
Two-Dimensional Vector Dot Products

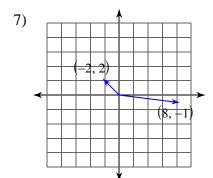
Find the dot product of the given vectors.

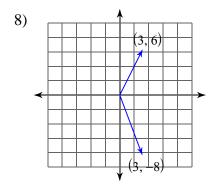
1)
$$\vec{u} = \langle 3, 9 \rangle$$

 $\vec{v} = \langle 6, 5 \rangle$

2)
$$\vec{u} = -\vec{i} + 5\vec{j}$$

 $\vec{v} = -6\vec{i} - 2\vec{j}$




State if the two vectors are parallel, orthogonal, or neither.

5)
$$\vec{u} = \langle 4, -9 \rangle$$

 $\vec{v} = \langle -9, 4 \rangle$

6)
$$\vec{u} = -5\vec{i} - 2\vec{j}$$

 $\vec{v} = -10\vec{i} + 25\vec{j}$

Find the measure of the angle between the two vectors.

9)
$$\vec{u} = \langle -8, -2 \rangle$$

 $\vec{v} = \langle -3, 3 \rangle$

10)
$$\vec{u} = -8\vec{j}$$
$$\vec{v} = -9\vec{i} - 2\vec{j}$$

Find the projection of u onto v.

11)
$$\vec{u} = \langle 8, 2 \rangle$$

 $\vec{v} = \langle -7, -3 \rangle$

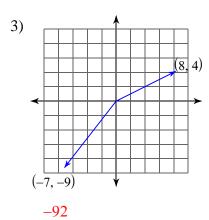
12)
$$\vec{u} = 5\vec{i} - 5\vec{j}$$
$$\vec{v} = 7\vec{i} - 5\vec{j}$$

Find the projection of u onto v. Then write u as the sum of two orthogonal vectors.

13)
$$\vec{u} = \langle -2, -3 \rangle$$

 $\vec{v} = \langle -7, 9 \rangle$

Two-Dimensional Vector Dot Products


Find the dot product of the given vectors.

1)
$$\vec{u} = \langle 3, 9 \rangle$$

 $\vec{v} = \langle 6, 5 \rangle$

63

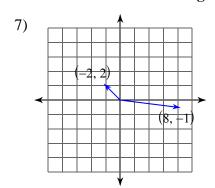
2)
$$\vec{u} = -\vec{i} + 5\vec{j}$$

 $\vec{v} = -6\vec{i} - 2\vec{j}$

-4

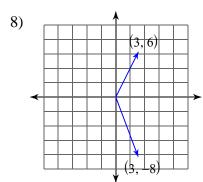
4) (0,9) (5,-8) -72

State if the two vectors are parallel, orthogonal, or neither.


5)
$$\vec{u} = \langle 4, -9 \rangle$$

 $\vec{v} = \langle -9, 4 \rangle$

Neither


6)
$$\vec{u} = -5\vec{i} - 2\vec{j}$$

 $\vec{v} = -10\vec{i} + 25\vec{j}$

Orthogonal

Find the measure of the angle between the two vectors.

142.13°

132.88°

9)
$$\vec{u} = \langle -8, -2 \rangle$$

 $\vec{v} = \langle -3, 3 \rangle$

59.04°

10)
$$\vec{u} = -8\vec{j}$$

 $\vec{v} = -9\vec{i} - 2\vec{j}$
77.47°

Find the projection of u onto v.

11)
$$\vec{u} = \langle 8, 2 \rangle$$

 $\vec{v} = \langle -7, -3 \rangle$
 $\left\langle \frac{217}{29}, \frac{93}{29} \right\rangle$

12)
$$\vec{u} = 5\vec{i} - 5\vec{j}$$

$$\vec{v} = 7\vec{i} - 5\vec{j}$$

$$\left(\frac{210}{37}, -\frac{150}{37}\right)$$

Find the projection of u onto v. Then write u as the sum of two orthogonal vectors.

13)
$$\vec{u} = \langle -2, -3 \rangle$$

 $\vec{v} = \langle -7, 9 \rangle$

$$\left\langle \frac{7}{10}, -\frac{9}{10} \right\rangle$$

$$\vec{u} = \left\langle \frac{7}{10}, -\frac{9}{10} \right\rangle + \left\langle -\frac{27}{10}, -\frac{21}{10} \right\rangle$$