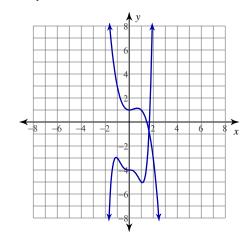

Newton's Method

Use two iterations of Newton's Method to approximate the real zeros of each function. Use the provided initial guess.

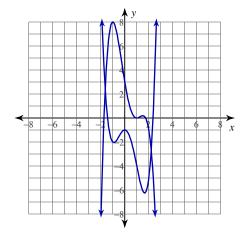
1)
$$y = \cos 3x - 3x$$

Guess: 0.4



2)
$$y = x^5 - 2x^3 + x - 4$$

Guess: 1.8



Use Newton's Method to approximate the x-coordinates where the two functions intersect.

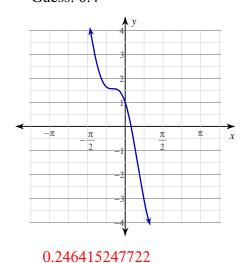
3)
$$y = -x^3 + x^2 + 1$$

 $y = x^5 - 2x^3 - 4$

4)
$$y = x^4 - x^3 - 3x^2 - 1$$

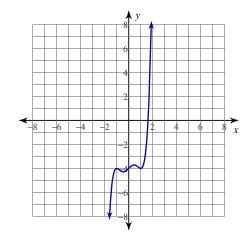
 $y = -x^4 + 2x^3 + 2x^2 - 6x + 3$

For each problem, use Newton's Method to approximate the positive root.


5)
$$\sqrt[5]{4}$$

6)
$$\sqrt[5]{7}$$

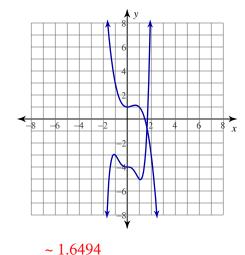
Newton's Method

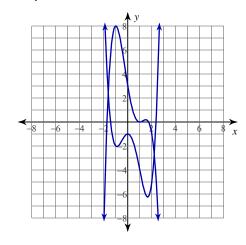

Use two iterations of Newton's Method to approximate the real zeros of each function. Use the provided initial guess.

1)
$$y = \cos 3x - 3x$$

Guess: 0.4

$$2) \ \ y = x^5 - 2x^3 + x - 4$$


Guess: 1.8


1.60907877917

Use Newton's Method to approximate the x-coordinates where the two functions intersect.

3)
$$y = -x^3 + x^2 + 1$$

 $y = x^5 - 2x^3 - 4$

4)
$$y = x^4 - x^3 - 3x^2 - 1$$

 $y = -x^4 + 2x^3 + 2x^2 - 6x + 3$

~ -1.6287, 2.2036

For each problem, use Newton's Method to approximate the positive root.

5)
$$\sqrt[5]{4}$$

~ 1.3195

6)
$$\sqrt[5]{7}$$

~ 1.4758