Candle Center - Infinite Calculus

Exponential Growth and Decay

Name \qquad

Solve each exponential growth/decay problem.

1) For a period of time, an island's population grows at a rate proportional to its population. If the growth rate is 3.8% per year and the current population is 1543 , what will the population be 5.2 years from now?
2) Radioactive isotope Carbon-14 decays at a rate proportional to the amount present. If the decay rate is 12.10% per thousand years and the current mass is 135.2 mg , what will the mass be 2.2 thousand years from now?
3) A cup of coffee cools at rate proportional to the difference between the constant room temperature of $20.0^{\circ} \mathrm{C}$ and the temperature of the coffee. If the temperature of the coffee was $86.1^{\circ} \mathrm{C} 3.0$ minutes ago and the current temperature of the coffee is $79.9^{\circ} \mathrm{C}$, what will the temperature of the coffee be 29.0 minutes from now?

Date \qquad Period \qquad
2) During the exponential phase, E. coli bacteria in a culture increase in number at a rate proportional to the current population. If the growth rate is 1.9% per minute and the current population is 172.0 million, what will the population be 7.2 minutes from now?
4) A savings account balance is compounded continuously. If the interest rate is 3.1% per year and the current balance is $\$ 1077.00$, in how many years will the balance reach \$1486.73?
6) During the exponential phase, E. coli bacteria in a culture increase in number at a rate proportional to the current population. If the population doubles in 20.4 minutes, in how many minutes will the population triple?

Candle Center - Infinite Calculus

Exponential Growth and Decay

Name \qquad

Solve each exponential growth/decay problem.

1) For a period of time, an island's population grows at a rate proportional to its population. If the growth rate is 3.8% per year and the current population is 1543 , what will the population be 5.2 years from now?

$$
1543 e^{0.038 \cdot 5.2} \approx 1880
$$

Date \qquad Period \qquad
2) During the exponential phase, E. coli bacteria in a culture increase in number at a rate proportional to the current population. If the growth rate is 1.9% per minute and the current population is 172.0 million, what will the population be 7.2 minutes from now?

$$
172 e^{0.019 \cdot 7.2} \approx 197.2 \text { million }
$$

4) A savings account balance is compounded continuously. If the interest rate is 3.1% per year and the current balance is $\$ 1077.00$, in how many years will the balance reach \$1486.73?

$$
\frac{\ln \frac{1486.73}{1077}}{0.031} \approx 10.4 \mathrm{yr}
$$

6) During the exponential phase, E. coli bacteria in a culture increase in number at a rate proportional to the current population. If the population doubles in 20.4 minutes, in how many minutes will the population triple?

$$
\frac{20.4 \ln 3}{\ln 2} \approx 32.3 \mathrm{~min}
$$

