## Differentials

For each problem, find the differential dy.

1) 
$$y = -x^3 - 2$$

2) 
$$y = -\frac{3}{x}$$

For each problem, find the general formulas for dy and  $\Delta y$ .

3) 
$$y = -x^3 - 2$$

$$4) \quad y = \frac{2}{x}$$

For each problem, find dy and  $\Delta y$ , given  $x_0$  and  $dx = \Delta x$ . You may use the provided graph of the function to sketch dx,  $\Delta x$ , dy, and  $\Delta y$ .

5) 
$$y = \frac{2}{x}$$
;  $x_0 = -5$ ,  $dx = \Delta x = \frac{5}{2}$ 



6) 
$$y = -x^3 + 1$$
;  $x_0 = -1$ ,  $dx = \Delta x = -\frac{1}{2}$ 



For each problem, find a linear approximation of the given quantity. 7) sin 122°

## Use differentials to solve each problem.

9) The radius of a sphere is measured to be 7 cm, with a possible error of  $\pm \frac{1}{10}$  cm. Estimate the possible propagated error in the calculated volume.

10) The sides of a square are measured to be 4 in, with a possible error of  $\pm \frac{1}{5}$  in. Estimate the possible propagated error in the calculated area.

## Differentials

For each problem, find the differential dy.

1) 
$$y = -x^3 - 2$$
$$dy = -3x^2 dx$$

$$2) \quad y = -\frac{3}{x}$$

$$dy = \frac{3}{x^2} dx$$

For each problem, find the general formulas for dy and  $\Delta y$ .

3) 
$$y = -x^{3} - 2$$
$$dy = -3x^{2}dx$$
$$\Delta y = -3x^{2}\Delta x - 3x(\Delta x)^{2} - (\Delta x)^{3}$$

4) 
$$y = \frac{2}{x}$$
$$dy = -\frac{2}{x^2} dx$$
$$\Delta y = -\frac{2\Delta x}{x^2 + x\Delta x}$$

For each problem, find dy and  $\Delta y$ , given  $x_0$  and  $dx = \Delta x$ . You may use the provided graph of the function to sketch dx,  $\Delta x$ , dy, and  $\Delta y$ .

$$dy = -\frac{1}{5} = -0.2$$
$$\Delta y = -\frac{2}{5} = -0.4$$





$$dy = \frac{1}{2} = 1.5$$

$$\Delta y = \frac{19}{8} = 2.375$$

For each problem, find a linear approximation of the given quantity.

7) 
$$\sin 122^{\circ}$$

$$f(x) = \sin x, \ f'(x) = \cos x$$

$$x_{0} = \frac{2\pi}{3} \text{ radians, } \Delta x = \frac{\pi}{90} \text{ radians}$$

$$f(x) = x^{4}, \ f'(x) = 4x^{3}$$

$$x_{0} = 7, \ \Delta x = -0.01$$

$$f(x_{0} + \Delta x) \approx f(x_{0}) + f'(x_{0}) \Delta x = \frac{90\sqrt{3} - \pi}{180} \approx 0.8486$$

$$f(x_{0} + \Delta x) \approx f(x_{0}) + f'(x_{0}) \Delta x = \frac{59682}{25} = 2387.28$$

## Use differentials to solve each problem.

9) The radius of a sphere is measured to be 7 cm, with a possible error of  $\pm \frac{1}{10}$  cm. Estimate the possible propagated error in the calculated volume.

$$V = \frac{4}{3}\pi r^{3}, dV = 4\pi r^{2} dr$$

$$r = 7, dr = \pm 0.1$$

$$\Delta V \approx dV = \pm \frac{98\pi}{5} \approx \pm 61.5752 \text{ cm}^{3}$$

10) The sides of a square are measured to be 4 in, with a possible error of  $\pm \frac{1}{5}$  in. Estimate the possible propagated error in the calculated area.

$$A = s^{2}, dA = 2s ds$$

$$s = 4, ds = \pm 0.2$$

$$\Delta A \approx dA = \pm \frac{8}{5} = \pm 1.6 \text{ in}^{2}$$