Differentials For each problem, find the differential dy. 1) $$y = -x^3 - 2$$ 2) $$y = -\frac{3}{x}$$ For each problem, find the general formulas for dy and Δy . 3) $$y = -x^3 - 2$$ $$4) \quad y = \frac{2}{x}$$ For each problem, find dy and Δy , given x_0 and $dx = \Delta x$. You may use the provided graph of the function to sketch dx, Δx , dy, and Δy . 5) $$y = \frac{2}{x}$$; $x_0 = -5$, $dx = \Delta x = \frac{5}{2}$ 6) $$y = -x^3 + 1$$; $x_0 = -1$, $dx = \Delta x = -\frac{1}{2}$ For each problem, find a linear approximation of the given quantity. 7) sin 122° ## Use differentials to solve each problem. 9) The radius of a sphere is measured to be 7 cm, with a possible error of $\pm \frac{1}{10}$ cm. Estimate the possible propagated error in the calculated volume. 10) The sides of a square are measured to be 4 in, with a possible error of $\pm \frac{1}{5}$ in. Estimate the possible propagated error in the calculated area. ## Differentials For each problem, find the differential dy. 1) $$y = -x^3 - 2$$ $$dy = -3x^2 dx$$ $$2) \quad y = -\frac{3}{x}$$ $$dy = \frac{3}{x^2} dx$$ For each problem, find the general formulas for dy and Δy . 3) $$y = -x^{3} - 2$$ $$dy = -3x^{2}dx$$ $$\Delta y = -3x^{2}\Delta x - 3x(\Delta x)^{2} - (\Delta x)^{3}$$ 4) $$y = \frac{2}{x}$$ $$dy = -\frac{2}{x^2} dx$$ $$\Delta y = -\frac{2\Delta x}{x^2 + x\Delta x}$$ For each problem, find dy and Δy , given x_0 and $dx = \Delta x$. You may use the provided graph of the function to sketch dx, Δx , dy, and Δy . $$dy = -\frac{1}{5} = -0.2$$ $$\Delta y = -\frac{2}{5} = -0.4$$ $$dy = \frac{1}{2} = 1.5$$ $$\Delta y = \frac{19}{8} = 2.375$$ For each problem, find a linear approximation of the given quantity. 7) $$\sin 122^{\circ}$$ $$f(x) = \sin x, \ f'(x) = \cos x$$ $$x_{0} = \frac{2\pi}{3} \text{ radians, } \Delta x = \frac{\pi}{90} \text{ radians}$$ $$f(x) = x^{4}, \ f'(x) = 4x^{3}$$ $$x_{0} = 7, \ \Delta x = -0.01$$ $$f(x_{0} + \Delta x) \approx f(x_{0}) + f'(x_{0}) \Delta x = \frac{90\sqrt{3} - \pi}{180} \approx 0.8486$$ $$f(x_{0} + \Delta x) \approx f(x_{0}) + f'(x_{0}) \Delta x = \frac{59682}{25} = 2387.28$$ ## Use differentials to solve each problem. 9) The radius of a sphere is measured to be 7 cm, with a possible error of $\pm \frac{1}{10}$ cm. Estimate the possible propagated error in the calculated volume. $$V = \frac{4}{3}\pi r^{3}, dV = 4\pi r^{2} dr$$ $$r = 7, dr = \pm 0.1$$ $$\Delta V \approx dV = \pm \frac{98\pi}{5} \approx \pm 61.5752 \text{ cm}^{3}$$ 10) The sides of a square are measured to be 4 in, with a possible error of $\pm \frac{1}{5}$ in. Estimate the possible propagated error in the calculated area. $$A = s^{2}, dA = 2s ds$$ $$s = 4, ds = \pm 0.2$$ $$\Delta A \approx dA = \pm \frac{8}{5} = \pm 1.6 \text{ in}^{2}$$