\qquad

Discrete Exponential Growth and Decay

Date \qquad Period \qquad
Solve each discrete exponential growth/decay problem. You may use the provided graph to plot points or sketch the exponential function.

1) An employee receives a 2% raise once per year. If the employee's initial salary is $\$ 60,000.00$, what will the employee's salary be after 9 years?

2) A robot vacuum cleans a dirty floor using multiple passes. During each pass, 22\% of the dirt is removed. If the floor initially has 530.0 ml of dirt, how much dirt will remain after 10 passes?

3) A new social media site is increasing its user base by approximately 6% per month. If the site currently has 21,740 users, what will the approximate user base be 8 months from now?

4) A country pledges to reduce its annual CO_{2} emissions by 3% per year. If the emissions in 2022 are $3,030 \mathrm{Mt}$ (metric megatons), what are the maximum allowable emissions in the year 2028 ?

\qquad

Discrete Exponential Growth and Decay

Date \qquad Period \qquad
Solve each discrete exponential growth/decay problem. You may use the provided graph to plot points or sketch the exponential function.

1) An employee receives a 2% raise once per year. If the employee's initial salary is $\$ 60,000.00$, what will the employee's salary be after 9 years?

2) A robot vacuum cleans a dirty floor using multiple passes. During each pass, 22% of the dirt is removed. If the floor initially has 530.0 ml of dirt, how much dirt will remain after 10 passes?

$530 \cdot 0.78^{10} \approx 44.2 \mathrm{ml}$
3) A new social media site is increasing its user base by approximately 6% per month. If the site currently has 21,740 users, what will the approximate user base be 8 months from now?

$21740 \cdot 1.06^{8} \approx 34,650$ users
4) A country pledges to reduce its annual CO_{2} emissions by 3% per year. If the emissions in 2022 are $3,030 \mathrm{Mt}$ (metric megatons), what are the maximum allowable emissions in the year 2028?

$$
3030 \cdot 0.97^{6} \approx 2,524 \mathrm{Mt}
$$

