2 > 0

�1 > �2 > 0

�1, �2 D a˙ bi (a < 0)

�1, �2 D a˙ bi (a > 0)

�1, �2 D ˙bi

Stable improper node

Stable node or spiral point

Unstable saddle point

Unstable node or spiral point

Unstable improper node

Stable spiral point

Unstable spiral point

Stable or unstable, center or spiral point

FIGURE 9.2.7. Classification of critical points of an almost linear system.

An important consequence of the classification of cases in Theorem 2 is that

a critical point of an almost linear system is asymptotically stable if it is an asymp-

totically stable critical point of the linearization of the system. Moreover, a critical

point of the almost linear system is unstable if it is an unstable critical point of the

linearized system. If an almost linear system is used to model a physical situation,

then—apart from the sensitive cases mentioned earlier—it follows that the qualita-

tive behavior of the system near a critical point can be determined by examining its

linearization.

Example 2 Determine the type and stability of the critical point .0; 0/ of the almost linear system

dx

dt
D 4x C 2y C 2x2

� 3y2;

dy

dt
D 4x � 3y C 7xy:

(13)

Solution The characteristic equation for the associated linear system (obtained simply by deleting the

quadratic terms in (13)) is

.4 � �/.�3 � �/ � 8 D .� � 5/.�C 4/ D 0;

so the eigenvalues �1 D 5 and �2 D �4 are real, unequal, and have opposite signs. By our

discussion of this case we know that .0; 0/ is an unstable saddle point of the linear system,

and hence by Part 3 of Theorem 2, it is also an unstable saddle point of the almost linear
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0.0 0.2 0.4
x

y

–0.4

–0.2

–0.4 –0.2

0.0

0.2

0.4

FIGURE 9.2.8. Trajectories of the

linearized system of Example 2.

0.0 0.2 0.4
x

y

–0.4

–0.2

–0.4 –0.2

0.0

0.2

0.4

FIGURE 9.2.9. Trajectories of the

original almost linear system of
Example 2.

0 1 2 3
x

y

–3 –2 –1
–3

–2

–1

3

0

1

2

FIGURE 9.2.10. Phase portrait for
the almost linear system in Eq. (13).

system in (13). The trajectories of the linear system near .0; 0/ are shown in Fig. 9.2.8, and

those of the nonlinear system in (13) are shown in Fig. 9.2.9. Figure 9.2.10 shows a phase

portrait of the nonlinear system in (13) from a “wider view.” In addition to the saddle point

at .0; 0/, there are spiral points near the points .0:279; 1:065/ and .0:933;�1:057/, and a node

near .�2:354;�0:483/.

We have seen that the system x0 D f .x; y/, y0 D g.x; y/ with isolated critical

point .x0; y0/ transforms via the substitution x D uC x0, y D v C y0 to an equiv-

alent uv-system with corresponding critical point .0; 0/ and linearization u0 D Ju,

whose coefficient matrix J is the Jacobian matrix in (8) of the functions f and g at

.x0; y0/. Consequently we need not carry out the substitution explicitly; instead, we

can proceed directly to calculate the eigenvalues of J preparatory to application of

Theorem 2.

Example 3 Determine the type and stability of the critical point .4; 3/ of the almost linear system

dx

dt
D 33 � 10x � 3y C x2;

dy

dt
D �18C 6x C 2y � xy:

(14)

Solution With f .x; y/ D 33� 10x � 3y C x2, g.x; y/ D �18C 6x C 2y � xy and x0 D 4, y0 D 3 we

have

J.x; y/ D

�

�10C 2x �3

6 � y 2 � x

�

; so J.4; 3/ D

�

�2 �3

3 �2

�

:

The associated linear system

du

dt
D �2u � 3v;

dv

dt
D 3u � 2v

(15)

has characteristic equation .� C 2/2 C 9 D 0, with complex conjugate roots � D �2 ˙ 3i .

Hence .0; 0/ is an asymptotically stable spiral point of the linear system in (15), so Theo-

rem 2 implies that .4; 3/ is an asymptotically stable spiral point of the original almost linear

system in (14). Figure 9.2.11 shows some typical trajectories of the linear system in (15),

and Fig. 9.2.12 shows how this spiral point fits into the phase portrait for the original almost

linear system in (14).
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0 21
u

v

–2 –1
–2

–1

2

1

0

FIGURE 9.2.11. Spiral trajectories of the

linear system in Eq. (15).

4 1210860 2
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FIGURE 9.2.12. Phase portrait for the

almost linear system in Eq. (14).

9.2 Problems
In Problems 1 through 10, apply Theorem 1 to determine the

type of the critical point .0; 0/ and whether it is asymptotically

stable, stable, or unstable. Verify your conclusion by using a

computer system or graphing calculator to construct a phase

portrait for the given linear system.

1.
dx

dt
D �2x C y,

dy

dt
D x � 2y

2.
dx

dt
D 4x � y,

dy

dt
D 2x C y

3.
dx

dt
D x C 2y,

dy

dt
D 2x C y

4.
dx

dt
D 3x C y,

dy

dt
D 5x � y

5.
dx

dt
D x � 2y,

dy

dt
D 2x � 3y

6.
dx

dt
D 5x � 3y,

dy

dt
D 3x � y

7.
dx

dt
D 3x � 2y,

dy

dt
D 4x � y

8.
dx

dt
D x � 3y,

dy

dt
D 6x � 5y

9.
dx

dt
D 2x � 2y,

dy

dt
D 4x � 2y

10.
dx

dt
D x � 2y,

dy

dt
D 5x � y

Each of the systems in Problems 11 through 18 has a single

critical point .x0; y0/. Apply Theorem 2 to classify this crit-

ical point as to type and stability. Verify your conclusion by

using a computer system or graphing calculator to construct a

phase portrait for the given system.

11.
dx

dt
D x � 2y,

dy

dt
D 3x � 4y � 2

12.
dx

dt
D x � 2y � 8,

dy

dt
D x C 4y C 10

13.
dx

dt
D 2x � y � 2,

dy

dt
D 3x � 2y � 2

14.
dx

dt
D x C y � 7,

dy

dt
D 3x � y � 5

15.
dx

dt
D x � y,

dy

dt
D 5x � 3y � 2

16.
dx

dt
D x � 2y C 1,

dy

dt
D x C 3y � 9

17.
dx

dt
D x � 5y � 5,

dy

dt
D x � y � 3

18.
dx

dt
D 4x � 5y C 3,

dy

dt
D 5x � 4y C 6

In Problems 19 through 28, investigate the type of the criti-

cal point .0; 0/ of the given almost linear system. Verify your

conclusion by using a computer system or graphing calculator

to construct a phase portrait. Also, describe the approximate

locations and apparent types of any other critical points that

are visible in your figure. Feel free to investigate these addi-

tional critical points; you can use the computational methods

discussed in the application material for this section.

19.
dx

dt
D x � 3y C 2xy,

dy

dt
D 4x � 6y � xy

20.
dx

dt
D 6x � 5y C x2,

dy

dt
D 2x � y C y2

21.
dx

dt
D x C 2y C x2 C y2,

dy

dt
D 2x � 2y � 3xy

22.
dx

dt
D x C 4y � xy2,

dy

dt
D 2x � y C x2y

23.
dx

dt
D 2x � 5y C x3,

dy

dt
D 4x � 6y C y4

24.
dx

dt
D 5x � 3y C y.x2 C y2/,

dy

dt
D 5x C y.x2 C y2/

25.
dx

dt
D x � 2y C 3xy,

dy

dt
D 2x � 3y � x2 � y2

26.
dx

dt
D 3x � 2y � x2 � y2,

dy

dt
D 2x � y � 3xy

27.
dx

dt
D x � y C x4 � y2,

dy

dt
D 2x � y C y4 � x2

28.
dx

dt
D 3x � y C x3 C y3,

dy

dt
D 13x � 3y C 3xy
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In Problems 29 through 32, find all critical points of the given

system, and investigate the type and stability of each. Verify

your conclusions by means of a phase portrait constructed us-

ing a computer system or graphing calculator.

29.
dx

dt
D x � y,

dy

dt
D x2 � y

30.
dx

dt
D y � 1,

dy

dt
D x2 � y

31.
dx

dt
D y2 � 1,

dy

dt
D x3 � y

32.
dx

dt
D xy � 2,

dy

dt
D x � 2y

Bifurcations

The term bifurcation generally refers to something “splitting

apart.” With regard to differential equations or systems involv-

ing a parameter, it refers to abrupt changes in the character of

the solutions as the parameter is changed continuously. Prob-

lems 33 through 36 illustrate sensitive cases in which small

perturbations in the coefficients of a linear or almost linear

system can change the type or stability (or both) of a critical

point.

33. Consider the linear system

dx

dt
D �x � y;

dy

dt
D x C �y:

Show that the critical point .0; 0/ is (a) a stable spiral

point if � < 0; (b) a center if � D 0; (c) an unstable spi-

ral point if � > 0. Thus small perturbations of the system

x0 D �y, y0 D x can change both the type and stability of

the critical point. Figures 9.2.13(a)–(e) illustrate the loss

of stability that occurs at � D 0 as the parameter increases

from � < 0 to � > 0.

34. Consider the linear system

dx

dt
D �x C �y;

dy

dt
D x � y:

Show that the critical point .0; 0/ is (a) a stable spiral

point if � < 0; (b) a stable node if 0 5 � < 1. Thus

small perturbations of the system x0 D�x, y0 D x � y can

change the type of the critical point .0; 0/ without chang-

ing its stability.

35. This problem deals with the almost linear system

dx

dt
D y C hx.x2

C y2/;
dy

dt
D �x C hy.x2

C y2/;
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FIGURE 9.2.13(a). Stable spiral with
� D �0:2.
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FIGURE 9.2.13(b). Stable spiral with
� D �0:05.
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FIGURE 9.2.13(c). Stable center
with � D 0.
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FIGURE 9.2.13(d). Unstable spiral
with � D 0:05.
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FIGURE 9.2.13(e). Unstable spiral
with � D 0:2.
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in illustration of the sensitive case of Theorem 2, in which

the theorem provides no information about the stability of

the critical point .0; 0/. (a) Show that .0; 0/ is a center of

the linear system obtained by setting h D 0. (b) Suppose

that h 6D 0. Let r2 D x2 C y2, then apply the fact that

x
dx

dt
C y

dy

dt
D r

dr

dt

to show that dr=dt D hr3. (c) Suppose that h D �1.

Integrate the differential equation in (b); then show that

r ! 0 as t !C1. Thus .0; 0/ is an asymptotically stable

critical point of the almost linear system in this case. (d)

Suppose that h D C1. Show that r ! C1 as t increases,

so .0; 0/ is an unstable critical point in this case.

36. This problem presents the famous Hopf bifurcation for the

almost linear system

dx

dt
D �x C y � x.x2

C y2/;

dy

dt
D �x C �y � y.x2

C y2/;

which has imaginary characteristic roots � D ˙i if � D 0.

(a) Change to polar coordinates as in Example 5 of Sec-

tion 9.1 to obtain the system r 0 D r.� � r2/, � 0 D �1. (b)

Separate variables and integrate directly to show that if

� 5 0, then r.t/! 0 as t !C1, so in this case the origin

is a stable spiral point. (c) Show similarly that if � > 0,

then r.t/ !
p
� as t ! C1, so in this case the origin is

an unstable spiral point. The circle r.t/ �
p
� itself is a

closed periodic solution or limit cycle. Thus a limit cycle

of increasing size is spawned as the parameter � increases

through the critical value 0.

37. In the case of a two-dimensional system that is not almost

linear, the trajectories near an isolated critical point can

exhibit a considerably more complicated structure than

those near the nodes, centers, saddle points, and spiral

points discussed in this section. For example, consider

the system

dx

dt
D x.x3

� 2y3/;

dy

dt
D y.2x3

� y3/

(16)

having .0; 0/ as an isolated critical point. This system is

not almost linear because .0; 0/ is not an isolated critical

point of the trivial associated linear system x0 D 0, y0 D 0.

Solve the homogeneous first-order equation

dy

dx
D
y.2x3 � y3/

x.x3 � 2y3/

to show that the trajectories of the system in (16) are folia

of Descartes of the form

x3
C y3

D 3cxy;

where c is an arbitrary constant (Fig. 9.2.14).

x

y

FIGURE 9.2.14. Trajectories of the

system in Eq. (16).

38. First note that the characteristic equation of the 2 � 2 ma-

trix A can be written in the form �2 � T �CD D 0, where

D is the determinant of A and the trace T of the matrix A

is the sum of its two diagonal elements. Then apply The-

orem 1 to show that the type of the critical point .0; 0/

of the system x0 D Ax is determined—as indicated in

Fig. 9.2.15 —by the location of the point .T;D/ in the

trace-determinant plane with horizontal T -axis and verti-

cal D-axis.

T

D

Center

Spiral
sink

Spiral
source

Nodal
sink

Nodal
source

Saddle point

T 
2 = 4D

FIGURE 9.2.15. The critical point .0; 0/ of the system

x0 D Ax is a

� spiral sink or source if the point .T; D/ lies above
the parabola T

2 D 4D but off the D-axis;

� stable center if .T; D/ lies on the positive D-axis;
� nodal sink or source if .T; D/ lies between the

parabola and the T -axis;
� saddle point if .T; D/ lies beneath the T -axis.
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Go to goo.gl/rSaApM to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

9.2 Application Phase Plane Portraits of Almost Linear Systems

Interesting and complicated phase portraits often result from simple nonlinear per-

turbations of linear systems. For instance, Fig. 9.2.16 shows a phase portrait for the

almost linear system

dx

dt
D �y cos.x C y � 1/;

dy

dt
D x cos.x � y C 1/:

(1)

Among the seven critical points marked with dots, we see

� Apparent spiral points in the first and third quadrants of the xy-plane;

0 21
x

y

–2 –1

–2

–1

2

0

1

FIGURE 9.2.16. Phase plane portrait

for the system in Eq. (1).

� Apparent saddle points in the second and fourth quadrants, plus another one

on the positive x-axis;

� A critical point of undetermined character on the negative y-axis; and

� An apparently “very weak” spiral point at the origin—meaning one that is

approached very slowly as t increases or decreases (according as it is a sink

or a source).

Some ODE software systems can automatically locate and classify critical

points. For instance, Fig. 9.2.17 shows a screen produced by the MATLAB program

pplane that is cited in the Section 9.1 application. It shows that the fourth-quadrant

critical point in Fig. 9.2.16 has approximate coordinates .1:5708; �2:1416/, and that

the coefficient matrix of the associated linear system has the positive eigenvalue

�1 � 2:8949 and the negative eigenvalue �2 � �2:3241. It therefore follows from

Theorem 2 that this critical point is, indeed, a saddle point of the almost linear

system in (1).

FIGURE 9.2.17. The fourth-quadrant saddle point revealed.

With a general computer algebra system such as Maple or Mathematica, you

may have to do a bit of work yourself—or tell the computer precisely what to do—to

find and classify a critical point. For instance, the Maple command

fsolve({--y*cos(x+y--1)=0,x*cos(x--y+1)=0},

{x,y},{x=1..2,y=--3..--2});

or the Mathematica command
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FindRoot[{--y*Cos[x+y--1] == 0, x*Cos[x--y+1] == 0},

{x,1,2}, {y,--3,--2}]

will find the critical-point coordinates a D 1:5708, b D �2:1416 indicated earlier.

Similarly, Fig. 9.2.18 shows a TI handheld calculation of this critical point. Then

the substitution x D uC a, y D v C b yields the translated system

FIGURE 9.2.18. TI-NspireTM CX
CAS calculation of the fourth-quadrant
critical point of the almost linear
system (1).

du

dt
D .2:1416 � v/ cos.1:5708 � u � v/ D f .u; v/;

dv

dt
D .1:5708C u/ cos.4:7124C u � v/ D g.u; v/:

(2)

If we substitute u D v D 0 in the Jacobian matrix @.f; g/=@.u; v/, we get the coeffi-

cient matrix

A D

�

2:1416 2:1416

1:5708 �1:5708

�

of the linear system corresponding to (2). Then the Maple command

evalf(Eigenvals(A))

or the Mathematica command

Eigenvalues[A]

or the WolframjAlpha query

((2.1416, 2.1416), (1.5708, --1.5708))

yields the eigenvalues �1 � 2:8949 and �2 � �2:3241, thereby verifying that the

critical point .1:5708;�2:1416/ of (1) is, indeed, a saddle point.

Use a computer algebra system to find and classify the other critical points of

(1) indicated in Fig. 9.2.16. Then investigate similarly an almost linear system of

your own construction. One convenient way to construct such a system is to begin

with a linear system and insert sine or cosine factors resembling the ones in (1).

9.3 Ecological Models: Predators and Competitors

Some of the most interesting and important applications of stability theory involve

the interactions between two or more biological populations occupying the same

environment. We consider first a predator–prey situation involving two species.

One species—the predators—feeds on the other species—the prey—which in turn

feeds on some third food item readily available in the environment. A standard

example is a population of foxes and rabbits in a woodland; the foxes (predators)

eat rabbits (the prey), while the rabbits eat certain vegetation in the woodland. Other

examples are sharks (predators) and food fish (prey), bass (predators) and sunfish

(prey), ladybugs (predators) and aphids (prey), and beetles (predators) and scale

insects (prey).

The classical mathematical model of a predator–prey situation was developed

in the 1920s by the Italian mathematician Vito Volterra (1860–1940) in order to

analyze the cyclic variations observed in the shark and food-fish populations in the

Adriatic Sea. To construct such a model, we denote the number of prey at time

t by x.t/, the number of predators by y.t/, and make the following simplifying

assumptions.

1. In the absence of predators, the prey population would grow at a natural rate,

with dx=dt D ax, a > 0.
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2. In the absence of prey, the predator population would decline at a natural rate,

with dy=dt D �by, b > 0.

3. When both predators and prey are present, there occurs, in combination with

these natural rates of growth and decline, a decline in the prey population and a

growth in the predator population, each at a rate proportional to the frequency

of encounters between individuals of the two species. We assume further that

the frequency of such encounters is proportional to the product xy, reasoning

that doubling either population alone should double the frequency of encoun-

ters, while doubling both populations ought to quadruple the frequency of

encounters. Consequently, the consumption of prey by predators results in

� an interaction rate of decline �pxy in the prey population x, and

� an interaction rate of growth qxy in the predator population y.

When we combine the natural and interaction rates ax and �pxy for the prey

population x, as well as the natural and interaction rates �by and qxy for the preda-

tor population y, we get the predator–prey system

dx

dt
D ax � pxy D x.a � py/;

dy

dt
D �by C qxy D y.�b C qx/;

(1)

with the constants a, b, p, and q all positive. [Note: You may see the predator and

prey equations written in either order in (1). It is important to recognize that the

predator equation has negative linear term and positive interaction term, whereas

the prey equation has positive linear term and negative interaction term.]

Example 1 The critical points A critical point of the general predator–prey system in (1) is a solution

.x; y/ of the equations

x.a � py/ D 0; y.�b C qx/ D 0: (2)

The first of these two equations implies that either x D 0 or y D a=p 6D 0, and the second

implies that either y D 0 or x D b=q 6D 0. It follows readily that this predator–prey system

has the two (isolated) critical points .0; 0/ and .b=q; a=p/.

THE CRITICAL POINT .0; 0/: The Jacobian matrix of the system in (1) is

J.x; y/ D

�

a � py �px

qy �b C qx

�

; so J.0; 0/ D

�

a 0

0 �b

�

: (3)

The matrix J.0; 0/ has characteristic equation .a � �/.�b � �/ D 0 and the eigenvalues �1 D

a > 0, �2 D �b < 0 with different signs. Hence it follows from Theorems 1 and 2 in Section

9.2 that the critical point .0; 0/ is an unstable saddle point, both of the predator–prey system

and of its linearization at .0; 0/. The corresponding equilibrium solution x.t/ � 0, y.t/ � 0

merely describes simultaneous extinction of the prey (x) and predator (y) populations.

THE CRITICAL POINT .b=q; a=p/: The Jacobian matrix

J.b=q; a=p/ D

2

6

6

4

0 �
pb

q

aq

p
0

3

7

7

5

(4)

has characteristic equation �2CabD 0 and the pure imaginary eigenvalues �1, �2D˙i
p
ab.

It follows from Theorem 1 in Section 9.2 that the linearization of the predator–prey system at
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.b=q; a=p/ has a stable center at the origin. Thus we have the indeterminate case of Theorem

2 in Section 9.2, in which case the critical point can (aside from a stable center) also be

either a stable spiral sink or an unstable spiral source of the predator–prey system itself.

Hence further investigation is required to determine the actual character of the critical point

.b=q; a=p/. The corresponding equilibrium solution x.t/� b=q, y.t/� a=p describes the only

nonzero constant prey (x) and predator (y) populations that coexist permanently.

THE PHASE PLANE PORTRAIT: In Problem 1 we ask you to analyze numerically a

typical predator–prey system and verify that the linearizations at its two critical points agree

qualitatively with the phase plane portrait shown in Fig. 9.3.1—where the nontrivial critical

point appears visually to be a stable center. Of course, only the first quadrant of this portrait

corresponds to physically meaningful solutions describing nonnegative populations of prey

and predators.

In Problem 2 we ask you to derive an exact implicit solution of the predator–prey

system of Fig. 9.3.1—a solution that can be used to show that its phase plane trajectories

in the first quadrant are, indeed, simple closed curves that encircle the critical point .75; 50/

as indicated in the figure. It then follows from Problem 30 in Section 9.1 that the explicit

solution functions x.t/ and y.t/ are both periodic functions of t—thus explaining the periodic

fluctuations that are observed empirically in predator–prey populations.
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FIGURE 9.3.1. Phase plane portrait for the predator–prey system x
0 D 200x � 4xy,

y
0 D �150y C 2xy with critical points .0; 0/ and .75; 50/.
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FIGURE 9.3.2. The predator–prey phase
portrait of Example 2.

Example 2 Oscillating populations Figure 9.3.2 shows a computer-generated direction field and

phase portrait for the predator–prey system

dx

dt
D .0:2/x � .0:005/xy D .0:005/x.40 � y/;

dy

dt
D �.0:5/y C .0:01/xy D .0:01/y.�50C x/;

(5)

where x.t/ denotes the number of rabbits and y.t/ the number of foxes after t months. Evi-

dently the critical point .50; 40/ is a stable center representing equilibrium populations of 50

rabbits and 40 foxes. Any other initial point lies on a closed trajectory enclosing this equi-

librium point. The direction field indicates that the point .x.t/; y.t// traverses its trajectory

in a counterclockwise direction, with the rabbit and fox populations oscillating periodically

between their separate maximum and minimum values. A drawback is that the phase plane

plot provides no indication as to the speed with which each trajectory is traversed.
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This lost “sense of time” is recaptured by graphing the two individual population func-
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FIGURE 9.3.3. Periodic oscillations
of the predator and prey populations in

Example 2.

tions as functions of time t . In Fig. 9.3.3 we have graphed approximate solution functions

x.t/ and y.t/ calculated using the Runge–Kutta method of Section 7.7 with initial values

x.0/ D 70 and y.0/ D 40. We see that the rabbit population oscillates between the extreme

values xmax � 72 and xmin � 33, while the fox population oscillates (out of phase) between

the extreme values ymax � 70 and ymin � 20. A careful measurement indicates that the period

P of oscillation of each population is slightly over 20 months. One could “zoom in” on the

maximum/minimum points on each graph in order to refine these estimates of the period and

the maximum and minimum rabbit and fox populations.

Any positive initial conditions x0 D x.0/ and y0 D y.0/ yield a similar picture, with

the rabbit and fox populations both surviving in coexistence with each other.

Competing Species

Now we consider two species (of animals, plants, or bacteria, for instance) with

populations x.t/ and y.t/ at time t that compete with each other for the food avail-

able in their common environment. This is in marked contrast to the case in which

one species preys on the other. To construct a mathematical model that is as realistic

as possible, let us assume that in the absence of either species, the other would have

a bounded (logistic) population like those considered in Section 2.1. In the absence

of any interaction or competition between the two species, their populations x.t/

and y.t/ would then satisfy the differential equations

dx

dt
D a1x � b1x

2;

dy

dt
D a2y � b2y

2;

(6)

each of the form of Eq. (2) of Section 2.1. But in addition, we assume that competi-

tion has the effect of a rate of decline in each population that is proportional to their

product xy. We insert such terms with negative proportionality constants �c1 and

�c2 in the equations in (6) to obtain the competition system

dx

dt
D a1x � b1x

2
� c1xy D x.a1 � b1x � c1y/;

dy

dt
D a2y � b2y

2
� c2xy D y.a2 � b2y � c2x/;

(7)

where the coefficients a1, a2, b1, b2, c1, and c2 are all positive.

The almost linear system in (7) has four critical points. Upon setting the right-

hand sides of the two equations equal to zero, we see that if x D 0, then either y D 0

or y D a2=b2, whereas if y D 0, then either x D 0 or x D a1=b1. This gives the three

critical points .0; 0/, .0; a2=b2/, and .a1=b1; 0/. The fourth critical point is obtained

from the simultaneous solution of the equations

b1x C c1y D a1; c2x C b2y D a2: (8)

We assume that, as in most interesting applications, these equations have a single

solution and that the corresponding critical point lies in the first quadrant of the xy-

plane. This point .x
E
; y

E
/ is then the fourth critical point of the system in (7), and

it represents the possibility of coexistence of the two species, with constant nonzero

equilibrium populations x.t/ � x
E

and y.t/ � y
E

.
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We are interested in the stability of the critical point .x
E
; y

E
/. This turns out

to depend on whether

c1c2 < b1b2 or c1c2 > b1b2: (9)

Each inequality in (9) has a natural interpretation. Examining the equations in (6),

we see that the coefficients b1 and b2 represent the inhibiting effect of each popula-

tion on its own growth (possibly due to limitations of food or space). On the other

hand, c1 and c2 represent the effect of competition between the two populations.

Thus b1b2 is a measure of inhibition, while c1c2 is a measure of competition. A

general analysis of the system in (7) shows the following:

1. If c1c2 < b1b2, so that competition is small in comparison with inhibition, then

.x
E
; y

E
/ is an asymptotically stable critical point that is approached by each

solution as t !C1. Thus the two species can and do coexist in this case.

2. If c1c2 > b1b2, so that competition is large in comparison with inhibition, then

.x
E
; y

E
/ is an unstable critical point, and either x.t/ or y.t/ approaches zero

as t ! C1. Thus the two species cannot coexist in this case; one survives

and the other becomes extinct.

Rather than carrying out this general analysis, we present two examples that

illustrate these two possibilities.

Example 3 Survival of a single species Suppose that the populations x.t/ and y.t/ satisfy the equa-

tions

dx

dt
D 14x � 1

2
x2
� xy;

dy

dt
D 16y � 1

2
y2
� xy;

(10)

in which a1 D 14, a2 D 16, b1 D b2 D
1

2
, and c1 D c2 D 1. Then c1c2 D 1 > 1

4
D b1b2,

so we should expect survival of a single species as predicted in Case 2 previously. We find

readily that the four critical points are .0; 0/, .0; 32/, .28; 0/, and .12; 8/. We shall investigate

them individually.

THE CRITICAL POINT (0, 0): The Jacobian matrix of the system in (10) is

J.x; y/ D

�

14 � x � y �x

�y 16 � y � x

�

; so J.0; 0/ D

�

14 0

0 16

�

: (11)

The matrix J.0; 0/ has characteristic equation .14 � �/.16 � �/ D 0 and has the eigenvalues

�1 D 14 with eigenvector v1 D
�

1 0
�

T

and

�2 D 16 with eigenvector v2 D
�

0 1
�

T

:

Both eigenvalues are positive, so it follows that .0; 0/ is a nodal source for the system’s

linearization x0 D 14x, y0 D 16y at .0; 0/, and hence—by Theorem 2 in Section 9.2—is also

an unstable nodal source for the original system in (10). Figure 9.3.4 shows a phase portrait
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FIGURE 9.3.4. Phase plane portrait
for the linear system x

0 D 14x,
y

0 D 16y corresponding to the critical
point .0; 0/.

for the linearized system near .0; 0/.
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THE CRITICAL POINT (0, 32): Substitution of x D 0, y D 32 in the Jacobian matrix

J.x; y/ shown in (11) yields the Jacobian matrix

J.0; 32/ D

�

�18 0

�32 �16

�

(12)

of the nonlinear system (10) at the point .0; 32/. Comparing Eqs. (7) and (8) in Section 9.2,

0 21
u

–2 –1

–2

–1

0

1

�2

FIGURE 9.3.5. Phase plane portrait
for the linear system in Eq. (13)

corresponding to the critical point
.0; 32/.

we see that this Jacobian matrix corresponds to the linearization

du

dt
D �18u;

dv

dt
D �32u � 16v

(13)

of (10) at .0; 32/. The matrix J.0; 32/ has characteristic equation .�18 � �/.�16 � �/ D 0

and has the eigenvalues �1 D �18 with eigenvector v1 D
�

1 16
�

T

and �2 D �16 with

eigenvector v2 D
�

0 1
�

T

. Because both eigenvalues are negative, it follows that .0; 0/ is a

nodal sink for the linearized system, and hence—by Theorem 2 in Section 9.2—that .0; 32/

is also a stable nodal sink for the original system in (10). Figure 9.3.5 shows a phase portrait

for the linearized system near .0; 0/.

THE CRITICAL POINT (28, 0): The Jacobian matrix

J.28; 0/ D

�

�14 �28

0 �12

�

(14)

corresponds to the linearization
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FIGURE 9.3.6. Phase plane portrait
for the linear system in Eq. (15)

corresponding to the critical point
.28; 0/.

du

dt
D �14u � 28v;

dv

dt
D �12v

(15)

of (10) at .28; 0/. The matrix J.28; 0/ has characteristic equation .�14 � �/.�12 � �/ D 0

and has the eigenvalues �1 D �14 with eigenvector v1 D
�

1 0
�

T

and �2 D �12 with

eigenvector v2 D
�

�14 1
�

T

. Because both eigenvalues are negative, it follows that .0; 0/

is a nodal sink for the linearized system, and hence—by Theorem 2 in Section 9.2—that

.28; 0/ is also a stable nodal sink for the original nonlinear system in (10). Figure 9.3.6 shows

a phase portrait for the linearized system near .0; 0/.

THE CRITICAL POINT (12, 8): The Jacobian matrix

J.12; 8/ D

�

�6 �12

�8 �4

�

(16)

corresponds to the linearization

du

dt
D �6u � 12v;

dv

dt
D �8u � 4v

(17)

of (10) at .12; 8/. The matrix J.12; 8/ has characteristic equation

.�6 � �/.�4 � �/ � .�8/.�12/ D �2
C 10� � 72 D 0

and has the eigenvalues

�1 D �5 �
p
97 < 0 with eigenvector v1 D

�

1

8

�

1C
p
97
�

1
�

T
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and

�2 D �5C
p
97 > 0 with eigenvector v2 D

�

1

8

�

1 �
p
97
�

1
�

T

:

Because the two eigenvalues have opposite signs, it follows that .0; 0/ is a saddle point for the
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v2

FIGURE 9.3.7. Phase plane portrait
for the linear system in Eq. (17)

corresponding to the critical point
.12; 8/.

linearized system and hence—by Theorem 2 in Section 9.2—that .12; 8/ is also an unstable

saddle point for the original system in (10). Figure 9.3.7 shows a phase portrait for the

linearized system near .0; 0/.

Now that our local analysis of each of the four critical points is complete, it remains to

assemble the information found into a coherent global picture. If we accept the facts that

� Near each critical point, the trajectories for the original system in (10) resemble quali-

tatively the linearized trajectories shown in Figs. 9.3.4–9.3.7, and

� As t !C1 each trajectory either approaches a critical point or diverges toward infin-

ity,

then it would appear that the phase plane portrait for the original system must resemble the

rough sketch shown in Fig. 9.3.8. This sketch shows a few typical freehand trajectories

connecting a nodal source at .0; 0/, nodal sinks at .0; 32/ and .28; 0/, and a saddle point at

.12; 8/, with indicated directions of flow along these trajectories consistent with the known

character of these critical points. Figure 9.3.9 shows a more precise computer-generated

phase portrait and direction field for the nonlinear system in (10).

x

y

(0, 0)

(0, 32) Region I

I

II
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(28, 0)

(12, 8)

Sep
ar

atr
ix

FIGURE 9.3.8. Rough sketch consistent with

the analysis in Example 3.
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FIGURE 9.3.9. Phase plane portrait for

the system in Example 3.

The two trajectories that approach the saddle point .12; 8/, together with that saddle

point, form a separatrix that separates Regions I and II in Fig. 9.3.8. It plays a crucial role

in determining the long-term behavior of the two populations. If the initial point .x0; y0/ lies

precisely on the separatrix, then .x.t/; y.t// approaches .12; 8/ as t ! C1. Of course, ran-

dom events make it extremely unlikely that .x.t/; y.t// will remain on the separatrix. If not,

peaceful coexistence of the two species is impossible. If .x0; y0/ lies in Region I above the

separatrix, then .x.t/; y.t// approaches .0; 32/ as t ! C1, so the population x.t/ decreases

to zero. Alternatively, if .x0; y0/ lies in Region II below the separatrix, then .x.t/; y.t// ap-

proaches .28; 0/ as t ! C1, so the population y.t/ dies out. In short, whichever population

has the initial competitive advantage survives, while the other faces extinction.

Example 4 Peaceful coexistence of two species Suppose that the populations x.t/ and y.t/ satisfy the

competition system

dx

dt
D 14x � 2x2

� xy;

dy

dt
D 16y � 2y2

� xy;

(18)

for which a1 D 14, a2 D 16, b1 D b2 D 2, and c1 D c2 D 1. Then c1c2 D 1 < 4 D b1b2, so

now the effect of inhibition is greater than that of competition. We find readily that the four

critical points are .0; 0/, .0; 8/, .7; 0/, and .4; 6/. We proceed as in Example 3.
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THE CRITICAL POINT (0, 0): When we drop the quadratic terms in (18), we get the

same linearization x0 D 14x, y0 D 16y at .0; 0/ as in Example 3. Thus its coefficient matrix

has the two positive eigenvalues �1 D 14 and �2 D 16, and its phase portrait is the same as

that shown in Fig. 9.3.4. Therefore, .0; 0/ is an unstable nodal source for the original system

in (18).

THE CRITICAL POINT (0, 8): The Jacobian matrix of the system in (18) is

J.x; y/ D

�

14 � 4x � y �x

�y 16 � 4y � x

�

; so J.0; 8/ D

�

6 0

�8 �16

�

: (19)

The matrix J.0; 8/ corresponds to the linearization

du

dt
D 6u;

dv

dt
D �8u � 16v

(20)

of (18) at .0; 8/. It has characteristic equation .6 � �/.�16 � �/ D 0 and has the positive

eigenvalue �1 D 6 with eigenvector v1 D
�

11 �4
�

T

and the negative eigenvalue �2 D�16

with eigenvector v2 D
�

0 1
�

T

. It follows that .0; 0/ is a saddle point for the linearized

system, and hence that .0; 8/ is an unstable saddle point for the original system in (18). Figure

9.3.10 shows a phase portrait for the linearized system near .0; 0/.
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FIGURE 9.3.10. Phase plane portrait
for the linear system in Eq. (20)
corresponding to the critical point
.0; 8/.

THE CRITICAL POINT (7, 0): The Jacobian matrix

J.7; 0/ D

�

�14 �7

0 9

�

(21)

corresponds to the linearization
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FIGURE 9.3.11. Phase plane portrait

for the linear system in Eq. (22)
corresponding to the critical point

.7; 0/.

du

dt
D �14u � 7v;

dv

dt
D 9v

(22)

of (18) at .7; 0/. The matrix J.7; 0/ has characteristic equation .�14 � �/.9 � �/ D 0 and

has the negative eigenvalue �1 D �14 with eigenvector v1 D
�

1 0
�

T

and the positive

eigenvalue �2 D 9 with eigenvector v2 D
�

�7 23
�

T

. It follows that .0; 0/ is a saddle point

for the linearized system, and hence that .7; 0/ is an unstable saddle point for the original

system in (18). Figure 9.3.11 shows a phase portrait for the linearized system near .0; 0/.

THE CRITICAL POINT (4, 6): The Jacobian matrix

J.4; 6/ D

�

�8 �4

�6 �12

�

(23)

corresponds to the linearization

du

dt
D �8u � 4v;

dv

dt
D �6u � 12v

(24)

of (18) at .4; 6/. The matrix J.4; 6/ has characteristic equation

.�8 � �/.�12 � �/ � .�6/.�4/ D �2
C 20�C 72 D 0
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and has the two negative eigenvalues

�1 D 2
�

�5 �
p
7
�

with eigenvector v1 D
�

1

3

�

�1C
p
7
�

1
�

T

and

�2 D 2
�

�5C
p
7
�

with eigenvector v2 D
�

1

3

�

�1 �
p
7
�

1
�

T

:

It follows that .0; 0/ is a nodal sink for the linearized system, and hence that .4; 6/ is a sta-

0 21
u

–2 –1

–2

–1

0

1

�2

FIGURE 9.3.12. Phase plane portrait

for the linear system in Eq. (24)
corresponding to the critical point

.4; 6/.

ble nodal sink for the original system in (18). Figure 9.3.12 shows a phase portrait for the

linearized system near .0; 0/.

Figure 9.3.13 assembles all this local information into a global phase plane portrait for

the original system in (18). The notable feature of this system is that—for any positive initial

population values x0 and y0—the point .x.t/; y.t// approaches the single critical point .4; 6/

as t !C1. It follows that the two species both survive in stable (peaceful) existence.

Interactions of Logistic Populations

If the coefficients a1, a2, b1, b2 are positive but c1 D c2 D 0, then the equations

dx

dt
D a1x � b1x

2
� c1xy;

dy

dt
D a2y � b2y

2
� c2xy

(25)

describe two separate logistic populations x.t/ and y.t/ that have no effect on each
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FIGURE 9.3.13. Direction field and

phase portrait for the competition
system x

0 D 14x � 2x
2 � xy,

y
0 D 16y � 2y

2 � xy of Example 4.

other. Examples 3 and 4 illustrate cases in which the xy-coefficients c1 and c2

are both positive. The interaction between the two populations is then described

as competition, because the effect of the xy-terms in (25) is to decrease the rates

of growth of both populations—that is, each population is “hurt” by their mutual

interaction.

Suppose, however, that the interaction coefficients c1 and c2 in (25) are both

negative. Then the effect of the xy-terms is to increase the rates of growth of both

populations—that is, each population is “helped” by their mutual interaction. This

type of interaction is aptly described as cooperation between the two logistic pop-

ulations.

Finally, the interaction between the two populations is one of predation if the

interaction coefficients have different signs. For instance, if c1 > 0 but c2 < 0, then

the x-population is hurt but the y-population is helped by their interaction. We may

therefore describe x.t/ as a prey population and y.t/ as a predator population.

If either b1 or b2 is zero in (25), then the corresponding population would (in

the absence of the other) exhibit exponential growth rather than logistic growth. For

instance, suppose that a1 > 0, a2 < 0, b1 D b2 D 0, and c1 > 0, c2 < 0. Then x.t/

is a naturally growing prey population while y.t/ is a naturally declining predator

population. This is the original predator–prey model with which we began this

section.

Problems 26 through 34 illustrate a variety of the possibilities indicated here.

The problems and examples in this section illustrate the power of elementary

critical-point analysis. But remember that ecological systems in nature are seldom

so simple as in these examples. Frequently they involve more than two species,

and the growth rates of these populations and the interactions among them often are

more complicated than those discussed in this section. Consequently, the mathe-

matical modeling of ecological systems remains an active area of current research.
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9.3 Problems
Predator–Prey System

Problems 1 and 2 deal with the predator–prey system

dx

dt
D 200x � 4xy;

dy

dt
D �150y C 2xy

(1)

that corresponds to Fig. 9.3.1.

1. Starting with the Jacobian matrix of the system in (1), de-

rive its linearizations at the two critical points .0; 0/ and

.75; 50/. Use a graphing calculator or computer system

to construct phase plane portraits for these two lineariza-

tions that are consistent with the “big picture” shown in

Fig. 9.3.1.

2. Separate the variables in the quotient

dy

dx
D
�150y C 2xy

200x � 4xy

of the two equations in (1), and thereby derive the exact

implicit solution

200 ln y C 150 ln x � 2x � 4y D C

of the system. Use the contour plot facility of a graphing

calculator or computer system to plot the contour curves

of this equation through the points .75; 100/, .75; 150/,

.75; 200/, .75; 250/, and .75; 300/ in the xy-plane. Are

your results consistent with Fig. 9.3.1?

3. Insect population Let x.t/ be a harmful insect popula-

tion (aphids?) that under natural conditions is held some-

what in check by a benign predator insect population

y.t/ (ladybugs?). Assume that x.t/ and y.t/ satisfy the

predator–prey equations in (1), so that the stable equilib-

rium populations are x
E
D b=q and y

E
D a=p. Now sup-

pose that an insecticide is employed that kills (per unit

time) the same fraction f < a of each species of insect.

Show that the harmful population x
E

is increased, while

the benign population y
E

is decreased, so the use of the

insecticide is counterproductive. This is an instance in

which mathematical analysis reveals undesirable conse-

quences of a well-intentioned interference with nature.

Competition System

Problems 4 through 7 deal with the competition system

dx

dt
D 60x � 4x2

� 3xy;

dy

dt
D 42y � 2y2

� 3xy;

(2)

in which c1c2 D 9 > 8 D b1b2, so the effect of competition

should exceed that of inhibition. Problems 4 through 7 imply

that the four critical points .0; 0/, .0; 21/, .15; 0/, and .6; 12/

of the system in (2) resemble those shown in Fig. 9.3.9—a

nodal source at the origin, a nodal sink on each coordinate

axis, and a saddle point interior to the first quadrant. In each

of these problems use a graphing calculator or computer sys-

tem to construct a phase plane portrait for the linearization at

the indicated critical point. Finally, construct a first-quadrant

phase plane portrait for the nonlinear system in (2). Do your

local and global portraits look consistent?

4. Show that the coefficient matrix of the linearization x0 D

60x, y0 D 42y of (2) at .0; 0/ has positive eigenvalues

�1 D 60 and �2 D 42. Hence .0; 0/ is a nodal source for

(2).

5. Show that the linearization of (2) at .0; 21/ is u0 D �3u,

v0 D�63u� 42v. Then show that the coefficient matrix of

this linear system has negative eigenvalues �1 D �3 and

�2 D �42. Hence .0; 21/ is a nodal sink for the system in

(2).

6. Show that the linearization of (2) at .15; 0/ is u0 D�60u�

45v, v0 D �3v. Then show that the coefficient matrix of

this linear system has negative eigenvalues �1 D �60 and

�2 D �3. Hence .15; 0/ is a nodal sink for the system in

(2).

7. Show that the linearization of (2) at .6; 12/ is u0 D�24u�

18v, v0 D �36u � 24v. Then show that the coefficient

matrix of this linear system has eigenvalues �1 D �24 �

18
p
2 < 0 and �2 D �24C 18

p
2 > 0. Hence .6; 12/ is a

saddle point for the system in (2).

Competition System

Problems 8 through 10 deal with the competition system

dx

dt
D 60x � 3x2

� 4xy;

dy

dt
D 42y � 3y2

� 2xy;

(3)

in which c1c2 D 8 < 9D b1b2, so the effect of inhibition should

exceed that of competition. The linearization of the system

in (3) at .0; 0/ is the same as that of (2). This observation

and Problems 8 through 10 imply that the four critical points

.0; 0/, .0; 14/, .20; 0/, and .12; 6/ of (3) resemble those shown

in Fig. 9.3.13—a nodal source at the origin, a saddle point

on each coordinate axis, and a nodal sink interior to the first

quadrant. In each of these problems use a graphing calculator

or computer system to construct a phase plane portrait for the

linearization at the indicated critical point. Finally, construct

a first-quadrant phase plane portrait for the nonlinear system

in (3). Do your local and global portraits look consistent?

8. Show that the linearization of (3) at .0; 14/ is u0 D 4u,

v0 D �28u � 42v. Then show that the coefficient matrix

of this linear system has the positive eigenvalue �1 D 4

and the negative eigenvalue �2 D �42. Hence .0; 14/ is a

saddle point for the system in (3).

9. Show that the linearization of (3) at .20; 0/ is u0 D�60u�

80v, v0 D 2v. Then show that the coefficient matrix of this

linear system has the negative eigenvalue �1 D �60 and
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the positive eigenvalue �2 D 2. Hence .20; 0/ is a saddle

point for the system in (3).

10. Show that the linearization of (3) at .12; 6/ is u0 D�36u�

48v, v0 D �12u � 18v. Then show that the coefficient

matrix of this linear system has eigenvalues �1 D �27C

3
p
73 and �2 D �27 � 3

p
73, both of which are negative.

Hence .12; 6/ is a nodal sink for the system in (3).

Logistic Prey Population

Problems 11 through 13 deal with the predator–prey system

dx

dt
D 5x � x2

� xy;

dy

dt
D �2y C xy;

(4)

in which the prey population x.t/ is logistic but the predator

population y.t/ would (in the absence of any prey) decline

naturally. Problems 11 through 13 imply that the three crit-

ical points .0; 0/, .5; 0/, and .2; 3/ of the system in (4) are as

shown in Fig. 9.3.14—with saddle points at the origin and on

the positive x-axis, and with a spiral sink interior to the first

quadrant. In each of these problems use a graphing calcula-

tor or computer system to construct a phase plane portrait for

the linearization at the indicated critical point. Do your local

portraits look consistent with Fig. 9.3.14?
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FIGURE 9.3.14. Direction field and phase portrait for
the predator–prey system of Problems 11 through 13.

11. Show that the coefficient matrix of the linearization x0 D

5x, y0 D �2y of (4) at .0; 0/ has the positive eigenvalue

�1 D 5 and the negative eigenvalue �2 D �2. Hence .0; 0/

is a saddle point of the system in (4).

12. Show that the linearization of (4) at .5; 0/ is u0D�5u�5v,

v0 D 3v. Then show that the coefficient matrix of this lin-

ear system has the negative eigenvalue �1 D �5 and the

positive eigenvalue �2 D 3. Hence .5; 0/ is a saddle point

for the system in (4).

13. Show that the linearization of (4) at .2; 3/ is u0D�2u�2v,

v0 D 3u. Then show that the coefficient matrix of this

linear system has the complex conjugate eigenvalues �1,

�2 D �1˙ i
p
5 with negative real part. Hence .2; 3/ is a

spiral sink for the system in (4).

Doomsday vs. Extinction

Problems 14 through 17 deal with the predator–prey system

dx

dt
D x2

� 2x � xy;

dy

dt
D y2

� 4y C xy:

(5)

Here each population—the prey population x.t/ and the

predator population y.t/—is an unsophisticated population

(like the alligators of Section 2.1) for which the only alter-

natives (in the absence of the other population) are doomsday

and extinction. Problems 14 through 17 imply that the four

critical points .0; 0/, .0; 4/, .2; 0/, and .3; 1/ of the system in

(5) are as shown in Fig. 9.3.15—a nodal sink at the origin, a

saddle point on each coordinate axis, and a spiral source in-

terior to the first quadrant. This is a two-dimensional version

of “doomsday versus extinction.” If the initial point .x0; y0/

lies in Region I, then both populations increase without bound

(until doomsday), whereas if it lies in Region II, then both pop-

ulations decrease to zero (and thus both become extinct). In

each of these problems use a graphing calculator or computer

system to construct a phase plane portrait for the linearization

at the indicated critical point. Do your local portraits look

consistent with Fig. 9.3.15?
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FIGURE 9.3.15. Direction field and phase portrait for
the predator–prey system of Problems 14 through 17.

14. Show that the coefficient matrix of the linearization x0 D

�2x, y0 D �4y of the system in (5) at .0; 0/ has the nega-

tive eigenvalues �1 D �2 and �2 D �4. Hence .0; 0/ is a

nodal sink for (5).

15. Show that the linearization of (5) at .0; 4/ is u0 D �6u,

v0 D 4uC4v. Then show that the coefficient matrix of this

linear system has the negative eigenvalue �1 D�6 and the

positive eigenvalue �2 D 4. Hence .0; 4/ is a saddle point

for the system in (5).

16. Show that the linearization of (5) at .2; 0/ is u0 D 2u� 2v,

v0 D �2v. Then show that the coefficient matrix of this

linear system has the positive eigenvalue �1 D 2 and the

negative eigenvalue �2 D �2. Hence .2; 0/ is a saddle

point for the system in (5).

17. Show that the linearization of (5) at .3; 1/ is u0 D 3u� 3v,

v0 D u C v. Then show that the coefficient matrix of

this linear system has complex conjugate eigenvalues �1,
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�2 D 2 ˙ i
p
2 with positive real part. Hence .3; 1/ is a

spiral source for (5).

Problems 18 through 25 deal with the predator–prey system

dx

dt
D 2x � xy C �x.5 � x/;

dy

dt
D �5y C xy;

(6)

for which a bifurcation occurs at the value � D 0 of the param-

eter �. Problems 18 and 19 deal with the case � D 0, in which

case the system in (6) takes the form

dx

dt
D 2x � xy;

dy

dt
D �5x C xy; (7)

and these problems suggest that the two critical points .0; 0/

and .5; 2/ of the system in (7) are as shown in Fig. 9.3.16—

a saddle point at the origin and a center at .5; 2/. In each

problem use a graphing calculator or computer system to con-

struct a phase plane portrait for the linearization at the indi-

cated critical point. Do your local portraits look consistent

with Fig. 9.3.16?
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FIGURE 9.3.16. The case � D 0 (Problems 18 and 19).

18. Show that the coefficient matrix of the linearization x0 D

2x, y0 D �5y of (7) at .0; 0/ has the positive eigenvalue

�1 D 2 and the negative eigenvalue �2 D �5. Hence .0; 0/

is a saddle point for the system in (7).

19. Show that the linearization of the system in (7) at .5; 2/ is

u0 D �5v, v0 D 2u. Then show that the coefficient matrix

of this linear system has conjugate imaginary eigenvalues

�1, �2 D ˙i
p
10. Hence .0; 0/ is a stable center for the

linear system. Although this is the indeterminate case of

Theorem 2 in Section 9.2, Fig. 9.3.16 suggests that .5; 2/

also is a stable center for (7).

Problems 20 through 22 deal with the case � D �1, for which

the system in (6) becomes

dx

dt
D �3x C x2

� xy;
dy

dt
D �5y C xy; (8)

and imply that the three critical points .0; 0/, .3; 0/, and .5; 2/

of (8) are as shown in Fig. 9.3.17—with a nodal sink at the ori-

gin, a saddle point on the positive x-axis, and a spiral source at

.5; 2/. In each problem use a graphing calculator or computer

system to construct a phase plane portrait for the linearization

at the indicated critical point. Do your local portraits look

consistent with Fig. 9.3.17?
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FIGURE 9.3.17. The case � D �1 (Problems 20 through 22).

20. Show that the coefficient matrix of the linearization x0 D

�3x, y0 D �5y of the system in (8) at .0; 0/ has the nega-

tive eigenvalues �1 D �3 and �2 D �5. Hence .0; 0/ is a

nodal sink for (8).

21. Show that the linearization of the system in (8) at .3; 0/ is

u0 D 3u � 3v, v0 D �2v. Then show that the coefficient

matrix of this linear system has the positive eigenvalue

�1 D 3 and the negative eigenvalue �2 D �2. Hence .3; 0/

is a saddle point for (8).

22. Show that the linearization of (8) at .5; 2/ is u0 D 5u� 5v,

v0 D 2u. Then show that the coefficient matrix of this lin-

ear system has complex conjugate eigenvalues �1, �2 D
1

2

�

5˙ i
p
15
�

with positive real part. Hence .5; 2/ is a spi-

ral source for the system in (8).

Problems 23 through 25 deal with the case � D 1, so that the

system in (6) takes the form

dx

dt
D 7x � x2

� xy;
dy

dt
D �5y C xy; (9)

and these problems imply that the three critical points .0; 0/,

.7; 0/, and .5; 2/ of the system in (9) are as shown in Fig. 9.3.18

—with saddle points at the origin and on the positive x-axis

and with a spiral sink at .5; 2/. In each problem use a graph-

ing calculator or computer system to construct a phase plane

portrait for the linearization at the indicated critical point. Do

your local portraits look consistent with Fig. 9.3.18?

(0, 0)
x

y

0 2 4 6 8 10

0

2

4

6

8

10

(5, 2)

(7, 0)

FIGURE 9.3.18. The case � D C1 (Problems 23 through 25).
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23. Show that the coefficient matrix of the linearization x0 D

7x, y0 D �5y of (9) at .0; 0/ has the positive eigenvalue

�1 D 7 and the negative eigenvalue �2 D �5. Hence .0; 0/

is a saddle point for the system in (9).

24. Show that the linearization of (9) at .7; 0/ is u0D�7u�7v,

v0 D 2v. Then show that the coefficient matrix of this lin-

ear system has the negative eigenvalue �1 D �7 and the

positive eigenvalue �2 D 2. Hence .7; 0/ is a saddle point

for the system in (9).

25. Show that the linearization of (9) at .5; 2/ is u0D�5u�5v,

v0 D 2u. Then show that the coefficient matrix of this

linear system has the complex conjugate eigenvalues �1,

�2 D
1

2

�

�5˙ i
p
15
�

with negative real part. Hence .5; 2/

is a spiral sink for the system in (9).

For each two-population system in Problems 26 through 34,

first describe the type of x- and y-populations involved (ex-

ponential or logistic) and the nature of their interaction—

competition, cooperation, or predation. Then find and char-

acterize the system’s critical points (as to type and stability).

Determine what nonzero x- and y-populations can coexist.

Finally, construct a phase plane portrait that enables you to

describe the long-term behavior of the two populations in

terms of their initial populations x.0/ and y.0/.

26.
dx

dt
D 2x � xy,

dy

dt
D 3y � xy

27.
dx

dt
D 2xy � 4x,

dy

dt
D xy � 3y

28.
dx

dt
D 2xy � 16x,

dy

dt
D 4y � xy

29.
dx

dt
D 3x � x2 �

1

2
xy,

dy

dt
D 4y � 2xy

30.
dx

dt
D 3x � x2 C

1

2
xy,

dy

dt
D
1

5
xy � y

31.
dx

dt
D 3x � x2 �

1

4
xy,

dy

dt
D xy � 2y

32.
dx

dt
D 30x � 3x2 C xy,

dy

dt
D 60y � 3y2 C 4xy

33.
dx

dt
D 30x � 2x2 � xy,

dy

dt
D 80y � 4y2 C 2xy

34.
dx

dt
D 30x � 2x2 � xy,

dy

dt
D 20y � 4y2 C 2xy

Go to goo.gl/0WzvNu to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

9.3 Application Your Own Wildlife Conservation Preserve

You own a large wildlife conservation preserve that you originally stocked with F0

foxes andR0 rabbits on January 1, 2007. The following differential equations model

the numbers R.t/ of rabbits and F.t/ foxes t months later:

dR

dt
D .0:01/pR � .0:0001/aRF;

dF

dt
D �.0:01/qF C .0:0001/bRF;

where p and q are the two largest digits (with p < q) and a and b are the two smallest

nonzero digits (with a < b) in your student ID number.

The numbers of foxes and rabbits will oscillate periodically, out of phase with

each other (like the functions x.t/ and y.t/ in Fig. 9.3.3). Choose your initial num-

bers F0 of foxes and R0 of rabbits—perhaps several hundred of each—so that the

resulting solution curve in the RF-plane is a fairly eccentric closed curve. (The

eccentricity may be increased if you begin with a relatively large number of rab-

bits and a small number of foxes, as any wildlife preserve owner would naturally

do—because foxes prey on rabbits.)

Your task is to determine

1. The period of oscillation of the rabbit and fox populations;

2. The maximum and minimum numbers of rabbits, and the calendar dates on

which they first occur;

3. The maximum and minimum numbers of foxes, and the calendar dates on

which they first occur.

With computer software that can plot both RF-trajectories and tR- and tF-solution

curves like those in Figs. 9.3.2 and 9.3.3, you can “zoom in” graphically on the

points whose coordinates provide the requested information.
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9.4 Nonlinear Mechanical Systems

Now we apply the qualitative methods of Sections 9.1 and 9.2 to the analysis of

simple mechanical systems like the mass-on-a-spring system shown in Fig. 9.4.1.

Let m denote the mass in a suitable system of units and let x.t/ denote the dis-

placement of the mass at time t from its equilibrium position (in which the spring

is unstretched). Previously we have always assumed that the force F.x/ exerted by

x (t)

Equilibrium
position

m

FIGURE 9.4.1. The mass on a

spring.

the spring on the mass is a linear function of x: F.x/ D �kx (Hooke’s law). In

reality, however, every spring in nature actually is nonlinear (even if only slightly

so). Moreover, springs in some automobile suspension systems deliberately are de-

signed to be nonlinear. Here, then, we are interested specifically in the effects of

nonlinearity.

So now we allow the force function F.x/ to be nonlinear. Because F.0/D 0 at

the equilibrium position x D 0, we may assume that F has a power series expansion

of the form

F.x/ D �kx C ˛x2
C ˇx3

C � � � : (1)

We take k > 0 so that the reaction of the spring is directed opposite to the displace-

ment when x is sufficiently small. If we assume also that the reaction of the spring

is symmetric with respect to positive and negative displacements by the same dis-

tance, then F.�x/D �F.x/, so F is an odd function. In this case it follows that the

coefficient of xn in Eq. (1) is zero if n is even, so the first nonlinear term is the one

involving x3.

For a simple mathematical model of a nonlinear spring we therefore take

F.x/ D �kx C ˇx3; (2)

ignoring all terms in Eq. (1) of degree greater than 3. The equation of motion of the

mass m is then

mx00
D �kx C ˇx3: (3)

The Position–Velocity Phase Plane

If we introduce the velocity

y.t/ D x0.t/ (4)

of the mass with position x.t/, then we get from Eq. (3) the equivalent first-order

system

dx

dt
D y;

m
dy

dt
D �kx C ˇx3:

(5)

A phase plane trajectory of this system is a position-velocity plot that illustrates the

motion of the mass on the spring. We can solve explicitly for the trajectories of this

system by writing
dy

dx
D
dy=dt

dx=dt
D
�kx C ˇx3

my
;
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whence

my dy C .kx � ˇx3/ dx D 0:

Integration then yields

1

2
my2
C

1

2
kx2
�

1

4
ˇx4
D E (6)

for the equation of a typical trajectory. We write E for the arbitrary constant of

integration because KE D 1

2
my2 is the kinetic energy of the mass with velocity y,

and it is natural to define

PE D 1

2
kx2
�

1

4
ˇx4 (7)

as the potential energy of the spring. Then Eq. (6) takes the form KE C PE D

E, so the constant E turns out to be the total energy of the mass-spring system.

Equation (6) then expresses conservation of energy for the undamped motion of a

mass on a spring.

The behavior of the mass depends on the sign of the nonlinear term in Eq. (2).

The spring is called

� hard if ˇ < 0,

� soft if ˇ > 0.

We consider the two cases separately.

HARD SPRING OSCILLATIONS: If ˇ < 0, then the second equation in (5) takes

the form my0 D �x
�

jˇjx2 C k
�

, so it follows that the only critical point of the

system is the origin .0; 0/. Each trajectory

1

2
my2
C

1

2
kx2
C

1

4
jˇjx4

D E > 0 (8)

is an oval closed curve like those shown in Fig. 9.4.2, and thus .0; 0/ is a stable

V
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E = 36
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�6

FIGURE 9.4.2. Position–velocity
phase plane portrait for the hard
mass-and-spring system with
m D k D 2 and ˇ D �4 < 0.

center. As the point .x.t/; y.t// traverses a trajectory in the clockwise direction,

the position x.t/ and velocity y.t/ of the mass oscillate alternately, as illustrated in

Fig. 9.4.3. The mass is moving to the right (with x increasing) when y > 0, to the

left when y < 0. Thus the behavior of a mass on a nonlinear hard spring resembles

qualitatively that of a mass on a linear spring with ˇ D 0 (as in Example 3 of Section

P
o
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o
n
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n
d
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o
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ty
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FIGURE 9.4.3. Position and velocity

solution curves for the hard
mass-and-spring system with

m D k D 2 and ˇ D �4 < 0.

9.1). But one difference between the linear and nonlinear situations is that, whereas

the period T D 2�
p

m=k of oscillation of a mass on a linear spring is independent

of the initial conditions, the period of a mass on a nonlinear spring depends on its

initial position x.0/ and initial velocity y.0/ (Problems 21 through 26).

Remark The hard spring equation mx00 D �kx � jˇjx3 has equivalent first-order system

x0
D y; y0

D �
k

m
x �
jˇj

m
x3

with Jacobian matrix

J.x; y/ D

2

6

4

0 1

�
k

m
�
3jˇj

m
x2 0

3

7

5
; so J.0; 0/ D

�

0 1

�!2 0

�

(writing k=m D !2 as usual). The latter matrix has characteristic equation �2 C !2 D 0 and

pure imaginary eigenvalues �1, �2 D ˙!i . Thus the linearized system x0 D y, y0 D �!2x

has a stable center at the critical point .0; 0/—as we observed in Example 4 of Section 9.1.

However, the nonlinear cubic term in the differential equation has (in effect) replaced the

elliptical trajectories (as in Fig. 9.1.8) of the linear system with the “flatter” quartic ovals we

see in Fig. 9.4.2.
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SOFT SPRING OSCILLATIONS: If ˇ > 0, then the second equation in (5) takes

the form my0 D x
�

ˇx2 � k
�

, so it follows that the system has the two critical points
�

˙
p

k=̌ ; 0
�

in addition to the critical point .0; 0/. These three critical points yield

the only solutions for which the mass can remain at rest. The following example

illustrates the greater range of possible behaviors of a mass on a soft spring.

Example 1 Undamped soft spring If m D 1, k D 4, and ˇ D 1, then the equation of motion of the

mass is
d2x

dt2
C 4x � x3

D 0; (9)

and Eq. (6) gives the trajectories in the form

1

2
y2
C 2x2

�
1

4
x4
D E: (10)

After solving for

y D ˙

q

2E � 4x2 C
1

2
x4; (100)

we could select a fixed value of the constant energy E and plot manually a trajectory like one

of those shown in the computer-generated position–velocity phase plane portrait in Fig. 9.4.4.

The different types of phase plane trajectories correspond to different values of the

energy E. If we substitute x D ˙
p

k=̌ and y D 0 into (6), we get the energy value E D

k2=.4ˇ/ D 4 (because k D 4 and ˇ D 1) that corresponds to the trajectories that intersect the

x-axis at the nontrivial critical points .�2; 0/ and .2; 0/. These emphasized trajectories are

called separatrices because they separate phase plane regions of different behavior.

The nature of the motion of the mass is determined by which type of trajectory its initial

conditions determine. The simple closed trajectories encircling .0; 0/ in the region bounded

by the separatrices correspond to energies in the range 0 < E < 4. These closed trajectories

represent periodic oscillations of the mass back and forth around the equilibrium point x D 0.

The unbounded trajectories lying in the regions above and below the separatrices cor-

respond to values of E greater than 4. These represent motions in which the mass approaches

x D 0with sufficient energy that it continues on through the equilibrium point, never to return

again (as indicated in Fig. 9.4.5).
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FIGURE 9.4.4. Position–velocity phase plane portrait

for the soft mass-and-spring system with m D 1, k D 4,
and ˇ D 1 > 0. The separatrices are emphasized.
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FIGURE 9.4.5. Position and velocity solution curves for the soft

mass-and-spring system with m D 1, k D 4, ˇ D 1 > 0, and energy
E D 8—sufficiently great that the mass approaches the origin from the

left and continues on indefinitely to the right.

The unbounded trajectories opening to the right and left correspond to values of E less

than 4. These represent motions in which the mass initially is headed toward the equilibrium

point x D 0, but with insufficient energy to reach it. At some point the mass reverses direction

and heads back whence it came.

In Fig. 9.4.4 it appears that the critical point .0; 0/ is a stable center, whereas the critical

points .˙2; 0/ look like saddle points of the equivalent first-order system

x0
D y; y0

D �4x C x3 (11)
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with Jacobian matrix

J.x; y/ D

�

0 1

�4C 3x2 0

�

:

To check these observations against the usual critical-point analysis, we note first that the

Jacobian matrix

J.0; 0/ D

�

0 1

�4 0

�

at the critical point .0; 0/ has characteristic equation �2 C 4 D 0 and pure imaginary eigen-

values �1, �2 D ˙2i consistent with a stable center. Moreover, the Jacobian matrix

J.˙2; 0/ D

�

0 1

8 0

�

corresponding to the other two critical points has characteristic equation �2 � 8 D 0 and real

eigenvalues �1, �2 D ˙
p
8 of opposite sign, consistent with the saddle-point behavior that

we observe near .�2; 0/ and .C2; 0/.

Remark Figures 9.4.2 and 9.4.4 illustrate a significant qualitative difference between hard

springs with ˇ < 0 and soft springs with ˇ > 0 in the nonlinear equation mx00 D kx C ˇx3.

Whereas the phase plane trajectories for a hard spring are all bounded, a soft spring has

unbounded phase plane trajectories (as well as bounded ones). However, we should realize

that the unbounded soft-spring trajectories cease to represent physically realistic motions

faithfully when they exceed the spring’s capability of expansion without breaking.

Damped Nonlinear Vibrations

Suppose now that the mass on a spring is connected also to a dashpot that provides a

force of resistance proportional to the velocity y D dx=dt of the mass. If the spring

is still assumed nonlinear as in Eq. (2), then the equation of motion of the mass is

mx00
D �cx0

� kx C ˇx3; (12)

where c > 0 is the resistance constant. If ˇ > 0, then the equivalent first-order

system

dx

dt
D y;

dy

dt
D
�kx � cy C ˇx3

m
D �

c

m
y �

k

m
x

�

1 �
ˇ

k
x2

�

(13)

has critical points .0; 0/ and
�

˙
p

k=̌ ; 0
�

and Jacobian matrix

J.x; y/ D

2

6

4

0 1

�
k

m
C
3ˇ

m
x2 �

c

m

3

7

5
:

Now the critical point at the origin is the most interesting one. The Jacobian matrix

J.0; 0/ D

2

6

4

0 1

�
k

m
�
c

m

3

7

5

has characteristic equation

.��/
�

�
c

m
� �

�

C
k

m
D
1

m
.m�2

C c�C k/ D 0
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and eigenvalues

�1; �2 D
�c ˙

p
c2 � 4km

2m
:

It follows from Theorem 2 in Section 9.2 in that the critical point .0; 0/ of the system

in (13) is

� a nodal sink if the resistance is so great that c2 > 4km (in which case the

eigenvalues are negative and unequal), but is

� a spiral sink if c2 < 4km (in which case the eigenvalues are complex conju-

gates with negative real part).

The following example illustrates the latter case. (In the borderline case with equal

negative eigenvalues, the origin may be either a nodal or a spiral sink.)

Example 2 Damped soft spring Suppose that m D 1, c D 2, k D 5, and ˇ D 5

4
. Then the nonlinear

system in (13) is

dx

dt
D y;

dy

dt
D �5x � 2y C 5

4
x3
D �2y � 5x.1 � 1

4
x2/: (14)

It has critical points .0; 0/, .˙2; 0/ and Jacobian matrix

J.x; y/ D

�

0 1

�5C 15

4
x2 �2

�

:

At .0; 0/: The Jacobian matrix

J.0; 0/ D

�

0 1

�5 �2

�

has characteristic equation �2 C 2� C 5 D 0 and has complex conjugate eigenvalues �1,

�2 D �1˙ 2i with negative real part. Hence .0; 0/ is a spiral sink of the nonlinear system in

(14), and the linearized position function of the mass is of the form

x.t/ D e�t .A cos 2t C B sin 2t/

that corresponds to an exponentially damped oscillation about the equilibrium position x D 0.

At .˙2; 0/: The Jacobian matrix

J.˙2; 0/ D

�

0 1

10 �2

�

has characteristic equation �2 C 2� � 10 D 0 and real eigenvalues �1 D �1 �
p
11 < 0 and

�2 D �1C
p
11 > 0 with different signs. It follows that .�2; 0/ and .C2; 0/ are both saddle

points of the system in (14).

The position–velocity phase plane portrait in Fig. 9.4.6 shows trajectories of (14) and

the spiral sink at .0; 0/, as well as the unstable saddle points at .�2; 0/ and .2; 0/. The em-

phasized separatrices divide the phase plane into regions of different behavior. The behavior

of the mass depends on the region in which its initial point .x0; y0/ is located. If this initial

point lies in

� Region I between the separatrices, then the trajectory spirals into the origin as t!C1,

and hence the periodic oscillations of the undamped case (Fig. 9.4.4) are now replaced

with damped oscillations around the stable equilibrium position x D 0;

� Region II, then the mass passes through x D 0moving from left to right (x increasing);

� Region III, then the mass passes through xD 0moving from right to left (x decreasing);

� Region IV, then the mass approaches (but does not reach) the unstable equilibrium

position x D �2 from the left, but stops and then returns to the left;

� Region V, then the mass approaches (but does not reach) the unstable equilibrium po-

sition x D 2 from the right, but stops and then returns to the right.
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FIGURE 9.4.6. Position–velocity phase plane portrait for the soft mass-and-spring system with

m D 1, k D 5, ˇ D 5
4

, and resistance constant c D 2. The (black) separatrices are emphasized.

If the initial point .x0; y0/ lies precisely on one of the separatrices, then the corresponding

trajectory either approaches the stable spiral point or recedes to infinity from a saddle point

as t !C1.

The Nonlinear Pendulum

In Section 5.4 we derived the equation

d2�

dt2
C
g

L
sin � D 0 (15)

for the undamped oscillations of the simple pendulum shown in Fig. 9.4.7. There

θ

m

L

FIGURE 9.4.7. The simple

pendulum.

we used the approximation sin � � � for � near zero to replace Eq. (15) with the

linear model

d2�

dt2
C !2� D 0; (16)

where !2 D g=L. The general solution

�.t/ D A cos!t C B sin!t (17)

of Eq. (16) describes oscillations around the equilibrium position � D 0with circular

frequency ! and amplitude C D .A2 C B2/1=2.

The linear model does not adequately describe the possible motions of the

pendulum for large values of � . For instance, the equilibrium solution �.t/ � � of

Eq. (15), with the pendulum standing straight up, does not satisfy the linear equation

in (16). Nor does Eq. (17) include the situation in which the pendulum “goes over

the top” repeatedly, so that �.t/ is a steadily increasing rather than an oscillatory

function of t . To investigate these phenomena we must analyze the nonlinear equa-

tion � 00 C !2 sin � D 0 rather than merely its linearization � 00 C !2� D 0. We also

want to include the possibility of resistance proportional to velocity, so we consider

the general nonlinear pendulum equation

d2�

dt2
C c

d�

dt
C !2 sin � D 0: (18)



9.4 Nonlinear Mechanical Systems 545

The case c > 0 corresponds to damped motion in which there actually is resis-

tance proportional to (angular) velocity. But we examine first the undamped case in

which c D 0. With x.t/ D �.t/ and y.t/ D � 0.t/ the equivalent first-order system is

dx

dt
D y;

dy

dt
D �!2 sin x: (19)

We see that this system is almost linear by writing it in the form

dx

dt
D y;

dy

dt
D �!2x C g.x/;

(20)

where

g.x/ D �!2.sin x � x/ D !2

�

x3

3Š
�
x5

5Š
C � � �

�

has only higher-degree terms.

The critical points of the system in (19) are the points .n�; 0/with n an integer,

and its Jacobian matrix is given by

J.x; y/ D

�

0 1

�!2 cos x 0

�

: (21)

The nature of the critical point .n�; 0/ depends on whether n is even or odd.

EVEN CASE: If n D 2m is an even integer, then cosn� D C1, so (21) yields the

matrix

J.2m�; 0/ D

�

0 1

�!2 0

�

with characteristic equation �2 C !2 D 0 and pure imaginary eigenvalues �1, �2 D

˙!i . The linearization of (19) at .n�; 0/ is therefore the system

du

dt
D v;

dv

dt
D �!2u (22)

for which .0; 0/ is the familiar stable center enclosed by elliptical trajectories (as in

Example 3 of Section 9.1). Although this is the delicate case for which Theorem 2

of Section 9.2 does not settle the matter, we will see presently that .2m�; 0/ is also

a stable center for the original nonlinear pendulum system in (19).

ODD CASE: If nD 2mC 1 is an odd integer, then cosn� D �1, so (21) yields the

matrix

J..2mC 1/�; 0/ D

�

0 1

!2 0

�

with characteristic equation �2 � !2 D 0 and real eigenvalues �1, �2 D ˙! with

different signs. The linearization of (19) at ..2mC 1/�; 0/ is therefore the system

du

dt
D v;

dv

dt
D !2u (23)

for which .0; 0/ is a saddle point. It follows from Theorem 2 of Section 9.2 that

the critical point ..2mC 1/�; 0/ is a similar saddle point for the original nonlinear

pendulum system in (19).
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THE TRAJECTORIES: We can see how these “even centers” and “odd saddle

points” fit together by solving the system in (19) explicitly for the phase plane tra-

jectories. If we write
dy

dx
D
dy=dt

dx=dt
D �

!2 sin x

y

and separate the variables,

y dy C !2 sin x dx D 0;

then integration from x D 0 to x D x yields

1

2
y2
C !2.1 � cos x/ D E: (24)

We write E for the arbitrary constant of integration because, if physical units are so

chosen that m D L D 1, then the first term on the left is the kinetic energy and the

second term the potential energy of the mass on the end of the pendulum. Then E

is the total mechanical energy; Eq. (24) thus expresses conservation of mechanical

energy for the undamped pendulum.

If we solve Eq. (24) for y and use a half-angle identity, we get the equation

y D ˙

q

2E � 4!2 sin2 1

2
x (25)

that defines the phase plane trajectories. Note that the radicand in (25) remains

positive if E > 2!2. Figure 9.4.8 shows (along with a direction field) the results of

plotting these trajectories for various values of the energy E.
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E > 2ω2

E > 2ω2

E < 2ω2

FIGURE 9.4.8. Position–velocity phase plane portrait for the undamped pendulum

system x
0 D y, y

0 D � sin x. The (black) separatrices are emphasized.

The emphasized separatrices in Fig. 9.4.8 correspond to the critical value E D

2!2 of the energy; they enter and leave the unstable critical points .n�; 0/ with n

an odd integer. Following the arrows along a separatrix, the pendulum theoretically

approaches a balanced vertical position � D x D .2mC 1/� with just enough energy

to reach it but not enough to “go over the top.” The instability of this equilibrium

position indicates that this behavior may never be observed in practice!
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The simple closed trajectories encircling the stable critical points—all of

which correspond to the downward position � D 2m� of the pendulum—represent

periodic oscillations of the pendulum back and forth around the stable equilibrium

position � D 0. These correspond to energies E < 2!2 that are insufficient for the

pendulum to ascend to the vertical upward position—so its back-and-forth motion

is that which we normally associate with a “swinging pendulum.”

The unbounded trajectories with E > 2!2 represent whirling motions of the

pendulum in which it goes over the top repeatedly—in a clockwise direction if y.t/

remains positive, in a counterclockwise direction if y.t/ is negative.

Period of Undamped Oscillation

If the pendulum is released from rest with initial conditions

x.0/ D �.0/ D ˛; y.0/ D � 0.0/ D 0; (26)

then Eq. (24) with t D 0 reduces to

!2.1 � cos˛/ D E: (27)

Hence E < 2!2 if 0 < ˛ < � , so a periodic oscillation of the pendulum ensues.

To determine the period of this oscillation, we subtract Eq. (27) from Eq. (24) and

write the result (with x D � and y D d�=dt) in the form

1

2

�

d�

dt

�

2

D !2.cos � � cos˛/: (28)

The period T of time required for one complete oscillation is four times the

amount of time required for � to decrease from � D ˛ to � D 0, one-fourth of an

oscillation. Hence we solve Eq. (28) for dt=d� and integrate to get

T D
4

!
p
2

Z

˛

0

d�
p

cos � � cos˛
: (29)

To attempt to evaluate this integral we first use the identity cos � D 1 � 2 sin2.�=2/

and get

T D
2

!

Z

˛

0

d�
q

k2 � sin2.�=2/

;

where

k D sin
˛

2
:

Next, the substitution u D .1=k/ sin.�=2/ yields

T D
4

!

Z

1

0

du
p

.1 � u2/.1 � k2u2/
:

Finally, the substitution u D sin� gives

T D
4

!

Z

�=2

0

d�
q

1 � k2 sin2 �

: (30)
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The integral in (30) is the elliptic integral of the first kind that is often denoted

by F.k; �=2/. Whereas elliptic integrals normally cannot be evaluated in closed

form, this integral can be approximated numerically as follows. First we use the

binomial series

1
p
1 � x

D 1C

1
X

nD1

1 � 3 � � � .2n � 1/

2 � 4 � � � .2n/
xn (31)

with x D k2 sin2 � < 1 to expand the integrand in (30). Then we integrate termwise

using the tabulated integral formula

Z

�=2

0

sin2n � d� D
�

2
�
1 � 3 � � � .2n � 1/

2 � 4 � � � .2n/
: (32)

The final result is the formula

T D
2�

!

"

1C

1
X

nD1

�

1 � 3 � � � .2n � 1/

2 � 4 � � � .2n/

�

2

k2n

#

D T0

"

1C

�

1

2

�

2

k2
C

�

1 � 3

2 � 4

�

2

k4
C

�

1 � 3 � 5

2 � 4 � 6

�

2

k6
C � � �

#

(33)

for the period T of the nonlinear pendulum released from rest with initial angle

�.0/ D ˛, in terms of the linearized period T0 D 2�=! and k D sin.˛=2/.

The infinite series within the second pair of brackets in Eq. (33) gives the

factor T=T0 by which the nonlinear period T is longer than the linearized period.

The table in Fig. 9.4.9, obtained by summing this series numerically, shows how

T=T0 increases as ˛ is increased. Thus T is 0:19% greater than T0 if ˛ D 10ı,

whereas T is 18:03% greater than T0 if ˛ D 90ı. But even a 0:19% discrepancy is

significant—the calculation

.0:0019/ � 3600
seconds

hour
� 24

hours

day
� 7

days

week
� 1149 (seconds=week)

shows that the linearized model is quite inadequate for a pendulum clock; a discrep-

ancy of 19 min 9 s after only one week is unacceptable.

˛ T=T0

10ı

20ı

30ı

40ı

50ı

60ı

70ı

80ı

90ı

1.0019

1.0077

1.0174

1.0313

1.0498

1.0732

1.1021

1.1375

1.1803

FIGURE 9.4.9. Dependence of the
period T of a nonlinear pendulum on
its initial angle ˛.

Damped Pendulum Oscillations

Finally, we discuss briefly the damped nonlinear pendulum. The almost linear first-

order system equivalent to Eq. (19) is

dx

dt
D y;

dy

dt
D �!2 sin x � cy;

(34)

and again the critical points are of the form .n�; 0/ where n is an integer. In Prob-

lems 9 through 11 we ask you to verify that

� If n is odd, then .n�; 0/ is an unstable saddle point of (34), just as in the

undamped case; but

� If n is even and c2 > 4!2, then .n�; 0/ is a nodal sink; whereas

� If n is even and c2 < 4!2, then .n�; 0/ is a spiral sink.
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Figure 9.4.10 illustrates the phase plane trajectories for the more interesting

underdamped case, c2 < 4!2. Other than the physically unattainable separatrix

trajectories that enter unstable saddle points, every trajectory eventually is “trapped”

by one of the stable spiral points .n�; 0/ with n an even integer. What this means is

that even if the pendulum starts with enough energy to go over the top, after a certain

(finite) number of revolutions it has lost enough energy that thereafter it undergoes

damped oscillations around its stable (lower) equilibrium position.

x

y

0 2π 3π–2π–3π π–π

0

–4

2

4

–2

FIGURE 9.4.10. Position–velocity phase plane portrait for the damped pendulum
system x

0 D y, y
0 D � sin x � 1

4
y. The (black) separatrices are emphasized.

9.4 Problems
In Problems 1 through 4, show that the given system is al-

most linear with .0; 0/ as a critical point, and classify this crit-

ical point as to type and stability. Use a computer system or

graphing calculator to construct a phase plane portrait that

illustrates your conclusion.

1.
dx

dt
D 1 � ex C 2y,

dy

dt
D �x � 4 sin y

2.
dx

dt
D 2 sin x C sin y,

dy

dt
D sin x C 2 sin y (Fig. 9.4.11)

0

0

x

y

2π

π

–2π

–π

–2π –π π 2π

FIGURE 9.4.11. Trajectories of the system in Problem 2.

3.
dx

dt
D ex C 2y � 1,

dy

dt
D 8x C ey � 1

4.
dx

dt
D sin x cos y � 2y,

dy

dt
D 4x � 3 cos x sin y

Find and classify each of the critical points of the almost lin-

ear systems in Problems 5 through 8. Use a computer system

or graphing calculator to construct a phase plane portrait that

illustrates your findings.

5.
dx

dt
D �x C sin y,

dy

dt
D 2x

6.
dx

dt
D y,

dy

dt
D sin�x � y

7.
dx

dt
D 1 � ex�y ,

dy

dt
D 2 sin x

8.
dx

dt
D 3 sin x C y,

dy

dt
D sin x C 2y

Critical Points for Damped Pendulum

Problems 9 through 11 deal with the damped pendulum system

x0 D y, y0 D �!2 sin x � cy.

9. Show that if n is an odd integer, then the critical point

.n�; 0/ is a saddle point for the damped pendulum system.

10. Show that if n is an even integer and c2 > 4!2, then the

critical point .n�; 0/ is a nodal sink for the damped pen-

dulum system.
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11. Show that if n is an even integer and c2 < 4!2, then the

critical point .n�; 0/ is a spiral sink for the damped pen-

dulum system.

Critical Points for Mass-Spring System

In each of Problems 12 through 16, a second-order equation

of the form x00 C f .x; x0/ D 0, corresponding to a certain

mass-and-spring system, is given. Find and classify the crit-

ical points of the equivalent first-order system.

12. x00 C 20x � 5x3 D 0: Verify that the critical points resem-

ble those shown in Fig. 9.4.4.

13. x00 C 2x0 C 20x � 5x3 D 0: Verify that the critical points

resemble those shown in Fig. 9.4.6.

14. x00 � 8x C 2x3 D 0: Here the linear part of the force is re-

pulsive rather than attractive (as for an ordinary spring).

Verify that the critical points resemble those shown in

Fig. 9.4.12. Thus there are two stable equilibrium points

and three types of periodic oscillations.

15. x00C 4x � x2 D 0: Here the force function is nonsymmet-

ric. Verify that the critical points resemble those shown in

Fig. 9.4.13.

16. x00 C 4x � 5x3 C x5 D 0: The idea here is that terms

through the fifth degree in an odd force function have been

retained. Verify that the critical points resemble those

shown in Fig. 9.4.14.

Critical Points for Physical Systems

In Problems 17 through 20, analyze the critical points of the

indicated system, use a computer system to construct an illus-

trative position–velocity phase plane portrait, and describe the

oscillations that occur.

17. Example 2 in this section illustrates the case of damped

vibrations of a soft mass–spring system. Investigate an

example of damped vibrations of a hard mass–spring sys-

tem by using the same parameters as in Example 2, except

now with ˇ D �5

4
< 0.

18. Example 2 illustrates the case of damped vibrations of a

soft mass–spring system with the resistance proportional

to the velocity. Investigate an example of resistance pro-

portional to the square of the velocity by using the same

parameters as in Example 2, but with resistance term

�cx0jx0j instead of �cx0 in Eq. (12).

19. Now repeat Example 2 with both the alterations corre-

sponding to Problems 17 and 18. That is, take ˇD�5

4
< 0

and replace the resistance term in Eq. (12) with �cx0jx0j.

20. The equations x0 D y, y0 D � sin x � 1

4
yjyj model a

damped pendulum system as in Eqs. (34) and Fig. 9.4.10.

But now the resistance is proportional to the square of the

angular velocity of the pendulum. Compare the oscilla-

tions with those that occur when the resistance is propor-

tional to the angular velocity itself.

Period of Oscillation

Problems 21 through 26 outline an investigation of the period

T of oscillation of a mass on a nonlinear spring with equation

of motion

d2x

dt2
C �.x/ D 0: (35)

If �.x/D kx with k > 0, then the spring actually is linear with

period T0 D 2�=
p
k.

x

y

–2 2

FIGURE 9.4.12. The phase portrait
for Problem 14.

x

y

4

FIGURE 9.4.13. The phase portrait
for Problem 15.

x

y

–2 2

FIGURE 9.4.14. The phase portrait
for Problem 16.
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21. Integrate once (as in Eq. (6)) to derive the energy equation

1

2
y2
C V.x/ D E; (36)

where y D dx=dt and

V.x/ D

Z

x

0

�.u/ du: (37)

22. If the mass is released from rest with initial conditions

x.0/ D x0, y.0/ D 0 and periodic oscillations ensue, con-

clude from Eq. (36) that E D V.x0/ and that the time T

required for one complete oscillation is

T D
4
p
2

Z

x0

0

du
p

V.x0/ � V.u/
: (38)

23. If �.x/ D kx � ˇx3 as in the text, deduce from Eqs. (37)

and (38) that

T D 4
p
2

Z

x0

0

dx
p

.x2

0
� u2/.2k � ˇx2

0
� ˇu2/

: (39)

24. Substitute u D x0 cos� in (39) to show that

T D
2T0

�
p
1 � �

Z

�=2

0

d�
q

1 � � sin2 �

; (40)

where T0 D 2�=
p
k is the linear period,

� D
ˇ

k
x2

0
; and � D �

1

2
�

�

1 � �
: (41)

25. Finally, use the binomial series in (31) and the integral

formula in (32) to evaluate the elliptic integral in (40) and

thereby show that the period T of oscillation is given by

T D
T0

p
1 � �

�

1C
1

4
�C

9

64
�2
C

25

256
�3
C � � �

�

: (42)

26. If � D ˇx2

0
=k is sufficiently small that �2 is negligible, de-

duce from Eqs. (41) and (42) that

T � T0

�

1C
3

8
�

�

D T0

�

1C
3ˇ

8k
x2

0

�

: (43)

It follows that

� If ˇ > 0, so the spring is soft, then T > T0, and

increasing x0 increases T , so the larger ovals in

Fig. 9.4.4 correspond to smaller frequencies.

� If ˇ < 0, so the spring is hard, then T < T0, and

increasing x0 decreases T , so the larger ovals in

Fig. 9.4.2 correspond to larger frequencies.

Go to goo.gl/hlWIzu to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

9.4 Application The Rayleigh, van der Pol, and FitzHugh-Nagumo
Equations

Here we present a trio of nonlinear differential equations or systems of equations,

drawn from the areas of acoustics, electrical engineering, and neuroscience. Each

of these models has been fundamental within its field; taken together, they give

some indication of the importance of nonlinear equations across a wide variety of

applications.

Rayleigh’s Equation

The British mathematical physicist Lord Rayleigh (John William Strutt, 1842–1919)

introduced an equation of the form

mx00
C kx D ax0

� b.x0/3 (1)

to model the oscillations of a clarinet reed. With y D x0 we get the autonomous

system

x0
D y;

y0
D
�kx C ay � by3

m
;

(2)

whose phase plane portrait is shown in Fig. 9.4.15 (for the case m D k D a D b D

1). The outward and inward spiral trajectories converge to a “limit cycle” solution

that corresponds to periodic oscillations of the reed. The period T (and hence the

frequency) of these oscillations can be measured on a tx-solution curve plotted as

in Fig. 9.4.16. This period of oscillation depends only on the parameters m, k, a,

and b in Eq. (1) and is independent of the initial conditions (why?).
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FIGURE 9.4.15. Phase plane portrait

for the Rayleigh system in (2) with
m D k D a D b D 1.
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FIGURE 9.4.16. The tx-solution curve

with initial conditions x.0/ D 0:01,
x

0
.0/ D 0.

Choose your own parameters m, k, a, and b (perhaps the least four nonzero

digits in your student ID number), and use an available ODE plotting utility to

plot trajectories and solution curves as in Figs. 9.4.15 and 9.4.16. Change one of

your parameters to see how the amplitude and frequency of the resulting periodic

oscillations are altered.

Van der Pol’s Equation

Figure 9.4.17 shows a simple RLC circuit in which the usual (passive) resistance R

has been replaced with an active element (such as a vacuum tube or semiconductor)

across which the voltage drop V is given by a known function f .I / of the current

I. Of course, V D f .I / D IR for a resistor. If we substitute f .I / for IR in the

well-known RLC-circuit equation LI 0 CRI CQ=C D 0, then differentiation gives

LC

FIGURE 9.4.17. A simple circuit
with an active element.

the second-order equation

LI 00
C f 0.I /I 0

C
I

C
D 0: (3)

In a 1924 study of oscillator circuits in early commercial radios, Balthasar van der

Pol (1889–1959) assumed the voltage drop to be given by a nonlinear function of

the form f .I / D bI 3 � aI , which with Eq. (3) becomes

LI 00
C .3bI 2

� a/I 0
C
I

C
D 0: (4)

This equation is closely related to Rayleigh’s equation and has phase portraits re-

sembling Fig. 9.4.15. Indeed, differentiation of the second equation in (2) and the

resubstitution x0 D y yield the equation

my00
C .3by2

� a/y0
C ky D 0; (5)

which has the same form as Eq. (4).

If we denote by � the time variable in Eq. (4) and make the substitutions

I D px, t D �=
p
LC , the result is

d2x

dt2
C
�

3bp2x2
� a

�

r

C

L

dx

dt
C x D 0:
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With p D
p

a=.3b/ and � D a
p

C=L, this gives the standard form

x00
C �.x2

� 1/x0
C x D 0 (6)

of van der Pol’s equation.

For every nonnegative value of the parameter �, the solution of van der Pol’s

equation with x.0/ D 2, x0.0/ D 0 is periodic, and the corresponding phase plane

trajectory is a limit cycle to which the other trajectories converge (as in Fig. 9.4.15).

It will be instructive for you to solve van der Pol’s equation numerically and to

plot this periodic trajectory for a selection of values from � D 0 to � D 1000 or

more. With � D 0 it is a circle of radius 2 (why?). Figure 9.4.18 shows the pe-

riodic trajectory with � D 1, and Fig. 9.4.19 shows the corresponding x.t/ and

y.t/ solution curves. When � is large, van der Pol’s equation is quite “stiff” and the

periodic trajectory is more eccentric as in Fig. 9.4.20, which was plotted using MAT-

LAB’s stiff ODE solver ode15s. The corresponding x.t/ and y.t/ solution curves

in Figs. 9.4.21 and 9.4.22 reveal surprising behavior of these component functions.

Each alternates long intervals of very slow change with periods of abrupt change

during very short time intervals that correspond to the “quasi-discontinuities” that

are visible in Figs. 9.4.21 and 9.4.22. For instance, Fig. 9.4.23 shows that, between

t D 1614:28 and t D 1614:29, the value of y.t/ zooms from near zero to over 1300

and back again. Perhaps you can measure the distance between x- or y-intercepts

0 42

(2, 0)(–1, 2)

µ = 1

(1, –2)
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y

–4 –2 1 3–3 –1
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1

FIGURE 9.4.18. The phase plane

trajectory of a periodic solution of van der
Pol’s equation with � D 1, as well as

some trajectories spiraling in and out.
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FIGURE 9.4.19. x.t/ and y.t/

solution curves defining the periodic
solution of van der Pol’s equation with
� D 1.
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FIGURE 9.4.20. The phase plane
trajectory of the periodic solution of van
der Pol’s equation with � D 1000.
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FIGURE 9.4.21. Graph of x.t/ with
� D 1000.
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FIGURE 9.4.22. Graph of y.t/ with
� D 1000.

1614.28 1614.285 1614.29

–1500

–1000

–500

0

500

1000

1500

t

y

y(t)

FIGURE 9.4.23. The upper spike in the
graph of y.t/.
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to show that the period of circuit around the cycle in Fig. 9.4.20 is approximately

T D 1614. Indeed, this calculation and the construction of figures like those shown

here may serve as a good test of the robustness of your computer system’s ODE

solver.

You might also plot other trajectories for � D 10, 100 or 1000 that (like the

trajectories in Fig. 9.4.18) are “attracted” from within and without by the limit cycle.

The origin looks like a spiral point in Fig 9.4.18. Indeed, show that .0; 0/ is a spiral

source for van der Pol’s equation if 0 < � < 2 but is a nodal source if � � 2.

The FitzHugh-Nagumo Equations

Since the early experiments of Luigi Galvani (1737–1798) in which electrical stim-

ulus caused the leg muscles of dead frogs to twitch, the electrical properties of

neurons, the cells that form the building blocks of the nervous system, have been

intensively studied. One of the most important of those properties is the action po-

tential, an electrical signal that travels from the body of a neuron down along its

axon (Fig. 9.4.24). Action potentials are the units of information of the nervous

system; when an action potential reaches the end of the axon, chemicals known

as neurotransmitters are released from the axon terminals. These neurotransmitters

then find receptors in the dendrites of other nerve cells, causing action potentials in

those “target” neurons, and thus propagating the “message.” Because of the great

speed with which action potentials traverse the neuron, they provide a mechanism

by which signals can be rapidly transmitted through the nervous system.

Action potentials are particularly known for their all-or-none character. If the

stimulus received by a target neuron is below a certain threshold, then no action

potential is generated. If this threshold is exceeded, however, then the neuron will

“fire” an action potential, or perhaps (if the stimulus is sufficiently strong) several

action potentials in succession. In this way, the nervous system’s method of electri-

cal signaling resembles the binary code used by computers.

Dendrite
Cell body

Nucleus

Axon terminal

Axon

FIGURE 9.4.24. The structure of a typical neuron.

In the early 1950’s A. F. Huxley (1917–2012) and A. L. Hodgkin (1914–1998)

published a landmark series of papers in which they modeled the action potential

in the giant axon of the squid as an electrical circuit. The focus of this model was

the neuron’s membrane potential, that is, the voltage difference between the inside

and outside of the nerve cell. In its resting state, a typical neuron has a negative

membrane potential, that is, the inside of the cell is at a lower voltage than the sur-

rounding medium. (We now know that this voltage difference is largely due to “ion

pumps” in the cell membrane, which maintain a lower concentration of positively

charged sodium ions inside the cell than in the surrounding medium. These pumps

require energy, and indeed a significant portion of the body’s metabolic energy is

devoted to this task.) Potassium ions also play an important role in neuron electrical

activity.
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During an action potential, the membrane potential exhibits a characteristic

pattern of sudden and rapid changes through positive and negative values as the

electrical signal traverses the neuron. A central goal of Hodgkin and Huxley’s work

was to explain these changes in terms of the sodium and potassium conductances

of the neuron membrane. Conductance—the reciprocal of resistance—is a measure

of the permeability of the membrane to charged ions. An increase in the sodium

conductance, for example, allows sodium ions to flow more freely across the mem-

brane, from areas of high concentration to low. Hodgkin and Huxley proposed

that during an action potential, an electrical stimulus (arising from another neuron

“upstream,” for example) causes changes in the neuron membrane’s sodium and

potassium conductances. This results in a series of flows of charged ions, and thus

electrical currents, across the cell membrane.

The researchers applied some of the basic principles of circuit theory to model

these currents. The result was a system of four nonlinear differential equations,

whose variables are the neuron membrane potential together with three other quan-

tities related to the membrane’s sodium and potassium conductances. Not only did

the predictions of this model show remarkable accord with experimental results,

they also helped point the way to subsequent discoveries in neurophysiology. The

Hodgkin-Huxley model was a triumph both of experimental technique and theo-

retical analysis, and remains today the starting point for mathematical modeling of

action potentials. Together with John Eccles, Hodgkin and Huxley were awarded

the 1963 Nobel Prize in Physiology or Medicine for their work.

Analysis of the Hodgkin-Huxley model can be challenging, however, because

its phase space is four-dimensional, making features such as solution curves diffi-

cult to visualize. For this reason, in 1961 Richard FitzHugh (1922–2007) proposed

a two-dimensional simplification of the Hodgkin-Huxley model, which was subse-

quently analyzed in electrical circuit terms by J. Nagumo and others. Whereas the

FitzHugh-Nagumo equations are not intended to capture the physiological proper-

ties of the neuron as directly as the original Hodgkin-Huxley equations do, this sim-

plified model is important because it displays much of the qualitative behavior char-

acteristic of neuron electrical activity, while offering the advantage of being consid-

erably easier to study. FitzHugh’s model actually is a generalization of van der Pol’s

equation (6). You can show that introduction of the variable y D
1

�
x0 C

1

3
x3 � x in

van der Pol’s equation (which results in better phase plane analysis than does simply

taking y D x0) leads to the system

x0
D �

�

y C x �
1

3
x3

�

;

y0
D �

1

�
x;

which FitzHugh generalized by adding terms:

x0
D �

�

y C x �
1

3
x3
C I

�

;

y0
D �

1

�
.x � aC by/:

(7)

Here a and b are constants and I is a function of the time t . Loosely speaking, x.t/

behaves in a manner similar to the neuron membrane potential, I.t/ is the electrical

stimulus applied to the neuron, and y.t/ is a composite of the other three variables

in the Hodgkin-Huxley model. To simulate neuron electrical activity, we will use
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FitzHugh’s values a D 0:7, b D 0:8, and � D 3, while assigning various constant

values to the stimulus I.t/.

First, with I.t/ � 0 (corresponding to the resting state of the neuron), you can

verify that the system (7) has exactly one equilibrium point at roughly x D 1:1994

and y D �0:6243. What is striking is the way in which the system responds as

I becomes nonzero (corresponding to electrical stimulation of the neuron). Fig-

ure 9.4.25 shows the solution curves of the system corresponding to the three con-

stant values I.t/ � �0:15, I.t/ � �0:17, and I.t/ � �0:5. The graph on the left

gives the phase plane for x and y, whereas the graph on the right shows x.t/ as

a function of t . All curves begin at time t D 0 at the original equilibrium point

.1:1994;�0:6243/ indicated in the graph on the left.

–2 –1 0 1 2

– 0.5
–2

–1

1

2

0.0

0.5

1.0

1.5

x

y 5 10 15 20
t

x

I(t)   –0.15        –0.5       –0.17

FIGURE 9.4.25. Solutions of the FitzHugh-Nagumo equations (7) with three constant values of the
electrical stimulus I.t/, using a D 0:7, b D 0:8, and � D 3.

When the stimulus I.t/ is held at the constant value �0:15, x (which is analo-

gous to the neuron membrane potential) varies slightly from its rest value, but soon

finds a new “perturbed” equilibrium at which it then remains (thin blue curves); this

mirrors the behavior of the membrane potential when the neuron receives a stimu-

lus insufficiently large to generate an action potential. The response of the system

differs dramatically, however, when the constant stimulus is decreased slightly to

�0:17; once again x finds a new equilibrium, but only after exhibiting wide swings

downward and back upward (dashed curves); this is suggestive of the firing of a sin-

gle action potential. Finally, when I.t/ � �0:5, x oscillates repeatedly, in a manner

reminiscent of both the Rayleigh and van der Pol systems (thick blue curves); this

corresponds to repetitive firing of the neuron.

After using your own computer system’s ODE solver to verify these behav-

iors, you can investigate what happens with other constant nonzero values of the

stimulus I.t/. Do all such values lead either to oscillatory phase plane solutions

or to ones that converge to the same perturbed equilibrium point? Or do certain

different values lead to different perturbed equilibrium points? Do all oscillatory

solutions correspond to phase plane curves that appear to converge to a single limit

cycle?

The FitzHugh-Nagumo system has proven to be a very useful simplification of

the Hodgkin-Huxley system, exhibiting a number of characteristics of neuron elec-

trical activity. For a more detailed discussion see the classic work of L. Edelstein-

Keshet, Mathematical Models in Biology (Society for Industrial and Applied Math-

ematics, 2005).
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10.1 Laplace Transforms and Inverse Transforms

In Chapter 5 we saw that linear differential equations with constant coefficients

have numerous applications and can be solved systematically. There are common

situations, however, in which the alternative methods of this chapter are preferable.

For example, recall the differential equations

mx00
C cx0

C kx D F.t/ and LI 00
CRI 0

C
1

C
I D E 0.t/

corresponding to a mass–spring–dashpot system and a series RLC circuit, respec-

tively. It often happens in practice that the forcing term, F.t/ or E 0.t/, has

discontinuities—for example, when the voltage supplied to an electrical circuit is

turned off and on periodically. In this case the methods of Chapter 5 can be quite

awkward, and the Laplace transform method is more convenient.

The differentiation operatorD can be viewed as a transformation which, when

applied to the function f .t/, yields the new function Dff .t/g D f 0.t/. The Laplace

transformation ˇ involves the operation of integration and yields the new function

ˇff .t/g D F.s/ of a new independent variable s. The situation is diagrammed in

Fig. 10.1.1. After learning in this section how to compute the Laplace transform

F.s/ of a function f .t/, we will see in Section 10.2 that the Laplace transform con-

verts a differential equation in the unknown function f .t/ into an algebraic equation

in F.s/. Because algebraic equations are generally easier to solve than differential

equations, this is one method that simplifies the problem of finding the solution

f .t/.

D{ f (t)}  = f ' (t)

{ f (t)}  = F (s)

f (t)

D

f (t)

FIGURE 10.1.1. Transformation of
a function: ˇ in analogy with D.

557
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DEFINITION The Laplace Transform

Given a function f .t/ defined for all t = 0, the Laplace transform of f is the

function F defined as follows:

F.s/ D ˇff .t/g D

Z 1

0

e�stf .t/ dt (1)

for all values of s for which the improper integral converges.

Recall that an improper integral over an infinite interval is defined as a limit

of integrals over bounded intervals; that is,

Z 1

a

g.t/ dt D lim
b!1

Z

b

a

g.t/ dt: (2)

If the limit in (2) exists, then we say that the improper integral converges; otherwise,

it diverges or fails to exist. Note that the integrand of the improper integral in (1)

contains the parameter s in addition to the variable of integration t . Therefore, when

the integral in (1) converges, it converges not merely to a number, but to a function

F of s. As in the following examples, it is typical for the improper integral in the

definition of ˇff .t/g to converge for some values of s and diverge for others.

Example 1 With f .t/ � 1 for t = 0, the definition of the Laplace transform in (1) gives

ˇf1g D

Z 1

0

e�st dt D

�

�
1

s
e�st

�1

0

D lim
b!1

�

�
1

s
e�bs

C
1

s

�

;

and therefore

ˇf1g D
1

s
for s > 0: (3)

As in (3), it’s good practice to specify the domain of the Laplace transform—in problems as

well as in examples. Also, in this computation we have used the common abbreviation

h

g.t/
i1

a

D lim
b!1

h

g.t/
i

b

a

: (4)

Remark The limit we computed in Example 1 would not exist if s < 0, for then .1=s/e�bs

would become unbounded as b!C1. Hence ˇf1g is defined only for s > 0. This is typical

of Laplace transforms; the domain of a transform is normally of the form s > a for some

number a.

Example 2 With f .t/ D eat for t = 0, we obtain

ˇfeat
g D

Z 1

0

e�steat dt D

Z 1

0

e�.s�a/t dt D

"

�
e�.s�a/t

s � a

#1

tD0

:

If s � a > 0, then e�.s�a/t ! 0 as t !C1, so it follows that

ˇfeat
g D

1

s � a
for s > a: (5)

Note here that the improper integral giving ˇfeat g diverges if s 5 a. It is worth noting also

that the formula in (5) holds if a is a complex number. For then, with a D ˛ C iˇ,

e�.s�a/t
D eiˇ te�.s�˛/t

! 0

as t !C1, provided that s > ˛ D ReŒa�; recall that eiˇ t D cosˇt C i sinˇt .
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The Laplace transform ˇftag of a power function is most conveniently ex-

pressed in terms of the gamma function �.x/, which is defined for x > 0 by the

formula

�.x/ D

Z 1

0

e�t tx�1 dt: (6)

For an elementary discussion of �.x/, see the subsection on the gamma function in

Section 11.4, where it is shown that

�.1/ D 1 (7)

and that

�.x C 1/ D x�.x/ (8)

for x > 0. It then follows that if n is a positive integer, then

�.nC 1/ D n�.n/

D n � .n � 1/�.n � 1/

D n � .n � 1/ � .n � 2/�.n � 2/

:::

D n.n � 1/.n � 2/ � � � 2 � �.2/

D n.n � 1/.n � 2/ � � � 2 � 1 � �.1/I

thus

�.nC 1/ D nŠ (9)

if n is a positive integer. Therefore, the function �.x C 1/, which is defined and

continuous for all x > �1, agrees with the factorial function for x D n, a positive

integer.

Example 3 Suppose that f .t/ D ta where a is real and a > �1. Then

ˇftag D

Z 1

0

e�st ta dt:

If we substitute u D st , t D u=s, and dt D du=s in this integral, we get

ˇftag D
1

saC1

Z 1

0

e�uua du D
�.aC 1/

saC1
(10)

for all s > 0 (so that u D st > 0). Because �.nC 1/ D nŠ if n is a nonnegative integer, we see

that

ˇftng D
nŠ

snC1
for s > 0: (11)

For instance,

ˇftg D
1

s2
; ˇft2g D

2

s3
; and ˇft3g D

6

s4
:

As in Problems 1 and 2, these formulas can be derived immediately from the definition,

without the use of the gamma function.

Linearity of Transforms

It is not necessary for us to proceed much further in the computation of Laplace

transforms directly from the definition. Once we know the Laplace transforms of

several functions, we can combine them to obtain transforms of other functions. The

reason is that the Laplace transformation is a linear operation.
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THEOREM 1 Linearity of the Laplace Transform

If a and b are constants, then

ˇfaf .t/C bg.t/g D aˇff .t/g C bˇfg.t/g (12)

for all s such that the Laplace transforms of the functions f and g both exist.

The proof of Theorem 1 follows immediately from the linearity of the opera-

tions of taking limits and of integration:

ˇfaf .t/C bg.t/g D

Z 1

0

e�st Œaf .t/C bg.t/� dt

D lim
c!1

Z

c

0

e�st Œaf .t/C bg.t/� dt

D a

�

lim
c!1

Z

c

0

e�stf .t/ dt

�

C b

�

lim
c!1

Z

c

0

e�stg.t/ dt

�

D aˇff .t/g C bˇfg.t/g:

Example 4 The computation of ˇftn=2g is based on the known special value

�

�

1

2

�

D
p
� (13)

of the gamma function. For instance, it follows that

�

�

5

2

�

D
3

2
�

�

3

2

�

D
3

2
�
1

2
�

�

1

2

�

D
3

4

p
�;

using the formula �.x C 1/ D x�.x/ in (9), first with x D 3

2
and then with x D 1

2
. Now the

formulas in (10) through (12) yield

ˇf3t2 C 4t3=2
g D 3 �

2Š

s3
C

4�
�

5

2

�

s5=2

D
6

s3
C 3

r

�

s5
:

Example 5 Recall that cosh kt D .ekt C e�kt /=2. If k > 0, then Theorem 1 and Example 2 together give

ˇfcosh ktg D
1

2
ˇfekt

g C
1

2
ˇfe�kt

g D
1

2

�

1

s � k
C

1

s C k

�

I

that is,

ˇfcosh ktg D
s

s2 � k2
for s > k > 0: (14)

Similarly,

ˇfsinh ktg D
k

s2 � k2
for s > k > 0: (15)

Because cos kt D .eikt C e�ikt /=2, the formula in (5) (with a D ik) yields

ˇfcos ktg D
1

2

�

1

s � ik
C

1

s C ik

�

D
1

2
�

2s

s2 � .ik/2
;
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and thus

ˇfcos ktg D
s

s2 C k2
for s > 0: (16)

(The domain follows from s > ReŒik� D 0.) Similarly,

ˇfsin ktg D
k

s2 C k2
for s > 0: (17)

Example 6 Applying linearity, the formula in (16), and a familiar trigonometric identity, we get

ˇf3e2t
C 2 sin2 3tg D ˇf3e2t

C 1 � cos 6tg

D
3

s � 2
C
1

s
�

s

s2 C 36

D
3s3 C 144s � 72

s.s � 2/.s2 C 36/
for s > 0:

Inverse Transforms

According to Theorem 3 of this section, no two different functions that are both

continuous for all t = 0 can have the same Laplace transform. Thus if F.s/ is the

transform of some continuous function f .t/, then f .t/ is uniquely determined. This

observation allows us to make the following definition: If F.s/ D ˇff .t/g, then we

call f .t/ the inverse Laplace transform of F.s/ and write

f .t/ D ˇ
�1
fF.s/g: (18)

Example 7 Using the Laplace transforms derived in Examples 2, 3, and 5 we see that

ˇ
�1

�

1

s3

�

D
1

2
t2; ˇ

�1

�

1

s C 2

�

D e�2t ; ˇ
�1

�

2

s2 C 9

�

D
2

3
sin 3t

and so on.

NOTATION: FUNCTIONS AND THEIR TRANSFORMS. Throughout this chapter

we denote functions of t by lowercase letters. The transform of a function will al-

ways be denoted by that same letter capitalized. Thus F.s/ is the Laplace transform

of f .t/ and x.t/ is the inverse Laplace transform of X.s/.

A table of Laplace transforms serves a purpose similar to that of a table of

integrals. The table in Fig. 10.1.2 lists the transforms derived in this section; many

additional transforms can be derived from these few, using various general proper-

ties of the Laplace transformation (which we will discuss in subsequent sections).

Piecewise Continuous Functions

As we remarked at the beginning of this section, we need to be able to handle certain

types of discontinuous functions. The function f .t/ is said to be piecewise contin-

uous on the bounded interval a 5 t 5 b provided that Œa; b� can be subdivided into

finitely many abutting subintervals in such a way that

1. f is continuous in the interior of each of these subintervals; and

2. f .t/ has a finite limit as t approaches each endpoint of each subinterval from

its interior.
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We say that f is piecewise continuous for t = 0 if it is piecewise continuous on
f .t/ F.s/

1

t

tn .n = 0/

ta .a > �1/

eat

cos kt

sin kt

cosh kt

sinh kt

u.t � a/

1

s

1

s2

nŠ

snC1

�.aC 1/

saC1

1

s � a

s

s2 C k2

k

s2 C k2

s

s2 � k2

k

s2 � k2

e�as

s

.s > 0/

.s > 0/

.s > 0/

.s > 0/

.s > a/

.s > 0/

.s > 0/

.s > jkj/

.s > jkj/

.s > 0/

FIGURE 10.1.2. A short table of
Laplace transforms.

every bounded subinterval of Œ0;C1/. Thus a piecewise continuous function has

only simple discontinuities (if any) and only at isolated points. At such points the

value of the function experiences a finite jump, as indicated in Fig. 10.1.3. The

jump in f .t/ at the point c is defined to be f .cC/� f .c�/, where

f .cC/ D lim
�!0

C

f .c C �/ and f .c�/ D lim
�!0

C

f .c � �/:

Perhaps the simplest piecewise continuous (but discontinuous) function is the

unit step function, whose graph appears in Fig. 10.1.4. It is defined as follows:

u.t/ D

(

0 for t < 0,

1 for t = 0.
(19)

Because u.t/ D 1 for t = 0 and because the Laplace transform involves only the

values of a function for t = 0, we see immediately that

ˇfu.t/g D
1

s
.s > 0/: (20)

The graph of the unit step function ua.t/D u.t � a/ appears in Fig. 10.1.5. Its jump

occurs at t D a rather than at t D 0; equivalently,

ua.t/ D u.t � a/ D

(

0 for t < a,

1 for t = a.
(21)

Example 8 Find ˇfua.t/g if a > 0.

Solution We begin with the definition of the Laplace transform. We obtain

ˇfua.t/g D

Z 1

0

e�stua.t/ dt D

Z 1

a

e�st dt D lim
b!1

�

�
e�st

s

�b

tDa

I

consequently,

ˇfua.t/g D
e�as

s
.s > 0, a > 0/. (22)

x

y

a b

FIGURE 10.1.3. The graph of a
piecewise continuous function; the
solid dots indicate values of the
function at discontinuities.

u (t)

t

(0, 1)

FIGURE 10.1.4. The graph of the
unit step function.

ua(t) = u(t – a)

t = a t

(a , 1)

FIGURE 10.1.5. The unit step
function ua.t/ has a jump at t D a.
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General Properties of Transforms

It is a familiar fact from calculus that the integral

Z

b

a

g.t/ dt

exists if g is piecewise continuous on the bounded interval Œa; b�. Hence if f is

piecewise continuous for t = 0, it follows that the integral

Z

b

0

e�stf .t/ dt

exists for all b < C1. But in order for F.s/—the limit of this last integral as

b ! C1—to exist, we need some condition to limit the rate of growth of f .t/ as

t ! C1. The function f is said to be of exponential order as t ! C1 if there

exist nonnegative constants M , c, and T such that

jf .t/j 5 Mect for t = T: (23)

Thus a function is of exponential order provided that it grows no more rapidly (as

t !C1) than a constant multiple of some exponential function with a linear expo-

nent. The particular values of M , c, and T are not so important. What is important

is that some such values exist so that the condition in (23) is satisfied.

The condition in (23) merely says that f .t/=ect lies between �M and M and

is therefore bounded in value for t sufficiently large. In particular, this is true (with

c D 0) if f .t/ itself is bounded. Thus every bounded function—such as cos kt or

sin kt—is of exponential order.

If p.t/ is a polynomial, then the familiar fact that p.t/e�t ! 0 as t ! C1

implies that (23) holds (for T sufficiently large) with M D c D 1. Thus every

polynomial function is of exponential order.

For an example of an elementary function that is continuous and therefore

bounded on every (finite) interval, but nevertheless is not of exponential order, con-

sider the function f .t/ D et
2
D exp.t2/. Whatever the value of c, we see that

lim
t!1

f .t/

ect
D lim

t!1

et
2

ect
D lim

t!1
et

2�ct
D C1

because t2� ct!C1 as t!C1. Hence the condition in (23) cannot hold for any

(finite) value M , so we conclude that the function f .t/ D et
2

is not of exponential

order.

Similarly, because e�stet
2
!C1 as t !C1, we see that the improper inte-

gral
R1

0
e�stet

2
dt that would define ˇfet

2
g does not exist (for any s), and therefore

that the function et
2

does not have a Laplace transform. The following theorem

guarantees that piecewise functions of exponential order do have Laplace trans-

forms.

THEOREM 2 Existence of Laplace Transforms

If the function f is piecewise continuous for t = 0 and is of exponential order as

t ! C1, then its Laplace transform F.s/ D ˇff .t/g exists. More precisely, if

f is piecewise continuous and satisfies the condition in (23), then F.s/ exists for

all s > c.
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Proof: First we note that we can take T D 0 in (23). For by piecewise

continuity, jf .t/j is bounded on Œ0; T �. Increasing M in (23) if necessary, we can

therefore assume that jf .t/j 5 M if 0 5 t 5 T . Because ect = 1 for t = 0, it then

follows that jf .t/j 5 Mect for all t = 0.

By a standard theorem on convergence of improper integrals—the fact that ab-

solute convergence implies convergence—it suffices for us to prove that the integral

Z 1

0

je�stf .t/j dt

exists for s > c. To do this, it suffices in turn to show that the value of the integral

Z

b

0

je�stf .t/j dt

remains bounded as b ! C1. But the fact that jf .t/j 5 Mect for all t = 0 implies

that
Z

b

0

je�stf .t/j dt 5

Z

b

0

je�stMect
j dt DM

Z

b

0

e�.s�c/t dt

5 M

Z 1

0

e�.s�c/t dt D
M

s � c

if s > c. This proves Theorem 2.

We have shown, moreover, that

jF.s/j 5

Z 1

0

je�stf .t/j dt 5
M

s � c
(24)

if s > c. When we take limits as s !C1, we get the following result.

COROLLARY F(s) for s Large

If f .t/ satisfies the hypotheses of Theorem 2, then

lim
s!1

F.s/ D 0: (25)

The condition in (25) severely limits the functions that can be Laplace trans-

forms. For instance, the function G.s/ D s=.s C 1/ cannot be the Laplace transform

of any “reasonable” function because its limit as s ! C1 is 1, not 0. More gen-

erally, a rational function—a quotient of two polynomials—can be (and is, as we

shall see) a Laplace transform only if the degree of its numerator is less than that of

its denominator.

On the other hand, the hypotheses of Theorem 2 are sufficient, but not nec-

essary, conditions for existence of the Laplace transform of f .t/. For example, the

function f .t/ D 1=
p
t fails to be piecewise continuous (at t D 0), but nevertheless

(Example 3 with a D �1

2
> �1) its Laplace transform

ˇft�1=2
g D

�
�

1

2

�

s1=2

D

r

�

s

both exists and violates the condition in (24), which would imply that sF.s/ remains

bounded as s !C1.
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The remainder of this chapter is devoted largely to techniques for solving a

differential equation by first finding the Laplace transform of its solution. It is then

vital for us to know that this uniquely determines the solution of the differential

equation; that is, that the function of s we have found has only one inverse Laplace

transform that could be the desired solution. The following theorem is proved in

Chapter 6 of Churchill’s Operational Mathematics, 3rd ed. (New York: McGraw-

Hill, 1972).

THEOREM 3 Uniqueness of Inverse Laplace Transforms

Suppose that the functions f .t/ and g.t/ satisfy the hypotheses of Theorem 2,

so that their Laplace transforms F.s/ and G.s/ both exist. If F.s/ D G.s/ for

all s > c (for some c), then f .t/ D g.t/ wherever on Œ0;C1/ both f and g are

continuous.

Thus two piecewise continuous functions of exponential order with the same

Laplace transform can differ only at their isolated points of discontinuity. This is

of no importance in most practical applications, so we may regard inverse Laplace

transforms as being essentially unique. In particular, two solutions of a differential

equation must both be continuous, and hence must be the same solution if they have

the same Laplace transform.

Historical Remark Laplace transforms have an interesting history. The integral in the

definition of the Laplace transform probably appeared first in the work of Euler. It is custom-

ary in mathematics to name a technique or theorem for the next person after Euler to discover

it (else there would be several hundred different examples of “Euler’s theorem”). In this case,

the next person was the French mathematician Pierre Simon de Laplace (1749–1827), who

employed such integrals in his work on probability theory. The so-called operational methods

for solving differential equations, which are based on Laplace transforms, were not exploited

by Laplace. Indeed, they were discovered and popularized by practicing engineers—notably

the English electrical engineer Oliver Heaviside (1850–1925). These techniques were suc-

cessfully and widely applied before they had been rigorously justified, and around the begin-

ning of the twentieth century their validity was the subject of considerable controversy. One

reason is that Heaviside blithely assumed the existence of functions whose Laplace trans-

forms contradict the condition that F.s/ ! 0 as s ! 0, thereby raising questions as to the

meaning and nature of functions in mathematics. (This is reminiscent of the way Leibniz two

centuries earlier had obtained correct results in calculus using “infinitely small” real numbers,

thereby raising questions as to the nature and role of numbers in mathematics.)

10.1 Problems
Apply the definition in (1) to find directly the Laplace trans-

forms of the functions described (by formula or graph) in Prob-

lems 1 through 10.

1. f .t/ D t 2. f .t/ D t2

3. f .t/ D e3tC1 4. f .t/ D cos t

5. f .t/ D sinh t 6. f .t/ D sin2 t

7.

t

(1, 1)

FIGURE 10.1.6.

8.

t

(2, 1)(1, 1)

FIGURE 10.1.7.

9.

t

(1, 1)

FIGURE 10.1.8.
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10.

t

(0, 1)

(1, 0)

FIGURE 10.1.9.

Use the transforms in Fig. 10.1.2 to find the Laplace trans-

forms of the functions in Problems 11 through 22. A prelimi-

nary integration by parts may be necessary.

11. f .t/ D
p
t C 3t 12. f .t/ D 3t5=2 � 4t3

13. f .t/ D t � 2e3t 14. f .t/ D t3=2 � e�10t

15. f .t/ D 1C cosh 5t 16. f .t/ D sin 2t C cos 2t

17. f .t/ D cos2 2t 18. f .t/ D sin 3t cos 3t

19. f .t/ D .1C t /3 20. f .t/ D tet

21. f .t/ D t cos 2t 22. f .t/ D sinh2 3t

Use the transforms in Fig. 10.1.2 to find the inverse Laplace

transforms of the functions in Problems 23 through 32.

23. F.s/ D
3

s4
24. F.s/ D s�3=2

25. F.s/ D
1

s
�

2

s5=2

26. F.s/ D
1

s C 5

27. F.s/ D
3

s � 4
28. F.s/ D

3s C 1

s2 C 4

29. F.s/ D
5 � 3s

s2 C 9
30. F.s/ D

9C s

4 � s2

31. F.s/ D
10s � 3

25 � s2
32. F.s/ D 2s�1e�3s

33. Derive the transform of f .t/ D sin kt by the method used

in the text to derive the formula in (16).

34. Derive the transform of f .t/D sinh kt by the method used

in the text to derive the formula in (14).

35. Use the tabulated integral
Z

eax cos bx dx D
eax

a2 C b2
.a cos bx C b sin bx/C C

to obtain ˇfcos ktg directly from the definition of the

Laplace transform.

36. Show that the function f .t/ D sin.et
2
/ is of exponential

order as t !C1 but that its derivative is not.

37. Given a > 0, let f .t/ D 1 if 0 5 t < a, f .t/ D 0 if t = a.

First, sketch the graph of the function f , making clear its

value at t D a. Then express f in terms of unit step func-

tions to show that ˇff .t/g D s�1.1 � e�as/.

38. Given that 0 < a < b, let f .t/ D 1 if a 5 t < b, f .t/ D 0

if either t < a or t = b. First, sketch the graph of the

function f , making clear its values at t D a and t D b.

Then express f in terms of unit step functions to show

that ˇff .t/g D s�1.e�as � e�bs/.

39. The unit staircase function is defined as follows:

f .t/ D n if n � 1 5 t < n; n D 1; 2; 3; : : :

(a) Sketch the graph of f to see why its name is appropri-

ate. (b) Show that

f .t/ D

1
X

nD0

u.t � n/

for all t = 0. (c) Assume that the Laplace transform of the

infinite series in part (b) can be taken termwise (it can).

Apply the geometric series to obtain the result

ˇff .t/g D
1

s.1 � e�s/
:

40. (a) The graph of the function f is shown in Fig. 10.1.10.

Show that f can be written in the form

f .t/ D

1
X

nD0

.�1/nu.t � n/:

(b) Use the method of Problem 39 to show that

ˇff .t/g D
1

s.1C e�s/
:

t654321

1

f

…

FIGURE 10.1.10. The graph of the function

of Problem 40.

41. The graph of the square-wave function g.t/ is shown in

Fig. 10.1.11. Express g in terms of the function f of Prob-

lem 40 and hence deduce that

ˇfg.t/g D
1 � e�s

s.1C e�s/
D
1

s
tanh

s

2
:

t

g

654321

1

–1

…

FIGURE 10.1.11. The graph of the function

of Problem 41.

42. Given constants a and b, define h.t/ for t = 0 by

h.t/ D

(

a if n � 1 5 t < n and n is odd;

b if n � 1 5 t < n and n is even.

Sketch the graph of h and apply one of the preceding prob-

lems to show that

ˇfh.t/g D
aC be�s

s.1C e�s/
:
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Go to goo.gl/pKAZvb to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

10.1 Application Computer Algebra Transforms and Inverse Transforms

If f .t/ D t cos 3t , then the definition of the Laplace transform gives the improper

integral

F.s/ D ˇff .t/g D

Z 1

0

te�st cos 3t dt;

whose evaluation would appear to require a tedious integration by parts. Conse-

quently a computer algebra Laplace transforms package is useful for the quick cal-

culation of transforms. Maple contains the integral transforms package inttrans,

and the commands

with(inttrans):

f := t�cos(3�t):

F := laplace(f, t, s);

yield immediately the Laplace transform F.s/D .s2 � 9/=.s2C 9/2, as do the Math-

ematica commands

f = t�Cos[3�t];

F = LaplaceTransform[f, t, s]

and the WolframjAlpha query

laplace transform t�cos(3t)

We can recover the original function f .t/ D t cos 3t with the Maple command

invlaplace(F, s, t);

or the Mathematica command

InverseLaplaceTransform[F, s, t]

or the WolframjAlpha query

inverse laplace transform (s^2 -- 9)/(s^2 + 9)^2

Remark Note carefully the order of s and t in the preceding Maple and Mathematica

commands—first t , then s when transforming; first s, then t when inverse transforming.

You can use these computer algebra commands to check the answers to Prob-

lems 11 through 32 in this section, as well as a few interesting problems of your

own selection.

10.2 Transformation of Initial Value Problems

We now discuss the application of Laplace transforms to solve a linear differential

equation with constant coefficients, such as

ax00.t/C bx0.t/C cx.t/ D f .t/; (1)

with given initial conditions x.0/ D x0 and x0.0/ D x0
0
. By the linearity of the

Laplace transformation, we can transform Eq. (1) by separately taking the Laplace

transform of each term in the equation. The transformed equation is

aˇfx00.t/g C bˇfx0.t/g C cˇfx.t/g D ˇff .t/gI (2)

it involves the transforms of the derivatives x0 and x00 of the unknown function x.t/.

The key to the method is Theorem 1, which tells us how to express the transform of

the derivative of a function in terms of the transform of the function itself.
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THEOREM 1 Transforms of Derivatives

Suppose that the function f .t/ is continuous and piecewise smooth for t = 0 and

is of exponential order as t !C1, so that there exist nonnegative constants M ,

c, and T such that

jf .t/j 5 Mect for t = T: (3)

Then ˇff 0.t/g exists for s > c, and

ˇff 0.t/g D sˇff .t/g � f .0/ D sF.s/ � f .0/: (4)

The function f is called piecewise smooth on the bounded interval Œa; b� if it

is piecewise continuous on Œa; b� and differentiable except at finitely many points,

with f 0.t/ being piecewise continuous on Œa; b�. We may assign arbitrary values

to f .t/ at the isolated points at which f is not differentiable. We say that f is

piecewise smooth for t = 0 if it is piecewise smooth on every bounded subinterval

of Œ0;C1/. Figure 10.2.1 indicates how “corners” on the graph of f correspond to

discontinuities in its derivative f 0.

The main idea of the proof of Theorem 1 is exhibited best by the case in which

f 0.t/ is continuous (not merely piecewise continuous) for t = 0. Then, beginning

x

y

a b

x

y'

a b

Continuous function

Piecewise continuous derivative

FIGURE 10.2.1. The discontinuities
of f

0 correspond to “corners” on the
graph of f .

with the definition of ˇff 0.t/g and integrating by parts, we get

ˇff 0.t/g D

Z 1

0

e�stf 0.t/ dt D
h

e�stf .t/
i1

tD0

C s

Z 1

0

e�stf .t/ dt:

Because of (3), the integrated term e�stf .t/ approaches zero (when s > c) as t !

C1, and its value at the lower limit t D 0 contributes �f .0/ to the evaluation of

the preceding expression. The integral that remains is simply ˇff .t/g; by Theorem

2 of Section 10.1, the integral converges when s > c. Then ˇff 0.t/g exists when

s > c, and its value is that given in Eq. (4). We will defer the case in which f 0.t/

has isolated discontinuities to the end of this section.

Solution of Initial Value Problems

In order to transform Eq. (1), we need the transform of the second derivative as

well. If we assume that g.t/ D f 0.t/ satisfies the hypotheses of Theorem 1, then

that theorem implies that

ˇff 00.t/g D ˇfg0.t/g D sˇfg.t/g � g.0/

D sˇff 0.t/g � f 0.0/

D s Œsˇff .t/g � f .0/� � f 0.0/;

and thus

ˇff 00.t/g D s2F.s/ � sf .0/ � f 0.0/: (5)

A repetition of this calculation gives

ˇff 000.t/g D sˇff 00.t/g � f 00.0/ D s3F.s/ � s2f .0/ � sf 0.0/ � f 00.0/: (6)

After finitely many such steps we obtain the following extension of Theorem 1.
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COROLLARY Transforms of Higher Derivatives

Suppose that the functions f; f 0; f 00; : : : ; f .n�1/ are continuous and piecewise

smooth for t = 0, and that each of these functions satisfies the conditions in (3)

with the same values of M and c. Then ˇff .n/.t/g exists when s > c, and

ˇff .n/.t/g D sn
ˇff .t/g � sn�1f .0/ � sn�2f 0.0/ � � � � � f .n�1/.0/

D snF.s/ � sn�1f .0/ � � � � � sf .n�2/.0/ � f .n�1/.0/: (7)

Example 1 Solve the initial value problem

x00
� x0
� 6x D 0I x.0/ D 2; x0.0/ D �1:

Solution With the given initial values, Eqs. (4) and (5) yield

ˇfx0.t/g D sˇfx.t/g � x.0/ D sX.s/ � 2

and

ˇfx00.t/g D s2
ˇfx.t/g � sx.0/ � x0.0/ D s2X.s/ � 2s C 1;

where (according to our convention about notation) X.s/ denotes the Laplace transform of

the (unknown) function x.t/. Hence the transformed equation is

h

s2X.s/ � 2s C 1
i

� ŒsX.s/ � 2� � 6 ŒX.s/� D 0;

which we quickly simplify to

.s2
� s � 6/X.s/ � 2s C 3 D 0:

Thus

X.s/ D
2s � 3

s2 � s � 6
D

2s � 3

.s � 3/.s C 2/
:

By the method of partial fractions (of integral calculus), there exist constants A and B such

that
2s � 3

.s � 3/.s C 2/
D

A

s � 3
C

B

s C 2
;

and multiplication of both sides of this equation by .s � 3/.s C 2/ yields the identity

2s � 3 D A.s C 2/C B.s � 3/:

If we substitute s D 3, we find that A D 3

5
; substitution of s D �2 shows that B D 7

5
. Hence

X.s/ D ˇfx.t/g D

3

5

s � 3
C

7

5

s C 2
:

Because ˇ
�1f1=.s � a/g D eat , it follows that

x.t/ D 3

5
e3t
C

7

5
e�2t

is the solution of the original initial value problem. Note that we did not first find the general

solution of the differential equation. The Laplace transform method directly yields the desired

particular solution, automatically taking into account—via Theorem 1 and its corollary—the

given initial conditions.

Remark In Example 1 we found the values of the partial-fraction coefficients A and B by

the “trick” of separately substituting the roots s D 3 and s D �2 of the original denominator

s2 � s � 6 D .s � 3/.s C 2/ into the equation

2s � 3 D A.s C 2/C B.s � 3/
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that resulted from clearing fractions. In lieu of any such shortcut, the “sure-fire” method is to

collect coefficients of powers of s on the right-hand side,

2s � 3 D .AC B/s C .2A � 3/:

Then upon equating coefficients of terms of like degree, we get the linear equations

A C B D 2,

2A � 3B D �3,

which are readily solved for the same values A D 3

5
and B D 7

5
.

Example 2 Forced mass-spring system Solve the initial value problem

x00
C 4x D sin 3t I x.0/ D x0.0/ D 0:

Such a problem arises in the motion of a mass-and-spring system with external force, as

shown in Fig. 10.2.2.

Solution Because both initial values are zero, Eq. (5) yields ˇfx00.t/g D s2X.s/. We read the transform

of sin 3t from the table in Fig. 10.1.2 (Section 10.1) and thereby get the transformed equation

x (t )

k = 4 f (t ) = sin 3t
m = 1

FIGURE 10.2.2. A mass–and–
spring system satisfying the initial

value problem in Example 2. The mass
is initially at rest in its equilibrium

position.

s2X.s/C 4X.s/ D
3

s2 C 9
:

Therefore,

X.s/ D
3

.s2 C 4/.s2 C 9/
:

The method of partial fractions calls for

3

.s2 C 4/.s2 C 9/
D
As C B

s2 C 4
C
Cs CD

s2 C 9
:

The sure-fire approach would be to clear fractions by multiplying both sides by the common

denominator, and then collect coefficients of powers of s on the right-hand side. Equating

coefficients of like powers on the two sides of the resulting equation would then yield four

linear equations that we could solve for A, B , C , and D.

However, here we can anticipate that A D C D 0, because neither the numerator nor

the denominator on the left involves any odd powers of s, whereas nonzero values for A or

C would lead to odd-degree terms on the right. So we replace A and C with zero before

clearing fractions. The result is the identity

3 D B.s2
C 9/CD.s2

C 4/ D .B CD/s2
C .9B C 4D/:

When we equate coefficients of like powers of s we get the linear equations

B CD D 0;

9B C 4D D 3;

which are readily solved for B D 3

5
and D D �3

5
. Hence

X.s/ D ˇfx.t/g D
3

10
�

2

s2 C 4
�
1

5
�

3

s2 C 9
:

Because ˇfsin 2tg D 2=.s2 C 4/ and ˇfsin 3tg D 3=.s2 C 9/, it follows that

x.t/ D 3

10
sin 2t � 1

5
sin 3t:

Figure 10.2.3 shows the graph of this period 2� position function of the mass. Note that

the Laplace transform method again gives the solution directly, without the necessity of first

finding the complementary function and a particular solution of the original nonhomogeneous

differential equation. Thus nonhomogeneous equations are solved in exactly the same manner

π π π
t

x

2 4 6

1
2

1
2

–

FIGURE 10.2.3. The position
function x.t/ in Example 2.

as are homogeneous equations.

Examples 1 and 2 illustrate the solution procedure that is outlined in Fig. 10.2.4.
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Differential

equation

in x(t)

Solution x(t)

of differential

equation

Algebraic

equation 

in X(s)

Solution X(s)

of algebraic

equation

–1

Solve

algebraically

FIGURE 10.2.4. Using the Laplace transform to solve an initial value
problem.

Linear Systems

Laplace transforms are used frequently in engineering problems to solve linear sys-

tems in which the coefficients are all constants. When initial conditions are speci-

fied, the Laplace transform reduces such a linear system of differential equations to

a linear system of algebraic equations in which the unknowns are the transforms of

the solution functions. As Example 3 illustrates, the technique for a system is essen-

tially the same as for a single linear differential equation with constant coefficients.

Example 3 Dual mass-spring system Solve the system

2x00
D �6x C 2y;

y00
D 2x � 2y C 40 sin 3t;

(8)

subject to the initial conditions

x.0/ D x0.0/ D y.0/ D y0.0/ D 0: (9)

Thus the force f .t/D 40 sin 3t is applied to the second mass of Fig. 10.2.5, beginning at time

t D 0 when the system is at rest in its equilibrium position.

x

k1 = 4

y

k2 = 2 f (t ) = 40 sin 3t

m1 = 2 m2 = 1

FIGURE 10.2.5. A mass–and–spring system satisfying the initial value

problem in Example 3. Both masses are initially at rest in their equilibrium
positions.

Solution We write X.s/ D ˇfx.t/g and Y.s/ D ˇfy.t/g. Then the initial conditions in (9) imply that

ˇfx00.t/g D s2X.s/ and ˇfy00.t/g D s2Y.s/:

Because ˇfsin 3tg D 3=.s2 C 9/, the transforms of the equations in (8) are the equations

2s2X.s/ D �6X.s/C 2Y.s/;

s2Y.s/ D 2X.s/ � 2Y.s/C
120

s2 C 9
:

Thus the transformed system is

.s2 C 3/X.s/ � Y.s/ D 0,

�2X.s/ C .s2 C 2/Y.s/ D
120

s2 C 9
.

(10)
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The determinant of this pair of linear equations in X.s/ and Y.s/ is

ˇ

ˇ

ˇ

ˇ

s2 C 3 �1

�2 s2 C 2

ˇ

ˇ

ˇ

ˇ

D .s2
C 3/.s2

C 2/ � 2 D .s2
C 1/.s2

C 4/;

and we readily solve—using Cramer’s rule, for instance—the system in (10) for

X.s/ D
120

.s2 C 1/.s2 C 4/.s2 C 9/
D

5

s2 C 1
�

8

s2 C 4
C

3

s2 C 9
(11a)

and

Y.s/ D
120.s2 C 3/

.s2 C 1/.s2 C 4/.s2 C 9/
D

10

s2 C 1
C

8

s2 C 4
�

18

s2 C 9
: (11b)

The partial fraction decompositions in Eqs. (11a) and (11b) are readily found using the

method of Example 2. For instance, noting that the denominator factors are linear in s2,

we can write

120

.s2 C 1/.s2 C 4/.s2 C 9/
D

A

s2 C 1
C

B

s2 C 4
C

C

s2 C 9
;

and it follows that

120 D A.s2
C 4/.s2

C 9/C B.s2
C 1/.s2

C 9/C C.s2
C 1/.s2

C 4/: (12)

Substitution of s2 D �1 (that is, s D i , a zero of the factor s2 C 1) in Eq. (12) gives 120 D

A � 3 � 8, so A D 5. Similarly, substitution of s2 D �4 in Eq. (12) yields B D �8, and

substitution of s2 D �9 yields C D 3. Thus we obtain the partial fraction decomposition

shown in Eq. (11a).

At any rate, the inverse Laplace transforms of the expressions in Eqs. (11a) and (11b)

give the solution

x.t/ D 5 sin t � 4 sin 2t C sin 3t;

y.t/ D 10 sin t C 4 sin 2t � 6 sin 3t:

Figure 10.2.6 shows the graphs of these two period 2� position functions of the two masses.

2π 4π 6π
t

10

–10

y(t)

x(t)

FIGURE 10.2.6. The position
functions x.t/ and y.t/ in Example 3.

The Transform Perspective

Let us regard the general constant-coefficient second-order equation as the equation

x (t)

ck

m

f (t )

FIGURE 10.2.7. A mass–spring–

dashpot system with external force
f .t/.

of motion

mx00
C cx0

C kx D f .t/

of the familiar mass–spring–dashpot system (Fig. 10.2.7). Then the transformed

equation is

m
�

s2X.s/ � sx.0/ � x0.0/
�

C c ŒsX.s/ � x.0/�C kX.s/ D F.s/: (13)

Note that Eq. (13) is an algebraic equation—indeed, a linear equation—in the “un-

known” X.s/. This is the source of the power of the Laplace transform method:

Linear differential equations are transformed

into readily solved algebraic equations.

If we solve Eq. (13) for X.s/, we get

X.s/ D
F.s/

Z.s/
C
I.s/

Z.s/
; (14)
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where

Z.s/ D ms2
C cs C k and I.s/ D mx.0/s Cmx0.0/C cx.0/:

Note that Z.s/ depends only on the physical system itself. Thus Eq. (14) presents

X.s/ D ˇfx.t/g as the sum of a term depending only on the external force and one

depending only on the initial conditions. In the case of an underdamped system,

these two terms are the transforms

ˇfxsp.t/g D
F.s/

Z.s/
and ˇfxtr.t/g D

I.s/

Z.s/

of the steady periodic solution and the transient solution, respectively. The only po-

tential difficulty in finding these solutions is in finding the inverse Laplace transform

of the right-hand side in Eq. (14). Much of the remainder of this chapter is devoted

to finding Laplace transforms and inverse transforms. In particular, we seek those

methods that are sufficiently powerful to enable us to solve problems that—unlike

those in Examples 1 and 2—cannot be solved readily by the methods of Chapter 5.

Additional Transform Techniques

Example 4 Show that

ˇfteat
g D

1

.s � a/2
:

Solution If f .t/ D teat , then f .0/ D 0 and f 0.t/ D eat C ateat . Hence Theorem 1 gives

ˇfeat
C ateat

g D ˇff 0.t/g D sˇff .t/g D sˇfteat
g:

It follows from the linearity of the transform that

ˇfeat
g C aˇfteat

g D sˇfteat
g:

Hence

ˇfteat
g D

ˇfeat g

s � a
D

1

.s � a/2
(15)

because ˇfeat g D 1=.s � a/.

Example 5 Find ˇft sin ktg.

Solution Let f .t/ D t sin kt . Then f .0/ D 0 and

f 0.t/ D sin kt C kt cos kt:

The derivative involves the new function t cos kt , so we note that f 0.0/ D 0 and differentiate

again. The result is

f 00.t/ D 2k cos kt � k2t sin kt:

But ˇff 00.t/g D s2
ˇff .t/g by the formula in (5) for the transform of the second derivative,

and ˇfcos ktg D s=.s2 C k2/, so we have

2ks

s2 C k2
� k2

ˇft sin ktg D s2
ˇft sin ktg:

Finally, we solve this equation for

ˇft sin ktg D
2ks

.s2 C k2/2
: (16)

This procedure is considerably more pleasant than the alternative of evaluating the integral

ˇft sin ktg D

Z 1

0

te�st sin kt dt:
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Examples 4 and 5 exploit the fact that if f .0/ D 0, then differentiation of f

corresponds to multiplication of its transform by s. It is reasonable to expect the

inverse operation of integration (antidifferentiation) to correspond to division of the

transform by s.

THEOREM 2 Transforms of Integrals

If f .t/ is a piecewise continuous function for t = 0 and satisfies the condition of

exponential order jf .t/j 5 Mect for t = T , then

ˇ

�Z

t

0

f .�/ d�

�

D
1

s
ˇff .t/g D

F.s/

s
(17)

for s > c. Equivalently,

ˇ
�1

�

F.s/

s

�

D

Z

t

0

f .�/ d�: (18)

Proof: Because f is piecewise continuous, the fundamental theorem of cal-

culus implies that

g.t/ D

Z

t

0

f .�/ d�

is continuous and that g0.t/ D f .t/ where f is continuous; thus g is continuous and

piecewise smooth for t = 0. Furthermore,

jg.t/j 5

Z

t

0

jf .�/j d� 5 M

Z

t

0

ec� d� D
M

c
.ect
� 1/ <

M

c
ect ;

so g.t/ is of exponential order as t ! C1. Hence we can apply Theorem 1 to g;

this gives

ˇff .t/g D ˇfg0.t/g D sˇfg.t/g � g.0/:

Now g.0/ D 0, so division by s yields

ˇ

�Z

t

0

f .�/ d�

�

D ˇfg.t/g D
ˇff .t/g

s
;

which completes the proof.

Example 6 Find the inverse Laplace transform of

G.s/ D
1

s2.s � a/
:

Solution In effect, Eq. (18) means that we can delete a factor of s from the denominator, find the

inverse transform of the resulting simpler expression, and finally integrate from 0 to t (to

“correct” for the missing factor s). Thus

ˇ
�1

�

1

s.s � a/

�

D

Z

t

0

ˇ
�1

�

1

s � a

�

d� D

Z

t

0

ea� d� D
1

a
.eat
� 1/:

We now repeat the technique to obtain

ˇ
�1

�

1

s2.s � a/

�

D

Z

t

0

ˇ
�1

�

1

s.s � a/

�

d� D

Z

t

0

1

a
.ea�
� 1/ d�

D

�

1

a

�

1

a
ea�
� �

��

t

0

D
1

a2
.eat
� at � 1/:
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This technique is often a more convenient way than the method of partial fractions for finding

an inverse transform of a fraction of the form P.s/=ŒsnQ.s/�.

Proof of Theorem 1: We conclude this section with the proof of Theorem 1

in the general case in which f 0 is merely piecewise continuous. We need to prove

that the limit

lim
b!1

Z

b

0

e�stf 0.t/ dt

exists and also need to find its value. With b fixed, let t1; t2; : : : ; tk�1 be the points

interior to the interval Œ0; b� at which f 0 is discontinuous. Let t0 D 0 and tk D b.

Then we can integrate by parts on each interval .tn�1; tn/ where f 0 is continuous.

This yields

Z

b

0

e�stf 0.t/ dt D

k
X

nD1

Z

tn

tn�1

e�stf 0.t/ dt

D

k
X

nD1

h

e�stf .t/
i

tn

tn�1

C

k
X

nD1

s

Z

tn

tn�1

e�stf .t/ dt: (19)

Now the first summation

k
X

nD1

h

e�stf .t/
i

tn

tn�1

D

h

�f .t0/C e
�st1f .t1/

i

C

h

�e�st1f .t1/C e
�st2f .t2/

i

C � � � C

h

�estk�2f .tk�2/C e
�stk�1f .tk�1/

i

(20)

C

h

�estk�1f .tk�1/C e
�stkf .tk/

i

in (19) telescopes down to �f .t0/C e
�stkf .tk/ D �f .0/C e

�sbf .b/, and the sec-

ond summation adds up to s times the integral from t0 D 0 to tk D b. Therefore (19)

reduces to
Z

b

0

e�stf 0.t/ dt D �f .0/C e�sbf .b/C s

Z

b

0

e�stf .t/ dt:

But from Eq. (3) we get

ˇ

ˇ

ˇ
e�sbf .b/

ˇ

ˇ

ˇ
5 e�sb

�Mecb
DMe�b.s�c/

! 0

if s > c. Therefore, finally taking limits (with s fixed) as b !C1 in the preceding

equation, we get the desired result

ˇff 0.t/g D sˇff .t/g � f .0/:

Extension of Theorem 1

Now suppose that the function f is only piecewise continuous (instead of continu-

ous), and let t1; t2; t3; : : : be the points (for t > 0) where either f or f 0 is discontin-

uous. The fact that f is piecewise continuous includes the assumption that—within

each interval Œtn�1; tn� between successive points of discontinuity—f agrees with a

function that is continuous on the whole closed interval and has “endpoint values”

f .tC
n�1

/ D lim
t!t

C

n�1

f .t/ and f .t�
n
/ D lim

t!t
�

n

f .t/
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that may not agree with the actual values f .tn�1/ and f .tn/. The value of an in-

tegral on an interval is not affected by changing the values of the integrand at the

endpoints. However, if the fundamental theorem of calculus is applied to find the

value of the integral, then the antiderivative function must be continuous on the

closed interval. We therefore use the “continuous from within the interval” end-

point values above in evaluating (by parts) the integrals on the right in (19). The

result is

k
X

nD1

h

e�stf .t/
i

tn

tn�1

D

h

�f .tC
0
/C e�st1f .t�

1
/
i

C

h

�e�st1f .tC
1
/C e�st2f .t�

2
/
i

C � � � C

h

�estk�2f .tC
k�2

/C e�stk�1f .t�
k�1

/
i

C

h

�estk�1f .tC
k�1

/C e�stkf .t�
k
/
i

D �f .0C/ �

k�1
X

nD1

jf .tn/C e
�sbf .b�/; (200)

where

jf .tn/ D f .t
C
n
/ � f .t�

n
/ (21)

denotes the (finite) jump in f .t/ at t D tn. Assuming that ˇff 0.t/g exists, we

therefore get the generalization

ˇff 0.t/g D sF.s/ � f .0C/ �

1
X

nD1

e�stnjf .tn/ (22)

of ˇff 0.t/g D sF.s/ � f .0/ when we now take the limit in (19) as b !C1.

Example 7 Let f .t/ D 1C ŒŒt �� be the unit staircase function; its graph is shown in Fig. 10.2.8. Then

f .0/ D 1, f 0.t/ � 0, and j
f
.n/ D 1 for each integer n D 1, 2, 3, : : : . Hence Eq. (22) yields

t

f (t )

654321

1

2

3

4

5

6 …

FIGURE 10.2.8. The graph of the
unit staircase function of Example 7.

0 D sF.s/ � 1 �

1
X

nD1

e�ns ;

so the Laplace transform of f .t/ is

F.s/ D
1

s

1
X

nD0

e�ns
D

1

s.1 � e�s/
:

In the last step we used the formula for the sum of a geometric series,

1
X

nD0

xn
D

1

1 � x
;

with x D e�s < 1.

10.2 Problems
Use Laplace transforms to solve the initial value problems in

Problems 1 through 16.

1. x00 C 4x D 0; x.0/ D 5, x0.0/ D 0

2. x00 C 9x D 0; x.0/ D 3, x0.0/ D 4

3. x00 � x0 � 2x D 0; x.0/ D 0, x0.0/ D 2

4. x00 C 8x0 C 15x D 0; x.0/ D 2, x0.0/ D �3

5. x00 C x D sin 2t ; x.0/ D 0 D x0.0/

6. x00 C 4x D cos t ; x.0/ D 0 D x0.0/

7. x00 C x D cos 3t ; x.0/ D 1, x0.0/ D 0

8. x00 C 9x D 1; x.0/ D 0 D x0.0/
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9. x00 C 4x0 C 3x D 1; x.0/ D 0 D x0.0/

10. x00 C 3x0 C 2x D t ; x.0/ D 0, x0.0/ D 2

11. x0 D 2x C y, y0 D 6x C 3y; x.0/ D 1, y.0/ D �2

12. x0 D x C 2y, y0 D x C e�t ; x.0/ D y.0/ D 0

13. x0 C 2y0 C x D 0, x0 � y0 C y D 0; x.0/ D 0, y.0/ D 1

14. x00 C 2x C 4y D 0, y00 C x C 2y D 0; x.0/ D y.0/ D 0,

x0.0/ D y0.0/ D �1

15. x00 C x0 C y0 C 2x � y D 0, y00 C x0 C y0 C 4x � 2y D 0;

x.0/ D y.0/ D 1, x0.0/ D y0.0/ D 0

16. x0 D xC ´, y0 D xC y, ´0 D�2x � ´; x.0/D 1, y.0/D 0,

´.0/ D 0

Apply Theorem 2 to find the inverse Laplace transforms of the

functions in Problems 17 through 24.

17. F.s/ D
1

s.s � 3/
18. F.s/ D

3

s.s C 5/

19. F.s/ D
1

s.s2 C 4/
20. F.s/ D

2s C 1

s.s2 C 9/

21. F.s/ D
1

s2.s2 C 1/
22. F.s/ D

1

s.s2 � 9/

23. F.s/ D
1

s2.s2 � 1/
24. F.s/ D

1

s.s C 1/.s C 2/

25. Apply Theorem 1 to derive ˇfsin ktg from the formula for

ˇfcos ktg.

26. Apply Theorem 1 to derive ˇfcosh ktg from the formula

for ˇfsinh ktg.

27. (a) Apply Theorem 1 to show that

ˇftneat
g D

n

s � a
ˇftn�1eat

g:

(b) Deduce that ˇftneat g D nŠ=.s � a/nC1 for n D 1, 2,

3, : : : .

Apply Theorem 1 as in Example 5 to derive the Laplace trans-

forms in Problems 28 through 30.

28. ˇft cos ktg D
s2 � k2

.s2 C k2/2

29. ˇft sinh ktg D
2ks

.s2 � k2/2

30. ˇft cosh ktg D
s2 C k2

.s2 � k2/2

31. Apply the results in Example 5 and Problem 28 to show

that

ˇ
�1

�

1

.s2 C k2/2

�

D
1

2k3
.sin kt � kt cos kt/:

Apply the extension of Theorem 1 in Eq. (22) to derive the

Laplace transforms given in Problems 32 through 37.

32. ˇfu.t � a/g D s�1e�as for a > 0.

33. If f .t/ D 1 on the interval Œa; b� (where 0 < a < b) and

f .t/ D 0 otherwise, then

ˇff .t/g D
e�as � e�bs

s
:

34. If f .t/D .�1/ŒŒt�� is the square-wave function whose graph

is shown in Fig. 10.2.9, then

ˇff .t/g D
1

s
tanh

s

2
:

(Suggestion: Use the geometric series.)

f (t )
…

t654321

1

–1

FIGURE 10.2.9. The graph of the square-wave
function of Problem 34.

35. If f .t/ is the unit on–off function whose graph is shown in

Fig. 10.2.10, then

ˇff .t/g D
1

s.1C e�s/
:

f (t )
…

t654321

1

FIGURE 10.2.10. The graph of the on–off
function of Problem 35.

36. If g.t/ is the triangular wave function whose graph is

shown in Fig. 10.2.11, then

ˇfg.t/g D
1

s2
tanh

s

2
:

…

g(t )

t654321

1

FIGURE 10.2.11. The graph of the triangular
wave function of Problem 36.

37. If f .t/ is the sawtooth function whose graph is shown in

Fig. 10.2.12, then

ˇff .t/g D
1

s2
�

e�s

s.1 � e�s/
:

(Suggestion: Note that f 0.t/ � 1 where it is defined.)

f (t )

…

t654321

1

FIGURE 10.2.12. The graph of the sawtooth
function of Problem 37.
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Go to goo.gl/QO5VHX to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

10.2 Application Transforms of Initial Value Problems

The typical computer algebra system knows Theorem 1 and its corollary, hence can

transform not only functions (as in the Section 10.1 application), but also entire

initial value problems. We illustrate the technique here with Mathematica and in

the Section 10.3 application with Maple. Consider the initial value problem

x00
C 4x D sin 3t; x.0/ D x0.0/ D 0

of Example 2. First we define the differential equation with its initial conditions,

then load the Laplace transform package.

de = x''[t] + 4�x[t] == Sin[3�t]

inits = {x[0] �> 0, x'[0] �> 0}

The Laplace transform of the differential equation is given by

DE = LaplaceTransform[ de, t, s ]

The result of this command—which we do not show explicitly here—is a linear

(algebraic) equation in the as yet unknown LaplaceTransform[x[t],t,s]. We

proceed to solve for this transformX.s/ of the unknown function x.t/ and substitute

the initial conditions.

X = Solve[DE, LaplaceTransform[x[t],t,s]]

X = X // Last // Last // Last

X = X /. inits

3

.s2 C 4/.s2 C 9/

Finally we need only compute an inverse transform to find x.t/.

x = InverseLaplaceTransform[X,s,t]

1

5
.3 cos.t/ sin.t/ � sin.3t//

x /. {Cos[t] Sin[t] �> 1/2 Sin[2t]}// Expand

3

10
sin.2t/ �

1

5
sin.3t/

Of course we could probably get this result immediately with DSolve, but the in-

termediate output generated by the steps shown here can be quite instructive. You

can try it for yourself with the initial value problems in Problems 1 through 16.

10.3 Translation and Partial Fractions

As illustrated by Examples 1 and 2 of Section 10.2, the solution of a linear differen-

tial equation with constant coefficients can often be reduced to the matter of finding

the inverse Laplace transform of a rational function of the form

R.s/ D
P.s/

Q.s/
(1)

where the degree of P.s/ is less than that of Q.s/. The technique for finding

ˇ
�1fR.s/g is based on the same method of partial fractions that we use in ele-

mentary calculus to integrate rational functions. The following two rules describe
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the partial fraction decomposition of R.s/, in terms of the factorization of the de-

nominator Q.s/ into linear factors and irreducible quadratic factors corresponding

to the real and complex zeros, respectively, of Q.s/.

RULE 1 Linear Factor Partial Fractions

The portion of the partial fraction decomposition of R.s/ corresponding to the

linear factor s � a of multiplicity n is a sum of n partial fractions, having the

form

A1

s � a
C

A2

.s � a/2
C � � � C

An

.s � a/n
; (2)

where A1; A2; : : : ; and An are constants.

RULE 2 Quadratic Factor Partial Fractions

The portion of the partial fraction decomposition corresponding to the irreducible

quadratic factor .s � a/2 C b2 of multiplicity n is a sum of n partial fractions,

having the form

A1s C B1

.s � a/2 C b2
C

A2s C B2

Œ.s � a/2 C b2�2
C � � � C

Ans C Bn

Œ.s � a/2 C b2�n
; (3)

where A1; A2; : : : ; An; B1; B2; : : : ; and Bn are constants.

Finding ˇ
�1fR.s/g involves two steps. First we must find the partial fraction

decomposition of R.s/, and then we must find the inverse Laplace transform of each

of the individual partial fractions of the types that appear in (2) and (3). The latter

step is based on the following elementary property of Laplace transforms.

THEOREM 1 Translation on the s-Axis

If F.s/ D ˇff .t/g exists for s > c, then ˇfeatf .t/g exists for s > aC c, and

ˇfeatf .t/g D F.s � a/: (4)

Equivalently,

ˇ
�1
fF.s � a/g D eatf .t/: (5)

Thus the translation s ! s � a in the transform corresponds to multiplication of

the original function of t by eat .

Proof: If we simply replace s with s� a in the definition of F.s/Dˇff .t/g,

we obtain

F.s � a/ D

Z 1

0

e�.s�a/tf .t/ dt D

Z 1

0

e�st
�

eatf .t/
�

dt D ˇfeatf .t/g:

This is Eq. (4), and it is clear that Eq. (5) is the same.

If we apply the translation theorem to the formulas for the Laplace transforms

of tn, cos kt , and sin kt that we already know—multiplying each of these functions
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by eat and replacing s with s � a in the transforms—we get the following additions

to the table in Fig. 10.1.2.

f .t/ F.s/

eat tn

eat cos kt

eat sin kt

nŠ

.s � a/nC1
(s > a) (6)

s � a

.s � a/2 C k2
(s > a) (7)

k

.s � a/2 C k2
(s > a) (8)

For ready reference, all the Laplace transforms derived in this chapter are

listed in the table of transforms that appears in the endpapers.

x (t)

k = 17

m = 1

2

c = 3

FIGURE 10.3.1. The mass–spring–
dashpot system of Example 1.

Example 1 Damped mass-spring system Consider a mass-and-spring system with m D 1

2
, k D 17,

and c D 3 in mks units (Fig. 10.3.1). As usual, let x.t/ denote the displacement of the mass

m from its equilibrium position. If the mass is set in motion with x.0/ D 3 and x0.0/ D 1,

find x.t/ for the resulting damped free oscillations.

Solution The differential equation is 1

2
x00C3x0C17xD 0, so we need to solve the initial value problem

x00
C 6x0

C 34x D 0I x.0/ D 3; x0.0/ D 1:

We take the Laplace transform of each term of the differential equation. Because (obviously)

ˇf0g � 0, we get the equation

h

s2X.s/ � 3s � 1
i

C 6 ŒsX.s/ � 3�C 34X.s/ D 0;

which we solve for

X.s/ D
3s C 19

s2 C 6s C 34
D 3 �

s C 3

.s C 3/2 C 25
C 2 �

5

.s C 3/2 C 25
:

Applying the formulas in (7) and (8) with a D �3 and k D 5, we now see that

x.t/ D e�3t .3 cos 5t C 2 sin 5t/ :

Figure 10.3.2 shows the graph of this rapidly decaying damped oscillation.

t

1

2

3

x

π
2

π
4

FIGURE 10.3.2. The position
function x.t/ in Example 1.

Example 2 illustrates a useful technique for finding the partial fraction coeffi-

cients in the case of nonrepeated linear factors.

Example 2 Find the inverse Laplace transform of

R.s/ D
s2 C 1

s3 � 2s2 � 8s
:

Solution Note that the denominator of R.s/ factors as Q.s/ D s.s C 2/.s � 4/. Hence

s2 C 1

s3 � 2s2 � 8s
D
A

s
C

B

s C 2
C

C

s � 4
:

Multiplication of each term of this equation by Q.s/ yields

s2
C 1 D A.s C 2/.s � 4/C Bs.s � 4/C Cs.s C 2/:

When we successively substitute the three zeros s D 0, s D �2, and s D 4 of the denominator

Q.s/ in this equation, we get the results

�8A D 1; 12B D 5; and 24C D 17:
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Thus A D �1

8
, B D 5

12
, and C D 17

24
, so

s2 C 1

s3 � 2s2 � 8s
D �

1

8

s
C

5

12

s C 2
C

17

24

s � 4
;

and therefore

ˇ
�1

(

s2 C 1

s3 � 2s2 � 8s

)

D �
1

8
C

5

12
e�2t

C
17

24
e4t :

Example 3 illustrates a differentiation technique for finding the partial fraction

coefficients in the case of repeated linear factors.

Example 3 Solve the initial value problem

y00
C 4y0

C 4y D t2I y.0/ D y0.0/ D 0:

Solution The transformed equation is

s2Y.s/C 4sY.s/C 4Y.s/ D
2

s3
:

Thus

Y.s/ D
2

s3.s C 2/2
D
A

s3
C
B

s2
C
C

s
C

D

.s C 2/2
C

E

s C 2
: (9)

To find A, B , and C , we multiply both sides by s3 to obtain

2

.s C 2/2
D AC Bs C Cs2

C s3F.s/; (10)

where F.s/DD.sC 2/�2CE.sC 2/�1 is the sum of the two partial fractions corresponding

to .sC 2/2. Substitution of s D 0 in Eq. (10) yields AD 1

2
. To find B and C , we differentiate

Eq. (10) twice to obtain

�4

.s C 2/3
D B C 2Cs C 3s2F.s/C s3F 0.s/ (11)

and

12

.s C 2/4
D 2C C 6sF.s/C 6s2F 0.s/C s3F 00.s/: (12)

Now substitution of s D 0 in Eq. (11) yields B D �1

2
, and substitution of s D 0 in Eq. (12)

yields C D 3

8
.

To find D and E, we multiply each side in Eq. (9) by .s C 2/2 to get

2

s3
D D C E.s C 2/C .s C 2/2G.s/; (13)

where G.s/ D As�3 C Bs�2 C Cs�1, and then differentiate to obtain

�
6

s4
D E C 2.s C 2/G.s/C .s C 2/2G0.s/: (14)

Substitution of s D �2 in Eqs. (13) and (14) now yields D D �1

4
and E D �3

8
. Thus

Y.s/ D

1

2

s3
�

1

2

s2
C

3

8

s
�

1

4

.s C 2/2
�

3

8

s C 2
;

so the solution of the given initial value problem is

y.t/ D 1

4
t2 � 1

2
t C 3

8
�

1

4
te�2t

�
3

8
e�2t :
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Examples 4, 5, and 6 illustrate techniques for dealing with quadratic factors in

partial fraction decompositions.

Example 4 Mass–spring–dashpot system Consider the mass–spring–dashpot system as in Example

1, but with initial conditions x.0/ D x0.0/ D 0 and with the imposed external force F.t/ D

15 sin 2t . Find the resulting transient motion and steady periodic motion of the mass.

Solution The initial value problem we need to solve is

x00
C 6x0

C 34x D 30 sin 2t I x.0/ D x0.0/ D 0:

The transformed equation is

s2X.s/C 6sX.s/C 34X.s/ D
60

s2 C 4
:

Hence

X.s/ D
60

.s2 C 4/Œ.s C 3/2 C 25�
D
As C B

s2 C 4
C

Cs CD

.s C 3/2 C 25
:

When we multiply both sides by the common denominator, we get

60 D .As C B/Œ.s C 3/2 C 25�C .C s CD/.s2
C 4/: (15)

To find A and B , we substitute the zero s D 2i of the quadratic factor s2C4 in Eq. (15);

the result is

60 D .2iAC B/Œ.2i C 3/2 C 25�;

which we simplify to

60 D .�24AC 30B/C .60AC 12B/i:

We now equate real parts and imaginary parts on each side of this equation to obtain the two

linear equations

�24AC 30B D 60 and 60AC 12B D 0;

which are readily solved for A D �10

29
and B D 50

29
.

To find C andD, we substitute the zero sD�3C5i of the quadratic factor .sC3/2C25

in Eq. (15) and get

60 D ŒC.�3C 5i/CD�Œ.�3C 5i/2 C 4�;

which we simplify to

60 D .186C � 12D/C .30C � 30D/i:

Again we equate real parts and imaginary parts; this yields the two linear equations

186C � 12D D 60 and 30C � 30D D 0;

and we readily find their solution to be C D D D 10

29
.

With these values of the coefficients A, B , C , and D, our partial fractions decomposi-

tion of X.s/ is

X.s/ D
1

29

�

�10s C 50

s2 C 4
C

10s C 10

.s C 3/2 C 25

�

D
1

29

�

�10s C 25 � 2

s2 C 4
C
10.s C 3/ � 4 � 5

.s C 3/2 C 25

�

:

After we compute the inverse Laplace transforms, we get the position function

x.t/ D 5

29
.�2 cos 2t C 5 sin 2t/C 2

29
e�3t .5 cos 5t � 2 sin 5t/:

The terms of circular frequency 2 constitute the steady periodic forced oscillation of the

mass, whereas the exponentially damped terms of circular frequency 5 constitute its transient

motion, which disappears very rapidly (see Fig. 10.3.3). Note that the transient motion is

nonzero even though both initial conditions are zero.

1 2
t

–0.5

0.5

1

x

Periodic

Transient

x(t)

FIGURE 10.3.3. The periodic forced
oscillation xsp.t/, damped transient
motion xtr.t/, and solution
x.t/ D xsp.t/ C xtr.t/ in Example 4.
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Resonance and Repeated Quadratic Factors

The following two inverse Laplace transforms are useful in inverting partial frac-

tions that correspond to the case of repeated quadratic factors:

ˇ
�1

�

s

.s2 C k2/2

�

D
1

2k
t sin kt; (16)

ˇ
�1

�

1

.s2 C k2/2

�

D
1

2k3
.sin kt � kt cos kt/: (17)

These follow from Example 5 and Problem 31 of Section 10.2, respectively. Be-

cause of the presence in Eqs. (16) and (17) of the terms t sin kt and t cos kt , a

repeated quadratic factor ordinarily signals the phenomenon of resonance in an un-

damped mechanical or electrical system.

Example 5 Use Laplace transforms to solve the initial value problem

x00
C !2

0
x D F0 sin!t I x.0/ D 0 D x0.0/

that determines the undamped forced oscillations of a mass on a spring.

Solution When we transform the differential equation, we get the equation

s2X.s/C !2

0
X.s/ D

F0!

s2 C !2
; so X.s/ D

F0!

.s2 C !2/.s2 C !2

0
/
:

If ! 6D !0, we find without difficulty that

X.s/ D
F0!

!2 � !2

0

 

1

s2 C !2

0

�
1

s2 C !2

!

;

so it follows that

x.t/ D
F0!

!2 � !2

0

�

1

!0

sin!0t �
1

!
sin!t

�

:

But if ! D !0, we have

X.s/ D
F0!0

.s2 C !2

0
/2
;

so Eq. (17) yields the resonance solution

x.t/ D
F0

2!2

0

.sin!0t � !0t cos!0t /: (18)

Remark The solution curve defined in Eq. (18) bounces back and forth (see Fig. 10.3.4)

between the “envelope curves” x D ˙C.t/ that are obtained by writing (18) in the form

x.t/ D A.t/ cos!0t C B.t/ sin!0t

and then defining the usual “amplitude” C D
p
A2 C B2. In this case we find that

t

–4

4

x(t)
+C(t)

–C(t)

2π 4π

FIGURE 10.3.4. The resonance
solution in (18) with !0 D 1

2
and

F0 D 1, together with its envelope
curves x D ˙C.t/.

C.t/ D
F0

2!2

0

q

!2

0
t2 C 1:

This technique for constructing envelope curves of resonance solutions is illustrated further

in the application material for this section.

Example 6 Solve the initial value problem

y.4/
C 2y00

C y D 4tet
I y.0/ D y0.0/ D y00.0/ D y.3/.0/ D 0:
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Solution First we observe that

ˇfy00.t/g D s2Y.s/; ˇfy.4/.t/g D s4Y.s/; and ˇftet
g D

1

.s � 1/2
:

Hence the transformed equation is

.s4
C 2s2 C 1/Y.s/ D

4

.s � 1/2
:

Thus our problem is to find the inverse transform of

Y.s/ D
4

.s � 1/2.s2 C 1/2

D
A

.s � 1/2
C

B

s � 1
C

Cs CD

.s2 C 1/2
C
Es C F

s2 C 1
: (19)

If we multiply by the common denominator .s � 1/2.s2 C 1/2, we get the equation

A.s2
C 1/2 C B.s � 1/.s2

C 1/2 C Cs.s � 1/2

CD.s � 1/2 CEs.s � 1/2.s2
C 1/C F.s � 1/2.s2

C 1/ D 4: (20)

Upon substituting s D 1 we find that A D 1.

Equation (20) is an identity that holds for all values of s. To find the values of the

remaining coefficients, we substitute in succession the values s D 0, s D �1, s D 2, s D �2,

and s D 3 in Eq. (20). This yields the system

�B C D C F D 3,

�8B � 4C C 4D � 8E C 8F D 0,

25B C 2C C D C 10E C 5F D �21,

�75B � 18C C 9D � 90E C 45F D �21,

200B C 12C C 4D C 120E C 40F D �96

(21)

of five linear equations in B , C , D, E, and F . With the aid of a calculator programmed to

solve linear systems, we find that B D �2, C D 2, D D 0, E D 2, and F D 1.

We now substitute in Eq. (19) the coefficients we have found, and thus obtain

Y.s/ D
1

.s � 1/2
�

2

s � 1
C

2s

.s2 C 1/2
C
2s C 1

s2 C 1
:

Recalling Eq. (16), the translation property, and the familiar transforms of cos t and sin t , we

see finally that the solution of the given initial value problem is

y.t/ D .t � 2/et
C .t C 1/ sin t C 2 cos t:

10.3 Problems
Apply the translation theorem to find the Laplace transforms

of the functions in Problems 1 through 4.

1. f .t/ D t4e�t 2. f .t/ D t3=2e�4t

3. f .t/ D e�2t sin 3�t 4. f .t/ D e�t=2 cos 2
�

t � 1

8
�
�

Apply the translation theorem to find the inverse Laplace trans-

forms of the functions in Problems 5 through 10.

5. F.s/ D
3

2s � 4
6. F.s/ D

s � 1

.s C 1/3

7. F.s/ D
1

s2 C 4s C 4
8. F.s/ D

s C 2

s2 C 4s C 5

9. F.s/ D
3s C 5

s2 � 6s C 25
10. F.s/ D

2s � 3

9s2 � 12s C 20

Use partial fractions to find the inverse Laplace transforms of

the functions in Problems 11 through 22.

11. F.s/ D
1

s2 � 4
12. F.s/ D

5s � 6

s2 � 3s

13. F.s/ D
5 � 2s

s2 C 7s C 10
14. F.s/ D

5s � 4

s3 � s2 � 2s
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15. F.s/ D
1

s3 � 5s2
16. F.s/ D

1

.s2 C s � 6/2

17. F.s/ D
1

s4 � 16
18. F.s/ D

s3

.s � 4/4

19. F.s/ D
s2 � 2s

s4 C 5s2 C 4
20. F.s/ D

1

s4 � 8s2 C 16

21. F.s/ D
s2 C 3

.s2 C 2s C 2/2
22. F.s/ D

2s3 � s2

.4s2 � 4s C 5/2

Use the factorization

s4
C 4a4

D .s2
� 2as C 2a2/.s2

C 2as C 2a2/

to derive the inverse Laplace transforms listed in Problems 23

through 26.

23. ˇ
�1

(

s3

s4 C 4a4

)

D cosh at cos at

24. ˇ
�1

�

s

s4 C 4a4

�

D
1

2a2
sinh at sin at

25. ˇ
�1

(

s2

s4 C 4a4

)

D
1

2a
.cosh at sin at C sinh at cos at/

26. ˇ
�1

�

1

s4 C 4a4

�

D
1

4a3
.cosh at sin at � sinh at cos at/

Use Laplace transforms to solve the initial value problems in

Problems 27 through 38.

27. x00 C 6x0 C 25x D 0; x.0/ D 2; x0.0/ D 3

28. x00 � 6x0 C 8x D 2; x.0/ D x0.0/ D 0

29. x00 � 4x D 3t ; x.0/ D x0.0/ D 0

30. x00 C 4x0 C 8x D e�t ; x.0/ D x0.0/ D 0

31. x.3/ C x00 � 6x0 D 0; x.0/ D 0, x0.0/ D x00.0/ D 1

32. x.4/ � x D 0; x.0/ D 1, x0.0/ D x00.0/ D x.3/.0/ D 0

33. x.4/ C x D 0; x.0/ D x0.0/ D x00.0/ D 0, x.3/.0/ D 1

34. x.4/ C 13x00 C 36x D 0; x.0/ D x00.0/ D 0, x0.0/ D 2,

x.3/.0/ D �13

35. x.4/ C 8x00 C 16x D 0; x.0/ D x0.0/ D x00.0/ D 0,

x.3/.0/ D 1

36. x.4/C 2x00Cx D e2t ; x.0/D x0.0/D x00.0/D x.3/.0/D 0

37. x00 C 4x0 C 13x D te�t ; x.0/ D 0, x0.0/ D 2

38. x00 C 6x0 C 18x D cos 2t ; x.0/ D 1, x0.0/ D �1

Resonance

Problems 39 and 40 illustrate two types of resonance in a

mass–spring–dashpot system with given external force F.t/

and with the initial conditions x.0/ D x0.0/ D 0.

39. Suppose that m D 1, k D 9, c D 0, and F.t/ D 6 cos 3t .

Use the inverse transform given in Eq. (16) to derive the

solution x.t/ D t sin 3t . Construct a figure that illustrates

the resonance that occurs.

40. Suppose that m D 1, k D 9:04, c D 0:4, and F.t/ D

6e�t=5 cos 3t . Derive the solution

x.t/ D te�t=5 sin 3t:

Show that the maximum value of the amplitude function

A.t/ D te�t=5 is A.5/ D 5=e. Thus (as indicated in

Fig. 10.3.5) the oscillations of the mass increase in am-

plitude during the first 5 s before being damped out as

t !C1.

10π

t

–2

2

x = + te –t/5

x = – te –t/5

FIGURE 10.3.5. The graph of the damped
oscillation in Problem 40.

Go to goo.gl/4ntUK9 to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

10.3 Application Damping and Resonance Investigations

Here we outline a Maple investigation of the behavior of the mass–spring–dashpot

system

mx00
C cx0

C kx D F.t/; x.0/ D x0.0/ D 0 (1)

with parameter values

m := 25; c := 10; k := 226;

in response to a variety of possible external forces:

1. F.t/ � 226

This should give damped oscillations “leveling off” to a constant solution (why?).

2. F.t/ D 901 cos 3t
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With this periodic external force you should see a steady periodic oscillation with

an exponentially damped transient motion (as illustrated in Fig. 5.6.13).

3. F.t/ D 900e�t=5 cos 3t

Now the periodic external force is exponentially damped, and the transform X.s/

includes a repeated quadratic factor that signals the presence of a resonance phe-

nomenon. The response x.t/ is a constant multiple of that shown in Fig. 10.3.5.

4. F.t/ D 900te�t=5 cos 3t

We have inserted the factor t to make it a bit more interesting. The solution in this

case is illustrated below.

5. F.t/ D 162t3e�t=5 cos 3t

In this case you’ll find that the transform X.s/ involves the fifth power of a quadratic

factor, and its inverse transform by manual methods would be impossibly tedious.

To illustrate the Maple approach, we first set up the differential equation cor-

responding to Case 4.

F := 900�t�exp(--t/5)�cos(3�t);

de := m�diff(x(t),t$2) + c�diff(x(t),t) + k�x(t) = F;

Then we apply the Laplace transform and substitute the initial conditions.

with(inttrans):

DE := laplace(de, t, s):

X(s) := solve(DE, laplace(x(t), t, s)):

X(s) := simplify(subs(x(0)=0, D(x)(0)=0, X(s)));

At this point the command factor(denom(X(s))) shows that

X.s/ D
22500.25s2 C 10s � 224/

.25s2 C 10s C 226/3
:

The cubed quadratic factor would be difficult to handle manually, but the command

x(t) := invlaplace(X(s), s, t);

soon yields

x.t/ D e�t=5
�

t cos 3t C
�

3t2 � 1

3

�

sin 3t
�

:

The amplitude function for these damped oscillations is defined by

C(t) := exp(--t/5)�sqrt(t^2 + (3�t^2 -- 1/3)^2);

and finally the command

plot({x(t), C(t), --C(t)}, t=0..40);

produces the plot shown in Fig. 10.3.6. The resonance resulting from the repeated

40
t

–40

–20

20

40
x = + C(t)

x = – C(t)

FIGURE 10.3.6. The resonance
solution and its envelope curves in
Case 4.

quadratic factor consists of a temporary buildup before the oscillations are damped

out.

For a similar solution in one of the other cases listed previously, you need only

enter the appropriate force F in the initial command above and then re-execute the

subsequent commands. To see the advantage of using Laplace transforms, set up

the differential equation de for Case 5 and examine the result of the command

dsolve({de, x(0)=0, D(x)(0)=0}, x(t));
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Of course you can substitute your own favorite mass–spring–dashpot parameters for

those used here. But it will simplify the calculations if you choose m, c, and k so

that

mr2
C cr C k D .pr C a/2 C b2 (2)

where p, a, and b are integers. One way is to select the latter integers first, then use

Eq. (2) to determine m, c, and k.

10.4 Derivatives, Integrals, and Products of Transforms

The Laplace transform of the (initially unknown) solution of a differential equation

is sometimes recognizable as the product of the transforms of two known functions.

For example, when we transform the initial value problem

x00
C x D cos t I x.0/ D x0.0/ D 0;

we get

X.s/ D
s

.s2 C 1/2
D

s

s2 C 1
�

1

s2 C 1
D ˇfcos tg �ˇfsin tg:

This strongly suggests that there ought to be a way of combining the two functions

sin t and cos t to obtain a function x.t/ whose transform is the product of their

transforms. But obviously x.t/ is not simply the product of cos t and sin t , because

ˇfcos t sin tg D ˇ
˚

1

2
sin 2t

	

D
1

s2 C 4
6D

s

.s2 C 1/2
:

Thus ˇfcos t sin tg ¤ ˇfcos tg �ˇfsin tg.

Theorem 1 of this section will tell us that the function

h.t/ D

Z

t

0

f .�/g.t � �/ d� (1)

has the desired property that

ˇfh.t/g D H.s/ D F.s/ �G.s/: (2)

The new function of t defined as the integral in (1) depends only on f and g and is

called the convolution of f and g. It is denoted by f � g, the idea being that it is a

new type of product of f and g, so tailored that its transform is the product of the

transforms of f and g.

DEFINITION The Convolution of Two Functions

The convolution f � g of the piecewise continuous functions f and g is defined

for t = 0 as follows:

.f � g/.t/ D

Z

t

0

f .�/g.t � �/ d�: (3)
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We will also write f .t/ � g.t/ when convenient. In terms of the convolution

product, Theorem 1 of this section says that

ˇff � gg D ˇff g �ˇfgg:

If we make the substitution u D t � � in the integral in (3), we see that

f .t/ � g.t/ D

Z

t

0

f .�/g.t � �/ d� D

Z

0

t

f .t � u/g.u/.�du/

D

Z

t

0

g.u/f .t � u/ du D g.t/ � f .t/:

Thus the convolution is commutative: f � g D g � f .

Example 1 The convolution of cos t and sin t is

.cos t / � .sin t / D

Z

t

0

cos � sin.t � �/ d�:

We apply the trigonometric identity

cosA sinB D 1

2
Œsin.AC B/ � sin.A � B/�

to obtain

.cos t / � .sin t / D

Z

t

0

1

2
Œsin t � sin.2� � t /� d�

D
1

2

�

� sin t C 1

2
cos.2� � t /

�

t

�D0

I

that is,

.cos t / � .sin t / D 1

2
t sin t:

And we recall from Example 5 of Section 10.2 that the Laplace transform of 1

2
t sin t is indeed

s=.s2 C 1/2.

Theorem 1 is proved at the end of this section.

THEOREM 1 The Convolution Property

Suppose that f .t/ and g.t/ are piecewise continuous for t = 0 and that jf .t/j

and jg.t/j are bounded by Mect as t ! C1. Then the Laplace transform of the

convolution f .t/ � g.t/ exists for s > c; moreover,

ˇff .t/ � g.t/g D ˇff .t/g �ˇfg.t/g (4)

and

ˇ
�1
fF.s/ �G.s/g D f .t/ � g.t/: (5)

Thus we can find the inverse transform of the product F.s/ � G.s/, provided

that we can evaluate the integral

ˇ
�1
fF.s/ �G.s/g D

Z

t

0

f .�/g.t � �/ d�: (50)

Example 2 illustrates the fact that convolution often provides a convenient

alternative to the use of partial fractions for finding inverse transforms.
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Example 2 With f .t/ D sin 2t and g.t/ D et , convolution yields

ˇ
�1

�

2

.s � 1/.s2 C 4/

�

D .sin 2t/ � et
D

Z

t

0

et�� sin 2� d�

D et

Z

t

0

e�� sin 2� d� D et

�

e��

5
.� sin 2� � 2 cos 2�/

�

t

0

;

so

ˇ
�1

�

2

.s � 1/.s2 C 4/

�

D
2

5
et
�
1

5
sin 2t �

2

5
cos 2t:

Differentiation of Transforms

According to Theorem 1 of Section 10.2, if f .0/ D 0 then differentiation of f .t/

corresponds to multiplication of its transform by s. Theorem 2, proved at the end

of this section, tells us that differentiation of the transform F.s/ corresponds to

multiplication of the original function f .t/ by �t .

THEOREM 2 Differentiation of Transforms

If f .t/ is piecewise continuous for t = 0 and jf .t/j 5 Mect as t !C1, then

ˇf�tf .t/g D F 0.s/ (6)

for s > c. Equivalently,

f .t/ D ˇ
�1
fF.s/g D �

1

t
ˇ

�1
fF 0.s/g: (7)

Repeated application of Eq. (6) gives

ˇftnf .t/g D .�1/nF .n/.s/ (8)

for n D 1, 2, 3, : : : .

Example 3 Find ˇft2 sin ktg.

Solution Equation (8) gives

ˇft2 sin ktg D .�1/2
d2

ds2

�

k

s2 C k2

�

D
d

ds

�

�2ks

.s2 C k2/2

�

D
6ks2 � 2k3

.s2 C k2/3
: (9)

The form of the differentiation property in Eq. (7) is often helpful in finding

an inverse transform when the derivative of the transform is easier to work with than

the transform itself.
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Example 4 Find ˇ
�1ftan�1.1=s/g.

Solution The derivative of tan�1.1=s/ is a simple rational function, so we apply Eq. (7):

ˇ
�1

�

tan�1
1

s

�

D �
1

t
ˇ

�1

�

d

ds
tan�1

1

s

�

D �
1

t
ˇ

�1

(

�1=s2

1C .1=s/2

)

D �
1

t
ˇ

�1

�

�1

s2 C 1

�

D �
1

t
.� sin t /:

Therefore,

ˇ
�1

�

tan�1
1

s

�

D
sin t

t
:

Equation (8) can be applied to transform a linear differential equation having

polynomial, rather than constant, coefficients. The result will be a differential equa-

tion involving the transform; whether this procedure leads to success depends, of

course, on whether we can solve the new equation more readily than the old one.

Example 5 Let x.t/ be the solution of Bessel’s equation of order zero,

tx00
C x0

C tx D 0;

such that x.0/ D 1 and x0.0/ D 0. This solution of Bessel’s equation is customarily denoted

by J0.t/. Because

ˇfx0.t/g D sX.s/ � 1 and ˇfx00.t/g D s2X.s/ � s;

and because x and x00 are each multiplied by t , application of Eq. (6) yields the transformed

equation

�
d

ds

h

s2X.s/ � s
i

C ŒsX.s/ � 1� �
d

ds
ŒX.s/� D 0:

The result of differentiation and simplification is the differential equation

.s2
C 1/X 0.s/C sX.s/ D 0:

This equation is separable—
X 0.s/

X.s/
D �

s

s2 C 1
I

its general solution is

X.s/ D
C

p
s2 C 1

:

In Problem 39 we outline the argument that C D 1. Because X.s/D ˇfJ0.t/g, it follows that

ˇfJ0.t/g D
1

p
s2 C 1

: (10)

Integration of Transforms

Differentiation of F.s/ corresponds to multiplication of f .t/ by t (together with

a change of sign). It is therefore natural to expect that integration of F.s/ will

correspond to division of f .t/ by t . Theorem 3, proved at the end of this section,

confirms this, provided that the resulting quotient f .t/=t remains well behaved as

t ! 0 from the right; that is, provided that

lim
t!0

C

f .t/

t
exists and is finite. (11)
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THEOREM 3 Integration of Transforms

Suppose that f .t/ is piecewise continuous for t = 0, that f .t/ satisfies the condi-

tion in (11), and that jf .t/j 5 Mect as t !C1. Then

ˇ

�

f .t/

t

�

D

Z 1

s

F.�/ d� (12)

for s > c. Equivalently,

f .t/ D ˇ
�1
fF.s/g D tˇ�1

�Z 1

s

F.�/ d�

�

: (13)

Example 6 Find ˇf.sinh t /=tg.

Solution We first verify that the condition in (11) holds:

lim
t!0

sinh t

t
D lim

t!0

et � e�t

2t
D lim

t!0

et C e�t

2
D 1;

with the aid of l’Hôpital’s rule. Then Eq. (12), with f .t/ D sinh t , yields

ˇ

�

sinh t

t

�

D

Z 1

s

ˇfsinh tgd� D

Z 1

s

d�

�2 � 1

D
1

2

Z 1

s

�

1

� � 1
�

1

� C 1

�

d� D
1

2

�

ln
� � 1

� C 1

�1

s

:

Therefore,

ˇ

�

sinh t

t

�

D
1

2
ln
s C 1

s � 1
;

because ln 1 D 0.

The form of the integration property in Eq. (13) is often helpful in finding an

inverse transform when the indefinite integral of the transform is easier to handle

than the transform itself.

Example 7 Find ˇ
�1f2s=.s2 � 1/2g.

Solution We could use partial fractions, but it is much simpler to apply Eq. (13). This gives

ˇ
�1

�

2s

.s2 � 1/2

�

D tˇ�1

�Z 1

s

2�

.�2 � 1/2
d�

�

D tˇ�1

��

�1

�2 � 1

�1

s

�

D tˇ�1

�

1

s2 � 1

�

;

and therefore

ˇ
�1

�

2s

.s2 � 1/2

�

D t sinh t:

*Proofs of Theorems

Proof of Theorem 1: The transforms F.s/ and G.s/ exist when s > c by

Theorem 2 of Section 10.1. For any � > 0 the definition of the Laplace transform

gives

G.s/ D

Z 1

0

e�sug.u/ du D

Z 1

�

e�s.t��/g.t � �/ dt .u D t � �/;
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and therefore

G.s/ D es�

Z 1

0

e�stg.t � �/ dt;

because we may define f .t/ and g.t/ to be zero for t < 0. Then

F.s/G.s/ D G.s/

Z 1

0

e�s�f .�/ d� D

Z 1

0

e�s�f .�/G.s/ d�

D

Z 1

0

e�s�f .�/

�

es�

Z 1

0

e�stg.t � �/ dt

�

d�

D

Z 1

0

�Z 1

0

e�stf .�/g.t � �/ dt

�

d�:

Now our hypotheses on f and g imply that the order of integration may be reversed.

(The proof of this requires a discussion of uniform convergence of improper inte-

grals, and can be found in Chapter 2 of Churchill’s Operational Mathematics, 3rd

ed. (New York: McGraw-Hill, 1972).) Hence

F.s/G.s/ D

Z 1

0

�Z 1

0

e�stf .�/g.t � �/ d�

�

dt

D

Z 1

0

e�st

�Z

t

0

f .�/g.t � �/ d�

�

dt

D

Z 1

0

e�st Œf .t/ � g.t/� dt;

and therefore,

F.s/G.s/ D ˇff .t/ � g.t/g:

We replace the upper limit of the inner integral with t because g.t � �/D 0whenever

� > t . This completes the proof of Theorem 1.

Proof of Theorem 2: Because

F.s/ D

Z 1

0

e�stf .t/ dt;

differentiation under the integral sign yields

F.s/ D
d

ds

Z 1

0

e�stf .t/ dt

D

Z 1

0

d

ds

�

e�stf .t/
�

dt D

Z 1

0

e�st Œ�tf .t/� dt I

thus

F 0.s/ D ˇf�tf .t/g;

which is Eq. (6). We obtain Eq. (7) by applying ˇ
�1 and then dividing by �t . The

validity of differentiation under the integral sign depends on uniform convergence

of the resulting integral; this is discussed in Chapter 2 of the book by Churchill just

mentioned.

Proof of Theorem 3: By definition,

F.�/ D

Z 1

0

e��tf .t/ dt:
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So integration of F.�/ from s to C1 gives

Z 1

s

F.�/ d� D

Z 1

s

�Z 1

0

e��tf .t/ dt

�

d�:

Under the hypotheses of the theorem, the order of integration may be reversed (see

Churchill’s book once again); it follows that

Z 1

s

F.�/ d� D

Z 1

0

�Z 1

s

e��tf .t/ d�

�

dt

D

Z 1

0

�

e��t

�t

�1

�Ds

f .t/ dt

D

Z 1

0

e�st
f .t/

t
dt D ˇ

�

f .t/

t

�

:

This verifies Eq. (12), and Eq. (13) follows upon first applying ˇ
�1 and then multi-

plying by t .

10.4 Problems
Find the convolution f .t/ � g.t/ in Problems 1 through 6.

1. f .t/ D t , g.t/ � 1 2. f .t/ D t , g.t/ D eat

3. f .t/ D g.t/ D sin t 4. f .t/ D t2, g.t/ D cos t

5. f .t/ D g.t/ D eat

6. f .t/ D eat , g.t/ D ebt .a 6D b/

Apply the convolution theorem to find the inverse Laplace

transforms of the functions in Problems 7 through 14.

7. F.s/ D
1

s.s � 3/
8. F.s/ D

1

s.s2 C 4/

9. F.s/ D
1

.s2 C 9/2
10. F.s/ D

1

s2.s2 C k2/

11. F.s/ D
s2

.s2 C 4/2
12. F.s/ D

1

s.s2 C 4s C 5/

13. F.s/ D
s

.s � 3/.s2 C 1/
14. F.s/ D

s

s4 C 5s2 C 4

In Problems 15 through 22, apply either Theorem 2 or Theo-

rem 3 to find the Laplace transform of f .t/.

15. f .t/ D t sin 3t 16. f .t/ D t2 cos 2t

17. f .t/ D te2t cos 3t 18. f .t/ D te�t sin2 t

19. f .t/ D
sin t

t
20. f .t/ D

1 � cos 2t

t

21. f .t/ D
e3t � 1

t
22. f .t/ D

et � e�t

t

Find the inverse transforms of the functions in Problems 23

through 28.

23. F.s/ D ln
s � 2

s C 2
24. F.s/ D ln

s2 C 1

s2 C 4

25. F.s/ D ln
s2 C 1

.s C 2/.s � 3/
26. F.s/ D tan�1

3

s C 2

27. F.s/ D ln

�

1C
1

s2

�

28. F.s/ D
s

.s2 C 1/3

In Problems 29 through 34, transform the given differential

equation to find a nontrivial solution such that x.0/ D 0.

29. tx00 C .t � 2/x0 C x D 0

30. tx00 C .3t � 1/x0 C 3x D 0

31. tx00 � .4t C 1/x0 C 2.2t C 1/x D 0

32. tx00 C 2.t � 1/x0 � 2x D 0

33. tx00 � 2x0 C tx D 0

34. tx00 C .4t � 2/x0 C .13t � 4/x D 0

35. Apply the convolution theorem to show that

ˇ
�1

�

1

.s � 1/
p
s

�

D
2et

p
�

Z

p
t

0

e�u
2

du D et erf
p
t :

(Suggestion: Substitute u D
p
t .)

In Problems 36 through 38, apply the convolution theorem

to derive the indicated solution x.t/ of the given differential

equation with initial conditions x.0/ D x0.0/ D 0.

36. x00 C 4x D f .t/; x.t/ D
1

2

Z

t

0

f .t � �/ sin 2� d�

37. x00 C 2x0 C x D f .t/; x.t/ D

Z

t

0

�e��f .t � �/ d�

38. x00 C 4x0 C 13x D f .t/I

x.t/ D
1

3

Z

t

0

f .t � �/e�2� sin 3� d�
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Termwise Inverse Transformation of Series

In Chapter 2 of Churchill’s Operational Mathematics, the fol-

lowing theorem is proved. Suppose that f .t/ is continuous for

t = 0, that f .t/ is of exponential order as t !C1, and that

F.s/ D

1
X

nD0

an

snCkC1

where 0 5 k < 1 and the series converges absolutely for s > c.

Then

f .t/ D

1
X

nD0

ant
nCk

�.nC k C 1/
:

Apply this result in Problems 39 through 41.

39. In Example 5 it was shown that

ˇfJ0.t/g D
C

p
s2 C 1

D
C

s

�

1C
1

s2

��1=2

:

Expand with the aid of the binomial series and then com-

pute the inverse transformation term by term to obtain

J0.t/ D C

1
X

nD0

.�1/nt2n

22n.nŠ/2
:

Finally, note that J0.0/ D 1 implies that C D 1.

40. Expand the function F.s/ D s�1=2e�1=s in powers of s�1

to show that

ˇ
�1

�

1
p
s
e�1=s

�

D
1
p
�t

cos 2
p
t :

41. Show that

ˇ
�1

�

1

s
e�1=s

�

D J0

�

2
p
t
�

:

10.5 Periodic and Piecewise Continuous Input Functions

Mathematical models of mechanical or electrical systems often involve functions

with discontinuities corresponding to external forces that are turned abruptly on or

off. One such simple on–off function is the unit step function that we introduced in

Section 10.1. Recall that the unit step function at t D a is defined by

x = ua(t )

a

x

1

t

…

FIGURE 10.5.1. The graph of the
unit step function at t D a.

ua.t/ D u.t � a/ D

(

0 if t < a,

1 if t = a.
(1)

The notation ua.t/ indicates succinctly where the unit upward step in value takes

place (Fig. 10.5.1), whereas u.t � a/ connotes the sometimes useful idea of a “time

delay” a before the step is made.

In Example 8 of Section 10.1 we saw that if a = 0, then

Lfu.t � a/g D
e�as

s
: (2)

Because Lfu.t/g D 1=s, Eq. (2) implies that multiplication of the transform of u.t/

by e�as corresponds to the translation t! t �a in the original independent variable.

Theorem 1 tells us that this fact, when properly interpreted, is a general property of

the Laplace transformation.

THEOREM 1 Translation on the t-Axis

If Lff .t/g exists for s > c, then

Lfu.t � a/f .t � a/g D e�asF.s/ (3a)

and

L
�1
fe�asF.s/g D u.t � a/f .t � a/ (3b)

for s > c C a.

Note that

u.t � a/f .t � a/ D

(

0 if t < a,

f .t � a/ if t = a.
(4)
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Thus Theorem 1 implies that L
�1fe�asF.s/g is the function whose graph for t = a

is the translation by a units to the right of the graph of f .t/ for t = 0. Note that the

part (if any) of the graph of f .t/ to the left of t D 0 is “cut off” and is not translated

f (t )

a t

x

a

u (t − a) f (t − a)

FIGURE 10.5.2. Translation of f .t/

a units to the right.

(Fig. 10.5.2). In some applications the function f .t/ describes an incoming signal

that starts arriving at time t D 0. Then u.t � a/f .t � a/ denotes a signal of the same

“shape” but with a time delay of a, so it does not start arriving until time t D a.

Proof of Theorem 1: From the definition of Lff .t/g, we get

e�asF.s/ D e�as

Z 1

0

e�s�f .�/ d� D

Z 1

0

e�s.�Ca/f .�/ d�:

The substitution t D � C a then yields

e�asF.s/ D

Z 1

a

e�stf .t � a/ dt:

From Eq. (4) we see that this is the same as

e�asF.s/ D

Z 1

0

e�stu.t � a/f .t � a/ dt D Lfu.t � a/f .t � a/g;

because u.t � a/f .t � a/ D 0 for t < a. This completes the proof of

Theorem 1.

Example 1 With f .t/ D 1

2
t2, Theorem 1 gives

L
�1

�

e�as

s3

�

D u.t � a/
1

2
.t � a/2 D

(

0 if t < a,
1

2
.t � a/2 if t = a

(Fig. 10.5.3).

Example 2 Find Lfg.t/g if

g.t/ D

(

0 if t < 3,

t2 if t = 3
(Fig. 10.5.4).

Solution Before applying Theorem 1, we must first write g.t/ in the form u.t � 3/f .t � 3/. The

function f .t/ whose translation 3 units to the right agrees (for t = 3) with g.t/ D t2 is

f .t/ D .t C 3/2 because f .t � 3/ D t2. But then

F.s/ D Lft2 C 6t C 9g D
2

s3
C

6

s2
C
9

s
;

so now Theorem 1 yields

Lfg.t/g D Lfu.t � 3/f .t � 3/g D e�3sF.s/ D e�3s

�

2

s3
C

6

s2
C
9

s

�

:
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a t

x

a

x =
1

2
t2 ua(t )(t − a)2x =

1

2

FIGURE 10.5.3. The graph of the
inverse transform of Example 1.

5

10

15

20

x

3 41 2 t

x = t2 x = g(t )

FIGURE 10.5.4. The graph of the
function g.t/ of Example 2.

t

x

π π3π2

x = f (t )

FIGURE 10.5.5. The function f .t/

of Examples 3 and 4.

Example 3 Find Lff .t/g if

f .t/ D

(

cos 2t if 0 5 t < 2� ,

0 if t = 2�
(Fig. 10.5.5).

Solution We note first that

f .t/ D Œ1 � u.t � 2�/� cos 2t D cos 2t � u.t � 2�/ cos 2.t � 2�/

because of the periodicity of the cosine function. Hence Theorem 1 gives

Lff .t/g D Lfcos 2tg � e�2�s
Lfcos 2tg D

s.1 � e�2�s/

s2 C 4
:

Example 4 Discontinuous forcing A mass that weighs 32 lb (mass m D 1 slug) is attached to the free

end of a long light spring that is stretched 1 ft by a force of 4 lb (k D 4 lb=ft). The mass

is initially at rest in its equilibrium position. Beginning at time t D 0 (seconds), an external

force F.t/D cos 2t is applied to the mass, but at time t D 2� this force is turned off (abruptly

discontinued) and the mass is allowed to continue its motion unimpeded. Find the resulting

position function x.t/ of the mass.

Solution We need to solve the initial value problem

x00
C 4x D f .t/I x.0/ D x0.0/ D 0;

where f .t/ is the function of Example 3. The transformed equation is

.s2
C 4/X.s/ D F.s/ D

s.1 � e�2�s/

s2 C 4
;

so

X.s/ D
s

.s2 C 4/2
� e�2�s

s

.s2 C 4/2
:

Because

L
�1

�

s

.s2 C 4/2

�

D
1

4
t sin 2t

by Eq. (16) of Section 10.3, it follows from Theorem 1 that

x.t/ D 1

4
t sin 2t � u.t � 2�/ � 1

4
.t � 2�/ sin 2.t � 2�/

D
1

4
Œt � u.t � 2�/ � .t � 2�/� sin 2t:

If we separate the cases t < 2� and t = 2� , we find that the position function may be written

in the form

x.t/ D

8

<

:

1

4
t sin 2t if t < 2� ,

1

2
� sin 2t if t = 2� .



10.5 Periodic and Piecewise Continuous Input Functions 597

As indicated by the graph of x.t/ shown in Fig. 10.5.6, the mass oscillates with circular

0
t

x

π−

π

2π 4π 6π

π− /2

π /2

0

π /2x = −

π /2x = 

FIGURE 10.5.6. The graph of the
function x.t/ of Example 4.

frequency ! D 2 and with linearly increasing amplitude until the force is removed at time

t D 2� . Thereafter, the mass continues to oscillate with the same frequency but with con-

stant amplitude �=2. The force F.t/ D cos 2t would produce pure resonance if continued

indefinitely, but we see that its effect ceases immediately at the moment it is turned off.

If we were to attack Example 4 with the methods of Chapter 5, we would

need to solve one problem for the interval 0 5 t < 2� and then solve a new problem

with different initial conditions for the interval t = 2� . In such a situation the

Laplace transform method enjoys the distinct advantage of not requiring the solution

of different problems on different intervals.

Transforms of Periodic Functions

Periodic forcing functions in practical mechanical or electrical systems often are

more complicated than pure sines or cosines. The nonconstant function f .t/ defined

for t = 0 is said to be periodic if there is a number p > 0 such that

f .t C p/ D f .t/ (5)

for all t = 0. The least positive value of p (if any) for which Eq. (11) holds is called

t
p

FIGURE 10.5.7. The graph of a

function with period p.

the period of f . Such a function is shown in Fig. 10.5.7. Theorem 2 simplifies the

computation of the Laplace transform of a periodic function.

THEOREM 2 Transforms of Periodic Functions

Let f .t/ be periodic with period p and piecewise continuous for t = 0. Then the

transform F.s/ D Lff .t/g exists for s > 0 and is given by

F.s/ D
1

1 � e�ps

Z

p

0

e�stf .t/ dt: (6)

Proof: The definition of the Laplace transform gives

F.s/ D

Z 1

0

e�stf .t/ dt D

1
X

nD0

Z

.nC1/p

np

e�stf .t/ dt:

The substitution t D � C np in the nth integral following the summation sign yields

Z

.nC1/p

np

e�stf .t/ dt D

Z

p

0

e�s.�Cnp/f .� C np/ d� D e�nps

Z

p

0

e�s�f .�/ d�

because f .� C np/ D f .�/ by periodicity. Thus

F.s/ D

1
X

nD0

�

e�nps

Z

p

0

e�s�f .�/ d�

�

D
�

1C e�ps
C e�2ps

C � � �
�

Z

p

0

e�s�f .�/ d�:

Consequently,

F.s/ D
1

1 � e�ps

Z

p

0

e�s�f .�/ d�:
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We use the geometric series

1

1 � x
D 1C x C x2

C x3
C � � � ;

with x D e�ps < 1 (for s > 0) to sum the series in the final step. Thus we have

derived Eq. (6).

The principal advantage of Theorem 2 is that it enables us to find the Laplace

transform of a periodic function without the necessity of an explicit evaluation of an

improper integral.

Example 5 Figure 10.5.8 shows the graph of the square wave function f .t/D .�1/ŒŒt=a�� of period pD 2a;

ŒŒx�� denotes the greatest integer not exceeding x. By Theorem 2 the Laplace transform of f .t/

isf (t )

6a5a4a3a2aa

…

t

1

−1

FIGURE 10.5.8. The graph of the

square wave function of Example 5.

F.s/ D
1

1 � e�2as

Z

2a

0

e�stf .t/ dt

D
1

1 � e�2as

 

Z

a

0

e�st dt C

Z

2a

a

.�1/e�st dt

!

D
1

1 � e�2as

 

�

�
1

s
e�st

�

a

0

�

�

�
1

s
e�st

�

2a

a

!

D
.1 � e�as/2

s.1 � e�2as/
D

1 � e�as

s.1C e�as/
:

Therefore,

6a5a4a3a2aa

a …

g(t )

t

FIGURE 10.5.9. The graph of the

triangular wave function of Example 6.

F.s/ D
1 � e�as

s.1C e�as/
(7a)

D
eas=2 � e�as=2

s.eas=2 C e�as=2/
D
1

s
tanh

as

2
: (7b)

Example 6 Figure 10.5.9 shows the graph of a triangular wave function g.t/ of period p D 2a. Because

the derivative g0.t/ is the square wave function of Example 6, it follows from the formula in

(7b) and Theorem 2 of Section 10.2 that the transform of this triangular wave function is

G.s/ D
F.s/

s
D

1

s2
tanh

as

2
: (8)

Example 7 Square wave forcing Consider a mass–spring–dashpot system with m D 1, c D 4, and

k D 20 in appropriate units. Suppose that the system is initially at rest at equilibrium (x.0/D

x0.0/ D 0) and that the mass is acted on beginning at time t D 0 by the external force f .t/

whose graph is shown in Fig. 10.5.10: the square wave with amplitude 20 and period 2� .

Find the position function f .t/.

Solution The initial value problem is

x00
C 4x0

C 20x D f .t/I x.0/ D x0.0/ D 0:

The transformed equation is

s2X.s/C 4sX.s/C 20X.s/ D F.s/: (9)
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From Example 5 with a D � we see that the transform of f .t/ is

F.s/ D
20

s
�
1 � e��s

1C e��s

D
20

s

�

1 � e��s
�

�

1 � e��s
C e�2�s

� e�3�s
C � � �

�

D
20

s

�

1 � 2e��s
C 2e�2�s

� 2e�3�s
C � � �

�

;

so that

20

−20

π 2π 3π 4π 5π 6π t

f(t)

FIGURE 10.5.10. The graph of the
external force function of Example 7.

F.s/ D
20

s
C
40

s

1
X

nD1

.�1/ne�n�s : (10)

Substitution of Eq. (10) in Eq. (9) yields

X.s/ D
F.s/

s2 C 4s C 20

D
20

sŒ.s C 2/2 C 16�
C 2

1
X

nD1

.�1/n
20e�n�s

sŒ.s C 2/2 C 16�
: (11)

From the transform in Eq. (8) of Section 10.3, we get

L
�1

�

20

.s C 2/2 C 16

�

D 5e�2t sin 4t;

so by Theorem 2 of Section 10.2 we have

g.t/ D L
�1

�

20

sŒ.s C 2/2 C 16�

�

D

Z

t

0

5e�2� sin 4� d�:

Using a tabulated formula for
R

eat sin bt dt , we get

g.t/ D 1 � e�2t

�

cos 4t C 1

2
sin 4t

�

D 1 � h.t/; (12)

where

h.t/ D e�2t

�

cos 4t C 1

2
sin 4t

�

: (13)

Now we apply Theorem 1 to find the inverse transform of the right-hand term in

Eq. (11). The result is

x.t/ D g.t/C 2

1
X

nD1

.�1/nu.t � n�/g.t � n�/; (14)

and we note that for any fixed value of t the sum in Eq. (14) is finite. Moreover,

g.t � n�/ D 1 � e�2.t�n�/

h

cos 4.t � n�/C 1

2
sin 4.t � n�/

i

D 1 � e2n�e�2t

�

cos 4t C 1

2
sin 4t

�

:

Therefore,

g.t � n�/ D 1 � e2n�h.t/: (15)

Hence if 0 < t < � , then

x.t/ D 1 � h.t/:

If � < t < 2� , then

x.t/ D Œ1 � h.t/� � 2
h

1 � e2�h.t/
i

D �1C h.t/ � 2h.t/
h

1 � e2�

i

:
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If 2� < t < 3� , then

x.t/ D Œ1 � h.t/� � 2
h

1 � e2�h.t/
i

C 2
h

1 � e4�h.t/
i

D 1C h.t/ � 2h.t/
h

1 � e2�
C e4�

i

:

The general expression for n� < t < .nC 1/� is

x.t/ D h.t/C .�1/n � 2h.t/
h

1 � e2�
C � � � C .�1/ne2n�

i

D h.t/C .�1/n � 2h.t/
1C .�1/ne2.nC1/�

1C e2�
;

(16)

which we obtained with the aid of the familiar formula for the sum of a finite geometric

progression. A rearrangement of Eq. (16) finally gives, with the aid of Eq. (13),

x.t/ D
e2� � 1

e2� C 1
e�2t

�

cos 4t C 1

2
sin 4t

�

C .�1/n

�
2 � .�1/ne2�

e2� C 1
e�2.t�n�/

�

cos 4t C 1

2
sin 4t

�

(17)

for n� < t < .nC 1/� . The first term in Eq. (17) is the transient solution

xtr.t/ � .0:9963/e
�2t

�

cos 4t C 1

2
sin 4t

�

� .1:1139/e�2t cos.4t � 0:4636/: (18)

The last two terms in Eq. (17) give the steady periodic solution xsp. To investigate it, we

write � D t � n� for t in the interval n� < t < .nC 1/� . Then

xsp.t/ D .�1/
n

"

1 �
2e2�

e2� C 1
e�2�

�

cos 4� C 1

2
sin 4�

�

#

� .�1/n
h

1 � .2:2319/e�2� cos.4� � 0:4636/
i

:

(19)

Figure 10.5.11 shows the graph of xsp.t/. Its most interesting feature is the appearance of

periodically damped oscillations with a frequency four times that of the imposed force f .t/.

xsp

t

1

−1

1 + (2.23)e −2t

−1 + (2.23)e −2(t − π)

−1 − (2.23)e −2(t − π)

1 − (2.23)e −2t

π

FIGURE 10.5.11. The graph of the steady periodic solution for Example 7;
note the “periodically damped” oscillations with frequency four times that of

the imposed force.
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10.5 Problems
Find the inverse Laplace transform f .t/ of each function given

in Problems 1 through 10. Then sketch the graph of f .

1. F.s/ D
e�3s

s2
2. F.s/ D

e�s � e�3s

s2

3. F.s/ D
e�s

s C 2
4. F.s/ D

e�s � e2�2s

s � 1

5. F.s/ D
e��s

s2 C 1
6. F.s/ D

se�s

s2 C �2

7. F.s/ D
1 � e�2�s

s2 C 1
8. F.s/ D

s.1 � e�2s/

s2 C �2

9. F.s/ D
s.1C e�3s/

s2 C �2
10. F.s/D

2s.e��s � e�2�s/

s2 C 4

Find the Laplace transforms of the functions given in Problems

11 through 22.

11. f .t/ D 2 if 0 5 t < 3; f .t/ D 0 if t = 3

12. f .t/ D 1 if 1 5 t 5 4; f .t/ D 0 if t < 1 or if t > 4

13. f .t/ D sin t if 0 5 t 5 2�; f .t/ D 0 if t > 2�

14. f .t/ D cos�t if 0 5 t 5 2; f .t/ D 0 if t > 2

15. f .t/ D sin t if 0 5 t 5 3�; f .t/ D 0 if t > 3�

16. f .t/D sin 2t if � 5 t 5 2�; f .t/D 0 if t < � or if t > 2�

17. f .t/ D sin�t if 2 5 t 5 3; f .t/ D 0 if t < 2 or if t > 3

18. f .t/ D cos 1

2
�t if 3 5 t 5 5; f .t/ D 0 if t < 3 or if t > 5

19. f .t/ D 0 if t < 1; f .t/ D t if t = 1

20. f .t/ D t if t 5 1; f .t/ D 1 if t > 1

21. f .t/ D t if t 5 1; f .t/ D 2 � t if 1 5 t 5 2; f .t/ D 0 if

t > 2

22. f .t/ D t3 if 1 5 t 5 2; f .t/ D 0 if t < 1 or if t > 2

23. Apply Theorem 2 with p D 1 to verify that Lf1g D 1=s.

24. Apply Theorem 2 to verify that Lfcos ktg D s=.s2 C k2/.

25. Apply Theorem 2 to show that the Laplace transform of

the square wave function of Fig. 10.5.12 is

Lff .t/g D
1

s.1C e�as/
:

1

6a5a4a3a2aa t

FIGURE 10.5.12. The graph of the
square wave function of Problem 25.

26. Apply Theorem 2 to show that the Laplace transform of

the sawtooth function f .t/ of Fig. 10.5.13 is

F.s/ D
1

as2
�

e�as

s.1 � e�as/
:

f (t )

1

6a5a4a3a2aa t

FIGURE 10.5.13. The graph of the
sawtooth function of Problem 26.

27. Let g.t/ be the staircase function of Fig. 10.5.14. Show

that g.t/D .t=a/� f .t/, where f is the sawtooth function

of Fig. 10.5.14, and hence deduce that

Lfg.t/g D
e�as

s.1 � e�as/
:

4a3a2aa t

g(t )

1

2

3

4 …

FIGURE 10.5.14. The graph of the
staircase function of Problem 27.

28. Suppose that f .t/ is a periodic function of period 2a with

f .t/ D t if 0 5 t < a and f .t/ D 0 if a 5 t < 2a. Find

Lff .t/g.

29. Suppose that f .t/ is the half-wave rectification of sin kt ,

shown in Fig. 10.5.15. Show that

Lff .t/g D
k

.s2 C k2/.1 � e��s=k/
:

f (t )

t
k

π3

k

π2

k

π

FIGURE 10.5.15. The half-wave
rectification of sin kt .

30. Let g.t/ D u.t � �=k/f .t � �=k/, where f .t/ is the

function of Problem 29 and k > 0. Note that h.t/ D

f .t/C g.t/ is the full-wave rectification of sin kt shown

in Fig. 10.5.16. Hence deduce from Problem 29 that

Lfh.t/g D
k

s2 C k2
coth

�s

2k
:

t
k

π3

k

π2

k

π

h(t )

FIGURE 10.5.16. The full-wave

rectification of sin kt .
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Discontinuous Forcing

In Problems 31 through 35, the values of mass m, spring con-

stant k, dashpot resistance c, and force f .t/ are given for a

mass–spring–dashpot system with external forcing function.

Solve the initial value problem

mx00
C cx0

C kx D f .t/I x.0/ D x0.0/ D 0

and construct the graph of the position function x.t/.

31. m D 1, k D 4, c D 0; f .t/ D 1 if 0 5 t < � , f .t/ D 0 if

t = �

32. m D 1, k D 4, c D 5; f .t/ D 1 if 0 5 t < 2, f .t/ D 0 if

t = 2

33. m D 1, k D 9, c D 0; f .t/ D sin t if 0 5 t 5 2� , f .t/ D 0

if t > 2�

34. m D 1, k D 1, c D 0; f .t/ D t if 0 5 t < 1, f .t/ D 0 if

t = 1

35. m D 1, k D 4, c D 4; f .t/ D t if 0 5 t 5 2, f .t/ D 0 if

t > 2

Transient and Steady Periodic Motions

In Problems 36 and 37, a mass–spring–dashpot system with

external force f .t/ is described. Under the assumption that

x.0/ D x0.0/ D 0, use the method of Example 7 to find the

transient and steady periodic motions of the mass. Then con-

struct the graph of the position function x.t/. If you would like

to check your graph using a numerical DE solver, it may be

useful to note that the function

f .t/ D AŒ2u..t � �/.t � 2�/.t � 3�/�

.t � 4�/.t � 5�/.t � 6�// � 1�

has the value CA if 0 < t < � , the value �A if � < t < 2� ,

and so forth, and hence agrees on the interval Œ0; 6�� with the

square wave function that has amplitude A and period 2� .

(See also the definition of a square wave function in terms of

sawtooth and triangular wave functions in the application ma-

terial for this section.)

36. m D 1, k D 4, c D 0; f .t/ is a square wave function with

amplitude 4 and period 2� .

37. mD 1, k D 10, c D 2; f .t/ is a square wave function with

amplitude 10 and period 2� .

38. Suppose the function x.t/ satisfies the initial value prob-

lem

mx00
C cx0

C kx D F.t/; x.a/ D b0; x
0.a/ D b1

for t = a and x.t/ D 0 for t < a. Then show that

X.s/ D Lfx.t/g satisfies the equation

m
�

s2.easX/ � sb0 � b1

�

C c
�

s.easX/ � b0

�

C k
�

easX
�

D LfF.t C a/g:

39. This is an alternate approach to Example 7 that was sug-

gested by Keng C. Wu of Lockheed Martin (Maritime Sys-

tems & Sensors). Let x.t/ denote the steady periodic so-

lution of the given differential equation x00C 4x0C 20x D

F.t/. Suppose we write v.t/ for the restriction of x.t/ to

the first half Œ0; �� of the fundamental interval Œ0; 2��, and

w.t/ for its restriction to the second half-interval Œ�; 2��.

We may regard v.t/ as the solution of the initial value

problem

v00
C 4v0

C 20v D C20; v.0/ D b0; v
0.0/ D b1

and w.t/ as the solution of the initial value problem

w00
C 4w0

C 20w D �20; w.�/ D c0; w
0.�/ D c1;

where the initial values b0, b1 and c0, c1 are to be deter-

mined so that x.t/ and x0.t/ are continuous.

(a) Transform the first of these initial value problems to

show that V.s/ D A.s/b0 C B.s/b1 C C.s/, where

A.s/ D
s C 4

s2 C 4s C 20
;

B.s/ D
1

s2 C 4s C 20
;

C.s/ D
20

s.s2 C 4s C 20/
:

(b) Apply the result of Problem 38 to the second ini-

tial value problem above to show that W.s/ D

e��s .A.s/c0 C B.s/c1 � C.s//, where the coefficient

functions A.s/, B.s/, C.s/ are as defined in part (a).

(c) After finding the inverse transforms

a.t/ D e�2t

�

cos 4t C 1

2
sin 4t

�

;

b.t/ D 1

4
e�2t sin 4t;

c.t/ D 1 � e�2t

�

cos 4t C 1

2
sin 4t

�

;

solve the four continuity equations v.�/ D c0,

v0.�/ D c1, w.2�/ D b0, w0.2�/ D b1 to find the

values of the previously undetermined initial values.

Conclude that

v.t/ � 1 � 0:9981e�2t .2 cos 4t C sin 4t/;

w.t/ �
h

�1C 0:9981e�2.t��/.2 cos 4t

C sin 4t/� u.t � �/:

Finally, use these expressions to verify that the graph

of the steady periodic solution x.t/ looks as indicated

in Fig. 10.5.11.
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Go to goo.gl/4lFzfk to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

10.5 Application Engineering Functions

Periodic piecewise linear functions occur so frequently as input functions in engi-

neering applications that they are sometimes called engineering functions. Com-

putations with such functions are readily handled by computer algebra systems.

In Mathematica, for instance, the SawToothWave, TriangleWave, and Square-

Wave functions can be used to create the corresponding inputs with specified range,

period, etc. Alternatively, we can define our own engineering functions using ele-

mentary functions available in any computer algebra system:

sawtooth[t ] := t -- 2 Floor[t/2] -- 1

triangularwave[t ] := 2 Abs[sawtooth[t -- 1/2]] -- 1

squarewave[t ] := Sign[ triangularwave[t]]

Plot each of the functions to verify that it has period 2 and that its name is aptly

chosen. For instance, the result of

Plot[squarewave[t], {t, 0, 6}]

should look like Fig. 10.5.8. If f .t/ is one of these engineering functions and p > 0,

then the function f .2t=p/ will have period p. To illustrate this, try

Plot[triangularwave[ 2 t=p ], {t, 0, 3 p}]

with various values of p.

Now let’s consider the mass-spring-dashpot equation

diffEq = m x''[t] + c x'[t] + k x[t] == input

with selected parameter values and an input forcing function with period p and

amplitude F0.

m = 4; c = 8; k = 5; p = 1; F0 = 4;

input = F0 squarewave[2 t=p];

You can plot this input function to verify that it has period 1:

Plot[input, {t, 0, 2}]

Finally, let’s suppose that the mass is initially at rest in its equilibrium position and

solve numerically the resulting initial value problem.

response = NDSolve[ {diffEq, x[0] == 0, x'[0] == 0},

x, {t, 0, 10}]

Plot[ x[t] =. response, {t, 0, 10}]

In the resulting Fig. 10.5.17 we see that after an initial transient dies out, the

response function x.t/ settles down (as expected?) to a periodic oscillation with the

same period as the input.

2 t

x

1

8

1

16

864

FIGURE 10.5.17. Response x.t/ to
period 1 square wave input.

Investigate this initial value problem with several mass–spring–dashpot para-

meters—for instance, selected digits of your student ID number—and with input

engineering functions having various amplitudes and periods.



1111 Power Series
Methods

11.1 Introduction and Review of Power Series

In Section 5.3 we saw that solving a homogeneous linear differential equation

with constant coefficients can be reduced to the algebraic problem of finding the

roots of its characteristic equation. There is no similar procedure for solving linear

differential equations with variable coefficients, at least not routinely and in finitely

many steps. With the exception of special types, such as the occasional equation that

can be solved by inspection, linear equations with variable coefficients generally

require the power series techniques of this chapter.

These techniques suffice for many of the nonelementary differential equations

that appear most frequently in applications. Perhaps the most important (because of

its applications in such areas as acoustics, heat flow, and electromagnetic radiation)

is Bessel’s equation of order n:

x2y00
C xy0

C .x2
� n2/y D 0:

Legendre’s equation of order n is important in many applications. It has the form

.1 � x2/y00
� 2xy0

C n.nC 1/y D 0:

In this section we introduce the power series method in its simplest form and,

along the way, state (without proof) several theorems that constitute a review of the

basic facts about power series. Recall first that a power series in (powers of) x � a

is an infinite series of the form

1
X

nD0

cn.x � a/
n
D c0 C c1.x � a/C c2.x � a/

2
C � � � C cn.x � a/

n
C � � � : (1)

If a D 0, this is a power series in x:

1
X

nD0

cnx
n
D c0 C c1x C c2x

2
C � � � C cnx

n
C � � � : (2)

604
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We will confine our review mainly to power series in x, but every general property

of power series in x can be converted to a general property of power series in x � a

by replacement of x with x � a.

The power series in (2) converges on the interval I provided that the limit

1
X

nD0

cnx
n
D lim

N !1

N
X

nD0

cnx
n (3)

exists for all x in I. In this case the sum

f .x/ D

1
X

nD0

cnx
n (4)

is defined on I, and we call the series
P

cnx
n a power series representation of the

function f on I. The following power series representations of elementary functions

should be familiar to you from introductory calculus:

ex
D

1
X

nD0

xn

nŠ
D 1C x C

x2

2Š
C
x3

3Š
C � � � I (5)

cos x D

1
X

nD0

.�1/nx2n

.2n/Š
D 1 �

x2

2Š
C
x4

4Š
� � � � I (6)

sin x D

1
X

nD0

.�1/nx2nC1

.2nC 1/Š
D x �

x3

3Š
C
x5

5Š
� � � � I (7)

coshx D

1
X

nD0

x2n

.2n/Š
D 1C

x2

2Š
C
x4

4Š
C � � � I (8)

sinh x D

1
X

nD0

x2nC1

.2nC 1/Š
D x C

x3

3Š
C
x5

5Š
C � � � I (9)

ln.1C x/ D

1
X

nD1

.�1/nC1xn

n
D x �

x2

2
C
x3

3
� � � � I (10)

1

1 � x
D

1
X

nD0

xn
D 1C x C x2

C x3
C � � � I (11)

and

.1C x/˛ D 1C ˛x C
˛.˛ � 1/x2

2Š
C
˛.˛ � 1/.˛ � 2/x3

3Š
C � � � : (12)

In compact summation notation, we observe the usual conventions that 0Š D 1 and

that x0 D 1 for all x, including x D 0. The series in (5) through (9) converge to

the indicated functions for all x. In contrast, the series in (10) and (11) converge if

jxj < 1 but diverge if jxj > 1. (What if jxj D 1?) The series in (11) is the geometric

series. The series in (12), with ˛ an arbitrary real number, is the binomial series.

If ˛ is a nonnegative integer n, then the series in (12) terminates and the binomial

series reduces to a polynomial of degree n which converges for all x. Otherwise,

the series is actually infinite and it converges if jxj < 1 and diverges if jxj > 1; its

behavior for jxj D 1 depends on the value of ˛.
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Remark Power series such as those listed in (5) through (12) are often derived as Taylor

series. The Taylor series with center x D a of the function f is the power series

1
X

nD0

f .n/.a/

nŠ
.x � a/n D f .a/C f 0.a/.x � a/C

f 00.a/

2Š
.x � a/2 C � � � (13)

in powers of x � a, under the hypothesis that f is infinitely differentiable at x D a (so that

the coefficients in Eq. (13) are all defined). If a D 0, then the series in (13) is the Maclaurin

series

1
X

nD0

f .n/.0/

nŠ
xn
D f .0/C f 0.0/x C

f 00.0/

2Š
x2
C
f .3/.0/

3Š
x3
C � � � : (130)

For example, suppose that f .x/ D ex . Then f .n/.x/ D ex , and hence f .n/.0/ D 1 for all

n = 0. In this case Eq. (130) reduces to the exponential series in (5).

Power Series Operations

If the Taylor series of the function f converges to f .x/ for all x in some open

interval containing a, then we say that the function f is analytic at x D a. For

example,

� every polynomial function is analytic everywhere;

� every rational function is analytic wherever its denominator is nonzero;

� more generally, if the two functions f and g are both analytic at x D a, then so

are their sum f Cg and their product f �g, as is their quotient f=g if g.a/ 6D 0.

For instance, the function h.x/ D tan x D .sin x/=.cosx/ is analytic at x D 0

because cos 0 D 1 6D 0 and the sine and cosine functions are analytic (by virtue of

their convergent power series representations in Eqs. (6) and (7)). It is rather awk-

ward to compute the Taylor series of the tangent function using Eq. (13) because

of the way in which its successive derivatives grow in complexity (try it!). Fortu-

nately, power series may be manipulated algebraically in much the same way as

polynomials. For example, if

f .x/ D

1
X

nD0

anx
n and g.x/ D

1
X

nD0

bnx
n; (14)

then

f .x/C g.x/ D

1
X

nD0

.an C bn/x
n (15)

and

f .x/g.x/ D

1
X

nD0

cnx
n

D a0b0 C .a0b1 C a1b0/x C .a0b2 C a1b1 C a2b0/x
2
C � � � ; (16)

where cn D a0bnC a1bn�1C � � � C anb0. The series in (15) is the result of termwise

addition, and the series in (16) is the result of formal multiplication—multiplying

each term of the first series by each term of the second and then collecting coef-

ficients of like powers of x. (Thus the processes strongly resemble addition and

multiplication of ordinary polynomials.) The series in (15) and (16) converge to
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f .x/ C g.x/ and f .x/g.x/, respectively, on any open interval on which both the

series in (14) converge. For example,

sin x cos x D

�

x �
1

6
x3
C

1

120
x5
� � � �

��

1 �
1

2
x2
C

1

24
x4
� � � �

�

D x C

�

�
1

6
�
1

2

�

x3
C

�

1

24
C

1

12
C

1

120

�

x5
C � � �

D x �
4

6
x3
C

16

120
x5
� � � �

D
1

2

�

.2x/ �
.2x/3

3Š
C
.2x/5

5Š
� � � �

�

D
1

2
sin 2x

for all x.

Similarly, the quotient of two power series can be computed by long division,

as illustrated by the computation shown in Fig. 11.1.1. This division of the Taylor

series for cos x into that for sin x yields the first few terms of the series

tan x D x C
1

3
x3
C

2

15
x5
C

17

315
x7
C � � � : (17)

Division of power series is more treacherous than multiplication; the series thus

obtained for f=g may fail to converge at some points where the series for f and g

both converge. For example, the sine and cosine series converge for all x, but the

tangent series in (17) converges only if jxj < �=2.

x C
x3

3
C

2x5

15
C

17x7

315
C � � �

1 �
x2

2
C
x4

24
�
x6

720
C � � �

1

A x �
x3

6
C

x5

120
�

x7

5040
C � � �

x �
x3

2
C

x5

24
�

x7

720
C � � �

x3

3
�

x5

30
C

x7

840
C � � �

x3

3
�

x5

6
C

x7

72
� � � �

2x5

15
�

4x7

315
C � � �

2x5

15
�

x7

15
C � � �

17x7

315
C � � �

:::

FIGURE 11.1.1. Obtaining the series for tan x by division of series.
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The Power Series Method

The power series method for solving a differential equation consists of substituting

the power series

y D

1
X

nD0

cnx
n (18)

in the differential equation and then attempting to determine what the coefficients

c0, c1, c2, : : : must be in order that the power series will satisfy the differential

equation. This is reminiscent of the method of undetermined coefficients, but now

we have infinitely many coefficients somehow to determine. This method is not

always successful, but when it is we obtain an infinite series representation of a

solution, in contrast to the “closed form” solutions that our previous methods have

yielded.

Before we can substitute the power series in (18) in a differential equation, we

must first know what to substitute for the derivatives y0, y00, : : : . The following the-

orem (stated without proof) tells us that the derivative y0 of y D
P

cnx
n is obtained

by the simple procedure of writing the sum of the derivatives of the individual terms

in the series for y.

THEOREM 1 Termwise Differentiation of Power Series

If the power series representation

f .x/ D

1
X

nD0

cnx
n
D c0 C c1x C c2x

2
C c3x

3
C � � � (19)

of the function f converges on the open interval I, then f is differentiable on I,

and

f 0.x/ D

1
X

nD1

ncnx
n�1
D c1 C 2c2x C 3c3x

2
C � � � (20)

at each point of I.

For example, differentiation of the geometric series

1

1 � x
D

1
X

nD0

xn
D 1C x C x2

C x3
C � � � (11)

gives

1

.1 � x/2
D

1
X

nD1

nxn�1
D 1C 2x C 3x2

C 4x3
C � � � :

The process of determining the coefficients in the series y D
P

cnx
n so

that it will satisfy a given differential equation depends also on Theorem 2. This

theorem—also stated without proof—tells us that if two power series represent the

same function, then they are the same series. In particular, the Taylor series in (13)

is the only power series (in powers of x � a) that represents the function f .
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THEOREM 2 Identity Principle

If
1
X

nD0

anx
n
D

1
X

nD0

bnx
n

for every point x in some open interval I, then an D bn for all n = 0.

In particular, if
P

anx
n D 0 for all x in some open interval, it follows from

Theorem 2 that an D 0 for all n = 0.

Example 1 Solve the equation y0 C 2y D 0.

Solution We substitute the series

y D

1
X

nD0

cnx
n and y0

D

1
X

nD1

ncnx
n�1

and obtain

1
X

nD1

ncnx
n�1
C 2

1
X

nD0

cnx
n
D 0: (21)

To compare coefficients here, we need the general term in each sum to be the term containing

xn. To accomplish this, we shift the index of summation in the first sum. To see how to do

this, note that

1
X

nD1

ncnx
n�1
D c1 C 2c2x C 3c3x

2
C � � � D

1
X

nD0

.nC 1/cnC1x
n:

Thus we can replace n with nC 1 if, at the same time, we start counting one step lower; that

is, at n D 0 rather than at n D 1. This is a shift of C1 in the index of summation. The result

of making this shift in Eq. (21) is the identity

1
X

nD0

.nC 1/cnC1x
n
C 2

1
X

nD0

cnx
n
D 0I

that is,
1
X

nD0

Œ.nC 1/cnC1 C 2cn�x
n
D 0:

If this equation holds on some interval, then it follows from the identity principle that

.nC 1/cnC1 C 2cn D 0 for all n = 0; consequently,

cnC1 D �
2cn

nC 1
(22)

for all n= 0. Equation (22) is a recurrence relation from which we can successively compute

c1, c2, c3, : : : in terms of c0; the latter will turn out to be the arbitrary constant that we expect

to find in a general solution of a first-order differential equation.

With n D 0, Eq. (22) gives

c1 D �
2c0

1
:

With n D 1, Eq. (22) gives

c2 D �
2c1

2
D C

22c0

1 � 2
D
22c0

2Š
:

With n D 2, Eq. (22) gives

c3 D �
2c2

3
D �

23c0

1 � 2 � 3
D �

23c0

3Š
:
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By now it should be clear that after n such steps, we will have

cn D .�1/
n
2nc0

nŠ
; n = 1:

(This is easy to prove by induction on n.) Consequently, our solution takes the form

y.x/ D

1
X

nD0

cnx
n
D

1
X

nD0

.�1/n
2nc0

nŠ
xn
D c0

1
X

nD0

.�2x/n

nŠ
D c0e

�2x :

In the final step we have used the familiar exponential series in Eq. (5) to identify our power

series solution as the same solution y.x/ D c0e
�2x we could have obtained by the method of

separation of variables.

Shift of Index of Summation

In the solution of Example 1 we wrote

1
X

nD1

ncnx
n�1
D

1
X

nD0

.nC 1/cnC1x
n (23)

by shifting the index of summation by C1 in the series on the left. That is, we

simultaneously increased the index of summation by 1 (replacing n with n C 1,

n ! nC 1) and decreased the starting point by 1, from n D 1 to n D 0, thereby

obtaining the series on the right. This procedure is valid because each infinite series

in (23) is simply a compact notation for the single series

c1 C 2c2x C 3c3x
2
C 4c4x

3
C � � � : (24)

More generally, we can shift the index of summation by k in an infinite series

by simultaneously increasing the summation index by k (n! nCk) and decreasing

the starting point by k. For instance, a shift by C2 (n! nC 2) yields

1
X

nD3

anx
n�1
D

1
X

nD1

anC2x
nC1:

If k is negative, we interpret a “decrease by k” as an increase by �k D jkj. Thus a

shift by �2 (n! n � 2) in the index of summation yields

1
X

nD1

ncnx
n�1
D

1
X

nD3

.n � 2/cn�2x
n�3
I

we have decreased the index of summation by 2 but increased the starting point by

2, from n D 1 to n D 3. You should check that the summation on the right is merely

another representation of the series in (24).

We know that the power series obtained in Example 1 converges for all x

because it is an exponential series. More commonly, a power series solution is

not recognizable in terms of the familiar elementary functions. When we get an

unfamiliar power series solution, we need a way of finding where it converges.

After all, y D
P

cnx
n is merely an assumed form of the solution. The procedure

illustrated in Example 1 for finding the coefficients fcng is merely a formal process

and may or may not be valid. Its validity—in applying Theorem 1 to compute

y0 and applying Theorem 2 to obtain a recurrence relation for the coefficients—

depends on the convergence of the initially unknown series y D
P

cnx
n. Hence

this formal process is justified only if in the end we can show that the power series

we obtain converges on some open interval. If so, it then represents a solution of

the differential equation on that interval. The following theorem (which we state

without proof) may be used for this purpose.
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THEOREM 3 Radius of Convergence

Given the power series
P

cnx
n, suppose that the limit

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

cn

cnC1

ˇ

ˇ

ˇ

ˇ

(25)

exists (� is finite) or is infinite (in this case we will write � D1). Then

(a) If � D 0, then the series diverges for all x 6D 0.

(b) If 0 < � <1, then
P

cnx
n converges if jxj < � and diverges if jxj > �.

(c) If � D1, then the series converges for all x.

The number � in (25) is called the radius of convergence of the power series
P

cnx
n. For instance, for the power series obtained in Example 1, we have

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

.�1/n2nc0=nŠ

.�1/nC12nC1c0=.nC 1/Š

ˇ

ˇ

ˇ

ˇ

D lim
n!1

nC 1

2
D1;

and consequently the series we obtained in Example 1 converges for all x. Even

if the limit in (25) fails to exist, there always will be a number � such that exactly

one of the three alternatives in Theorem 3 holds. This number may be difficult to

find, but for the power series we will consider in this chapter, Eq. (25) will be quite

sufficient for computing the radius of convergence.

Example 2 Solve the equation .x � 3/y0 C 2y D 0.

Solution As before, we substitute

y D

1
X

nD0

cnx
n and y0

D

1
X

nD1

ncnx
n�1

to obtain

.x � 3/

1
X

nD1

ncnx
n�1
C 2

1
X

nD0

cnx
n
D 0

so that
1
X

nD1

ncnx
n
� 3

1
X

nD1

ncnx
n�1
C 2

1
X

nD0

cnx
n
D 0:

In the first sum we can replace n D 1 with n D 0 with no effect on the sum. In the second

sum we shift the index of summation by C1. This yields

1
X

nD0

ncnx
n
� 3

1
X

nD0

.nC 1/cnC1x
n
C 2

1
X

nD0

cnx
n
D 0I

that is,
1
X

nD0

Œncn � 3.nC 1/cnC1 C 2cn� x
n
D 0:

The identity principle then gives

ncn � 3.nC 1/cnC1 C 2cn D 0;

from which we obtain the recurrence relation

cnC1 D
nC 2

3.nC 1/
cn for n = 0:
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We apply this formula with n D 0, n D 1, and n D 2, in turn, and find that

c1 D
2

3
c0; c2 D

3

3 � 2
c1 D

3

32
c0; and c3 D

4

3 � 3
c2 D

4

33
c0:

This is almost enough to make the pattern evident; it is not difficult to show by induction on

n that

cn D
nC 1

3n
c0 if n = 1:

Hence our proposed power series solution is

y.x/ D c0

1
X

nD0

nC 1

3n
xn: (26)

Its radius of convergence is

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

cn

cnC1

ˇ

ˇ

ˇ

ˇ

D lim
n!1

3nC 3

nC 2
D 3:

Thus the series in (26) converges if �3 < x < 3 and diverges if jxj > 3. In this particular

example we can explain why. An elementary solution (obtained by separation of variables)

of our differential equation is y D 1=.3 � x/2. If we differentiate termwise the geometric

series

1

3 � x
D

1

3

1 �
x

3

D
1

3

1
X

nD0

xn

3n
;

we get a constant multiple of the series in (26). Thus this series (with the arbitrary constant

c0 appropriately chosen) represents the solution

y.x/ D
1

.3 � x/2

on the interval �3 < x < 3, and the singularity at x D 3 is the reason why the radius of

convergence of the power series solution turned out to be � D 3.

Example 3 Solve the equation x2y0 D y � x � 1.

Solution We make the usual substitutions y D
P

cnx
n and y0 D

P

ncnx
n�1, which yield

x2

1
X

nD1

ncnx
n�1
D �1 � x C

1
X

nD0

cnx
n

so that
1
X

nD1

ncnx
nC1
D �1 � x C

1
X

nD0

cnx
n:

Because of the presence of the two terms �1 and �x on the right-hand side, we need to split

off the first two terms, c0C c1x, of the series on the right for comparison. If we also shift the

index of summation on the left by �1 (replace n D 1 with n D 2 and n with n � 1), we get

1
X

nD2

.n � 1/cn�1x
n
D �1 � x C c0 C c1x C

1
X

nD2

cnx
n:

Because the left-hand side contains neither a constant term nor a term containing x to the first

power, the identity principle now yields c0 D 1, c1 D 1, and cn D .n � 1/cn�1 for n = 2. It

follows that

c2 D 1 � c1 D 1Š; c3 D 2 � c2 D 2Š; c4 D 3 � c3 D 3Š;

and, in general, that

cn D .n � 1/Š for n = 2:
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Thus we obtain the power series

y.x/ D 1C x C

1
X

nD2

.n � 1/Š xn:

But the radius of convergence of this series is

� D lim
n!1

.n � 1/Š

nŠ
D lim

n!1

1

n
D 0;

so the series converges only for x D 0. What does this mean? Simply that the given dif-

ferential equation does not have a (convergent) power series solution of the assumed form

y D
P

cnx
n. This example serves as a warning that the simple act of writing y D

P

cnx
n

involves an assumption that may be false.

Example 4 Solve the equation y00 C y D 0.

Solution If we assume a solution of the form

y D

1
X

nD0

cnx
n;

we find that

y0
D

1
X

nD1

ncnx
n�1 and y00

D

1
X

nD2

n.n � 1/cnx
n�2:

Substitution for y and y00 in the differential equation then yields

1
X

nD2

n.n � 1/cnx
n�2
C

1
X

nD0

cnx
n
D 0:

We shift the index of summation in the first sum by C2 (replace n D 2 with n D 0 and n with

nC 2). This gives
1
X

nD0

.nC 2/.nC 1/cnC2x
n
C

1
X

nD0

cnx
n
D 0:

The identity .nC 2/.nC 1/cnC2 C cn D 0 now follows from the identity principle, and thus

we obtain the recurrence relation

cnC2 D �
cn

.nC 1/.nC 2/
(27)

for n = 0. It is evident that this formula will determine the coefficients cn with even subscript

in terms of c0 and those of odd subscript in terms of c1; c0 and c1 are not predetermined and

thus will be the two arbitrary constants we expect to find in a general solution of a second-

order equation.

When we apply the recurrence relation in (27) with n D 0, 2, and 4 in turn, we get

c2 D �
c0

2Š
; c4 D

c0

4Š
; and c6 D �

c0

6Š
:

Taking n D 1, 3, and 5 in turn, we find that

c3 D �
c1

3Š
; c5 D

c1

5Š
; and c7 D �

c1

7Š
:

Again, the pattern is clear; we leave it for you to show (by induction) that for k = 1,

c
2k
D
.�1/kc0

.2k/Š
and c

2kC1
D

.�1/kc1

.2k C 1/Š
:
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Thus we get the power series solution

y.x/ D c0

 

1 �
x2

2Š
C
x4

4Š
�
x6

6Š
C � � �

!

C c1

 

x �
x3

3Š
C
x5

5Š
�
x7

7Š
C � � �

!

I

that is, y.x/ D c0 cos x C c1 sin x. Note that we have no problem with the radius of conver-

gence here; the Taylor series for the sine and cosine functions converge for all x.

The solution of Example 4 can bear further comment. Suppose that we had

never heard of the sine and cosine functions, let alone their Taylor series. We would

then have discovered the two power series solutions

C.x/ D

1
X

nD0

.�1/nx2n

.2n/Š
D 1 �

x2

2Š
C
x4

4Š
� � � � (28)

and

S.x/ D

1
X

nD0

.�1/nx2nC1

.2nC 1/Š
D x �

x3

3Š
C
x5

5Š
� � � � (29)

of the differential equation y00 C y D 0. Both of these power series converge for

all x. For instance, the ratio test in Theorem 3 implies convergence for all ´ of the

series
P

.�1/n´n=.2n/Š obtained from (28) by writing ´ D x2. Hence it follows that

(28) itself converges for all x, as does (by a similar ploy) the series in (29).

It is clear that C.0/ D 1 and S.0/ D 0, and termwise differentiation of the two

series in (28) and (29) yields

C 0.x/ D �S.x/ and S 0.x/ D C.x/: (30)

Consequently, C 0.0/ D 0 and S 0.0/ D 1. Thus with the aid of the power series

method (all the while knowing nothing about the sine and cosine functions), we

have discovered that y D C.x/ is the unique solution of

y00
C y D 0

that satisfies the initial conditions y.0/ D 1 and y0.0/ D 0, and that y D S.x/ is

the unique solution that satisfies the initial conditions y.0/ D 0 and y0.0/ D 1.

It follows that C.x/ and S.x/ are linearly independent, and—recognizing the im-

portance of the differential equation y00C y D 0—we can agree to call C the cosine

function and S the sine function. Indeed, all the usual properties of these two func-

tions can be established, using only their initial values (at x D 0) and the derivatives

in (30); there is no need to refer to triangles or even to angles. (Can you use the se-

ries in (28) and (29) to show that ŒC.x/�2C ŒS.x/�2D 1 for all x?) This demonstrates

that

The cosine and sine functions are fully determined by the differen-

tial equation y 00
C y D 0 of which they are the two natural linearly

independent solutions.

Figures 11.1.2 and 11.1.3 show how the geometric character of the graphs of cosx

and sin x is revealed by the graphs of the Taylor polynomial approximations that we

get by truncating the infinite series in (28) and (29).

This is by no means an uncommon situation. Many important special func-

tions of mathematics occur in the first instance as power series solutions of differ-

ential equations and thus are in practice defined by means of these power series.

In the remaining sections of this chapter we will see numerous examples of such

functions.
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y = cos x

FIGURE 11.1.2. Taylor polynomial approximations to

cos x.

n = 5 n = 13 n = 21
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y = sin x
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2

1

–1
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FIGURE 11.1.3. Taylor polynomial approximations to sin x.

11.1 Problems
In Problems 1 through 10, find a power series solution of the

given differential equation. Determine the radius of conver-

gence of the resulting series, and use the series in Eqs. (5)

through (12) to identify the series solution in terms of famil-

iar elementary functions. (Of course, no one can prevent you

from checking your work by also solving the equations by the

methods of earlier chapters!)

1. y0 D y 2. y0 D 4y

3. 2y0 C 3y D 0 4. y0 C 2xy D 0

5. y0 D x2y 6. .x � 2/y0 C y D 0

7. .2x � 1/y0 C 2y D 0 8. 2.x C 1/y0 D y

9. .x � 1/y0 C 2y D 0 10. 2.x � 1/y0 D 3y

In Problems 11 through 14, use the method of Example 4 to find

two linearly independent power series solutions of the given

differential equation. Determine the radius of convergence of

each series, and identify the general solution in terms of famil-

iar elementary functions.

11. y00 D y 12. y00 D 4y

13. y00 C 9y D 0 14. y00 C y D x

Show (as in Example 3) that the power series method fails to

yield a power series solution of the form y D
P

cnx
n for the

differential equations in Problems 15 through 18.

15. xy0 C y D 0 16. 2xy0 D y

17. x2y0 C y D 0 18. x3y0 D 2y

In Problems 19 through 22, first derive a recurrence relation

giving cn for n = 2 in terms of c0 or c1 (or both). Then ap-

ply the given initial conditions to find the values of c0 and c1.

Next determine cn (in terms of n, as in the text) and, finally,

identify the particular solution in terms of familiar elementary

functions.

19. y00 C 4y D 0; y.0/ D 0, y0.0/ D 3

20. y00 � 4y D 0; y.0/ D 2, y0.0/ D 0

21. y00 � 2y0 C y D 0; y.0/ D 0, y0.0/ D 1

22. y00 C y0 � 2y D 0; y.0/ D 1, y0.0/ D �2

23. Show that the equation

x2y00
C x2y0

C y D 0

has no power series solution of the form y D
P

cnx
n.

24. Establish the binomial series in (12) by means of the fol-

lowing steps. (a) Show that y D .1 C x/˛ satisfies the

initial value problem .1C x/y0 D ˛y, y.0/D 1. (b) Show

that the power series method gives the binomial series in

(12) as the solution of the initial value problem in part (a),

and that this series converges if jxj < 1. (c) Explain why

the validity of the binomial series given in (12) follows

from parts (a) and (b).

25. For the initial value problem

y00
D y0

C y; y.0/ D 0; y.1/ D 1

derive the power series solution

y.x/ D

1
X

nD1

Fn

nŠ
xn

where fFng
1
nD0

is the sequence 0, 1, 1, 2, 3, 5, 8, 13,

: : : of Fibonacci numbers defined by F0 D 0, F1 D 1,

Fn D Fn�2 C Fn�1 for n > 1.

26. (a) Show that the solution of the initial value problem

y0
D 1C y2; y.0/ D 0

is y.x/ D tan x. (b) Because y.x/ D tan x is an odd func-

tion with y0.0/ D 1, its Taylor series is of the form

y D x C c3x
3
C c5x

5
C c7x

7
C � � � :

Substitute this series in y0D 1Cy2 and equate like powers

of x to derive the following relations:

3c3 D 1; 5c5 D 2c3;

7c7 D 2c5 C .c3/
2; 9c9 D 2c7 C 2c3c5;

11c11 D 2c9 C 2c3c7 C .c5/
2:
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(c) Conclude that

tan x D x C
1

3
x3
C

2

15
x5
C

17

315
x7

C
62

2835
x9
C

1382

155925
x11
C � � � :

(d) Would you prefer to use the Maclaurin series formula

in (13) to derive the tangent series in part (c)? Think about

it!

27. This section introduces the use of infinite series to solve

differential equations. Conversely, differential equations

can sometimes be used to sum infinite series. For exam-

ple, consider the infinite series

1C
1

1Š
�
1

2Š
C
1

3Š
C
1

4Š
�
1

5Š
C � � � I

note the C C � C C � � � � pattern of signs superimposed

on the terms of the series for the number e. We could

evaluate this series if we could obtain a formula for the

function

f .x/ D 1C x �
1

2Š
x2
C
1

3Š
x3
C
1

4Š
x4
�
1

5Š
x5
C � � � ;

because the sum of the numerical series in question is sim-

ply f .1/. (a) It’s possible to show that the power series

given here converges for all x and that termwise differen-

tiation is valid. Given these facts, show that f .x/ satisfies

the initial value problem

y.3/
D yI y.0/ D y0.0/ D 1; y00.0/ D �1:

(b) Solve this initial value problem to show that

f .x/ D
1

3
ex
C
2

3
e�x=2

 

cos

p
3

2
x C
p
3 sin

p
3

2
x

!

:

For a suggestion, see Problem 48 of Section 5.3. (c) Eval-

uate f .1/ to find the sum of the numerical series given

here.

11.2 Power Series Solutions

The power series method introduced in Section 11.1 can be applied to linear equa-

tions of any order (as well as to certain nonlinear equations), but its most important

applications are to homogeneous second-order linear differential equations of the

form

A.x/y00
C B.x/y0

C C.x/y D 0; (1)

where the coefficients A, B , and C are analytic functions of x. Indeed, in most

applications these coefficient functions are simple polynomials.

We saw in Example 3 of Section 11.1 that the series method does not always

yield a series solution. To discover when it does succeed, we rewrite Eq. (1) in the

form

y00
C P.x/y0

CQ.x/y D 0 (2)

with leading coefficient 1, and with P D B=A and Q D C=A. Note that P.x/ and

Q.x/ will generally fail to be analytic at points where A.x/ vanishes. For instance,

consider the equation

xy00
C y0

C xy D 0: (3)

The coefficient functions in (3) are continuous everywhere. But in the form of (2) it

is the equation

y00
C
1

x
y0
C y D 0 (4)

with P.x/ D 1=x not analytic at x D 0.

The point x D a is called an ordinary point of Eq. (2)—and of the equiva-

lent Eq. (1)—provided that the functions P.x/ and Q.x/ are both analytic at x D a.

Otherwise, x D a is a singular point. Thus the only singular point of Eqs. (3) and
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(4) is x D 0. Recall that a quotient of analytic functions is analytic wherever the

denominator is nonzero. It follows that, if A.a/ 6D 0 in Eq. (1) with analytic coef-

ficients, then x D a is an ordinary point. If A.x/, B.x/, and C.x/ are polynomials

with no common factors, then x D a is an ordinary point if and only if A.a/ 6D 0.

Example 1 The point x D 0 is an ordinary point of the equation

xy00
C .sin x/y0

C x2y D 0;

despite the fact that A.x/ D x vanishes at x D 0. The reason is that

P.x/ D
sin x

x
D
1

x

 

x �
x3

3Š
C
x5

5Š
� � � �

!

D 1 �
x2

3Š
C
x4

5Š
� � � �

is nevertheless analytic at x D 0 because the division by x yields a convergent power series.

Example 2 The point x D 0 is not an ordinary point of the equation

y00
C x2y0

C x1=2y D 0:

For while P.x/ D x2 is analytic at the origin, Q.x/ D x1=2 is not. The reason is that Q.x/

is not differentiable at x D 0 and hence is not analytic there. (Theorem 1 of Section 11.1

implies that an analytic function must be differentiable.)

Example 3 The point x D 0 is an ordinary point of the equation

.1 � x3/y00
C .7x2

C 3x5/y0
C .5x � 13x4/y D 0

because the coefficient functions A.x/, B.x/, and C.x/ are polynomials with A.0/ 6D 0.

Theorem 2 of Section 3.1 implies that Eq. (2) has two linearly independent

solutions on any open interval where the coefficient functions P.x/ and Q.x/ are

continuous. The basic fact for our present purpose is that near an ordinary point a,

these solutions will be power series in powers of x � a. A proof of the following

theorem can be found in Chapter 3 of Coddington, An Introduction to Ordinary

Differential Equations (Dover Publications, 1989).

THEOREM 1 Solutions Near an Ordinary Point

Suppose that a is an ordinary point of the equation

A.x/y00
C B.x/y0

C C.x/y D 0I (1)

that is, the functions P D B=A and Q D C=A are analytic at x D a. Then Eq. (1)

has two linearly independent solutions, each of the form

y.x/ D

1
X

nD0

cn.x � a/
n: (5)

The radius of convergence of any such series solution is at least as large as the

distance from a to the nearest (real or complex) singular point of Eq. (1). The

coefficients in the series in (5) can be determined by its substitution in Eq. (1).

Example 4 Determine the radius of convergence guaranteed by Theorem 1 of a series solution of

.x2
C 9/y00

C xy0
C x2y D 0 (6)

in powers of x. Repeat for a series in powers of x � 4.
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Solution This example illustrates the fact that we must take into account complex singular points as

well as real ones. Because

P.x/ D
x

x2 C 9
and Q.x/ D

x2

x2 C 9
;

the only singular points of Eq. (6) are ˙3i . The distance (in the complex plane) of each of

these from 0 is 3, so a series solution of the form
P

cnx
n has radius of convergence at least 3.

The distance of each singular point from 4 is 5, so a series solution of the form
P

cn.x � 4/
n

has radius of convergence at least 5 (see Fig. 11.2.1).

Example 5 Find the general solution in powers of x of

.x2
� 4/y00

C 3xy0
C y D 0: (7)

Then find the particular solution with y.0/ D 4, y0.0/ D 1.

Solution The only singular points of Eq. (7) are ˙2, so the series we get will have radius of conver-

gence at least 2. (See Problem 35 for the exact radius of convergence.) Substitution of

y D

1
X

nD0

cnx
n; y0

D

1
X

nD1

ncnx
n�1; and y00

D

1
X

nD2

n.n � 1/cnx
n�2

in Eq. (7) yields

1
X

nD2

n.n � 1/cnx
n
� 4

1
X

nD2

n.n � 1/cnx
n�2
C 3

1
X

nD1

ncnx
n
C

1
X

nD0

cnx
n
D 0:

We can begin the first and third summations at n D 0 as well, because no nonzero terms are

thereby introduced. We shift the index of summation in the second sum by C2, replacing n

with nC 2 and using the initial value n D 0. This gives

3i

x

y

4

–3i

5

FIGURE 11.2.1. Radius of
convergence as distance to nearest
singularity.

1
X

nD0

n.n � 1/cnx
n
� 4

1
X

nD0

.nC 2/.nC 1/cnC2x
n
C 3

1
X

nD0

ncnx
n
C

1
X

nD0

cnx
n
D 0:

After collecting coefficients of cn and cnC2, we obtain

1
X

nD0

h

.n2
C 2nC 1/cn � 4.nC 2/.nC 1/cnC2

i

xn
D 0:

The identity principle yields

.nC 1/2cn � 4.nC 2/.nC 1/cnC2 D 0;

which leads to the recurrence relation

cnC2 D
.nC 1/cn

4.nC 2/
(8)

for n = 0. With n D 0, 2, and 4 in turn, we get

c2 D
c0

4 � 2
; c4 D

3c2

4 � 4
D

3c0

42 � 2 � 4
; and c6 D

5c4

4 � 6
D

3 � 5c0

43 � 2 � 4 � 6
:

Continuing in this fashion, we evidently would find that

c2n D
1 � 3 � 5 � � � .2n � 1/

4n � 2 � 4 � � � .2n/
c0:

With the common notation

.2nC 1/ŠŠ D 1 � 3 � 5 � � � .2nC 1/ D
.2nC 1/Š

2n � nŠ
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and the observation that 2 � 4 � 6 � � � .2n/ D 2n � nŠ, we finally obtain

c2n D
.2n � 1/ŠŠ

23n � nŠ
c0: (9)

(We also used the fact that 4n � 2n D 23n.)

With n D 1, 3, and 5 in Eq. (8), we get

c3 D
2c1

4 � 3
; c5 D

4c3

4 � 5
D

2 � 4c1

42 � 3 � 5
; and c7 D

6c5

4 � 7
D

2 � 4 � 6c1

43 � 3 � 5 � 7
:

It is apparent that the pattern is

c2nC1 D
2 � 4 � 6 � � � .2n/

4n � 1 � 3 � 5 � � � .2nC 1/
c1 D

nŠ

2n � .2nC 1/ŠŠ
c1: (10)

The formula in (9) gives the coefficients of even subscript in terms of c0; the formula

in (10) gives the coefficients of odd subscript in terms of c1. After we separately collect the

terms of the series of even and odd degree, we get the general solution

y.x/ D c0

 

1C

1
X

nD1

.2n � 1/ŠŠ

23n � nŠ
x2n

!

C c1

 

x C

1
X

nD1

nŠ

2n � .2nC 1/ŠŠ
x2nC1

!

: (11)

Alternatively,

y.x/ D c0

�

1C
1

8
x2
C

3

128
x4
C

5

1024
x6
C � � �

�

C c1

�

x C
1

6
x3
C

1

30
x5
C

1

140
x7
C � � �

�

: .110/

Because y.0/ D c0 and y0.0/ D c1, the given initial conditions imply that c0 D 4 and c1 D 1.

Using these values in Eq. (110), the first few terms of the particular solution satisfying y.0/D 4

and y0.0/ D 1 are

y.x/ D 4C x C
1

2
x2
C
1

6
x3
C

3

32
x4
C

1

30
x5
C � � � : (12)

Remark As in Example 5, substitution of y D
P

cnx
n in a linear second-order equation

with x D 0 an ordinary point typically leads to a recurrence relation that can be used to

express each of the successive coefficients c2, c3, c4, : : : in terms of the first two, c0 and c1.

In this event two linearly independent solutions are obtained as follows. Let y0.x/ be the

solution obtained with c0 D 1 and c1 D 0, and let y1.x/ be the solution obtained with c0 D 0

and c1 D 1. Then

y0.0/ D 1; y0
0
.0/ D 0 and y1.0/ D 0; y0

1
.0/ D 1;

so it is clear that y0 and y1 are linearly independent. In Example 5, y0.x/ and y1.x/ are

defined by the two series that appear on the right-hand side in Eq. (11), which expresses the

general solution in the form y D c0y0 C c1y1.

Translated Series Solutions

If in Example 5 we had sought a particular solution with given initial values y.a/

and y0.a/, we would have needed the general solution in the form

y.x/ D

1
X

nD0

cn.x � a/
n
I (13)
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that is, in powers of x � a rather than in powers of x. For only with a solution of the

form in (13) is it true that the initial conditions

y.a/ D c0 and y0.a/ D c1

determine the arbitrary constants c0 and c1 in terms of the initial values of y and y0.

Consequently, to solve an initial value problem, we need a series expansion of the

general solution centered at the point where the initial conditions are specified.

Example 6 Solve the initial value problem

.t2 � 2t � 3/
d2y

dt2
C 3.t � 1/

dy

dt
C y D 0I y.1/ D 4; y0.1/ D �1: (14)

Solution We need a general solution of the form
P

cn.t � 1/
n. But instead of substituting this series

in (14) to determine the coefficients, it simplifies the computations if we first make the sub-

stitution x D t � 1, so that we wind up looking for a series of the form
P

cnx
n after all. To

transform Eq. (14) into one with the new independent variable x, we note that

t2 � 2t � 3 D .x C 1/2 � 2.x C 1/ � 3 D x2
� 4;

dy

dt
D
dy

dx

dx

dt
D
dy

dx
D y0;

and

d2y

dt2
D

�

d

dx

�

dy

dx

��

dx

dt
D

d

dx
.y0/ D y00;

where primes denote differentiation with respect to x. Hence we transform Eq. (14) into

.x2
� 4/y00

C 3xy0
C y D 0

with initial conditions y D 4 and y0 D 1 at x D 0 (corresponding to t D 1). This is the initial

value problem we solved in Example 5, so the particular solution in (12) is available. We

substitute t � 1 for x in Eq. (12) and thereby obtain the desired particular solution

y.t/ D 4C .t � 1/C
1

2
.t � 1/2 C

1

6
.t � 1/3 C

3

32
.t � 1/4 C

1

30
.t � 1/5 C � � � :

This series converges if �1 < t < 3. (Why?) A series such as this can be used to estimate

numerical values of the solution. For instance,

y.0:8/ D 4C .�0:2/C
1

2
.�0:2/2 C

1

6
.�0:2/3 C

3

32
.�0:2/4 C

1

30
.�0:2/5 C � � � ;

so that y.0:8/ � 3:8188.

The last computation in Example 6 illustrates the fact that series solutions of

differential equations are useful not only for establishing general properties of a

solution, but also for numerical computations when an expression of the solution in

terms of elementary functions is unavailable.

Types of Recurrence Relation

The formula in Eq. (8) is an example of a two-term recurrence relation; it expresses

each coefficient in the series in terms of one of the preceding coefficients. A many-

term recurrence relation expresses each coefficient in the series in terms of two or

more preceding coefficients. In the case of a many-term recurrence relation, it is

generally inconvenient or even impossible to find a formula that gives the typical

coefficient cn in terms of n. The next example shows what we sometimes can do

with a three-term recurrence relation.
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Example 7 Find two linearly independent solutions of

y00
� xy0

� x2y D 0: (15)

Solution We make the usual substitution of the power series y D
P

cnx
n. This results in the equation

1
X

nD2

n.n � 1/cnx
n�2
�

1
X

nD1

ncnx
n
�

1
X

nD0

cnx
nC2
D 0:

We can start the second sum at n D 0 without changing anything else. To make each term

include xn in its general term, we shift the index of summation in the first sum byC2 (replace

n with nC 2), and we shift it by �2 in the third sum (replace n with n� 2). These shifts yield

1
X

nD0

.nC 2/.nC 1/cnC2x
n
�

1
X

nD0

ncnx
n
�

1
X

nD2

cn�2x
n
D 0:

The common range of these three summations is n = 2, so we must separate the terms corre-

sponding to n D 0 and n D 1 in the first two sums before collecting coefficients of xn. This

gives

2c2 C 6c3x � c1x C

1
X

nD2

Œ.nC 2/.nC 1/cnC2 � ncn � cn�2� x
n
D 0:

The identity principle now implies that 2c2 D 0, that c3 D
1

6
c1, and the three-term recurrence

relation

cnC2 D
ncn C cn�2

.nC 2/.nC 1/
(16)

for n = 2. In particular,

c4 D
2c2 C c0

12
; c5 D

3c3 C c1

20
; c6 D

4c4 C c2

30
;

c7 D
5c5 C c3

42
; c8 D

6c6 C c4

56
:

(17)

Thus all values of cn for n = 4 are given in terms of the arbitrary constants c0 and c1 because

c2 D 0 and c3 D
1

6
c1.

To get our first solution y1 of Eq. (15), we choose c0D 1 and c1D 0, so that c2D c3D 0.

Then the formulas in (17) yield

c4 D
1

12
; c5 D 0; c6 D

1

90
; c7 D 0; c8 D

3

1120
I

thus

y1.x/ D 1C
1

12
x4
C

1

90
x6
C

3

1120
x8
C � � � : (18)

Because c1 D c3 D 0, it is clear from Eq. (16) that this series contains only terms of even

degree.

To obtain a second linearly independent solution y2 of Eq. (15), we take c0 D 0 and

c1 D 1, so that c2 D 0 and c3 D
1

6
. Then the formulas in (17) yield

c4 D 0; c5 D
3

40
; c6 D 0; c7 D

13

1008
;

so that

y2.x/ D x C
1

6
x3
C

3

40
x5
C

13

1008
x7
C � � � : (19)

Because c0 D c2 D 0, it is clear from Eq. (16) that this series contains only terms of odd

degree. The solutions y1.x/ and y2.x/ are linearly independent because y1.0/ D 1 and

y0
1
.0/ D 0, whereas y2.0/ D 0 and y0

2
.0/ D 1. A general solution of Eq. (15) is a linear

combination of the power series in (18) and (19). Equation (15) has no singular points, so the

power series representing y1.x/ and y2.x/ converge for all x.
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The Legendre Equation

The Legendre equation of order ˛ is the second-order linear differential equation

.1 � x2/y00
� 2xy0

C ˛.˛ C 1/y D 0; (20)

where the real number ˛ satisfies the inequality ˛ > �1. This differential equation

has extensive applications, ranging from numerical integration formulas (such as

Gaussian quadrature) to the problem of determining the steady-state temperature

within a solid spherical ball when the temperatures at points of its boundary are

known. The only singular points of the Legendre equation are at C1 and �1, so

it has two linearly independent solutions that can be expressed as power series in

powers of x with radius of convergence at least 1. The substitution y D
P

cmx
m in

Eq. (20) leads (see Problem 31) to the recurrence relation

cmC2 D �
.˛ �m/.˛ CmC 1/

.mC 1/.mC 2/
cm (21)

for m = 0. We are using m as the index of summation because we have another role

for n to play.

In terms of the arbitrary constants c0 and c1, Eq. (21) yields

c2 D �
˛.˛ C 1/

2Š
c0;

c3 D �
.˛ � 1/.˛ C 2/

3Š
c1;

c4 D
˛.˛ � 2/.˛ C 1/.˛ C 3/

4Š
c0;

c5 D
.˛ � 1/.˛ � 3/.˛ C 2/.˛ C 4/

5Š
c1:

We can show without much trouble that for m > 0,

c2m D .�1/
m
˛.˛ � 2/.˛ � 4/� � �.˛ � 2mC 2/.˛ C 1/.˛ C 3/� � �.˛ C 2m � 1/

.2m/Š
c0

(22)

and

c2mC1 D .�1/
m
.˛ � 1/.˛ � 3/ � � � .˛ � 2mC 1/.˛ C 2/.˛ C 4/ � � � .˛ C 2m/

.2mC 1/Š
c1:

(23)

Alternatively,

c2m D .�1/
ma2mc0 and c2mC1 D .�1/

ma2mC1c1;

where a2m and a2mC1 denote the fractions in Eqs. (22) and (23), respectively. With

this notation, we get two linearly independent power series solutions

y1.x/ D c0

1
X

mD0

.�1/ma2mx
2m and y2.x/ D c1

1
X

mD0

.�1/ma2mC1x
2mC1 (24)

of Legendre’s equation of order ˛.
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Now suppose that ˛ D n, a nonnegative integer. If ˛ D n is even, we see from

Eq. (22) that a2m D 0 when 2m > n. In this case, y1.x/ is a polynomial of degree n

and y2 is a (nonterminating) infinite series. If ˛D n is an odd positive integer, we see

from Eq. (23) that a2mC1 D 0 when 2mC 1 > n. In this case, y2.x/ is a polynomial

of degree n and y1 is a (nonterminating) infinite series. Thus in either case, one of

the two solutions in (24) is a polynomial and the other is a nonterminating series.

With an appropriate choice (made separately for each n) of the arbitrary con-

stants c0 (n even) or c1 (n odd), the nth-degree polynomial solution of Legendre’s

equation of order n,

.1 � x2/y00
� 2xy0

C n.nC 1/y D 0; (25)

is denoted by Pn.x/ and is called the Legendre polynomial of degree n. It is

customary (for a reason indicated in Problem 32) to choose the arbitrary constant so

that the coefficient of xn in Pn.x/ is .2n/Š=
�

2n.nŠ/2
�

. It then turns out that

Pn.x/ D

N
X

kD0

.�1/k.2n � 2k/Š

2nkŠ .n � k/Š .n � 2k/Š
xn�2k; (26)

where N D ŒŒn=2��, the integral part of n=2. The first six Legendre polynomials are

P0.x/ � 1; P1.x/ D x;

P2.x/ D
1

2
.3x2

� 1/; P3.x/ D
1

2
.5x3

� 3x/;

P4.x/ D
1

8
.35x4

� 30x2
C 3/; P5.x/ D

1

8
.63x5

� 70x3
C 15x/;

and their graphs are shown in Fig. 11.2.2.

–1 1
x

–1

1

y

P1

P3
P4

P2

P5

FIGURE 11.2.2. Graphs y D Pn.x/ of the Legendre polynomials for n D 1, 2,

3, 4, and 5. The graphs are distinguished by the fact that all n zeros of Pn.x/ lie in
the interval �1 < x < 1.
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11.2 Problems
Find general solutions in powers of x of the differential equa-

tions in Problems 1 through 15. State the recurrence relation

and the guaranteed radius of convergence in each case.

1. .x2 � 1/y00 C 4xy0 C 2y D 0

2. .x2 C 2/y00 C 4xy0 C 2y D 0

3. y00 C xy0 C y D 0

4. .x2 C 1/y00 C 6xy0 C 4y D 0

5. .x2 � 3/y00 C 2xy0 D 0

6. .x2 � 1/y00 � 6xy0 C 12y D 0

7. .x2 C 3/y00 � 7xy0 C 16y D 0

8. .2 � x2/y00 � xy0 C 16y D 0

9. .x2 � 1/y00 C 8xy0 C 12y D 0

10. 3y00 C xy0 � 4y D 0

11. 5y00 � 2xy0 C 10y D 0

12. y00 � x2y0 � 3xy D 0

13. y00 C x2y0 C 2xy D 0

14. y00 C xy D 0 (an Airy equation)

15. y00 C x2y D 0

Use power series to solve the initial value problems in Prob-

lems 16 and 17.

16. .1C x2/y00 C 2xy0 � 2y D 0; y.0/ D 0, y0.0/ D 1

17. y00 C xy0 � 2y D 0; y.0/ D 1, y0.0/ D 0

Solve the initial value problems in Problems 18 through 22.

First make a substitution of the form t D x � a, then find a

solution
P

cnt
n of the transformed differential equation. State

the interval of values of x for which Theorem 1 of this section

guarantees convergence.

18. y00 C .x � 1/y0 C y D 0; y.1/ D 2, y0.1/ D 0

19. .2x � x2/y00 � 6.x � 1/y0 � 4y D 0; y.1/ D 0, y0.1/ D 1

20. .x2 � 6x C 10/y00 � 4.x � 3/y0 C 6y D 0; y.3/ D 2,

y0.3/ D 0

21. .4x2 C 16x C 17/y00 D 8y; y.�2/ D 1, y0.�2/ D 0

22. .x2C6x/y00C .3xC9/y0�3yD 0; y.�3/D 0, y0.�3/D 2

In Problems 23 through 26, find a three-term recurrence re-

lation for solutions of the form y D
P

cnx
n. Then find the

first three nonzero terms in each of two linearly independent

solutions.

23. y00 C .1C x/y D 0

24. .x2 � 1/y00 C 2xy0 C 2xy D 0

25. y00 C x2y0 C x2y D 0 26. .1C x3/y00 C x4y D 0

27. Solve the initial value problem

y00
C xy0

C .2x2
C 1/y D 0I y.0/ D 1; y0.0/ D �1:

Determine sufficiently many terms to compute y.1=2/ ac-

curate to four decimal places.

In Problems 28 through 30, find the first three nonzero terms

in each of two linearly independent solutions of the form

y D
P

cnx
n. Substitute known Taylor series for the analytic

functions and retain enough terms to compute the necessary

coefficients.

28. y00 C e�xy D 0

29. .cos x/y00 C y D 0 30. xy00C .sin x/y0CxyD 0

31. Derive the recurrence relation in (21) for the Legendre

equation.

32. Follow the steps outlined in this problem to establish Ro-

drigues’s formula

Pn.x/ D
1

nŠ 2n

dn

dxn
.x2
� 1/n

for the nth-degree Legendre polynomial. (a) Show that

v D .x2 � 1/n satisfies the differential equation

.1 � x2/v0
C 2nxv D 0:

Differentiate each side of this equation to obtain

.1 � x2/v00
C 2.n � 1/xv0

C 2nv D 0:

(b) Differentiate each side of the last equation n times in

succession to obtain

.1 � x2/v.nC2/
� 2xv.nC1/

C n.nC 1/v.n/
D 0:

Thus u D v.n/ D Dn.x2 � 1/n satisfies Legendre’s equa-

tion of order n. (c) Show that the coefficient of xn

in u is .2n/Š=nŠ; then state why this proves Rodrigues’

formula. (Note that the coefficient of xn in Pn.x/ is

.2n/Š=
�

2n.nŠ/2
�

.)

33. The Hermite equation of order ˛ is

y00
� 2xy0

C 2˛y D 0:

(a) Derive the two power series solutions

y1 D 1C

1
X

mD1

.�1/m
2m˛.˛ � 2/ � � � .˛ � 2mC 2/

.2m/Š
x2m

and

y2 D x

C

1
X

mD1

.�1/m
2m.˛ � 1/.˛ � 3/ � � � .˛ � 2mC 1/

.2mC 1/Š
x2mC1:

Show that y1 is a polynomial if ˛ is an even integer,

whereas y2 is a polynomial if ˛ is an odd integer. (b) The

Hermite polynomial of degree n is denoted by Hn.x/. It

is the nth-degree polynomial solution of Hermite’s equa-

tion, multiplied by a suitable constant so that the coeffi-

cient of xn is 2n. Show that the first six Hermite polyno-

mials are

H0.x/ � 1; H1.x/ D 2x;

H2.x/ D 4x
2
� 2; H3.x/ D 8x

3
� 12x;

H4.x/ D 16x
4
� 48x2

C 12;

H5.x/ D 32x
5
� 160x3

C 120x:
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A general formula for the Hermite polynomials is

Hn.x/ D .�1/
nex

2 dn

dxn

�

e�x
2
�

:

Verify that this formula does in fact give an nth-degree

polynomial. It is interesting to use a computer alge-

bra system to investigate the conjecture that (for each

n) the zeros of the Hermite polynomials Hn and HnC1

are “interlaced”—that is, the n zeros of Hn lie in the n

bounded open intervals whose endpoints are successive

pairs of zeros of HnC1.

34. The discussion following Example 4 in Section 11.1 sug-

gests that the differential equation y00 C y D 0 could be

used to introduce and define the familiar sine and cosine

functions. In a similar fashion, the Airy equation

y00
D xy

serves to introduce two new special functions that appear

in applications ranging from radio waves to molecular vi-

brations. Derive the first three or four terms of two dif-

ferent power series solutions of the Airy equation. Then

verify that your results agree with the formulas

y1.x/ D 1C

1
X

kD1

1 � 4 � � � � � .3k � 2/

.3k/Š
x3k

and

y2.x/ D x C

1
X

kD1

2 � 5 � � � � � .3k � 1/

.3k C 1/Š
x3kC1

for the solutions that satisfy the initial conditions y1.0/ D

1, y0
1
.0/ D 0 and y2.0/ D 0, y

0
2
.0/ D 1, respectively. The

special combinations

Ai.x/ D
y1.x/

32=3�.2

3
/
�

y2.x/

31=3�.1

3
/

and

Bi.x/ D
y1.x/

31=6�.2

3
/
C

y2.x/

3�1=6�.1

3
/

define the standard Airy functions that appear in math-

ematical tables and computer algebra systems. Their

graphs shown in Fig. 11.2.3 exhibit trigonometric-like

oscillatory behavior for x < 0, whereas Ai.x/ de-

creases exponentially and Bi.x/ increases exponentially as

x ! C1. It is interesting to use a computer algebra sys-

tem to investigate how many terms must be retained in the

y1- and y2-series above to produce a figure that is visu-

ally indistinguishable from Fig. 11.2.3 (which is based on

high-precision approximations to the Airy functions).

x

–0.5

1

y

–10 –5

Bi(x)

Ai(x)

FIGURE 11.2.3. The Airy function graphs
y D Ai.x/ and y D Bi.x/.

35. (a) To determine the radius of convergence of the series

solution in Example 5, write the series of terms of even

degree in Eq. (11) in the form

y0.x/ D 1C

1
X

nD1

c2nx
2n
D 1C

1
X

nD1

an´
n

where an D c2n and ´ D x2. Then apply the recurrence

relation in Eq. (8) and Theorem 3 in Section 11.1 to show

that the radius of convergence of the series in ´ is 4. Hence

the radius of convergence of the series in x is 2. How does

this corroborate Theorem 1 in this section? (b) Write the

series of terms of odd degree in Eq. (11) in the form

y1.x/ D x

 

1C

1
X

nD1

c2nC1x
2n

!

D x

 

1C

1
X

nD1

bn´
n

!

to show similarly that its radius of convergence (as a

power series in x) is also 2.

Go to goo.gl/7BhXBb to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

11.2 Application Automatic Computation of Series Coefficients

Repeated application of a recurrence relation to grind out successive coefficients

is—especially in the case of a recurrence relation with three or more terms—a te-

dious aspect of the infinite series method. Here we illustrate the use of a computer

algebra system not only to automate this task, but also to explore interactively the

graphical effect of changing the number k of terms we include in a partial-sum

approximation to the actual solution given by the full infinite series. In Example

7 we saw that the coefficients in the series solution y D
P

cnx
n of the differential

equation

y00
� xy0

� x2y D 0 (1)
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are given in terms of the two arbitrary coefficients c0 and c1 by

c2 D 0; c3 D
c1

6
; and cnC2 D

ncn C cn�2

.nC 2/.nC 1/
for n = 2: (2)

It would appear to be a routine matter to implement such a recurrence relation,

but a twist results from the fact that a typical computer system array is indexed by

the subscripts 1, 2, 3, : : : ; rather than by the subscripts 0, 1, 2, : : : that match the

exponents in the successive terms of a power series that begins with a constant term.

For this reason we first rewrite our proposed power series solution in the form

y D

1
X

nD0

cnx
n
D

1
X

nD1

bnx
n�1 (3)

where bn D cn�1 for each n = 1. Then the first two conditions in (1) imply that

b3 D 0 and b4 D
1

6
b2; also, the recurrence relation (with n replaced with n � 1)

yields the new recurrence relation

bnC2 D cnC1 D
.n � 1/cn�1 C cn�3

.nC 1/n
D
.n � 1/bn C bn�2

n.nC 1/
: (4)

Now we are ready to begin. Suppose that we want to calculate the terms

through the 10th degree in (2) with the initial conditions b1 D b2 D 1. Then either

the Maple commands

k := 11: # k terms

b := array(1..k):

b[1] := 1: # arbitrary

b[2] := 1: # arbitrary

b[3] := 0:

b[4] := b[2]/6:

for n from 3 by 1 to k -- 2 do

b[n+2] := ((n--1)�b[n] + b[n--2])/(n�(n+1));

od;

or the Mathematica commands

k = 11; (� k terms �)

b = Table[0, {n,1,k}];

b[[1]] = 1; (� arbitrary �)

b[[2]] = 1; (� arbitrary �)

b[[3]] = 0;

b[[4]] = b[[2]]/6;

For[n=3, n<=k--2,

b[[n+2]]=((n--1)�b[[n]] + b[[n--2]])/(n�(n+1)); n=n+1];

quickly yield the coefficients fbng corresponding to the solution

y.x/ D

1C x C
x3

6
C
x4

12
C
3x5

40
C
x6

90
C
13x7

1008
C
3x8

1120
C
119x9

51840
C

41x10

113400
C � � � : (5)

You might note that the even- and odd-degree terms here agree with those shown in

Eqs. (18) and (19), respectively, of Example 7.
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The MATLAB commands

k = 11; % k terms

b = 0�(1:k);

b(1) = 1; % arbitrary

b(2) = 1; % arbitrary

b(3) = 0;

b(4) = b(2)/6;

for n = 3:k--2

b(n+2) = ((n--1)�b(n) + b(n--2))/(n�(n+1));

end

format rat, b

give the same results, except that the coefficient b10 of x9 is shown as 73=31801

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x

y

(0, 1)

Value of k: 5

FIGURE 11.2.4. MATLAB

interactive display. The blue curve
represents the actual solution of the

initial value problem
y

00 � xy
0 � x

2
y D 0,

y.0/ D y
0
.0/ D 1, whereas the black

curve shows the partial-sum

approximation of the series solution (5)
with terms through the fourth degree

(k D 5).

rather than the correct value 119=51840 shown in Eq. (4). It happens that

73

31801
� 0:0022955253 while

119

51840
� 0:0022955247;

so the two rational fractions agree when rounded to 9 decimal places. The explana-

tion is that (unlike Mathematica and Maple) MATLAB works internally with deci-

mal rather than exact arithmetic. But at the end its format rat algorithm converts

a correct 14-place approximation for b10 into an incorrect rational fraction that’s

“close but no cigar.”

The MATLAB commands above form the basis for the interactive display

shown in Fig. 11.2.4, which graphs the actual solution (blue curve) of the differential

equation (1), with initial conditions b1 D b2 D 1, together with the approximate so-

lution (black curve) consisting of the terms through the fourth degree (k D 5) in (5).

The pop-up menu allows the user to vary the number of terms k and thus immedi-

ately see the graphical effect of changing the number of terms included in the series

expansion. With k D 10, the actual and approximate solutions are indistinguishable

in this viewing window.

Finally, you can substitute b1 D 1, b2 D 0 and b1 D 0, b2 D 1 separately

(instead of b1 D b2 D 1) in the commands shown here to derive partial sums of the

two linearly independent solutions displayed in Eqs. (18) and (19) of Example 7.

This technique can be applied to any of the examples and problems in this section.

11.3 Frobenius Series Solutions

We now investigate the solution of the homogeneous second-order linear equation

A.x/y00
C B.x/y0

C C.x/y D 0 (1)

near a singular point. Recall that if the functions A, B , and C are polynomials

having no common factors, then the singular points of Eq. (1) are simply those

points where A.x/ D 0. For instance, x D 0 is the only singular point of the Bessel

equation of order n,

x2y00
C xy0

C .x2
� n2/y D 0;

whereas the Legendre equation of order n,

.1 � x2/y00
� 2xy0

C n.nC 1/y D 0;

has the two singular points x D �1 and x D 1. It turns out that some of the features

of the solutions of such equations of the most importance for applications are largely

determined by their behavior near their singular points.
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We will restrict our attention to the case in which x D 0 is a singular point of

Eq. (1). A differential equation having xD a as a singular point is easily transformed

by the substitution t D x�a into one having a corresponding singular point at 0. For

example, let us substitute t D x � 1 into the Legendre equation of order n. Because

y0
D
dy

dx
D
dy

dt

dt

dx
D
dy

dt
;

y00
D
d2y

dx2
D

�

d

dt

�

dy

dx

��

dt

dx
D
d2y

dt2
;

and 1 � x2 D 1 � .t C 1/2 D �2t � t2, we get the equation

�t .t C 2/
d2y

dt2
� 2.t C 1/

dy

dt
C n.nC 1/y D 0:

This new equation has the singular point t D 0 corresponding to x D 1 in the original

equation; it also has the singular point t D �2 corresponding to x D �1.

Types of Singular Points

A differential equation having a singular point at 0 ordinarily will not have power

series solutions of the form y.x/ D
P

cnx
n, so the straightforward method of Sec-

tion 11.2 fails in this case. To investigate the form that a solution of such an equation

might take, we assume that Eq. (1) has analytic coefficient functions and rewrite it

in the standard form

y00
C P.x/y0

CQ.x/y D 0; (2)

where P D B=A and Q D C=A. Recall that x D 0 is an ordinary point (as opposed

to a singular point) of Eq. (2) if the functions P.x/ and Q.x/ are analytic at x D 0;

that is, if P.x/ andQ.x/ have convergent power series expansions in powers of x on

some open interval containing xD 0. Now it can be proved that each of the functions

P.x/ andQ.x/ either is analytic or approaches˙1 as x! 0. Consequently, x D 0

is a singular point of Eq. (2) provided that either P.x/ or Q.x/ (or both) approaches

˙1 as x! 0. For instance, if we rewrite the Bessel equation of order n in the form

y00
C
1

x
y0
C

�

1 �
n2

x2

�

y D 0;

we see that P.x/ D 1=x and Q.x/ D 1 � .n=x/2 both approach infinity as x ! 0.

We will see presently that the power series method can be generalized to apply

near the singular point x D 0 of Eq. (2), provided that P.x/ approaches infinity no

more rapidly than 1=x, and Q.x/ no more rapidly than 1=x2, as x ! 0. This is a

way of saying that P.x/ and Q.x/ have only “weak” singularities at x D 0. To state

this more precisely, we rewrite Eq. (2) in the form

y00
C
p.x/

x
y0
C
q.x/

x2
y D 0; (3)

where

p.x/ D xP.x/ and q.x/ D x2Q.x/: (4)
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DEFINITION Regular Singular Point

The singular point x D 0 of Eq. (3) is a regular singular point if the functions

p.x/ and q.x/ are both analytic at x D 0. Otherwise it is an irregular singular

point.

In particular, the singular point x D 0 is a regular singular point if p.x/ and

q.x/ are both polynomials. For instance, we see that x D 0 is a regular singular

point of Bessel’s equation of order n by writing that equation in the form

y00
C
1

x
y0
C
x2 � n2

x2
y D 0;

noting that p.x/ � 1 and q.x/ D x2 � n2 are both polynomials in x.

By contrast, consider the equation

2x3y00
C .1C x/y0

C 3xy D 0;

which has the singular point x D 0. If we write this equation in the form of (3), we

get

y00
C
.1C x/=.2x2/

x
y0
C

3

2

x2
y D 0:

Because

p.x/ D
1C x

2x2
D

1

2x2
C

1

2x
!1

as x ! 0 (although q.x/ � 3

2
is a polynomial), we see that x D 0 is an irregular

singular point. We will not discuss the solution of differential equations near irreg-

ular singular points; this is a considerably more advanced topic than the solution of

differential equations near regular singular points.

Example 1 Consider the differential equation

x2.1C x/y00
C x.4 � x2/y0

C .2C 3x/y D 0:

In the standard form y00 C Py0 CQy D 0 it is

y00
C

4 � x2

x.1C x/
y0
C

2C 3x

x2.1C x/
y D 0:

Because

P.x/ D
4 � x2

x.1C x/
and Q.x/ D

2C 3x

x2.1C x/

both approach1 as x ! 0, we see that x D 0 is a singular point. To determine the nature of

this singular point, we write the differential equation in the form of Eq. (3):

y00
C
.4 � x2/=.1C x/

x
y0
C
.2C 3x/=.1C x/

x2
y D 0:

Thus

p.x/ D
4 � x2

1C x
and q.x/ D

2C 3x

1C x
:

Because a quotient of polynomials is analytic wherever the denominator is nonzero, we see

that p.x/ and q.x/ are both analytic at x D 0. Hence x D 0 is a regular singular point of the

given differential equation.
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It may happen that when we begin with a differential equation in the general

form in Eq. (1) and rewrite it in the form in (3), the functions p.x/ and q.x/ as given

in (4) are indeterminate forms at x D 0. In this case the situation is determined by

the limits

p0 D p.0/ D lim
x!0

p.x/ D lim
x!0

xP.x/ (5)

and

q0 D q.0/ D lim
x!0

q.x/ D lim
x!0

x2Q.x/: (6)

If p0 D 0 D q0, then x D 0 may be an ordinary point of the differential equation

x2y00 C xp.x/y0 C q.x/y D 0 in (3). Otherwise:

� If both the limits in (5) and (6) exist and are finite, then x D 0 is a regular

singular point.

� If either limit fails to exist or is infinite, then x D 0 is an irregular singular

point.

Remark The most common case in applications, for the differential equation written in the

form

y00
C
p.x/

x
y0
C
q.x/

x2
y D 0; (3)

is that the functions p.x/ and q.x/ are polynomials. In this case p0 D p.0/ and q0 D q.0/ are

simply the constant terms of these polynomials, so there is no need to evaluate the limits in

Eqs. (5) and (6).

Example 2 To investigate the nature of the point x D 0 for the differential equation

x4y00
C .x2 sin x/y0

C .1 � cos x/y D 0;

we first write it in the form in (3):

y00
C
.sin x/=x

x
y0
C
.1 � cos x/=x2

x2
y D 0:

Then l’Hôpital’s rule gives the values

p0 D lim
x!0

sin x

x
D lim

x!0

cos x

1
D 1

and

q0 D lim
x!0

1 � cos x

x2
D lim

x!0

sin x

2x
D
1

2

for the limits in (5) and (6). Since they are not both zero, we see that x D 0 is not an ordinary

point. But both limits are finite, so the singular point x D 0 is regular. Alternatively, we could

write

p.x/ D
sin x

x
D
1

x

 

x �
x3

3Š
C
x5

5Š
� � � �

!

D 1 �
x2

3Š
C
x4

5Š
� � � �

and

q.x/ D
1 � cos x

x2
D

1

x2

"

1 �

 

1 �
x2

2Š
C
x4

4Š
�
x6

6Š
C � � �

!#

D
1

2Š
�
x2

4Š
C
x4

6Š
� � � � :

These (convergent) power series show explicitly that p.x/ and q.x/ are analytic and moreover

that p0 D p.0/ D 1 and q0 D q.0/ D 1

2
, thereby verifying directly that x D 0 is a regular

singular point.
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The Method of Frobenius

We now approach the task of actually finding solutions of a second-order linear dif-

ferential equation near the regular singular point x D 0. The simplest such equation

is the constant-coefficient equidimensional equation

x2y00
C p0xy

0
C q0y D 0 (7)

to which Eq. (3) reduces when p.x/ � p0 and q.x/ � q0 are constants. In this case

we can verify by direct substitution that the simple power function y.x/ D xr is a

solution of Eq. (7) if and only if r is a root of the quadratic equation

r.r � 1/C p0r C q0 D 0: (8)

In the general case, in which p.x/ and q.x/ are power series rather than con-

stants, it is a reasonable conjecture that our differential equation might have a solu-

tion of the form

y.x/ D xr

1
X

nD0

cnx
n
D

1
X

nD0

cnx
nCr
D c0x

r
C c1x

rC1
C c2x

rC2
C � � � (9)

—the product of xr and a power series. This turns out to be a very fruitful con-

jecture; according to Theorem 1 (soon to be stated formally), every equation of the

form in (1) having x D 0 as a regular singular point does, indeed, have at least one

such solution. This fact is the basis for the method of Frobenius, named for the

German mathematician Georg Frobenius (1848–1917), who discovered the method

in the 1870s.

An infinite series of the form in (9) is called a Frobenius series. Note that

a Frobenius series is generally not a power series. For instance, with r D �1

2
the

series in (9) takes the form

y D c0x
�1=2
C c1x

1=2
C c2x

3=2
C c3x

5=2
C � � � I

it is not a series in integral powers of x.

To investigate the possible existence of Frobenius series solutions, we begin

with the equation

x2y00
C xp.x/y0

C q.x/y D 0; (10)

obtained by multiplying the equation in (3) by x2. If x D 0 is a regular singular

point, then p.x/ and q.x/ are analytic at x D 0, so

p.x/ D p0 C p1x C p2x
2
C p3x

3
C � � � ;

q.x/ D q0 C q1x C q2x
2
C q3x

3
C � � � :

(11)

Suppose that Eq. (10) has the Frobenius series solution

y D

1
X

nD0

cnx
nCr : (12)

We may (and always do) assume that c0 6D 0 because the series must have a first

nonzero term. Termwise differentiation in Eq. (12) leads to

y0
D

1
X

nD0

cn.nC r/x
nCr�1 (13)
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and

y00
D

1
X

nD0

cn.nC r/.nC r � 1/x
nCr�2: (14)

Substitution of the series in Eqs. (11) through (14) in Eq. (10) now yields

Œr.r � 1/c0x
r
C .r C 1/rc1x

rC1
C � � �

�

C
�

p0x C p1x
2
C � � �

�

�
�

rc0x
r�1
C .r C 1/c1x

r
C � � �

�

C
�

q0 C q1x C � � �
�

�
�

c0x
r
C c1x

rC1
C � � �

�

D 0: (15)

Upon multiplying initial terms of the two products on the left-hand side here and

then collecting coefficients of xr , we see that the lowest-degree term in Eq. (15) is

c0Œr.r�1/Cp0rCq0�x
r . If Eq. (15) is to be satisfied identically, then the coefficient

of this term (as well as those of the higher-degree terms) must vanish. But we are

assuming that c0 6D 0, so it follows that r must satisfy the quadratic equation

r.r � 1/C p0r C q0 D 0 (16)

of precisely the same form as that obtained with the equidimensional equation in (7).

Equation (16) is called the indicial equation of the differential equation in (10), and

its two roots (possibly equal) are the exponents of the differential equation (at the

regular singular point x D 0).

Our derivation of Eq. (16) shows that if the Frobenius series y D xr
P

cnx
n

is to be a solution of the differential equation in (10), then the exponent r must be

one of the roots r1 and r2 of the indicial equation in (16). If r1 6D r2, it follows that

there are two possible Frobenius series solutions, whereas if r1D r2 there is only one

possible Frobenius series solution; the second solution cannot be a Frobenius series.

The exponents r1 and r2 in the possible Frobenius series solutions are determined

(using the indicial equation) by the values p0 D p.0/ and q0 D q.0/ that we have

discussed. In practice, particularly when the coefficients in the differential equation

in the original form in (1) are polynomials, the simplest way of finding p0 and q0 is

often to write the equation in the form

y00
C
p0 C p1x C p2x

2 C � � �

x
y0
C
q0 C q1x C q2x

2 C � � �

x2
y D 0: (17)

Then inspection of the series that appear in the two numerators reveals the constants

p0 and q0.

Example 3 Find the exponents in the possible Frobenius series solutions of the equation

2x2.1C x/y00
C 3x.1C x/3y0

� .1 � x2/y D 0:

Solution We divide each term by 2x2.1C x/ to recast the differential equation in the form

y00
C

3

2
.1C 2x C x2/

x
y0
C
�

1

2
.1 � x/

x2
y D 0;

and thus see that p0 D
3

2
and q0 D �

1

2
. Hence the indicial equation is

r.r � 1/C 3

2
r � 1

2
D r2

C
1

2
r � 1

2
D .r C 1/.r � 1

2
/ D 0;

with roots r1 D
1

2
and r2 D �1. The two possible Frobenius series solutions are then of the

forms

y1.x/ D x
1=2

1
X

nD0

anx
n and y2.x/ D x

�1

1
X

nD0

bnx
n:
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Frobenius Series Solutions

Once the exponents r1 and r2 are known, the coefficients in a Frobenius series so-

lution are determined by substitution of the series in Eqs. (12) through (14) in the

differential equation, essentially the same method as was used to determine coef-

ficients in power series solutions in Section 11.2. If the exponents r1 and r2 are

complex conjugates, then there always exist two linearly independent Frobenius se-

ries solutions. We will restrict our attention here to the case in which r1 and r2 are

both real. We also will seek solutions only for x > 0. Once such a solution has been

found, we need only replace xr1 with jxjr1 to obtain a solution for x < 0. The fol-

lowing theorem is proved in Chapter 4 of Coddington’s An Introduction to Ordinary

Differential Equations.

THEOREM 1 Frobenius Series Solutions

Suppose that x D 0 is a regular singular point of the equation

x2y00
C xp.x/y0

C q.x/y D 0: (10)

Let � > 0 denote the minimum of the radii of convergence of the power series

p.x/ D

1
X

nD0

pnx
n and q.x/ D

1
X

nD0

qnx
n:

Let r1 and r2 be the (real) roots, with r1 = r2, of the indicial equation r.r � 1/C

p0r C q0 D 0. Then

(a) For x > 0, there exists a solution of Eq. (10) of the form

y1.x/ D x
r1

1
X

nD0

anx
n .a0 6D 0/ (18)

corresponding to the larger root r1.

(b) If r1 � r2 is neither zero nor a positive integer, then there exists a second

linearly independent solution for x > 0 of the form

y2.x/ D x
r2

1
X

nD0

bnx
n .b0 6D 0/ (19)

corresponding to the smaller root r2.

The radii of convergence of the power series in Eqs. (18) and (19) are each

at least �. The coefficients in these series can be determined by substituting

the series in the differential equation

x2y00
C xp.x/y0

C q.x/y D 0:

We have already seen that if r1 D r2, then there can exist only one Frobenius

series solution. It turns out that, if r1� r2 is a positive integer, then there may or may

not exist a second Frobenius series solution of the form in Eq. (19) corresponding to

the smaller root r2. Examples 4 through 6 illustrate the process of determining the

coefficients in those Frobenius series solutions that are guaranteed by Theorem 1.
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Example 4 Find the Frobenius series solutions of

2x2y00
C 3xy0

� .x2
C 1/y D 0: (20)

Solution First we divide each term by 2x2 to put the equation in the form in (17):

y00
C

3

2

x
y0
C
�

1

2
�

1

2
x2

x2
y D 0: (21)

We now see that x D 0 is a regular singular point, and that p0 D
3

2
and q0 D �

1

2
. Because

p.x/� 3

2
and q.x/D�1

2
�

1

2
x2 are polynomials, the Frobenius series we obtain will converge

for all x > 0. The indicial equation is

r.r � 1/C 3

2
r � 1

2
D

�

r � 1

2

�

.r C 1/ D 0;

so the exponents are r1 D
1

2
and r2 D �1. They do not differ by an integer, so Theorem 1

guarantees the existence of two linearly independent Frobenius series solutions. Rather than

separately substituting

y1 D x
1=2

1
X

nD0

anx
n and y2 D x

�1

1
X

nD0

bnx
n

in Eq. (20), it is more efficient to begin by substituting y D xr
P

cnx
n. We will then get a

recurrence relation that depends on r . With the value r1 D
1

2
it becomes a recurrence relation

for the series for y1, whereas with r2 D �1 it becomes a recurrence relation for the series for

y2.

When we substitute

y D

1
X

nD0

cnx
nCr ; y0

D

1
X

nD0

.nC r/cnx
nCr�1;

and

y00
D

1
X

nD0

.nC r/.nC r � 1/cnx
nCr�2

in Eq. (20)—the original differential equation, rather than Eq. (21)—we get

2

1
X

nD0

.nC r/.nC r � 1/cnx
nCr
C 3

1
X

nD0

.nC r/cnx
nCr

�

1
X

nD0

cnx
nCrC2

�

1
X

nD0

cnx
nCr
D 0: (22)

At this stage there are several ways to proceed. A good standard practice is to shift indices so

that each exponent will be the same as the smallest one present. In this example, we shift the

index of summation in the third sum by �2 to reduce its exponent from nC r C 2 to nC r .

This gives

2

1
X

nD0

.nC r/.nC r � 1/cnx
nCr
C 3

1
X

nD0

.nC r/cnx
nCr

�

1
X

nD2

cn�2x
nCr
�

1
X

nD0

cnx
nCr
D 0: (23)

The common range of summation is n = 2, so we must treat nD 0 and nD 1 separately. Fol-

lowing our standard practice, the terms corresponding to n D 0 will always give the indicial

equation

Œ2r.r � 1/C 3r � 1�c0 D 2
�

r2
C

1

2
r � 1

2

�

c0 D 0:
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The terms corresponding to n D 1 yield

Œ2.r C 1/r C 3.r C 1/ � 1�c1 D .2r
2
C 5r C 2/c1 D 0:

Because the coefficient 2r2 C 5r C 2 of c1 is nonzero whether r D 1

2
or r D �1, it follows

that

c1 D 0 (24)

in either case.

The coefficient of xnCr in Eq. (23) is

2.nC r/.nC r � 1/cn C 3.nC r/cn � cn�2 � cn D 0:

We solve for cn and simplify to obtain the recurrence relation

cn D
cn�2

2.nC r/2 C .nC r/ � 1
for n = 2. (25)

CASE 1: r1 D
1

2
. We now write an in place of cn and substitute r D 1

2
in Eq. (25). This

gives the recurrence relation

an D
an�2

2n2 C 3n
for n = 2. (26)

With this formula we can determine the coefficients in the first Frobenius solution y1. In view

of Eq. (24) we see that an D 0 whenever n is odd. With n D 2, 4, and 6 in Eq. (26), we get

a2 D
a0

14
; a4 D

a2

44
D

a0

616
; and a6 D

a4

90
D

a0

55;440
:

Hence the first Frobenius solution is

y1.x/ D a0x
1=2

 

1C
x2

14
C
x4

616
C

x6

55;440
C � � �

!

:

CASE 2: r2 D �1. We now write bn in place of cn and substitute r D �1 in Eq. (25).

This gives the recurrence relation

bn D
bn�2

2b2 � 3n
for n = 2: (27)

Again, Eq. (24) implies that bn D 0 for n odd. With n D 2, 4, and 6 in (27), we get

b2 D
b0

2
; b4 D

b2

20
D
b0

40
; and b6 D

b4

54
D

b0

2160
:

Hence the second Frobenius solution is

y2.x/ D b0x
�1

 

1C
x2

2
C
x4

40
C

x6

2160
C � � �

!

:

Example 5 Find a Frobenius solution of Bessel’s equation of order zero,

x2y00
C xy0

C x2y D 0: (28)

Solution In the form of (17), Eq. (28) becomes

y00
C
1

x
y0
C
x2

x2
y D 0:

Hence x D 0 is a regular singular point with p.x/ � 1 and q.x/ D x2, so our series will

converge for all x > 0. Because p0 D 1 and q0 D 0, the indicial equation is

r.r � 1/C r D r2
D 0:
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Thus we obtain only the single exponent r D 0, and so there is only one Frobenius series

solution

y.x/ D x0

1
X

nD0

cnx
n

of Eq. (28); it is in fact a power series.

Thus we substitute y D
P

cnx
n in (28); the result is

1
X

nD0

n.n � 1/cnx
n
C

1
X

nD0

ncnx
n
C

1
X

nD0

cnx
nC2
D 0:

We combine the first two sums and shift the index of summation in the third by �2 to obtain

1
X

nD0

n2cnx
n
C

1
X

nD2

cn�2x
n
D 0:

The term corresponding to x0 gives 0 D 0: no information. The term corresponding to x1

gives c1 D 0, and the term for xn yields the recurrence relation

cn D �
cn�2

n2
for n = 2. (29)

Because c1 D 0, we see that cn D 0 whenever n is odd. Substituting n D 2, 4, and 6 in

Eq. (29), we get

c2 D �
c0

22
; c4 D �

c2

42
D

c0

22 � 42
; and c6 D �

c4

62
D �

c0

22 � 42 � 62
:

Evidently, the pattern is

c2n D
.�1/nc0

22 � 42 � � � .2n/2
D
.�1/nc0

22n.nŠ/2
:

The choice c0 D 1 gives us one of the most important special functions in mathematics, the

Bessel function of order zero of the first kind, denoted by J0.x/. Thus

J0.x/ D

1
X

nD0

.�1/nx2n

22n.nŠ/2
D 1 �

x2

4
C
x4

64
�

x6

2304
C � � � : (30)

In this example we have not been able to find a second linearly independent solution of

Bessel’s equation of order zero. We will derive that solution in Section 11.4; it will not be a

Frobenius series.

When r1 � r2 Is an Integer

Recall that, if r1 � r2 is a positive integer, then Theorem 1 guarantees only the

existence of the Frobenius series solution corresponding to the larger exponent r1.

Example 6 illustrates the fortunate case in which the series method nevertheless

yields a second Frobenius series solution. An example in which the second solution

is not a Frobenius series will be discussed in Section 11.4.

Example 6 Find the Frobenius series solutions of

xy00
C 2y0

C xy D 0: (31)

Solution In standard form the equation becomes

y00
C
2

x
y0
C
x2

x2
y D 0;

so we see that x D 0 is a regular singular point with p0 D 2 and q0 D 0. The indicial equation

r.r � 1/C 2r D r.r C 1/ D 0



11.3 Frobenius Series Solutions 637

has roots r1D 0 and r2D�1, which differ by an integer. In this case when r1�r2 is an integer,

it is better to depart from the standard procedure of Example 4 and begin our work with the

smaller exponent. As you will see, the recurrence relation will then tell us whether or not a

second Frobenius series solution exists. If it does exist, our computations will simultaneously

yield both Frobenius series solutions. If the second solution does not exist, we begin anew

with the larger exponent r D r1 to obtain the one Frobenius series solution guaranteed by

Theorem 1.

Hence we begin by substituting

y D x�1

1
X

nD0

cnx
n
D

1
X

nD0

cnx
n�1

in Eq. (31). This gives

1
X

nD0

.n � 1/.n � 2/cnx
n�2
C 2

1
X

nD0

.n � 1/cnx
n�2
C

1
X

nD0

cnx
n
D 0:

We combine the first two sums and shift the index by �2 in the third to obtain

1
X

nD0

n.n � 1/cnx
n�2
C

1
X

nD2

cn�2x
n�2
D 0: (32)

The cases n D 0 and n D 1 reduce to

0 � c0 D 0 and 0 � c1 D 0:

Hence we have two arbitrary constants c0 and c1 and therefore can expect to find a general

solution incorporating two linearly independent Frobenius series solutions. If, for n D 1, we

had obtained an equation such as 0 � c1 D 3, which can be satisfied for no choice of c1, this

would have told us that no second Frobenius series solution could exist.

Now knowing that all is well, from (32) we read the recurrence relation

cn D �
cn�2

n.n � 1/
for n = 2. (33)

The first few values of n give

c2 D �
1

2 � 1
c0; c3D �

1

3 � 2
c1;

c4 D �
1

4 � 3
c2 D

c0

4Š
; c5 D �

1

5 � 4
c3 D

c1

5Š
;

c6 D �
1

6 � 5
c4 D �

c0

6Š
; c7 D �

1

7 � 6
c6 D �

c1

7Š
I

evidently the pattern is

c2n D
.�1/nc0

.2n/Š
; c2nC1 D

.�1/nc1

.2nC 1/Š

for n = 1. Therefore, a general solution of Eq. (31) is

y.x/ D x�1

1
X

nD0

cnx
n

D
c0

x

 

1 �
x2

2Š
C
x4

4Š
� � � �

!

C
c1

x

 

x �
x3

3Š
C
x5

5Š
� � � �

!

D
c0

x

1
X

nD0

.�1/nx2n

.2n/Š
C
c1

x

1
X

nD0

.�1/nx2nC1

.2nC 1/Š
:
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Thus

y.x/ D
1

x
.c0 cos x C c1 sin x/:

We have thus found a general solution expressed as a linear combination of the two Frobenius

series solutions

y1.x/ D
cos x

x
and y2.x/ D

sin x

x
: (34)

As indicated in Fig. 11.3.1, one of these Frobenius series solutions is bounded but the other

is unbounded near the regular singular point x D 0—a common occurrence in the case of

exponents differing by an integer.

2π 4π
x

1

y

y
1

y
2

FIGURE 11.3.1. The solutions

y1.x/ D
cos x

x

and y2.x/ D
sin x

x

in

Example 6.
Summary

When confronted with a linear second-order differential equation

A.x/y00
C B.x/y0

C C.x/y D 0

with analytic coefficient functions, in order to investigate the possible existence of

series solutions we first write the equation in the standard form

y00
C P.x/y0

CQ.x/y D 0:

If P.x/ and Q.x/ are both analytic at x D 0, then x D 0 is an ordinary point, and

the equation has two linearly independent power series solutions.

Otherwise, xD 0 is a singular point, and we next write the differential equation

in the form

y00
C
p.x/

x
y0
C
q.x/

x2
y D 0:

If p.x/ and q.x/ are both analytic at x D 0, then x D 0 is a regular singular point.

In this case we find the two exponents r1 and r2 (assumed real, and with r1 = r2) by

solving the indicial equation

r.r � 1/C p0r C q0 D 0;

where p0 D p.0/ and q0 D q.0/. There always exists a Frobenius series solution

y D xr1
P

anx
n associated with the larger exponent r1, and if r1 � r2 is not an

integer, the existence of a second Frobenius series solution y2 D x
r2
P

bnx
n is also

guaranteed.

11.3 Problems
In Problems 1 through 8, determine whether x D 0 is an ordi-

nary point, a regular singular point, or an irregular singular

point. If it is a regular singular point, find the exponents of the

differential equation at x D 0.

1. xy00 C .x � x3/y0 C .sin x/y D 0

2. xy00 C x2y0 C .ex � 1/y D 0

3. x2y00 C .cos x/y0 C xy D 0

4. 3x3y00 C 2x2y0 C .1 � x2/y D 0

5. x.1C x/y00 C 2y0 C 3xy D 0

6. x2.1 � x2/y00 C 2xy0 � 2y D 0

7. x2y00 C .6 sin x/y0 C 6y D 0

8. .6x2 C 2x3/y00 C 21xy0 C 9.x2 � 1/y D 0

If x D a 6D 0 is a singular point of a second-order linear dif-

ferential equation, then the substitution t D x � a transforms

it into a differential equation having t D 0 as a singular point.

We then attribute to the original equation at xD a the behavior

of the new equation at t D 0. Classify (as regular or irregular)

the singular points of the differential equations in Problems 9

through 16.
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9. .1 � x/y00 C xy0 C x2y D 0

10. .1 � x/2y00 C .2x � 2/y0 C y D 0

11. .1 � x2/y00 � 2xy0 C 12y D 0

12. .x � 2/3y00 C 3.x � 2/2y0 C x3y D 0

13. .x2 � 4/y00 C .x � 2/y0 C .x C 2/y D 0

14. .x2 � 9/2y00 C .x2 C 9/y0 C .x2 C 4/y D 0

15. .x � 2/2y00 � .x2 � 4/y0 C .x C 2/y D 0

16. x3.1 � x/y00 C .3x C 2/y0 C xy D 0

Find two linearly independent Frobenius series solutions (for

x > 0) of each of the differential equations in Problems 17

through 26.

17. 4xy00 C 2y0 C y D 0

18. 2xy00 C 3y0 � y D 0

19. 2xy00 � y0 � y D 0

20. 3xy00 C 2y0 C 2y D 0

21. 2x2y00 C xy0 � .1C 2x2/y D 0

22. 2x2y00 C xy0 � .3 � 2x2/y D 0

23. 6x2y00 C 7xy0 � .x2 C 2/y D 0

24. 3x2y00 C 2xy0 C x2y D 0

25. 2xy00 C .1C x/y0 C y D 0

26. 2xy00 C .1 � 2x2/y0 � 4xy D 0

Use the method of Example 6 to find two linearly independent

Frobenius series solutions of the differential equations in Prob-

lems 27 through 31. Then construct a graph showing their

graphs for x > 0.

27. xy00 C 2y0 C 9xy D 0 28. xy00 C 2y0 � 4xy D 0

29. 4xy00 C 8y0 C xy D 0 30. xy00 � y0 C 4x3y D 0

31. 4x2y00 � 4xy0 C .3 � 4x2/y D 0

In Problems 32 through 34, find the first three nonzero terms

of each of two linearly independent Frobenius series solutions.

32. 2x2y00 C x.x C 1/y0 � .2x C 1/y D 0

33. .2x2 C 5x3/y00 C .3x � x2/y0 � .1C x/y D 0

34. 2x2y00 C .sin x/y0 � .cos x/y D 0

35. Note that x D 0 is an irregular point of the equation

x2y00
C .3x � 1/y0

C y D 0:

(a) Show that y D xr
P

cnx
n can satisfy this equation

only if r D 0. (b) Substitute y D
P

cnx
n to derive the

“formal” solution y D
P

nŠxn. What is the radius of con-

vergence of this series?

36. (a) Suppose that A and B are nonzero constants. Show

that the equation x2y00 C Ay0 C By D 0 has at most one

solution of the form y D xr
P

cnx
n. (b) Repeat part

(a) with the equation x3y00 C Axy0 C By D 0. (c) Show

that the equation x3y00 C Ax2y0 C By D 0 has no Frobe-

nius series solution. (Suggestion: In each case substitute

yD xr
P

cnx
n in the given equation to determine the pos-

sible values of r .)

37. (a) Use the method of Frobenius to derive the solution

y1 D x of the equation x3y00 � xy0 C y D 0. (b) Verify

by substitution the second solution y2 D xe
�1=x . Does y2

have a Frobenius series representation?

38. Apply the method of Frobenius to Bessel’s equation of

order 1

2
,

x2y00
C xy0

C

�

x2
�

1

4

�

y D 0;

to derive its general solution for x > 0,

y.x/ D c0

cos x
p
x
C c1

sin x
p
x
:

Figure 11.3.2 shows the graphs of the two indicated solu-

tions.

2π 4π
x

1

y

y1

y2

FIGURE 11.3.2. The solutions

y1.x/ D
cos x

p
x

and y2.x/ D
sin x

p
x

in

Problem 38.

39. (a) Show that Bessel’s equation of order 1,

x2y00
C xy0

C .x2
� 1/y D 0;

has exponents r1 D 1 and r2 D �1 at x D 0, and that the

Frobenius series corresponding to r1 D 1 is

J1.x/ D
x

2

1
X

nD0

.�1/nx2n

nŠ .nC 1/Š 22n
:

(b) Show that there is no Frobenius solution correspond-

ing to the smaller exponent r2 D �1; that is, show that it

is impossible to determine the coefficients in

y2.x/ D x
�1

1
X

nD0

cnx
n:

40. Consider the equation x2y00 C xy0 C .1 � x/y D 0. (a)

Show that its exponents are ˙i , so it has complex-valued

Frobenius series solutions

yC D x
i

1
X

nD0

pnx
n and y� D x

�i

1
X

nD0

qnx
n

with p0 D q0 D 1. (b) Show that the recursion formula

is

cn D
cn�1

n2 C 2rn
:

Apply this formula with r D i to obtain pn D cn, then with

r D �i to obtain qn D cn. Conclude that pn and qn are

complex conjugates: pn D an C ibn and qn D an � ibn,

where the numbers fang and fbng are real. (c) Deduce
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from part (b) that the differential equation given in this

problem has real-valued solutions of the form

y1.x/ D A.x/ cos.ln x/ � B.x/ sin.ln x/;

y2.x/ D A.x/ sin.ln x/C B.x/ cos.ln x/;

where A.x/ D
P

anx
n and B.x/ D

P

bnx
n.

41. Consider the differential equation

x.x � 1/.xC 1/2y00
C 2x.x � 3/.xC 1/y0

� 2.x � 1/y D 0

that appeared in an advertisement for a symbolic algebra

program in the March 1984 issue of the American Mathe-

matical Monthly. (a) Show that xD 0 is a regular singular

point with exponents r1 D 1 and r2 D 0. (b) It follows

from Theorem 1 that this differential equation has a power

series solution of the form

y1.x/ D x C c2x
2
C c3x

3
C � � � :

Substitute this series (with c1 D 1) in the differential equa-

tion to show that c2 D �2, c3 D 3, and

cnC2 D

.n2 � n/cn�1 C .n
2 � 5n � 2/cn � .n

2 C 7nC 4/cnC1

.nC 1/.nC 2/

for n = 2. (c) Use the recurrence relation in part (b)

to prove by induction that cn D .�1/nC1n for n = 1 (!).

Hence deduce (using the geometric series) that

y1.x/ D
x

.1C x/2

for 0 < x < 1.

42. This problem is a brief introduction to Gauss’s hypergeo-

metric equation

x.1 � x/y00
C Œ � .˛ C ˇ C 1/x�y0

� ˛ˇy D 0; (35)

where ˛, ˇ, and  are constants. This famous equation has

wide-ranging applications in mathematics and physics.

(a) Show that x D 0 is a regular singular point of Eq. (35),

with exponents 0 and 1�  . (b) If  is not zero or a neg-

ative integer, it follows (why?) that Eq. (35) has a power

series solution

y.x/ D x0

1
X

nD0

cnx
n
D

1
X

nD0

cnx
n

with c0 6D 0. Show that the recurrence relation for this

series is

cnC1 D
.˛ C n/.ˇ C n/

. C n/.1C n/
cn

for n = 0. (c) Conclude that with c0 D 1 the series in part

(b) is

y.x/ D 1C

1
X

nD0

˛nˇn

nŠ n

xn (36)

where ˛n D ˛.˛C 1/.˛C 2/ � � � .˛C n� 1/ for n = 1, and

ˇn and n are defined similarly. (d) The series in (36)

is known as the hypergeometric series and is commonly

denoted by F.˛; ˇ; ; x/. Show that

(i) F.1; 1; 1; x/ D
1

1 � x
(the geometric series);

(ii) xF.1; 1; 2;�x/ D ln.1C x/;

(iii) xF
�

1

2
; 1; 3

2
;�x2

�

D tan�1 x;

(iv) F.�k; 1; 1;�x/ D .1C x/k (the binomial series).

Go to goo.gl/e4WZf1 to
download this application’s
computing resources including
Maple/Mathematica/MATLAB.

11.3 Application Automating the Frobenius Series Method

Here we illustrate the use of a computer algebra system such as Maple to apply

the method of Frobenius. More complete versions of this application—illustrating

the use of Maple, Mathematica, and MATLAB—can be downloaded from our Ex-

panded Applications site using the URL indicated in the margin. We consider the

differential equation

2x2y00
C 3xy0

� .x2
C 1/y D 0 (1)

of Example 4 in this section, where we found the two indicial roots r1 D
1

2
and

r2 D �1.

Beginning with the indicial root r1 D
1

2
, we first write the initial seven terms

of a proposed Frobenius series solution:

a := array(0..6):

y := x^(1/2)�sum( a[n]�x^(n), n = 0..6);

y WD
p
x
�

a0 C a1x C a2x
2 C a3x

3 C a4x
4 C a5x

5 C a6x
6

�

Then we substitute this series (actually, partial sum) into the left-hand side of Eq. (1).

deq1 := 2�x^2�diff(y,x$2) + 3�x�diff(y,x) -- (x^2 + 1)�y:
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Evidently x3=2 will factor out upon simplification, so we multiply by x�3=2 and then

collect coefficients of like powers of x.

deq2 := collect( x^(--3/2)�simplify(deq1), x);

deq2 WD �x7a6 � x
6a5 C .90a6 � a4/x

5 C .�a3 C 65a5/x
4

C .�a2 C 44a4/x
3 C .�a1 C 27a3/x

2 C .14a2 � a0/x C 5a1

We see here the equations that the successive coefficients must satisfy. We can

select them automatically by defining an array, then filling the elements of this array

by equating to zero (in turn) each of the coefficients in the series.

eqs := array(0..5):

for n from 0 to 5 do

eqs[n] := coeff(deq1,x,n) = 0: od:

coeffEqs := convert(eqs, set);

coeffEqs WD
˚

5a1 D 0; �a2 C 44a4 D 0; �a3 C 65a5 D 0;

90a6 � a4 D 0; 14a2 � a0 D 0; �a1 C 27a3 D 0
	

We now have a collection of six linear equations relating the seven coefficients

(a0 through a6). Hence we can proceed to solve for the successive coefficients in

terms of a0.

succCoeffs := convert([seq(a[n], n=1..6)], set);

ourCoeffs := solve(coeffEqs, succCoeffs);

ourCoeffs WD

�

a1 D 0; a6 D
1

55440
a0; a4 D

1

616
a0;

a2 D
1

14
a0; a5 D 0; a3 D 0

�

Thus we get the first particular solution

y1.x/ D a0x
1=2

�

1C
x2

14
C
x4

616
C

x6

55440
C � � �

�

found in Example 4. You can now repeat this process, beginning with the indicial

root r2 D �1, to derive similarly the second particular solution.

In the following problems, use this method to derive Frobenius series solutions

that can be checked against the given known general solutions.

1. xy00 � y0 C 4x3y D 0; y.x/ D A cos x2 C B sin x2

2. xy00 � 2y0 C 9x5y D 0; y.x/ D A cos x3 C B sin x3

3. 4xy00 � 2y0 C y D 0; y.x/ D A cos
p
x C B sin

p
x

4. xy00 C 2y0 C xy D 0; y.x/ D
1

x
.A cos x C B sin x/

5. 4xy00 C 6y0 C y D 0; y.x/ D
1
p
x

�

A cos
p
x C B sin

p
x
�

6. x2y00 C xy0 C .4x4 � 1/y D 0; y.x/ D
1

x
.A cos x2 C B sin x2/

7. xy00 C 3y0 C 4x3y D 0; y.x/ D
1

x2
.A cos x2 C B sin x2/

8. x2y00 C x2y0 � 2y D 0; y.x/ D
1

x
ŒA.2 � x/C B.2C x/e�x�

Problems 9 through 11 involve the arctangent series

tan�1 x D x �
x3

3
C
x5

5
�
x7

7
C � � � :
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9. .x C x3/y00 C .2C 4x2/y0 C 2xy D 0, y.x/ D
1

x
.AC B tan�1 x/

10. .2x C 2x2/y00 C .3C 5x/y0 C y D 0, y.x/ D
1
p
x

�

AC B tan�1
p
x
�

11. .x C x5/y00 C .3C 7x4/y0 C 8x3y D 0, y.x/ D
1

x2
.AC B tan�1 x2/

11.4 Bessel Functions

We have already seen several cases of Bessel’s equation of order p = 0,

x2y00
C xy0

C .x2
� p2/y D 0: (1)

Its solutions are now called Bessel functions of order p. Such functions first ap-

peared in the 1730s in the work of Daniel Bernoulli and Euler on the oscillations

of a vertically suspended chain. The equation itself appears in a 1764 article by

Euler on the vibrations of a circular drumhead, and Fourier used Bessel functions in

his classical treatise on heat (1822). But their general properties were first studied

systematically in an 1824 memoir by the German astronomer and mathematician

Friedrich W. Bessel (1784–1846), who was investigating the motion of planets. The

standard source of information on Bessel functions is G. N. Watson’s A Treatise on

the Theory of Bessel Functions, 2nd ed. (Cambridge: Cambridge University Press,

1944). Its 36 pages of references, which cover only the period up to 1922, give

some idea of the vast literature of this subject.

Bessel’s equation in (1) has indicial equation r2 � p2 D 0, with roots r D˙p.

If we substitute y D
P

cmx
mCr in Eq. (1), we find in the usual manner that c1 D 0

and that

�

.mC r/2 � p2
�

cm C cm�2 D 0 (2)

for m = 2. The verification of Eq. (2) is left to the reader (Problem 6).

The Case r = p > 0

If we use r Dp and write am in place of cm, then Eq. (2) yields the recursion formula

am D �
am�2

m.2p Cm/
: (3)

Because a1 D 0, it follows that am D 0 for all odd values of m. The first few even

coefficients are

a2 D �
a0

2.2p C 2/
D �

a0

22.p C 1/
;

a4 D �
a2

4.2p C 4/
D

a0

24 � 2.p C 1/.p C 2/
;

a6 D �
a4

6.2p C 6/
D �

a0

26 � 2 � 3.p C 1/.p C 2/.p C 3/
:

The general pattern is

a2m D
.�1/ma0

22mmŠ .p C 1/.p C 2/ � � � .p Cm/
;
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so with the larger root r D p we get the solution

y1.x/ D a0

1
X

mD0

.�1/mx2mCp

22mmŠ .p C 1/.p C 2/ � � � .p Cm/
: (4)

If p D 0 this is the only Frobenius series solution; with a0 D 1 as well, it is the

function J0.x/ we have seen before.

The Case r = – p < 0

If we use r D �p and write bm in place of cm, Eq. (2) takes the form

m.m � 2p/bm C bm�2 D 0 (5)

form= 2, whereas b1D 0. We see that there is a potential difficulty if it happens that

2p is a positive integer—that is, if p is either a positive integer or an odd positive

integral multiple of 1

2
. For then when m D 2p, Eq. (5) is simply 0 � bm C bm�2 D 0.

Thus if bm�2 6D 0, then no value of bm can satisfy this equation.

But if p is an odd positive integral multiple of 1

2
, we can circumvent this

difficulty. For suppose that p D k=2, where k is an odd positive integer. Then we

need only choose bm D 0 for all odd values of m. The crucial step is the kth step,

k.k � k/bk C bk�2 D 0I

and this equation will hold because bk D bk�2 D 0.

Hence if p is not a positive integer, we take bm D 0 for m odd and define the

coefficients of even subscript in terms of b0 by means of the recursion formula

bm D �
bm�2

m.m � 2p/
; m = 2: (6)

In comparing (6) with (3), we see that (6) will lead to the same result as that in (4),

except with p replaced with �p. Thus in this case we obtain the second solution

y2.x/ D b0

1
X

mD0

.�1/mx2m�p

22mmŠ .�p C 1/.�p C 2/ � � � .�p Cm/
: (7)

The series in (4) and (7) converge for all x > 0 because x D 0 is the only singular

point of Bessel’s equation. If p > 0, then the leading term in y1 is a0x
p, whereas

the leading term in y2 is b0x
�p. Hence y1.0/ D 0, but y2.x/! ˙1 as x ! 0, so

it is clear that y1 and y2 are linearly independent solutions of Bessel’s equation of

order p > 0.

The Gamma Function

The formulas in (4) and (7) can be simplified by use of the gamma function �.x/,

which (as in Section 10.1) is defined for x > 0 by

�.x/ D

Z 1

0

e�t tx�1 dt: (8)

It is not difficult to show that this improper integral converges for each x > 0. The

gamma function is a generalization for x > 0 of the factorial function nŠ, which
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is defined only if n is a nonnegative integer. To see the way in which �.x/ is a

generalization of nŠ, we note first that

�.1/ D

Z 1

0

e�t dt D lim
b!1

h

�e�t

i

b

0

D 1: (9)

Then we integrate by parts with u D tx and dv D e�t dt :

�.x C 1/ D lim
b!1

Z

b

0

e�t tx dt D lim
b!1

 

h

�e�t tx
i

b

0

C

Z

b

0

xe�t tx�1 dt

!

D x

 

lim
b!1

Z

b

0

e�t tx�1 dt

!

I

that is,

�.x C 1/ D x�.x/: (10)

This is the most important property of the gamma function.

If we combine Eqs. (9) and (10), we see that

�.2/ D 1 � �.1/ D 1Š; �.3/ D 2 � �.2/ D 2Š; �.4/ D 3 � �.3/ D 3Š;

and in general that

�.nC 1/ D nŠ for n = 0 an integer. (11)

An important special value of the gamma function is

�
�

1

2

�

D

Z 1

0

e�t t�1=2 dt D 2

Z 1

0

e�u
2

du D
p
�; (12)

where we have substituted u2 for t in the first integral; the fact that

Z 1

0

e�u
2

du D

p
�

2

is known, but is far from obvious. (See, for instance, Example 5 in Section 13.4 of

Edwards and Penney, Calculus: Early Transcendentals, 7th edition, Hoboken, NJ:

Pearson, 2008.)

Although �.x/ is defined in (8) only for x > 0, we can use the recursion

formula in (10) to define �.x/ whenever x is neither zero nor a negative integer. If

�1 < x < 0, then

�.x/ D
�.x C 1/

x
I

the right-hand side is defined because 0 < x C 1 < 1. The same formula may then

be used to extend the definition of �.x/ to the open interval .�2;�1/, then to the

open interval .�3;�2/, and so on. The graph of the gamma function thus extended

is shown in Fig. 11.4.1. The student who would like to pursue this fascinating topic

further should consult Artin’s The Gamma Function (New York: Holt, Rinehart and

Winston, 1964). In only 39 pages, this is one of the finest expositions in the entire

10

5

x

y

4321−3 −1

FIGURE 11.4.1. The graph of the
extended gamma function.

literature of mathematics.
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Bessel Functions of the First Kind

If we choose a0 D 1=Œ2
p�.p C 1/� in (4), where p > 0, and note that

�.p CmC 1/ D .p Cm/.p Cm � 1/ � � � .p C 2/.p C 1/�.p C 1/

by repeated application of Eq. (10), we can write the Bessel function of the first

kind of order p very concisely with the aid of the gamma function:

Jp.x/ D

1
X

mD0

.�1/m

mŠ�.p CmC 1/

�x

2

�

2mCp

: (13)

Similarly, if p > 0 is not an integer, we choose b0 D 1=Œ2�p�.�p C 1/� in (7) to

obtain the linearly independent second solution

J�p.x/ D

1
X

mD0

.�1/m

mŠ�.�p CmC 1/

�x

2

�

2m�p

(14)

of Bessel’s equation of order p. If p is not an integer, we have the general solution

y.x/ D c1Jp.x/C c2J�p.x/ (15)

for x > 0; xp must be replaced with jxjp in Eqs. (13) through (15) to get the correct

solutions for x < 0.

If p D n, a nonnegative integer, then Eq. (13) gives

Jn.x/ D

1
X

mD0

.�1/m

mŠ .mC n/Š

�x

2

�

2mCn

(16)

for the Bessel functions of the first kind of integral order. Thus

J0.x/ D

1
X

mD0

.�1/mx2m

22m.mŠ/2
D 1 �

x2

22
C

x4

22 � 42
�

x6

22 � 42 � 62
C � � � (17)

and

J1.x/ D

1
X

mD0

.�1/m22mC1

22mC1mŠ .mC 1/Š
D
x

2
�
1

2Š

�x

2

�

3

C
1

2Š � 3Š

�x

2

�

5

� � � � : (18)

The graphs of J0.x/ and J1.x/ are shown in Fig. 11.4.2. In a general way they

resemble damped cosine and sine oscillations, respectively. Indeed, if you exam-

ine the series in (17), you can see part of the reason why J0.x/ and cos x might

be similar—only minor changes in the denominators in (17) are needed to produce

the Taylor series for cos x. As suggested by Fig. 11.4.2, the zeros of the functions

J0.x/ and J1.x/ are interlaced—between any two consecutive zeros of J0.x/ there

is precisely one zero of J1.x/, and vice versa. The first four zeros of J0.x/ are ap-

proximately 2:4048, 5:5201, 8:6537, and 11:7915. For n large, the nth zero of J0.x/

is approximately
�

n � 1

4

�

�; the nth zero of J1.x/ is approximately
�

nC 1

4

�

� . Thus

the interval between consecutive zeros of either J0.x/ or J1.x/ is approximately �—

another similarity with cos x and sinx. You can see the way the accuracy of these

approximations increases with increasing n by rounding the entries in the table in

Fig. 11.4.3 to two decimal places.

It turns out that Jp.x/ is an elementary function if the order p is half an odd

integer. For instance, on substitution of p D 1

2
in Eqs. (13) and (14), respectively,

the results can be recognized (Problem 2) as

J1=2.x/ D

r

2

�x
sin x and J�1=2.x/ D

r

2

�x
cos x: (19)
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x

y

J0(x)

J1(x)

1

10 20−20 −10

FIGURE 11.4.2. The graphs of the Bessel functions
J0.x/ and J1.x/.

nth zero �

n �
1

4

�

�
nth zero �

n C
1

4

�

�
n of J0.x/ of J1.x/

1

2

3

4

5

2.4048

5.5201

8.6537

11.7915

14.9309

2.3562

5.4978

8.6394

11.7810

14.9226

3.8317

7.0156

10.1735

13.3237

16.4706

3.9270

7.0686

10.2102

13.3518

16.4934

FIGURE 11.4.3. Zeros of J0.x/ and J1.x/.

Bessel Functions of the Second Kind

If n is not an integer, then Bessel’s equation of order n has no second Frobenius

series solution independent of Jn.x/. For Bessel’s equation of order 0, Example 4

in Section 8.4 of Edwards and Penney, Differential Equations and Boundary Value

Problems: Computing and Modeling (5th edition, Hoboken, NJ: Pearson, 2014)

gives the second solution

Y0.x/ D
2

�

"

�

 C ln
x

2

�

J0.x/C

1
X

mD1

.�1/mC1Hm

.mŠ/2

�x

2

�

2m

#

; (20)

where

Hm D 1C
1

2
C
1

3
C � � � C

1

m

denotes the mth partial sum of the harmonic series

1
X

nD1

1

n
and

 D lim
n!1

.Hn � lnn/ � 0:57722

is Euler’s constant. The logarithmic term in (20) implies that this Bessel function

Y0.x/ of the second kind is not a Frobenius series, and it is typical of the case

in which a second Frobenius series solution does not exist. It also implies that

Y0.x/ ! �1 as x ! 0 (Fig. 11.4.4), so Y0.x/ is not continuous at x D 0. These

properties are shared by the general Bessel function Yn.x/ of the second kind (with

n a positive integer), which is defined by a complicated generalization of the formula

in (20).

A general solution of Bessel’s equation of integral order n is given by

y.x/ D c1Jn.x/C c2Yn.x/: (21)

But if y.x/ is continuous at x D 0, the fact that Yn.x/ ! �1 as x ! 0 implies

that c2 D 0. It follows that any continuous solution of Bessel’s equation of integral

order n must be a constant multiple of the Bessel function Jn.x/ of the first kind.

Numerous physical applications of this fact—to heat flow in circular plates or cylin-

ders and to vibrations of circular membranes, for instance—are discussed in Section

10.4 of the reference cited previously.

Figure 11.4.5 illustrates the fact that for n > 1 the graphs of Jn.x/ and Yn.x/

look generally like those of J1.x/ and Y1.x/. In particular, Jn.0/D 0while Yn.x/!

�1 as x ! 0C, and both functions undergo damped oscillation as x !C1.



11.4 Bessel Functions 647

x

−0.5

0.5

y

20

Y0(x) Y1(x)

10 30

FIGURE 11.4.4. The graphs of the Bessel functions
Y0.x/ and Y1.x/ of the second kind.

x

−0.5

0.5

y

J2(x) Y2(x)

10 3020

FIGURE 11.4.5. The graphs of the Bessel functions
J2.x/ and Y2.x/.

Bessel Function Identities

Bessel functions are analogous to trigonometric functions in that they satisfy a large

number of standard identities of frequent utility, especially in the evaluation of inte-

grals involving Bessel functions. Differentiation of

Jp.x/ D

1
X

mD0

.�1/m

mŠ�.p CmC 1/

�x

2

�

2mCp

(13)

in the case that p is a nonnegative integer gives

d

dx

�

xpJp.x/
�

D
d

dx

1
X

mD0

.�1/mx2mC2p

22mCpmŠ .p Cm/Š

D

1
X

mD0

.�1/mx2mC2p�1

22mCp�1mŠ .p Cm � 1/Š

D xp

1
X

mD0

.�1/mx2mCp�1

22mCp�1mŠ .p Cm � 1/Š
;

and thus we have shown that

d

dx

�

xpJp.x/
�

D xpJp�1.x/: (22)

Similarly,

d

dx

�

x�pJp.x/
�

D �x�pJpC1.x/: (23)

If we carry out the differentiations in Eqs. (22) and (23) and then divide the resulting

identities by xp and x�p, respectively, we obtain (Problem 8) the identities

J 0
p
.x/ D Jp�1.x/ �

p

x
Jp.x/ (24)

and

J 0
p
.x/ D

p

x
Jp.x/ � JpC1.x/: (25)
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Thus we may express the derivatives of Bessel functions in terms of Bessel functions

themselves. Subtraction of Eq. (25) from Eq. (24) gives the recursion formula

JpC1.x/ D
2p

x
Jp.x/ � Jp�1.x/; (26)

which can be used to express Bessel functions of higher order in terms of Bessel

functions of lower orders. In the form

Jp�1.x/ D
2p

x
Jp.x/ � JpC1.x/; (27)

it can be used to express Bessel functions of large negative order in terms of Bessel

functions of numerically smaller negative orders.

The identities in Eqs. (22) through (27) hold wherever they are meaningful—

that is, whenever no Bessel functions of negative integral order appear. In particular,

they hold for all nonintegral values of p.

Example 1 With p D 0, Eq. (22) gives

Z

xJ0.x/ dx D xJ1.x/C C:

Similarly, with p D 0, Eq. (23) gives

Z

J1.x/ dx D �J0.x/C C:

Example 2 Using first p D 2 and then p D 1 in Eq. (26), we get

J3.x/ D
4

x
J2.x/ � J1.x/ D

4

x

�

2

x
J1.x/ � J0.x/

�

� J1.x/;

so that

J3.x/ D �
4

x
J0.x/C

�

8

x2
� 1

�

J1.x/:

With similar manipulations every Bessel function of positive integral order can be expressed

in terms of J0.x/ and J1.x/.

Example 3 To antidifferentiate xJ2.x/, we first note that

Z

x�1J2.x/ dx D �x
�1J1.x/C C

by Eq. (23) with p D 1. We therefore write

Z

xJ2.x/ dx D

Z

x2

h

x�1J2.x/
i

dx

and integrate by parts with

u D x2; dv D x�1J2.x/ dx;

du D 2x dx; and v D �x�1J1.x/:

This gives

Z

xJ2.x/ dx D �xJ1.x/C 2

Z

J1.x/ dx D �xJ1.x/ � 2J0.x/C C;

with the aid of the second result of Example 1.
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Applications of Bessel Functions

The importance of Bessel functions stems not only from the frequent appearance of

Bessel’s equation in applications, but also from the fact that the solutions of many

other second-order linear differential equations can be expressed in terms of Bessel

functions. To see how this comes about, we begin with Bessel’s equation of order p

in the form

´2
d2w

d´2
C ´

dw

d´
C .´2

� p2/w D 0 (28)

and substitute

w D x�˛y; ´ D kxˇ : (29)

Then a routine (but lengthy) transformation of Eq. (28) yields

x2y00
C .1 � 2˛/xy0

C .˛2
� ˇ2p2

C ˇ2k2x2ˇ /y D 0I

that is,

x2y00
C Axy0

C .B C Cxq/y D 0; (30)

where the constants A, B , C , and q are given by

A D 1 � 2˛; B D ˛2
� ˇ2p2; C D ˇ2k2; and q D 2ˇ: (31)

It is a simple matter to solve the equations in (31) for

˛ D
1 � A

2
; ˇ D

q

2
;

k D
2
p
C

q
; and p D

p

.1 � A/2 � 4B

q
:

(32)

Under the assumption that the square roots in (32) are real, it follows that the general

solution of Eq. (30) is

y.x/ D x˛w.´/ D x˛w.kxˇ /;

where

w.´/ D c1Jp.´/C c2J�p.´/

(assuming that p is not an integer) is the general solution of the Bessel equation in

(28). This establishes the following result.

THEOREM 1 Solutions in Bessel Functions

If C > 0, q 6D 0, and .1 � A/2 = 4B , then the general solution (for x > 0) of

Eq. (30) is

y.x/ D x˛

h

c1Jp.kx
ˇ /C c2J�p.kx

ˇ /
i

; (33)

where ˛, ˇ, k, and p are given by the equations in (32). If p is an integer, then

J�p is to be replaced with Yp.
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Example 4 Solve the equation

4x2y00
C 8xy0

C .x4
� 3/y D 0: (34)

Solution To compare Eq. (34) with Eq. (30), we rewrite the former as

x2y00
C 2xy0

C

�

�
3

4
C

1

4
x4

�

y D 0

and see that A D 2, B D �3

4
, C D 1

4
, and q D 4. Then the equations in (32) give ˛ D �1

2
,

ˇ D 2, k D 1

4
, and p D 1

2
. Thus the general solution in (33) of Eq. (34) is

y.x/ D x�1=2

h

c1J1=2

�

1

4
x2

�

C c2J�1=2

�

1

4
x2

�i

:

If we recall from Eq. (19) that

J
1=2
.´/ D

r

2

�´
sin ´ and J�1=2

.´/ D

r

2

�´
cos ´;

we see that a general solution of Eq. (34) can be written in the elementary form

y.x/ D x�3=2

 

A cos
x2

4
C B sin

x2

4

!

:

Example 5 Solve the Airy equation

y00
C 9xy D 0: (35)

Solution First we rewrite the given equation in the form

x2y00
C 9x3y D 0:

This is the special case of Eq. (30) with A D B D 0, C D 9, and q D 3. It follows from the

equations in (32) that ˛ D 1

2
, ˇ D 3

2
, k D 2, and p D 1

3
. Thus the general solution of Eq. (35)

is

y.x/ D x1=2

h

c1J1=3
.2x3=2/C c2J�1=3

.2x3=2/
i

:

11.4 Problems
1. Differentiate termwise the series for J0.x/ to show di-

rectly that J 0
0
.x/ D �J1.x/ (another analogy with the co-

sine and sine functions).

2. (a) Deduce from Eqs. (10) and (12) that

�
�

nC 1

2

�

D
1 � 3 � 5 � .2n � 1/

2n

p
�:

(b) Use the result of part (a) to verify the formulas in

Eq. (19) for J
1=2
.x/ and J�1=2

.x/.

3. (a) Suppose that m is a positive integer. Show that

�
�

mC 2

3

�

D
2 � 5 � 8 � � � .3m � 1/

3m
�
�

2

3

�

:

(b) Conclude from part (a) and Eq. (13) that

J�1=3
.x/ D

.x=2/�1=3

�
�

2

3

�

 

1C

1
X

mD1

.�1/m3mx2m

22mmŠ � 2 � 5 � � � .3m � 1/

!

:

4. Apply Eqs. (19), (26), and (27) to show that

J
3=2
.x/ D

r

2

�x3
.sin x � x cos x/

and

J�3=2
.x/ D �

r

2

�x3
.cos x C x sin x/:

5. Express J4.x/ in terms of J0.x/ and J1.x/.

6. Derive the recursion formula in Eq. (2) for Bessel’s equa-

tion.

7. Verify the identity in (23) by termwise differentiation.

8. Deduce the identities in Eqs. (24) and (25) from those in

Eqs. (22) and (23).

9. Use the relation �.x C 1/ D x�.x/ to deduce from

Eqs. (13) and (14) that if p is not a negative integer, then

Jp.x/ D

.x=2/p

�.p C 1/

"

1C

1
X

mD1

.�1/m.x=2/2m

mŠ .p C 1/.p C 2/ � � � .p Cm/

#

:

This form is more convenient for the computation of

Jp.x/ because only the single value �.p C 1/ of the

gamma function is required.
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10. Use the series of Problem 9 to find y.0/ D lim
x!0

y.x/ if

y.x/ D x2

"

J
5=2
.x/C J�5=2

.x/

J
1=2
.x/C J�1=2

.x/

#

:

Any integral of the form
R

xmJn.x/ dx can be evaluated

in terms of Bessel functions and the indefinite integral
R

J0.x/ dx. The latter integral cannot be simplified further,

but the function
R

x

0
J0.t/ dt is tabulated in Table 11.1 of

Abramowitz and Stegun. Use the identities in Eqs. (22) and

(23) to evaluate the integrals in Problems 11 through 18.

11.

Z

x2J0.x/ dx 12.

Z

x3J0.x/ dx

13.

Z

x4J0.x/ dx 14.

Z

xJ1.x/ dx

15.

Z

x2J1.x/ dx 16.

Z

x3J1.x/ dx

17.

Z

x4J1.x/ dx 18.

Z

J2.x/ dx

In Problems 19 through 30, express the general solution of the

given differential equation in terms of Bessel functions.

19. x2y00 � xy0 C .1C x2/y D 0

20. xy00 C 3y0 C xy D 0

21. xy00 � y0 C 36x3y D 0

22. x2y00 � 5xy0 C .8C x/y D 0

23. 36x2y00 C 60xy0 C .9x3 � 5/y D 0

24. 16x2y00 C 24xy0 C .1C 144x3/y D 0

25. x2y00 C 3xy0 C .1C x2/y D 0

26. 4x2y00 � 12xy0 C .15C 16x/y D 0

27. 16x2y00 � .5 � 144x3/y D 0

28. 2x2y00 � 3xy0 � 2.14 � x5/y D 0

29. y00 C x4y D 0

30. y00 C 4x3y D 0

31. Apply Theorem 1 to show that the general solution of

xy00
C 2y0

C xy D 0

is y.x/ D x�1.A cos x C B sin x/.

32. Verify that the substitutions in (2) in Bessel’s equation

[Eq. (1)] yield Eq. (3).

33. (a) Show that the substitution

y D �
1

u

du

dx

transforms the Riccati equation dy=dx D x2 C y2 into

u00 C x2u D 0. (b) Show that the general solution of

dy=dx D x2 C y2 is

y.x/ D x
J

3=4

�

1

2
x2

�

� cJ�3=4

�

1

2
x2

�

cJ
1=4

�

1

2
x2

�

C J�1=4

�

1

2
x2

� :

Suggestion: Apply the identities in Eqs. (22) and (23).

34. (a) Substitute the series of Problem 9 in the result of Prob-

lem 33 to show that the solution of the initial value prob-

lem
dy

dx
D x2

C y2; y.0/ D 0

is

y.x/ D x
J

3=4

�

1

2
x2

�

J�1=4

�

1

2
x2

� :

(b) Deduce similarly that the solution of the initial value

problem
dy

dx
D x2

C y2; y.0/ D 1

is

y.x/ D x
2�
�

3

4

�

J
3=4

�

1

2
x2

�

C �
�

1

4

�

J�3=4

�

1

2
x2

�

2�
�

3

4

�

J�1=4

�

1

2
x2

�

� �
�

1

4

�

J
1=4

�

1

2
x2

� :

Some solution curves of the equation dy=dx D x2 C y2

are shown in Fig. 11.4.6. The location of the asymp-

totes where y.x/!C1 can be found by using Newton’s

method to find the zeros of the denominators in the formu-

las for the solutions as listed here.

0 1 2 3
x

y

−3 −2 −1
−3

−2

−1

3

0

1

2

FIGURE 11.4.6. Solution curves of
dy

dx

D x
2 C y

2.
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The literature of the theory and applications of differential equations is vast. The

following list includes a selection of books that might be useful to readers who wish

to pursue further the topics introduced in this book.

1. ABRAMOWITZ, M. and I. A. STEGUN, Handbook of Mathematical Functions.

New York: Dover, 1965. The comprehensive collection of tables to which

frequent reference is made in the text.

2. BIRKHOFF, G. and G.-C. ROTA, Ordinary Differential Equations (4th ed.).

New York: John Wiley, 1989. An intermediate-level text that includes a more

complete treatment of existence and uniqueness theorems, Sturm-Liouville

problems, and eigenfunction expansions.

3. BRAUN, M., Differential Equations and Their Applications (3rd ed.). New

York: Springer-Verlag, 1983. An introductory text at a slightly higher level

than this book; it includes several interesting “case study” applications.

4. CHURCHILL, R. V., Operational Mathematics (3rd ed.). New York: McGraw-

Hill, 1972. The standard reference for theory and applications of Laplace

transforms, starting at about the same level as Chapter 10 of this book.

5. CODDINGTON, E. A., An Introduction to Ordinary Differential Equations.

Hoboken, NJ: Pearson, 1961. An intermediate-level introduction; Chapters

3 and 4 include proofs of the theorems on power series and Frobenius series

solutions stated in Chapter 11 of this book.

6. CODDINGTON, E. A. and N. LEVINSON, Theory of Ordinary Differential Equa-

tions. New York: McGraw-Hill, 1955. An advanced theoretical text; Chapter

5 discusses solutions near an irregular singular point.

7. DORMAND, J. R., Numerical Methods for Differential Equations. Boca Raton:

CRC Press, 1996. More complete coverage of modern computational methods

for approximate solution of differential equations.

8. HUBBARD, J. H. and B. H. WEST, Differential Equations: A Dynamical Sys-

tems Approach. New York: Springer-Verlag, 1992 (part I) and 1995 (Higher-

Dimensional Systems). Detailed treatment of qualitative phenomena, with a

balanced combination of computational and theoretical viewpoints.

9. INCE, E. L., Ordinary Differential Equations. New York: Dover, 1956. First

published in 1926, this is the classic older reference work on the subject.

10. MCLACHLAN, N. W., Ordinary Non-Linear Differential Equations in Engi-

neering and Physical Sciences. London: Oxford University Press, 1956. A

concrete introduction to the effects of nonlinearity in physical systems.
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11. NOBLE, B. and J.W. DANIEL, Applied Linear Algebra (3rd ed.). Hoboken,

NJ: Pearson, 1988. An especially concrete introduction to linear algebra, with

significant applications included.

12. POLKING, J. C. and D. ARNOLD, Ordinary Differential Equations Using MAT-

LAB (3rd ed.). Hoboken, NJ: Pearson, 2003. A manual for using MATLAB in

an elementary differential equations course; based on the MATLAB programs

dfield and pplane that are used and referenced in this text.

13. PRESS, W. H., B. P. FLANNERY, S. A. TEUKOLSKY, and W. T. VETTERLING,

Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge:

Cambridge University Press, 2007. Chapter 17 discusses modern techniques

for the numerical solution of ordinary differential equations. Programs in CCC,

as well as C, FORTRAN, Pascal, and other languages can be downloaded from

the accompanying web site numerical.recipes.

14. SIMMONS, G. F., Differential Equations (2nd ed.). New York: McGraw-Hill,

1991. An introductory text with interesting historical notes and fascinating

applications and with the most eloquent preface in any mathematics book cur-

rently in print.

15. STRANG, W. G., Linear Algebra and Its Applications. (4th ed.). New York:

Brooks Cole, 2006. An introductory treatment of linear algebra with moti-

vating applications. Appendix B contains a concrete derivation of the Jordan

normal form for square matrices.



A P P E N D I X AA P P E N D I X A

Existence and Uniqueness of
Solutions

In Chapter 1 we saw that an initial value problem of the form

dy

dx
D f .x; y/; y.a/ D b (1)

can fail (on a given interval containing the point x D a) to have a unique solution.

For instance, in Example 4 of Section 1.3, we saw that the initial value problem

x2
dy

dx
C y2

D 0; y.0/ D b (2)

has no solutions at all unless bD 0, in which case there are infinitely many solutions.

According to Problem 31 of Section 1.3, the initial value problem

dy

dx
D �

p

1 � y2; y.0/ D 1 (3)

has the two distinct solutions y1.x/� 1 and y2.x/D cos x on the interval 05 x 5 � .

In this appendix we investigate conditions on the function f .x; y/ that suffice to

guarantee that the initial value problem in (1) has one and only one solution, and we

then proceed to establish appropriate versions of the existence-uniqueness theorems

that were stated without proof in Sections 1.3, 5.1, 5.2, and 7.1.

A.1 Existence of Solutions

The approach we employ is the method of successive approximations, which was

developed by the French mathematician Emile Picard (1856–1941). This method is

based on the fact that the function y.x/ satisfies the initial value problem in (1) on

the open interval I containing x D a if and only if it satisfies the integral equation

y.x/ D b C

Z

x

a

f .t; y.t// dt (4)

for all x in I . In particular, if y.x/ satisfies Eq. (4), then clearly y.a/ D b, and

differentiation of both sides in (4)—using the fundamental theorem of calculus—

yields the differential equation y0.x/ D f .x; y.x//.

To attempt to solve Eq. (4), we begin with the initial function

y0.x/ � b (5)
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and then define iteratively a sequence y1, y2, y3, : : : of functions that we hope will

converge to the solution. Specifically, we let

y1.x/ D b C

Z

x

a

f .t; y0.t// dt and y2.x/ D b C

Z

x

a

f .t; y1.t// dt: (6)

In general, ynC1 is obtained by substitution of yn for y in the right-hand side in

Eq. (4):

ynC1.x/ D b C

Z

x

a

f .t; yn.t// dt: (7)

Suppose we know that each of these functions fyn.x/g
1
0

is defined on some open

interval (the same for each n) containing x D a and that the limit

y.x/ D lim
n!1

yn.x/ (8)

exists at each point of this interval. Then it will follow that

y.x/ D lim
n!1

ynC1.x/ D lim
n!1

�

b C

Z

x

a

f .t; yn.t// dt

�

D b C lim
n!1

Z

x

a

f .t; yn.t// dt (9)

D b C

Z

x

a

f
�

t; lim
n!1

yn.t/
�

dt (10)

and, hence, that

y.x/ D b C

Z

x

a

f .t; y.t// dt;

provided that we can validate the interchange of limit operations involved in passing

from (9) to (10). It is therefore reasonable to expect that, under favorable conditions,

the sequence fyn.x/g defined iteratively in Eqs. (5) and (7) will converge to a so-

lution y.x/ of the integral equation in (4), and hence to a solution of the original

initial value problem in (1).

Example 1 To apply the method of successive approximations to the initial value problem

dy

dx
D y; y.0/ D 1; (11)

we write Eqs. (5) and (7), thereby obtaining

y0.x/ � 1; ynC1.x/ D 1C

Z

x

0

yn.t/ dt: (12)

The iteration formula in (12) yields

y1.x/ D 1C

Z

x

0

1 dt D 1C x;

y2.x/ D 1C

Z

x

0

.1C t / dt D 1C x C 1

2
x2;

y3.x/ D 1C

Z

x

0

�

1C t C 1

2
t2
�

dt D 1C x C 1

2
x2
C

1

6
x3;
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and

y4.x/ D 1C

Z

x

0

�

1C t C 1

2
t2 C 1

6
t3
�

dt

D 1C x C 1

2
x2
C

1

6
x3
C

1

24
x4:

It is clear that we are generating the sequence of partial sums of a power series solution;

indeed, we immediately recognize the series as that of y.x/ D ex . There is no difficulty in

demonstrating that the exponential function is indeed the solution of the initial value problem

in (11); moreover, a diligent student can verify (by using a proof by induction on n) that

yn.x/, obtained in the aforementioned manner, is indeed the nth partial sum for the Taylor

series with center zero for y.x/ D ex .

Example 2 To apply the method of successive approximations to the initial value problem

dy

dx
D 4xy; y.0/ D 3; (13)

we write Eqs. (5) and (7) as in Example 1. Now we obtain

y0.x/ � 3; ynC1.x/ D 3C

Z

x

0

4tyn.t/ dt: (14)

The iteration formula in (14) yields

y1.x/ D 3C

Z

x

0

.4t/.3/ dt D 3C 6x2;

y2.x/ D 3C

Z

x

0

.4t/.3C 6t2/ dt D 3C 6x2
C 6x4;

y3.x/ D 3C

Z

x

0

.4t/.3C 6t2 C 6t4/ dt D 3C 6x2
C 6x4

C 4x6;

and

y4.x/ D 3C

Z

x

0

.4t/.3C 6t2 C 6t4 C 4t6/ dt

D 3C 6x2
C 6x4

C 4x6
C 2x8:

It is again clear that we are generating partial sums of a power series solution. It is not quite

so obvious what function has such a power series representation, but the initial value problem

in (13) is readily solved by separation of variables:

y.x/ D 3 exp
�

2x2

�

D 3

1
X

nD0

.2x2/n

nŠ

D 3C 6x2
C 6x4

C 4x6
C 2x8

C
4

5
x10
C � � � :

In some cases, it may be necessary to compute a much larger number of terms,

either in order to identify the solution or to use a partial sum of its series with large

subscript to approximate the solution accurately for x near its initial value. Fortu-

nately, computer algebra systems such as Maple and Mathematica can perform the

symbolic integrations (as opposed to numerical integrations) of the sort in Examples

1 and 2. If necessary, you could generate the first hundred terms in Example 2 in a

matter of minutes.

In general, of course, we apply Picard’s method because we cannot find a

solution by elementary methods. Suppose that we have produced a large number of

terms of what we believe to be the correct power series expansion of the solution.
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We must have conditions under which the sequence fyn.x/g provided by the method

of successive approximations is guaranteed in advance to converge to a solution. It

is just as convenient to discuss the initial value problem

dx

dt
D f.x; t /; x.a/ D b (15)

for a system of m first-order equations, where

x D

2

6

6

6

6

6

4

x1

x2

x3

:::

xm

3

7

7

7

7

7

5

; f D

2

6

6

6

6

6

4

f1

f2

f3

:::

fm

3

7

7

7

7

7

5

; and b D

2

6

6

6

6

6

4

b1

b2

b3

:::

bm

3

7

7

7

7

7

5

:

It turns out that with the aid of this vector notation (which we introduced in Sec-

tion 7.1), most results concerning a single [scalar] equation x0 D f .x; t/ can be

generalized readily to analogous results for a system of m first-order equations, as

abbreviated in (15). Consequently, the effort of using vector notation is amply jus-

tified by the generality it provides.

The method of successive approximations for the system in (15) calls for us

to compute the sequence fxn.t/g
1
0

of vector-valued functions of t ,

xn.t/ D

2

6

6

6

6

6

4

x1n.t/

x2n.t/

x3n.t/
:::

xmn.t/

3

7

7

7

7

7

5

;

defined iteratively by

x0.a/ � b; xnC1.t/ D bC

Z

t

a

f.xn.s/; s/ ds: (16)

Recall that vector-valued functions are integrated componentwise.

Example 3 Consider the m-dimensional initial value problem

dx

dt
D Ax; x.0/ D b (17)

for a homogeneous linear system with m�m constant coefficient matrix A. The equations in

(16) take the form

x0.t/ D b; xnC1 D bC

Z

x

0

Axn.s/ ds: (18)

Thus

x1.t/ D bC

Z

t

0

Ab ds D bCAbt D .ICAt /b;

x2.t/ D bC

Z

t

0

A.bCAbs/ ds D bCAbt C 1

2
A2bt2 D .ICAt C 1

2
A2t2/b;

and

x3.t/ D bC

Z

t

0

A.bCAbs C 1

2
A2bs2/ ds D .ICAt C 1

2
A2t2 C 1

6
A3t3/b:
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We have therefore obtained the first several partial sums of the exponential series solution

x.t/ D eAt b D

 

1
X

nD0

.At /n

nŠ

!

b (19)

of (17), which was derived earlier in Section 8.1.

The key to establishing convergence in the method of successive approxima-

tions is an appropriate condition on the rate at which f.x; t / changes when x varies

but t is held fixed. If R is a region in .m C 1/-dimensional .x; t /-space, then the

function f.x; t / is said to be Lipschitz continuous on R if there exists a constant

k > 0 such that

jf.x1; t / � f.x2; t /j 5 kjx1 � x2j (20)

if .x1; t / and .x2; t / are points of R. Recall that the norm of anm-dimensional point

or vector x is defined to be

jxj D

q

x2

1
C x2

2
C x2

3
C � � � C x2

m
: (21)

Then jx1 � x2j is simply the Euclidean distance between the points x1 and x2.

Example 4 Let f .x; t/ D x2 exp
�

�t2
�

sin t and let R be the strip 0 5 x 5 2 in the xy-plane. If .x1; t /

and .x2; t / are both points of R, then

jf .x1; t / � f .x2; t /j D j exp
�

�t2
�

sin t j � jx1 C x2j � jx1 � x2j 5 4jx1 � x2j;

because
ˇ

ˇexp
�

�t2
�

sin t
ˇ

ˇ 5 1 for all t and jx1 C x2j 5 4 if x1 and x2 are both in the interval

Œ0; 2�. Thus f satisfies the Lipschitz condition in (20) with k D 4 and is therefore Lipschitz

continuous in the strip R.

Example 5 Let f .x; t/D t
p
x on the rectangle R consisting of the points .x; t/ in the xt-plane for which

0 5 x 5 1 and 0 5 t 5 1. Then, taking x1 D x, x2 D 0, and t D 1, we find that

jf .x; 1/ � f .0; 1/j D
p
x D

1
p
x
jx � 0j:

Because x�1=2 ! C1 as x ! 0C, we see that the Lipschitz condition in (20) cannot be

satisfied by any (finite) constant k > 0. Thus the function f , though obviously continuous on

R, is not Lipschitz continuous on R.

Suppose, however, that the function f .x; t/ has a continuous partial derivative

fx.x; t/ on the closed rectangle R in the xt-plane, and denote by k the maximum

value of jfx.x; t/j onR. Then the mean-value theorem of differential calculus yields

jf .x1; t / � f .x2; t /j D jfx.x; t/ � .x1 � x2/j

for some x in .x1; x2/, so it follows that

jf .x1; t / � f .x2; t /j 5 kjx1 � x2j

because jfx.x; t/j 5 k. Thus a continuously differentiable function f .x; t/ defined

on a closed rectangle is Lipschitz continuous there. More generally, the multivari-

able mean value theorem of advanced calculus can be used similarly to prove that a

vector-valued function f.x; t / with continuously differentiable component functions

on a closed rectangular region R in .x; t /-space is Lipschitz continuous on R.

Example 6 The function f .x; t/ D x2 is Lipschitz continuous on any closed [bounded] region in the

xt-plane. But consider this function on the infinite strip R consisting of the points .x; t/ for

which 0 5 t 5 1 and x is arbitrary. Then

jf .x1; t / � f .x2; t /j D jx
2

1
� x2

2
j D jx1 C x2j � jx1 � x2j:

Because jx1 C x2j can be made arbitrarily large, it follows that f is not Lipschitz continuous

on the infinite strip R.
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If I is an interval on the t-axis, then the set of all points .x; t / with t in I is an

t

l

x

FIGURE A.1. An infinite slab in
.mC 1/-space.

infinite strip or slab in .mC 1/-space (as indicated in Fig. A.1). Example 6 shows

that Lipschitz continuity of f.x; t / on such an infinite slab is a very strong condition.

Nevertheless, the existence of a solution of the initial value problem

dx

dt
D f.x; t /; x.a/ D b (15)

under the hypothesis of Lipschitz continuity of f in such a slab is of considerable

importance.

THEOREM 1 Global Existence of Solutions

Let f be a vector-valued function (with m components) of mC 1 real variables,

and let I be a (bounded or unbounded) open interval containing t D a. If f.x; t /

is continuous and satisfies the Lipschitz condition in (20) for all t in I and for

all x1 and x2, then the initial value problem in (15) has a solution on the entire

interval I .

Proof: We want to show that the sequence fxn.t/g
1
0

of successive approxi-

mations determined iteratively by

x0.a/ D b; xnC1.t/ D bC

Z

t

0

f.xn.s/; s/ ds (16)

converges to a solution x.t/ of (15). We see that each of these functions in turn is

continuous on I , as each is an (indefinite) integral of a continuous function.

We may assume that a D 0, because the transformation t ! t C a converts

(15) into an equivalent problem with initial point t D 0. Also, we will consider only

the portion t = 0 of the interval I ; the details for the case t 5 0 are very similar.

The main part of the proof consists in showing that if Œ0; T � is a closed (and

bounded) interval contained in I , then the sequence fxn.t/g converges uniformly on

Œ0; T � to a limit function x.t/. This means that, given � > 0, there exists an integer

N such that

jxn.t/ � x.t/j < � (22)

for all n = N and all t in Œ0; T �. For ordinary (perhaps nonuniform) convergence the

integer N , for which (22) holds for all n = N , might depend on t , with no single

value of N working for all t in I . Once this uniform convergence of the sequence

fxn.t/g has been established, the following conclusions will follow from standard

theorems of advanced calculus [see pages 620–622 of A. E. Taylor and W. R. Mann,

Advanced Calculus, 3rd ed. (New York: John Wiley, 1983)].

1. The limit function x.t/ is continuous on Œ0; T �.

2. IfN is so chosen that the inequality in (22) holds for n=N , then the Lipschitz

continuity of f implies that

jf.xn.t/; t/ � f.x.t/; t/j 5 kjxn.t/ � x.t/j < k�

for all t in Œ0; T � and n = N , so it follows that the sequence ff.xn.t/; t/g
1
0

converges uniformly to f.x.t/; t/ on Œ0; T �.
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3. But a uniformly convergent sequence or series can be integrated termwise, so

it follows that, on taking limits in the iterative formula in (16),

x.t/ D lim
n!1

xnC1.t/ D bC lim
n!1

Z

t

0

f.xn.s/; s/ ds

D bC

Z

t

0

lim
n!1

f.xn.s/; s/ dsI

thus

x.t/ D bC

Z

t

0

f.x.s/; s/ ds: (23)

4. Because the function x.t/ is continuous on Œ0; T �, the integral equation in (23)

[analogous to the 1-dimensional case in (4)] implies that x0.t/ D f.x.t/; t/

on Œ0; T �. If this is true on every closed subinterval of the open interval I ,

however, then it is true on the entire interval I as well.

It therefore remains only to prove that the sequence fxn.t/g
1
0

converges uni-

formly on the closed interval Œ0; T �. Let M be the maximum value of jf.b; t /j for t

in Œ0; T �. Then

jx1.t/ � x0.t/j D

ˇ

ˇ

ˇ

ˇ

Z

t

0

f.x0.s/; s/ ds

ˇ

ˇ

ˇ

ˇ

5

Z

t

0

jf.b; s/j ds 5 Mt: (24)

Next,

jx2.t/ � x1.t/j D

ˇ

ˇ

ˇ

ˇ

Z

t

0

Œf.x1.s/; s/ � f.x0.s/; s/� ds

ˇ

ˇ

ˇ

ˇ

5 k

Z

t

0

jx1.s/ � x0.s/j ds;

and hence

jx2.t/ � x1.t/j 5 k

Z

t

0

Ms ds D 1

2
kMt2: (25)

We now proceed by induction. Assume that

jxn.t/ � xn�1.t/j 5
M

k
�
.kt/n

nŠ
: (26)

It then follows that

jxnC1.t/ � xn.t/j D

ˇ

ˇ

ˇ

ˇ

Z

t

0

f.xn.s/; s/ � f.xn�1.s/; s/� ds

ˇ

ˇ

ˇ

ˇ

5 k

Z

t

0

jxn.s/ � xn�1.s/j dsI

consequently,

jxnC1.t/ � xn.t/j 5 k

Z

t

0

M

k
�
.ks/n

nŠ
ds:

It follows, upon evaluation of this integral, that

jxnC1.t/ � xn.t/j 5
M

k
�
.kt/nC1

.nC 1/Š
:

Thus (26) holds on Œ0; T � for all n = 1.
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Hence the terms of the infinite series

x0.t/C

1
X

nD1

Œxn.t/ � xn�1.t/� (27)

are dominated (in magnitude on the interval Œ0; T �) by the terms of the convergent

series
1
X

nD1

M

k
�
.kT /nC1

.nC 1/Š
D
M

k
.ekT

� 1/; (28)

which is a series of positive constants. It therefore follows (from the Weierstrass

M -test on pages 618–619 of Taylor and Mann) that the series in (27) converges

uniformly on Œ0; T �. But the sequence of partial sums of this series is, however,

simply our original sequence fxn.t/g
1
0

of successive approximations, so the proof

of Theorem 1 is finally complete.

A.2 Linear Systems

An important application of the global existence theorem just given is to the initial

value problem
dx

dt
D A.t/xC g.t/; x.a/ D b (29)

for a linear system, where the m � m matrix-valued function A.t/ and the vector-

valued function g.t/ are continuous on a (bounded or unbounded) open interval I

containing the point t D a. In order to apply Theorem 1 to the linear system in (29),

we note first that the proof of Theorem 1 requires only that, for each closed and

bounded subinterval J of I , there exists a Lipschitz constant k such that

jf.x1; t / � f.x2; t /j 5 kjx1 � x2j (20)

for all t in J (and all x1 and x2). Thus we do not need a single Lipschitz constant

for the entire open interval I .

In (29) we have f.x; t / D A.t/xC g, so

f.x1; t / � f.x2; t / D A.t/.x1 � x2/: (30)

It therefore suffices to show that, if A.t/ is continuous on the closed and bounded

interval J , then there is a constant k such that

jA.t/xj 5 kjxj (31)

for all t in J . But this follows from the fact (Problem 17) that

jAxj 5 kAk � jxj; (32)

where the norm kAk of the matrix A is defined to be

kAk D

0

@

m
X

i;j D1

.aij /
2

1

A

1=2

: (33)

Because A.t/ is continuous on the closed and bounded interval J , the norm kAk is

bounded on J , so Eq. (31) follows, as desired. Thus we have the following global

existence theorem for the linear initial value problem in (29).
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THEOREM 1 Existence for Linear Systems

Let them�mmatrix-valued function A.t/ and the vector-valued function g.t/ be

continuous on the (bounded or unbounded) open interval I containing the point

t D a. Then the initial value problem

dx

dt
D A.t/xC g.t/; x.a/ D b (29)

has a solution on the (entire) interval I .

As we saw in Section 4.1, the mth-order initial value problem

x.m/
C a1.t/x

.m�1/
C � � � C am�1.t/x

0
C am.t/x D p.t/;

x.a/ D b0; x0.a/ D b1; : : : ; x.m�1/.a/ D bm�1

(34)

is readily transformed into an equivalent m�m system of the form in (29). It there-

fore follows from Theorem 2 that if the functions a1.t/, a2.t/, : : :, am.t/ and p.t/ in

(34) are all continuous on the (bounded or unbounded) open interval I containing

t D a, then the initial value problem in (34) has a solution on the (entire) interval I .

A.3 Local Existence

In the case of a nonlinear initial value problem

dx

dt
D f.x; t /; x.a/ D b; (35)

the hypothesis in Theorem 1 that f satisfies a Lipschitz condition on a slab .x; t / (t in

I , all x) is unrealistic and rarely satisfied. This is illustrated by the following simple

example.

Example 1 Consider the initial value problem

dy

dx
D x2; x.0/ D b > 0: (36)

As we saw in Example 6, the equation x0 D x2 does not satisfy a “strip Lipschitz condition.”

When we solve (36) by separation of variables, we get

x.t/ D
b

1 � bt
: (37)

Because the denominator vanishes for t D 1=b, Eq. (37) provides a solution of the initial

value problem in (36) only for t < 1=b, despite the fact that the differential equation x0 D x2

“looks nice” on the entire real line—certainly the function appearing on the right-hand side

of the equation is continuous everywhere. In particular, if b is large, then we have a solution

only on a very small interval to the right of t D 0.

Although Theorem 2 assures us that linear equations have global solutions,

Example 7 shows that, in general, even a “nice” nonlinear differential equation can

be expected to have a solution only on a small interval around the initial point t D a,

and it also shows that the length of this interval of existence can depend on the

initial value x.a/ D b, as well as on the differential equation itself. The reason is

this: If f.x; t / is continuously differentiable in a neighborhood of the point .b; a/ in

.mC1/-dimensional space, then—as indicated in the discussion preceding Example
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6—we can conclude that f.x; t / satisfies a Lipschitz condition on some rectangular

region R centered at .b; a/, of the form

jt � aj < A; jxi � bi j < Bi (38)

.i D 1, 2, : : :, m). In the proof of Theorem 1, we need to apply the Lipschitz

condition on the function f in analyzing the iterative formula

xnC1.t/ D bC

Z

t

a

f.xn.s/; s/ ds: (39)

The potential difficulty is that, unless the values of t are suitably restricted, the point

.xn.t/; t/ appearing in the integrand in (39) may not lie in the region R where f is

known to satisfy a Lipschitz condition. On the other hand, it can be shown that—on

a sufficiently small open interval J containing the point t D a—the graphs of the

functions fxn.t/g given iteratively by the formula in (39) remain within the region

R, so the proof of convergence can then be carried out as in the proof of Theorem

1. A proof of the following local existence theorem can be found in Chapter 6 of

G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4th ed. (New York:

John Wiley, 1989).

THEOREM 1 Local Existence of Solutions

Let f be a vector-valued function (withm components) of themC 1 real variables

x1, x2, : : :, xm, and t . If the first-order partial derivatives of f all exist and are

continuous in some neighborhood of the point xD b, t D a, then the initial value

problem
dx

dt
D f.x; t /; x.a/ D b; (35)

has a solution on some open interval containing the point t D a.

A.4 Uniqueness of Solutions

It is possible to establish the existence of solutions of the initial value problem in

(35) under the much weaker hypothesis that f.x; t / is merely continuous; techniques

other than those used in this section are required. By contrast, the Lipschitz con-

dition that we used in proving Theorem 1 is the key to uniqueness of solutions. In

particular, the solution provided by Theorem 3 is unique near the point t D a.

THEOREM 1 Uniqueness of Solutions

Suppose that on some region R in (mC 1/-space, the function f in (35) is contin-

uous and satisfies the Lipschitz condition

jf.x1; t / � f.x2; t /j 5 k � jx1 � x2j: (20)

If x1.t/ and x2.t/ are two solutions of the initial problem in (35) on some open

interval I containing x D a, such that the solution curves .x1.t/; t/ and .x2.t/; t/

both lie in R for all t in I , then x1.t/ D x2.t/ for all t in I .

We will outline the proof of Theorem 4 for the 1-dimensional case in which

x is a real variable. A generalization of this proof to the multivariable case can be

found in Chapter 6 of Birkhoff and Rota.
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Let us consider the function

�.t/ D Œx1.t/ � x2.t/�
2 (40)

for which �.a/ D 0, because x1.a/ D x2.a/ D b. We want to show that �.t/ � 0, so

that x1.t/ � x2.t/. We will consider only the case t = a; the details are similar for

the case t 5 a.

If we differentiate each side in Eq. (40), we find that

j�0.t/
ˇ

ˇ D j2Œx1.t/ � x2.t/� � Œx
0
1
.t/ � x0

2
.t/�

ˇ

ˇ

D
ˇ

ˇ2Œx1.t/ � x2.t/� � Œf .x1.t/; t/ � f .x2.t/; t/�
ˇ

ˇ

5 2kjx1.t/ � x2.t/j
2
D 2k�.t/;

by using the Lipschitz condition on f . Hence

�0.t/ 5 2k�.t/: (41)

Now let us temporarily ignore the fact that �.a/ D 0 and compare �.t/ with the

solution of the differential equation

ˆ0.t/ D 2kˆ.t/ (42)

such that ˆ.a/ D �.a/; clearly

ˆ.t/ D ˆ.a/e2k.t�a/: (43)

In comparing (41) with (42), it seems inevitable that

�.t/ 5 ˆ.t/ for t = a, (44)

and this is easily proved (Problem 18). Hence

0 5 Œx1.t/ � x2.t/�
2 5 Œx1.a/ � x2.a/�

2e2k.t�a/:

On taking square roots, we get

0 5 jx1.t/ � x2.t/j 5 jx1.a/ � x2.a/je
k.t�a/: (45)

But x1.a/ � x2.a/ D 0, so (45) implies that x1.t/ � x2.t/.

Example 1 The initial value problem
dx

dt
D 3x2=3; x.0/ D 0 (46)

has both the obvious solution x1.t/� 0 and the solution x2.t/D t
3 (which is readily found by

separation of variables). Hence the function f .x; t/ must fail to satisfy a Lipschitz condition

near .0; 0/. Indeed, the mean value theorem yields

jf .x; 0/ � f .0; 0/j D jfx.x; 0/j � jx � 0j

for some x between 0 and x. But fx.x; 0/ D 2x
�1=3 is unbounded as x ! 0, so no Lipschitz

condition can be satisfied.

A.5 Well-Posed Problems and Mathematical Models

In addition to uniqueness, another consequence of the inequality in (45) is the fact

that solutions of the differential equation

dx

dt
D f .x; t/ (47)
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depend continuously on the initial value x.a/; that is, if x1.t/ and x2.t/ are two

solutions of (47) on the interval a 5 t 5 T such that the initial values x1.a/ and

x2.a/ are sufficiently close to one another, then the values of x1.t/ and x2.t/ remain

close to one another. In particular, if jx1.a/ � x2.a/j 5 ı, then (45) implies that

jx1.t/ � x2.t/j 5 ıek.T �a/
D � (48)

for all t with a 5 t 5 T . Obviously, we can make � as small as we wish by choosing

ı sufficiently close to zero.

This continuity of solutions of (47) with respect to initial values is important

in practical applications where we are unlikely to know the initial value x0 D x.a/

with absolute precision. For example, suppose that the initial value problem

dx

dt
D f .x; t/; x.a/ D x0 (49)

models a population for which we know only that the initial population is within

ı > 0 of the assumed value x0. Then even if the function f .x; t/ is accurate, the so-

lution x.t/ of (49) will be only an approximation to the actual population. But (45)

implies that the actual population at time t will be within ıek.T �a/ of the approxi-

mate population x.t/. Thus, on a given closed interval Œa; T �, x.t/ will be a close

approximation to the actual population provided that ı > 0 is sufficiently small.

An initial value problem is usually considered well posed as a mathematical

model for a real-world situation only if the differential equation has unique solutions

that are continuous with respect to initial values. Otherwise it is unlikely that the

initial value problem adequately mirrors the real-world situation.

An even stronger “continuous dependence” of solutions is often desirable. In

addition to possible inaccuracy in the initial value, the function f .x; t/ may not

model precisely the physical situation. For instance, it may involve physical pa-

rameters (such as resistance coefficients) whose values cannot be measured with

absolute precision. Birkhoff and Rota generalize the proof of Theorem 4 to estab-

lish the following result.

THEOREM 1 Continuous Dependence of Solutions

Let x.t/ and y.t/ be solutions of the equations

dx

dt
D f.x; t / and

dy

dt
D g.y; t / (50)

on the closed interval Œa; T �. Let f and g be continuous for a 5 t 5 T and for x

and y in a common region D of n-space and assume that f satisfies the Lipschitz

condition in (20) on the region D. If

jf.z; t / � g.z; t /j 5 � (51)

for all t in the interval Œa; T � and all z in D, it then follows that

jx.t/ � y.t/j 5 jx.a/ � y.a/j � ek.t�a/
C
�

k

h

ek.t�a/
� 1

i

(52)

on the interval Œa; T �.

If � > 0 is small, then (51) implies that the functions f and g appearing in the

two differential equations, though different, are “close” to each other. If � > 0 is
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given, then it is apparent from (52) that

jx.t/ � y.t/j 5 � (53)

for all t in Œa; T � if both jx.a/ � y.a/j and � are sufficiently small. Thus Theorem

5 says (roughly) that if both the two initial values and the two differential equations

in (50) are close to each other, then the two solutions remain close to each other for

a 5 t 5 T .

For example, suppose that a falling body is subject both to constant gravita-

tional acceleration g and to resistance proportional to some power of its velocity,

so (with the positive axis directed downward) its velocity v satisfies the differential

equation
dv

dt
D g � cv�: (54)

Assume, however, that only an approximation c to the actual resistance c and an

approximation � to the actual exponent � are known. Then our mathematical model

is based on the differential equation

du

dt
D g � cu� (55)

instead of the actual equation in (54). Thus if we solve Eq. (55), we obtain only

an approximation u.t/ to the actual velocity v.t/. But if the parameters c and � are

sufficiently close to the actual values c and �, then the right-hand sides in (54) and

(55) will be close to each other. If so, then Theorem 5 implies that the actual and

approximate velocity functions v.t/ and u.t/ are close to each other. In this case,

the approximation in (55) will be a good model of the actual physical situation.

Problems
In Problems 1 through 8, apply the successive approximation

formula to compute yn.x/ for n 5 4. Then write the expo-

nential series for which these approximations are partial sums

(perhaps with the first term or two missing; for example,

ex
� 1 D x C 1

2
x2
C

1

6
x3
C

1

24
x4
C � � � /:

1.
dy

dx
D y, y.0/ D 3 2.

dy

dx
D �2y, y.0/ D 4

3.
dy

dx
D �2xy, y.0/ D 1 4.

dy

dx
D 3x2y, y.0/ D 2

5.
dy

dx
D 2y C 2, y.0/ D 0 6.

dy

dx
D x C y, y.0/ D 0

7.
dy

dx
D 2x.1C y/, y.0/ D 0

8.
dy

dx
D 4x.y C 2x2/, y.0/ D 0

In Problems 9 through 12, compute the successive approxima-

tions yn.x/ for n 5 3; then compare them with the appropriate

partial sums of the Taylor series of the exact solution.

9.
dy

dx
D x C y, y.0/ D 1 10.

dy

dx
D yC ex , y.0/D 0

11.
dy

dx
D y2, y.0/ D 1 12.

dy

dx
D

1

2
y3, y.0/ D 1

13. Apply the iterative formula in (16) to compute the first

three successive approximations to the solution of the ini-

tial value problem

dx

dt
D 2x � y; x.0/ D 1I

dy

dt
D 3x � 2y; y.0/ D �1:

14. Apply the matrix exponential series in (19) to solve (in

closed form) the initial value problem

x0.t/ D

�

1 1

0 1

�

x; x.0/ D

�

1

1

�

:

(Suggestion: Show first that

�

1 1

0 1

�

n

D

�

1 n

0 1

�

for each positive integer n.)

15. For the initial value problem dy=dx D 1C y3, y.1/ D 1,

show that the second Picard approximation is

y2.x/D 1C 2.x� 1/C 3.x � 1/
2
C 4.x� 1/3C 2.x� 1/4:
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Then compute y2.1:1/ and y2.1:2/. The fourth-order

Runge–Kutta method with step size h D 0:005 yields

y.1:1/ � 1:2391 and y.1:2/ � 1:6269.

16. For the initial value problem dy=dx D x2C y2, y.0/ D 0,

show that the third Picard approximation is

y3.x/ D
1

3
x3
C

1

63
x7
C

2

2079
x11
C

1

59535
x15:

Compute y3.1/. The fourth-order Runge–Kutta method

yields y.1/ � 0:350232, both with step size h D 0:05 and

with step size h D 0:025.

17. Prove as follows the inequality jAxj5 kAk � jxj, where A is

an m�m matrix with row vectors a1, a2, : : :, am, and x is

an m-dimensional vector. First note that the components

of the vector Ax are a1 � x, a2 � x, : : :, am � x, so

jAxj D

"

m
X

nD1

.ai � x/2

#

1=2

:

Then use the Cauchy–Schwarz inequality .a � x/2 5

jaj2jxj2 for the dot product.

18. Suppose that �.t/ is a differentiable function with

�0.t/ 5 k�.t/ .k > 0/

for t = a. Multiply both sides by e�kt , then transpose to

show that

d

dt

h

�.t/e�kt

i

5 0

for t = a. Then apply the mean value theorem to conclude

that

�.t/ 5 �.a/ek.t�a/

for t = a.
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Theory of Determinants

The proof of the theorem on row and column cofactor expansions (Theorem 1 in

Section 3.6) involves an alternative interpretation of determinants that in more ad-

vanced treatments is usually taken as the original definition. Consider the following

elementary scheme for evaluating a 3 � 3 determinant:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

◗
◗
◗
◗
◗
◗◗s

a11 ◗
◗
◗
◗
◗
◗◗s

a12 ✑
✑

✑
✑

✑✑✰

◗
◗

◗
◗
◗
◗◗s

a13

a21 a22 a23

a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

✑
✑

✑
✑

✑✑✰

a11 ✑
✑

✑
✑

✑✑✰

a12

a21 a22

a31 a32

The first two columns of A D
�

aij

�

are duplicated to its right. It is readily verified

that det A is equal to the sum of the three products along the indicated diagonals that

point down and to the right, minus the sum of the products along the three diagonals

that point down and to the left:

det A D C a11a22a33 C a12a23a31 C a13a21a32

� a13a22a31 � a11a23a32 � a12a21a33: (1)

Remark This scheme works only in dimensions 2 and 3. Neither the analogous scheme nor

anything resembling it gives the correct value of an n � n determinant with n � 4.

Note that each of the six terms on the right in (1) is of the form ˙a1i a2j a3k ,

where .i j k/ is a permutation of .1 2 3/. That is, the triple .i j k/ consists of

the three distinct numbers 1, 2, and 3 written in some specific order. The six terms

in (1) correspond to the six possible permutations of .1 2 3/:

.1 2 3/ .2 1 3/ .3 1 2/

.1 3 2/ .2 3 1/ .3 2 1/.
(2)

The C and � signs in (1) can also be explained in terms of these permutations. A

transposition of an ordered sequence of objects (such as the numbers 1, 2, 3) is

the operation of interchanging some single pair of them. For instance, the operation

.1 2 3/! .1 3 2/ is a transposition that consists of interchanging 2 and 3. But it

requires two transpositions to change .1 2 3/ into the permutation .3 1 2/:

.1 2 3/! .3 2 1/! .3 1 2/:

Given a permutation P D .i j k/ of .1 2 3/, we denote by s.P / the minimum

number of transpositions required to change .1 2 3/ into .i j k/. For the six

permutations in (2) it is easy to verify that

s.1 2 3/ D 0; s.2 1 3/ D 1; s.3 1 2/ D 2;

s.1 3 2/ D 1; s.2 3 1/ D 2; s.3 2 1/ D 1:
(3)

668
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Now for the point to all this: If you check each of the six terms in (1) you will

find that the sign of the term a1i a2j a3k is .�1/s.P /, where P D .i j k/. Therefore,

we can rewrite (1) more concisely as

det A D
X

P

.�1/s.P /a1i a2j a3k ; (4)

where there is one term on the right for each possible permutation P D .i j k/ of

.1 2 3/.

The formula in (4) generalizes to determinants of higher order. If A is an n�n

matrix, then

det A D
X

P

.�1/s.P /a1i1
a2i2
� � � anin

; (5)

where there is one term on the right for each possible permutation P D

.i1 i2 � � � in/ of .1 2 � � � n/, and s.P / denotes the minimum number of trans-

positions required to change .1 2 � � � n/ into .i1 i2 � � � in/. The formula in (5)

can be established by induction on n. Assuming its validity for .n� 1/� .n� 1/ de-

terminants, the formula can be verified for an n� n matrix A by expanding along its

first row. It is fairly easy to see that this gives terms of the form ˙a1i1
a2i2
� � � anin

,

but somewhat more difficult to check the signs.

Finally, the proof of the cofactor expansion theorem consists of verifying sim-

ilarly that the cofactor expansion of det A along any row or column of A agrees with

the formula in (5). The details are more lengthy than instructive, and therefore we

omit them.

Determinants and Elementary Row Operations

As we described in Section 3.6, the determinant of any square matrix A can be

evaluated directly by carrying out a cofactor expansion of det A along any row or

column of A. Because this approach involves so much computational labor, it is

more efficient instead to reduce A to an echelon matrix R. Because any square

echelon matrix is (upper) triangular, the determinant of the echelon matrix R is

simply the product of its diagonal elements. But because we have altered the matrix

A by transforming it into R, the question is this: What effects do elementary row

operations have on the determinant of A?

The following theorem summarizes Properties 1, 2, and 5 of Section 3.6 and

tells us how to keep track of the effect each elementary row operation will have on

det A as we reduce A to echelon form. We use here the concise notation

jAj D det A

for the determinant of the matrix A.

THEOREM 1 Effect of Elementary Row Operations

Let A be a square matrix and let B be the matrix obtained by performing one of

the three types of elementary row operations on A.

(a) Type 1: If B is obtained by dividing some row of A by k, then

jAj D kjBj: (6)

(b) Type 2: If B is obtained by interchanging two rows of A, then

jAj D �jBj: (7)
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(c) Type 3: If B is obtained by adding a multiple of some row of A to another

row, then

jAj D jBj: (8)

The following example shows how to lay out the computation of det A by

using row operations to reduce A to echelon form.

Example 1 ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 2 �2 0

�4 2 3 1

0 4 �1 �4

3 1 3 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

�4 2 3 1

0 4 �1 �4

3 1 3 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have divided row 1 by 2.

D 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 6 �1 1

0 4 �1 �4

0 �2 6 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have added 4 times row

1 to row 2, and �3 times

row 1 to row 4.

D C 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 0 17 �2

0 0 11 �6

0 �2 6 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have added 3 times row

4 to row 2, and 2 times row

4 to row 3.

D � 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 �2 6 �1

0 0 11 �6

0 0 17 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have interchanged rows
2 and 4.

D� 22

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 �2 6 �1

0 0 1 �
6

11

0 0 17 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have divided row 3 by
11.

D� 22

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 �2 6 �1

0 0 1 �
6

11

0 0 0 80

11

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have added �17 times

row 3 to row 4.

D.�22/.1/.�2/.1/. 80

11
/ D 320:

If the square matrix A has only integer entries, it is always possible to carry

out the reduction to echelon form without introducing any fractions. In the compu-

tation of determinants (as opposed to the solution of linear systems), we have the

additional flexibility of using elementary column operations; their effects are pre-

cisely analogous to those of elementary row operations, as described in Theorem 1.

In Example 2, we illustrate this by finishing differently the evaluation in Example 1.

Example 2 ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 2 �2 0

�4 2 3 1

0 4 �1 �4

3 1 3 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 �2 6 �1

0 0 11 �6

0 0 17 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(As in Example 1.)

D �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 �2 5 �1

0 0 5 �6

0 0 15 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have added column 4 to

column 3.
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D �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 �2 5 �1

0 0 5 �6

0 0 0 16

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

We have added (�3) times
row 3 to row 4.

D .�2/.1/.�2/.5/.16/ D 320:

Yet another alternative is to reduce only the first n � 2 rows of the n � n matrix A.

We then directly calculate the 2 � 2 determinant that remains in the lower right-hand corner.

We get det A by multiplying this 2 � 2 determinant by the preceding factors and diagonal

elements. Thus
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 2 �2 0

�4 2 3 1

0 4 �1 �4

3 1 3 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 �1 0

0 �2 6 �1

0 0 11 �6

0 0 17 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .�2/.1/.�2/

ˇ

ˇ

ˇ

ˇ

11 �6

17 �2

ˇ

ˇ

ˇ

ˇ

D .4/.�22C 102/ D 320:

Determinants and Invertibility

We began Section 3.6 with the remark that a 2�2 matrix A is invertible if and only if

its determinant is nonzero: jAj 6D 0. Now we want to show that this result also holds

for n�n matrices. This connection between determinants and invertibility is closely

related to the fact that the determinant function “respects” matrix multiplication in

the sense that

jABj D jAj jBj (9)

if A and B are n � n matrices. Our first step is to show that Eq. (9) holds if A is an

elementary matrix obtained from the n � n identity matrix I by performing a single

elementary row operation.

LEMMA Multiplication by an Elementary Matrix

If B is an n � n matrix and E is an n � n elementary matrix then

jEBj D jEj jBj: (10)

Proof: This is really just a restatement of Theorem 1. For instance, suppose

that E is obtained from I by multiplying the pth row by c, so that jEj D c. Then

Theorem 5 in Section 3.5 tells us that the product EB is the result of multiplying the

pth row of B by c. Therefore,

jEBj D cjBj D jEj jBj;

and so we have verified Eq. (10) for the first of the three types of elementary matri-

ces. The verifications for the other two types are similar.

Now, let A be an n � n matrix whose invertibility we want to discuss, and

let R be the reduced echelon form of A. If the elementary matrices F1; F2; : : : ; Fk

correspond to the elementary row operations that reduce A to R, then

Fk � � �F2F1A D R (11)

by Theorem 5 in Section 3.5. Recalling that every elementary matrix is invertible

(Section 3.5), we can rewrite Eq. (11) as

A D E1E2 � � �EkR; (12)
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where each Ei D .Fi /
�1 is an elementary matrix. It now follows, by k applications

of the lemma, that

A D jE1j jE2j � � � jEkj jRj: (13)

This relation is the key both to the proof of (9) and to the proof of the following

theorem.

THEOREM 2 Determinants and Invertibility

The n � n matrix A is invertible if and only if det A 6D 0.

Proof: If (as previously) R is the reduced echelon form of A, then Theorem

6 in Section 3.5 implies that

A is invertible if and only if R D I: (14)

Because R is a square reduced echelon matrix, we see that either R is the identity

matrix I and jRj D 1, or R has an all-zero row and, consequently, jRj D 0. Therefore,

R D I if and only if jRj 6D 0: (15)

Finally, because jEj 6D 0 if E is an elementary matrix, it follows immediately from

Eq. (13) that

jRj 6D 0 if and only if jAj 6D 0: (16)

Combining the statements in (14), (15), and (16), we see that A is invertible if and

only if jAj 6D 0.

So now we can add the statement det A 6D 0 to the list of equivalent properties

of nonsingular matrices stated in Theorem 7 of Section 3.5. Indeed, some texts

define the square matrix A to be nonsingular if and only if det A 6D 0.

THEOREM 3 Determinants and Matrix Products

If A and B are n � n matrices, then

jABj D jAj jBj: (9)

Proof: If R is the reduced echelon form of A, then we see that

A D E1E2 � � �EkR; (12)

where E1; E2; : : : , and Ek are elementary matrices. Hence

AB D E1E2 � � �EkRB:

We now take the determinant of both sides, using the lemma stated earlier to “split

off” the elementary matrices:

jABj D jE1j jE2E3 � � �EkRBj (lemma once)

D jE1j jE2j jE3 � � �EkRBj (lemma twice)

D jE1E2j jE3 � � �EkRBj: (lemma thrice)

After 2k � 1 steps, we get

jABj D jE1E2 � � �Ekj jRBj: (17)

The remainder of the proof depends on whether or not A is invertible.
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If A is invertible, then R D I, so Eq. (12) yields

A D E1E2 � � �Ek

and also that RB D IB D B. In this case the meaning of Eq. (17) is precisely that

jABj D jAj jBj.

If A is not invertible, then jAj D 0 by Theorem 2. Also, as we noted previously,

the reduced echelon form R of A has an all-zero row in this case. Hence it follows

from the definition of matrix multiplication that the product RB has an all-zero row

and, therefore, that jRBj D 0. In this case Eq. (17) implies that jABj D 0. Because

both jAj D 0 and jABj D 0, the equation jABj D jAj jBj holds, and the proof is

complete.

Cramer’s Rule and Inverse Matrices

Suppose that we need to solve the n � n linear system

Ax D b; (18)

where

A D
�

aij

�

; x D

2

6

6

6

4

x1

x2

:::

xn

3

7

7

7

5

and b D

2

6

6

6

4

b1

b2

:::

bn

3

7

7

7

5

: (19)

We assume that the coefficient matrix A is invertible, so we know in advance that a

unique solution x of (18) exists. The question is how to write x explicitly in terms

of the coefficients aij and the constants bi . In the following discussion, we think of

x as a fixed (though as yet unknown) vector.

If we denote by a1; a2; : : : ; an the column vectors of the n � n matrix A, then

A D
�

a1 a2 � � � an

�

: (20)

By Fact 1 in Section 3.5, we can rewrite Eq. (18) as

x1a1 C x2a2 C � � � C xnan D b:

Thus the constant vector b is expressed in terms of the entries x1; x2; : : : ; xn of the

solution vector x and the column vectors of A by

b D

n
X

j D1

xj aj : (21)

The trick for finding the i th unknown xi is to compute the determinant of the

matrix

�

a1 � � � b � � � an

�

D

2

6

6

6

4

a11 � � � b1 � � � a1n

a21 � � � b2 � � � a2n

:::
: : :

:::
: : :

:::

an1 � � � bn � � � ann

3

7

7

7

5

(22)

that we obtain by replacing the i th column ai of A with the constant vector b. Using
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Eq. (21) to substitute for b, we find that

ˇ

ˇ a1 � � � b � � � an

ˇ

ˇ D

ˇ

ˇ

ˇ

ˇ

ˇ

a1 � � �

n
X

j D1

xj aj � � � an

ˇ

ˇ

ˇ

ˇ

ˇ

D

n
X

j D1

ˇ

ˇ a1 � � � xj aj � � � an

ˇ

ˇ (by Property 4 of
determinants)

D

n
X

j D1

xj

ˇ

ˇ a1 � � � aj � � � an

ˇ

ˇ (by Property 1 of
determinants).

Note that, in the j th term of this summation, the vector aj appears in the i th posi-

tion. Thus we have found that
ˇ

ˇ a1 � � � b � � � an

ˇ

ˇ D x1

ˇ

ˇ a1 a2 � � � a1 � � � an

ˇ

ˇ

C x2

ˇ

ˇ a1 a2 � � � a2 � � � an

ˇ

ˇ

:::

C xi

ˇ

ˇ a1 a2 � � � ai � � � an

ˇ

ˇ

:::

C xn

ˇ

ˇ a1 a2 � � � an � � � an

ˇ

ˇ .

Of the n determinants on the right-hand side here, all but the i th one have two

identical columns and therefore are equal to zero. The coefficient of xi in the i th

term is simply

jAj D
ˇ

ˇ a1 a2 � � � ai � � � an

ˇ

ˇ :

Consequently, a result of our computation is that

ˇ

ˇ a1 � � � b � � � an

ˇ

ˇ D xi jAj: (23)

We get the desired simple formula for xi after we divide each side by jAj 6D 0.

THEOREM 4 Cramer’s Rule

Consider the n � n linear system Ax D b with

A D
�

a1 a2 � � � an

�

:

If jAj 6D 0, then the i th entry of the unique solution x D .x1; x2; : : : ; xn/ is given

by

xi D

ˇ

ˇ a1 � � � b � � � an

ˇ

ˇ

jAj

D
1

jAj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 � � � b1 � � � a1n

a21 � � � b2 � � � a2n

:::
: : :

:::
: : :

:::

an1 � � � bn � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; (24)

where (in the last expression) the constant vector b replaces the i th column vector

ai of A.
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Inverses and the Adjoint Matrix

We now use Cramer’s rule to develop an explicit formula for the inverse A�1 of

the invertible matrix A. First, we need to rewrite Cramer’s rule more concisely.

Expansion of the determinant in the numerator in Eq. (24) along its i th column

yields

xi D
1

jAj
.b1A1i C b2A2i C � � � C bnAni /; (25)

because the cofactor of bp is simply the cofactor Api of api in jAj. The formula in

Eq. (25) gives the solution vector

x D

2

6

6

6

6

4

x1

x2

:::

xn

3

7

7

7

7

5

D
1

jAj

2

6

6

6

6

4

b1A11 C b2A21 C : : : C bnAn1

b1A12 C b2A22 C : : : C bnAn2

:::

b1A1n C b2A2n C : : : C bnAnn

3

7

7

7

7

5

:

Then the definition of matrix multiplication yields

x D
1

jAj

2

6

6

6

6

4

A11 A21 � � � An1

A12 A22 � � � An2

:::
:::

: : :
:::

A1n A2n � � � Ann

3

7

7

7

7

5

2

6

6

6

6

4

b1

b2

:::

bn

3

7

7

7

7

5

(26)

for the solution x of Ax D b.

Observe that the double subscripts in (26) are reversed from their usual order;

the element in the i th row and j th column is Aj i (rather than Aij ). We therefore

see in (26) the transpose of the cofactor matrix
�

Aij

�

of the n � n matrix A.

The transpose of the cofactor matrix of A is called the adjoint matrix of A and is

denoted by

adj A D
�

Aij

�

T

D
�

Aj i

�

: (27)

With the aid of this notation, Cramer’s rule as expressed in Eq. (26) can be written

in the especially simple form

x D

�

Aj i

�

b

jAj
D

.adj A/b

jAj
: (28)

The fact that the formula in (28) gives the unique solution x of AxD b implies

that

A
.adj A/b

jAj
D b (29)

for every n-vector b. If we write

C D
adj A

jAj
(30)

for brevity, then

ACb D b (31)

for every n-vector b. From this it follows (one column at a time, as we use Fact 2 in

Section 3.5) that

ACB D B (32)
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for every matrix B having n rows. In particular, with B D I (the n � n identity

matrix), we see that

AC D I: (33)

Therefore, we have discovered that the matrix C as defined in Eq. (30) is the inverse

matrix A�1 of A.

THEOREM 5 The Inverse Matrix

The inverse of the invertible matrix A is given by the formula

A�1
D

adj A

jAj
D

�

aij

�

T

jAj
; (34)

where, as usual, Aij is the ijth cofactor of A—that is, Aij is the product of

.�1/iCj and the ijth minor of A.
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Chapter 1

Section 1.1

11. If y D y1 D x
�2, then y

0
.x/ D �2x

�3 and y
00

.x/ D 6x
�4, so

x
2
y

00 C 5xy
0 C 4y D x

2
.6x

�4
/ C 5x.�2x

�3
/ C 4.x

�2
/ D

6x
�2 � 10x

�2 C 4x
�2 D 0. If y D y2 D x

�2 ln x, then

y
0
.x/ D x

�3 � 2x
�3 ln x and y

00
.x/ D �5x

�4 C 6x
�4 ln x,

so x
2
y

00 C 5xy
0 C 4y D x

2
.�5x

�4 C 6x
�4 ln x/ C

5x.x
�3 � 2x

�3 ln x/ C 4.x
�2 ln x/ D 0.

13. r D 2
3

14. r D ˙ 1
2

15. r D �2, 1

16. r D 1
6

.�3 ˙
p

57/

17. C D 2

0 5
–5

0

5

x

y

(0,2)

–5

18. C D 3

0 5

0

5

x

y

(0,3)

–5
–5

19. C D 6

0 5

0

5

10

x

y

(0,5)

–5
–10

–5

20. C D 11

0 5 10

0

20

x

y

(0,10)

–20
–10 –5

21. C D 7

0 1 2

0

5

10

x

y

(0,7)

–1–2
–10

–5

677
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22. C D 1

0 10 20

0

5

x

y

(0,0)

–10–20
–5

23. C D �56

0 1 2 3

0

10

20

30

x

y

(2,1)

–20

–10

–30

24. C D 17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

30

x

y

(1,1)

–20

–10

–30

25. C D �=4

0 1 2

0

2

4

x

y

(0,1)

–2

–4
–1–2

26. C D ��

0 5 10

0

5

10

x

y

(π ,0)

–5

–10

27. y
0 D x C y 28. y

0 D 2y=x

29. y
0 D x=.1 � y/ 31. y

0 D .y � x/=.y C x/

32. dP=dt D k

p
P 33. dv=dt D kv

2

35. dN=dt D k.P � N / 37. y � 1 or y D x

39. y D x
2 41. y D 1

2
e

x

42. y D cos x or y D sin x

43. (b) The identically zero function x.0/ � 0

44. (a) The graphs (figure below) of typical solutions with k D 1
2

suggest that (for each) the value x.t/ increases without bound as
t increases.

0 1 2 3 4
0

1

2

3

4

5

t

x

(b) The graphs (figure below) of typical solutions with k D � 1
2

suggest that now the value x.t/ approaches 0 as t increases
without bound.

0 1 2 3 4
0

1

2

3

4

5

6

t

x

45. P.t/ D 100=.50 � t/; P D 100 when t D 49, and P D 1000

when t D 49:9. Thus it appears that P.t/ grows without bound
as t approaches 50.

46. v.t/ D 50=.5 C 2t/; v D 1 when t D 22:5, and v D 1
10

when

t D 247:5. Thus it appears that v.t/ approaches 0 as t increases
without bound.
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47. (a) C D 10:1; (b) No such C , but the constant function

y.x/ � 0 satisfies the conditions y
0 D y

2 and y.0/ D 0.

Section 1.2

1. y.x/ D x
2 C x C 3 2. y.x/ D 1

3
.x � 2/

3 C 1

3. y.x/ D 1
3

.2x
3=2 � 16/ 4. y.x/ D �1=x C 6

5. y.x/ D 2

p
x C 2 � 5 6. y.x/ D 1

3
Œ.x

2 C 9/
3=2 � 125�

7. y.x/ D 10 tan�1
x 8. y.x/ D 1

2
sin 2x C 1

9. y.x/ D sin�1
x 10. y.x/ D �.x C 1/e

�x C 2

11. x.t/ D 25t
2 C 10t C 20 12. x.t/ D �10t

2 � 15t C 5

13. x.t/ D 1
2

t
3 C 5t 14. x.t/ D 1

3
t

3 C 1
2

t
2 � 7t C 4

15. x.t/ D 1
3

.t C 3/
4 � 37t � 26

16. x.t/ D 4
3

.t C 4/
3=2 � 5t � 29

3

17. x.t/ D 1
2

�

.t C 1/
�1 C t � 1

�

19. x.t/ D

(

5t if 0 � t � 5,

10t � 1
2

t
2 � 25

2
if 5 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(5,25)

t

x

20. x.t/ D

(

1
2

t
2 if 0 � t � 5,

5t � 25
2

if 5 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(5,12.5)

t

x

21. x.t/ D

(

1
2

t
2 if 0 � t � 5,

10t � 1
2

t
2 � 25 if 5 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(5,12.5)

t

x

22. x.t/ D

8

ˆ

<

ˆ

:

5
6

t
2 if 0 � t � 3,

5t � 15
2

if 3 � t � 7,
1
6

.�5t
2 C 100t � 290/ if 7 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(3,7.5)

(7,27.5)

t

x

23. v.t/ D �.9:8/t C 49, so the ball reaches its maximum height

(v D 0) after t D 5 seconds. Its maximum height then is
y.5/ D 122:5 (m).

24. v.5/ D �160 ft/s

25. The car stops when t � 2:78 (s), so the distance traveled before

stopping is approximately x.2:78/ � 38:58 (m).

26. (a) y � 530 m (b) t � 20:41 s (c) t � 20:61 s

27. y0 � 178:57 (m)

28. v.4:77/ � �192:64 ft/s

29. After 10 seconds the car has traveled 200 ft and is traveling at
70 ft=s.

30. a D 22 ft/s2; it skids for 4 seconds.

31. v0 D 10

p
30 (m=s), about 197:18 km=h

32. 60 m 33. 20

p
10 � 63:25 (ft=s)

34. 460.8 ft 36. About 13.6 ft

37. 25 (mi) 38. 1:10 pm

39. 6 mph 40. 2.4 mi

41. 544
3

� 181:33 ft/s 42. 25 mi

43. Time: 6:12245 � 10
9 s � 194 years;

Distance: 1:8367 � 10
17 m � 19:4 light-years

44. About 54 mi/h
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Section 1.3

1.
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–1
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x

y

3.
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–1
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–1

0

1

2

3

–3 –2 –1 0 1 2 3
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–1
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y
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y
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9.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

10.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

11. A unique solution exists in some neighborhood of x D 1.

12. A unique solution exists in some neighborhood of x D 1.

13. A unique solution exists in some neighborhood of x D 0.

14. Existence but not uniqueness is guaranteed in some
neighborhood of x D 0.

15. Neither existence nor uniqueness is guaranteed in any
neighborhood of x D 2.

16. A unique solution exists in some neighborhood of x D 2.

17. A unique solution exists in some neighborhood of x D 0.

18. Neither existence nor uniqueness is guaranteed.

19. A unique solution exists in some neighborhood of x D 0.

20. A unique solution exists in some neighborhood of x D 0.

21. Your figure should suggest that y.�4/ � 3; an exact solution of

the differential equation gives y.�4/ D 3 C e
�4 � 3:0183.

0 1 2 3 4 5

0

1

2

3

4

5

x

y

(0,0)

(−4,?)

–1

–2

–3

–4

–5
–1–2–3–4–5

22. y.�4/ � �3

23. Your figure should suggest that y.2/ � 1; the actual value is

closer to 1.004.

0 1 2

0

1

2

x

y

(0, 0)

(2, ?)

–1–2

–1

–2

24. y.2/ � 1:5

25. Your figure should suggest that the limiting velocity is about 20

ft/sec (quite survivable) and that the time required to reach
19 ft/sec is a little less than 2 seconds. An exact solution gives

v.t/ D 19 when t D 5
8

ln 20 � 1:8723.

0 1 2 3 4 5
0
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10

15

20

25

30

35

40
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v

26. A figure suggests that there are 40 deer after about 60 months; a

more accurate value is t � 61:61. The limiting population is 75
deer.

27. The initial value problem y
0 D 2

p
y, y.0/ D b has no solution

if b < 0; a unique solution if b > 0; infinitely many solutions if
b D 0.

x

y

(0,0) 

28. The initial value problem xy
0 D y, y.a/ D b has a unique

solution if a 6D 0; infinitely many solutions if a D b D 0; no

solution if a D 0 but b 6D 0.

29. The initial value problem y
0 D 3y

2=3, y.a/ D b always has
infinitely many solutions defined for all x. However, if b 6D 0
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then it has a unique solution near x D a.

x

y

30. The initial value problem y
0 D �

p

1 � y
2, y.a/ D b has a

unique solution if jbj < 1; no solution if jbj > 1, and infinitely

many solutions (defined for all x) if b D ˙1.

31. The initial value problem y
0 D

p

1 � y
2, y.a/ D b has a

unique solution if jbj < 1; no solution if jbj > 1, and infinitely
many solutions (defined for all x) if b D ˙1.

1

x

y

–1

π/2–π/2

32. The initial value problem y
0 D 4x

p
y, y.a/ D b has infinitely

many solutions (defined for all x) if b = 0; no solutions if b < 0.

However, if b > 0 then it has a unique solution near x D a.

33. The initial value problem x
2
y

0 C y
2 D 0, y.a/ D b has a

unique solution with initial point .a; b/ if a 6D 0, no solution if
a D 0 but b 6D 0, infinitely many solutions if a D b D 0.

x
0 4 62

0y

–2

–4 –2

–4

–6
–6

2

4

6

34. (a) If y.�1/ D �1:2 then y.1/ � �0:48. If y.�1/ D �0:8

then y.1/ � 2:48. (b) If y.�3/ D �3:01 then

y.3/ � �1:0343.
If y.�3/ D �2:99 then y.3/ � 7:0343.

35. (a) If y.�3/ D �0:2 then y.2/ � 2:019. If y.�3/ D C0:2

then y.2/ � 2:022. In either case, y.2/ � 2:02.

(b) If y.�3/ � �0:5 then y.2/ � 2:017. If y.�3/ � C0:5

then y.2/ � 2:024. In either case, y.2/ � 2:02.

Section 1.4

1. y.x/ D C exp.�x
2
/ 2. y.x/ D 1=.x

2 C C /

3. y.x/ D C exp.� cos x/ 4. y.x/ D C.1 C x/
4

5. y.x/ D sin
�

C C
p

x

�

6. y.x/ D .x
3=2 C C /

2

7. y.x/ D .2x
4=3 C C /

3=2 8. y.x/ D sin�1
.x

2 C C /

9. y.x/ D C.1 C x/=.1 � x/

10. y.x/ D .1 C x/=Œ1 C C.1 C x/� � 1

11. y.x/ D .C � x
2
/
�1=2

12. y
2 C 1 D Ce

x2

13. ln.y
4 C 1/ D C C 4 sin x

14. 3y C 2y
3=2 D 3x C 2x

3=2 C C

15. 1=.3y
3
/ � 2=y D 1=x C ln jxj C C

16. y.x/ D sec�1
.C

p
1 C x

2
/

17. ln j1 C yj D x C 1
2

x
2 C C

18. y.x/ D tan

�

C �
1

x

� x

�

19. y.x/ D 2 exp.e
x

/ 20. y.x/ D tan.x
3 C �=4/

21. y
2 D 1 C

p
x

2 � 16 22. y.x/ D �3 exp.x
4 � x/

23. y.x/ D 1
2

.1 C e
2x�2

/ 24. y.x/ D �
2

sin x

25. y.x/ D x exp.x
2 � 1/ 26. y.x/ D 1=.1 � x

2 � x
3
/

27. y D ln.3e
2x � 2/ 28. y.x/ D tan�1

.

p
x � 1/

29. (a) General solution y.x/ D �1=.x � C /; (b) The singular
solution y.x/ � 0. (c) In the following figure we see that there

is a unique solution through every point of the xy- plane.

0 2 4 6

0

2

4

6

x

y

–2

– 4

–6
–6 –4 –2

30. General solution y.x/ D .x � C /
2; singular solution y.x/ � 0.

(a) No solution if b < 0; (b) Infinitely many solutions (for all
x) if b = 0; (c) Two solutions near .a; b/ if b > 0.

31. Separation of variables gives the same general solution
y D .x � C /

2 as in Problem 30, but the restriction that

y
0 D 2

p
y = 0 implies that only the right halves of the

parabolas qualify as solution curves. In the figure below we see

that through the point .a; b/ there passes (a) No solution curve if
b < 0, (b) a unique solution curve if b > 0, (c) Infinitely many
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solution curves if b D 0.

0 5 10 15

0

25

50

75

x

y

–5–10–15

32. General solution y.x/ D ˙ sec.x � C /; singular solutions

y.x/ � ˙1.
(a) No solution if jbj < 1; (b) A unique solution if jbj > 1;

(c) Infinitely many solutions if b D ˙1.

33. About 51840 persons 34. t � 3:87 hr

35. About 14735 years 36. Age about 686 years

37. $21103:48 38. $44.52

39. 2585 mg 40. About 35 years

41. About 4:86 � 10
9 years ago

42. About 1.25 billion years

43. After a total of about 63 min have elapsed

44. About 2.41 minutes

45. (a) 0:495 m; (b .8:32 � 10
�7

/I0; (c) 3:29 m

46. (a) About 9.60 inches; (b) About 18,200 ft

47. After about 46 days

48. About 6 billion years

49. After about 66 min 40 s

50. (a) A.t/ D 10 � 3
2t=15; (b) About 20.80 pu; (c) About 15.72

years

51. (a) A.t/ D 15 � .
2
3

/
t=5; (b) approximately 7.84 su; (c) After

about 33.4 months

52. About 120 thousand years ago

53. About 74 thousand years ago

54. 3 hours 55. 972 s

56. At time t D 2048=1562 � 1:31 (in hours)

58. 1:20 P.M.

59. (a) y.t/ D .8 � 7t/
2=3; (b) at 1:08:34 P.M.;

(c) r D 1
60

q

7
12

� 0:15 (in.)

60. About 6 min 3 sec

61. Approximately 14 min 29 s

62. The tank is empty about 14 seconds after 2:00 P.M.

63. (a) 1:53:34 P.M.; (b) r � 0:04442 ft � 0:53 in.

64. r D 1
720

p
3 ft, about 1

35
in.

65. At approximately 10:29 A.M.

Section 1.5

1. y.x/ D 2.1 � e
�x

/ 2. y.x/ D .3x C C /e
2x

3. y.x/ D e
�3x

.x
2 C C / 4. y.x/ D .x C C /e

x2

5. y.x/ D x C 4x
�2 6. y.x/ D x

2 C 32=x
5

7. y.x/ D 5x
1=2 C Cx

�1=2 8. y.x/ D 3x C Cx
�1=3

9. y.x/ D x.7 C ln x/ 10. y.x/ D 3x
3 C Cx

3=2

11. y.x/ � 0 12. y.x/ D 1
4

x
5 � 56x

�3

13. y.x/ D .e
x C e

�x
/=2 14. y.x/ D x

3 ln x C 10x
3

15. y.x/ D Œ1 � 5 exp.�x
2
/�=2

16. y.x/ D 1 C e
� sin x

17. y.x/ D .1 C sin x/=.1 C x/

18. y.x/ D x
2
.sin x C C /

19. y.x/ D 1
2

sin x C C csc x

20. y.x/ D �1 C exp
�

x C 1
2

x
2
�

21. y.x/ D x
3 sin x

22. y.x/ D .x
3 C 5/e

x2

23. y.x/ D x
3
.2 C Ce

�2x
/

24. y.x/ D 1
3

Œ1 C 16.x
2 C 4/

�3=2
�

25. y.x/ D
�

exp
�

� 3
2

x
2
�� �

3.x
2 C 1/

3=2 � 2

�

26. x.y/ D 1=2y
2 C C=y

4

27. x.y/ D e
y
�

C C 1
2

y
2
�

28. x.y/ D 1
2

Œy C .1 C y
2
/.tan�1

y C C /�

30. y.x/ D x
1=2

R x

1 t
�1=2 cos t dt

29. y.x/ D
�

exp.x
2
/

� �

C C 1
2

p
� erf.x/

�

32. (a) y.x/ D sin x � cos x; (b) y.x/ D Ce
�x C sin x � cos x;

(c) y.x/ D 2e
�x C sin x � cos x

33. After about 7 min 41 s

34. About 22:2 days

35. About 5:5452 years

36. (a) x.t/ D .60 � t/ � .60 � t/
3
=3600; (b) About 23.09 lb

37. 393:75 lb

38. (a) x.t/ D 50e
�t=20; (b) y.t/ D 150e

�t=40 � 100e
�t=20;

(c) 56.25 lb

39. (b) ymax D 100e
�1 � 36:79 (gal)

41. (b) Approximately $1,308,283

43. �50:0529, �28:0265, �6:0000, 16:0265, 38:0529

44. 3:99982, 4:00005, 4:00027, 4:00050, 4:00073

45. x.t/ D 20.1 � e
�t=10

/; x D 10 after t D 10 ln 2 � 6:93

months.

46. x.t/ D 20
101

.101 � 102e
�t=10 C cos t C 10 sin t/; x D 10

after t D 6:47 months.

Section 1.6

1. x
2 � 2xy � y

2 D C 2. y
2 D x

2
.ln x C C /

3. y.x/ D x .C C ln jxj/2

4. 2 tan�1
.y=x/ � ln.y

2
=x

2 C 1/ D 2 ln x C C

5. ln jxyj D C C xy
�1 6. 2y ln y D x C Cy

7. y
3 D 3x

3
.C C ln jxj/ 8. y D �x ln.C � ln x/

9. y.x/ D x= .C � ln jxj/ 10. x
2 C 2y

2 D Cx
6

11. y D C.x
2 C y

2
/

12. 4x
2 C y

2 D x
2
.ln x C C /

2

13. y C
p

x
2 C y

2 D Cx
2 14. x �

p

x
2 C y

2 D C

15. x
2
.2xy C y

2
/ D C

16. x D 2

p
x C y C 1 � 2 ln

�

1 C
p

x C y C 1

�

C C

17. y.x/ D �4x C 2 tan.2x C C /

18. y D ln.x C y C 1/ C C

19. y
2 D x=.2 C Cx

5
/ 20. y

3 D 3 C Ce
�3x2

21. y
2 D 1=.Ce

�2x � 1/ 22. y
3 D 7x=.7Cx

7 C 15/

23. y.x/ D .x C Cx
2
/
�3 24. y

2 D e
2x

=.C C ln x/

25. 2x
3
y

3 D 3

p
1 C x

4 C C 26. y
3 D e

�x
.x C C /

27. y.x/ D .x
4 C Cx/

1=3 28. y D ln.Cx
2 C x

2
e

2x
/

29. sin2
y D 4x

2 C Cx 30. x
2 � 2xe

y � e
2y D C

31. x
2 C 3xy C y

2 D C 32. 2x
2 � xy C 3y

2 D C

33. x
3 C 2xy

2 C 2y
3 D C 34. x

3 C x
2
y

2 C y
4 D C

35. 3x
4 C 4y

3 C 12y ln x D C 36. x C e
xy C y

2 D C

37. sin x C x ln y C e
y D C

38. x
2 C 2x tan�1

y C ln.1 C y
2
/ D C
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39. 5x
3
y

3 C 5xy
4 C y

5 D C

40. e
x sin y C x tan y D C

41. x
2
y

�1 C y
2
x

�3 C 2y
1=2 D C

42. xy
�2=3 C x

�3=2
y D C

43. y.x/ D Ax
2 C B 44. x.y/ D Ay

2 C B

45. y.x/ D A cos 2x C B sin 2x 46. y.x/ D x
2 C A ln x C B

47. y.x/ D A � ln jx C Bj 48. y.x/ D ln x CAx
�2 CB

49. y.x/ D ˙.A C Be
x

/
1=2

50. y.x/ D ln j sec.x C A/j � 1
2

x
2 C B

51. x.y/ D � 1
3

.y
3 C Ay C B/ 52. Ay

2 � .Ax C B/
2 D 1

53. y.x/ D A tan.Ax C B/ 54. Ay
2
.B � x/ D 1

58. y D exp.x
2 C C=x

2
/

59. x
2 � 2xy � y

2 � 2x � 6y D C

60. .x C 3y C 3/
5 D C.y � x � 5/

61. x D tan.x � y/ C sec.x � y/ C C

64. y.x/ D x C e
�x2 �

C C 1
2

p
� erf.x/

��1

65. y.x/ D x C .C � x/
�1

69. Approximately 3:68 mi

Chapter 1 Review Problems

1. Linear: y.x/ D x
3
.C C ln x/

2. Separable: y.x/ D x=.3 � Cx � x ln x/

3. Homogeneous: y.x/ D x=.C � ln x/

4. Exact: x
2
y

3 C e
x � cos y D C

5. Separable: y.x/ D C exp.x
�3 � x

�2
/

6. Separable: y.x/ D x=.1 C Cx C 2x ln x/

7. Linear: y.x/ D x
�2

.C C ln x/

8. Homogeneous: y.x/ D 3Cx=.C � x
3
/ D 3x=.1 C Kx

3
/

9. Bernoulli: y.x/ D .x
2 C Cx

�1
/
2

10. Separable: y.x/ D tan
�

C C x C 1
3

x
3
�

11. Homogeneous: y.x/ D x=.C � 3 ln x/

12. Exact: 3x
2
y

3 C 2xy
4 D C

13. Separable: y.x/ D 1=.C C 2x
2 � x

5
/

14. Homogeneous: y
2 D x

2
=.C C 2 ln x/

15. Linear: y.x/ D .x
3 C C /e

�3x

16. Substitution: v D y � x; solution:
y � x � 1 D Ce

2x
.y � x C 1/

17. Exact: e
x C e

y C e
xy D C

18. Homogeneous: y
2 D Cx

2
.x

2 � y
2
/

19. Separable: y.x/ D x
2
=.x

5 C Cx
2 C 1/

20. Linear: y.x/ D 2x
�3=2 C Cx

�3

21. Linear: y.x/ D ŒC C ln.x � 1/�=.x C 1/

22. Bernoulli: y.x/ D .2x
4 C Cx

2
/
3

23. Exact: xe
y C y sin x D C

24. Separable: y.x/ D x
1=2

=.6x
2 C Cx

1=2 C 2/

25. Linear: y.x/ D .x C 1/
�2

.x
3 C 3x

2 C 3x C C /

D x C 1 C K.x C 1/
�2

26. Exact: 3x
3=2

y
4=3 � 5x

6=5
y

3=2 D C

27. Bernoulli: y.x/ D x
�1

.C C ln x/
�1=3

28. Linear: y.x/ D x
�1

.C C e
2x

/

29. Linear: y.x/ D .x
2 C x C C /.2x C 1/

�1=2

30. Substitution: v D x C y; solution:
x D 2.x C y/

1=2 � 2 lnŒ1 C .x C y/
1=2

� C C

31. Separable and linear 32. Separable and Bernoulli

33. Exact and homogeneous 34. Exact and homogeneous

35. Separable and linear 36. Separable and Bernoulli

Chapter 2

Section 2.1

1. x.t/ D
2

2 � e
�t

0 1 2 3 4 5

0

1

2

3

t

x

–1

2. x.t/ D
10

1 C 9e
�10t

0 1

0

5

10

15

t

x

–5

3. x.t/ D
2 C e

�2t

2 � e
�2t

1 2 3

0

1

2

3

4

t

x

–1

–2
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4. x.t/ D
3.1 � e

�12t
/

2.1 C e
�12t

/

1

0

1

2

3

t

x

–1

–2

–3

5. x.t/ D
40

8 � 3e
�15t

0 0.25 0.5

0

5

10

t

x

–5

6. x.t/ D
10

2 C 3e
15t

0 0.25 0.5

0

5

10

t

x

–5

7. x.t/ D
77

11 � 4e
�28t

0 0.1

0

5

10

15

t

x

–5

8. x.t/ D
221

17 � 4e
91t

0 0.01 0.02

0

10

20

30

t

x

–10

9. 484 10. 20 weeks

11. (b) P.t/ D
�

1
2

t C 10

�2

12. P.t/ D
240

20 � t

13. P.t/ D
180

30 � t

14. P.t/ D
P0

1 C kP0t

16. About 27:69 months 17. About 44:22 months

19. About 24:41 months

20. About 42:12 months

21.
200

1 C e
�6=5

� 153:7 million

22. About 34:66 days

23. (a) lim
t!1

x.t/ D 200 grams (b) 5
4

ln 3 � 1:37 seconds

24. About 9:24 days

25. (a) M D 100 and k D 0:0002; (b) In the year 2075

26. 50 ln 9
8

� 5:89 months

27. (a) 100 ln 9
5

� 58:78 months; (b) 100 ln 2 � 69:31 months

28. (a) The alligators eventually die out. (b) Doomsday occurs after

about 9 years 2 months.

29. (a) P.140/ � 127:008 million; (b) About 210.544 million;
(c) In 2000 we get P � 196:169, whereas the actual 2000

population was about 281.422 million.

31. ˛ � 0:3915; 2:15 � 10
6 cells

37. k � 0:0000668717, M � 338:027

38. k � 0:000146679, M � 208:250

39. P.t/ D P0 exp

�

kt C
b

2�

sin 2�t

�

; the colored curve in the

figure below shows the graph with P0 D 100, k D 0:03, and

b D 0:06. It oscillates about the black curve which represents
natural growth with P0 D 100 and k D 0:03. We see that the
two agree at the end of each full year.

1 2 3 4 5
t

105

110

115

120

P



686 Answers to Selected Problems

Section 2.2

1. Unstable critical point: x D 4;

x.t/ D 4 C .x0 � 4/e
t

0 1 2 3 4 5
0

4

8

t

x

2. Stable critical point: x D 3;

x.t/ D 3 C .x0 � 3/e
�t

0 1 2 3 4 5
0

3

6

t

x

3. Stable critical point: x D 0; unstable critical point: x D 4;

x.t/ D
4x0

x0 C .4 � x0/e
4t

0 1 2 3 4 5

0

4

8

t

x

–4

4. Stable critical point: x D 3; unstable critical point: x D 0;

x.t/ D
3x0

x0 C .3 � x0/e
�3t

0 1 2 3 4 5

0

3

6

t

x

–3

5. Stable critical point: x D �2; unstable critical point: x D 2;

x.t/ D
2Œx0 C 2 C .x0 � 2/e

4t
�

x0 C 2 � .x0 � 2/e
4t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

t

x

–2

6. Stable critical point: x D 3; unstable critical point: x D �3;

x.t/ D
3Œx0 � 3 C .x0 C 3/e

6t
�

3 � x0 C .x0 C 3/e
6t

0 1 2 3 4 5

0

3

t

x

–3
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7. Semi-stable (see Problem 18) critical point: x D 2;

x.t/ D
.2t � 1/x0 � 4t

tx0 � 2t � 1

0 1 2 3 4 5

0

2

4

t

x

8. Semi-stable critical point: x D 3;

x.t/ D
.3t C 1/x0 � 9t

tx0 � 3t C 1

0 1 2 3 4 5

0

3

6

t

x

9. Stable critical point: x D 1; unstable critical point: x D 4;

x.t/ D
4.1 � x0/ C .x0 � 4/e

3t

1 � x0 C .x0 � 4/e
3t

0 1 2 3 4 5

1

4

7

t

x

–2

10. Stable critical point: x D 5; unstable critical point: x D 2;

x.t/ D
2.5 � x0/ C 5.x0 � 2/e

3t

5 � x0 C .x0 � 2/e
3t

0 1 2 3 4 5

2

5

8

t

x

–1

11. Unstable critical point: x D 1;

1

.x.t/ � 1/
2

D
1

.x0 � 1/
2

� 2t

0 1 2 3 4 5

0

2

4

t

x

–2

12. Stable critical point: x D 2;

1

.2 � x.t//
2

D
1

.2 � x0/
2

C 2t

0 1 2 3 4 5

0

2

4

6

t

x

–2
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For each of Problems 13 through 18 we show a plot of slope field and

typical solution curves. The equilibrium solutions of the given
differential equation are labeled, and the stability or instability of

each should be clear from the picture.

13.

0 1 2 3 4

0

2

4

t

x

–2

–4

x' = (x + 2)(x–2)2

x = –2

x = 2

14.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = 0

x = –2

x' = x(x2 – 4)

15.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = –2

x' = (x2 – 4)2

16.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = –2

x' = (x2 – 4)3

17.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = –2

x' = x2 (x2 – 4)

x = 0

18.

0 1 2 3

0

2

t

x
–2

x = 2

x = –2

x' = x3 (x2 – 4)

x = 0

19. There are two critical points if h < 2
1
2

, one critical point if

h D 2
1
2

, and no critical points if h > 2
1
2

. The bifurcation

diagram is the parabola .c � 5/
2 D 25 � 10h in the hc-plane.

20. There are two critical points if s <
1

16
, one critical point if

s D 1
16

, and no critical points if s >
1

16
. The bifurcation diagram

is the parabola .2c � 5/
2 D 25.1 � 16s/ in the sc-plane.

Section 2.3

1. Approximately 31:5 s

3. 400=.ln 2/ � 577 ft

5. 400 ln 7 � 778 ft

7. (a) 100 ft/sec; (b) about 23 sec and 1403 ft to reach 90 ft/sec

8. (a) 100 ft/sec; (b) about 14.7 sec and 830 ft to reach 90 ft/sec

9. 50 ft=s

10. About 5 min 47 s

11. Time of fall: about 12:5 s

12. Approximately 648 ft

19. Approximately 30:46 ft=s; exactly 40 ft=s

20. Approximately 277:26 ft

22. Approximately 20:67 ft=s; about 484:57 s

23. Approximately 259:304 s

24. (a) About 0:88 cm; (b) about 2:91 km

25. (b) About 1.389 km/sec; (c) rmax D 100R=19 � 5:26R

26. Yes

28. (b) After about 8
1
2

minutes it hits the surface at about 4.116
km/sec.

29. About 51.427 km

30. Approximately 11.11 km/sec (as compared with the earth’s
escape velocity of about 11.18 km/sec).
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Section 2.4

In Problems 1 through 10 we round off the indicated values to 3

decimal places.

1. Approximate values 1.125 and 1.181; true value 1.213

2. Approximate values 1.125 and 1.244; true value 1.359

3. Approximate values 2.125 and 2.221; true value 2.297

4. Approximate values 0.625 and 0.681; true value 0.713

5. Approximate values 0.938 and 0.889; true value 0.851

6. Approximate values 1.750 and 1.627; true value 1.558

7. Approximate values 2.859 and 2.737; true value 2.647

8. Approximate values 0.445 and 0.420; true value 0.405

9. Approximate values 1.267 and 1.278; true value 1.287

10. Approximate values 1.125 and 1.231; true value 1.333

Problems 11 through 24 call for tables of values that would occupy
too much space for inclusion here. In Problems 11 through 16 we give

first the final x-value, next the corresponding approximate y-values
obtained with step sizes h D 0:01 and h D 0:005, and then the final
true y-value. (All y-values rounded off accurate to 4 decimal places.)

11. 1:0; �0:7048; �0:7115; �0:7183

12. 1:0; 2:9864; 2:9931; 3:0000

13. 2:0; 4:8890; 4:8940; 4:8990

14. 2:0; 3:2031; 3:2304; 3:2589

15. 3:0; 3:4422; 3:4433; 3:4444

16. 3:0; 8:8440; 8:8445; 8:8451

In Problems 17 through 24 we give first the final x-value and then the
corresponding approximate y-values obtained with step sizes

h D 0:1, h D 0:02, h D 0:004, and h D 0:0008 respectively. (All
y-values rounded off accurate to 4 decimal places.)

17. 1:0; 0:2925; 0:3379; 0:3477; 0:3497

18. 2:0; 1:6680; 1:6771; 1:6790; 1:6794

19. 2:0; 6:1831; 6:3653; 6:4022; 6:4096

20. 2:0; �1:3792; �1:2843; �1:2649; �1:2610

21. 2:0; 2:8508; 2:8681; 2:8716; 2:8723

22. 2:0; 6:9879; 7:2601; 7:3154; 7:3264

23. 1:0; 1:2262; 1:2300; 1:2306; 1:2307

24. 1:0; 0:9585; 0:9918; 0:9984; 0:9997

25. With both step sizes h D 0:01 and h D 0:005, the approximate
velocity after 1 second is 16.0 ft/sec (80% of the limiting

velocity of 20 ft/sec); after 2 seconds it is 19.2 ft/sec (96% of the
limiting velocity).

26. With both step sizes h D 1 and h D 0:5, the approximate
population after 5 years is 49 deer (65% of the limiting

population of 75 deer); after 10 years it is 66 deer (88% of the
limiting population).

27. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first

four approximations to y.2/ we obtain are 0.7772, 0.9777,
1.0017, and 1.0042. It therefore seems likely that y.2/ � 1:00.

28. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first
four approximations to y.2/ we obtain are 1.2900, 1.4435,

1.4613, and 1.4631. It therefore seems likely that y.2/ � 1:46.

29.

h D 0:15 h D 0:03 h D 0:006

x y y y

�1:0

�0:7

�0:4

�0:1

0.2

0.5

1.0000

1.0472

1.1213

1.2826

0.8900

0.7460

1.0000

1.0512

1.1358

1.3612

1.4711

1.2808

1.0000

1.0521

1.1390

1.3835

0.8210

0.7192

30.

h D 0:1 h D 0:01

x y y

1.8

1.9

2.0

2.8200

3.9393

5.8521

4.3308

7.9425

28.3926

31.

h D 0:1 h D 0:01

x y y

0.7

0.8

0.9

4.3460

5.8670

8.3349

6.4643

11.8425

39.5010

Section 2.5

1.

Improved Actual
x Euler y y

0.1

0.2

0.3

0.4

0.5

1.8100

1.6381

1.4824

1.3416

1.2142

1.8097

1.6375

1.4816

1.3406

1.2131

Note: In Problems 2 through 10, we give the value of x, the

corresponding improved Euler value of y, and the true value of y.

2. 0:5; 1:3514; 1:3191 3. 0:5; 2:2949; 2:2974

4. 0:5; 0:7142; 0:7131 5. 0:5; 0:8526; 0:8513

6. 0:5; 1:5575; 1:5576 7. 0:5; 2:6405; 2:6475

8. 0:5; 0:4053; 0:4055 9. 0:5; 1:2873; 1:2874

10. 0:5; 1:3309; 1:3333

In Problems 11 through 16 we give the final value of x, the
corresponding values of y with h D 0:01 and with h D 0:005, and

the true value of y.

11. 1:0; �0:71824; �0:71827; �0:71828

12. 1:0; 2:99995; 2:99999; 3:00000

13. 2:0; 4:89901; 4:89899; 4:89898

14. 2:0; 3:25847; 3:25878; 3:25889

15. 3:0; 3:44445; 3:44445; 3:44444

16. 3:0; 8:84511; 8:84509; 8:84509

In Problems 17 through 24 we give the final value of x and the
corresponding values of y for h D 0:1, 0:02, 0:004, and 0:0008.

17. 1:0; 0:35183; 0:35030; 0:35023; 0:35023

18. 2:0; 1:68043; 1:67949; 1:67946; 1:67946

19. 2:0; 6:40834; 6:41134; 6:41147; 6:41147

20. 2:0; �1:26092; �1:26003; �1:25999; �1:25999

21. 2:0; 2:87204; 2:87245; 2:87247; 2:87247

22. 2:0; 7:31578; 7:32841; 7:32916; 7:32920

23. 1:0; 1:22967; 1:23069; 1:23073; 1:23073

24. 1:0; 1:00006; 1:00000; 1:00000; 1:00000

25. With both step sizes h D 0:01 and h D 0:005 the approximate
velocity after 1 second is 15.962 ft/sec (80% of the limiting

velocity of 20 ft/sec); after 2 seconds it is 19.185 ft/sec (96% of
the limiting velocity).
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26. With both step sizes h D 1 and h D 0:5 the approximate

population after 5 years is 49.391 deer (65% of the limiting
population of 75 deer); after 10 years it is 66.113 deer (88% of

the limiting population).

27. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first

three approximations to y.2/ we obtain are 1.0109, 1.0045, and
1.0045. It therefore seems likely that y.2/ � 1:0045.

28. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first

four approximations to y.2/ we obtain are 1.4662, 1.4634,
1.4633, and 1.4633. It therefore seems likely that

y.2/ � 1:4633.

29. Impact speed approximately 43.22 m/s

30. Impact speed approximately 43.48 m/s

Section 2.6

1. y.0:25/ � 1:55762; y.0:25/ D 1:55760.

y.0:5/ � 1:21309; y.0:5/ D 1:21306.
Solution: y D 2e

�x

In Problems 2 through 10 we give the approximation to y.0:5/, its
true value, and the solution.

2. 1:35867; 1:35914I y D 1
2

e
2x

3. 2:29740; 2:29744I y D 2e
x � 1

4. 0:71309; 0:71306I y D 2e
�x C x � 1

5. 0:85130; 0:85128I y D �e
x C x C 2

6. 1:55759; 1:55760I u D 2 exp
�

�x
2
�

7. 2:64745; 2:64749I y D 3 exp
�

�x
3
�

8. 0:40547; 0:40547I y D ln.x C 1/

9. 1:28743; 1:28743I y D tan 1
4

.x C �/

10. 1:33337; 1:33333I y D .1 � x
2
/
�1

11. Solution: y.x/ D 2 � e
x .

h D 0:2 h D 0:1 Exact
x y y y

0.0

0.2

0.4

0.6

0.8

1.0

1.00000

0.77860

0.50818

0.17789

�0:22552

�0:71825

1.00000

0.77860

0.50818

0.17788

�0:22554

�0:71828

1.00000

0.77860

0.50818

0.17788

�0:22554

�0:71828

In Problems 12 through 16 we give the final value of x, the

corresponding Runge-Kutta approximations with h D 0:2 and with
h D 0:1, the exact value of y, and the solution.

12. 1:0; 2:99996; 3:00000; 3:00000;
y D 1 C 2=.2 � x/

13. 2:0; 4:89900; 4:89898; 4:89898;

y D
p

8 C x
4

14. 2:0; 3:25795; 3:25882; 3:25889;
y D 1=.1 � ln x/

15. 3:0; 3:44445; 3:44444; 3:44444;
y D x C 4x

�2

16. 3:0; 8:84515; 8:84509; 8:84509;

y D .x
6 � 37/

1=3

In Problems 17 through 24 we give the final value of x and the

corresponding values of y with h D 0:2, 0:1, 0:05, and 0:025.

17. 1:0; 0:350258; 0:350234; 0:350232; 0:350232

18. 2:0; 1:679513; 1:679461; 1:679459; 1:679459

19. 2:0; 6:411464; 6:411474; 6:411474; 6:411474

20. 2:0; �1:259990; �1:259992; �1:259993,

�1:259993

21. 2:0; 2:872467; 2:872468; 2:872468; 2:872468

22. 2:0; 7:326761; 7:328452; 7:328971; 7:329134

23. 1:0; 1:230735; 1:230731; 1:230731; 1:230731

24. 1:0; 1:000000; 1:000000; 1:000000; 1:000000

25. With both step sizes h D 0:1 and h D 0:05, the approximate
velocity after 1 second is 15.962 ft/sec (80% of the limiting

velocity of 20 ft/sec); after 2 seconds it is 19.185 ft/sec (96% of
the limiting velocity).

26. With both step sizes h D 6 and h D 3, the approximate

population after 5 years is 49.3915 deer (65% of the limiting
population of 75 deer); after 10 years it is 66.1136 deer (88% of
the limiting population).

27. With successive step sizes h D 1; 0:1; 0:01; : : : the first four

approximations to y.2/ we obtain are 1.05722, 1.00447,
1.00445and 1.00445. Thus it seems likely that y.2/ � 1:00445

accurate to 5 decimal places.

28. With successive step sizes h D 1; 0:1; 0:01; : : : the first four
approximations to y.2/ we obtain are 1.48990, 1.46332,

1.46331, and 1.46331. Thus it seems likely that y.2/ � 1:4633

accurate to 5 decimal places.

29. Time aloft: approximately 9.41 seconds

30. Time aloft: approximately 9.41 seconds

Chapter 3

Section 3.1

1. x D 3, y D 2

2. x D 5, y D �3

3. x D �4, y D 3

4. x D 5, y D 4

5. Inconsistent—no solution

6. Inconsistent—no solution

7. x D �10 C 4t , y D t (infinitely many solutions)

8. x D 4 C 2t , y D t (infinitely many solutions)

9. x D 4, y D �1, ´ D 3

10. x D 3, y D 1, ´ D �2

11. x D 1, y D 3, ´ D �4

12. x D 1, y D 3, ´ D 5

13. x D y D ´ D 0

14. x D 5, y D 3, ´ D �4

15. Inconsistent—no solution

16. Inconsistent—no solution

17. Inconsistent—no solution

18. Inconsistent—no solution

19. x D 8 C 3t , y D 3 C 2t , ´ D t (infinitely many solutions)

20. x D �5t , y D 5 C t , ´ D t (infinitely many solutions)

21. x D 3 � 2t , y D 2 C 3t , ´ D t (infinitely many solutions)

22. x D �4t , y D �5t , ´ D t (infinitely many solutions)

23. y.x/ D 3 cos 2x C 4 sin 2x

24. y.x/ D 5 cosh 3x C 4 sinh 3x

25. y.x/ D 7e
5x C 3e

�5x

26. y.x/ D 23e
11x C 21e

�11x

27. y.x/ D 23e
3x C 17e

�5x

28. y.x/ D 23e
3x � 8e

7x

29. y.x/ D 52e
x=2 � 45e

x=3

30. y.x/ D 81e
4x=3 � 40e

�7x=5

31. Suggestion: The two lines both pass through the origin.

32. Suggestion: Two distinct planes in space either are parallel or
intersect in a straight line.
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33. (a) No solution (b) A unique solution (c) No solution (d) No

solution (e) A unique solution (f) Infinitely many solutions

34. (a) No solution (b) Infinitely many solutions (c) No solution

(d) No solution (e) Infinitely many solutions (f) A unique
solution

Section 3.2

1. x1 D 1, x2 D 0, x3 D 2

2. x1 D 5, x2 D 1, x3 D �3

3. x1 D 13 C 11t , x2 D 2 C 5t , x3 D t

4. x1 D 35 C 33t , x2 D 5 C 7t , x3 D t

5. x1 D 13 C 4t , x2 D 6 C t , x3 D 5 C 3t , x4 D t

6. x1 D 17 C t , x2 D 11 C 3t , x3 D t , x4 D �4

7. x1 D 3 � 8s C 19t , x2 D 7 C 2s � 7t , x3 D s, x4 D t

8. x1 D �25 C 10s C 22t , x2 D s, x3 D 10 � 3t , x4 D t

9. x1 D 1, x2 D 3, x3 D �5, x4 D 6

10. x1 D 63s � 16t , x2 D 13s � 8t , x3 D s, x4 D 5t , x5 D t

11. x1 D 3, x2 D �2, x3 D 4

12. x1 D 5, x2 D �3, x3 D 2

13. x1 D 4 C 3t , x2 D 3 � 2t , x3 D t

14. x1 D 5 C 2t , x2 D t , x3 D 7

15. Inconsistent—no solution

16. Inconsistent—no solution

17. x1 D 3 � 2t , x2 D �4 C t , x3 D 5 � 3t , x4 D t

18. x1 D 4 C 2s � 3t , x2 D s, x3 D 3 � 4t , x4 D t

19. x1 D 3 � s � t , x2 D 5 C 2s � 3t , x3 D s, x4 D t

20. x1 D 2 C 3t , x2 D 1 C s � 2t , x3 D 2 C 2s, x4 D s, x5 D t

21. x1 D 2, x2 D 1, x3 D 3, x4 D 4

22. x1 D 3, x2 D �2, x3 D 4, x4 D �1

23. (a) None (b) k 6D 2 (c) k D 2

24. (a) k 6D 2 (b) None (c) k D 4

25. (a) k 6D 4 (b) k D 4 (c) None

26. (a) All k (b) None (c) None

27. (a) None (b) k 6D 11 (c) k D 11

28. No solution unless c D 2a C 3b, in which case it has infinitely

many solutions.

Section 3.3

1.

�

1 0

0 1

�

2.

�

1 0

0 1

�

3.

�

1 0 �2

0 1 3

�

4.

�

1 0 2

0 1 �1

�

5.

�

1 0 �5

0 1 �3

�

6.

�

1 0 7

0 1 �6

�

7.

2

4

1 0 5

0 1 �1

0 0 0

3

5 8.

2

4

1 0 0

0 1 0

0 0 1

3

5

9.

2

4

1 0 2

0 1 4

0 0 0

3

5 10.

2

4

1 0 �3

0 1 5

0 0 0

3

5

11.

2

4

1 3 0

0 0 1

0 0 0

3

5 12.

2

4

1 �4 0

0 0 1

0 0 0

3

5

13.

2

4

1 0 0 3

0 1 0 �2

0 0 1 2

3

5 14.

2

4

1 0 0 4

0 1 0 �3

0 0 1 5

3

5

15.

2

4

1 0 �1 2

0 1 3 �1

0 0 0 0

3

5 16.

2

4

1 0 3 �2

0 1 4 3

0 0 0 0

3

5

17.

2

4

1 0 0 2 �3

0 1 0 �1 4

0 0 1 �2 �5

3

5

18.

2

4

1 0 3 �2 3

0 1 4 5 1

0 0 0 0 0

3

5

19.

2

4

1 0 2 1 3

0 1 �2 �3 1

0 0 0 0 0

3

5

20.

2

4

1 2 0 2 3

0 0 1 1 4

0 0 0 0 0

3

5

21. x1 D 3, x2 D �2, x3 D 4

22. x1 D 5, x2 D �3, x3 D 2

23. x1 D 4 C 3t , x2 D 3 � 2t , x3 D t

24. x1 D 5 C 2t , x2 D t , x3 D 7

25. Inconsistent—no solution

26. Inconsistent—no solution

27. x1 D 3 � 2t , x2 D �4 C t , x3 D 5 � 3t , x4 D t

28. x1 D 4 C 2s � 3t , x2 D s, x3 D 3 � 4t , x4 D t

29. x1 D 3 � s � t , x2 D 5 C 2s � 3t , x3 D s, x4 D t

30. x1 D 2 C 3t , x2 D 1 C s � 2t , x3 D 2 C 2s, x4 D s, x5 D t

31. The sequence 1
6

R3, R2 � 5R3, 1
4

R2, R1 � 2R2, R1 � 3R3 of
row operations transforms the first matrix to the identity matrix.

33.

�

1 0

0 1

�

,

�

1 �
0 0

�

,

�

0 1

0 0

�

,

�

0 0

0 0

�

Section 3.4

1.

�

5 �15

18 5

�

2.

�

16 �9 �18

�26 22 15

�

3.

2

4

�26 20

12 �6

22 18

3

5 4.

2

4

44 �22 �20

53 10 �26

35 21 94

3

5

5. AB D

�

�9 1

�10 12

�

, BA D

�

�2 8

11 5

�

6. AB D

2

4

7 �13 �24

23 10 41

11 �8 57

3

5, BA D

2

4

1 �17 �22

12 16 7

27 �21 57

3

5

7. AB D
�

26

�

, BA D

2

4

3 6 9

4 8 12

5 10 15

3

5

8. AB D

�

21 15

35 0

�

, BA D

2

4

3 0 9

7 �20 13

16 �25 38

3

5

9. BA D

2

4

4

7

�22

3

5 but AB is not defined.

10. AB D

�

1 �2 13

5 �6 31

�

but BA is not defined.

11. AB D
�

11 1 5 3

�

but BA is not defined.

12. Neither product matrix AB nor BA is defined.

13. A.BC/ D .AB/C D

�

32 51

�2 �17

�

14. A.BC/ D .AB/C D
�

�3

�

15. A.BC/ D .AB/C D

�

12 15

8 10

�

16. A.BC/ D .AB/C D

2

4

�4 �4 �2 2

�9 �12 �9 12

�14 �18 �13 17

3

5

17. x D s.5; �2; 1; 0/ C t.�4; 7; 0; 1/

18. x D s.3; 1; 0; 0/ C t.�6; 0; �9; 1/

19. x D s.�3; 2; �1; 1; 0/ C t.1; �6; 8; 0; 1/

20. x D s.3; 1; 0; 0; 0/ C t.�7; 0; 2; 10; 0/

21. x D r.1; �2; 1; 0; 0/ C s.�2; 3; 0; 1; 0/ C t.�7; �4; 0; 0; 1/

22. x D r.1; 1; 0; 0; 0/ C s.�7; 0; 1; 1; 0/ C t.�3; 0; 2; 0; 1/
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23. B D

�

2 �1

�3 2

�

24. B D

�

7 �4

�5 3

�

25. B D

�

3 �7

�2 5

�

29. A2 D

�

a
2 C bc ab C bd

ac C dc bc C d
2

�

,

A2 C .ad � bc/I D

�

a
2 C ad ab C bd

ac C dc d
2 C ad

�

D
�

a.a C d/ b.a C d/

c.a C d/ d.a C d/

�

D .a C d/A

31. (a) .A C B/.A � B/ D

�

�25 �34

�71 �34

�

6D

�

�8 �45

�44 �51

�

D A2 � B2

33.

�

1 0

0 1

�

,

�

�1 0

0 �1

�

,

�

C1 0

0 �1

�

,

�

�1 0

0 C1

�

35.

�

2 �1

2 �1

�

37.

�

0 1

�1 0

�

39. A.c1x1 C c2x2/ D c1Ax1 C c2Ax2 D c1 � 0 C c2 � 0 D 0

43. A2 D

2

4

6 �3 �3

�3 6 �3

�3 �3 6

3

5 D 3A

Section 3.5

1. A�1 D

�

3 �2

�4 3

�

, x D

�

3

�2

�

2. A�1 D

�

5 �7

�2 3

�

, x D

�

�26

11

�

3. A�1 D

�

6 �7

�5 6

�

, x D

�

33

�28

�

4. A�1 D

�

17 �12

�7 5

�

, x D

�

25

�10

�

5. A�1 D 1
2

�

4 �2

�5 3

�

, x D 1
2

�

8

�7

�

6. A�1 D 1
3

�

6 �7

�3 4

�

, x D 1
3

�

25

�10

�

7. A�1 D 1
4

�

7 �9

�5 7

�

, x D 1
4

�

3

�1

�

8. A�1 D 1
5

�

10 �15

�5 8

�

, x D 1
5

�

25

�11

�

9. A�1 D

�

5 �6

�4 5

�

10. A�1 D 1
2

�

6 �7

�4 5

�

11. A�1 D

2

4

�5 �2 5

2 1 �2

�4 �3 5

3

5

12. A�1 D

2

4

18 2 �7

�3 0 1

�4 �1 2

3

5

13. A�1 D

2

4

�13 42 �5

3 �9 1

2 �7 1

3

5

14. A�1 D

2

4

11 �7 �9

�4 3 3

�2 1 2

3

5

15. A�1 D

2

4

�22 2 7

�27 3 8

10 �1 �3

3

5

16. A�1 D 1
3

2

4

�3 0 3

�1 �3 �1

�1 3 2

3

5

17. A�1 D 1
4

2

4

�2 �6 �3

�2 �2 �1

�2 �2 1

3

5

18. A�1 D 1
5

2

4

1 2 �2

�5 0 5

�3 �1 6

3

5

19. A�1 D 1
6

2

4

�21 11 8

9 �5 �2

�3 3 0

3

5

20. A�1 D 1
7

2

4

3 1 0

�2 �3 7

�1 2 0

3

5

21. A�1 D

2

6

6

4

0 1 0 0

�2 0 1 0

1 0 0 0

0 �3 0 1

3

7

7

5

22. A�1 D

2

6

6

4

1 �1 1 0

0 �2 �1 2

0 1 1 �1

�3 3 �5 1

3

7

7

5

23. A�1 D

�

4 �3

�5 4

�

, X D

�

7 18 �35

�9 �23 45

�

24. A�1 D

�

7 �6

�8 7

�

, X D

�

14 �30 46

�16 35 �53

�

25. A�1 D

2

4

11 �9 4

�2 2 �1

�2 1 0

3

5, X D

2

4

7 �14 15

�1 3 �2

�2 2 �4

3

5

26. A�1 D

2

4

�16 3 11

6 �1 �4

�13 2 9

3

5, X D

2

4

�21 9 6

8 �3 �2

�17 6 5

3

5

27. A�1 D

2

4

7 �20 17

0 �1 1

�2 6 �5

3

5,

X D

2

4

17 �20 24 �13

1 �1 1 �1

�5 6 �7 4

3

5

28. A�1 D

2

4

�5 5 10

�8 8 15

24 �23 �45

3

5,

X D

2

4

�5 5 10 1

�8 8 15 7

24 �23 �45 �13

3

5

Section 3.6

1. 60 2. 4

3. �210 4. �72

5. 120 6. 60

7. 0 8. 25

9. 30 10. 7

11. 40 12. 10

13. 78 14. �22

15. �74 16. 84

17. 8 18. 135

19. 39 20. 79

21. � D 1, x D 10, y D �7

22. � D 1, x D �1, y D 1

23. � D 1, x D 2, y D �4

24. � D 1, x D 5, y D �3

25. � D 2, x D 6, y D �3

26. � D �2, x D 1
2

, y D 0

27. � D 96, x1 D 1
3

, x2 D � 2
3

, x3 D � 1
3

28. � D 35, x1 D 4
7

, x2 D 3
7

, x3 D 2
7

29. � D 23, x1 D 2, x2 D 3, x3 D 0

30. � D 56, x1 D � 1
7

, x2 D 9
14

, x3 D 2
7

31. � D 14, x1 D � 8
7

, x2 D � 10
7

, x3 D 1
7
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32. � D 6, x1 D � 7
3

, x2 D 9, x3 D 8

33. det A D �4, A�1 D 1
4

2

4

4 4 4

16 15 13

28 25 23

3

5

34. det A D 35, A�1 D 1
4

2

4

�2 �3 12

9 �4 �19

13 2 �8

3

5

35. det A D 35, A�1 D 1
35

2

4

�15 25 �26

10 �5 8

15 �25 19

3

5

36. det A D 23, A�1 D 1
23

2

4

5 20 �17

10 17 �11

1 4 �8

3

5

37. det A D 29, A�1 D 1
29

2

4

11 �14 �15

�17 19 10

18 �15 �14

3

5

38. det A D 6, A�1 D 1
6

2

4

�6 10 2

15 �21 �6

12 �18 �6

3

5

39. det A D 37, A�1 D 1
37

2

4

�21 �1 �13

4 9 6

�6 5 �9

3

5

40. det A D 107, A�1 D 1
107

2

4

9 12 �13

11 �21 �4

�15 �20 �14

3

5

Section 3.7

1. y.x/ D �2 C 3x 2. y.x/ D 4 � 7x

3. y.x/ D 3 � 2x
2 4. y.x/ D 2x C 3x

2

5. y.x/ D 5 � 3x C x
2 6. y.x/ D �10 � 7x C 2x

2

7. y.x/ D 1
3

.4x C 3x
2 � 4x

3
/ 8. y.x/ D 5 C 3x � x

3

9. y.x/ D 4 C 3x C 2x
2 C x

3

10. y.x/ D 17 � 5x C 3x
2 � 2x

3

11. x
2 C y

2 � 6x � 4y � 12 D 0, center .3; 2/ and radius 5

12. x
2 C y

2 C 6x � 8y � 75 D 0, center .�3; 4/ and radius 10

13. x
2 C y

2 C 4x C 4y � 5 D 0, center .�2; �2/ and radius
p

13

14. x
2 C y

2 � 10x � 24y D 0, center .5; 12/ and radius 13

15. x
2 � xy C y

2 D 25

16. 4x
2 � 7xy C 4y

2 D 100

17. 100x
2 � 199xy C 100y

2 D 100

18. 400x
2 � 481xy C 225y

2 D 3600

19. y D 3 C
2

x

20. y D 10x C
8

x

�
16

x
2

21. x
2 C y

2 C ´
2 � 2x � 4y � 6´ � 155 D 0, center .1; 2; 3/ and

radius 13

22. x
2 C y

2 C ´
2 � 10x C 14y � 18´ � 521 D 0, center

.5; �7; 9/ and radius 26

23. P.t/ D 49:061 � 0:0722t C 0:00798t
2

24. P.t/ D 56:590 C 0:30145t � 0:007375t
2

25. P.t/ D 62:813 C 1:37915t � 0:012375t
2

26. P.t/ D 34:838 C 0:7692t C 0:0064t
2

27. P.t/ D 44:678 C 0:850417t � 0:05105t
2 C 0:000983833t

3

28. P.t/ D 51:619C0:672433t �0:019565t
2 C0:000203167t

3

29. P.t/ D 54:973 C 0:308667t C 0:059515t
2 � 0:00119817t

3

30. P.t/ D 28:053C0:592233t C0:00907t
2 �0:0000443333t

3

31. P.t/ D 39:478 C 0:209692t C 0:0564163t
2 �

0:00292992t
3 C 0:0000391375t

4

32. P.t/ D 44:461 C 0:7651t � 0:000489167t
2 �

0:000516t
3 C 7:19167 � 10

�6
t

4

33. P.t/ D 47:197 C 1:22537t � 0:077192t
2 C

0:00373475t
3 � 0:0000493292t

4

34. P.t/ D 20:190 C 1:00003t � 0:031775t
2 C

0:00116067t
3 � 0:000041205t

4

36. y D 2x
2 � 6x C 7

38. x
2 C y

2 C 6x � 8y � 75 D 0, center .�3; 4/ and radius 10

40. 400x
2 � 481xy C 225y

2 � 3600 D 0

Chapter 4

Section 4.1

1.
p

51, .5; 8; �11/, .2; 23; 0/

2. 9, .1; 4; �1/, .�15; �16; 26/

3. 3

p
21, 9i � 3j C 3k, �14i � 21j C 43k

4.
p

17, 4i � j � 3k, 6i � 7j C 12k

5. Linearly dependent 6. Linearly independent

7. Linearly independent 8. Linearly dependent

9. w D 3u C 2v 10. w D 2u � 3v

11. w D u � 2v 12. w D 3u C 5v

13. w D 2u � 3v 14. w D 7u C 5v

15. Linearly dependent 16. Linearly dependent

17. Linearly independent 18. Linearly independent

19. Linearly dependent; a D 3, b D 2, c D 1

20. Linearly dependent; a D �2, b D 3, c D 1

21. Linearly dependent; a D 11, b D 4, c D �1

22. Linearly independent 23. Linearly independent

24. Linearly independent

25. t D 2u � v C 3w 26. t D u C 5v � w

27. t D 2u C 6v C w 28. t D u C v C w

Section 4.2

1. W is a subspace of R3.

2. W is a subspace of R3.

3. W is not a subspace of R3.

4. W is not a subspace of R3.

5. W is a subspace of R4.

6. W is a subspace of R4.

7. W is not a subspace of R2.

8. W is a subspace of R2.

9. W is not a subspace of R2.

10. W is not a subspace of R2.

11. W is a subspace of R4.

12. W is not a subspace of R4.

13. W is not a subspace of R4.

14. W is not a subspace of R4.

15. u D .�1; 0; 1; 0/ and v D .�4; �2; 0; 1/

16. u D .�1; �1; 1; 0/ and v D .�5; �3; 0; 1/

17. u D .1; �3; 1; 0/ and v D .�2; 1; 0; 1/

18. u D .2; �1; �2; 1; 0/ and v D .3; �4; 5; 0; 1/

19. u D .1; 2; �1; 0/

20. u D .�5; 3; �2; 1/

21. u D .�3; 2; �4; 1/

22. u D .�6; 4; �3; 1/
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Section 4.3

1. Linearly dependent 2. Linearly dependent

3. Linearly dependent 4. Linearly dependent

5. Linearly independent 6. Linearly independent

7. Linearly independent 8. Linearly dependent

9. w D 2v1 � 3v2 10. w D 7v1 C 4v2

11. w D v1 � 2v2 12. w D 2v1 C 5v2

13. w cannot be expressed as a linear combination of v1 and v2.

14. w cannot be expressed as a linear combination of v1, v2, and v3

15. w D 3v1 � 2v2 C 4v3

16. w D 6v1 � 2v2 C 3v3

17. The vectors v1, v2, v3 are linearly independent.

18. 3v1 C v2 C 5v3 D 0

19. The vectors v1, v2, v3 are linearly independent.

20. The vectors v1, v2, v3 are linearly independent.

21. v1 � 2v2 � v3 D 0 22. 7v1 C 5v2 � 9v3 D 0

Section 4.4

1. The vectors v1 and v2 form a basis for R2.

2. The vectors v1, v2, v3 do not form a basis for R3.

3. The given vectors do not form a basis for R3.

4. The given vectors do not form a basis for R4.

5. The three vectors v1, v2, v3 do not form a basis for R3.

6. The three given vectors form a basis for R3.

7. The three given vectors form a basis for R3.

8. The four given vectors form a basis for R4.

9. The plane x � 2y C 5´ D 0 is a 2-dimensional subspace of R3

with basis consisting of the vectors v1 D .2; 1; 0/ and

v2 D .�5; 0; 1/.

10. The plane y � ´ D 0 is a 2-dimensional subspace of R3 with
basis consisting of the vectors v1 D .1; 0; 0/ and v2 D .0; 1; 1/.

11. The line is a 1-dimensional subspace of R3 with basis consisting
of the vector v D .�3; 1; 1/.

12. Hence the subspace consisting of all such vectors is

3-dimensional with basis consisting of the vectors
v1‘ D .1; 1; 0; 0/, v2 D .1; 0; 1; 0/, and v3 D .1; 0; 0; 1/.

13. The subspace consisting of all such vectors is 2-dimensional with

basis consisting of the vectors v1 D .3; 0; 1; 0/ and
v2 D .0; 4; 0; 1/.

14. The subspace consisting of all such vectors is 2-dimensional with

basis consisting of the vectors v1 D .�2; 1; 0; 0/ and
v2 D .0; 0; �3; 1/.

15. The solution space of the given system is 1-dimensional with

basis consisting of the vector v1 D .11; 7; 1/.

16. The solution space of the given system is 1-dimensional with

basis consisting of the vector v1 D .11; �5; 1/.

17. The solution space of the given system is 2-dimensional with
basis consisting of the vectors v1 D .�11; �3; 1; 0/ and

v2.�11; �5; 0; 1/.

18. The solution space of the given system is 2-dimensional with
basis consisting of the vectors v1 D .�3; 1; 0; 0/ and

v2.�25; 0; 5; 1/.

19. The solution space of the given system is 2-dimensional with
basis consisting of the vectors v1 D .3; �2; 1; 0/ and

v2 D .�4; �3; 0; 1/.

20. The solution space of the given system is 2-dimensional with
basis consisting of the vectors v1 D .1; �3; 1; 0/ and

v2 D .�2; 1; 0; 1/.

21. The solution space of the given system is 2-dimensional with

basis consisting of the vectors v1 D .�1; �1; 1; 0/ and
v2 D .�5; �3; 0; 1/.

22. The solution space of the given system is 2-dimensional with

basis consisting of the vectors v1 D .2; 1; 0; 0/ and
v2 D .�5; 0; �7; 1/.

23. The solution space of the given system is 1-dimensional with
basis consisting of the vector v1 D .2; �3; 1; 0/.

24. The solution space of the given system is 3-dimensional with
basis consisting of the vectors v1 D .�2; 2; 1; 0; 0/,

v2 D .�1; 3; 0; 1; 0/, and v3 D .�3; �1; 0; 0; 1/.

25. The solution space of the given system is 3-dimensional with
basis consisting of the vectors v1 D .�2; 1; 0; 0; 0/,
v2 D .2; 0; 1; 1; 0/, and v3 D .�3; 0; �4; 0; 1/.

26. The solution space of the given system is 2-dimensional with

basis consisting of the vectors v1 D .�2; 1; 2; 1; 0/ and
v2 D .3; �4; 5; 0; 1/.

Section 4.5

1. Row basis: The first and second row vectors of E.
Column basis: The first and second column vectors of A.

2. Row basis: The first and second row vectors of E.
Column basis: The first and second column vectors of A.

3. Row basis: The first and second row vectors of E.

Column basis: The first and second column vectors of A.

4. Row basis: The three row vectors of E.

Column basis: The first three column vectors of A.

5. Row basis: The three row vectors of E.

Column basis: The first, second, and fourth column vectors of A.

6. Row basis: The three row vectors of E.
Column basis: The first, second, and fourth column vectors of A.

7. Row basis: The first two row vectors of E.
Column basis: The first two column vectors of A.

8. Row basis: The first three row vectors of E.
Column basis: The first, second, and fourth column vectors of A.

9. Row basis: The first three row vectors of E.

Column basis: The first three column vectors of A.

10. Row basis: The first three row vectors of E.

Column basis: The first, second, and fourth column vectors of A.

11. Row basis: The first three row vectors of E.

Column basis: The first, second, and fifth column vectors of A.

12. Row basis: The first three row vectors of E.

Column basis: The first, second, and fifth column vectors of A.

13. Linearly independent: v1 and v2

14. Linearly independent: v1 and v2

15. Linearly independent: v1, v2, and v4

16. Linearly independent: v1, v2, v4, and v5

17. Basis vectors: v1, v2, e2

18. Basis vectors: v1, v2, e2

19. Basis vectors: v1, v2, e2, e3

20. Basis vectors: v1, v2, e1, e3

21. The first and second equations are irredundant.

22. The first and second equations are irredundant.

23. The first, second, and fourth equations are irredundant.

24. The first, second, and fifth equations are irredundant.
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Section 4.6

1. Yes, the three vectors are mutually orthogonal.

2. Yes, the three vectors are mutually orthogonal.

3. Yes, the three vectors are mutually orthogonal.

4. Yes, the three vectors are mutually orthogonal.

5. a
2 D 7, b

2 D 7, c
2 D 14

6. a
2 D 18, b

2 D 18, c
2 D 36

7. a
2 D 19, b

2 D 25, c
2 D 44

8. a
2 D 103, b

2 D 112, c
2 D 215

9. †A D †B D 45
ı

10. †A D †B D 45
ı

11. †A D 41:08
ı, †B D 48:92

ı

12. †A D 43:80
ı, †B D 46:20

ı

13. u1 D .2; 1; 0/, u2 D .�3; 0; 1/

14. u1 D .�5; 1; 0/, u2 D .3; 0; 1/

15. u1 D .2; 1; 0; 0/, u2 D .3; 0; 1; 0/, u3 D .�5; 0; 0; 1/

16. u1 D .�7; 1; 0; 0/, u2 D .6; 0; 1; 0/, u3 D .9; 0; 0; 1/

17. u1 D .7; �3; 1; 0/, u2 D .�19; 5; 0; 1/

18. u1 D .�12; �3; 1; 0/, u2 D .16; 7; 0; 1/

19. u1 D .�13; 4; 1; 0; 0/, u2 D .4; �3; 0; 1; 0/,
u3 D .�11; 4; 0; 0; 1/

20. u1 D .�5; 1; 1; 0; 0/, u2 D .�12; 4; 0; 1; 0/,
u3 D .�19; 7; 0; 0; 1/

21. u1 D .�1; �1; 1; 0; 0/, u2 D .0; �1; 0; �1; 1/

22. u1 D .�2; 1; 1; 0; 0/, u2 D .1; �2; 0; 1; 0/

Section 4.7

1. It is a subspace. 2. It is a subspace.

3. It is not a subspace. 4. It is not a subspace.

5. It is a subspace. 6. It is not a subspace.

7. It is not a subspace. 8. It is a subspace.

9. It is not a subspace. 10. It is a subspace.

11. It is a subspace. 12. It is not a subspace.

13. The functions sin x and cos x are linearly independent.

14. The funtions e
x and xe

x are linearly independent.

15. The functions .1 C x/, .1 � x/, and .1 � x
2
/ are linearly

independent.

16. The three given polynomials are linearly dependent.

17. The three given trigonometric functions are linearly dependent.

18. The two given linear combinations of sin x and cos x are linearly

independent.

19. A D 3 and B D �2.

20. A D �2 and B D C D 1.

21. A D 2, B D �2, and C D 0.

22. A D �1, B D 4, and C D �3.

23. The solution space is 3-dimensional with basis f1; x; x
2g.

24. The solution space is 4-dimensional with basis f1; x; x
2
; x

3g.

25. The solution space is 2-dimensional with basis f1; e
5xg.

26. The solution space is 2-dimensional with basis f1; e
�10xg.

Chapter 5

Section 5.1

1. y.x/ D 5
2

e
x � 5

2
e

�x

2. y.x/ D 2e
3x � 3e

�3x

3. y.x/ D 3 cos 2x C 4 sin 2x

4. y.x/ D 10 cos 5x � 2 sin 5x

5. y.x/ D 2e
x � e

2x

6. y.x/ D 4e
2x C 3e

�3x

7. y.x/ D 6 � 8e
�x

8. y.x/ D 1
3

.14 � 2e
3x

/

9. y.x/ D 2e
�x C xe

�x

10. y.x/ D 3e
5x � 2xe

5x

11. y.x/ D 5e
x sin x

12. y.x/ D e
�3x

.2 cos 2x C 3 sin 2x/

13. y.x/ D 5x � 2x
2

14. y.x/ D 3x
2 � 16=x

3

15. y.x/ D 7x � 5x ln x

16. y.x/ D 2 cos.ln x/ C 3 sin.ln x/

21. Linearly independent 22. Linearly independent

23. Linearly independent 24. Linearly dependent

25. Linearly independent 26. Linearly independent

28. y.x/ D 1 � 2 cos x � sin x

29. There is no contradiction because if the given differential
equation is divided by x

2 to get the form in Eq. (8), then the
resulting coefficient functions p.x/ D �4=x and q.x/ D 6=x

2

are not continuous at x D 0.

33. y.x/ D c1e
x C c2e

2x 34. y.x/ D c1e
�5x C c2e

3x

35. y.x/ D c1 C c2e
�5x 36. y.x/ D c1 C c2e

�3x=2

37. y.x/ D c1e
�x=2 C c2e

x

38. y.x/ D c1e
�x=2 C c2e

�3x=2

39. y.x/ D .c1 C c2x/e
�x=2 40. y.x/ D .c1 C c2x/e

2x=3

41. y.x/ D c1e
�4x=3 C c2e

5x=2

42. y.x/ D c1e
�4x=7 C c2e

3x=5

43. y
00 C 10y

0 D 0 44. y
00 � 100y D 0

45. y
00 C 20y

0 C 100y D 0 46. y
00 � 110y

0 C 1000y D 0

47. y
00 D 0 48. y

00 � 2y
0 � y D 0

49. The high point is
�

ln 7
4

;
16
7

�

.

50. .� ln 2; �2/ 52. y.x/ D c1x C c2=x

53. y.x/ D c1x
�4 C c2x

3

54. y.x/ D c1x
�3=2 C c2x

1=2

55. y.x/ D c1 C c2 ln x 56. y.x/ D x
2
.c1 C c2 ln x/

Section 5.2

1. 15 � .2x/ � 16 � .3x
2
/ � 6 � .5x � 8x

2
/ � 0

2. .�4/.5/ C .5/.2 � 3x
2
/ C .1/.10 C 15x

2
/ � 0

3. 1 � 0 C 0 � sin x C 0 � e
x � 0

4. .6/.17/ C .�51/.2 sin2
x/ C .�34/.3 cos2

x/ � 0

5. 1 � 17 � 34 � cos2
x C 17 � cos 2x � 0

6. .�1/.e
x

/ C .1/.cosh x/ C .1/.sinh x/ � 0

13. y.x/ D 4
3

e
x � 1

3
e

�2x

14. y.x/ D 1
2

.3e
x � 6e

2x C 3e
3x

/

15. y.x/ D .2 � 2x C x
2
/e

x

16. y.x/ D �12e
x C 13e

2x � 10xe
2x

17. y.x/ D 1
9

.29 � 2 cos 3x � 3 sin 3x/

18. y.x/ D e
x

.2 � cos x � sin x/

19. y.x/ D x C 2x
2 C 3x

3

20. y.x/ D 2x � x
�2 C x

�2 ln x

21. y.x/ D 2 cos x � 5 sin x C 3x

22. y.x/ D 4e
2x � e

�2x � 3
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23. y.x/ D e
�x C 4e

3x � 2

24. y.x/ D e
x

.3 cos x C 4 sin x/ C x C 1

38. y2.x/ D
1

x
3

39. y2.x/ D xe
x=2

40. y2.x/ D xe
x 41. y2.x/ D x C 2

42. y2.x/ D 1 C x
2

Section 5.3

1. y.x/ D c1e
2x C c2e

�2x

2. y.x/ D c1 C c2e
3x=2

3. y.x/ D c1e
2x C c2e

�5x

4. y.x/ D c1e
x=2 C c2e

3x

5. y.x/ D c1e
�3x C c2xe

�3x

6. y.x/ D e
�5x=2

h

c1 exp
�

1
2

x

p
5

�

C c2 exp
�

� 1
2

x

p
5

�i

7. y.x/ D c1e
3x=2 C c2xe

3x=2

8. y.x/ D e
3x

.c1 cos 2x C c2 sin 2x/

9. y.x/ D e
�4x

.c1 cos 3x C c2 sin 3x/

10. y.x/ D c1 C c2x C c3x
2 C c4e

�3x=5

11. y.x/ D c1 C c2x C c3e
4x C c4xe

4x

12. y.x/ D c1 C c2e
x C c3xe

x C c4x
2
e

x

13. y.x/ D c1 C c2e
�2x=3 C c3xe

�2x=3

14. y.x/ D c1e
x C c2e

�x C c3 cos 2x C c4 sin 2x

15. y.x/ D c1e
2x C c2xe

2x C c3e
�2x C c4xe

�2x

16. y.x/ D .c1 C c2x/ cos 3x C .c3 C c4x/ sin 3x

17. y.x/ D c1 cos
�

x=

p
2

�

C c2 sin
�

x=

p
2

�

C

c3 cos
�

2x=

p
3

�

C c4 sin
�

2x=

p
3

�

18. y.x/ D c1e
2x C c2e

�2x C c3 cos 2x C c4 sin 2x

19. y.x/ D c1e
x C c2e

�x C c3xe
�x

20. y.x/ D

e
�x=2

h

.c1 C c2x/ cos
�

1
2

x

p
3

�

C .c3 C c3x/ sin
�

1
2

x

p
3

�i

21. y.x/ D 5e
x C 2e

3x

22. y.x/ D e
�x=3

h

3 cos
�

x=

p
3

�

C 5

p
3 sin

�

x=

p
3

�i

23. y.x/ D e
3x

.3 cos 4x � 2 sin 4x/

24. y.x/ D 1
2

.�7 C e
2x C 8e

�x=2
/

25. y.x/ D 1
4

.�13 C 6x C 9e
�2x=3

/

26. y.x/ D 1
5

.24 � 9e
�5x � 25xe

�5x
/

27. y.x/ D c1e
x C c2e

�2x C c3xe
�2x

28. y.x/ D c1e
2x C c2e

�x C c3e
�x=2

29. y.x/ D c1e
�3x C e

3x=2
h

c2 cos
�

3
2

x

p
3

�

C c3 sin
�

3
2

x

p
3

�i

30. y.x/ D c1e
�x C c2e

2x C c3 cos.x
p

3/ C c4 sin.x

p
3/

31. y.x/ D c1e
x C e

�2x
.c2 cos 2x C c3 sin 2x/

32. y.x/ D c1e
2x C .c2 C c3x C c4x

2
/e

�x

33. y.x/ D c1e
3x C e

�3x
.c2 cos 3x C c3 sin 3x/

34. y.x/ D c1e
2x=3 C c2 cos 2x C c3 sin 2x

35. y.x/ D c1e
�x=2 C c2e

�x=3 C c3 cos 2x C c4 sin 2x

36. y.x/ D c1e
7x=9 C e

�x
.c2 cos x C c3 sin x/

37. y.x/ D 11 C 5x C 3x
2 C 7e

x

38. y.x/ D 2e
5x � 2 cos 10x

39. y
.3/ � 6y

00 C 12y
0 � 8y D 0

40. y
.3/ � 2y

00 C 4y
0 � 8y D 0

41. y
.4/ � 16y D 0

42. y
.6/ C 12y

.4/ C 48y
00 C 64y D 0

44. (a) x D i , �2i (b) x D �i , 3i

45. y.x/ D c1e
�ix C c2e

3ix

46. y.x/ D c1e
3ix C c2e

�2ix

47. y.x/ D c1 exp
�h

1 C i

p
3

i

x

�

C c2 exp
�

�
h

1 C i

p
3

i

x

�

48. y.x/ D
1
3

�

e
x C exp

h

1
2

�

�1 C i

p
3

�

x

i

C exp
h

1
2

�

�1 � i

p
3

�

x

i�

49. y.x/ D 2e
2x � 5e

�x C 3 cos x � 9 sin x

52. y.x/ D c1 cos.3 ln x/ C c2 sin.3 ln x/

53. y.x/ D x
�3

Œc1 cos.4 ln x/ C c2 sin.4 ln x/�

54. y.x/ D c1 C c2 ln x C c3x
�3

55. y.x/ D c1 C x
2
.c2 C c3 ln x/

56. y.x/ D c1 C c2 ln x C c3.ln x/
2

57. y.x/ D c1 C x
3
�

c2x
�

p

3 C c3x
C

p

3
�

58. y.x/ D x
�1

Œc1 C c2 ln x C c3.ln x/
2
�

Section 5.4

1. Frequency: 2 rad=s (1=� Hz); period: � s

2. Frequency: 8 rad/sec (4=� Hz); period: �=4 sec

3. Amplitude: 2 m; frequency: 5 rad=s;

period: 2�=5 s

4. (a) x.t/ D 13
12

cos.12t � ˛/ with

˛ D 2� � tan�1
.5=12/ � 5:8884;

(b) Amplitude: 13
12

m; period: �=6 sec

6. About 7.33 mi

7. About 10450 ft

8. 29.59 in.

10. Amplitude: 100 cm; period: about 2.01 sec

11. About 3:8 in.

13. (a) x.t/ D 50.e
�2t=5 � e

�t=2
/; (b) 4:096 exactly

14. (a) x.t/ D 25e
�t=5 cos.3t � ˛/ with

˛ D tan�1
.3=4/ � 0:6435;

(b) envelope curves x D ˙25e
�t=5; pseudoperiod 2�=3

15. x.t/ D 4e
�2t � 2e

�4t , overdamped; u.t/ D 2 cos.2
p

2 t/

1 2 3
t

2

x

u

–2

16. x.t/ D 4e
�3t � 2e

�7t , overdamped;

u.t/ � 2

q

22
21

cos.
p

21 t � 0:2149/

2
t

2

x

u

–2

1

17. x.t/ D 5e
�4t

.2t C 1/, critically damped;

u.t/ � 5
2

p
5 cos.4t � 5:8195/

2
t

5

x

u

1

–5
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18. x.t/ D 2e
�3t cos

�

4t � 3�
2

�

, underdamped;

u.t/ D 8
5

cos
�

5t � 3�
2

�

1 2
t

1

x

u
–1

19. x.t/ � 1
3

p
313 e

�5t=2 cos.6t � 0:8254/, underdamped;

u.t/ � 4
13

p
233 cos

�

13
2

t � 0:5517

�

1 2
t

4

x

u–4

20. x.t/ � 13e
�4t cos.2t � 1:1760/, underdamped;

u.t/ �
q

129
5

cos.2
p

5 t � 0:1770/

1 2
t

5

x

u
–5

21. x.t/ � 10e
�5t cos.10t � 0:9273/, underdamped;

u.t/ � 2

p
14 cos.5

p
5 t � 0:6405/

1
t

6

x

u–6

22. (b) The time-varying amplitude is 2
3

p
3, the frequency is 4

p
3

rad=s, and the phase angle is �=6.

23. (a) k � 7018 lb=ft; (b) After about 2:47 s

34. Damping constant: c � 11:51 lb=ft=s; spring constant:
k � 189:68 lb=ft

Section 5.5

1. yp.x/ D 1
25

e
3x 2. yp.x/ D � 1

4
.5 C 6x/

3. yp.x/ D 1
39

.cos 3x � 5 sin 3x/

4. yp.x/ D 1
9

.�4e
x C 3xe

x
/

5. yp.x/ D 1
26

.13 C 3 cos 2x � 2 sin 2x/

6. yp.x/ D 1
343

.4 � 56x C 49x
2
/

7. yp.x/ D � 1
6

.e
x � e

�x
/ D � 1

3
sinh x

8. yp.x/ D 1
4

x sinh 2x

9. yp.x/ D � 1
3

C 1
16

.2x
2 � x/e

x

10. yp.x/ D 1
6

.2x sin 3x � 3x cos 3x/

11. yp.x/ D 1
8

.3x
2 � 2x/ 12. yp.x/ D 2x C 1

2
x sin x

13. yp.x/ D 1
65

e
x

.7 sin x � 4 cos x/

14. yp.x/ D 1
24

.�3x
2
e

x C x
3
e

x
/ 15. yp.x/ � �17

16. yp.x/ D 1
81

.45 C e
3x � 6xe

3x C 9x
2
e

3x
/

17. yp.x/ D 1
4

.x
2 sin x � x cos x/

18. yp.x/ D � 1
144

.24xe
x � 19xe

2x C 6x
2
e

2x
/

19. yp.x/ D 1
8

.10x
2 � 4x

3 C x
4
/

20. yp.x/ D �7 C 1
3

xe
x

21. yp.x/ D xe
x

.A cos x C B sin x/

22. yp.x/ D Ax
3 C Bx

4 C Cx
5 C Dxe

x

23. yp.x/ D Ax cos 2x C Bx sin 2x C Cx
2 cos 2x C Dx

2 sin 2x

24. yp.x/ D Ax C Bx
2 C .Cx C Dx

2
/e

�3x

25. yp.x/ D Axe
�x C Bx

2
e

�x C Cxe
�2x C Dx

2
e

�2x

26. yp.x/ D .Ax C Bx
2
/e

3x cos 2x C .Cx C Dx
2
/e

3x sin 2x

27. yp.x/ D Ax cos x C Bx sin x C Cx cos 2x C Dx sin 2x

28. yp.x/ D
.Ax C Bx

2 C Cx
3
/ cos 3x C .Dx C Ex

2 C F x
3
/ sin 3x

29. yp.x/ D Ax
3
e

x C Bx
4
e

x C Cxe
2x C Dxe

�2x

30. yp.x/ D .A C Bx C Cx
2
/ cos x C .D C Ex C F x

2
/ sin x

31. y.x/ D cos 2x C 3
4

sin 2x C 1
2

x

32. y.x/ D 1
6

.15e
�x � 16e

�2x C e
x

/

33. y.x/ D cos 3x � 2
15

sin 3x C 1
5

sin 2x

34. y.x/ D cos x � sin x C 1
2

x sin x

35. y.x/ D e
x

.2 cos x � 5
2

sin x/ C 1
2

x C 1

36. y.x/ D 1
192

.234 C 240x � 9e
�2x � 33e

2x � 12x
2 � 4x

4
/

37. y.x/ D 4 � 4e
x C 3xe

x C x � 1
2

x
2
e

x C 1
6

x
3
e

x

38. y.x/ D 1
85

Œe
�x

.176 cos x C197 sin x/�.6 cos 3x C7 sin 3x/�

39. y.x/ D �3 C 3x � 1
2

x
2 C 1

6
x

3 C 4e
�x C xe

�x

40. y.x/ D 1
4

.5e
�x C 5e

x C 10 cos x � 20/

41. yp.x/ D 255 � 450x C 30x
2 C 20x

3 C 10x
4 � 4x

5

42. y.x/ D 10e
�x C 35e

2x C 210 cos x C 390 sin x C yp.x/

where yp.x/ is the particular solution of Problem 41.

43. (b) y.x/ D c1 cos 2x C c2 sin 2x

C 1
4

cos x � 1
20

cos 3x

44. y.x/ D e
�x=2

h

c1 cos
�

1
2

x

p
3

�

C c2 sin
�

1
2

x

p
3

�i

C

1
26

.�3 cos 2x C 2 sin 2x/ C 1
482

.15 cos 4x C 4 sin 4x/

45. y.x/ D c1 cos 3x C c2 sin 3x C 1
24

� 1
10

cos 2x � 1
56

cos 4x

46. y.x/ D c1 cos x C c2 sin x C 1
16

.3x cos x C 3x
2 sin x/ C

1
128

.3 sin 3x � 4x cos 3x/

47. yp.x/ D 2
3

e
x 48. yp.x/ D � 1

12
.6x C 1/e

�2x

49. yp.x/ D x
2
e

2x

50. yp.x/ D 1
16

.4x cosh 2x � sinh 2x/

51. yp.x/ D � 1
4

.cos 2x cos x � sin 2x sin x/ C
1

20
.cos 5x cos 2x C sin 5x sin 2x/ D � 1

5
cos 3x (!)

52. yp.x/ D � 1
6

x cos 3x

53. yp.x/ D 2
3

x sin 3x C 2
9

.cos 3x/ ln j cos 3xj

54. yp.x/ D �1 � .cos x/ ln j csc x � cot xj

55. yp.x/ D 1
8

.1 � x sin 2x/ 56. yp.x/ D � 1
9

e
x

.3x C 2/

58. yp.x/ D x
3
.ln x � 1/ 59. yp.x/ D 1

4
x

4

60. yp.x/ D � 72
5

x
4=3

61. yp.x/ D ln x

62. yp.x/ D �x
2 C x ln

ˇ

ˇ

ˇ

ˇ

1 C x

1 � x

ˇ

ˇ

ˇ

ˇ

C
1

2

.1 C x
2
/ ln j1 � x

2j
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Section 5.6

1. x.t/ D 2 cos 2t � 2 cos 3t

π
t

3

2π

3π 5π

–3

2. x.t/ D 3
2

sin 2t � sin 3t

t

2

2π

π 3π 5π

–2

3. x.t/ D
p

138388 cos.10t � ˛/ C 5 cos.5t � ˇ/ with

˛ D 2� � tan�1
.1=186/ � 6:2778 and

ˇ D tan�1
.4=3/ � 0:9273.

π
t

375

–375

π

5

4. x.t/ D 2

p
106 cos.5t � ˛/ C 10 cos 4t with

˛ D � � tan�1
.9=5/ � 2:0779

t

30
2π

π 3π 5π

–30

5. x.t/ D .x0 � C / cos !0t C C cos !t , where
C D F0=.k � m!

2
/

7. xsp.t/ D 10
13

cos.3t � ˛/ with ˛ D � � tan�1
.12=5/ � 1:9656

t

3
xsp

F1
–3

2π

8. xsp.t/ D 4
25

cos.5t � ˛/ with ˛ D 2� � tan�1
.3=4/ � 5:6397

2π
t

1 xsp

F1–1

9. xsp.t/ D 3
p

40001
cos.10t � ˛/ with

˛ D � C tan�1
.199=20/ � 4:6122

2π
t

0.1

xsp

F1

–0.1

10. xsp.t/ D 10
793

p
61 cos.10t � ˛/ with

˛ D � C tan�1
.171=478/ � 3:4851

t

1
xsp

F1

2π

–1

11. xsp.t/ D
p

10
4

cos.3t � ˛/ with ˛ D � � tan�1
.3/ � 1:8925

xtr.t/ D 5
4

p
2e

�2t cos.t � ˇ/ with

ˇ D 2� � tan�1
.7/ � 4:8543

π
t

0.5

xsp

x–0.5

12. xsp.t/ D 5

3
p

29
cos.3t � ˛/ with

˛ D � C tan�1
.2=5/ � 3:5221

xtr.t/ D 25

6
p

29
e

�3t cos.2t � ˇ/ with

ˇ D tan�1
.5=2/ � 1:1903

π
t

0.5

xsp

x

–0.5

13. xsp.t/ D 300
p

1469
cos.10t � ˛/ with

˛ D � � tan�1
.10=37/ � 2:8776
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xtr.t/ D 2

q

113314
1469

e
�t cos.5t � ˇ/ with

ˇ D 2� � tan�1
.421=12895/ � 6:2505

t

10

xsp

x

π

–10

14. xsp.t/ D
p

485 cos.t � ˛/ with ˛ D tan�1
.22/ � 1:5254

xtr.t/ D
p

3665 e
�4t cos.3t � ˇ/ with

ˇ D � C tan�1
.52=31/ � 4:1748

t

30 xsp

x

2ππ

–30

15. C.!/ D 2=

p
4 C !

4; there is no practical resonance frequency.

5 10

1

C

ω

16. C.!/ D 10=

p
25 C 6!

2 C !
4; there is no practical resonance

frequency.

5 10

1

2

C

ω

17. C.!/ D 50=

p
2025 � 54!

2 C !
4; there is practical resonance

at frequency ! D 3

p
3.

10 20

1

C

ω

18. C.!/ D 100=

p
422500 � 1200!

2 C !
4; there is practical

resonance at frequency ! D 10

p
6.

25 50

0.4

C

ω

19. ! D
p

384 rad/sec (approximately 3.12 Hz)

20. ! � 44:27 rad/sec (approximately 422.75 rpm)

21. !0 D
p

.g=L/ C .k=m/

22. !0 D
p

k=.m C I=a
2
/

23. (a) Natural frequency:
p

10 rad=s (approximately 0:50 Hz);
(b) amplitude: approximately 10:625 in.

Chapter 6

Section 6.1

1. �1 D 2: v1 D .1; 1/; �2 D 3: v2 D .2; 1/

2. �1 D �1: v1 D .1; 1/; �2 D 2: v2 D .2; 1/

3. �1 D 2: v2 D .1; 1/; �2 D 5: v1 D .2; 1/

4. �1 D 1: v2 D .1; 1/; �2 D 2: v1 D .3; 2/

5. �1 D 1: v2 D .1; 1/; �2 D 4: v1 D .3; 2/

6. �1 D 2: v2 D .1; 1/; �2 D 3: v1 D .4; 3/

7. �1 D 2: v2 D .1; 1/; �2 D 4: v1 D .4; 3/

8. �1 D �2: v2 D .2; 3/; �2 D �1: v1 D .3; 4/

9. �1 D 3: v1 D .2; 1/; �2 D 4: v2 D .5; 2/

10. �1 D 4: v1 D .2; 1/; �2 D 5: v2 D .5; 2/

11. �1 D 4: v2 D .2; 3/; �2 D 5: v1 D .5; 7/

12. �1 D 3: v2 D .3; 2/; �2 D 4: v1 D .5; 3/

13. �1 D 0: v1 D .0; �1; 2/; �2 D 1: v2 D .0; �1; 3/;

�3 D 2: v3 D .1; 0; 2/

14. �1 D 0: v1 D .0; �1; 2/; �2 D 2: v2 D .0; �1; 3/;
�3 D 5: v3 D .1; 0; 2/

15. �1 D 0: v1 D .1; 1; 0/; �2 D 1: v2 D .2; 1; 1/;
�3 D 2: v3 D .1; 0; 2/

16. �1 D 0: v1 D .1; 1; 1/; �2 D 1: v2 D .1; 1; 0/;

�3 D 3: v3 D .�1; 0; 2/

17. �1 D 1: v1 D .1; 0; 1/; �2 D 2: v2 D .�1; 1; 2/;
�3 D 3: v3 D .1; 0; 0/

18. �1 D 1: v1 D .1; 0; 3/; �2 D 2: v2 D .0; �1; 3/;
�3 D 3: v3 D .0; �2; 5/

19. �1 D �2 D 1: v1 D .1; 0; 1/, v2 D .�3; 1; 0/;

�3 D 3, v3 D .1; 0; 0/

20. �1 D �2 D 1: v1 D .1; 0; 2/, v2 D .3; 2; 0/;
�3 D 2, v3 D .0; �2; 5/

21. �1 D 1: v1 D .1; 1; 0/; �2 D �3 D 2: v2 D .3; 2; 0/,

v3 D .�1; 0; 2/

22. �1 D �2 D �1: v1 D .1; 1; 0/, v2 D .�1; 0; 2/;

�3 D 2, v3 D .1; 1; 1/

23. �1 D 1: v1 D .1; 0; 0; 0/; �2 D 2: v2 D .2; 1; 0; 0/;
�3 D 3: v3 D .3; 2; 1; 0/; �4 D 4: v4 D .4; 3; 2; 1/

24. �1 D �2 D 1: v1 D .1; 0; 0; 0/, v2 D .0; 1; 0; 0/;

�3 D �4 D 3: v3 D .0; 0; 0; 1/, v4 D .2; 2; 1; 0/

25. �1 D �2 D 1: v1 D .1; 0; 0; 0/, v2 D .0; 1; 0; 0/;
�3 D �4 D 2: v3 D .0; 0; 0; 1/, v4 D .1; 1; 1; 0/

26. �1 D �2: v1 D .1; 0; 0; 2/; �2 D �1: v2 D .0; 0; 1; 0/;
�3 D 1: v3 D .1; 0; 0; 1/; �4 D 2: v4 D .0; 1; 0; 0/

27. �1 D �i : v1 D .Ci; 1/; �2 D Ci : v2 D .�i; 1/

28. �1 D �6i : v1 D .�i; 1/; �2 D C6i : v2 D .Ci; 1/

29. �1 D �6i : v1 D .�i; 2/; �2 D C6i : v2 D .Ci; 2/
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30. �1 D �12i : v1 D .�i; 1/; �2 D C12i : v2 D .Ci; 1/

31. �1 D �12i : v1 D .C2i; 1/; �2 D C12i : v2 D .�2i; 1/

32. �1 D �12i : v1 D .�i; 3/; �2 D C12i : v2 D .Ci; 3/

40. We find that Tr A D 12 and det A D 60, so the characteristic
polynomial of the given matrix A is

p.�/ D ��
3 C 12�

2 C c1� C 60. Eigenvalues and
eigenvectors: �1 D 3: v1 D .3; 2; 1/; �2 D 4: v2 D .5; 7; 7/;

�3 D 5: v3 D .�1; 1; 2/

41. We find that Tr A D 8 and det A D �60, so the characteristic

polynomial of the given matrix A is
p.�/ D �

4 � 8�
3 C c2�

2 C c1� � 60. Eigenvalues and
eigenvectors: �1 D �2: v1 D .1; 0; 1; 2/; �2 D 2:

v2 D .3; 4; 0; 3/; �3 D 3: v3 D .3; 1; 2; 4/; �4 D 5:
v4 D .1; 1; 0; 1/

Section 6.2

1. �1 D 1, �2 D 3; P D

�

1 2

1 1

�

, D D

�

1 0

0 3

�

2. �1 D 0, �2 D 2; P D

�

1 3

1 2

�

, D D

�

0 0

0 2

�

3. �1 D 2, �2 D 3; P D

�

1 3

1 2

�

, D D

�

2 0

0 3

�

4. �1 D 1, �2 D 2; P D

�

1 4

1 3

�

, D D

�

1 0

0 2

�

5. �1 D 1, �2 D 3; P D

�

1 4

1 3

�

, D D

�

1 0

0 3

�

6. �1 D 1, �2 D 2; P D

�

2 3

3 4

�

, D D

�

1 0

0 2

�

7. �1 D 1, �2 D 2; P D

�

2 5

1 2

�

, D D

�

1 0

0 2

�

8. �1 D 1, �2 D 2; P D

�

3 5

2 3

�

, D D

�

1 0

0 2

�

9. The double eigenvalue �1 D �2 D 1 has only the single

associated eigenvector v1 D .2; 1/, so the matrix A is not
diagonalizable.

10. The double eigenvalue �1 D �2 D 2 has only the single
associated eigenvector v1 D .1; 1/, so the matrix A is not

diagonalizable.

11. The double eigenvalue �1 D �2 D 2 has only the single

associated eigenvector v1 D .�1; 3/, so the matrix A is not
diagonalizable.

12. The double eigenvalue �1 D �2 D �1 has only the single
associated eigenvector v1 D .�3; 4/, so the matrix A is not
diagonalizable.

13. �1 D 1, �2 D �3 D 2; P D

2

4

1 0 3

0 0 1

0 1 0

3

5, D D

2

4

1 0 0

0 2 0

0 0 2

3

5

14. �1 D �2 D 0, �3 D 1; P D

2

4

�1 1 1

0 1 1

2 0 1

3

5,

D D

2

4

0 0 0

0 0 0

0 0 1

3

5

15. �1 D 0, �2 D �3 D 1; P D

2

4

1 �1 3

1 0 2

0 2 0

3

5,

D D

2

4

0 0 0

0 1 0

0 0 1

3

5

16. �1 D �2 D 1, �3 D 3; P D

2

4

0 1 �1

0 1 0

1 0 2

3

5,

D D

2

4

1 0 0

0 1 0

0 0 3

3

5

17. �1 D �1, �2 D 1, �3 D 2; P D

2

4

1 �1 1

1 0 1

0 2 1

3

5,

D D

2

4

�1 0 0

0 1 0

0 0 2

3

5

18. �1 D 1, �2 D 2, �3 D 3; P D

2

4

1 �1 1

1 0 1

0 2 1

3

5,

D D

2

4

1 0 0

0 2 0

0 0 3

3

5

19. �1 D 1, �2 D 2, �3 D 3; P D

2

4

1 1 �1

1 1 0

1 0 2

3

5,

D D

2

4

1 0 0

0 2 0

0 0 3

3

5

20. �1 D 2, �2 D 5, �3 D 6; P D

2

4

1 0 0

0 �1 �2

3 3 5

3

5,

D D

2

4

2 0 0

0 5 0

0 0 6

3

5

21. The triple eigenvalue �1 D �2 D �3 D 1 has only the two
associated eigenvectors v1 D .0; 0; 1/ and v2 D .1; 1; 0/, so the

matrix A is not diagonalizable.

22. The triple eigenvalue �1 D �2 D �3 D 1 has only the single

associated eigenvector v1 D .1; 1; 1/, so the matrix A is not
diagonalizable.

23. The eigenvalues �1 D �2 D 1 and �3 D 2 have only the two

associated eigenvectors v1 D .1; 1; 1/ and v3 D .1; 1; 0/, so the
matrix A is not diagonalizable.

24. The eigenvalues �1 D 1 and �2 D �3 D 2 have only the two
associated eigenvectors v1 D .1; 1; 0/ and v2 D .1; 1; 1/, so the

matrix A is not diagonalizable.

25. �1 D �2 D �1, �3 D �4 D 1; P D

2

6

6

4

0 1 0 1

0 1 1 0

0 1 0 0

1 0 0 0

3

7

7

5

,

D D

2

6

6

4

�1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

3

7

7

5

26. �1 D �2 D �3 D 1, �4 D 2; P D

2

6

6

4

0 0 1 1

0 1 0 1

1 0 0 1

0 0 0 1

3

7

7

5

,

D D

2

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

3

7

7

5

27. The eigenvalues �1 D �2 D �3 D 1 and �4 D 2 have only the
two associated eigenvectors v1 D .1; 0; 0; 0/ and

v4 D .1; 1; 1; 1/, so the matrix A is not diagonalizable.

28. The eigenvalues �1 D �2 D 1 and �3 D �4 D 2 have only the

two associated eigenvectors v1 D .1; 0; 0; 0/ and
v3 D .1; 1; 1; 0/, so the matrix A is not diagonalizable.
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Section 6.3

1. P D

�

1 2

1 1

�

, D D

�

1 0

0 2

�

, A
5 D

�

63 �62

31 �30

�

2. P D

�

1 2

1 1

�

, D D

�

�1 0

0 2

�

, A
5 D

�

65 �66

33 �34

�

3. P D

�

1 3

1 2

�

, D D

�

0 0

0 2

�

, A
5 D

�

96 �96

64 �64

�

4. P D

�

1 3

1 2

�

, D D

�

1 0

0 2

�

, A
5 D

�

94 �93

62 �61

�

5. P D

�

1 4

1 3

�

, D D

�

1 0

0 2

�

, A
5 D

�

125 �124

93 �92

�

6. P D

�

2 5

1 2

�

, D D

�

1 0

0 2

�

, A
5 D

�

156 �310

62 �123

�

7. P D

2

4

1 0 3

0 0 1

0 1 0

3

5, D D

2

4

1 0 0

0 2 0

0 0 2

3

5,

A
5 D

2

4

1 93 0

0 32 0

0 0 32

3

5

8. P D

2

4

0 1 1

1 0 0

2 0 1

3

5, D D

2

4

1 0 0

0 1 0

0 0 2

3

5,

A
5 D

2

4

1 �62 31

0 1 0

0 �62 32

3

5

9. P D

2

4

1 1 �3

0 0 1

0 1 0

3

5, D D

2

4

1 0 0

0 2 0

0 0 2

3

5,

A
5 D

2

4

1 �93 31

0 32 0

0 0 32

3

5

10. P D

2

4

1 �1 3

1 0 2

0 2 0

3

5, D D

2

4

1 0 0

0 2 0

0 0 2

3

5,

A
5 D

2

4

94 �93 31

62 �61 31

0 0 32

3

5

11. P D

2

4

0 0 �1

�1 �2 �42

3 5 87

3

5, D D

2

4

�1 0 0

0 0 0

0 0 1

3

5,

A
10 D

2

4

1 0 0

78 �5 �2

�195 15 6

3

5

12. P D

2

4

1 1 3

2 0 5

0 5 0

3

5, D D

2

4

�1 0 0

0 1 0

0 0 1

3

5,

A
10 D

2

4

1 0 0

0 1 0

0 0 1

3

5

13. P D

2

4

�1 1 1

0 1 1

2 0 1

3

5, D D

2

4

�1 0 0

0 0 0

0 0 1

3

5,

A
10 D

2

4

3 �3 1

2 �2 1

0 0 1

3

5

14. P D

2

4

1 1 2

0 1 1

2 0 1

3

5, D D

2

4

�1 0 0

0 0 0

0 0 1

3

5,

A
10 D

2

4

3 �3 �1

2 �2 �1

0 0 1

3

5

15. A2 � 3A C 2I D 0, A3 D

�

29 �28

21 �20

�

, A4 D

�

61 �60

45 �44

�

,

A�1 D 1
2

�

�2 4

�3 5

�

16. A2 � 3A C 2I D 0, A3 D

�

36 �70

14 �27

�

,

A4 D

�

76 �150

30 �59

�

, A�1 D 1
2

�

�3 10

�2 6

�

17. �A3 C 5A2 � 8A C 4I D 0, A3 D

2

4

1 21 0

0 8 0

0 0 8

3

5,

A4 D

2

4

1 45 0

0 16 0

0 0 16

3

5, A�1 D 1
2

2

4

2 �3 0

0 1 0

0 0 1

3

5

18. �A3 C 4A2 � 5A C 2I D 0, A3 D

2

4

1 �14 7

0 1 0

0 �14 8

3

5,

A4 D

2

4

1 �30 15

0 1 0

0 �30 16

3

5 A�1 D 1
2

2

4

2 2 �1

0 2 0

0 2 1

3

5

19. �A3 C 5A2 � 8A C 4I D 0, A3 D

2

4

1 �21 7

0 8 0

0 0 8

3

5,

A4 D

2

4

1 �45 15

0 16 0

0 0 16

3

5, A�1 D 1
2

2

4

2 3 �1

0 1 0

0 0 1

3

5

20. �A3 C 5A2 � 8A C 4I D 0, A3 D

2

4

22 �21 7

14 �13 7

0 0 8

3

5,

A4 D

2

4

46 �45 15

30 �29 15

0 0 16

3

5, A�1 D 1
2

2

4

�1 3 �1

�2 4 �1

0 0 1

3

5

21. �A3 C A D 0, A3 D A D

2

4

1 0 0

6 5 2

21 �15 �6

3

5,

A4 D A2 D

2

4

1 0 0

78 �5 �2

�195 15 6

3

5. Because � D 0 is an

eigenvalue, A is singular and A�1 does not exist.

22. �A3 C A2 C A � I D 0, A3 D A D

2

4

11 �6 �2

20 �11 �4

0 0 1

3

5 D A,

A4 D

2

4

1 0 0

0 1 0

0 0 1

3

5 D I, A�1 D A

23. �A3 C A D 0, A3 D A D

2

4

1 �1 1

2 �2 1

4 �4 1

3

5,

A4 D A2 D

2

4

3 �3 1

2 �2 1

0 0 1

3

5. Because � D 0 is an eigenvalue,

A is singular and A�1 does not exist.

24. �A3 C A D 0, A3 D A D

2

4

5 �5 �3

2 �2 �1

4 �4 �3

3

5,

A4 D A2 D

2

4

3 �3 �1

2 �2 �1

0 0 1

3

5. Because � D 0 is an

eigenvalue, A is singular and A�1 does not exist.

25. xk D Akx0 D

�

1 �1

1 1

� �

1 0

0 4=5

�k
1
2

�

1 1

�1 1

�

x0 !D

.C0 C S0/

�

1=2

1=2

�

as k ! 1. The long-term distribution of
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population is 50% city, 50% suburban.

26. xk D Akx0 D

�

1 �1

3 1

� �

1 0

0 4=5

�k
1
4

�

1 1

�3 1

�

x0 !D

.C0 C S0/

�

1=4

3=4

�

as k ! 1. The long-term distribution of

population is 25% city, 75% suburban.

27. xk D Akx0 D

�

3 �1

5 1

� �

1 0

0 3=5

�k
1
8

�

1 1

�5 3

�

x0 !D

.C0 C S0/

�

3=8

5=8

�

as k ! 1. The long-term distribution of

population is 3/8 city, 5/8 suburban.

28. xk D Akx0 D

�

1 �1

2 1

� �

1 0

0 7=10

�k
1
3

�

1 1

�2 1

�

x0 !D

.C0 C S0/

�

1=3

2=3

�

as k ! 1. The long-term distribution of

population is 1/3 city, 2/3 suburban.

29. xk D Akx0 D
�

1 �1

2 1

� �

1 0

0 17=20

�k
1
3

�

1 1

�2 1

�

x0 !D

.C0 C S0/

�

1=3

2=3

�

as k ! 1. The long-term distribution of

population is 1/3 city, 2/3 suburban.

30. xk D Akx0 D
�

3 �1

4 1

� �

1 0

0 13=20

�k
1
7

�

1 1

�4 3

�

x0 !D

.C0 C S0/

�

3=7

4=7

�

as k ! 1. The long-term distribution of

population is 3/7 city, 4/7 suburban.

31. xk D Akx0 D

�

5 5

4 2

� �

1 0

0 4=5

�k
1

10

�

�2 5

4 �5

�

x0 !D
�

2:5R0 � F0

2R0 � 0:8F0

�

as k ! 1. The fox–rabbit population

approaches a stable situation with 2:5R0 � F0 foxes and

2R0 � 0:8F0 rabbits.

32. xk D Akx0 D
�

10 2

7 1

� �

19=20 0

0 17=20

�k
1
4

�

�1 2

7 �10

�

x0 !D
�

0

0

�

as k ! 1. The fox and rabbit population both die out.

33. xk D Akx0 D
�

10 10

9 3

� �

21=20 0

0 3=4

�k
1

60

�

�3 10

9 �10

�

x0 �

1
60

.1:05/
k

.10R0 � 3F0/

�

10

9

�

as when k is sufficiently large.

The fox and rabbit populations are both increasing at 5% per
year, with 10 foxes for each 9 rabbits.

34. A D PDP�1 D

�

41 �30

56 �41

�

. If n is even, then Dn D I so

An D PDnP�1 D PIP�1 D I. If n is odd, then

An D An�1A D IA D A. Thus A99 D A and A100 D I.

35. � D ˙1 implies that Dn D I if n is even, in which case

An D PDnP�1 D I.

36. A2 D I, so A3 D A2A D IA D A, A4 D A3A D A2 D I, and
so forth.

37. A2 D �I, so A3 D A2A D �IA D �A,
A4 D A3A D �A2 D I, and so forth.

38. If B D

�

0 1

0 0

�

so B2 D 0, and it follows that

An D I C nB D

�

1 n

0 1

�

.

Chapter 7

Section 7.1

1. x
0

1 D x2, x
0

2 D �7x1 � 3x2 C t
2

2. x
0

1 D x2, x
0

2 D x3, x
0

3 D x4,
x

0

4
D �x1 C 3x2 � 6x3 C cos 3t

3. x
0

1 D x2, t
2
x

0

2 D .1 � t
2
/x1 � tx2

4. x
0

1
D x2, x

0

2
D x3, t

3
x

0

3
D �5x1 � 3tx2 C 2t

2
x3 C ln t

5. x
0

1 D x2, x
0

2 D x3, x
0

3 D x
2
2 C cos x1

6. x
0

1 D x2, x
0

2 D 5x1 � 4y1, y
0

1 D y2, y
0

2 D �4x1 C 5y1

7. x
0

1
D x2, y

0

1
D y2, x

0

2
D �kx1 � .x

2
1

C y
2
1

/
�3=2,

y
0

2
D �ky1 � .x

2
1

C y
2
1

/
�3=2

8. x
0

1
D x2, x

0

2
D �4x1 C 2y1 � 3x2

y
0

1 D y2, y
0

2 D 3x1 � y1 � 2y2 C cos t

9. x
0

1 D x2, y
0

1 D y2, ´
0

1 D ´2, x
0

2 D 3x1 � y1 C 2´1,
y

0

2
D x1 C y1 � 4´1, ´

0

2
D 5x1 � y1 � ´1

10. x
0

1 D x2, x
0

2 D x1.1 � y1/

y
0

1 D y2, y
0

2 D y1.1 � x1/

11. x.t/ D A cos t C B sin t , y.t/ D B cos t � A sin t

0 1 2 3 4 5

0

1

2

3

4

5

x

y

−1

−2

−3

−4

−5

−1−2−3−4−5

12. x.t/ D Ae
t C Be

�t , y.t/ D Ae
t � Be

�t

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

13. x.t/ D A cos 2t C B sin 2t , y.t/ D �B cos 2t C A sin 2t ;
x.t/ D cos 2t , y.t/ D sin 2t
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x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

14. x.t/ D A cos 10t C B sin 10t , y.t/ D B cos 10t � A sin 10t ;

x.t/ D 3 cos 10t C 4 sin 10t , y.t/ D 4 cos 10t � 3 sin 10t

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

15. x.t/ D A cos 2t C B sin 2t , y.t/ D 4B cos 2t � 4A sin 2t

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

16. x.t/ D A cos 4t C B sin 4t , y.t/ D 1
2

B cos 4t � 1
2

A sin 4t

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

17. x.t/ D Ae
�3t C Be

2t , y.t/ D �3Ae
�3t C 2Be

2t ;

x.t/ D e
2t , y.t/ D 2e

2t

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

18. x.t/ D Ae
�2t C Be

�5t , y.t/ D 2Ae
�2t C 5Be

�5t ;
A D 17

3
and B D � 11

3
in the particular solution.

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

19. x.t/ D �e
�2t sin 3t , y.t/ D e

�2t
.3 cos 3t C 2 sin 3t/

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2
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20. x.t/ D .A C Bt/e
3t , y.t/ D .3A C B C 3Bt/e

3t

x

y

0 1 2 3 4 5

0

1

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

2

Section 7.2

1. .AB/
0 D

�

1 � 8t C 18t
2

1 C 2t � 12t
2 C 32t

3

3 C 3t
2 � 4t

3
8t C 3t

2 C 4t
3

�

3. x D

�

x

y

�

, P.t/ D

�

0 �3

3 0

�

, f.t/ D

�

0

0

�

5. x D

�

x

y

�

, P.t/ D

�

2 4

5 �1

�

, f .t/ D

�

3e
t

�t
2

�

7. x D

2

4

x

y

´

3

5, P.t/ D

2

4

0 1 1

1 0 1

1 1 0

3

5, f.t/ D

2

4

0

0

0

3

5

9. x D

2

4

x

y

´

3

5, P.t/ D

2

4

3 �4 1

1 0 �3

0 6 �7

3

5, f.t/ D

2

4

t

t
2

t
3

3

5

11. x D

2

6

6

4

x1

x2

x3

x4

3

7

7

5

, P.t/ D

2

6

6

4

0 1 0 0

0 0 2 0

0 0 0 3

4 0 0 0

3

7

7

5

, f.t/ D

2

6

6

4

0

0

0

0

3

7

7

5

13. W.t/ D e
3t ; x.t/ D

�

2c1e
t C c2e

2t

�3c1e
t � c2e

2t

�

15. W.t/ � 4; x.t/ D

�

c1e
2t C c2e

�2t

c1e
2t C 5c2e

�2t

�

17. W.t/ D 7e
�3t ; x.t/ D

�

3c1e
2t C c2e

�5t

2c1e
2t C 3c2e

�5t

�

19. W.t/ � 3; x.t/ D

2

4

c1e
2t C c2e

�t

c1e
2t C c3e

�t

c1e
2t � .c2 C c3/e

�t

3

5

21. W.t/ D e
2t ; x.t/ D

2

4

3c1e
�2t C c2e

t C c3e
3t

�2c1e
�2t � c2e

t � c3e
3t

2c1e
�2t C c2e

t

3

5

23. x D 2x1 � x2 25. x D 15x1 � 4x2

27. x D x1 C 2x2 C x3 29. x D 3x1 � 3x2 � 5x3

31. x D 3x1 C 7x2 C x3 � 2x4 32. x D 13x1 C 41x2 C 3x3 �
12x4

33. (a) x2 D tx1, so neither is a constant multiple of the other.
(b) W.x1; x2/ � 0, whereas Theorem 2 implies that W ¤ 0 if

x1 and x2 were independent solutions of a system of the
indicated form.

Section 7.3

1. x1.t/ D c1e
�t C c2e

3t , x2.t/ D �c1e
�t C c2e

3t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

2. x1.t/ D c1e
�t C 3c2e

4t , x2.t/ D �c1e
�t C 2c2e

4t

3. General solution x1.t/ D c1e
�t C 4c2e

6t ,
x2.t/ D �c1e

�t C 3c2e
6t

Particular solution x1.t/ D 1
7

.�e
�t C 8e

6t
/,

x2.t/ D 1
7

.e
�t C 6e

6t
/.

4. x1.t/ D c1e
�2t C c2e

5t , x2.t/ D �6c1e
�2t C c2e

5t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

5. x1.t/ D c1e
�t C 7c2e

5t , x2.t/ D c1e
�t C c2e

5t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

6. General solution x1.t/ D 5c1e
3t C c2e

4t ,

x2.t/ D �6c1e
3t � c2e

4t

Particular solution x1.t/ D �5e
3t C 6e

4t ,
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x2.t/ D 6e
3t � 6e

4t .

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

7. x1.t/ D c1e
t C 2c2e

�9t , x2.t/ D c1e
t � 3c2e

�9t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

8. x1.t/ D 5c1 cos 2t C 5c2 sin 2t ,
x2.t/ D .c1 � 2c2/ cos 2t C .2c1 C c2/ sin 2t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

9. General solution x1.t/ D 5c1 cos 4t C 5c2 sin 4t ,
x2.t/ D c1.2 cos 4t C 4 sin 4t/ C c2.2 sin 4t � 4 cos 4t/.

Particular solution x1.t/ D 2 cos 4t � 11
4

sin 4t ,

x2.t/ D 3 cos 4t C 1
2

sin 4t

10. x1.t/ D �2c1 cos 3t � 2c2 sin 3t ,
x2.t/ D .3c1 C 3c2/ cos 3t C .3c2 � 3c1/ sin 3t

11. General solution x1.t/ D e
t
.c1 cos 2t � c2 sin 2t/,

x2.t/ D e
t
.c1 sin 2t C c2 cos 2t/

Particular solution x1.t/ D �4e
t sin 2t , x2.t/ D 4e

t cos 2t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

12. x1.t/ D e
2t

.�5c1 cos 2t � 5c2 sin 2t/,
x2.t/ D e

2t
Œ.c1 C 2c2/ cos 2t C .�2c1 C c2/ sin 2t�

13. x1.t/ D 3e
2t

.c1 cos 3t � c2 sin 3t/,
x2.t/ D e

2t
Œ.c1 C c2/ cos 3t C .c1 � c2/ sin 3t�

14. x1.t/ D e
3t

.c1 cos 4t C c2 sin 4t/,

x2.t/ D e
3t

.c1 sin 4t � c2 cos 4t/

15. x1.t/ D 5e
5t

.c1 cos 4t � c2 sin 4t/,

x2.t/ D e
5t

Œ.2c1 C 4c2/ cos 4t C .4c1 � 2c2/ sin 4t�

16. x1.t/ D c1e
�10t C 2c2e

�100t ,

x2.t/ D 2c1e
�10t � 5c2e

�100t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

−1−2−3−4−5

x1

x 2

17. x1.t/ D c1e
9t C c2e

6t C c3,
x2.t/ D c1e

9t � 2c2e
6t ,

x3.t/ D c1e
9t C c2e

6t � c3

18. x1.t/ D c1e
9t C 4c3,

x2.t/ D 2c1e
9t C c2e

6t � c3,

x3.t/ D 2c1e
9t � c2e

6t � c3

19. x1.t/ D c1e
6t C c2e

3t C c3e
3t ,

x2.t/ D c1e
6t � 2c2e

3t ,
x3.t/ D c1e

6t C c2e
3t � c3e

3t

20. x1.t/ D c1e
9t C c2e

6t C c3e
2t ,

x2.t/ D c1e
9t � 2c2e

6t ,

x3.t/ D c1e
9t C c2e

6t � c3e
2t

21. x1.t/ D 6c1 C 3c2e
t C 2c3e

�t ,
x2.t/ D 2c1 C c2e

t C c3e
�t ,

x3.t/ D 5c1 C 2c2e
t C 2c3e

�t

22. x1.t/ D c2e
t C c3e

3t ,

x2.t/ D c1e
�2t � c2e

t � c3e
3t ,

x3.t/ D �c1e
�2t C c3e

3t

23. x1.t/ D c1e
2t C c3e

3t ,
x2.t/ D �c1e

2t C c2e
�2t � c3e

3t ,

x3.t/ D �c2e
�2t C c3e

3t

24. x1.t/ D c1e
t C c2.2 cos 2t � sin 2t/ C c3.cos 2t C 2 sin 2t/

x2.t/ D �c1e
t � c2.3 cos 2t C sin 2t/ C c3.cos 2t � 3 sin 2t/

x3.t/ D c2.3 cos 2t C sin 2t/ C c3.3 sin 2t � cos 2t/
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25. x1.t/ D c1 C e
2t

Œ.c2 C c3/ cos 3t C .�c2 C c3/ sin 3t�,

x2.t/ D �c1 C 2e
2t

.�c2 cos 3t � c3 sin 3t/,
x3.t/ D 2e

2t
.c2 cos 3t C c3 sin 3t/

26. x1.t/ D 4e
3t � e

�t
.4 cos t � sin t/,

x2.t/ D 9e
3t � e

�t
.9 cos t C 2 sin t/,

x3.t/ D 17e
�t cos t

27. x1.t/ D 15e
�0:2t , x2.t/ D 15.e

�0:2t � e
�0:4t

/.
The maximum amount ever in tank 2 is x2.5 ln 2/ D 3:75 lb.

0 5 10 15 20
0

5

10

15

t

x

x1

x2

28. x1.t/ D 15e
�0:4t , x2.t/ D 40.�e

�0:4t C e
�0:25t

/.
The maximum amount ever in tank 2 is about 6.85 lb.

0 5 10 15 20
0

5

10

15

t

x

x1

x2

29. x1.t/ D 10 C 5e
�0:6t , x2.t/ D 5 � 5e

�0:6t

0 5 10 15
0

5

10

15

t

x

x1

x2

30. x1.t/ D 5c1 C c2e
�0:65t , x2.t/ D 8c1 � c2e

�0:65t .

0 5 10 15
0

5

10

15

t

x

x1

x2

31. x1.t/ D 27e
�t ,

x2.t/ D 27e
�t � 27e

�2t ,
x3.t/ D 27e

�t � 54e
�2t C 27e

�3t .

The maximum amount of salt ever in tank 3 is x3.ln 3/ D 4

pounds.

0 5
0

5

10

15

20

25

t

x
x1

x2

x3

32. x1.t/ D 45e
�3t ,

x2.t/ D �135e
�3t C 135e

�2t ,

x3.t/ D 135e
�3t � 270e

�2t C 135e
�t .

The maximum amount of salt ever in tank 3 is x3.ln 3/ D 20

pounds.

0 5
0
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25
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45

t

x

x1

x2 x3

33. x1.t/ D 45e
�4t ,

x2.t/ D 90e
�4t � 90e

�6t ,

x3.t/ D �270e
�4t C 135e

�6t C 135e
�2t .

The maximum amount of salt ever in tank 3 is x3

�

1
2

ln 3

�

D 20
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pounds.

0 2
t

0

5

10

15

20

25

30

35

40

45

x

x1

x2

x3

34. x1.t/ D 40e
�3t ,

x2.t/ D 60e
�3t � 60e

�5t ,

x3.t/ D �150e
�3t C 75e

�5t C 75e
�t .

The maximum amount of salt ever in tank 3 is

x3.
1
2

ln 5/ � 21:4663 pounds.

0 4
0

5

10

15

20

25

30

35

40

t

x

x1

x2

x3

35. x1.t/ D 10 � 1
7

�

55e
�18t � 216e

�11t
�

,

x2.t/ D 3 � 1
7

�

165e
�18t � 144e

�11t
�

,

x3.t/ D 20 C 1
7

�

220e
�18t � 360e

�11t
�

.
The limiting amounts of salt in tanks 1, 2, and 3 are 10 lb, 3 lb,

and 20 lb.

0 1
0

5

10

15

20

25

30

t

x

x1

x2

x3

36. x1.t/ D 4 C e
�3t=5

Œ14 cos.3t=10/ � 2 sin.3t=10/�,

x2.t/ D 10 � e
�3t=5

Œ10 cos.3t=10/ � 10 sin.3t=10/�,
x3.t/ D 4 � e

�3t=5
Œ4 cos.3t=10/ C 8 sin.3t=10/�.

The limiting amounts of salt in tanks 1, 2, and 3 are 4 lb, 10 lb,
and 4 lb.

0 5 10
0

5

10

15

t

x

x1
x2

x3

37. x1.t/ D 30 C e
�3t

Œ25 cos.t
p

2/ C 10

p
2 sin.t

p
2/�,

x2.t/ D 10 � e
�3t

Œ10 cos.t
p

2 / � 25
2

p
2 sin.t

p
2/�,

x3.t/ D 15 � e
�3t

Œ15 cos.t
p

2 / C 45
2

p
2 sin.t

p
2/�.

The limiting amounts of salt in tanks 1, 2, and 3 are 30 lb, 10 lb,
and 15 lb.

0 2
0

5

10

15

20

25

30

35

40

45

50

55

t

x

x1

x2

x3

38. x1.t/ D c1e
t ,

x2.t/ D �2c1e
t C c2e

2t ,

x3.t/ D 3c1e
t � 3c2e

2t C c3e
3t ,

x4.t/ D �4c1e
t C 6c2e

2t � 4c3e
3t C c4e

4t

39. x1.t/ D 3c1e
t C c4e

�2t ,

x2.t/ D �2c1e
t C c3e

2t � c4e
�2t ,

x3.t/ D 4c1e
t C c2e

�t ,

x4.t/ D c1e
t

40. x1.t/ D c1e
2t ,

x2.t/ D �3c1e
2t C 3c2e

�2t � c4e
�5t ,

x3.t/ D c3e
5t ,

x4.t/ D �c2e
�2t � 3c3e

5t

41. x1.t/ D 2e
10t C e

15t D x4.t/,
x2.t/ D �e

10t C 2e
15t D x3.t/

42. x.t/ D c1

2

4

3

�1

2

3

5C c2

2

4

1

1

1

3

5 e
2t C c3

2

4

2

�3

1

3

5 e
5t

43. x.t/ D c1

2

4

3

�1

5

3

5 e
�2t C c2

2

4

1

1

1

3

5 e
4t C c3

2

4

1

�1

3

3

5 e
8t

44. x.t/ D c1

2

4

3

�2

2

3

5 e
�3t C c2

2

4

7

1

5

3

5 e
6t C c3

2

4

5

�3

3

3

5 e
12t

45. x.t/ D

c1

2

6

6

4

1

1

1

�1

3

7

7

5

e
�3t C c2

2

6

6

4

1

2

�1

1

3

7

7

5

C c3

2

6

6

4

2

1

1

1

3

7

7

5

e
3t C c4

2

6

6

4

1

�1

2

�1

3

7

7

5

e
6t
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46. x.t/ D c1

2

6

6

4

3

2

�1

1

3

7

7

5

e
�4t C c2

2

6

6

4

1

2

2

�1

3

7

7

5

e
2t C c3

2

6

6

4

1

1

�1

1

3

7

7

5

e
4t C

c4

2

6

6

4

3

�2

3

�3

3

7

7

5

e
8t

47. x.t/ D c1

2

6

6

4

2

2

1

�1

3

7

7

5

e
�3t C c2

2

6

6

4

1

2

�1

1

3

7

7

5

e
3t C c3

2

6

6

4

2

1

1

1

3

7

7

5

e
6t C

c4

2

6

6

4

1

�1

2

�1

3

7

7

5

e
9t

48. x.t/ D c1

2

6

6

4

1

2

�1

2

3

7

7

5

e
16t C c2

2

6

6

4

2

5

1

�1

3

7

7

5

e
32t C

c3

2

6

6

4

3

�1

1

2

3

7

7

5

e
48t C c4

2

6

6

4

1

1

2

�3

3

7

7

5

e
64t

49. x.t/ D c1

2

6

6

6

4

1

0

3

1

1

3

7

7

7

5

e
�3t C c2

2

6

6

6

4

0

3

0

�1

1

3

7

7

7

5

C c3

2

6

6

6

4

1

7

1

1

1

3

7

7

7

5

e
3t C

c4

2

6

6

6

4

0

1

0

1

1

3

7

7

7

5

e
6t C c5

2

6

6

6

4

2

0

5

2

1

3

7

7

7

5

e
9t

50. x.t/ D c1

2

6

6

6

6

6

4

0

1

1

1

0

1

3

7

7

7

7

7

5

e
�7t C c2

2

6

6

6

6

6

4

1

0

0

0

1

1

3

7

7

7

7

7

5

e
�4t C c3

2

6

6

6

6

6

4

0

1

0

1

0

1

3

7

7

7

7

7

5

e
3t C

c4

2

6

6

6

6

6

4

0

0

1

0

1

0

3

7

7

7

7

7

5

e
5t C c5

2

6

6

6

6

6

4

1

1

0

0

0

1

3

7

7

7

7

7

5

e
9t C c6

2

6

6

6

6

6

4

0

0

1

�1

�1

0

3

7

7

7

7

7

5

e
11t

Section 7.4

Note that phase portraits for Problems 1–16 are found in the answers
for Section 7.2.

1. Saddle point (real eigenvalues of opposite sign)

2. Saddle point (real eigenvalues of opposite sign)

3. Saddle point (real eigenvalues of opposite sign)

4. Saddle point (real eigenvalues of opposite sign)

5. Saddle point (real eigenvalues of opposite sign)

6. Improper nodal source (distinct positive real eigenvalues)

7. Saddle point (real eigenvalues of opposite sign)

8. Center (pure imaginary eigenvalues)

9. Center (pure imaginary eigenvalues)

10. Center (pure imaginary eigenvalues)

11. Spiral source (complex conjugate eigenvalues with positive real
part)

12. Spiral source (complex conjugate eigenvalues with positive real

part)

13. Spiral source (complex conjugate eigenvalues with positive real

part)

14. Spiral source (complex conjugate eigenvalues with positive real
part)

15. Spiral source (complex conjugate eigenvalues with positive real

part)

16. Improper nodal sink (distinct negative real eigenvalues)

17. Center; pure imaginary eigenvalues

18. Improper nodal source; distinct positive real eigenvalues;

v1 D
�

0 1

�T
, v2 D

�

�1 1

�T

19. Saddle point; real eigenvalues of opposite sign; v1 D
�

0 1

�T

corresponds to the negative eigenvalue and v2 D
�

�1 1

�T
to

the positive one.

20. Spiral source; complex conjugate eigenvalues with positive real

part

21. Proper nodal source; repeated positive real eigenvalue with

linearly independent eigenvectors

22. Parallel lines; one zero and one negative real eigenvalue

23. Spiral sink; complex conjugate eigenvalues with negative real
part

24. Improper nodal sink; distinct negative real eigenvalues;

v1 D
�

1 1

�T
, v2 D

�

�1 4

�T

25. Saddle point; real eigenvalues of opposite sign; v1 D
�

1 1

�T

corresponds to the positive eigenvalue and v2 D
�

4 �1

�T
to

the negative one.

26. Center; pure imaginary eigenvalues

27. Improper nodal source; distinct positive real eigenvalues;

v1 D
�

2 3

�T
, v2 D

�

2 �1

�T
.

28. Spiral sink; complex conjugate eigenvalues with negative real
part

Section 7.5

1. The natural frequencies are !0 D 0 and !1 D 2. In the
degenerate natural mode with “frequency” !0 D 0 the two

masses move linearly with x1.t/ D x2.t/ D a0 C b0t . At
frequency !1 D 2 they oscillate in opposite directions with

equal amplitudes.

2. The natural frequencies are !1 D 1 and !2 D 3. In the natural

mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. At

frequency !2 they move in opposite directions with equal
amplitudes.

3. The natural frequencies are !1 D 1 and !2 D 2. In the natural

mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. In the

natural mode with frequency !2 they move in opposite directions
with the amplitude of oscillation of m1 twice that of m2.

4. The natural frequencies are !1 D 1 and !2 D
p

5. In the natural
mode with frequency !1, the two masses m1 and m2 move in

the same direction with equal amplitudes of oscillation. At
frequency !2 they move in opposite directions with equal

amplitudes.

5. The natural frequencies are !1 D
p

2 and !2 D 2. In the natural

mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. At

frequency !2 they move in opposite directions with equal
amplitudes.
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6. The natural frequencies are !1 D
p

2 and !2 D
p

8. In the

natural mode with frequency !1, the two masses m1 and m2

move in the same direction with equal amplitudes of oscillation.

In the natural mode with frequency !2 they move in opposite
directions with the amplitude of oscillation of m1 twice that of

m2.

7. The natural frequencies are !1 D 2 and !2 D 4. In the natural

mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. At

frequency !2 they move in opposite directions with equal
amplitudes.

8. x1.t/ D 2 cos t C 3 cos 3t � 5 cos 5t ,
x2.t/ D 2 cos t � 3 cos 3t C cos 5t .

We have a superposition of three oscillations, in which the two
masses move (1) in the same direction with frequency !1 D 1

and equal amplitudes; (2) in opposite directions with frequency
!2 D 3 and equal amplitudes; (3) in opposite directions with

frequency !3 D 5 and with the amplitude of motion of m1 being
5 times that of m2.

9. x1.t/ D 5 cos t � 8 cos 2t C 3 cos 3t ,
x2.t/ D 5 cos t C 4 cos 2t � 9 cos 3t .

We have a superposition of three oscillations, in which the two
masses move (1) in the same direction with frequency !1 D 1

and equal amplitudes; (2) in opposite directions with frequency
!2 D 2 and with the amplitude of motion of m1 being twice that
of m2; (3) in opposite directions with frequency !3 D 3 and

with the amplitude of motion of m2 being 3 times that of m1.

10. x1.t/ D �15 cos 2t C cos 4t C 14 cos t ,
x2.t/ D �15 cos 2t � cos 4t C 16 cos t .

We have a superposition of three oscillations, in which the two
masses move (1) in the same direction with frequency !1 D 1

and with the amplitude of motion of m2 being 8=7 times that of

m1; (2) in the same direction with frequency !2 D 2 and equal
amplitudes; (3) in opposite directions with frequency !3 D 4

and equal amplitudes.

11. (a) The natural frequencies are !1 D 6 and !2 D 8. In mode 1
the two masses oscillate in the same direction with frequency
!1 D 6 and with the amplitude of motion of m1 being twice that

of m2. In mode 2 the two masses oscillate in opposite directions
with frequency !2 D 8 and with the amplitude of motion of m2

being 3 times that of m1.
(b) x.t/ D 2 sin 6t C 19 cos 7t , y.t/ D sin 6t C 3 cos 7t

We have a superposition of (only two) oscillations, in which the
two masses move (1) in the same direction with frequency

!1 D 6 and with the amplitude of motion of m1 being twice that
of m2; (2) in the same direction with frequency !3 D 7 and with

the amplitude of motion of m1 being 19=3 times that of m2.

12. The system’s three natural modes of oscillation have (1) natural

frequency !1 D
p

2 with amplitude ratios 1: 0: �1; (2) natural

frequency !2 D

q

2 C
p

2 with amplitude ratios 1: �
p

2 : 1;

(3) natural frequency !3 D

q

2 �
p

2 with amplitude ratios

1:
p

2 : 1.

13. The system’s three natural modes of oscillation have (1) natural

frequency !1 D 2 with amplitude ratios 1: 0: �1; (2) natural

frequency !2 D

q

4 C 2

p
2 with amplitude ratios 1: �

p
2 : 1;

(3) natural frequency !3 D

q

4 � 2

p
2 with amplitude ratios 1:

p
2: 1.

15. x1.t/ D 2
3

cos 5t � 2 cos 5

p
3 t C 4

3
cos 10t ,

x2.t/ D 4
3

cos 5t C 4 cos 5

p
3 t C 16

3
cos 10t .

We have a superposition of two oscillations with the natural

frequencies !1 D 5 and !2 D 5

p
3 and a forced oscillation

with frequency ! D 10. In each of the two natural oscillations

the amplitude of motion of m2 is twice that of m1, while in the

forced oscillation the amplitude of motion of m2 is four times
that of m1.

20. x
0

1.t/ D �v0, x
0

2.t/ D 0, x
0

1.t/ D v0 for t > �=2

21. x
0

1.t/ D �v0, x
0

2.t/ D 0, x
0

1.t/ D 2v0 for t > �=2

22. x
0

1
.t/ D �2v0, x

0

2
.t/ D v0, x

0

1
.t/ D v0 for t > �=2

23. x
0

1.t/ D 2v0, x
0

2.t/ D 2v0, x
0

1.t/ D 3v0 for t > �=2

24. (a) !1 � 1:0293 Hz; !2 � 1:7971 Hz.
(b) v1 � 28 mi=h; v2 � 49 mi=h

27. !1 D 2

p
10, v1 � 40:26 (ft=s (about 27 mi=h),

!2 D 5

p
5, v2 � 71:18 ft=s (about 49 mi=h)

28. !1 � 6:1311, v1 � 39:03 ft/s (about 27 mi/h)

!2 � 10:3155, v2 � 65:67 ft/s (about 45 mi/h)

29. !1 � 5:0424, v1 � 32:10 ft=s (about 22 mi=h),

!2 � 9:9158, v2 � 63:13 ft=s (about 43 mi=h)

Section 7.6

1. Repeated eigenvalue � D �3, eigenvector v D
�

1 �1

�T
;

x1.t/ D .c1 C c2 C c2t/e
�3t , x2.t/ D .�c1 � c2t/e

�3t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

x1

x 2

−1−2−3−4−5

2. Repeated eigenvalue � D 2, single eigenvector v D
�

1 1

�T
;

x1.t/ D .c1 C c2 C c2t/e
2t , x2.t/ D .c1 C c2t/e

2t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

x1

x 2

−1−2−3−4−5

3. Repeated eigenvalue � D 3, eigenvector v D
�

�2 2

�T
;

x1.t/ D .�2c1 C c2 � 2c2t/e
3t , x2.t/ D .2c1 C 2c2t/e

3t

4. Repeated eigenvalue � D 4, single eigenvector

v D
�

�1 1

�T
; x1.t/ D .�c1 C c2 � c2t/e

4t ,

x2.t/ D .c1 C c2t/e
4t

5. Repeated eigenvalue � D 5, eigenvector v D
�

2 �4

�T
;

x1.t/ D .2c1 C c2 C 2c2t/e
5t , x2.t/ D .�4c1 � 4c2t/e

5t
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0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

x1

x 2

−1−2−3−4−5

6. Repeated eigenvalue � D 5, single eigenvector

v D
�

�4 4

�T
; x1.t/ D .�4c1 C c2 � 4c2t/e

5t ,

x2.t/ D .4c1 C 4c2t/e
5t

0 1 2 3 4 5

0

1

2

3

4

5

−1

−2

−3

−4

−5

x1

x 2

−1−2−3−4−5

7. Eigenvalues � D 2, 2, 9 with three linearly independent
eigenvectors; x1.t/ D c1e

2t C c2e
2t , x2.t/ D c1e

2t C c3e
9t ,

x3.t/ D c2e
2t

8. Eigenvalues � D 7, 13, 13 with three linearly independent
eigenvectors; x1.t/ D 2c1e

7t � c3e
13t ,

x2.t/ D �3c1e
7t C c3e

13t , x3.t/ D c1e
7t C c2e

13t

9. Eigenvalues � D 5, 5, 9 with three linearly independent

eigenvectors; x1.t/ D c1e
5t C 7c2e

5t C 3c3e
9t ,

x2.t/ D 2c1e
5t , x3.t/ D 2c2e

5t C c3e
9t

10. Eigenvalues � D 3, 3, 7 with three linearly independent
eigenvectors; x1.t/ D 5c1e

3t � 3c2e
3t C 2c3e

7t ,

x2.t/ D 2c1e
3t C c3e

7t , x3.t/ D c2e
3t

11. Triple eigenvalue � D �1 of defect 2;
x1.t/ D .�2c2 C c3 � 2c3t/e

�t ,

x2.t/ D .c1 � c2 C c2t � c3t C 1
2

c3t
2
/e

�t ,

x3.t/ D .c2 C c3t/e
�t

12. Triple eigenvalue � D �1 of defect 2;

x1.t/ D e
�t

.c1 C c3 C c2t C 1
2

c3t
2
/

x2.t/ D e
�t

.c1 C c2t C 1
2

c3t
2
/,

x3.t/ D e
�t

.c2 C c3t/

13. Triple eigenvalue � D �1 of defect 2;
x1.t/ D .c1 C c2t C 1

2
c3t

2
/e

�t ,

x2.t/ D .2c2 C c3 C 2c3t/e
�t ,

x3.t/ D .c2 C c3t/e
�t

14. Triple eigenvalue � D �1 of defect 2;

x1.t/ D e
�t

.5c1 C c2 C c3 C 5c2t C c3t C 5
2

c3t
2
/,

x2.t/ D e
�t

.�25c1 � 5c2 � 25c2t � 5c3t � 25
2

c3t
2
/,

x3.t/ D e
�t

.�5c1 C 4c2 � 5c2t C 4c3t � 5
2

c3t
2
/

15. Triple eigenvalue � D 1 of defect 1;

x1.t/ D .3c1 C c3 � 3c3t/e
t ,

x2.t/ D .�c1 C c3t/e
t , x3.t/ D .c2 C c3t/e

t

16. Triple eigenvalue � D 1 of defect 1;

x1.t/ D e
t
.3c1 C 3c2 C c3/

x2.t/ D e
t
.�2c1 � 2c3t/,

x3.t/ D e
t
.�2c2 C 2c3t/

17. Triple eigenvalue � D 1 of defect 1;

x1.t/ D .2c1 C c2/e
t , x2.t/ D .�3c2 C c3 C 6c3t/e

t ,
x3.t/ D �9.c1 C c3t/e

t

18. Triple eigenvalue � D 1 of defect 1;
x1.t/ D e

t
.�c1 � 2c2 C c3/,

x2.t/ D e
t
.c2 C c3t/,

x3.t/ D e
t
.c1 � 2c3t/

19. Double eigenvalues � D �1 and � D 1, with four linearly

independent solutions;
x1.t/ D c1e

�t C c4e
t ,

x2.t/ D c3e
t ,

x3.t/ D c2e
�t C 3c4e

t ,
x4.t/ D c1e

�t � 2c3e
t

20. Eigenvalue � D 2 with multiplicity 4 and defect 3;

x1.t/ D .c1 C c3 C c2t C c4t C 1
2

c3t
2 C 1

6
c4t

3
/e

2t ,

x2.t/ D .c2 C c3t C 1
2

c4t
2
/e

2t ,

x3.t/ D .c3 C c4t/e
2t , x4.t/ D c4e

2t

21. Eigenvalue � D 1 with multiplicity 4 and defect 2;
x1.t/ D .�2c2 C c3 � 2c3t/e

t , x2.t/ D .c2 C c3t/e
t ,

x3.t/ D .c2 C c4 C c3t/e
t , x4.t/ D .c1 C c2t C 1

2
c3t

2
/e

t

22. Eigenvalue � D 1 with multiplicity 4 and defect 2;
x1.t/ D .c1 C 3c2 C c4 C c2t C 3c3t C 1

2
c3t

2
/e

t ,

x2.t/ D �.2c2 � c3 C 2c3t/e
t , x3.t/ D .c2 C c3t/e

t ,
x4.t/ D �.2c1 C 6c2 C 2c2t C 6c3t C c3t

2
/e

t

23. x.t/ D c1v1e
�t C .c2v2 C c3v3/e

3t with

v1 D
�

1 �1 2

�T
, v2 D

�

4 0 9

�T
,

v3 D
�

0 2 1

�T

24. x.t/ D c1v1e
�t C .c2v2 C c3v3/e

3t with

v1 D
�

5 3 �3

�T
, v2 D

�

4 0 �1

�T
,

v3 D
�

2 �1 0

�T

25. x.t/ D
�

c1v1 C c2.v1t C v2/ C c3

�

1
2

v1t
2 C v2t C v3

��

e
2t

with v1 D
�

�1 0 �1

�T
, v2 D

�

�4 �1 0

�T
, and

v3 D
�

1 0 0

�T

26. x.t/ D
�

c1v1 C c2.v1t C v2/ C c3

�

1
2

v1t
2 C v2t C v3

��

e
3t

with v1 D
�

0 2 2

�T
, v3 D

�

2 1 �3

�T
, and

v3 D
�

1 0 0

�T

27. x.t/ D Œc1v1 C c2.v1t C v2/ C c3v3�e
2t with

v1 D
�

�5 3 8

�T
, v2 D

�

1 0 0

�T
,

v3 D
�

1 1 0

�T

28. x.t/ D
�

c1v1 C c2.v1t C v2/ C c3

�

1
2

v1t
2 C v2t C v3

��

e
2t

with v1 D
�

119 �289 0

�T
, v2 D

�

�17 34 17

�T
,

and v3 D
�

1 0 0

�T

29. x.t/ D Œc1v1 C c2.v1t C v2/�e
�t C Œc3v3 C c4.v3t C v4/�e

2t

with v1 D
�

1 �3 �1 �2

�T
, v2 D

�

0 1 0 0

�T
,

v3 D
�

0 �1 1 0

�T
, v4 D

�

0 0 2 1

�T

30. x.t/ D Œc1v1 C c2.v1t C v2/�e
�t C Œc3v3 C c4.v3t C v4/�e

2t ,

with v1 D
�

0 1 �1 �3

�T
, v2 D

�

0 0 1 2

�T
,

v3 D
�

�1 0 0 0

�T
, v4 D

�

0 0 3 5

�T

31. x.t/ D Œc1v1 C c2.v1t C v2/

C c3

�

1
2

v1t
2 C v2t C v3

�

C c4v4

�

e
t with

v1 D
�

42 7 �21 �42

�T
,

v2 D
�

34 22 �10 �27

�T
, v3 D

�

1 0 0 0

�T
,

v4 D
�

0 1 3 0

�T
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32. x.t/ D .c1v1 C c2v2/e
2t C .c3v3 C c4v4 C c5v5/e

3t with

v1 D
�

8 0 �3 1 0

�T
, v2 D

�

1 0 0 0 3

�T
,

v3 D
�

3 �2 �1 0 0

�T
,

v4 D
�

2 �2 0 �3 0

�T
,

v5 D
�

1 �1 0 0 3

�T

33. x1.t/ D
�

cos 4t sin 4t 0 0

�T
e

3t ,

x2.t/ D
�

� sin 4t cos 4t 0 0

�T
e

3t ,

x3.t/ D
�

t cos 4t t sin 4t cos 4t sin 4t

�T
e

3t ,

x4.t/ D
�

�t sin 4t t cos 4t � sin 4t cos 4t

�T
e

3t

34. x1.t/ D

2

6

6

4

sin 3t

3 cos 3t � 3 sin 3t

0

sin 3t

3

7

7

5

e
2t ,

x2.t/ D

2

6

6

4

� cos 3t

3 sin 3t C 3 cos 3t

0

� cos 3t

3

7

7

5

e
2t ,

x3.t/ D

2

6

6

4

3 cos 3t C t sin 3t

.3t � 10/ cos 3t � .3t C 9/ sin 3t

sin 3t

t sin 3t

3

7

7

5

e
2t ,

x4.t/ D

2

6

6

4

�t cos 3t C 3 sin 3t

.3t C 9/ cos 3t C .3t � 10/ sin 3t

� cos 3t

�t cos 3t

3

7

7

5

e
2t

35. x1.t/ D x2.t/ D v0.1 � e
�t

/;
lim

t!1

x1.t/ D lim
t!1

x2.t/ D v0

36. x1.t/ D v0.2 � 2e
�t � te

�t
/,

x2.t/ D v0.2 � 2e
�t � te

�t � 1
2

t
2
e

�t
/;

lim
t!1

x1.t/ D lim
t!1

x2.t/ D 2v0

In Problems 37, 39, 41, 43, and 45 we give a nonsingular matrix Q

and a Jordan-form matrix J such that A D QJQ�1. Any scalar

multiple of Q will do the same job.

37. Q D

2

4

1 4 �2

�1 0 9

2 9 0

3

5, J D

2

4

�1 0 0

0 3 0

0 0 3

3

5

39. Q D

2

4

1 4 �1

0 1 0

1 0 0

3

5, J D

2

4

2 1 0

0 2 1

0 0 2

3

5

41. Q D

2

4

0 �5 0

1 3 0

1 8 1

3

5, J D

2

4

2 0 0

0 2 1

0 0 2

3

5

43. Q D

2

6

6

4

�1 0 0 0

3 �1 �1 2

1 0 1 0

2 0 0 1

3

7

7

5

, J D

2

6

6

4

�1 1 0 0

0 �1 0 0

0 0 2 1

0 0 0 2

3

7

7

5

45. Q D

2

6

6

4

�30 432 360 0

�7 72 228 0

9 �216 �108 0

30 �432 �288 12

3

7

7

5

, J D

2

6

6

4

1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

3

7

7

5

Section 7.7

The format for the first eight answers is this: .x.t/; y.t// at t D 0:2

by the Euler method, by the improved Euler method, by the
Runge-Kutta method, and finally the actual values.

1. .0:8800; 2:5000/, .0:9600; 2:6000/, .1:0027; 2:6401/,

.1:0034; 2:6408/

2. .0:8100; �0:8100/, .0:8200; �0:8200/, .0:8187; �0:8187/,
.0:8187; �0:8187/

3. .2:8100; 2:3100/, .3:2200; 2:6200/, .3:6481; 2:9407/,

.3:6775; 2:9628/

4. .3:3100; �1:6200/, .3:8200; �2:0400/,

.4:2274; �2:4060/, .4:2427; �2:4205/

5. .�0:5200; 2:9200/, .�0:8400; 2:4400/,

.�0:5712; 2:4485/, .�0:5793; 2:4488/

6. .�1:7600; 4:6800/, .�1:9200; 4:5600/, .�1:9029; 4:4995/,
.�1:9025; 4:4999/

7. .3:1200; 1:6800/, .3:2400; 1:7600/, .3:2816; 1:7899/,
.3:2820; 1:7902/

8. .2:1600; �0:6300/, .2:5200; �0:4600/, .2:5320; �0:3867/,
.2:5270; �0:3889/

9. At t D 1 we obtain .x; y/ D .3:99261; 6:21770/ (h D 0:1)

and .3:99234; 6:21768/ (h D 0:05); the actual value is
.3:99232; 6:21768/.

10. At t D 1 we obtain .x; y/ D .1:31498; 1:02537/ (h D 0:1)
and .1:31501; 1:02538/ (h D 0:05); the actual value is

.1:31501; 1:02538/.

11. At t D 1 we obtain .x; y/ D .�0:05832; 0:56664/ (h D 0:1)

and .�0:05832; 0:56665/ (h D 0:05); the actual value is
.�0:05832; 0:56665/.

12. We solved x
0 D y, y

0 D �x C sin t , x.0/ D y.0/ D 0. With

h D 0:1 and also with h D 0:05 we obtain the actual value
x.1:0/ � 0:15058.

13. Runge-Kutta, h D 0:1: about 1050 ft in about 7:7 s

14. Runge-Kutta, h D 0:1: about 1044 ft in about 7:8 s

15. Runge-Kutta, h D 1:0: about 83:83 mi in about 168 s

16. At 40
ı: 5:0 s, 352:9 ft; at 45

ı: 5:4 s, 347:2 ft; at 50
ı: 5:8 s,

334:2 ft (all values approximate)

17. At 39:0
ı the range is about 352:7 ft. At 39:5

ı it is 352:8; at
40

ı, 352:9; at 40:5
ı, 352:6; at 41:0

ı, 352:1.

18. Just under 57:5
ı

19. Approximately 253 ft=s

20. Maximum height: about 1005 ft, attained in about 5:6 s; range:

about 1880 ft; time aloft: about 11:6 s

21. Runge-Kutta with h D 0:1 yields these results:
(a) 21400 ft, 46 s, 518 ft=s; (b) 8970 ft, 17:5 s; (c) 368 ft=s

(at t � 23).

Chapter 8

Section 8.1

1. ˆ.t/ D

�

e
t

e
3t

�e
t

e
3t

�

, x.t/ D 1
2

�

5e
t C e

3t

�5e
t C e

3t

�

2. ˆ.t/ D

�

1 e
4t

2 �2e
4t

�

, x.t/ D
1

4

�

3 C 5e
4t

6 � 10e
4t

�

3. ˆ.t/ D

�

5 cos 4t �5 sin 4t

2 cos 4t C 4 sin 4t 4 cos 4t � 2 sin 4t

�

,

x.t/ D 1
4

�

�5 sin 4t

4 cos 4t � 2 sin 4t

�

4. ˆ.t/ D e
2t

�

1 1 C t

1 t

�

, x.t/ D e
2t

�

1 C t

t

�

5. ˆ.t/ D

�

2 cos 3t �2 sin 3t

�3 cos 3t C 3 sin 3t 3 cos 3t C 3 sin 3t

�

,

x.t/ D 1
3

�

3 cos 3t � sin 3t

�3 cos 3t C 6 sin 3t

�

6. ˆ.t/ D e
5t

�

cos 4t � 2 sin 4t 2 cos 4t C 2 sin 4t

2 cos 4t 2 sin 4t

�

,

x.t/ D 2e
5t

�

cos 4t C sin 4t

sin 4t

�
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7. ˆ.t/ D

2

4

6 3e
t

2e
�t

2 e
t

e
�t

5 2e
t

2e
�t

3

5 ;

x.t/ D

2

4

�12 C 12e
t C 2e

�t

�4 C 4e
t C e

�t

�10 C 8e
t C 2e

�t

3

5

8. ˆ.t/ D

2

4

0 e
t

e
3t

e
�2t �e

t �e
3t

�e
�2t

0 e
3t

3

5, x.t/ D

2

4

e
t

�e
t C e

�2t

�e
�2t

3

5

9. e
At D

�

2e
3t � e

t �2e
3t C 2e

t

e
3t � e

t �e
3t C 2e

t

�

10. e
At D

�

�2 C 3e
2t

3 � 3e
2t

�2 C 2e
2t

3 � 2e
2t

�

11. e
At D

�

3e
3t � 2e

2t �3e
3t C 3e

2t

2e
3t � 2e

2t �2e
3t C 3e

2t

�

12. e
At D

�

�3e
t C 4e

2t
4e

t � 4e
2t

�3e
t C 3e

2t
4e

t � 3e
2t

�

13. e
At D

�

4e
3t � 3e

t �4e
3t C 4e

t

3e
3t � 3e

t �3e
3t C 4e

t

�

14. e
At D

�

�8e
t C 9e

2t
6e

t � 6e
2t

�12e
t C 12e

2t
9e

t � 8e
2t

�

15. e
At D

�

5e
2t � 4e

t �10e
2t C 10e

t

2e
2t � 2e

t �4e
2t C 5e

t

�

16. e
At D

�

�9e
t C 10e

2t
15e

t � 15e
2t

�6e
t C 6e

2t
10e

t � 9e
2t

�

17. e
At D 1

2

�

e
4t C e

2t
e

4t � e
2t

e
4t � e

2t
e

4t C e
2t

�

18. e
At D

1

2

�

e
2t C e

6t �e
2t C e

6t

�e
2t C e

6t
e

2t C e
6t

�

19. e
At D 1

5

�

4e
10t C e

5t
2e

10t � 2e
5t

2e
10t � 2e

5t
e

10t C 4e
5t

�

20. e
At D

1

5

�

e
5t C 4e

15t �2e
5t C 2e

15t

�2e
5t C 2e

15t
4e

5t C e
15t

�

21. e
At D

�

1 C t �t

t 1 � t

�

22. e
At D

�

1 C 6t 4t

�9t 1 � 6t

�

23. e
At D

2

4

1 C t �t �t � t
2

t 1 � t t � t
2

0 0 1

3

5

24. e
At D

2

4

1 C 3t 0 �3t

5t C 18t
2

1 7t � 18t
2

3t 0 1 � 3t

3

5

25. e
At D

�

e
2t

5te
2t

0 e
2t

�

, x.t/ D e
At

�

4

7

�

26. e
At D

�

e
7t

0

11te
7t

e
7t

�

, x.t/ D e
At

�

5

�10

�

27. e
At D

2

4

e
t

2te
t

.3t C 2t
2
/e

t

0 e
t

2te
t

0 0 e
t

3

5, x.t/ D e
At

2

4

4

5

6

3

5

28. e
At D

2

4

e
5t

0 0

10te
5t

e
5t

0

.20t C 150t
2
/e

5t
30te

5t
e

5t

3

5,

x.t/ D e
At

2

4

40

50

60

3

5

29. e
At D

2

6

6

4

1 2t 3t C 6t
2

4t C 6t
2 C 4t

3

0 1 6t 3t C 6t
2

0 0 1 2t

0 0 0 1

3

7

7

5

e
t ,

x.t/ D e
At

2

6

6

4

1

1

1

1

3

7

7

5

30. e
At D e

3t

2

6

6

4

1 0 0 0

6t 1 0 0

9t C 18t
2

6t 1 0

12t C 54t
2 C 36t

3
9t C 18t

2
6t 1

3

7

7

5

,

x.t/ D e
At

2

6

6

4

1

1

1

1

3

7

7

5

33. x.t/ D

�

c1 cosh t C c2 sinh t

c1 sinh t C c2 cosh t

�

35. e
At D

�

e
3t

4te
3t

0 e
3t

�

36. e
At D e

t

2

4

1 2t 3t C 4t
2

0 1 4t

0 0 1

3

5

37. e
At D

2

4

e
2t

3e
2t � 3e

t
13e

2t � .13 C 9t/e
t

0 e
t

3te
t

0 0 e
t

3

5

38. e
At D

2

4

e
5t

4e
10t � 4e

5t
16e

10t � .16 C 50t/e
5t

0 e
10t

4e
10t � 4e

5t

0 0 e
5t

3

5

39. e
At D
2

6

6

4

e
t

3te
t

12e
2t � .12 C 9t/e

t
.51 C 18t/e

t � .51 � 36t/e
2t

0 e
t

3e
2t � 3e

t
6e

t � .6 � 9t/e
2t

0 0 e
2t

4e
3t � 4e

2t

0 0 0 e
2t

3

7

7

5

40. e
At D
2

6

6

4

e
2t

4te
2t

.4t C 8t
2
/e

2t
100e

3t � .100 C 96t C 32t
2
/e

2t

0 e
2t

4te
2t

20e
3t � .20 C 16t/e

2t

0 0 e
2t

4e
3t � 4e

2t

0 0 0 e
3t

3

7

7

5

Section 8.2

1. x.t/ D 7
3

, y.t/ D � 8
3

2. x.t/ D 1
8

.1 C 12t/, y.t/ D � 1
4

.5 C 4t/

3. x.t/ D 1
756

.864e
�t C 4e

6t � 868 C 840t � 504t
2
/,

y.t/ D 1
756

.�864e
�t C 3e

6t C 861 � 882t C 378t
2
/

4. x.t/ D 1
84

.99e
5t � 8e

�2t � 7e
t
/,

y.t/ D 1
84

.99e
5t C 48e

�2t � 63e
t
/

5. x.t/ D 1
3

.�12 � e
�t � 7te

�t
/, y.t/ D 1

3
.�6 � 7te

�t
/

6. x.t/ D � 1
256

.91 C 16t/e
t , y.t/ D 1

32
.25 C 16t/e

t

7. x.t/ D 1
410

.369e
t C 166e

�9t � 125 cos t � 105 sin t/,

y.t/ D 1
410

.369e
t � 249e

�9t � 120 cos t � 150 sin t/

8. x.t/ D 1
3

.17 cos t C 2 sin t/, y.t/ D 1
3

.3 cos t C 5 sin t/

9. x.t/ D 1
4

.sin 2t C 2t cos 2t C t sin 2t/, y.t/ D 1
4

t sin 2t

10. x.t/ D 1
13

e
t
.4 cos t � 6 sin t/, y.t/ D 1

13
e

t
.3 cos t C 2 sin t/

11. x.t/ D 1
2

.1 � 4t C e
4t

/, y.t/ D 1
4

.�5 C 4t C e
4t

/

12. x.t/ D t
2, y.t/ D �t

2

13. x.t/ D 1
2

.1 C 5t/e
t , y.t/ D � 5

2
te

t

14. x.t/ D 1
8

.�2 C 4t � e
4t C 2te

4t
/, y.t/ D 1

2
t.�2 C e

4t
/
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15. (a) x1.t/ D 200.1 � e
�t=10

/,

x2.t/ D 400.1 C e
�t=10 � 2e

�t=20
/

(b) x1.t/ ! 200 and x2.t/ ! 400 as t ! C1
(c) Tank 1: about 6 min 56 s; tank 2: about 24 min 34 s

16. (a) x1.t/ D 600.1 � e
�t=20

/,
x2.t/ D 300.1 C e

�t=10 � 2e
�t=20

/

(b) x1.t/ ! 600 and x2.t/ ! 300 as t ! 1
(c) Tank 1: about 8 min 7 sec; tank 2: about 17 min 13 sec

17. x1.t/ D 102 � 95e
�t � 7e

5t , x2.t/ D 96 � 95e
�t � e

5t

18. x1.t/ D 68 � 110t � 75e
�t C 7e

5t ,

x2.t/ D 74 � 80t � 75e
�t C e

5t

19. x1.t/ D �70 � 60t C 16e
�3t C 54e

2t ,
x2.t/ D 5 � 60t � 32e

�3t C 27e
2t

20. x1.t/ D 3e
2t C 60te

2t � 3e
�3t ,

x2.t/ D �6e
2t C 30te

2t C 6e
�3t

21. x1.t/ D �e
�t � 14e

2t C 15e
3t ,

x2.t/ D �5e
�t � 10e

2t C 15e
3t

22. x1.t/ D �10e
�t � 7te

�t C 10e
3t � 5te

3t ,

x2.t/ D �15e
�t � 35te

�t C 15e
3t � 5te

3t

23. x1.t/ D 3 C 11t C 8t
2, x2.t/ D 5 C 17t C 24t

2

24. x1.t/ D 2 C t C ln t , x2.t/ D 5 C 3t �
1

t

C 3 ln t

25. x1.t/ D �1 C 8t C cos t � 8 sin t ,

x2.t/ D �2 C 4t C 2 cos t � 3 sin t

26. x1.t/ D 3 cos t � 32 sin t C 17t cos t C 4t sin t ,

x2.t/ D 5 cos t � 13 sin t C 6t cos t C 5t sin t

27. x1.t/ D 8t
3 C 6t

4, x2.t/ D 3t
2 � 2t

3 C 3t
4

28. x1.t/ D �7 C 14t � 6t
2 C 4t

2 ln t ,

x2.t/ D �7 C 9t � 3t
2 C ln t � 2t ln t C 2t

2 ln t

29. x1.t/ D t cos t � .ln cos t/.sin t/;

x2.t/ D t sin t C .ln cos t/.cos t/

30. x1.t/ D 1
2

t
2 cos 2t , x2.t/ D 1

2
t

2 sin 2t

31. x1.t/ D .9t
2 C 4t

3
/e

t , x2.t/ D 6t
2
e

t , x3.t/ D 6te
t

32. x1.t/ D .44 C 18t/e
t C .�44 C 26t/e

2t ,

x2.t/ D 6e
t C .�6 C 6t/e

2t , x3.t/ D 2te
2t

33. x1.t/ D 15t
2 C 60t

3 C 95t
4 C 12t

5,
x2.t/ D 15t

2 C 55t
3 C 15t

4, x3.t/ D 15t
2 C 20t

3,

x4.t/ D 15t
2

34. x1.t/ D 4t
3 C .4 C 16t C 8t

2
/e

2t ,

x2.t/ D 3t
2 C .2 C 4t/e

2t ,
x3.t/ D .2 C 4t C 2t

2
/e

2t , x4.t/ D .1 C t/e
2t

Section 8.3

1. x.t/ D 1
2

�

e
�t C e

3t �e
�t C e

3t

�e
�t C e

3t
e

�t C e
3t

�

2. x D 1
5

�

2e
�t C 3e

4t �3e
�t C 3e

4t

�2e
�t C 2e

4t
3e

�t C 2e
4t

�

3. x.t/ D 1
7

�

3e
�t C 4e

6t �4e
�t C 4e

6t

�3e
�t C 3e

6t
4e

�t C 3e
6t

�

4. x.t/ D 1
7

�

e
�2t C 6e

5t �e
�2t C e

5t

�6e
�2t C 6e

5t
6e

�2t C e
5t

�

5. x.t/ D 1
6

�

�e
�t C 7e

5t
7e

�t � 7e
5t

�e
�t C e

5t
7e

�t � e
5t

�

6. x.t/ D

�

�5e
3t C 6e

4t �5e
3t C 5e

4t

6e
3t � 6e

4t
6e

3t � 5e
4t

�

7. x.t/ D 1
5

�

2e
�9t C 3e

t �2e
�9t C 2e

t

�3e
�9t C 3e

t
3e

�9t C 2e
t

�

8. x.t/ D 1
2

�

2 cos 2t C sin 2t �5 sin 2t

sin 2t 2 cos 2t � sin 2t

�

9. x.t/ D 1
4

�

4 cos 4t C 2 sin 4t �5 sin 4t

4 sin 4t 4 cos 4t � 2 sin 4t

�

10. x.t/ D 1
3

�

3 cos 3t � 3 sin 3t �2 sin 3t

9 sin 3t 3 cos 3t C 3 sin 3t

�

11. x.t/ D e
t

�

cos 2t � sin 2t

sin 2t cos 2t

�

12. x.t/ D e2t

2

�

2 cos 2t � sin 2t �5 sin 2t

sin 2t 2 cos 2t C sin 2t

�

13. x.t/ D e2t

3

�

3 cos 3t C 3 sin 3t �9 sin 3t

2 sin 3t 3 cos 3t � 3 sin 3t

�

14. x.t/ D e
3t

�

cos 4t � sin 4t

sin 4t cos 4t

�

15. x.t/ D e5t

4

�

4 cos 4t C 2 sin 4t �5 sin 4t

4 sin 4t 4 cos 4t � 2 sin 4t

�

16. x.t/ D 1
9

�

4e
�100t C 5e

�10t �2e
�100t C 2e

�10t

�10e
�100t C 10e

�10t
5e

�100t C 4e
�10t

�

17. x.t/ D 1
6

2

4

3 C e
6t C 2e

9t �2e
6t C 2e

9t �3 C e
6t C 2e

9t

�2e
6t C 2e

9t
4e

6t C 2e
9t �2e

6t C 2e
9t

�3 C e
6t C 2e

9t �2e
6t C 2e

9t
3 C e

6t C 2e
9t

3

5

18. x.t/ D 1
18

2

4

16 C e
6t C 2e

9t �4 C 4e
9t �4 C 4e

9t

�4e
6t C 4e

9t
1 C 9e

6t C 8e
9t

1 � 9e
6t C 8e

9t

�4e
6t C 4e

9t
1 � 9e

6t C 8e
9t

1 C 9e
6t C 8e

9t

3

5

19. x.t/ D 1
3

2

4

2e
3t C e

6t �e
3t C e

6t �e
3t C e

6t

�e
3t C e

6t
2e

3t C e
6t �e

3t C e
6t

�e
3t C e

6t �e
3t C e

6t
2e

3t C e
6t

3

5

20. x.t/ D 1
6

2

4

3e
2t C e

6t C 2e
9t �2e

6t C 2e
9t �3e

2t C e
6t C 2e

9t

�2e
6t C 2e

9t
4e

6t C 2e
9t �2e

6t C 2e
9t

�3e
2t C e

6t C 2e
9t �2e

6t C 2e
9t

3e
2t C e

6t C 2e
9t

3

5

21. x.t/ D e
�3t

�

1 C t t

�t 1 � t

�

22. x.t/ D e
2t

�

1 C t �t

t 1 � t

�

23. x.t/ D e
3t

�

1 � 2t �2t

2t 1 C 2t

�

24. x.t/ D e
4t

�

1 � t �t

t 1 C t

�

25. x.t/ D e
5t

�

1 C 2t t

�4t 1 � 2t

�

26. x.t/ D e
5t

�

1 � 4t �4t

4t 1 C 4t

�

27. x.t/ D

2

4

e
2t

0 0

e
2t � e

9t
e

9t �e
2t C e

9t

0 0 e
2t

3

5
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28. x.t/ D

2

4

�2e
7t C 3e

13t �2e
7t C 2e

13t
0

3e
7t � 3e

13t
3e

7t � 2e
13t

0

�e
7t C e

13t �e
7t C e

13t
e

13t

3

5

29. x.t/ D

2

4

7e
5t � 6e

9t �3e
5t C 3e

9t �21e
5t C 21e

9t

0 e
5t

0

2e
5t � 2e

9t �e
5t C e

9t �6e
5t C 7e

9t

3

5

30. x.t/ D

2

4

5e
3t � 4e

7t �10e
3t C 10e

7t
12e

3t � 12e
7t

2e
3t � 2e

7t �4e
3t C 5e

7t
6e

3t � 6e
7t

0 0 e
3t

3

5

31. e
At D 1

4

�

�e
�t C 5e

3t
e

�t � e
3t

�5e
�t C 5e

3t
5e

�t � e
3t

�

,

x.t/ D

�

�e
�t � 14e

2t C 15e
3t

�5e
�t � 10e

2t C 15e
3t

�

32. With e
At as in Problem 31,

x.t/ D

�

.�10 � 7t/e
�t C .10 � 5t/e

3t

.�15 � 35t/e
�t C .15 � 5t/e

3t

�

.

33. e
At D

�

1 C 3t �t

9t 1 � 3t

�

, x.t/ D

�

3 C 11t C 8t
2

5 C 17t C 24t
2

�

34. With e
At as in Problem 33, x.t/ D

�

2 C t C ln t

5 C 3t � 1
t

C 3 ln t

�

.

35. e
At D

�

cos t C 2 sin t �5 sin t

sin t cos t � 2 sin t

�

,

x.t/ D

�

�1 C 8t C cos t � 8 sin t

�2 C 4t C 2 cos t � 3 sin t

�

36. With e
At as in Problem 35,

x.t/ D

�

3 cos t � 32 sin t C 17t cos t C 4t sin t

5 cos t � 13 sin t C 6t cos t C 5t sin t

�

.

37. e
At D

�

1 C 2t �4t

t 1 � 2t

�

, x.t/ D

�

8t
3 C 6t

4

3t
2 � 2t

3 C 3t
4

�

38. With e
At as in Problem 37,

x.t/ D

�

�7 C 14t � 6t
2 C 4t

2 ln t

�7 C 9t � 3t
2 C ln t � 2t ln t C 2t

2 ln t

�

.

39. e
At D

�

cos t � sin t

sin t cos t

�

, x.t/ D

�

t cos t � .ln cos t/.sin t/

t sin t C .ln cos t/.cos t

�

40. e
At D

"

cos 2t �2 sin 2t

sin 2t cos 2t

#

, x.t/ D

"

1
2

t
2 cos 2t

1
2

t
2 sin 2t

#

41. x.t/ D

2

4

�9e
�t C 10e

3t �2e
�t C 2e

3t
4e

�t � 4e
3t

9e
�t � 9e

3t
2e

�t � e
3t �4e

�t C 4e
3t

�18e
�t C 18e

3t �4e
�t C 4e

3t
8e

�t � 7e
3t

3

5

42. x.t/ D

2

4

�5e
�2t C 6e

3t �10e
�2t C 10e

3t �20e
�2t C 20e

3t

�3e
�2t C 3e

3t �6e
�2t C 7e

3t �12e
�2t C 12e

3t

3e
�2t C �3e

3t
6e

�2t � 6e
3t

12e
�2t � 11e

3t

3

5

43. x.t/ D 1
2

e
2t

2

4

�t
2 � 8t C 2 4t

2 C 34t t
2 C 8t

�2t 8t C 2 2t

�t
2

4t
2 C 2t t

2 C 2

3

5

44. x.t/ D 1
2

e
3t

2

4

4t C 2 �2t 2t

2t
2 C 2t �t

2 C 2 t
2

2t
2 � 6t �t

2 C 4t t
2 � 4t C 2

3

5

45. x.t/ D

2

6

6

4

e
�t

te
�t

te
�t �2te

�t

�3e
�t C .3 � 2t/e

2t
.1 � 3t/e

�t
.1 � 3t/e

�t � e
2t

2.3t � 1/e
�t C .2 � t/e

2t

�e
�t C .1 C 2t/e

2t �te
�t �te

�t C e
2t

2te
�t C te

2t

�2e
�t C 2e

2t �2te
�t �2te

�t
4te

�t C e
2t

3

7

7

5

46. x.t/ D 1
2

e
t

2

6

6

4

48t
2 C 68t C 2 �18t

2 � 24t 6t
2 C 8t 36t

2 C 60t

7t
2 C 44t �3t

2 � 18t C 2 t
2 C 6t 6t

2 C 38t

�21t
2 � 20t 9t

2 C 6t �3t
2 � 2t C 2 �18t

2 � 18t

�42t
2 � 54t 18t

2 C 18t �6t
2 � 6t �36t

2 � 48t C 2

3

7

7

5

47. x.t/ D

�

cos t

cos t

�

C i

�

� sin 3t

sin 3t

�

There are two natural modes—one in which the two masses move
in the same direction with frequency !1 D 1 and with equal am-

plitudes, and one in which they move in opposite directions with
frequency !2 D 3 and with equal amplitudes.

48. x.t/ D

�

cos t

cos t

�

C i

"

� sin
p

5 t

sin
p

5 t

#

There are two natural modes—one in which the two masses move
in the same direction with frequency !1 D 1 and with equal am-

plitudes, and one in which they move in opposite directions with

frequency !2 D
p

5 and with equal amplitudes.

49. x.t/ D

"

cos
p

2 t

cos
p

2 t

#

C i

�

� sin 2t

sin 2t

�

There are two natural modes—one in which the two masses move
in the same direction with frequency !1 D

p
2 and with equal

amplitudes, and one in which they move in opposite directions
with frequency !2 D 2 and with equal amplitudes.

50. x.t/ D

�

cos 2t

cos 2t

�

C i

�

� sin 4t

sin 4t

�

There are two natural modes—one in which the two masses move
in the same direction with frequency !1 D 2 and with equal am-

plitudes, and one in which they move in opposite directions with
frequency !2 D 4 and with equal amplitudes.

Chapter 9

Section 9.1

1. 6.1.14 2. 6.1.16 3. 6.1.19 4. 6.1.13

5. 6.1.12 6. 6.1.18 7. 6.1.15 8. 6.1.17

9. Equilibrium solutions x.t/ � 0, ˙2. The critical point .0; 0/ in
the phase plane looks like a center, whereas the points .˙2; 0/
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look like saddle points.

0 5

0

5

x

y

–5

–5

10. Equilibrium solution x.t/ � 0. The critical point .0; 0/ in the
phase plane looks like a spiral sink.

0 3

0

5

x

y

–5

–3

11. Equilibrium solutions x.t/ � : : : ; �2�; ��; 0; �; 2�; : : : . The

phase portrait shown in the solutions manual suggests that the crit-
ical point .n�; 0/ in the phase plane is a spiral sink if n is even,

but is a saddle point if n is odd.

12. Equilibrium solution x.t/ � 0. The critical point .0; 0/ in the
phase plane looks like a spiral source, with the solution curves em-

anating from this source spiraling outward toward a closed curve
trajectory.

0 1 2

0

2

4

x

y

–2

–4
–2 –1

13. Solution x.t/ D x0e
�2t , y.t/ D y0e

�2t . The origin is a stable
proper node similar to the one illustrated in Fig. 6.1.4.

14. Solution x.t/ D x0e
2t , y.t/ D y0e

�2t . The origin is an unsta-

ble saddle point.

x

y 0

5

–5

0 5–5

15. Solution x.t/ D x0e
�2t , y.t/ D y0e

�t . The origin is a stable

node.

x

y 0

5

–5

0 5–5

16. Solution x.t/ D x0e
t , y.t/ D y0e

3t . The origin is an unstable
improper node.

x

y 0

5

–5

0 5–5

17. Solution x.t/ D A cos t C B sin t , y.t/ D B cos t � A sin t . The
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origin is a stable center.

x

y 0

5

–5

0 5–5

18. Solution x.t/ D A cos 2t C B sin 2t , y.t/ D �2B cos 2t C
2A sin 2t . The origin is a stable center.

19. Solution x.t/ D A cos 2t CB sin 2t , y.t/ D B cos 2t �A sin 2t .

The origin is a stable center.

20. Solution x.t/ D e
�2t

.A cos t C B sin t/, y.t/ D e
�2t

Œ.�2A C
B/ cos t � .A C 2B/ sin t�. The origin is a stable spiral point.

x

y 0

5

–5

0 5–5

23. The origin and the circles x
2 C y

2 D C > 0; the origin is a stable

center.

24. The origin and the hyperbolas y
2 � x

2 D C ; the origin is an
unstable saddle point.

x

y 0

5

–5

0 5–5

25. The origin and the ellipses x
2 C 4y

2 D C > 0; the origin is a

stable center.

x

y 0

5

–5

0 5–5

26. The origin and the ovals of the form x
4 C y

4 D C > 0; the origin
is a stable center.

x 

y 0 

4 

–4

0 4 –4

Section 9.2

1. Asymptotically stable node

x

y 0

5

–5

0 5–5

2. Unstable improper node
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3. Unstable saddle point

x

y 0

5

–5

0 5–5

4. Unstable saddle point

5. Asymptotically stable node

x

y 0

5

–5

0 5–5

6. Unstable node

7. Unstable spiral point

x

y 0

5

–5

0 5–5

8. Asymptotically stable spiral point

9. Stable, but not asymptotically stable, center

x

y 0

5

–5

0 5–5

10. Stable, but not asymptotically stable, center

11. Asymptotically stable node: .2; 1/

x

y 0

5

–5

0 5–5

12. Unstable improper node: .2; �3/

13. Unstable saddle point: .2; 2/

x

y 0

5

–5

0 5–5

14. Unstable saddle point: .3; 4/
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15. Asymptotically stable spiral point: .1; 1/

x

y 0

5

–5

0 5–5

16. Unstable spiral point: .3; 2/

17. Stable center:
�

5
2

; � 1
2

�

x

y 0

5

–5

0 5–5

18. Stable, but not asymptotically stable, center: .�2; �1/

19. .0; 0/ is a stable node. Also, there is a saddle point at

.0:67; 0:40/.

x

y 0

2

–2

0 2–2

20. .0; 0/ is an unstable node. Also, there is a saddle point at

.�1; �1/ and a spiral sink at .�2:30; �1:70/.

x

y 0

3

–3

0 3–3

21. .0; 0/ is an unstable saddle point. Also, there is a spiral sink at

.�0:51; �2:12/.

x

y 0

5

–5

0 5–5

22. .0; 0/ is an unstable saddle point. Also, there are nodal sinks at

.˙0:82; ˙5:06/ and nodal sources at .˙3:65; �0:59/.

0 2 4 6

0

2

4

6

x

y

–6

–6

–4

–2

–2–4

23. .0; 0/ is a spiral sink. Also, there is a saddle point at
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.�1:08; �0:68/.

0 1 2 3

0

1

2

3

x

y

–3

–3

–2

–1

–1–2

24. .0; 0/ is a spiral source. No other critical points are visible.

x

y 0

5

–5

0 5–5

25. Theorem 2 implies only that .0; 0/ is a stable sink—either a node

or a spiral point. The phase portrait for �5 � x; y � 5 also shows
a saddle point at .0:74; �3:28/ and spiral sink at .2:47; �0:46/.

The origin looks like a nodal sink in a second phase portrait for
�0:2 � x; y � 0:2, which also reveals a second saddle point at

.0:12; 0:07/.

x

y 0

5

–5

0 5–5

x

y 0

0.2

–0.2

0 0.2–0.2

26. Theorem 2 implies only that .0; 0/ is an unstable source. The
phase portrait for �3 � x; y � 3 also shows saddle points at

.0:20; 0:25/ and .�0:23; �1:50/, as well as a nodal sink at

.2:36; 0:58/.

x

y 0

3

–3

0 3–3

27. Theorem 2 implies only that .0; 0/ is a center or a spiral
point, but does not establish its stability. The phase portrait for

�2 � x; y � 2 also shows saddle points at .�0:25; �0:51/

and .�1:56; 1:64/, plus a nodal sink at .�1:07; �1:20/. The

origin looks like a likely center in a second phase portrait for
�0:6 � x; y � 0:6.

x

y 0

2

–2

0 2–2
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x

y 0

0.6

–0.6

0 0.6–0.6

28. Theorem 2 implies only that .0; 0/ is a center or a spiral point, but

does not establish its stability (though in the phase portrait it looks
like a likely center). The phase portrait for �0:25 � x � 0:25,

�1 � y � 1 also shows saddle points at .0:13; 0:63/ and
.�0:12; �0:47/.

x

y 0

1

–1

0 0.25–0.25

29. There is a saddle point at .0; 0/. The other critical point .1; 1/ is

indeterminate, but looks like a center in the phase portrait.

x

y 0

2

–2

0 2–2

30. There is a saddle point at .1; 1/ and a spiral sink at .�1; 1/.

x

y 0

3

–3

0 3–3

31. There is a saddle point at .1; 1/ and a spiral sink at .�1; �1/.

x

y 0

3

–3

0 3–3

32. There is a saddle point at .2; 1/ and a spiral sink at .�2; �1/.

x

y 0

3

–3

0 3–3

37. Note that the differential equation is homogeneous.
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Section 9.3

1. Linearization at .0; 0/: x
0 D 200x, y

0 D �150y; phase plane

portrait:

x

y 0

5

–5

0 5–5

3. Linearization at .75; 50/: u
0 D �300v, v

0 D 100u; phase plane
portrait:

u

v 0

5

–5

0 5–5

5. The characteristic equation is �
2 C 45� C 126 D 0.

7. The characteristic equation is .�24 � �/
2 � 2 � .18/

2 D 0. Phase

plane portrait:

u

v 0

5

–5

0 5–5

Phase plane portrait for the nonlinear system in Problems

4–7:

0 5 10 15 20

0

5

10

15

20

x

y

(0,21) 

(6,12) 

(15,0) 

9. The characteristic equation is �
2 C 58� � 120 D 0.

10. The characteristic equation is .� C 36/.� C 18/ � 576 D 0.

Phase plane portrait:

u

v 0

5

–5

0 5–5

Phase plane portrait for the nonlinear system in Problems

8–10:

0 5 10 15 20

0

5

10

15

20

x

y

(0,14) 

(12,6) 

(20,0) 

12. The characteristic equation is �
2 C 2� � 15 D 0.

13. The characteristic equation is �
2 C 2� C 6 D 0. Phase plane
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portrait:

u

v 0

5

–5

0 5–5

15. The characteristic equation is �
2 C 2� � 24 D 0.

17. The characteristic equation is �
2 � 4� C 6 D 0. Phase plane

portrait:

u

v 0

5

–5

0 5–5

19. The characteristic equation is �
2 C 10 D 0. Phase plane portrait:

u

v 0

5

–5

0 5–5

21. The characteristic equation is �
2 � � � 6 D 0.

22. The characteristic equation is �
2 � 5� C 10 D 0. Phase plane

portrait:

u

v 0

5

–5

0 5–5

24. The characteristic equation is �
2 C 5� � 14 D 0.

25. The characteristic equation is �
2 C 5� C 10 D 0. Phase plane

portrait:

u

v 0

5

–5

0 5–5

26. Naturally growing populations in competition

Critical points: nodal source .0; 0/ and saddle point .3; 2/

Nonzero coexisting populations x.t/ � 3, y.t/ � 2

27. Naturally declining populations in cooperation
Critical points: nodal sink .0; 0/ and saddle point .3; 2/

Nonzero coexisting populations x.t/ � 3, y.t/ � 2

0 5

0

5

x

y

(3,2) 

(0,0) 

28. Naturally declining predator, naturally growing prey population

Critical points: saddle point .0; 0/ and apparent stable center
.4; 8/
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Nonzero coexisting populations x.t/ � 4, y.t/ � 8

0 5 10 15

0

5

10

15

x

y
(4,8) 

(0,0) 

29. Logistic and naturally growing populations in competition
Critical points: nodal source .0; 0/, nodal sink .3; 0/, and saddle
point .2; 2/

Nonzero coexisting populations x.t/ � 2, y.t/ � 2

0 5

0

5

x

y

(0,0) (3,0) 

(2,2) 

30. Logistic and naturally declining populations in cooperation

Critical points: saddle point .0; 0/, nodal sink .3; 0/, and saddle
point .5; 4/

Nonzero coexisting populations x.t/ � 5, y.t/ � 4

31. Logistic prey, naturally declining predator population
Critical points: saddle points .0; 0/ and .3; 0/, spiral sink .2; 4/

Nonzero coexisting populations x.t/ � 2, y.t/ � 4

0 5

0

5

x

y

(0,0) (3,0) 

(2,4) 

32. Logistic populations in cooperation

Critical points: nodal source .0; 0/, saddle points .10; 0/ and
.0; 20/, nodal sink .30; 60/

Nonzero coexisting populations x.t/ � 30, y.t/ � 60

33. Logistic prey and predator populations
Critical points: nodal source .0; 0/, saddle points .30; 0/ and

.0; 20/, nodal sink .4; 22/

Nonzero coexisting populations x.t/ � 4, y.t/ � 22

0 10 20

0

20

40

x

y

(0,0) 

(0,20) 

(15,0) 

(4,22) 

34. Logistic prey and predator populations

Critical points: nodal source .0; 0/, saddle points .15; 0/ and
.0; 5/, spiral sink .10; 10/

Nonzero coexisting populations x.t/ � 10, y.t/ � 10

Section 9.4

1. Eigenvalues: �2, �3; stable node

0 10

0

5

x

y

–5

–10

2. Eigenvalues: 1, 3; unstable node

3. Eigenvalues: �3, 5; unstable saddle point

0 3

0

3

x

y

–3

–3
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4. Eigenvalues: �1 ˙ 2i ; stable spiral point

0 4

0

4

x

y

–4

–4

5. Critical points: .0; n�/ where n is an integer; an unstable saddle
point if n is even, a stable spiral point if n is odd

0 5

0

π

2π

3π

x

y

–π

–2π

–3π

–5

6. Critical points: .n; 0/ where n is an integer; an unstable saddle

point if n is even, a stable spiral point if n is odd

7. Critical points: .n�; n�/ where n is an integer; an unstable sad-
dle point if n is even, a stable spiral point if n is odd

0

0

π

2π

3π

x

y

–π

–2π

–3π

–π–2π–3π π 2π 3π

8. Critical points: .n�; 0/ where n is an integer; an unstable node if

n is even, an unstable saddle point if n is odd

9. If n is odd then .n�; 0/ is an unstable saddle point.

10. If n is odd then .n�; 0/ is a stable node.

11. .n�; 0/ is a stable spiral point.

12. Unstable saddle points at .2; 0/ and .�2; 0/, a stable center at

.0; 0/

13. Unstable saddle points at .2; 0/ and .�2; 0/, a stable spiral point
at .0; 0/

14. Stable centers at .2; 0/ and .�2; 0/, an unstable saddle point at
.0; 0/

15. A stable center at .0; 0/ and an unstable saddle point at .4; 0/

16. Stable centers at .2; 0/, .0; 0/, and .�2; 0/, unstable saddle
points at .1; 0/ and .�1; 0/

17. .0; 0/ is a spiral sink.

0 5

0

5

10

x

y

–5

–10

–5

18. .0; 0/ is a spiral sink; the points .˙2; 0/ are saddle points.

0 5

0

5

x

y

–5

–5

19. .0; 0/ is a spiral sink.

0 5

0

5

10

x

y

–5

–10

–5

20. .n�; 0/ is a spiral sink if n is even, a saddle point if n is odd.

Chapter 10

Section 10.1

1. 1=s
2
; s > 0 2. 2=s

3
; s > 0

3. e=.s � 3/; s > 3 4. s=.s
2 C 1/; s > 0

5. 1=.s
2 � 1/; s > 1

6. 1
2

Œ1=s � s=.s
2 C 4/�, s > 0

7. .1 � e
�s

/=s; s > 0

8. .e
�s � e

�2s
/=s; s > 0 9. .1 � e

�s � se
�s

/=s
2
; s > 0
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10. .s � 1 C e
�s

/=s
2, s > 0

11. 1
2

p
�s

�3=2 C 3s
�2

; s > 0

12. .45� � 192s
3=2

/=.8s
7=2

/, s > 0

13. s
�2 � 2.s � 3/

�1
; s > 3

14. 3

p
�=.4s

5=2
/ C 1=.s C 10/, s > 0

15. s
�1 C s.s

2 � 25/
�1

; s > 5 16. .s C 2/=.s
2 C 4/; s > 0

17. cos2
2t D 1

2
.1 C cos 4t/; 1

2

�

s
�1 C s=.s

2 C 16/

�

, s > 0

18. 3=.s
2 C 36/; s > 0

19. s
�1 C 3s

�2 C 6s
�3 C 6s

�4
; s > 0

20. 1=.s � 1/
2
; s > 1 21. .s

2 � 4/=.s
2 C 4/

2
; s > 0

22. 1
2

�

s=.s
2 � 36/ � s

�1
�

23. 1
2

t
3

24. 2

p
t=� 25. 1 � 8

3
t

3=2
�

�1=2

26. e
�5t 27. 3e

4t

28. 3 cos 2t C 1
2

sin 2t 29. 5
3

sin 3t � 3 cos 3t

30. � cosh 2t � 9
2

sinh 2t 31. 3
5

sinh 5t � 10 cosh 5t

32. 2u.t � 3/

37. f .t/ D 1 � u.t � a/. Your figure should indicate that the graph
of f contains the point .a; 0/, but not the point .a; 1/.

38. f .t/ D u.t � a/ � u.t � b/. Your figure should indicate that the
graph of f contains the points .a; 1/ and .b; 0/, but not the points

.a; 0/ and .b; 1/.

39. Figure 10.2.8 shows the graph of the unit staircase function.

Section 10.2

1. x.t/ D 5 cos 2t 2. x.t/ D 3 cos 3t C 4
3

sin 3t

3. x.t/ D 2
3

.e
2t � e

�t
/ 4. x.t/ D 1

2
.7e

�3t � 3e
�5t

/

5. x.t/ D 1
3

.2 sin t � sin 2t/ 6. x.t/ D 1
3

.cos t � cos 2t/

7. x.t/ D 1
8

.9 cos t � cos 3t/ 8. x.t/ D 1
9

.1 � cos 3t/

9. x.t/ D 1
6

.2 � 3e
�t C e

�3t
/

10. x.t/ D 1
4

.2t � 3 C 12e
�t � 9e

�2t
/

11. x.t/ D 1, y.t/ D �2

12. x.t/ D 2
9

.e
2t � e

�t � 3te
�t

/, y.t/ D 1
9

.e
2t � e

�t C 6te
�t

/

13. x.t/ D �
�

2=

p
3

�

sinh
�

t=

p
3

�

, y.t/ D cosh
�

t=

p
3

�

C
�

1=

p
3

�

sinh
�

t=

p
3

�

14. x.t/ D 1
4

.2t � 3 sin 2t/, y.t/ D � 1
8

.2t C 3 sin 2t/

15. x.t/ D 1
3

�

2 C e
�3t=2

Œcos.rt=2/ C r sin.rt=2/�

�

, y.t/ D
1

21

�

28 � 9e
t C 2e

�3t=2
Œcos.rt=2/ C 4r sin.rt=2/�

�

where

r D
p

3

16. x.t/ D cos t C sin t , y.t/ D e
t � cos t , ´.t/ D �2 sin t

17. f .t/ D 1
3

.e
3t � 1/

18. f .t/ D 3
5

.1 � e
�5t

/

19. f .t/ D 1
4

.1 � cos 2t/ D 1
2

sin2
t

20. f .t/ D 1
9

.6 sin 3t � cos 3t C 1/

21. f .t/ D t � sin t

22. f .t/ D 1
9

.�1 C cosh 3t/

23. f .t/ D �t C sinh t

24. f .t/ D 1
2

.e
�2t � 2e

�t C 1/

Section 10.3

1. 24=.s � �/
5 2. 3

4

p
� .s C 4/

�5=2

3. 3�=Œ.s C 2/
2 C 9�

2
� 4.

p
2 .2s C 5/=.4s

2 C 4s C 17/

5. 3
2

e
2t 6. .t � t

2
/e

�t

7. te
�2t 8. e

�2t cos t

9. e
3t
�

3 cos 4t C 7
2

sin 4t

�

10. 1
36

e
2t=3

�

8 cos 4
3

t � 5 sin 4
3

t

�

11. 1
2

sinh 2t 12. 2 C 3e
3t

13. 3e
�2t � 5e

�5t 14. 2 C e
2t � 3e

�t

15. 1
25

.e
5t � 1 � 5t/ 16. 1

125
Œe

2t
.5t � 2/ C e

�3t
.5t C

2/ �

17. 1
16

.sinh 2t � sin 2t/ 18. e
4t
�

1 C 12t C 24t
2 C 32

3
t

3
�

19. 1
3

.2 cos 2t C 2 sin 2t � 2 cos t � sin t/

20. 1
32

Œe
2t

.2t � 1/ C e
�2t

.2t C 1/ �

21. 1
2

e
�t

.5 sin t � 3t cos t � 2t sin t/

22. 1
64

e
t=2

Œ.4t C 8/ cos t C .4 � 3t/ sin t�

27. 1
4

e
�3t

.8 cos 4t C 9 sin 4t/

28. 1
4

.1 � 2e
2t C e

4t
/ 29. 1

8
.�6t C 3 sinh 2t/

30. 1
10

Œ2e
�t � e

�2t
.2 cos 2t C sin 2t/�

31. 1
15

.6e
2t � 5 � e

�3t
/ 32. 1

2
.cosh t C cos t/

33. x.t/ D r.cosh rt sin rt � sinh rt cos rt/ where r D 1=

p
2

34. 1
2

sin 2t C 1
3

sin 3t 35. 1
16

.sin 2t � 2t cos 2t/

36. 1
50

Œ2e
2t C .10t � 2/ cos t � .5t C 14/ sin t�

37. 1
50

Œ.5t � 1/e
�t C e

�2t
.cos 3t C 32 sin 3t/�

38. 1
510

e
�3t

.489 cos 3t C 307 sin 3t/ C 1
170

.7 cos 2t C 6 sin 2t/

39.

t

–20

20

8π

x = +t

x = –t

Section 10.4

1. 1
2

t
2 2. .e

at � at � 1/=a
2

3. 1
2

.sin t � t cos t/ 4. 2.t � sin t/

5. te
at 6. .e

at � e
bt

/=.a � b/

7. 1
3

.e
3t � 1/ 8. 1

4
.1 � cos 2t/

9. 1
54

.sin 3t � 3t cos 3t/ 10. .kt � sin kt/=k
3

11. 1
4

.sin 2t C 2t cos 2t/ 12. 1
5

Œ1 � e
�2t

.cos t C
2 sin t/�

13. 1
10

.3e
3t � 3 cos t C sin t/ 14. 1

3
.cos t � cos 2t/

15. 6s=.s
2 C 9/

2, s > 0 16. .2s
3 � 24s/=.s

2 C 4/
3,

s > 0

17. .s
2 � 4s � 5/=.s

2 � 4s C 13/
2, s > 0

18.
2.3s

2 C 6s C 7/

.s C 1/
2
.s

2 C 2s C 5/
2

, s > 0

19. 1
2

� � arctan s D arctan.1=s/, s > 0

20. 1
2

ln.s
2 C 4/ � ln s, s > 0 21. ln s � ln.s � 3/, s > 3

22. ln.s C 1/ � ln.s � 1/, s > 1

23. �.2 sinh 2t/=t 24. 2.cos 2t � cos t/=t

25. e
�2t C e

3t � 2 cos t/=t 26. .e
�2t sin 3t/=t

27. 2.1 � cos t/=t 28. 1
8

.t sin t � t
2 cos t/

29. .s C 1/X
0
.s/ C 4X.s/ D 0; x.t/ D C t

3
e

�t , C ¤ 0

30. X.s/ D A=.s C 3/
3; x.t/ D C t

2
e

�3t , C ¤ 0
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31. .s � 2/X
0
.s/ C 3X.s/ D 0; x.t/ D C t

2
e

2t , C ¤ 0

32. .s
2 C 2s/X

0
.s/ C .4s C 4/X.s/ D 0; x.t/ D C.1 � t � e

�2t �
te

�2t
/, C ¤ 0

33. .s
2 C 1/X

0
.s/ C 4sX.s/ D 0; x.t/ D C.sin t � t cos t/, C ¤ 0

34. x.t/ D Ce
�2t

.sin 3t � 3t cos 3t/, C ¤ 0

Section 10.5

1. f .t/ D u.t � 3/ � .t � 3/

3
t

f(t)

2. f .t/ D .t � 1/u.t � 1/ � .t � 3/u.t � 3/

1 3
t

2

f(t)

3. f .t/ D u.t � 1/ � e
�2.t�1/

1
t

1

f(t)

4. f .t/ D e
t�1

u.t � 1/ � e
2
e

t�2
u.t � 2/

1
t

−10

−5

1

2

f(t)

5. f .t/ D u.t � �/ � sin.t � �/ D �u.t � �/ sin t

t

−1

1

π 3π 5π

f(t)

6. f .t/ D u.t � 1/ � cos �.t � 1/ D �u.t � 1/ cos �t

1 2 3 4 5
t

−1

1

f(t)

7. f .t/ D sin t � u.t � 2�/ sin.t � 2�/ D Œ1 � u.t � 2�/� sin t

t

−1

1

π 2π

f(t)

8. f .t/ D cos �t � u.t � 2/ cos �.t � 2/ D Œ1 � u.t � 2/� cos �t

2
t

−1

1

f(t)

9. f .t/ D cos �t C u.t � 3/ cos �.t � 3/ D Œ1 � u.t � 3/� cos �t

t

−1

1

3

f(t)
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10. f .t/ D 2u.t � �/ cos 2.t � �/ � 2u.t � 2�/ cos 2.t � 2�/

D 2Œu.t � �/ � u.t � 2�/� cos 2t

π 2π
t

−2

2

f(t)

11. f .t/ D 2Œ1 � u3.t/�; F .s/ D 2.1 � e
�3s

/=s

12. F .s/ D .e
�s � e

�4s
/=s

13. F .s/ D .1 � e
�2�s

/=.s
2 C 1/

14. F .s/ D s.1 � e
�2s

/=.s
2 C �

2
/

15. F .s/ D .1 C e
�3�s

/=.s
2 C 1/

16. F .s/ D 2.e
��s � e

�2�s
/=.s

2 C 4/

17. F .s/ D �.e
�2s C e

�3s
/=.s

2 C �
2
/

18. F .s/ D 2�.e
�3s C e

�5s
/=.4s

2 C �
2
/

19. F .s/ D e
�s

.s
�1 C s

�2
/

20. F .s/ D .1 � e
�s

/=s
2

21. F .s/ D .1 � 2e
�s C e

�2s
/=s

2

28. F .s/ D .1 � e
�as � ase

�as
/=Œs

2
.1 � e

�2as
/�

31. x.t/ D 1
2

Œ1 � u.t � �/� sin2
t

π
t

1
2

x(t)

32. x.t/ D g.t/ � u.t � 2/g.t � 2/, where g.t/ D 1
12

.3 � 4e
�t C

e
�4t

/

2 4
t

0.1

0.2

x(t)

33. x.t/ D 1
8

Œ1 � u.t � 2�/�

�

sin t � 1
3

sin 3t

�

π 2π
t

−0.1

0.1

x(t)

34. x.t/ D g.t/ � u.t � 1/Œg.t � 1/ C h.t � 1/�, where g.t/ D
t � sin t and h.t/ D 1 � cos t

1
t

−0.5

0.5

1 + 2π 1 + 4π

x(t)

35. x.t/ D 1
4

˚

�1 C t C .t C 1/e
�2t C

u.t � 2/

�

1 � t C .3t � 5/e
�2.t�2/

�	

2 4
t

1
4

x(t)

36. x.t/ D 2j sin t j sin t

t 

−2 

2 

π π 

x(t) 

2 π 4 6 

37. x.t/ D g.t/ C 2

1
X

nD1

.�1/
n

u.t � n�/g.t � n�/, where g.t/ D

1 � 1
3

e
�t

.3 cos 3t C sin 3t/

t

−2

2

2π 4π 6π

x(t)

Chapter 11

Section 11.1

1. y.x/ D c0

 

1 C x C
x

2

2

C
x

3

3Š

C � � �

!

D c0e
x ; � D C1

2. y.x/ D c0

 

1 C
4x

1Š

C
4

2
x

2

2Š

C
4

3
x

3

3Š

C
4

4
x

4

4Š

C � � �

!

D

c0e
4x ; � D 1
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3. y.x/ D c0

 

1 �
3x

2

C
.3x/

2

2Š2
2

�
.3x/

3

3Š2
3

C
.3x/

4

4Š2
4

� � � �

!

D

c0e
�3x=2; � D C1

4. y.x/ D c0

 

1 �
x

2

1Š

C
x

4

2Š

�
x

6

3Š

C � � �

!

D c0e
�x2

; � D 1

5. y.x/ D c0

 

1 C
x

3

3

C
x

6

2Š3
2

C
x

9

3Š3
3

C � � �

!

D c0 exp
�

1
3

x
3
�

;

� D C1

6. y.x/ D c0

 

1 C
x

2

C
x

2

4

C
x

3

8

C
x

4

16

C � � �

!

D
2c0

2 � x

;

� D 2

7. y.x/ D c0.1 C 2x C 4x
2 C 8x

3 C � � � / D
c0

1 � 2x

; � D 1
2

8. y.x/ D c0

 

1 C
x

2

�
x

2

8

C
x

3

16

�
5x

4

128

C � � �

!

D c0

p
1 C x;

� D 1

9. y.x/ D c0.1 C 2x C 3x
2 C 4x

3 C � � � / D
c0

.1 � x/
2

; � D 1

10. y.x/ D c0

 

1 �
3x

2

C
3x

2

8

C
x

3

16

C
3x

4

128

C � � �

!

D c0.1 � x/
3=2; � D 1

11. y.x/ D c0

 

1 C
x

2

2Š

C
x

4

4Š

C
x

6

6Š

C � � �

!

C

c1

 

x C
x

3

3Š

C
x

5

5Š

C
x

7

7Š

C � � �

!

D c0 cosh x C c1 sinh x; � D C1

12. y.x/ D c0

 

1 C
.2x/

2

2Š

C
.2x/

4

4Š

C
.2x/

6

6Š

C � � �

!

C

c1

2

 

.2x/ C
.2x/

3

3Š

C
.2x/

5

5Š

C
.2x/

7

7Š

C � � �

!

D c0 cosh 2x C
c1

2

sinh 2x; � D 1

13. y.x/ D c0

 

1 �
.3x/

2

2Š

C
.3x/

4

4Š

�
.3x/

6

6Š

C � � �

!

C

c1

3

 

3x �
.3x/

3

3Š

C
.3x/

5

5Š

�
.3x/

7

7Š

C � � �

!

D c0 cos 3x C 1
3

c1 sin 3x; � D C1

14. y.x/ D x C c0

 

1 �
x

2

2Š

C
x

4

4Š

�
x

6

6Š

C � � �

!

C .c1 � 1/

 

x �
x

3

3Š

C
x

5

5Š

�
x

7

7Š

C � � �

!

D x C c0 cos x C .c1 � 1/ sin x; � D 1

15. .n C 1/cn D 0 for all n = 0, so cn D 0 for all n = 0.

16. 2ncn D cn for all n = 0, so cn D 0 for all n = 0.

17. c0 D c1 D 0 and cnC1 D �ncn for n = 1, thus cn D 0 for all
n = 0.

18. cn D 0 for all n = 0

19. .n C 1/.n C 2/cnC2 D �4cn;

y.x/ D
3

2

"

.2x/ �
.2x/

3

3Š

C
.2x/

5

5Š

�
.2x/

7

7Š

C � � �

#

D

3

2

sin 2x

20. .n C 1/.n C 2/cnC2 D 4cn;

y.x/ D 2

"

1 C
.2x/

2

2Š

C
.2x/

4

4Š

C
.2x/

6

6Š

C � � �

#

D 2 cosh 2x

21. n.n C 1/cnC1 D 2ncn � cn�1;

y.x/ D x C x
2 C

x
3

2Š

C
x

4

3Š

C
x

5

4Š

C � � � D xe
x

22. n.n C 1/cnC1 D �ncn C 2cn�1; y D e
�2x

23. As c0 D c1 D 0 and .n
2 � n C 1/cn C .n � 1/cn�1 D 0 for

n = 2, cn D 0 for all n = 0

Section 11.2

1. cnC2 D cn;

y.x/ D c0

1
X

nD0

x
2n C c1

1
X

nD0

x
2nC1 D

c0 C c1x

1 � x
2

; � D 1

2. cnC2 D � 1
2

cn; � D 2;

y.x/ D c0

1
X

nD0

.�1/
n

x
2n

2
n

C c1

1
X

nD0

.�1/
n

x
2nC1

2
n

3. .n C 2/cnC2 D �cn;

y.x/ D c0

1
X

nD0

.�1/
n

x
2n

nŠ2
n

C c1

1
X

nD0

.�1/
n

x
2nC1

.2n C 1/ŠŠ

; � D C1

4. .n C 2/cnC2 D �.n C 4/cn; � D 1;

y.x/ D

c0

1
X

nD0

.�1/
n

.n C 1/x
2n C 1

3
c1

1
X

nD0

.�1/
n

.2n C 3/x
2nC1

5. 3.n C 2/cnC2 D ncn; � D
p

3;

y.x/ D c0 C c1

1
X

nD0

x
2nC1

.2n C 1/3
n

6. .n C 1/.n C 2/cnC2 D .n � 3/.n � 4/cn; � D 1;

y.x/ D c0.1 C 6x
2 C x

4
/ C c1.x C x

3
/

7. 3.n C 1/.n C 2/cnC2 D �.n � 4/
2
cn;

y.x/ D c0

 

1 �
8x

2

3

C
8x

4

27

!

C

c1

 

x �
x

3

2

C
x

5

120

C 9

1
X

nD3

.�1/
n

Œ.2n � 5/ŠŠ�
2
x

2nC1

.2n C 1/Š3
n

!

8. 2.n C 1/.n C 2/cnC2 D .n � 4/.n C 4/cn;

y.x/ D c0.1 � 4x
2 C 2x

4
/ C

c1

 

x �
5x

3

4

C
7x

5

32

C

1
X

nD3

.2n � 5/ŠŠ.2n C 3/ŠŠx
2nC1

.2n C 1/Š2
n

!

9. .n C 1/.n C 2/cnC2 D .n C 3/.n C 4/cn; � D 1;

y.x/ D c0

1
X

nD0

.n C 1/.2n C 1/x
2n C

c1

3

1
X

nD0

.n C 1/.2n C 3/x
2nC1

10. 3.n C 1/.n C 2/cnC2 D �.n � 4/cn;

y.x/ D c0

 

1 C
2x

2

3

C
x

4

27

!

C

c1

 

x C
x

3

6

C
x

5

360

C 3

1
X

nD3

.�1/
n

.2n � 5/ŠŠx
2nC1

.2n C 1/Š3
n

!

11. 5.n C 1/.n C 2/cnC2 D 2.n � 5/cn;

y.x/ D c1

 

x �
4x

3

15

C
4x

5

375

!

C

c0

 

1 � x
2 C

x
4

10

C
x

6

750

C 15

1
X

nD4

.2n � 7/ŠŠ 2
n

x
2n

.2n/Š5
n

!
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12. c2 D 0; .n C 2/cnC3 D cn;

y.x/ D c0

 

1 C

1
X

nD1

x
3n

2 � 5 � � � .3n � 1/

!

C c1

1
X

nD0

x
3nC1

nŠ3
n

13. c2 D 0; .n C 3/cnC3 D �cn;

y.x/ D c0

1
X

nD0

.�1/
n

x
3n

nŠ3
n

C c1

1
X

nD0

.�1/
n

x
3nC1

1 � 4 � � � .3n C 1/

14. c2 D 0; .n C 2/.n C 3/cnC3 D �cn;

y.x/ D c0

 

1 C

1
X

nD1

.�1/
n

x
3n

3
n � nŠ � 2 � 5 � � � .3n � 1/

!

C

c1

1
X

nD0

.�1/
n

x
3nC1

3
n � nŠ � 1 � 4 � � � .3n C 1/

15. c2 D c3 D 0; .n C 3/.n C 4/cnC4 D �cn;

y.x/ D c0

 

1 C

1
X

nD1

.�1/
n

x
4n

4
n � nŠ � 3 � 7 � � � .4n � 1/

!

C

c1

1
X

nD0

.�1/
n

x
4nC1

4
n � nŠ � 5 � 9 � � � .4n C 1/

16. y.x/ D x

17. y.x/ D 1 C x
2

18. y.x/ D 2

1
X

nD0

.�1/
n

.x � 1/
2n

nŠ 2
n

; converges for all x

19. y.x/ D 1
3

1
X

nD0

.2n C 3/.x � 1/
2nC1; converges if 0 < x < 2

20. y.x/ D 2 � 6.x � 3/
2; converges for all x

21. y.x/ D 1 C 4.x C 2/
2; converges for all x

22. y.x/ D 2x C 6

23. 2c2 C c0 D 0; .n C 1/.n C 2/cnC2 C cn C cn�1 D 0 for

n = 1; y1.x/ D 1 �
x

2

2

�
x

3

6

C � � � ;

y2.x/ D x �
x

3

6

�
x

4

12

C � � �

24. y1.x/ D 1 C
x

3

3

C
x

5

5

C
x

6

45

C � � � ;

y2.x/ D x C
x

3

3

C
x

4

6

C
x

5

5

C � � �

25. c2 D c3 D 0, .n C 3/.n C 4/cnC4 C .n C 1/cnC1 C cn D 0

for n = 0; y1.x/ D 1 �
x

4

12

C
x

7

126

C � � � ;

y2.x/ D x �
x

4

12

�
x

5

20

C � � �

26. y.x/ D

c0

 

1 �
x

6

30

C
x

9

72

C � � �

!

C c1

 

x �
x

7

42

C
x

10

90

C � � �

!

27. y.x/ D

1�x �
x

2

2

C
x

3

3

�
x

4

24

C
x

5

30

C
29x

6

720

C
13x

7

630

�
143x

8

40320

C� � � ;

y.0:5/ � 0:4156

28. y.x/ D

c0

 

1 �
x

2

2

C
x

3

6

C � � �

!

C c1

 

x �
x

3

6

C
x

4

12

C � � �

!

29. y1.x/ D 1 �
1

2

x
2 C

1

720

x
6 C � � � ;

y2.x/ D x �
1

6

x
3 �

1

60

x
5 C � � �

30. y.x/ D

c0

 

1 �
x

2

2

C
x

3

6

C � � �

!

C c1

 

x �
x

2

2

C
x

4

18

C � � �

!

33. The following figure shows the interlaced zeros of the 4th and

5th Hermite polynomials.

–3 3
x

–100

100

y

H4
H5

34. The figure below results when we use n D 40 terms in each
summation. But with n D 50 we get the same picture as

Fig. 8.2.3 in the text.

x

–0.5

1

y

–10 –5

Bi(x)

Ai(x)

Section 11.3

1. Ordinary point 2. Ordinary point

3. Irregular singular point 4. Irregular singular point

5. Regular singular point; r1 D 0, r2 D �1

6. Regular singular point; r1 D 1, r2 D �2

7. Regular singular point; r D �3, �3

8. Regular singular point; r D 1
2

, �3

9. Regular singular point x D 1

10. Regular singular point x D 1

11. Regular singular points x D 1, �1

12. Irregular singular point x D 2

13. Regular singular points x D 2, �2

14. Irregular singular points x D 3, �3

15. Regular singular point x D 2

16. Irregular singular point x D 0, regular singular point x D 1

17. y1.x/ D cos
p

x, y2.x/ D sin
p

x

18. y1.x/ D

1
X

nD0

x
n

nŠ.2n C 1/ŠŠ

,

y2.x/ D x
�1=2

1
X

nD0

x
n

nŠ .2n � 1/ŠŠ

19. y1.x/ D x
3=2

 

1 C 3

1
X

nD1

x
n

nŠ .2n C 3/ŠŠ

!

,

y2.x/ D 1 � x �

1
X

nD2

x
n

nŠ .2n � 3/ŠŠ
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20. y1.x/ D x
1=3

1
X

nD0

.�1/
n

2
n

x
n

nŠ � 4 � 7 � � � .3n C 1/

,

y2.x/ D

1
X

nD0

.�1/
n

2
n

x
n

nŠ � 2 � 5 � � � .3n � 1/

21. y1.x/ D x

 

1 C

1
X

nD1

x
2n

nŠ � 7 � 11 � � � .4n C 3/

!

,

y2.x/ D x
�1=2

 

1 C

1
X

nD1

x
2n

nŠ � 1 � 5 � � � .4n � 3/

!

22. y1.x/ D x
3=2

 

1 C

1
X

nD1

.�1/
n

x
2n

nŠ � 9 � 13 � � � .4n C 5/

!

,

y2.x/ D x
�1

 

1 C

1
X

nD1

.�1/
n�1

x
2n

nŠ � 3 � 7 � � � .4n � 1/

!

23. y1.x/ D x
1=2

 

1 C

1
X

nD1

x
2n

2
n � nŠ � 19 � 31 � � � .12n C 7/

!

,

y2.x/ D x
�2=3

 

1 C

1
X

nD1

x
2n

2
n � nŠ � 5 � 17 � � � .12n � 7/

!

24. y1.x/ D x
1=3

 

1 C

1
X

nD1

.�1/
n

x
2n

2
n � nŠ � 7 � 13 � � � .6n C 1/

!

,

y2.x/ D 1 C

1
X

nD1

.�1/
n

x
2n

2
n � nŠ � 5 � 11 � � � .6n � 1/

25. y1.x/ D x
1=2

1
X

nD0

.�1/
n

x
n

nŠ � 2
n

D x
1=2

e
�x=2,

y2.x/ D 1 C

1
X

nD1

.�1/
n

x
n

.2n � 1/ŠŠ

26. y1.x/ D x
1=2

1
X

nD0

x
2n

nŠ � 2
n

D x
1=2 exp

�

1
2

x
2
�

,

y2.x/ D 1 C

1
X

nD1

2
n

x
2n

3 � 7 � � � .4n � 1/

27. y1.x/ D
1

x

cos 3x, y2.x/ D
1

x

sin 3x

2π 4π
x

–1

1

y

y1

y2

28. y1.x/ D
1

x

cosh 2x, y2.x/ D
1

x

sinh 2x

1 2
x

2

4

6

8

y

y1

y2

29. y1.x/ D
1

x

cos
x

2

, y2.x/ D
1

x

sin
x

2

4π
x

–0.5

0.5

1

y

y1

y2

2π

30. y1.x/ D cos x
2, y2.x/ D sin x

2

π
x

–1

1

y

y2

y1

π

2

31. y1.x/ D x
1=2 cosh x, y2.x/ D x

1=2 sinh x

1
x

1

y

y1

y2

32. y1.x/ D x C
x

2

5

,

y2.x/ D x
�1=2

 

1 �
5x

2

�
15x

2

8

�
5x

3

48

C � � �

!

33. y1.x/ D x
�1

 

1 C 10x C 5x
2 C

10x
3

9

C � � �

!

,

y2.x/ D x
1=2

 

1 C
11x

20

�
11x

2

224

C
671x

3

24192

C � � �

!
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34. y1.x/ D x

 

1 �
x

2

42

C
x

4

1320

C � � �

!

,

y2.x/ D x
�1=2

 

1 �
7x

2

24

C
19x

4

3200

C � � �

!

Section 11.4

5. J4.x/ D
1

x
2

.x
2 � 24/J0.x/ C

8

x
3

.6 � x
2
/J1.x/

10. 3

11. x
2
J1.x/ C xJ0.x/ �

Z

J0.x/ dx C C

12. .x
3 � 4x/J1.x/ C 2x

2
J0.x/ C C

13. .x
4 � 9x

2
/J1.x/ C .3x

3 � 9x/J0.x/ C 9

Z

J0.x/ dx C C

14. �xJ1.x/ C

Z

J0.x/ dx C C

15. 2xJ1.x/ � x
2
J0.x/ C C

16. 3x
2
J1.x/ C .3x � x

3
/J0.x/ � 3

Z

J0.x/ dx C C

17. .4x
3 � 16x/J1.x/ C .8x

2 � x
4
/J0.x/ C C

18. �2J1.x/ C

Z

J0.x/ dx C C

19. y.x/ D x Œc1J0.x/ C C2Y0.x/�

20. y.x/ D
1

x

Œc1J1.x/ C c2Y1.x/�

21. y.x/ D x

�

c1J1=2.3x
2
/ C c2J�1=2.3x

2
/

�

22. y.x/ D x
3
�

c1J2.2x
1=2

/ C c2Y2.2x
1=2

/

�

23. y.x/ D x
�1=3

�

c1J1=3

�

1
3

x
3=2

�

C c2J�1=3

�

1
3

x
3=2

��

24. y.x/ D x
�1=4

�

c1J0.2x
3=2

/ C c2Y0.2x
3=2

/

�

25. y.x/ D x
�1

Œc1J0.x/ C c2Y0.x/�

26. y.x/ D x
2
�

c1J1.4x
1=2

/ C c2Y1.4x
1=2

/

�

27. y.x/ D x
1=2

�

c1J1=2.2x
3=2

/ C c2J�1=2.2x
3=2

/

�

28. y.x/ D x
�1=4

�

c1J3=2

�

2
5

x
5=2

�

C c2J�3=2

�

2
5

x
5=2

��

29. y.x/ D x
1=2

�

c1J1=6

�

1
3

x
3
�

C c2J�1=6

�

1
3

x
3
��

30. y.x/ D x
1=2

�

c1J1=5

�

4
5

x
5=2

�

C c2J�1=5

�

4
5

x
5=2

��

Appendix A

1. y0 D 3, y1 D 3 C 3x, y2 D 3 C 3x C 3
2

x
2,

y3 D 3 C 3x C 3
2

x
2 C 1

2
x

3,

y4 D 3 C 3x C 3
2

x
2 C 1

2
x

3 C 1
8

x
4; y.x/ D 3e

x

3. y0 D 1, y1 D 1 � x
2, y2 D 1 � x

2 C 1
2

x
4,

y3 D 1 � x
2 C 1

2
x

4 � 1
6

x
6,

y4 D 1 � x
2 C 1

2
x

4 � 1
6

x
6 C 1

24
x

8; y.x/ D exp
�

�x
2
�

5. y0 D 0, y1 D 2x, y2 D 2x C 2x
2,

y3 D 2x C 2x
2 C 4

3
x

3,

y4 D 2x C 2x
2 C 4

3
x

3 C 2
3

x
4; y.x/ D e

2x � 1

7. y0 D 0, y1 D x
2, y2 D x

2 C 1
2

x
4, y3 D x

2 C 1
2

x
4 C 1

6
x

6,

y4 D x
2 C 1

2
x

4 C 1
6

x
6 C 1

24
x

8; y.x/ D exp.x
2
/ � 1

9. y0 D 1, y1 D .1 C x/ C 1
2

x
2, y2 D .1 C x C x

2
/ C 1

6
x

3,

y3 D
�

1 C x C x
2 C 1

3
x

3
�

C 1
24

x
4;

y.x/ D 2e
x � 1 � x D 1 C x C x

2 C 1
3

x
3 C � � �

11. y0 D 1, y1 D 1 C x, y2 D .1 C x C x
2
/ C 1

3
x

3,

y3 D .1 C x C x
2 C x

3
/ C 2

3
x

4 C 1
3

x
5 C 1

9
x

6 C 1
63

x
7;

y.x/ D
1

1 � x

D 1 C x C x
2 C x

3 C x
4 C x

5 C � � �

12. y0 D 1, y1 D 1 C 1
2

x, y2 D 1 C 1
2

x C 3
8

x
3 C 1

8
x

3 C 1
64

x
4,

y3 D 1 C 1
2

x C 3
8

x
2 C 5

16
x

3 C 13
64

x
4 C � � � ;

y.x/ D .1 � x/
�1=2

13.

�

x0

y0

�

D

�

1

�1

�

,

�

x1

y1

�

D

�

1 C 3t

�1 C 3t

�

,

�

x2

y2

�

D

�

1 C 3t C 1
2

t
2

�1 C 5t � 1
2

t
2

�

,

�

x3

y3

�

D

�

1 C 3t C 1
2

t
2 C 1

3
t

3

�1 C 5t � 1
2

t
2 C 5

6
t

3

�

14. x.t/ D

�

e
t C te

t

e
t

�

16. y3.1/ � 0:350185
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I N D E XI N D E X

Boldface page numbers indicate where terms are defined.

A
Abel’s formula, 277, 289

Acceleration, 11

constant, 12

Addition of matrices, 164

associative law, 171

commutative law, 171

distributive law, 171

Addition of vectors, 212, 222

parallelogram law, 212, 223

triangle law, 212

Adjoint matrix, 199, 675

Air resistance, 20, 94

proportional to square of velocity,

97

proportional to velocity, 20, 95, 460

Airy equation, 625, 650

Airy function, 625

Algebra of inverse matrices, 178

Algebraic multiplicity, 354

Alligator population, 82

Almost linear system, 516

stability, 519

Amplification factor, 330

Amplitude, 305

Analytic function, 606

Apollo (satellite orbit), 462

Approximate logistic solution, 112

Argument (of complex number), 298

Arnold, David, 28

Artin, Emil, (1898–1962), 644

Associated eigenvector, 339

Associated homogeneous equation,

266, 279, 377

Asymptotic stability, 508

Augmented coefficient matrix, 148

Automobile:

simplified model, 312

two-axle, 434

vibrations, 331, 336

Autonomous differential equation, 88

critical point, 88

equilibrium solution, 88

stable critical point, 89

unstable critical point, 89

Autonomous system, 503

linearized, 516

Auxiliary equation, see Characteristic

equation

Average error, 80

B
Back substitution, 140, 146

algorithm, 151

Basic unit vector, 218

Basis, 235

as maximal linearly independent set,

236, 241

as minimal spanning set, 242

as uniquely spanning set, 242

for R3, 218

for column space, 246

for row space, 244

for solution space, 240

orthogonal, 253

Batted baseball, 458

Beats, 329

Bernoulli equation, 61

Bessel, Friedrick W. (1784–1846), 642

Bessel equation, 590, 604, 635, 639,

642

Bessel function:

identities, 647

order 1, 639

order 1

2
, 290, 645 12

order 3

2
, 650 32

order n, integral order, second kind,

646

order p, 642

order p, first kind, 645

order zero, first kind, 636

order zero, second kind, 646

solutions in, 649

Bifurcation diagram, 92

Bifurcation point, 92, 523

Binomial series, 605, 615

Birkhoff, Garrett (1911–1996), 118

Birth rate, 75

Bounded population growth, 76

Brachistochrone problem, 44

Brine tank examples, 366, 389, 393,

395, 496

Broughton Bridge, 330

Buoy problem, 311

Bus orbit, 462

C
Carbon-14, 36

Carrying capacity, 21, 78

Cart with flywheel, 327

Cascade of brine tanks, 54, 395, 483

Catenary problem, 44

Cauchy-Schwarz inequality, 251

Cayley-Hamilton theorem, 174, 361,

450, 477, 491, 498

Center:

critical point, 412

of power series, 606

stable, 508

Central conic, 208

Chain (of generalized eigenvectors),

442, 444

Characteristic equation, 274, 292

of matrix, 340, 386

Characteristic value, see Eigenvalue

Churchill, R. V. (1899–1987), 565, 592

Circular frequency, 305, 308

Clairaut equation, 71

Clarinet reed, 551

Clarke, Arthur (1917–2008), 17

Closed trajectory, 509

Clepsydra, 43

Coddington, E. A. (1920–1991), 633

Coefficient matrix, 147

augmented, 148

of a first-order system, 376

Coexistence of species, 532
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Cofactor, 190

expansion, 190

matrix, 199, 675

Column (of a matrix), 147

Column rank, 244

and row rank, 247

Column space, 244

basis for, 246

Column vector, 148, 165, 169

Comet orbit, 467

Compartmental analysis, 388

Competing species, 529, 534

Competition situation, 80

Competition system, 529, 535

Complementary function, 287

Complete eigenvalue, 437

Complete independence of

eigenvectors, 353

Complete set of eigenvectors, 437

Complex eigenvalue, 391, 410

with negative real part, 414

with positive real part, 415

Complex-valued function, real and

imaginary parts, 296

Componentwise addition, 212, 222

multiplication of vector by scalar,

213, 223

Compound interest, 36

Computational efficiency, 200

Conservation of energy, 303, 331

Constant acceleration, 12

Continuous dependence of solutions,

665

Convergence:

of improper integral, 558

of power series, 605

Convolution (of functions), 587

Convolution property (of transforms),

588

Cooperation of species, 534

Coordinate plane, 214

space, 211

Corresponding eigenvalue, 339

Cramer’s rule, 188, 197, 674

Criterion for diagonalizability, 349

Criterion for exactness, 66

Critical damping, 307, 308

Critical point (of system), 503

asymptotic stability, 508

center, 508

classification, 520

isolated, 514

node, 506

saddle point, 400, 507

spiral point, 509

stability, 507

Crossbow, 94, 98, 125, 134

Cumulative error, 110

Curvature, 71

Curve fitting, 203

D
Damped nonlinear vibrations, 542

Damped pendulum oscillations, 548

Damping constant, 302

Death rate, 75

Decay constant, 36

Defect (of eigenvalue), 439

Defective eigenvalue, 439

Dependence (linear), 214, 232, 270,

282, 378

Dependence on parameters, 91

Dependent variable missing, 68

Derivative (of matrix function), 375

Determinant, 188, 189, 190

2 � 2, 188

3 � 3, 189

n � n, 190

and invertibility, 196, 672

and matrix product, 196, 672

and elementary row operations, 192,

669

by cofactor expansion, 190

by elimination method, 194

by permutations, 669

coefficient, 188

row and column properties, 192

Vandermonde, 204, 289

Diagonal (principal), 162

Diagonal matrix, 174

Diagonalizable matrix, 349, 352

Diagonalization, criterion for, 349

Differential equation, 1

autonomous, 88

Bernoulli, 61

Clairaut, 71

differential form, 65

Euler, 277

exact, 65

first-order, 7

general solution, 10, 11, 35, 271,

272, 286, 379, 382, 386

homogeneous, 59, 279

implicit solution, 35

linear, 47, 50, 265, 279

logistic, 21, 44, 76, 80

matrix, 469

normal form, 7

order, 6

order n, 6

ordinary, 7

partial, 7

particular solution, 10

Riccati, 70, 651

second-order, 11, 68

separable, 32

singular solution, 35

solution, 6

Differential equations and

determinism, 313

Differential form, 65

Differential operator, 293

Differentiation of transforms, 589

Dimension and rank, 248

Dimension of a vector space, 237

Direction field, 18, 505

Direction of flow, 413

Displacement vector, 425

Distance between points, 252

Distinct real eigenvalues, 387, 399,

402

Dog problem, 71

Doomsday versus extinction, 81, 536

Dot product, 250

Drag coefficient, 96

Drug elimination, 37

Duplication (undetermined

coefficients), 319

Dynamic damper, 434

Dynamic phase plane graphics, 421

E
Earth-Moon satellite orbits, 461

Earthquake vibrations, 336, 435

Echelon form, 150

Echelon matrix, 150

reduced, 157

Eigenspace, 345

Eigenvalue, 339

complete, 437

complex, 391, 410, 414

defective, 439

distinct real, 351, 387, 399, 402

for matrix, 339, 386

geometric significance of, 412

imaginary, 411

multiplicity 2, 441

multiplicity k, 437

repeated, 399

zero, 403, 409

Eigenvalue matrix, 348

Eigenvalue solution, 386

Eigenvalue-eigenvector algorithm, 341

Eigenvector, 339, 386

associated with distinct eigenvalues,

351

chain of, 442

complex conjugate, 410

linearly independent, 386

rank r generalized, 442

Eigenvector equation, 386
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Eigenvector matrix, 348

Element (of a matrix), 147

Elementary matrix, 180

and row operations, 180

Elementary (row) operation, 142, 149

effect on determinant, 193, 669

Elimination constant, 37

Elimination method:

for linear systems, 140, 148

Gauss-Jordan, 157

Gaussian, 152

Elliptic integral, 548

Elliptical orbit, 412

Engineering functions, 603

Entry (of a matrix), 147

Equilibrium position, 302

Equilibrium solution, 88

of system, 504

Equivalent systems and matrices, 150

Error:

in Euler’s method, 117

in improved Euler method, 120

in Runge-Kutta method, 128

propagation, 112

Error function, 53

Escape velocity, 100

Euclidean space, inner product, 251

Euler, Leonhard (1707–1783),

Euler (differential) equation, 277

Euler’s formula, 296

Euler’s method, 107

algorithm, 107

cumulative error, 110

error in, 117

for systems, 454

improved, 119

local error, 110

roundoff error, 111

Euler’s theorem, 565

Exact equation, 65

Exactness, criterion for, 66

Existence, uniqueness of solutions:

first-order equation, 23

linear system, 371, 662, 663

nth-order equation, 280

second-order equation, 268

Explosion-extinction equation, 81, 89

Exponential growth, see Natural

growth

Exponential matrix, 472

computation of, 478

Exponential order, 563

Exponential series, 606

Exponents (at a regular singular point),

632

External force, 303

periodic, 431

vector, 431

Extinction situation, 82, 359

F
Famous numbers, 117, 126, 136

Fibonacci sequence, 363, 615

Finite-dimensional vector space, 237

First-order equation, 7

First-order system, 366, 370, 376

FitzHugh, Richard (1922–2007), 555

FitzHugh-Nagumo equations, 555

Flight trajectories, 63

Flywheel on cart, 327

Folia of Descartes, 524

Forced motion, 303

Forced oscillations:

and resonance, 431

damped, 332

undamped, 327

Forced vibrations, 266

Formal multiplication of series, 606

Fox-rabbit example, 357

Fps units, 13

Free motion, 303

damped, 303, 307

undamped, 303, 304

Free oscillations, 428

Free variables, 151, 239

Free vibrations, 266

Frequency, 305

resonance, 432

Frobenius, Georg (1848–1919), 631

Frobenius series, 631

Frobenius series solutions, 633

From the Earth to the Moon, 100

Function space, 259

Fundamental matrix, 469

Fundamental theorem of algebra, 292,

341

Funnel, 89

G
g (earth’s surface gravitational

acceleration), 13

G (universal gravitational constant), 99

Gallery of phase plane portraits,

417–418

Galvani, Luigi (1737–1798), 554

Gamma function, 559, 643

Gauss, hypergeometric equation, 640

Gaussian elimination algorithm, 152

Gauss-Jordan elimination algorithm,

157

General population equation, 76

General solution, 10, 11, 35, 271

of homogeneous equation, 272, 286

of homogeneous system, 379, 386

of nonhomogeneous equation, 287

of nonhomogeneous system, 382,

482

Generalized eigenvector, 442

Geometric multiplicity, 354

Geometric series, 605

Geometric significance of eigenvector,

412

Global existence of solutions, 659

Graphical method, 18

H
Hailstone problem, 55

Half-life, 38

Halley’s comet, 375, 467

Hard spring, 540

Harvesting a logistic population, 90

Harvesting and restocking, 127

Heaviside, Oliver (1850–1925), 565

Hermite equation, 624

Hermite polynomial, 624

Higher-order systems, 458

Hodgkin, A. L. (1914–1998), 554

Hodgkin-Huxley model, 555

Hole-through-Earth problem, 311

Homicide victim problem, 43

Homogeneous:

first-order equation, 59

linear system of first-order

equations, 370, 385

nth-order equation, 279, 291

second-order equation, 266

second-order system, 427, 496

Homogeneous linear (algebraic)

system, 160

uniqueness of solution, 162

Hooke’s law, 302, 425, 507, 539

Hopf bifurcation, 524

Huxley, A. F. (1917–2012), 554

Hypergeometric equation, series, 640

I
Identity matrix, 162, 175

Identity principle:

for polynomials, 260

for power series, 609

Imaginary eigenvalues, 411

Implicit solution, 34

Improper integral, 401, 558

Improper node, 401, 506

Improved Euler method, 119, 120

algorithm, 119

error in, 120

for systems, 455
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Independence: see Linear

independence

Independent variable missing, 69

Indicial equation, 632

Indoor temperature oscillations, 56

Infinite-dimensional vector space, 237

Initial condition, 3, 7

Initial position, 12

Initial value problem, 7, 268, 280, 381

and elementary row operations, 380

Laplace transform solution, 568

order n, 280

Initial vector, 356

Initial velocity, 12

Inner product, 250

Integrating factor, 46

Integration of transforms, 591

Interpolating polynomial, 204

Intersection of subspaces, 228

Inverse Laplace transform, 561

uniqueness of, 565

Inverse matrix, 177

adjoint formula, 199, 676

algebra, 178

algorithm, 181

solution of linear system, 179

uniqueness, 177

Inverse of 2 � 2 matrix, 178

Inverse-square law of gravitation, 99,

373

Invertible matrix, 177

and determinants, 196

and row operations, 181

Irregular singular point, 629

Isolated critical point, 514

J
Jacobian matrix, 516

Joint proportion situation, 80

Jordan block (matrix), 449

Jordan normal form, 449

Jump, 562

K
Kansas City, 330

Kepler, Johannes (1571–1630), 373

laws of planetary motion, 373, 466

Kinematic formula, 17

Kinetic energy, 303, 331

Kronecker delta, 492

Kutta, Wilhelm (1867–1944), 127

L
Lakes Erie, Huron, Ontario, 52

Laplace, Pierre Simon de

(1749–1827), 565

Laplace transform, 558

and convolution, 588

and initial value problems, 568

and linear systems, 571

differentiation of, 589

existence, 563

integration of transforms, 591

inverse, 561

inverse transforms of series, 594

linearity, 560

notation, 561

of derivative, 568

of higher derivatives, 569

of integral, 574

of periodic function, 597

of square and triangular wave

functions, 598

products of transforms, 587

translation on the s-axis, 579

translation on the t-axis, 594

uniqueness of inverse, 565

Law of cosines, 202

Leading entry, 150, 239

Leading variables, 151, 239

Legendre polynomial, 623

Legendre’s equation, 290, 604, 622

Length of vector, 213

Leonardo Fibonacci (1175–1250?),

363

Limit cycle, 524

Limited environment situation, 80

Limiting population, 21, 78, 90, 358

Limiting velocity, 20

Linear approximation formula, 109

Linear combination, 167, 228

Linear differential equation:

first-order, 47, 50

nth-order, 279

second-order, 265

Linear factor partial fractions, 579

Linear independence, 214, 216, 231,

270, 282

and orthogonality, 253

and unique linear combinations, 232

of vector-valued functions, 378

Linear independence and the

determinant, 233, 234

Linear system (algebraic), 139

consistent, 139

equivalent, 150

homogeneous, 160

inconsistent, 139

nonhomogeneous, 161

number of solutions (three

possibilities), 160

reduced echelon, 157

solution of, 139

upper triangular form, 143

Linear system (differential equations):

associated homogeneous system,

377

eigenspace of, 345

eigenvalue method, 386

first-order, 370, 376

general solution, 379, 386

homogeneous, 370

nonhomogeneous, 370, 382, 482

second-order, 426, 496

stability, 518

Linearity of Laplace transform, 560

Linearized system, 516

Lipschitz continuous, 658

Local error, 110

Local existence of solutions, 663

Logarithmic decrement, 313

Logistic equation, 21, 44, 76

competition situation, 80

joint proportion situation, 80

limited environment situation, 80

with harvesting, 90

Logistic populations, interactions of,

534

Logistic prey population, 536

Lower triangular matrix, 194

Lunar lander, 12, 99, 457

M
Maclaurin series, 606

Manchester (England), 330

Mass matrix, 425, 446

Mass-spring system, 266, 302, 309,

366, 425, 427, 432, 496, 507,

539, 570, 571, 580, 596

Mathematical model, modeling, 4

Matrix, 147

addition, 164

adjoint, 199, 675

augmented, 148

coefficient, 147

cofactor, 190, 675

column, 147

determinant, 188

diagonal, 174

diagonalizable, 349, 352

echelon, 150

eigenvalue, 330, 386

eigenvector, 339, 386

element, 147

elementary, 180

elementary row operations, 149

entry, 147

equality, 164

exponential, 472

fundamental, 469
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identity, 162, 172, 175

inverse, 177, 676

invertible, 177

Jacobian, 516

minor, 190

multiplication by scalar, 165

negative of, 165

nilpotent, 474

nonsingular, 183

norm, 658

orthogonal, 202

principal diagonal, 162

product, 168

projection matrices of, 491

reduced echelon, 157

row, 147

shape, 147

similar, 349

singular, 183

size, 147

spectral decomposition, 493

square, 161

stochastic, 357

trace, 347

transition, 356

triangular, 194

transpose, 195

with distinct eigenvalues, 352

zero, 172

Matrix algebra, 171

Matrix differential equation, 376, 469

Matrix equations, 182

Matrix exponential, 494, 499

Matrix exponential solution, 475

Matrix-valued function, 375

continuous, 375

differentiable, 375

derivative of, 375

Mechanical systems (modeling), 331

Method of elimination, 140

for determinants, 194

Method of Frobenius, 631

Method of successive approximations,

654

Method of undetermined coefficients,

314, 316, 320

for nonhomogeneous systems, 483

Mexico City, 330

Minimal spanning set, 242

Minor (of a matrix), 190

Mixture problems, 51

Mks units, 13

Modulus (of complex number), 298

Multiplication by an elementary

matrix, 671

Multiplication of matrices, 168

and determinants, 196

associative law, 171

by scalars, 165

Multiplication of vector by scalar, 213

Multiplicity of eigenvalue, 354, 437

Multistory building, 435

Mutual extinction, 359

N
n-space, 222

n-tuple, 222

n-vector, 166, 222

Natural frequency, 328, 428

Natural growth and decay, 35

Natural growth equation, 37

Natural mode of oscillation, 428

Newton, Sir Isaac (1642–1727), 95,

373

Newton’s law of cooling, 2, 38

Newton’s law of gravitation, 99, 373

Newton’s method, 97, 292

Newton’s second law of motion, 11,

15, 94, 266, 302, 327, 365, 425

Nilpotent matrix, 474, 498

Nodal sink (or source), 401, 402, 406, ,

408, 506

Node (improper or proper), 401, 506

Nonelementary function, 106

Nonhomogeneous equation, 266, 287

Nonhomogeneous system, 248, 370,

382, 482

Nonlinear pendulum, 544

Nonlinear spring, 539

Nonlinear vibrations, 542

Nonsingular matrix, 183

properties, 183

Null space, 255

and row space, 255

O
On-off function, 577

One-parameter family of solutions, 5

Operation (elementary), 149

Operator, polynomial differential, 293

Orbit (of comet), 467

Order of differential equation, 6

Ordinary differential equation, 7

Ordinary point, 616

Orthogonal basis, 253

Orthogonal complement, 254

properties of, 254

Orthogonal matrix, 202

Orthogonal vectors, 252

Orthogonality and linear

independence, 253

Oscillating populations, 528

Oscillating springs:

hard, 540

soft, 541

Overdamping, 307

P
Parallelogram law of addition, 212,

223

Parameter, 141

Parameters, variation of, 322

for linear systems, 485

Partial-fraction decomposition, 260,

579

Pendulum, 303, 311

nonlinear, 544

Period, 305, 547, 597

Periodic function, 597

Permutation, 668

Phase angle, 305

Phase diagram, 88

Phase plane, 369, 503

position-velocity, 539

Phase plane portrait, 369, 505

Physical units, 13

Picard, Emile (1856–1941), 654

Piecewise continuous function, 561

jump, 562

Piecewise smooth function, 568

Pivot columns of a matrix, 245

Polar form of a complex number, 298

Polking, John, 28, 513, 525

Polluted reservoir, 55

Polynomial, 203, 237, 259

interpolating, 204

Polynomial differential operator, 293

Population equation, 76

Population explosion, 76, 359

Population growth, 3, 35

Population vector, 356

Position function, 11

Position vector, 373

Potential energy, 303, 331

Power series, 604

Power series method, 604, 608

Power series representation, 605

Practical resonance, 333

Predation, 534

Predator-prey model (or situation or

system), 357, 527, 535

Predictor-corrector methods, 120

Principal diagonal, 162

Principia Mathematica, 95, 373

Principle of superposition:

for linear differential equations,

267, 279

for systems, 377

Product:

matrix, 168
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matrix with number, 165

of determinants, 196

Projection matrix, 491, 498

Proper node, 401, 506

Proper subspace, 219

Pseudofrequency, 308

Pseudoperiod, 308

Pythagorean formula, 253

Python programming language, 115,

125, 135, 465

Q
Quadratic factor partial fraction, 579

Quadratic factors, repeated, 583

R
R2 as a vector space, 214

R3 as a vector space, 214

Rabbit-fox example, 357

Radioactive decay, 36

Radius of convergence, 611

Railway car examples, 428, 446

Rank and dimension, 248

Rank r generalized eigenvector, 442

Rayleigh, Lord (John William Strutt,

1842–1919), 551

Recurrence relation, 609

many-term, 620

two-term, 620

Reduced echelon matrix, 157

uniqueness of, 158

Reducible second-order equation:

dependent variable missing, 68

independent variable missing, 69

Reduction of order, 289

Regular singular point, 629

Repeated eigenvalue, 399

negative, 408

positive, 405

zero, 409

Resistance matrix, 446

Resonance, 330, 432

and repeated quadratic factors, 583

practical, 333

Riccati equation, 70, 651

River crossing, 15

Rocket propulsion equation, 104

Rodrigues’ formula, 624

Rolling disk, 331

Roots of characteristic equation:

complex, 297

distinct real, 274, 292

repeated complex, 299

repeated real, 275, 295, 405

Rota, Gian-Carlo (1932–1999), 118

Roundoff error, 111

Row (of a matrix), 147

Row equivalent matrices, 150

Row operations, 149

and determinants, 192

and elementary matrices, 180

and invertible matrices, 181

Row rank, 243

and column rank, 247

Row space, 243

and null space, 255

basis for, 244

of an echelon matrix, 243

of equivalent matrices, 243

Row vector, 166, 169

of a matrix, 169, 242

Runge, Carl (1856–1927), 127

Runge-Kutta method, 128

error in, 128

for systems, 456

variable step size methods, 460

S
Saddle point, 400, 507

Sawtooth function, 577

Second law of motion, 11, 13, 94, 95,

266, 302, 327, 365, 425

Second-order equation, 68

approximate solution, 456

Second-order system, 426, 496

Separable differential equation, 32

Separation of variables, 31

Separatrix, 532, 541

Series:

binomial, 605

convergence, 605

exponential, 606

formal multiplication, 606

geometric, 605

hypergeometric, 640

identity principle, 609

Maclaurin, 606

power, 604

radius of convergence, 611

shift of index, 610

Taylor, 606

termwise addition, 606

termwise differentiation, 608

Shape (of a matrix), 147

Shift of index, 610

Similar matrices, 349

Simple harmonic motion, 305

Simple pendulum, 303

Sine integral function, 50

Singular matrix, 183

Singular point, 616

irregular, 629

regular, 629

Singular solution, 35

Sink, 401, 408, 507

Size (of a matrix), 147

Skydiver, 131, 136

Skywalk, 330

Slope field, 18, 505

applications of, 20

Snowplow problem, 43

Soft spring, 541

Soft touchdown, 12

Solar wind, 17

Solution:

eigenvalue, 386

equilibrium, 49, 88, 504

existence, uniqueness, 23, 371, 662,

663

fundamental matrix, 470

general, 10, 11, 35, 271, 272, 286

implicit, 34

linear first-order, 47

of differential equation, 6

of linear (algebraic) system, 139

of nonhomogeneous equation, 287

of nonhomogeneous system, 382,

482

of second-order system, 427, 496

of system of differential equations,

365, 371, 376

one-parameter family, 5

particular, 10

singular, 35

straight-line, 403

trivial, 160

two-parameter family, 7

zero, 403

Solution curve, 18, 369

Solution near ordinary point, 617

Solution set, 139

Solution space:

basis, 240

of a linear (algebraic) system, 226

of a linear differential equation,

261, 267

Solution subspace, 226

Solutions in Bessel functions, 649

Solve, an initial value problem, 7

Source, 402, 406, 507

Spacecraft landing, 464

Span, spanning set, 229, 238

unique, 232, 242

Spectral decomposition methods, 490

Spectral decomposition of a matrix,

493, 499

Spiral point (sink or source),415, 509

Spout, 89

Spring constant, 302

Square matrix, 161
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Square wave function, 566, 577

Stability:

of almost linear systems, 519

of linear systems, 518

Stable center, 508

Stable critical point, 89, 507

Staircase function, 566, 576

Standard basis for Rn, 235

Standard unit vectors, 231

Star, see Proper node

Static displacement, 303, 330

Static equilibrium position, 303

Steady periodic solution, 433

Step function, 562, 594

Step size, 106

Stiffness matrix, 425

Stirling’s approximation, 55

Stochastic matrix, 357

Stokes’ drag law, 313

Stonehenge, 38

Straight-line solution, 403

Subspace, 224

criterion, 225

intersection, 228

of R3, 219

proper, 226

solution, 226

sum, 228

zero, 226

Substitution method, 58

Sum:

of matrices, 164

of subspaces, 228

of vectors, 212, 222

Superposition principle, see Principle

of superposition

Swimmer’s problem, 14

Systems of dimension two, 398

T
Taylor series, 606

Temperature oscillations, 56

Terminal speed, 96

Termwise addition of series, 606

Termwise differentiation of series, 608

Three possibilities (for linear systems),

139, 160

Threshold population, 81, 90

Time lag, 305

Time reversal, 402

Time-varying amplitude, 308

Torricelli’s law, 2, 39

Trace (of a matrix), 347

Trajectory, 369, 503

closed, 509

Transform of derivative, 568

Transform of integral, 574

Transform of periodic function, 597

Transform perspective, 572

Transient solution, 332, 433

Transition matrix, 356

Translated series solutions, 619

Transpose (of a matrix), 195

Transposition, 668

Triangle inequality, 253

Triangle law of addition, 212

Triangular matrix, 194

Triangular wave function, 577

Trivial solution, 160

Two independent eigenvectors, 405

U
Undamped forced oscillations, 327

Undamped motion, 303

Underdamping, 308

Undetermined coefficients, 314, 483

case of duplication, 319

Unicycle model of car, 331

Uniform convergence, 659

Unique solution, 140

Uniqueness of linear combinations,

232

Uniqueness of solutions, see Existence

Uniquely spanning set, 232, 242

Unit step function, 562, 594

Unit vector, 176, 218

standard, 231

Units (physical), 13

Unstable critical point, 89, 507

Upper triangular matrix, 194

U. S. population, 78, 86

V
van der Pol, Balthasar (1889–1959),

552

van der Pol’s equation, 552

Vandermonde determinant, 204, 289

Vandermonde matrix, 204, 260

Variable gravitational acceleration, 99

Variables:

free, 151, 239

leading, 151, 239

Variation of parameters, 322, 485

formula, 324, 486

Vector:

2-vector, 214

3-vector, 212

basic unit, 176, 218

column, 148, 169

component, 212

coordinates, 211

length, 213, 251

multiplication by scalar, 213, 223

n-vector, 222

norm, 658

orthogonal, 252

row, 166, 169

scalar product, 167

sum, 212, 222

unit, 176, 218

zero, 213, 223

Vector addition, 212, 222

Vector space, 223

basis of, 235

dimension, 237

finite-dimensional, 237

infinite dimensional, 237

of functions, 224, 259

subspace, 224

Velocity, 11

limiting, 20

Verhulst, Pierre-François (1804–1849),

78

Verne, Jules (1828–1905), 100, 103

Vertical motion with gravitational

acceleration, 13

with air resistance, 95

Viscosity, 313

Volterra, Vito (1860–1940), 526

W
Watson, G. N. (1886–1965), 642

Weight, 13

Well-posed problems and

mathematical models, 665

Without two independent eigenvectors,

406

World population, 37, 87, 205

Wronskian, 271, 283

of solutions, 272, 285, 289

of vector-valued functions, 378

Z
Zero matrix, 172

Zero subspace, 226

Zero vector, 213, 223



Table of Laplace Transforms

This table summarizes the general properties of Laplace transforms and the Laplace transforms of particular functions

derived in Chapter 10.

Function Transform Function Transform
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t

Z

1

s

F.�/ d�

f .t/, period p
1

1 � e�ps

Z

p

0

e�stf .t/ dt

1
1

s

t
1

s2

tn
nŠ

snC1

1p
�t

1p
s

ta
�.aC 1/

saC1

eat
1

s � a

tneat
nŠ

.s � a/nC1

cos kt
s

s2 C k2

sin kt
k

s2 C k2

cosh kt
s

s2 � k2

sinh kt
k

s2 � k2

eat cos kt
s � a

.s � a/2 C k2

eat sin kt
k

.s � a/2 C k2

1

2k3
.sin kt � kt cos kt/

1

.s2 C k2/2

t

2k
sin kt

s

.s2 C k2/2

1

2k
.sin kt C kt cos kt/

s2

.s2 C k2/2

u.t � a/ e�as

s

ı.t � a/ e�as

.�1/ŒŒt=a�� (square wave)
1

s
tanh

as

2

��

t

a

��

(staircase)
e�as

s.1 � e�as/



Table of Integrals

ELEMENTARY FORMS

1.

Z

udv D uv �
Z

v du

2.

Z

un du D 1

nC 1
unC1 C C if n 6D �1

3.

Z

du

u
D ln juj C C

4.

Z

eu du D eu C C

5.

Z

au du D au

ln a
C C

6.

Z

sinudu D � cosuC C

7.

Z

cosudu D sinuC C

8.

Z

sec2 udu D tanuC C

9.

Z

csc2 udu D � cotuC C

10.

Z

secu tanudu D secuC C

11.

Z

cscu cotudu D � cscuC C

12.

Z

tanudu D ln j secuj C C

13.

Z

cotudu D ln j sinuj C C

14.

Z

secudu D ln j secuC tanuj C C

15.

Z

cscudu D ln j cscu � cotuj C C

16.

Z

dup
a2 � u2

D sin�1
u

a
C C

17.

Z

du

a2 C u2
D 1

a
tan�1

u

a
C C

18.

Z

du

a2 � u2
D 1

2a
ln

ˇ

ˇ

ˇ

ˇ

uC a

u � a

ˇ

ˇ

ˇ

ˇ

C C

TRIGONOMETRIC FORMS

19.

Z

sin2 udu D 1

2
u � 1

4
sin 2uC C

20.

Z

cos2 udu D 1

2
uC 1

4
sin 2uC C

21.

Z

tan2 udu D tanu � uC C

22.

Z

cot2 udu D � cotu � uC C

23.

Z

sin3 udu D �1
3
.2C sin2 u/ cosuC C

24.

Z

cos3 udu D 1

3
.2C cos2 u/ sinuC C

25.

Z

tan3 udu D 1

2
tan2 uC ln j cosuj C C

26.

Z

cot3 udu D �1
2

cot2 u � ln j sinuj C C

27.

Z

sec3 udu D 1

2
secu tanuC 1

2
ln j secuC tanuj C C

28.

Z

csc3 udu D �1
2

cscu cotuC 1

2
ln j cscu � cotuj C C

29.

Z

sin au sin bu du D sin.a � b/u
2.a � b/ � sin.aC b/u

2.aC b/
C C if a2 6D b2

(Continued on Rear Endpaper)



Table of Integrals (cont.)

30.

Z

cos au cos bu du D sin.a � b/u
2.a � b/ C sin.aC b/u

2.aC b/
C C if a2 6D b2

31.

Z

sin au cos bu du D �cos.a � b/u
2.a � b/ � cos.aC b/u

2.aC b/
C C if a2 6D b2

32.

Z

sinn udu D �1
n

sinn�1 u cosuC n � 1
n

Z

sinn�2 udu

33.

Z

cosn udu D 1

n
cosn�1 u sinuC n � 1

n

Z

cosn�2 udu

34.

Z

tann udu D 1

n � 1 tann�1 u �
Z

tann�2 udu if n 6D 1

35.

Z

cotn udu D � 1

n � 1 cotn�1 u �
Z

cotn�2 udu if n 6D 1

36.

Z

secn udu D 1

n � 1 secn�2 u tanuC n � 2
n � 1

Z

secn�2 udu if n 6D 1

37.

Z

cscn udu D � 1

n � 1 cscn�2 u cotuC n � 2
n � 1

Z

cscn�2 udu if n 6D 1

38.

Z

u sinudu D sinu � u cosuC C

39.

Z

u cosudu D cosuC u sinuC C

40.

Z

un sinudu D �un cosuC n

Z

un�1 cosudu

41.

Z

un cosudu D un sinu � n
Z

un�1 sinudu

FORMS INVOLVING
p

u2
˙ a2

42.

Z p
u2 ˙ a2 du D u

2

p
u2 ˙ a2 ˙ a2

2
ln
ˇ

ˇ

ˇ
uC

p
u2 ˙ a2

ˇ

ˇ

ˇ
C C

43.

Z

dup
u2 ˙ a2

D ln
ˇ

ˇ

ˇ
uC

p
u2 ˙ a2

ˇ

ˇ

ˇ
C C

FORMS INVOLVING
p

a2
� u2

44.

Z p
a2 � u2 du D u

2

p
a2 � u2 C a2

2
sin�1

u

a
C C

45.

Z

p
a2 � u2

u
du D

p
a2 � u2 � a ln

ˇ

ˇ

ˇ

ˇ

ˇ

aC
p
a2 � u2

u

ˇ

ˇ

ˇ

ˇ

ˇ

C C



Table of Integrals (cont.)

EXPONENTIAL AND LOGARITHMIC FORMS

46.

Z

ueu du D .u � 1/eu C C

47.

Z

uneu du D uneu � n
Z

un�1eu du

48.

Z

un lnudu D unC1

nC 1
lnu � unC1

.nC 1/2
C C

49.

Z

eau sin bu duD eau

a2 C b2
.a sin bu�b cos bu/CC

50.

Z

eau cos bu du D eau

a2 C b2
.a cos buC b sin bu/C

C

INVERSE TRIGONOMETRIC FORMS

51.

Z

sin�1 udu D u sin�1 uC
p
1 � u2 C C 52.

Z

tan�1 udu D u tan�1 u � 1

2
ln.1C u2/C C

53.

Z

sec�1 udu D u sec�1 u � ln
ˇ

ˇ

ˇ
uC

p
u2 � 1

ˇ

ˇ

ˇ
C C

54.

Z

u sin�1 udu D 1

4
.2u2 � 1/ sin�1 uC u

4

p
1 � u2 C C

55.

Z

u tan�1 udu D 1

2
.u2 C 1/ tan�1 u � u

2
C C

56.

Z

u sec�1 udu D u2

2
sec�1 u � 1

2

p
u2 � 1C C

57.

Z

un sin�1 udu D unC1

nC 1
sin�1 u � 1

nC 1

Z

unC1

p
1 � u2

du if n 6D �1

58.

Z

un tan�1 udu D unC1

nC 1
tan�1 u � 1

nC 1

Z

unC1

1C u2
du if n 6D �1

59.

Z

un sec�1 udu D unC1

nC 1
sec�1 u � 1

nC 1

Z

unC1

p
u2 � 1

du if n 6D �1

OTHER USEFUL FORMULAS

60.

Z

1

0

une�u du D �.nC 1/ D nŠ (n = 0) 61.

Z

1

0

e�au
2

du D 1

2

r

�

a
(a > 0)

62.

Z

�=2

0

sinn udu D
Z

�=2

0

cosn udu D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 � 3 � 5 � � � .n � 1/
2 � 4 � 6 � � � n � �

2
if n is an even integer and n = 2

2 � 4 � 6 � � � .n � 1/
3 � 5 � 7 � � � n if n is an odd integer and n = 3
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