\qquad

Discrete Exponential Growth and Decay

Date
Period \qquad
Solve each discrete exponential growth/decay problem. You may use the provided graph to plot points or sketch the exponential function.

1) A savings account balance is compounded annually. If the interest rate is 2% per year and the current balance is $\$ 1,430.00$, what will the balance be 8 years from now?

2) A philanthropist pledges to donate 17% of a fund each year. If the fund initially has $\$ 450,000.00$, how much will the fund have after 7 years?

3) An employee receives a 4\% raise once per year. If the employee's initial salary is $\$ 72,300.00$, what will the employee's salary be after 10 years?

4) An architect is designing a tapered office tower where the ground floor (floor 0) is the largest and the floor space is reduced by 5% per floor. If the ground floor has an area of $1,140.0 \mathrm{~m}^{2}$, what is the area of the 9th floor?

Solve each discrete exponential growth/decay problem.
5) Rentals in a high rise apartment building get more expensive higher up, since the views get better. The ground floor (floor 0) rent is $\$ 1,680.00$. The rent increases 4.7% per floor. On what floor is the rent \$4,209.62?
6) For tax purposes, a car rental company assumes each car in their fleet depreciates by 5.5% per year. If the initial value of a car is $\$ 21,300.00$, in how many years will the value depreciate to $\$ 8,615.66$?

Solve each discrete exponential growth/decay problem. Round your answer to the nearest percent.
7) A new social media site is increasing its user base by a constant percentage per month. If the user base grows from 29,130 users to 52,167 users over 10 months, at what monthly rate is the user base increasing?
8) A rubber bouncy ball is dropped from a height of 115.00 inches onto a hard flat floor. After each bounce, the ball returns to a height that is a constant percentage less than the previous maximum height. After the 19th bounce, the ball reaches a maximum height of 3.34 inches. At what percentage does the maximum ball height reduce per bounce?
\qquad

Discrete Exponential Growth and Decay

Date \qquad Period \qquad
Solve each discrete exponential growth/decay problem. You may use the provided graph to plot points or sketch the exponential function.

1) A savings account balance is compounded annually. If the interest rate is 2% per year and the current balance is $\$ 1,430.00$, what will the balance be 8 years from now?

$1430 \cdot 1.02^{8} \approx \$ 1,675.47$
2) A philanthropist pledges to donate 17% of a fund each year. If the fund initially has $\$ 450,000.00$, how much will the fund have after 7 years?

3) An employee receives a 4\% raise once per year. If the employee's initial salary is $\$ 72,300.00$, what will the employee's salary be after 10 years?

$$
72300 \cdot 1.04^{10} \approx \$ 107,021.66
$$

4) An architect is designing a tapered office tower where the ground floor (floor 0) is the largest and the floor space is reduced by 5% per floor. If the ground floor has an area of $1,140.0 \mathrm{~m}^{2}$, what is the area of the 9th floor?

$1140 \cdot 0.95^{9} \approx 718.5 \mathrm{~m}^{2}$

Solve each discrete exponential growth/decay problem.

5) Rentals in a high rise apartment building get more expensive higher up, since the views get better. The ground floor (floor $0)$ rent is $\$ 1,680.00$. The rent increases 4.7% per floor. On what floor is the rent \$4,209.62?

$$
\frac{\ln \frac{4209.62}{1680}}{\ln 1.047} \approx 20 \text { th floor }
$$

6) For tax purposes, a car rental company assumes each car in their fleet depreciates by 5.5% per year. If the initial value of a car is $\$ 21,300.00$, in how many years will the value depreciate to $\$ 8,615.66$?

$$
\frac{\ln \frac{8615.66}{21300}}{\ln 0.945} \approx 16 \text { years }
$$

Solve each discrete exponential growth/decay problem. Round your answer to the nearest
percent.
7) A new social media site is increasing its user base by a constant percentage per month. If the user base grows from 29,130 users to 52,167 users over 10 months, at what monthly rate is the user base increasing?

$$
\left(\frac{52167}{29130}\right)^{\frac{1}{10}}-1 \approx 6 \% \text { per month }
$$

8) A rubber bouncy ball is dropped from a height of 115.00 inches onto a hard flat floor. After each bounce, the ball returns to a height that is a constant percentage less than the previous maximum height. After the 19th bounce, the ball reaches a maximum height of 3.34 inches. At what percentage does the maximum ball height reduce per bounce?

$$
\left|\left(\frac{3.34}{115}\right)^{\frac{1}{19}}-1\right| \approx 17 \% \text { per bounce }
$$

