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ix

P R E F A C E

This edition, like its predecessors, is written from the viewpoint of the applied mathe-
matician,whose interest in differential equations may sometimes be quite theoretical,
sometimes intensely practical, and often somewhere in between. We have sought to
combine a sound and accurate (but not abstract) exposition of the elementary theory
of differential equations with considerable material on methods of solution, analysis,
and approximation that have proved useful in a wide variety of applications.

The book is written primarily for undergraduate students of mathematics, science,
or engineering, who typically take a course on differential equations during their first
or second year of study. The main prerequisite for reading the book is a working
knowledge of calculus, gained from a normal two- or three-semester course sequence
or its equivalent. Some familiarity with matrices will also be helpful in the chapters
on systems of differential equations.

To be widely useful a textbook must be adaptable to a variety of instructional
strategies. This implies at least two things. First, instructors should have maximum
flexibility to choose both the particular topics that they wish to cover and also the
order in which they want to cover them. Second, the book should be useful to students
having access to a wide range of technological capability.

With respect to content, we provide this flexibility by making sure that, so far as
possible, individual chapters are independent of each other. Thus, after the basic
parts of the first three chapters are completed (roughly Sections 1.1 through 1.3,
2.1 through 2.5, and 3.1 through 3.5), the selection of additional topics, and the order
and depth in which they are covered, is at the discretion of the instructor. Chapters
4 through 11 are essentially independent of each other, except that Chapter 7 should
precede Chapter 9 and that Chapter 10 should precede Chapter 11. This means that
there are multiple pathways through the book and many different combinations have
been used effectively with earlier editions.
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With respect to technology, we note repeatedly in the text that computers are
extremely useful for investigating differential equations and their solutions,and many
of the problems are best approached with computational assistance. Nevertheless,
the book is adaptable to courses having various levels of computer involvement,
ranging from little or none to intensive. The text is independent of any particular
hardware platform or software package.

Many problems are marked with the symbol to indicate that we consider them
to be technologically intensive. Computers have at least three important uses in a dif-
ferential equations course. The first is simply to crunch numbers, thereby generating
accurate numerical approximations to solutions. The second is to carry out symbolic
manipulations that would be tedious and time-consuming to do by hand. Finally,
and perhaps most important of all, is the ability to translate the results of numerical
or symbolic computations into graphical form, so that the behavior of solutions can
be easily visualized. The marked problems typically involve one or more of these
features. Naturally, the designation of a problem as technologically intensive is a
somewhat subjective judgment, and the is intended only as a guide. Many of the
marked problems can be solved, at least in part, without computational help, and a
computer can also be used effectively on many of the unmarked problems.

From a student’s point of view, the problems that are assigned as homework and
that appear on examinations drive the course. We believe that the most outstanding
feature of this book is the number,and above all the variety and range,of the problems
that it contains. Many problems are entirely straightforward, but many others are
more challenging, and some are fairly open-ended, and can serve as the basis for
independent student projects. There are far more problems than any instructor can
use in any given course, and this provides instructors with a multitude of choices in
tailoring their course to meet their own goals and the needs of their students.

The motivation for solving many differential equations is the desire to learn some-
thing about an underlying physical process that the equation is believed to model.
It is basic to the importance of differential equations that even the simplest equa-
tions correspond to useful physical models, such as exponential growth and decay,
spring-mass systems, or electrical circuits. Gaining an understanding of a complex
natural process is usually accomplished by combining or building upon simpler and
more basic models. Thus a thorough knowledge of these basic models, the equations
that describe them, and their solutions, is the first and indispensable step toward the
solution of more complex and realistic problems. We describe the modeling process
in detail in Sections 1.1, 1.2, and 2.3. Careful constructions of models appear also in
Sections 2.5, 3.7, and in the appendices to Chapter 10. Differential equations result-
ing from the modeling process appear frequently throughout the book, especially in
the problem sets.

The main reason for including fairly extensive material on applications and math-
ematical modeling in a book on differential equations is to persuade students that
mathematical modeling often leads to differential equations, and that differential
equations are part of an investigation of problems in a wide variety of other fields.
We also emphasize the transportability of mathematical knowledge: once you master
a particular solution method, you can use it in any field of application in which an
appropriate differential equation arises. Once these points are convincingly made,
we believe that it is unnecessary to provide specific applications of every method
of solution or type of equation that we consider. This helps to keep this book to
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a reasonable size, and in any case, there is only a limited time in most differential
equations courses to discuss modeling and applications.

Nonroutine problems often require the use of a variety of tools, both analytical
and numerical. Paper and pencil methods must often be combined with effective
use of a computer. Quantitative results and graphs, often produced by a computer,
serve to illustrate and clarify conclusions that may be obscured by complicated ana-
lytical expressions. On the other hand, the implementation of an efficient numerical
procedure typically rests on a good deal of preliminary analysis — to determine the
qualitative features of the solution as a guide to computation, to investigate limit-
ing or special cases, or to discover which ranges of the variables or parameters may
require or merit special attention. Thus, a student should come to realize that investi-
gating a difficult problem may well require both analysis and computation; that good
judgment may be required to determine which tool is best-suited for a particular task;
and that results can often be presented in a variety of forms.

We believe that it is important for students to understand that (except perhaps in
courses on differential equations) the goal of solving a differential equation is seldom
simply to obtain the solution. Rather, one is interested in the solution in order to
obtain insight into the behavior of the process that the equation purports to model.
In other words, the solution is not an end in itself. Thus, we have included a great
many problems, as well as some examples in the text, that call for conclusions to be
drawn about the solution. Sometimes this takes the form of asking for the value of the
independent variable at which the solution has a certain property, or to determine the
long term behavior of the solution. Other problems ask for the effect of variations in
a parameter, or for the determination of a critical value of a parameter at which the
solution experiences a substantial change. Such problems are typical of those that
arise in the applications of differential equations, and, depending on the goals of the
course, an instructor has the option of assigning few or many of these problems.

Readers familiar with the preceding edition will observe that the general structure
of the book is unchanged. The revisions that we have made in this edition have several
goals: to streamline the presentation in a few places, to make the presentation more
visual by adding some new figures, and to improve the exposition by including several
new or improved examples. More specifically, the most important changes are the
following:

1. We have removed the discussion of linear dependence and independence from Chapter 3
(Second Order Linear Equations), where it is difficult to explain their importance, and
introduced these concepts later in Chapter 4 (Higher Order Linear Equations) and in
Chapter 7 (Linear Systems), where they appear more naturally. This results in a smaller
block of theoretical material at the beginning of Chapter 3. Since not all courses cover
Chapter 4, we also avoid using the words “linear dependence” and “linear independence”
in Chapters 5 (Power Series Solutions) and 6 (Laplace Transforms).

2. Sections 5.4 (Regular Singular Points) and 5.5 (Euler Equations) from the eighth edition
have now been combined into a single section, with Euler equations appearing first. They
are then used as the prototype of equations having regular singular points, resulting in a
somewhat briefer and more compact presentation.

3. Chapter 9 (Nonlinear Autonomous Systems) has several modifications. The concept of
basins of attraction now appears earlier (in Section 9.2). This section also includes two
new examples and three new figures with the goal of providing visual evidence that near
a critical point nonlinear systems (usually) behave very much like linear systems. Such
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systems are now referred to as “locally linear.” In the following sections the Jacobian
matrix is used more systematically to construct these linear approximations. There are
also about 25 new problems in this chapter.

4. In response to suggestions from several users, we have begun the discussion of forced
linear oscillators in Section 3.8 with an example, rather than a general presentation.

5. There are eight new problems on Euler equations (making a total of fifteen) in Sections
3.3 and 3.4. This will enable instructors to cover this topic, if they wish, even if Chapter 5
is not to be used. Euler equations appear in the text in Section 5.4.

6. There are several revisions in Chapter 6 clarifying the integration of piecewise continuous
functions, the essential uniqueness of the Laplace transform, and the use of the delta
function. In addition, there is a new example, a new figure, and six new problems on the
use of the unit step function to represent more complicated step functions.

7. The list of 32 miscellaneous problems at the end of Chapter 2 has been substantially revised
and includes nine new problems. This list now better reflects the contents of Chapter 2.

The authors have found differential equations to be a never ending source of
interesting, and sometimes surprising, results and phenomena. We hope that users
of this book, both students and instructors, will share our enthusiasm for the subject.

William E. Boyce
Grafton, New York
June 26, 2008
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Supplemental Resources for Instructors and Students
A passcode for access to ODE Architect is included with every copy of the text.
ODE Architect is a prize-winning NSF-sponsored learning software package, which
is Windows-compatible. A solver tool enables the user to build models with ordinary
differential equations and study them in an interactive point-and-click environment.
The Architect includes an interactive library of more than one hundred model differ-
ential equation systems with graphs of solutions. Additionally, fourteen interactive
multimedia modules provide a range of models and phenomena, from a golf game
to chaos.

An Instructor’s Solutions Manual, ISBN 978-0-470-42473-5, includes solutions for
all problems not contained in the Student Solutions Manual.

A Student Solutions Manual, ISBN 978-0-470-38335-3, includes solutions for se-
lected problems in the text.

A Book Companion Site, www.wiley.com/college/boyce, provides a wealth of re-
sources for students and instructors, including:

• PowerPoint slides of important definitions, examples, and theorems from the
book, as well as graphics for presentation in lectures or for study and note taking.

• Chapter Review Sheets enable students to test their knowledge of key concepts.
For further review, diagnostic feedback is provided that refers to pertinent sec-
tions in the text.

• ODE Architect: Getting Started. This guide introduces students and professors
to ODE Architect’s simulations and multimedia.

• Additional problems for use with Mathematica, Maple, and MATLAB, providing
opportunities for further exploration of important concepts using these com-
puter algebra and numerical analysis packages.

A series of supplemental guidebooks, also published by John Wiley & Sons, can be
used with Boyce/DiPrima in order to incorporate computing technologies into the
course. These books emphasize numerical methods and graphical analysis, showing
how these methods enable us to interpret solutions of ODEs in the real world. Sep-
arate guidebooks cover each of the three major mathematical software formats, but
the ODE subject matter is the same in each.

• Hunt, Lipsman, Osborn, Rosenberg, Differential Equations with MATLAB, 2nd
ed., © 2005, ISBN 978-0-471-71812-3

• Hunt, Lardy, Lipsman, Osborn, Rosenberg, Differential Equations with Maple,
3rd ed., © 2009, ISBN 978-0-471-77317-7

• Hunt, Outing, Lipsman, Osborn, Rosenberg, Differential Equations with Math-
ematica, 3rd ed., © 2009, ISBN 978-0-471-77316-0

WileyPLUS
WileyPLUS, Wiley’s digital-learning environment, is loaded with all of the supple-
ments above, and also features:

• the E-book, which is an exact version of the print text, but also features hyper-
links to questions, definitions, and supplements for quicker and easier support.

http://www.wiley.com/college/boyce
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• Guided Online (GO) Exercises, which prompt students to build solutions step-
by-step. Rather than simply grading an exercise answer as wrong, GO problems
show students precisely where they are making a mistake.

• homework management tools,which easily enable instructors to assign and grade
questions, as well as gauge student comprehension.

• QuickStart pre-designed reading and homework assignments. Use them as-is
or customize them to fit the needs of your classroom.
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1

C H A P T E R

1

Introduction

In this chapter we give perspective to your study of differential equations in several
different ways. First, we use two problems to illustrate some of the basic ideas that
we will return to, and elaborate upon, frequently throughout the remainder of the
book. Later, to provide organizational structure for the book, we indicate several
ways of classifying differential equations. Finally,we outline some of the major trends
in the historical development of the subject and mention a few of the outstanding
mathematicians who have contributed to it. The study of differential equations has
attracted the attention of many of the world’s greatest mathematicians during the
past three centuries. Nevertheless, it remains a dynamic field of inquiry today, with
many interesting open questions.

1.1 Some Basic Mathematical Models; Direction Fields
Before embarking on a serious study of differential equations (for example, by read-
ing this book or major portions of it), you should have some idea of the possible
benefits to be gained by doing so. For some students the intrinsic interest of the
subject itself is enough motivation, but for most it is the likelihood of important
applications to other fields that makes the undertaking worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world are
statements or relations involving rates at which things happen. When expressed
in mathematical terms, the relations are equations and the rates are derivatives.
Equations containing derivatives are differential equations. Therefore, to understand
and to investigate problems involving the motion of fluids, the flow of current in
electric circuits, the dissipation of heat in solid objects, the propagation and detection
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of seismic waves, or the increase or decrease of populations, among many others, it
is necessary to know something about differential equations.

A differential equation that describes some physical process is often called a math-
ematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to
solve. It is noteworthy that even the simplest differential equations provide useful
models of important physical processes.

E X A M P L E

1

A Fal l ing
Object

Suppose that an object is falling in the atmosphere near sea level. Formulate a differential
equation that describes the motion.

We begin by introducing letters to represent various quantities that may be of interest in this
problem. The motion takes place during a certain time interval, so let us use t to denote time.
Also, let us use v to represent the velocity of the falling object. The velocity will presumably
change with time, so we think of v as a function of t; in other words, t is the independent
variable and v is the dependent variable. The choice of units of measurement is somewhat
arbitrary, and there is nothing in the statement of the problem to suggest appropriate units,
so we are free to make any choice that seems reasonable. To be specific, let us measure time
t in seconds and velocity v in meters/second. Further, we will assume that v is positive in the
downward direction—that is, when the object is falling.

The physical law that governs the motion of objects is Newton’s second law, which states
that the mass of the object times its acceleration is equal to the net force on the object. In
mathematical terms this law is expressed by the equation

F = ma, (1)

where m is the mass of the object, a is its acceleration, and F is the net force exerted on the
object. To keep our units consistent, we will measure m in kilograms, a in meters/second2, and
F in newtons. Of course, a is related to v by a = dv/dt, so we can rewrite Eq. (1) in the form

F = m(dv/dt). (2)

Next, consider the forces that act on the object as it falls. Gravity exerts a force equal to the
weight of the object, or mg, where g is the acceleration due to gravity. In the units we have
chosen, g has been determined experimentally to be approximately equal to 9.8 m/s2 near
the earth’s surface. There is also a force due to air resistance, or drag, that is more difficult
to model. This is not the place for an extended discussion of the drag force; suffice it to say
that it is often assumed that the drag is proportional to the velocity, and we will make that
assumption here. Thus the drag force has the magnitude γ v, where γ is a constant called the
drag coefficient. The numerical value of the drag coefficient varies widely from one object
to another; smooth streamlined objects have much smaller drag coefficients than rough blunt
ones. The physical units for γ are mass/time, or kg/s for this problem; if these units seem
peculiar, remember that γ v must have the units of force, namely, kg·m/s2.

In writing an expression for the net force F , we need to remember that gravity always acts
in the downward (positive) direction, whereas drag acts in the upward (negative) direction, as
shown in Figure 1.1.1. Thus

F = mg − γ v (3)

and Eq. (2) then becomes

m
dv

dt
= mg − γ v. (4)

Equation (4) is a mathematical model of an object falling in the atmosphere near sea level.
Note that the model contains the three constants m, g, and γ . The constants m and γ depend
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very much on the particular object that is falling, and they are usually different for different
objects. It is common to refer to them as parameters, since they may take on a range of values
during the course of an experiment. On the other hand, g is a physical constant, whose value
is the same for all objects.

γ υ

mg

m

FIGURE 1.1.1 Free-body diagram of the forces on a falling object.

To solve Eq. (4), we need to find a function v = v(t) that satisfies the equation. It
is not hard to do this, and we will show you how in the next section. For the present,
however, let us see what we can learn about solutions without actually finding any
of them. Our task is simplified slightly if we assign numerical values to m and γ , but
the procedure is the same regardless of which values we choose. So, let us suppose
that m = 10 kg and γ = 2 kg/s. Then Eq. (4) can be rewritten as

dv

dt
= 9.8 − v

5
. (5)

E X A M P L E

2

A Fal l ing
Object

(cont inued)

Investigate the behavior of solutions of Eq. (5) without solving the differential equation.
We will proceed by looking at Eq. (5) from a geometrical viewpoint. Suppose that the

velocity v has a certain given value. Then, by evaluating the right side of Eq. (5), we can find
the corresponding value of dv/dt. For instance, if v = 40, then dv/dt = 1.8. This means that
the slope of a solution v = v(t) has the value 1.8 at any point where v = 40. We can display this
information graphically in the tv-plane by drawing short line segments with slope 1.8 at several
points on the line v = 40. Similarly, if v = 50, then dv/dt = −0.2, so we draw line segments
with slope −0.2 at several points on the line v = 50. We obtain Figure 1.1.2 by proceeding in
the same way with other values of v. Figure 1.1.2 is an example of what is called a direction
field or sometimes a slope field.

Remember that a solution of Eq. (5) is a function v = v(t) whose graph is a curve in the
tv-plane. The importance of Figure 1.1.2 is that each line segment is a tangent line to one of
these solution curves. Thus, even though we have not found any solutions, and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about
the behavior of solutions. For instance, if v is less than a certain critical value, then all the line
segments have positive slopes, and the speed of the falling object increases as it falls. On the
other hand, if v is greater than the critical value, then the line segments have negative slopes,
and the falling object slows down as it falls. What is this critical value of v that separates objects
whose speed is increasing from those whose speed is decreasing? Referring again to Eq. (5),
we ask what value of v will cause dv/dt to be zero. The answer is v = (5)(9.8) = 49 m/s.

In fact, the constant function v(t) = 49 is a solution of Eq. (5). To verify this statement,
substitute v(t) = 49 into Eq. (5) and observe that each side of the equation is zero. Because
it does not change with time, the solution v(t) = 49 is called an equilibrium solution. It is the
solution that corresponds to a perfect balance between gravity and drag. In Figure 1.1.3 we
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show the equilibrium solution v(t) = 49 superimposed on the direction field. From this figure
we can draw another conclusion, namely, that all other solutions seem to be converging to the
equilibrium solution as t increases.

2 4 t6 8 10

48

44

40

52

60

56

υ

FIGURE 1.1.2 A direction field for Eq. (5).
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FIGURE 1.1.3 Direction field and equilibrium solution for Eq. (5).

The approach illustrated in Example 2 can be applied equally well to the more
general Eq. (4), where the parameters m and γ are unspecified positive numbers. The
results are essentially identical to those of Example 2. The equilibrium solution of
Eq. (4) is v(t) = mg/γ . Solutions below the equilibrium solution increase with time,
those above it decrease with time, and all other solutions approach the equilibrium
solution as t becomes large.
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Direction Fields. Direction fields are valuable tools in studying the solutions of differ-
ential equations of the form

dy
dt

= f (t, y), (6)

where f is a given function of the two variables t and y, sometimes referred to as the
rate function. A direction field for equations of the form (6) can be constructed by
evaluating f at each point of a rectangular grid. At each point of the grid, a short line
segment is drawn whose slope is the value of f at that point. Thus each line segment
is tangent to the graph of the solution passing through that point. A direction field
drawn on a fairly fine grid gives a good picture of the overall behavior of solutions of
a differential equation. Usually a grid consisting of a few hundred points is sufficient.
The construction of a direction field is often a useful first step in the investigation of
a differential equation.

Two observations are worth particular mention. First, in constructing a direction
field, we do not have to solve Eq. (6), but merely to evaluate the given function f (t, y)

many times. Thus direction fields can be readily constructed even for equations that
may be quite difficult to solve. Second, repeated evaluation of a given function is a
task for which a computer is well suited, and you should usually use a computer to
draw a direction field. All the direction fields shown in this book, such as the one in
Figure 1.1.2, were computer-generated.

Field Mice and Owls. Now let us look at another, quite different example. Consider a
population of field mice who inhabit a certain rural area. In the absence of preda-
tors we assume that the mouse population increases at a rate proportional to the
current population. This assumption is not a well-established physical law (as New-
ton’s law of motion is in Example 1), but it is a common initial hypothesis1 in a
study of population growth. If we denote time by t and the mouse population by
p(t), then the assumption about population growth can be expressed by the equa-
tion

dp
dt

= rp, (7)

where the proportionality factor r is called the rate constant or growth rate. To be
specific, suppose that time is measured in months and that the rate constant r has the
value 0.5/month. Then each term in Eq. (7) has the units of mice/month.

Now let us add to the problem by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information
into the model, we must add another term to the differential equation (7), so that it
becomes

dp
dt

= 0.5p − 450. (8)

Observe that the predation term is −450 rather than −15 because time is measured
in months and the monthly predation rate is needed.

1A better model of population growth is discussed in Section 2.5.
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E X A M P L E

3

Investigate the solutions of Eq. (8) graphically.
A direction field for Eq. (8) is shown in Figure 1.1.4. For sufficiently large values of p it can

be seen from the figure, or directly from Eq. (8) itself, that dp/dt is positive, so that solutions
increase. On the other hand, if p is small, than dp/dt is negative and solutions decrease. Again,
the critical value of p that separates solutions that increase from those that decrease is the
value of p for which dp/dt is zero. By setting dp/dt equal to zero in Eq. (8) and then solving
for p, we find the equilibrium solution p(t) = 900 for which the growth term and the predation
term in Eq. (8) are exactly balanced. The equilibrium solution is also shown in Figure 1.1.4.

1 2 t3 4 5

900

850

800

950

1000

p

FIGURE 1.1.4 Direction field and equilibrium solution for Eq. (8).

Comparing Examples 2 and 3, we note that in both cases the equilibrium solution
separates increasing from decreasing solutions. In Example 2 other solutions con-
verge to, or are attracted by, the equilibrium solution, so that after the object falls far
enough, an observer will see it moving at very nearly the equilibrium velocity. On
the other hand, in Example 3 other solutions diverge from, or are repelled by, the
equilibrium solution. Solutions behave very differently depending on whether they
start above or below the equilibrium solution. As time passes, an observer might see
populations either much larger or much smaller than the equilibrium population, but
the equilibrium solution itself will not, in practice, be observed. In both problems,
however, the equilibrium solution is very important in understanding how solutions
of the given differential equation behave.

A more general version of Eq. (8) is

dp
dt

= rp − k, (9)

where the growth rate r and the predation rate k are unspecified. Solutions of this
more general equation are very similar to those of Eq. (8). The equilibrium solution
of Eq. (9) is p(t) = k/r. Solutions above the equilibrium solution increase, while
those below it decrease.

You should keep in mind that both of the models discussed in this section have
their limitations. The model (5) of the falling object is valid only as long as the
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object is falling freely, without encountering any obstacles. The population model
(8) eventually predicts negative numbers of mice (if p < 900) or enormously large
numbers (if p > 900). Both these predictions are unrealistic, so this model becomes
unacceptable after a fairly short time interval.

Constructing Mathematical Models. In applying differential equations to any of the nu-
merous fields in which they are useful, it is necessary first to formulate the appropriate
differential equation that describes, or models, the problem being investigated. In
this section we have looked at two examples of this modeling process, one drawn
from physics and the other from ecology. In constructing future mathematical mod-
els yourself, you should recognize that each problem is different, and that successful
modeling is not a skill that can be reduced to the observance of a set of prescribed
rules. Indeed, constructing a satisfactory model is sometimes the most difficult part
of the problem. Nevertheless, it may be helpful to list some steps that are often part
of the process:

1. Identify the independent and dependent variables and assign letters to represent them.
Often the independent variable is time.

2. Choose the units of measurement for each variable. In a sense the choice of units is
arbitrary, but some choices may be much more convenient than others. For example, we
chose to measure time in seconds for the falling-object problem and in months for the
population problem.

3. Articulate the basic principle that underlies or governs the problem you are investigating.
This may be a widely recognized physical law, such as Newton’s law of motion, or it may be
a more speculative assumption that may be based on your own experience or observations.
In any case, this step is likely not to be a purely mathematical one, but will require you to
be familiar with the field in which the problem originates.

4. Express the principle or law in step 3 in terms of the variables you chose in step 1. This
may be easier said than done. It may require the introduction of physical constants or
parameters (such as the drag coefficient in Example 1) and the determination of appro-
priate values for them. Or it may involve the use of auxiliary or intermediate variables
that must then be related to the primary variables.

5. Make sure that each term in your equation has the same physical units. If this is not the
case, then your equation is wrong and you should seek to repair it. If the units agree, then
your equation at least is dimensionally consistent,although it may have other shortcomings
that this test does not reveal.

6. In the problems considered here, the result of step 4 is a single differential equation, which
constitutes the desired mathematical model. Keep in mind, though, that in more complex
problems the resulting mathematical model may be much more complicated, perhaps
involving a system of several differential equations, for example.

PROBLEMS In each of Problems 1 through 6 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends
on the initial value of y at t = 0, describe the dependency.

1. y′ = 3 − 2y 2. y′ = 2y − 3
3. y′ = 3 + 2y 4. y′ = −1 − 2y

5. y′ = 1 + 2y 6. y′ = y + 2
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In each of Problems 7 through 10 write down a differential equation of the form dy/dt = ay + b
whose solutions have the required behavior as t → ∞.

7. All solutions approach y = 3. 8. All solutions approach y = 2/3.
9. All other solutions diverge from y = 2. 10. All other solutions diverge from y = 1/3.

In each of Problems 11 through 14 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that in these problems the
equations are not of the form y′ = ay + b, and the behavior of their solutions is somewhat
more complicated than for the equations in the text.
11. y′ = y(4 − y) 12. y′ = −y(5 − y)

13. y′ = y2 14. y′ = y(y − 2)2

Consider the following list of differential equations, some of which produced the direction
fields shown in Figures 1.1.5 through 1.1.10. In each of Problems 15 through 20 identify the
differential equation that corresponds to the given direction field.
(a) y′ = 2y − 1 (b) y′ = 2 + y

(c) y′ = y − 2 (d) y′ = y(y + 3)

(e) y′ = y(y − 3) (f) y′ = 1 + 2y

(g) y′ = −2 − y (h) y′ = y(3 − y)

(i) y′ = 1 − 2y (j) y′ = 2 − y

15. The direction field of Figure 1.1.5.
16. The direction field of Figure 1.1.6.
17. The direction field of Figure 1.1.7.
18. The direction field of Figure 1.1.8.
19. The direction field of Figure 1.1.9.
20. The direction field of Figure 1.1.10.
21. A pond initially contains 1,000,000 gal of water and an unknown amount of an undesirable

chemical. Water containing 0.01 g of this chemical per gallon flows into the pond at a rate
of 300 gal/h. The mixture flows out at the same rate, so the amount of water in the pond
remains constant. Assume that the chemical is uniformly distributed throughout the pond.
(a) Write a differential equation for the amount of chemical in the pond at any time.
(b) How much of the chemical will be in the pond after a very long time? Does this
limiting amount depend on the amount that was present initially?

22. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differ-
ential equation for the volume of the raindrop as a function of time.

23. Newton’s law of cooling states that the temperature of an object changes at a rate propor-
tional to the difference between the temperature of the object itself and the temperature
of its surroundings (the ambient air temperature in most cases). Suppose that the ambient
temperature is 70◦F and that the rate constant is 0.05 (min)−1. Write a differential equa-
tion for the temperature of the object at any time. Note that the differential equation is the
same whether the temperature of the object is above or below the ambient temperature.

24. A certain drug is being administered intravenously to a hospital patient. Fluid containing
5 mg/cm3 of the drug enters the patient’s bloodstream at a rate of 100 cm3/h. The drug
is absorbed by body tissues or otherwise leaves the bloodstream at a rate proportional to
the amount present, with a rate constant of 0.4 (h)−1.
(a) Assuming that the drug is always uniformly distributed throughout the bloodstream,
write a differential equation for the amount of the drug that is present in the bloodstream
at any time.
(b) How much of the drug is present in the bloodstream after a long time?
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FIGURE 1.1.5 Direction field for
Problem 15.
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FIGURE 1.1.6 Direction field for
Problem 16.

–4

–3

–2

–1

1 2 3 4y
t

FIGURE 1.1.7 Direction field for
Problem 17.
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FIGURE 1.1.8 Direction field for
Problem 18.
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FIGURE 1.1.9 Direction field for
Problem 19.
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FIGURE 1.1.10 Direction field for
Problem 20.

25. For small, slowly falling objects, the assumption made in the text that the drag force is
proportional to the velocity is a good one. For larger, more rapidly falling objects, it is
more accurate to assume that the drag force is proportional to the square of the velocity.2

(a) Write a differential equation for the velocity of a falling object of mass m if the drag
force is proportional to the square of the velocity.
(b) Determine the limiting velocity after a long time.

2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aerodynamic Drag: A Primer for
Mathematicians,” American Mathematical Monthly 106 (1999), 2, pp. 127–135.
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(c) If m = 10 kg, find the drag coefficient so that the limiting velocity is 49 m/s.
(d) Using the data in part (c), draw a direction field and compare it with Figure 1.1.3.

In each of Problems 26 through 33 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that the right sides of these
equations depend on t as well as y; therefore their solutions can exhibit more complicated
behavior than those in the text.
26. y′ = −2 + t − y 27. y′ = te−2t − 2y

28. y′ = e−t + y 29. y′ = t + 2y

30. y′ = 3 sin t + 1 + y 31. y′ = 2t − 1 − y2

32. y′ = −(2t + y)/2y 33. y′ = 1
6 y3 − y − 1

3 t2

1.2 Solutions of Some Differential Equations
In the preceding section we derived the differential equations

m
dv

dt
= mg − γ v (1)

and
dp
dt

= rp − k. (2)

Equation (1) models a falling object and Eq. (2) a population of field mice preyed
on by owls. Both these equations are of the general form

dy
dt

= ay − b, (3)

where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of Eqs. (1) and (2) by considering the
associated direction fields. To answer questions of a quantitative nature, however,
we need to find the solutions themselves, and we now investigate how to do that.

E X A M P L E

1

Field Mice
and Owls

(cont inued)

Consider the equation
dp
dt

= 0.5p − 450, (4)

which describes the interaction of certain populations of field mice and owls [see Eq. (8) of
Section 1.1]. Find solutions of this equation.

To solve Eq. (4), we need to find functions p(t) that, when substituted into the equation,
reduce it to an obvious identity. Here is one way to proceed. First, rewrite Eq. (4) in the form

dp
dt

= p − 900
2

, (5)

or, if p �= 900,
dp/dt

p − 900
= 1

2
. (6)
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By the chain rule the left side of Eq. (6) is the derivative of ln |p − 900| with respect to t, so we
have

d
dt

ln |p − 900| = 1
2
. (7)

Then, by integrating both sides of Eq. (7), we obtain

ln |p − 900| = t
2

+ C, (8)

where C is an arbitrary constant of integration. Therefore, by taking the exponential of both
sides of Eq. (8), we find that

|p − 900| = e(t/2)+C = eCet/2, (9)

or
p − 900 = ±eCet/2, (10)

and finally
p = 900 + cet/2, (11)

where c = ±eC is also an arbitrary (nonzero) constant. Note that the constant function p = 900
is also a solution of Eq. (5) and that it is contained in the expression (11) if we allow c to take
the value zero. Graphs of Eq. (11) for several values of c are shown in Figure 1.2.1.

900

600

1 2 t3 4 5

700

800

1000

1100

1200
p

FIGURE 1.2.1 Graphs of Eq. (11) for several values of c.

Note that they have the character inferred from the direction field in Figure 1.1.4. For
instance, solutions lying on either side of the equilibrium solution p = 900 tend to diverge
from that solution.

In Example 1 we found infinitely many solutions of the differential equation (4),
corresponding to the infinitely many values that the arbitrary constant c in Eq. (11)
might have. This is typical of what happens when you solve a differential equa-
tion. The solution process involves an integration, which brings with it an arbitrary
constant, whose possible values generate an infinite family of solutions.
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Frequently, we want to focus our attention on a single member of the infinite family
of solutions by specifying the value of the arbitrary constant. Most often, we do this
indirectly by specifying instead a point that must lie on the graph of the solution. For
example, to determine the constant c in Eq. (11), we could require that the population
have a given value at a certain time, such as the value 850 at time t = 0. In other
words, the graph of the solution must pass through the point (0, 850). Symbolically,
we can express this condition as

p(0) = 850. (12)

Then, substituting t = 0 and p = 850 into Eq. (11), we obtain

850 = 900 + c.

Hence c = −50, and by inserting this value in Eq. (11), we obtain the desired solution,
namely,

p = 900 − 50et/2. (13)

The additional condition (12) that we used to determine c is an example of an initial
condition. The differential equation (4) together with the initial condition (12) form
an initial value problem.

Now consider the more general problem consisting of the differential equation (3)

dy
dt

= ay − b

and the initial condition
y(0) = y0, (14)

where y0 is an arbitrary initial value. We can solve this problem by the same method
as in Example 1. If a �= 0 and y �= b/a, then we can rewrite Eq. (3) as

dy/dt
y − (b/a)

= a. (15)

By integrating both sides, we find that

ln |y − (b/a)| = at + C, (16)

where C is arbitrary. Then, taking the exponential of both sides of Eq. (16) and
solving for y, we obtain

y = (b/a) + ceat , (17)

where c = ±eC is also arbitrary. Observe that c = 0 corresponds to the equilibrium
solution y = b/a. Finally, the initial condition (14) requires that c = y0 − (b/a), so
the solution of the initial value problem (3), (14) is

y = (b/a) + [y0 − (b/a)]eat . (18)

For a �= 0 the expression (17) contains all possible solutions of Eq. (3) and is called
the general solution.3 The geometrical representation of the general solution (17) is
an infinite family of curves called integral curves. Each integral curve is associated
with a particular value of c and is the graph of the solution corresponding to that

3If a = 0, then the solution of Eq. (3) is not given by Eq. (17). We leave it to you to find the general
solution in this case.
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value of c. Satisfying an initial condition amounts to identifying the integral curve
that passes through the given initial point.

To relate the solution (18) to Eq. (2), which models the field mouse population,
we need only replace a by the growth rate r and b by the predation rate k. Then the
solution (18) becomes

p = (k/r) + [p0 − (k/r)]ert , (19)

where p0 is the initial population of field mice. The solution (19) confirms the con-
clusions reached on the basis of the direction field and Example 1. If p0 = k/r, then
from Eq. (19) it follows that p = k/r for all t; this is the constant, or equilibrium,
solution. If p0 �= k/r, then the behavior of the solution depends on the sign of the
coefficient p0 − (k/r) of the exponential term in Eq. (19). If p0 > k/r, then p grows
exponentially with time t; if p0 < k/r, then p decreases and eventually becomes zero,
corresponding to extinction of the field mouse population. Negative values of p,
while possible for the expression (19), make no sense in the context of this particular
problem.

To put the falling-object equation (1) in the form (3), we must identify a with −γ /m
and b with −g. Making these substitutions in the solution (18), we obtain

v = (mg/γ ) + [v0 − (mg/γ )]e−γ t/m, (20)

where v0 is the initial velocity. Again, this solution confirms the conclusions reached
in Section 1.1 on the basis of a direction field. There is an equilibrium, or constant,
solution v = mg/γ , and all other solutions tend to approach this equilibrium solution.
The speed of convergence to the equilibrium solution is determined by the exponent
−γ /m. Thus, for a given mass m, the velocity approaches the equilibrium value more
rapidly as the drag coefficient γ increases.

E X A M P L E

2

A Fal l ing
Object

(cont inued)

Suppose that, as in Example 2 of Section 1.1, we consider a falling object of mass m = 10 kg
and drag coefficient γ = 2 kg/s. Then the equation of motion (1) becomes

dv

dt
= 9.8 − v

5
. (21)

Suppose this object is dropped from a height of 300 m. Find its velocity at any time t. How
long will it take to fall to the ground, and how fast will it be moving at the time of impact?

The first step is to state an appropriate initial condition for Eq. (21). The word “dropped” in
the statement of the problem suggests that the initial velocity is zero, so we will use the initial
condition

v(0) = 0. (22)

The solution of Eq. (21) can be found by substituting the values of the coefficients into the
solution (20), but we will proceed instead to solve Eq. (21) directly. First, rewrite the equation
as

dv/dt
v − 49

= −1
5
. (23)

By integrating both sides, we obtain

ln |v − 49| = − t
5

+ C, (24)

and then the general solution of Eq. (21) is

v = 49 + ce−t/5, (25)
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where c is arbitrary. To determine c, we substitute t = 0 and v = 0 from the initial condition
(22) into Eq. (25), with the result that c = −49. Then the solution of the initial value problem
(21), (22) is

v = 49(1 − e−t/5). (26)

Equation (26) gives the velocity of the falling object at any positive time (before it hits the
ground, of course).

Graphs of the solution (25) for several values of c are shown in Figure 1.2.2, with the solution
(26) shown by the heavy curve. It is evident that all solutions tend to approach the equilibrium
solution v = 49. This confirms the conclusions we reached in Section 1.1 on the basis of the
direction fields in Figures 1.1.2 and 1.1.3.

100

80

60

40

20

2 4 t6 8 1210

v

v = 49 (1 – e–t/5) 

(10.51, 43.01)

FIGURE 1.2.2 Graphs of the solution (25) for several values of c.

To find the velocity of the object when it hits the ground, we need to know the time at
which impact occurs. In other words, we need to determine how long it takes the object to fall
300 m. To do this, we note that the distance x the object has fallen is related to its velocity v

by the equation v = dx/dt, or
dx
dt

= 49(1 − e−t/5). (27)

Consequently, by integrating both sides of Eq. (27), we have

x = 49t + 245e−t/5 + c, (28)

where c is an arbitrary constant of integration. The object starts to fall when t = 0, so we know
that x = 0 when t = 0. From Eq. (28) it follows that c = −245, so the distance the object has
fallen at time t is given by

x = 49t + 245e−t/5 − 245. (29)

Let T be the time at which the object hits the ground; then x = 300 when t = T . By substituting
these values in Eq. (29), we obtain the equation

49T + 245e−T/5 − 545 = 0. (30)
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The value of T satisfying Eq. (30) can be approximated by a numerical process4 using a scientific
calculator or computer, with the result that T ∼= 10.51 s. At this time, the corresponding
velocity vT is found from Eq. (26) to be vT

∼= 43.01 m/s. The point (10.51, 43.01) is also shown
in Figure 1.2.2.

Further Remarks on Mathematical Modeling. Up to this point we have related our discus-
sion of differential equations to mathematical models of a falling object and of a
hypothetical relation between field mice and owls. The derivation of these models
may have been plausible, and possibly even convincing, but you should remember
that the ultimate test of any mathematical model is whether its predictions agree
with observations or experimental results. We have no actual observations or exper-
imental results to use for comparison purposes here, but there are several sources of
possible discrepancies.

In the case of the falling object, the underlying physical principle (Newton’s law of
motion) is well established and widely applicable. However, the assumption that the
drag force is proportional to the velocity is less certain. Even if this assumption is
correct, the determination of the drag coefficient γ by direct measurement presents
difficulties. Indeed, sometimes one finds the drag coefficient indirectly—for example,
by measuring the time of fall from a given height and then calculating the value of γ

that predicts this observed time.
The model of the field mouse population is subject to various uncertainties. The

determination of the growth rate r and the predation rate k depends on observa-
tions of actual populations, which may be subject to considerable variation. The
assumption that r and k are constants may also be questionable. For example, a
constant predation rate becomes harder to sustain as the field mouse population be-
comes smaller. Further, the model predicts that a population above the equilibrium
value will grow exponentially larger and larger. This seems at variance with the be-
havior of actual populations; see the further discussion of population dynamics in
Section 2.5.

If the differences between actual observations and a mathematical model’s pre-
dictions are too great, then you need to consider refining the model, making more
careful observations, or perhaps both. There is almost always a tradeoff between ac-
curacy and simplicity. Both are desirable, but a gain in one usually involves a loss in
the other. However, even if a mathematical model is incomplete or somewhat inac-
curate, it may nevertheless be useful in explaining qualitative features of the problem
under investigation. It may also give satisfactory results under some circumstances
but not others. Thus you should always use good judgment and common sense in
constructing mathematical models and in using their predictions.

PROBLEMS 1. Solve each of the following initial value problems and plot the solutions for several values
of y0. Then describe in a few words how the solutions resemble, and differ from, each
other.
(a) dy/dt = −y + 5, y(0) = y0

4A computer algebra system provides this capability; many calculators also have built-in routines for
solving such equations.
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(b) dy/dt = −2y + 5, y(0) = y0

(c) dy/dt = −2y + 10, y(0) = y0

2. Follow the instructions for Problem 1 for the following initial value problems:
(a) dy/dt = y − 5, y(0) = y0

(b) dy/dt = 2y − 5, y(0) = y0

(c) dy/dt = 2y − 10, y(0) = y0

3. Consider the differential equation

dy/dt = −ay + b,

where both a and b are positive numbers.
(a) Solve the differential equation.
(b) Sketch the solution for several different initial conditions.
(c) Describe how the solutions change under each of the following conditions:

i. a increases.
ii. b increases.

iii. Both a and b increase, but the ratio b/a remains the same.

4. Consider the differential equation dy/dt = ay − b.
(a) Find the equilibrium solution ye.
(b) Let Y(t) = y − ye; thus Y(t) is the deviation from the equilibrium solution. Find the
differential equation satisfied by Y(t).

5. Undetermined Coefficients. Here is an alternative way to solve the equation

dy/dt = ay − b. (i)

(a) Solve the simpler equation
dy/dt = ay. (ii)

Call the solution y1(t).
(b) Observe that the only difference between Eqs. (i) and (ii) is the constant −b in Eq. (i).
Therefore it may seem reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumption by trying to find a constant k such that
y = y1(t) + k is a solution of Eq. (i).
(c) Compare your solution from part (b) with the solution given in the text in Eq. (17).
Note: This method can also be used in some cases in which the constant b is replaced by a
function g(t). It depends on whether you can guess the general form that the solution is
likely to take. This method is described in detail in Section 3.5 in connection with second
order equations.

6. Use the method of Problem 5 to solve the equation

dy/dt = −ay + b.

7. The field mouse population in Example 1 satisfies the differential equation

dp/dt = 0.5p − 450.

(a) Find the time at which the population becomes extinct if p(0) = 850.
(b) Find the time of extinction if p(0) = p0, where 0 < p0 < 900.
(c) Find the initial population p0 if the population is to become extinct in 1 year.
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8. Consider a population p of field mice that grows at a rate proportional to the current
population, so that dp/dt = rp.
(a) Find the rate constant r if the population doubles in 30 days.
(b) Find r if the population doubles in N days.

9. The falling object in Example 2 satisfies the initial value problem

dv/dt = 9.8 − (v/5), v(0) = 0.

(a) Find the time that must elapse for the object to reach 98% of its limiting velocity.
(b) How far does the object fall in the time found in part (a)?

10. Modify Example 2 so that the falling object experiences no air resistance.
(a) Write down the modified initial value problem.
(b) Determine how long it takes the object to reach the ground.
(c) Determine its velocity at the time of impact.

11. Consider the falling object of mass 10 kg in Example 2, but assume now that the drag force
is proportional to the square of the velocity.
(a) If the limiting velocity is 49 m/s (the same as in Example 2), show that the equation
of motion can be written as

dv/dt = [(49)2 − v2]/245.

Also see Problem 25 of Section 1.1.
(b) If v(0) = 0, find an expression for v(t) at any time.
(c) Plot your solution from part (b) and the solution (26) from Example 2 on the same
axes.
(d) Based on your plots in part (c), compare the effect of a quadratic drag force with that
of a linear drag force.
(e) Find the distance x(t) that the object falls in time t.
(f) Find the time T it takes the object to fall 300 m.

12. A radioactive material, such as the isotope thorium-234,disintegrates at a rate proportional
to the amount currently present. If Q(t) is the amount present at time t, then dQ/dt = −rQ,
where r > 0 is the decay rate.
(a) If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rate r.
(b) Find an expression for the amount of thorium-234 present at any time t.
(c) Find the time required for the thorium-234 to decay to one-half its original amount.

13. The half-life of a radioactive material is the time required for an amount of this material
to decay to one-half its original value. Show that for any radioactive material that decays
according to the equation Q′ = −rQ, the half-life τ and the decay rate r satisfy the equation
rτ = ln 2.

14. Radium-226 has a half-life of 1620 years. Find the time period during which a given
amount of this material is reduced by one-quarter.

15. According to Newton’s law of cooling (see Problem 23 of Section 1.1), the temperature
u(t) of an object satisfies the differential equation

du/dt = −k(u − T),

where T is the constant ambient temperature and k is a positive constant. Suppose that
the initial temperature of the object is u(0) = u0.
(a) Find the temperature of the object at any time.
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(b) Let τ be the time at which the initial temperature difference u0 − T has been reduced
by half. Find the relation between k and τ .

16. Suppose that a building loses heat in accordance with Newton’s law of cooling (see Prob-
lem 15) and that the rate constant k has the value 0.15 h−1. Assume that the interior
temperature is 70◦F when the heating system fails. If the external temperature is 10◦F,
how long will it take for the interior temperature to fall to 32◦F?

17. Consider an electric circuit containing a capacitor, resistor, and battery; see Figure 1.2.3.
The charge Q(t) on the capacitor satisfies the equation5

R
dQ
dt

+ Q
C

= V ,

where R is the resistance, C is the capacitance, and V is the constant voltage supplied by
the battery.
(a) If Q(0) = 0, find Q(t) at any time t, and sketch the graph of Q versus t.
(b) Find the limiting value QL that Q(t) approaches after a long time.
(c) Suppose that Q(t1) = QL and that at time t = t1 the battery is removed and the circuit
closed again. Find Q(t) for t > t1 and sketch its graph.

V

R

C
FIGURE 1.2.3 The electric circuit of Problem 17.

18. A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical
(see Problem 21 of Section 1.1). Water containing 0.01 g/gal of the chemical flows into the
pond at a rate of 300 gal/h, and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.
(a) Let Q(t) be the amount of the chemical in the pond at time t. Write down an initial
value problem for Q(t).
(b) Solve the problem in part (a) for Q(t). How much chemical is in the pond after 1
year?
(c) At the end of 1 year the source of the chemical in the pond is removed; thereafter
pure water flows into the pond, and the mixture flows out at the same rate as before. Write
down the initial value problem that describes this new situation.
(d) Solve the initial value problem in part (c). How much chemical remains in the pond
after 1 additional year (2 years from the beginning of the problem)?
(e) How long does it take for Q(t) to be reduced to 10 g?
(f) Plot Q(t) versus t for 3 years.

19. Your swimming pool containing 60,000 gal of water has been contaminated by 5 kg of
a nontoxic dye that leaves a swimmer’s skin an unattractive green. The pool’s filtering
system can take water from the pool, remove the dye, and return the water to the pool at
a flow rate of 200 gal/min.

5This equation results from Kirchhoff’s laws, which are discussed in Section 3.7.
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(a) Write down the initial value problem for the filtering process; let q(t) be the amount
of dye in the pool at any time t.
(b) Solve the problem in part (a).
(c) You have invited several dozen friends to a pool party that is scheduled to begin in 4 h.
You have also determined that the effect of the dye is imperceptible if its concentration
is less than 0.02 g/gal. Is your filtering system capable of reducing the dye concentration
to this level within 4 h?
(d) Find the time T at which the concentration of dye first reaches the value 0.02 g/gal.
(e) Find the flow rate that is sufficient to achieve the concentration 0.02 g/gal within 4 h.

1.3 Classification of Differential Equations
The main purpose of this book is to discuss some of the properties of solutions of
differential equations, and to present some of the methods that have proved effective
in finding solutions or, in some cases, approximating them. To provide a framework
for our presentation, we describe here several useful ways of classifying differential
equations.

Ordinary and Partial Differential Equations. One important classification is based on
whether the unknown function depends on a single independent variable or on sev-
eral independent variables. In the first case, only ordinary derivatives appear in the
differential equation, and it is said to be an ordinary differential equation. In the
second case, the derivatives are partial derivatives, and the equation is called a partial
differential equation.

All the differential equations discussed in the preceding two sections are ordinary
differential equations. Another example of an ordinary differential equation is

L
d2Q(t)

dt2
+ R

dQ(t)
dt

+ 1
C

Q(t) = E(t), (1)

for the charge Q(t) on a capacitor in a circuit with capacitance C, resistance R, and
inductance L; this equation is derived in Section 3.7. Typical examples of partial
differential equations are the heat conduction equation

α2 ∂2u(x, t)
∂x2

= ∂u(x, t)
∂t

(2)

and the wave equation

a2 ∂2u(x, t)
∂x2

= ∂2u(x, t)
∂t2

. (3)

Here, α2 and a2 are certain physical constants. Note that in both Eqs. (2) and (3) the
dependent variable u depends on the two independent variables x and t. The heat
conduction equation describes the conduction of heat in a solid body, and the wave
equation arises in a variety of problems involving wave motion in solids or fluids.

Systems of Differential Equations. Another classification of differential equations de-
pends on the number of unknown functions that are involved. If there is a single
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function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example, the
Lotka–Volterra, or predator–prey, equations are important in ecological modeling.
They have the form

dx/dt = ax − αxy

dy/dt = −cy + γ xy,
(4)

where x(t) and y(t) are the respective populations of the prey and predator species.
The constants a, α, c, and γ are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 7
and 9; in particular, the Lotka–Volterra equations are examined in Section 9.5. In
some areas of application it is not unusual to encounter very large systems containing
hundreds, or even many thousands, of equations.

Order. The order of a differential equation is the order of the highest derivative that
appears in the equation. The equations in the preceding sections are all first order
equations, whereas Eq. (1) is a second order equation. Equations (2) and (3) are
second order partial differential equations. More generally, the equation

F[t, u(t), u′(t), . . . , u(n)(t)] = 0 (5)

is an ordinary differential equation of the nth order. Equation (5) expresses a re-
lation between the independent variable t and the values of the function u and its
first n derivatives u′, u′′, . . . , u(n). It is convenient and customary in differential equa-
tions to write y for u(t), with y′, y′′, . . . , y(n) standing for u′(t), u′′(t), . . . , u(n)(t). Thus
Eq. (5) is written as

F(t, y, y′, . . . , y(n)) = 0. (6)

For example,

y′′′ + 2ety′′ + yy′ = t4 (7)

is a third order differential equation for y = u(t). Occasionally, other letters will be
used instead of t and y for the independent and dependent variables; the meaning
should be clear from the context.

We assume that it is always possible to solve a given ordinary differential equation
for the highest derivative, obtaining

y(n) = f (t, y, y′, y′′, . . . , y(n−1)). (8)

We study only equations of the form (8). This is mainly to avoid the ambiguity
that may arise because a single equation of the form (6) may correspond to several
equations of the form (8). For example, the equation

(y′)2 + ty′ + 4y = 0 (9)

leads to the two equations

y′ = −t + √
t2 − 16y
2

or y′ = −t − √
t2 − 16y
2

. (10)
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Linear and Nonlinear Equations. A crucial classification of differential equations is
whether they are linear or nonlinear. The ordinary differential equation

F(t, y, y′, . . . , y(n)) = 0

is said to be linear if F is a linear function of the variables y, y′, . . . , y(n); a similar
definition applies to partial differential equations. Thus the general linear ordinary
differential equation of order n is

a0(t)y(n) + a1(t)y(n−1) + · · · + an(t)y = g(t). (11)

Most of the equations you have seen thus far in this book are linear; examples are
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse
population. Similarly, in this section, Eq. (1) is a linear ordinary differential equation
and Eqs. (2) and (3) are linear partial differential equations. An equation that is not
of the form (11) is a nonlinear equation. Equation (7) is nonlinear because of the
term yy′. Similarly, each equation in the system (4) is nonlinear because of the terms
that involve the product xy.

A simple physical problem that leads to a nonlinear differential equation is the
oscillating pendulum. The angle θ that an oscillating pendulum of length L makes
with the vertical direction (see Figure 1.3.1) satisfies the equation

d2θ

dt2
+ g

L
sin θ = 0, (12)

whose derivation is outlined in Problems 29 through 31. The presence of the term
involving sin θ makes Eq. (12) nonlinear.

L

m

mg

θ

FIGURE 1.3.1 An oscillating pendulum.

The mathematical theory and methods for solving linear equations are highly de-
veloped. In contrast, for nonlinear equations the theory is more complicated, and
methods of solution are less satisfactory. In view of this, it is fortunate that many
significant problems lead to linear ordinary differential equations or can be approx-
imated by linear equations. For example, for the pendulum, if the angle θ is small,
then sin θ ∼= θ and Eq. (12) can be approximated by the linear equation

d2θ

dt2
+ g

L
θ = 0. (13)
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This process of approximating a nonlinear equation by a linear one is called lineariza-
tion; it is an extremely valuable way to deal with nonlinear equations. Nevertheless,
there are many physical phenomena that simply cannot be represented adequately
by linear equations. To study these phenomena, it is essential to deal with nonlinear
equations.

In an elementary text it is natural to emphasize the simpler and more straight-
forward parts of the subject. Therefore the greater part of this book is devoted to
linear equations and various methods for solving them. However, Chapters 8 and 9,
as well as parts of Chapter 2, are concerned with nonlinear equations. Whenever it
is appropriate, we point out why nonlinear equations are, in general, more difficult
and why many of the techniques that are useful in solving linear equations cannot
be applied to nonlinear equations.

Solutions. A solution of the ordinary differential equation (8) on the interval
α < t < β is a function φ such that φ′, φ′′, . . . , φ(n) exist and satisfy

φ(n)(t) = f [t, φ(t), φ′(t), . . . , φ(n−1)(t)] (14)

for every t in α < t < β. Unless stated otherwise, we assume that the function f
of Eq. (8) is a real-valued function, and we are interested in obtaining real-valued
solutions y = φ(t).

Recall that in Section 1.2 we found solutions of certain equations by a process of
direct integration. For instance, we found that the equation

dp
dt

= 0.5p − 450 (15)

has the solution
p = 900 + cet/2, (16)

where c is an arbitrary constant. It is often not so easy to find solutions of differential
equations. However, if you find a function that you think may be a solution of a given
equation, it is usually relatively easy to determine whether the function is actually a
solution simply by substituting the function into the equation. For example, in this
way it is easy to show that the function y1(t) = cos t is a solution of

y′′ + y = 0 (17)

for all t. To confirm this,observe that y′
1(t) = − sin t and y′′

1(t) = − cos t; then it follows
that y′′

1(t) + y1(t) = 0. In the same way you can easily show that y2(t) = sin t is also
a solution of Eq. (17). Of course, this does not constitute a satisfactory way to solve
most differential equations, because there are far too many possible functions for you
to have a good chance of finding the correct one by a random choice. Nevertheless,
you should realize that you can verify whether any proposed solution is correct by
substituting it into the differential equation. This can be a very useful check; it is one
that you should make a habit of considering.

Some Important Questions. Although for the equations (15) and (17) we are able to
verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an
equation of the form (8) always have a solution? The answer is “No.” Merely writing
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down an equation of the form (8) does not necessarily mean that there is a function
y = φ(t) that satisfies it. So, how can we tell whether some particular equation has a
solution? This is the question of existence of a solution,and it is answered by theorems
stating that under certain restrictions on the function f in Eq. (8), the equation always
has solutions. This is not a purely mathematical concern for at least two reasons. If
a problem has no solution, we would prefer to know that fact before investing time
and effort in a vain attempt to solve the problem. Further, if a sensible physical
problem is modeled mathematically as a differential equation, then the equation
should have a solution. If it does not, then presumably there is something wrong
with the formulation. In this sense an engineer or scientist has some check on the
validity of the mathematical model.

If we assume that a given differential equation has at least one solution, the ques-
tion arises as to how many solutions it has, and what additional conditions must be
specified to single out a particular solution. This is the question of uniqueness. In
general, solutions of differential equations contain one or more arbitrary constants
of integration, as does the solution (16) of Eq. (15). Equation (16) represents an in-
finity of functions corresponding to the infinity of possible choices of the constant c.
As we saw in Section 1.2, if p is specified at some time t, this condition will determine
a value for c; even so, we have not yet ruled out the possibility that there may be
other solutions of Eq. (15) that also have the prescribed value of p at the prescribed
time t. The issue of uniqueness also has practical implications. If we are fortunate
enough to find a solution of a given problem, and if we know that the problem has a
unique solution, then we can be sure that we have completely solved the problem. If
there may be other solutions, then perhaps we should continue to search for them.

A third important question is: Given a differential equation of the form (8), can
we actually determine a solution, and if so, how? Note that if we find a solution of the
given equation, we have at the same time answered the question of the existence of
a solution. However, without knowledge of existence theory we might, for example,
use a computer to find a numerical approximation to a “solution” that does not exist.
On the other hand, even though we may know that a solution exists, it may be that the
solution is not expressible in terms of the usual elementary functions—polynomial,
trigonometric, exponential, logarithmic, and hyperbolic functions. Unfortunately,
this is the situation for most differential equations. Thus, we discuss both elemen-
tary methods that can be used to obtain exact solutions of certain relatively simple
problems, and also methods of a more general nature that can be used to find ap-
proximations to solutions of more difficult problems.

Computer Use in Differential Equations. A computer can be an extremely valuable tool
in the study of differential equations. For many years computers have been used
to execute numerical algorithms, such as those described in Chapter 8, to construct
numerical approximations to solutions of differential equations. These algorithms
have been refined to an extremely high level of generality and efficiency. A few lines
of computer code, written in a high-level programming language and executed (often
within a few seconds) on a relatively inexpensive computer, suffice to approximate to
a high degree of accuracy the solutions of a wide range of differential equations. More
sophisticated routines are also readily available. These routines combine the ability
to handle very large and complicated systems with numerous diagnostic features that
alert the user to possible problems as they are encountered.
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The usual output from a numerical algorithm is a table of numbers, listing selected
values of the independent variable and the corresponding values of the dependent
variable. With appropriate software it is easy to display the solution of a differential
equation graphically, whether the solution has been obtained numerically or as the
result of an analytical procedure of some kind. Such a graphical display is often
much more illuminating and helpful in understanding and interpreting the solution
of a differential equation than a table of numbers or a complicated analytical for-
mula. There are on the market several well-crafted and relatively inexpensive special-
purpose software packages for the graphical investigation of differential equations.
The widespread availability of personal computers has brought powerful computa-
tional and graphical capability within the reach of individual students. You should
consider, in the light of your own circumstances, how best to take advantage of the
available computing resources. You will surely find it enlightening to do so.

Another aspect of computer use that is very relevant to the study of differential
equations is the availability of extremely powerful and general software packages
that can perform a wide variety of mathematical operations. Among these are Maple,
Mathematica, and MATLAB, each of which can be used on various kinds of personal
computers or workstations. All three of these packages can execute extensive nu-
merical computations and have versatile graphical facilities. Maple and Mathematica
also have very extensive analytical capabilities. For example, they can perform the
analytical steps involved in solving many differential equations, often in response to
a single command. Anyone who expects to deal with differential equations in more
than a superficial way should become familiar with at least one of these products and
explore the ways in which it can be used.

For you, the student, these computing resources have an effect on how you should
study differential equations. To become confident in using differential equations, it
is essential to understand how the solution methods work, and this understanding is
achieved, in part, by working out a sufficient number of examples in detail. However,
eventually you should plan to delegate as many as possible of the routine (often
repetitive) details to a computer, while you focus on the proper formulation of the
problem and on the interpretation of the solution. Our viewpoint is that you should
always try to use the best methods and tools available for each task. In particular,
you should strive to combine numerical, graphical, and analytical methods so as to
attain maximum understanding of the behavior of the solution and of the underlying
process that the problem models. You should also remember that some tasks can
best be done with pencil and paper, while others require a calculator or computer.
Good judgment is often needed in selecting a judicious combination.

PROBLEMS In each of Problems 1 through 6 determine the order of the given differential equation; also
state whether the equation is linear or nonlinear.

1. t2 d2y
dt2

+ t
dy
dt

+ 2y = sin t 2. (1 + y2)
d2y
dt2

+ t
dy
dt

+ y = et

3.
d4y
dt4

+ d3y
dt3

+ d2y
dt2

+ dy
dt

+ y = 1 4.
dy
dt

+ ty2 = 0

5.
d2y
dt2

+ sin(t + y) = sin t 6.
d3y
dt3

+ t
dy
dt

+ (cos2 t)y = t3
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In each of Problems 7 through 14 verify that each given function is a solution of the differ-
ential equation.

7. y′′ − y = 0; y1(t) = et , y2(t) = cosh t

8. y′′ + 2y′ − 3y = 0; y1(t) = e−3t , y2(t) = et

9. ty′ − y = t2; y = 3t + t2

10. y′′′′ + 4y′′′ + 3y = t; y1(t) = t/3, y2(t) = e−t + t/3
11. 2t2y′′ + 3ty′ − y = 0, t > 0; y1(t) = t1/2, y2(t) = t−1

12. t2y′′ + 5ty′ + 4y = 0, t > 0; y1(t) = t−2, y2(t) = t−2 ln t

13. y′′ + y = sec t, 0 < t < π/2; y = (cos t) ln cos t + t sin t

14. y′ − 2ty = 1; y = et2
∫ t

0
e−s2

ds + et2

In each of Problems 15 through 18 determine the values of r for which the given differential
equation has solutions of the form y = ert .
15. y′ + 2y = 0 16. y′′ − y = 0
17. y′′ + y′ − 6y = 0 18. y′′′ − 3y′′ + 2y′ = 0

In each of Problems 19 and 20 determine the values of r for which the given differential
equation has solutions of the form y = tr for t > 0.
19. t2y′′ + 4ty′ + 2y = 0 20. t2y′′ − 4ty′ + 4y = 0

In each of Problems 21 through 24 determine the order of the given partial differential equa-
tion; also state whether the equation is linear or nonlinear. Partial derivatives are denoted by
subscripts.
21. uxx + uyy + uzz = 0 22. uxx + uyy + uux + uuy + u = 0
23. uxxxx + 2uxxyy + uyyyy = 0 24. ut + uux = 1 + uxx

In each of Problems 25 through 28 verify that each given function is a solution of the given
partial differential equation.
25. uxx + uyy = 0; u1(x, y) = cos x cosh y, u2(x, y) = ln(x2 + y2)

26. α2uxx = ut ; u1(x, t) = e−α2 t sin x, u2(x, t) = e−α2λ2 t sin λx, λ a real constant
27. a2uxx = utt ; u1(x, t) = sin λx sin λat, u2(x, t) = sin(x − at), λ a real constant
28. α2uxx = ut ; u = (π/t)1/2e−x2/4α2 t , t > 0
29. Follow the steps indicated here to derive the equation of motion of a pendulum, Eq. (12)

in the text. Assume that the rod is rigid and weightless, that the mass is a point mass, and
that there is no friction or drag anywhere in the system.
(a) Assume that the mass is in an arbitrary displaced position, indicated by the angle θ .
Draw a free-body diagram showing the forces acting on the mass.
(b) Apply Newton’s law of motion in the direction tangential to the circular arc on which
the mass moves. Then the tensile force in the rod does not enter the equation. Observe
that you need to find the component of the gravitational force in the tangential direc-
tion. Observe also that the linear acceleration, as opposed to the angular acceleration, is
Ld2θ/dt2, where L is the length of the rod.
(c) Simplify the result from part (b) to obtain Eq. (12) in the text.

30. Another way to derive the pendulum equation (12) is based on the principle of conserva-
tion of energy.
(a) Show that the kinetic energy T of the pendulum in motion is

T = 1
2

mL2

(
dθ

dt

)2

.
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(b) Show that the potential energy V of the pendulum, relative to its rest position, is

V = mgL(1 − cos θ).

(c) By the principle of conservation of energy, the total energy E = T + V is constant.
Calculate dE/dt, set it equal to zero, and show that the resulting equation reduces to
Eq. (12).

31. A third derivation of the pendulum equation depends on the principle of angular momen-
tum: the rate of change of angular momentum about any point is equal to the net external
moment about the same point.
(a) Show that the angular momentum M, or moment of momentum, about the point of
support is given by M = mL2dθ/dt.
(b) Set dM/dt equal to the moment of the gravitational force, and show that the resulting
equation reduces to Eq. (12). Note that positive moments are counterclockwise.

1.4 Historical Remarks
Without knowing something about differential equations and methods of solving
them, it is difficult to appreciate the history of this important branch of mathematics.
Further, the development of differential equations is intimately interwoven with the
general development of mathematics and cannot be separated from it. Nevertheless,
to provide some historical perspective, we indicate here some of the major trends in
the history of the subject and identify the most prominent early contributors. Other
historical information is contained in footnotes scattered throughout the book and
in the references listed at the end of the chapter.

The subject of differential equations originated in the study of calculus by Isaac
Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716) in the seventeenth
century. Newton grew up in the English countryside, was educated at Trinity Col-
lege, Cambridge, and became Lucasian Professor of Mathematics there in 1669. His
epochal discoveries of calculus and of the fundamental laws of mechanics date from
1665. They were circulated privately among his friends, but Newton was extremely
sensitive to criticism and did not begin to publish his results until 1687 with the ap-
pearance of his most famous book, Philosophiae Naturalis Principia Mathematica.
Although Newton did relatively little work in differential equations as such,his devel-
opment of the calculus and elucidation of the basic principles of mechanics provided
a basis for their applications in the eighteenth century, most notably by Euler. New-
ton classified first order differential equations according to the forms dy/dx = f (x),
dy/dx = f (y), and dy/dx = f (x,y). For the latter equation he developed a method
of solution using infinite series when f (x,y) is a polynomial in x and y. Newton’s
active research in mathematics ended in the early 1690s, except for the solution of
occasional “challenge problems” and the revision and publication of results obtained
much earlier. He was appointed Warden of the British Mint in 1696 and resigned his
professorship a few years later. He was knighted in 1705 and, upon his death, was
buried in Westminster Abbey.

Leibniz was born in Leipzig and completed his doctorate in philosophy at the
age of 20 at the University of Altdorf. Throughout his life he engaged in scholarly
work in several different fields. He was mainly self-taught in mathematics, since
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his interest in this subject developed when he was in his twenties. Leibniz arrived
at the fundamental results of calculus independently, although a little later than
Newton, but was the first to publish them, in 1684. Leibniz was very conscious
of the power of good mathematical notation, and was responsible for the notation
dy/dx for the derivative and for the integral sign. He discovered the method of
separation of variables (Section 2.2) in 1691, the reduction of homogeneous equations
to separable ones (Section 2.2, Problem 30) in 1691, and the procedure for solving
first order linear equations (Section 2.1) in 1694. He spent his life as ambassador
and adviser to several German royal families, which permitted him to travel widely
and to carry on an extensive correspondence with other mathematicians, especially
the Bernoulli brothers. In the course of this correspondence many problems in
differential equations were solved during the latter part of the seventeenth century.

The brothers Jakob (1654–1705) and Johann (1667–1748) Bernoulli of Basel did
much to develop methods of solving differential equations and to extend the range
of their applications. Jakob became professor of mathematics at Basel in 1687, and
Johann was appointed to the same position upon his brother’s death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with
each other. Nevertheless, both also made significant contributions to several areas of
mathematics. With the aid of calculus, they solved a number of problems in mechanics
by formulating them as differential equations. For example, Jakob Bernoulli solved
the differential equation y′ = [a3/(b2y − a3)]1/2 in 1690 and in the same paper first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able
to solve the equation dy/dx = y/ax. One problem which both brothers solved, and
which led to much friction between them, was the brachistochrone problem (see
Problem 32 of Section 2.3). The brachistochrone problem was also solved by Leibniz,
Newton, and the Marquis de L’Hospital. It is said, perhaps apocryphally, that Newton
learned of the problem late in the afternoon of a tiring day at the Mint and solved it
that evening after dinner. He published the solution anonymously, but upon seeing
it, Johann Bernoulli exclaimed, “Ah, I know the lion by his paw.”

Daniel Bernoulli (1700–1782), son of Johann, migrated to St. Petersburg as a young
man to join the newly established St. Petersburg Academy but returned to Basel in
1733 as professor of botany and, later, of physics. His interests were primarily in
partial differential equations and their applications. For instance, it is his name that
is associated with the Bernoulli equation in fluid mechanics. He was also the first
to encounter the functions that a century later became known as Bessel functions
(Section 5.7).

The greatest mathematician of the eighteenth century, Leonhard Euler (1707–
1783), grew up near Basel and was a student of Johann Bernoulli. He followed his
friend Daniel Bernoulli to St. Petersburg in 1727. For the remainder of his life he
was associated with the St. Petersburg Academy (1727–1741 and 1766–1783) and
the Berlin Academy (1741–1766). Euler was the most prolific mathematician of
all time; his collected works fill more than 70 large volumes. His interests ranged
over all areas of mathematics and many fields of application. Even though he was
blind during the last 17 years of his life, his work continued undiminished until the
very day of his death. Of particular interest here is his formulation of problems
in mechanics in mathematical language and his development of methods of solving
these mathematical problems. Lagrange said of Euler’s work in mechanics,“The first
great work in which analysis is applied to the science of movement.” Among other
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things,Euler identified the condition for exactness of first order differential equations
(Section 2.6) in 1734–35, developed the theory of integrating factors (Section 2.6) in
the same paper, and gave the general solution of homogeneous linear equations with
constant coefficients (Sections 3.1, 3.3, 3.4, and 4.2) in 1743. He extended the latter
results to nonhomogeneous equations in 1750–51. Beginning about 1750,Euler made
frequent use of power series (Chapter 5) in solving differential equations. He also
proposed a numerical procedure (Sections 2.7 and 8.1) in 1768–69, made important
contributions in partial differential equations, and gave the first systematic treatment
of the calculus of variations.

Joseph-Louis Lagrange (1736–1813) became professor of mathematics in his na-
tive Turin at the age of 19. He succeeded Euler in the chair of mathematics at the
Berlin Academy in 1766 and moved on to the Paris Academy in 1787. He is most fa-
mous for his monumental work Mécanique analytique, published in 1788, an elegant
and comprehensive treatise of Newtonian mechanics. With respect to elementary
differential equations, Lagrange showed in 1762–65 that the general solution of an
nth order linear homogeneous differential equation is a linear combination of n in-
dependent solutions (Sections 3.2 and 4.1). Later, in 1774–75, he gave a complete
development of the method of variation of parameters (Sections 3.6 and 4.4). La-
grange is also known for fundamental work in partial differential equations and the
calculus of variations.

Pierre-Simon de Laplace (1749–1827) lived in Normandy as a boy but came to
Paris in 1768 and quickly made his mark in scientific circles, winning election to the
Académie des Sciences in 1773. He was preeminent in the field of celestial mechanics;
his greatest work,Traité de mécanique céleste, was published in five volumes between
1799 and 1825. Laplace’s equation is fundamental in many branches of mathematical
physics,and Laplace studied it extensively in connection with gravitational attraction.
The Laplace transform (Chapter 6) is also named for him, although its usefulness in
solving differential equations was not recognized until much later.

By the end of the eighteenth century many elementary methods of solving ordinary
differential equations had been discovered. In the nineteenth century interest turned
more toward the investigation of theoretical questions of existence and uniqueness
and to the development of less elementary methods such as those based on power
series expansions (see Chapter 5). These methods find their natural setting in the
complex plane. Consequently, they benefitted from, and to some extent stimulated,
the more or less simultaneous development of the theory of complex analytic func-
tions. Partial differential equations also began to be studied intensively, as their
crucial role in mathematical physics became clear. In this connection a number of
functions, arising as solutions of certain ordinary differential equations, occurred re-
peatedly and were studied exhaustively. Known collectively as higher transcendental
functions, many of them are associated with the names of mathematicians, including
Bessel, Legendre, Hermite, Chebyshev, and Hankel, among others.

The numerous differential equations that resisted solution by analytical means led
to the investigation of methods of numerical approximation (see Chapter 8). By
1900 fairly effective numerical integration methods had been devised, but their im-
plementation was severely restricted by the need to execute the computations by
hand or with very primitive computing equipment. In the last 60 years the devel-
opment of increasingly powerful and versatile computers has vastly enlarged the
range of problems that can be investigated effectively by numerical methods. Ex-
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tremely refined and robust numerical integrators were developed during the same
period and are readily available. Versions appropriate for personal computers have
brought the ability to solve a great many significant problems within the reach of
individual students.

Another characteristic of differential equations in the twentieth century was the
creation of geometrical or topological methods, especially for nonlinear equations.
The goal is to understand at least the qualitative behavior of solutions from a geo-
metrical, as well as from an analytical, point of view. If more detailed information is
needed, it can usually be obtained by using numerical approximations. An introduc-
tion to geometrical methods appears in Chapter 9.

Within the past few years these two trends have come together. Computers, and
especially computer graphics,have given a new impetus to the study of systems of non-
linear differential equations. Unexpected phenomena (Section 9.8), such as strange
attractors, chaos, and fractals, have been discovered, are being intensively studied,
and are leading to important new insights in a variety of applications. Although it is
an old subject about which much is known, differential equations in the twenty-first
century remains a fertile source of fascinating and important unsolved problems.

REFERENCES Computer software for differential equations changes too fast for particulars to be given in a book such
as this. A Google search for Maple, Mathematica, or MATLAB is a good way to begin if you need
information about one of these computer algebra systems.

For further reading in the history of mathematics, see books such as those listed below:

Boyer, C. B., and Merzbach, U. C., A History of Mathematics (2nd ed.) (New York: Wiley, 1989).

Kline, M., Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press,
1972).

A useful historical appendix on the early development of differential equations appears in

Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover, 1956).

An encyclopedic source of information about the lives and achievements of mathematicians of the
past is

Gillespie, C. C., ed., Dictionary of Scientific Biography (15 vols.) (New York: Scribner’s, 1971).

Much historical information can be found on the Internet. One excellent site is

www-history.mcs.st-and.ac.uk/BiogIndex.html

created by John J. O’Connor and Edmund F. Robertson, Department of Mathematics and Statistics,
University of St. Andrews, Scotland.
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C H A P T E R

2

First Order
Differential Equations

This chapter deals with differential equations of first order

dy
dt

= f (t, y), (1)

where f is a given function of two variables. Any differentiable function y = φ(t)
that satisfies this equation for all t in some interval is called a solution, and our
object is to determine whether such functions exist and, if so, to develop methods
for finding them. Unfortunately, for an arbitrary function f , there is no general
method for solving the equation in terms of elementary functions. Instead, we will
describe several methods, each of which is applicable to a certain subclass of first
order equations. The most important of these are linear equations (Section 2.1),
separable equations (Section 2.2), and exact equations (Section 2.6). Other sections
of this chapter describe some of the important applications of first order differential
equations, introduce the idea of approximating a solution by numerical computation,
and discuss some theoretical questions related to the existence and uniqueness of
solutions. The final section includes an example of chaotic solutions in the context of
first order difference equations, which have some important points of similarity with
differential equations and are simpler to investigate.

2.1 Linear Equations; Method of Integrating Factors
If the function f in Eq. (1) depends linearly on the dependent variable y, then Eq. (1)
is called a first order linear equation. In Sections 1.1 and 1.2 we discussed a re-
stricted type of first order linear equation in which the coefficients are constants.
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A typical example is
dy
dt

= −ay + b, (2)

where a and b are given constants. Recall that an equation of this form describes the
motion of an object falling in the atmosphere. Now we want to consider the most
general first order linear equation, which is obtained by replacing the coefficients a
and b in Eq. (2) by arbitrary functions of t. We will usually write the general first
order linear equation in the standard form

dy
dt

+ p(t)y = g(t), (3)

where p and g are given functions of the independent variable t.
Equation (2) can be solved by the straightforward integration method introduced

in Section 1.2. That is, provided that a �= 0 and y �= b/a, we rewrite the equation as

dy/dt
y − (b/a)

= −a. (4)

Then, by integration we obtain

ln |y − (b/a)| = −at + C,

from which it follows that the general solution of Eq. (2) is

y = (b/a) + ce−at , (5)

where c is an arbitrary constant.
Unfortunately, this direct method of solution cannot be used to solve the general

equation (3), so we need to use a different method of solution for it. We owe this
method to Leibniz; it involves multiplying the differential equation (3) by a certain
function μ(t), chosen so that the resulting equation is readily integrable. The function
μ(t) is called an integrating factor, and the main difficulty is to determine how to find
it. We will introduce this method in a simple example, later showing how to extend
it to other first order linear equations, including the general equation (3).

E X A M P L E

1

Solve the differential equation
dy
dt

+ 1
2 y = 1

2 et/3. (6)

Plot several solutions, and find the particular solution whose graph contains the point (0, 1).
The first step is to multiply Eq. (6) by a function μ(t), as yet undetermined; thus

μ(t)
dy
dt

+ 1
2 μ(t)y = 1

2 μ(t)et/3. (7)

The question now is whether we can choose μ(t) so that the left side of Eq. (7) is recognizable
as the derivative of some particular expression. If so, then we can integrate Eq. (7), even
though we do not know the function y. To guide the choice of the integrating factor μ(t), ask
yourself where in calculus you have seen an expression containing a term such as μ(t)dy/dt.
You are on the right track if this reminds you of the product rule for differentiation. Thus, let



September 11, 2008 11:18 boyce-9e-bvp Sheet number 53 Page number 33 cyan black

2.1 Linear Equations; Method of Integrating Factors 33

us try to determine μ(t) so that the left side of Eq. (7) is the derivative of the expression μ(t)y.
Comparing the left side of Eq. (7) with the differentiation formula

d
dt

[μ(t)y] = μ(t)
dy
dt

+ dμ(t)
dt

y, (8)

we observe that they are identical, provided we choose μ(t) to satisfy

dμ(t)
dt

= 1
2 μ(t). (9)

Therefore our search for an integrating factor will be successful if we can find a solution of
Eq. (9). Perhaps you can readily identify a function that satisfies Eq. (9): what well-known
function from calculus has a derivative that is equal to one-half times the original function?
More systematically, rewrite Eq. (9) as

dμ(t)/dt
μ(t)

= 1
2 , (10)

which is equivalent to
d
dt

ln |μ(t)| = 1
2 . (11)

Then it follows that

ln |μ(t)| = 1
2 t + C, (12)

or

μ(t) = cet/2. (13)

The function μ(t) given by Eq. (13) is an integrating factor for Eq. (6). Since we do not need
the most general integrating factor, we will choose c to be one in Eq. (13) and use μ(t) = et/2.

Now we return to Eq. (6), multiply it by the integrating factor et/2, and obtain

et/2 dy
dt

+ 1
2 et/2y = 1

2 e5t/6. (14)

By the choice we have made of the integrating factor, the left side of Eq. (14) is the derivative
of et/2y, so that Eq. (14) becomes

d
dt

(et/2y) = 1
2 e5t/6. (15)

By integrating both sides of Eq. (15), we obtain

et/2y = 3
5 e5t/6 + c, (16)

where c is an arbitrary constant. Finally, on solving Eq. (16) for y, we have the general solution
of Eq. (6), namely,

y = 3
5 et/3 + ce−t/2. (17)

To find the solution passing through the point (0, 1), we set t = 0 and y = 1 in Eq. (17),
obtaining 1 = (3/5) + c. Thus c = 2/5, and the desired solution is

y = 3
5 et/3 + 2

5 e−t/2. (18)

Figure 2.1.1 includes the graphs of Eq. (17) for several values of c with a direction field in
the background. The solution passing through (0, 1) is shown by the heavy curve.
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–2
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y
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FIGURE 2.1.1 Integral curves of y′ + 1
2 y = 1

2 et/3.

Let us now extend the method of integrating factors to equations of the form

dy
dt

+ ay = g(t), (19)

where a is a given constant and g(t) is a given function. Proceeding as in Example 1,
we find that the integrating factor μ(t) must satisfy

dμ

dt
= aμ, (20)

rather than Eq. (9). Thus the integrating factor is μ(t) = eat . Multiplying Eq. (19) by
μ(t), we obtain

eat dy
dt

+ aeaty = eatg(t),

or
d
dt

(eaty) = eatg(t). (21)

By integrating both sides of Eq. (21), we find that

eaty =
∫

eatg(t) dt + c, (22)

where c is an arbitrary constant. For many simple functions g(t) we can evaluate the
integral in Eq. (22) and express the solution y in terms of elementary functions, as
in Example 1. However, for more complicated functions g(t), it is necessary to leave
the solution in integral form. In this case

y = e−at
∫ t

t0
easg(s) ds + ce−at . (23)
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Note that in Eq. (23) we have used s to denote the integration variable to distinguish
it from the independent variable t, and we have chosen some convenient value t0 as
the lower limit of integration.

E X A M P L E

2

Solve the differential equation
dy
dt

− 2y = 4 − t (24)

and plot the graphs of several solutions. Discuss the behavior of solutions as t → ∞.
Equation (24) is of the form (19) with a = −2; therefore the integrating factor is μ(t) = e−2t .

Multiplying the differential equation (24) by μ(t), we obtain

e−2t dy
dt

− 2e−2ty = 4e−2t − te−2t , (25)

or
d
dt

(e−2ty) = 4e−2t − te−2t . (26)

Then, by integrating both sides of this equation, we have

e−2ty = −2e−2t + 1
2 te−2t + 1

4 e−2t + c,

where we have used integration by parts on the last term in Eq. (26). Thus the general solution
of Eq. (24) is

y = − 7
4 + 1

2 t + ce2t . (27)

A direction field and graphs of the solution (27) for several values of c are shown in Figure
2.1.2. The behavior of the solution for large values of t is determined by the term ce2t . If c �= 0,
then the solution grows exponentially large in magnitude, with the same sign as c itself. Thus
the solutions diverge as t becomes large. The boundary between solutions that ultimately grow
positively from those that ultimately grow negatively occurs when c = 0. If we substitute c = 0
into Eq. (27) and then set t = 0, we find that y = −7/4 is the separation point on the y-axis.
Note that, for this initial value, the solution is y = − 7

4 + 1
2 t; it grows positively, but linearly

rather than exponentially.

y 0.5 1 1.5 2

t

–4

–3

–2

–1

FIGURE 2.1.2 Integral curves of y′ − 2y = 4 − t.
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Now we return to the general first order linear equation (3)

dy
dt

+ p(t)y = g(t),

where p and g are given functions. To determine an appropriate integrating factor,
we multiply Eq. (3) by an as yet undetermined function μ(t), obtaining

μ(t)
dy
dt

+ p(t)μ(t)y = μ(t)g(t). (28)

Following the same line of development as in Example 1, we see that the left side
of Eq. (28) is the derivative of the product μ(t)y, provided that μ(t) satisfies the
equation

dμ(t)
dt

= p(t)μ(t). (29)

If we assume temporarily that μ(t) is positive, then we have

dμ(t)/dt
μ(t)

= p(t),

and consequently

ln μ(t) =
∫

p(t) dt + k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible
function for μ, namely,

μ(t) = exp
∫

p(t) dt. (30)

Note that μ(t) is positive for all t, as we assumed. Returning to Eq. (28), we have

d
dt

[μ(t)y] = μ(t)g(t). (31)

Hence

μ(t)y =
∫

μ(t)g(t) dt + c, (32)

where c is an arbitrary constant. Sometimes the integral in Eq.(32) can be evaluated
in terms of elementary functions. However, in general this is not possible, so the
general solution of Eq. (3) is

y = 1
μ(t)

[∫ t

t0
μ(s)g(s) ds + c

]
, (33)

where again t0 is some convenient lower limit of integration. Observe that Eq. (33)
involves two integrations,one to obtain μ(t) from Eq. (30) and the other to determine
y from Eq. (33).
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E X A M P L E

3

Solve the initial value problem

ty′ + 2y = 4t2, (34)

y(1) = 2. (35)

In order to determine p(t) and g(t) correctly, we must first rewrite Eq. (34) in the standard
form (3). Thus we have

y′ + (2/t)y = 4t, (36)

so p(t) = 2/t and g(t) = 4t. To solve Eq. (36), we first compute the integrating factor μ(t):

μ(t) = exp
∫

2
t

dt = e2 ln |t| = t2.

On multiplying Eq. (36) by μ(t) = t2, we obtain

t2y′ + 2ty = (t2y)′ = 4t3,

and therefore
t2y = t4 + c,

where c is an arbitrary constant. It follows that

y = t2 + c
t2

(37)

is the general solution of Eq. (34). Integral curves of Eq. (34) for several values of c are shown
in Figure 2.1.3. To satisfy the initial condition (35), it is necessary to choose c = 1; thus

y = t2 + 1
t2

, t > 0 (38)

is the solution of the initial value problem (34), (35). This solution is shown by the heavy curve
in Figure 2.1.3. Note that it becomes unbounded and is asymptotic to the positive y-axis as
t → 0 from the right. This is the effect of the infinite discontinuity in the coefficient p(t) at
the origin. The function y = t2 + (1/t2) for t < 0 is not part of the solution of this initial value
problem.

This is the first example in which the solution fails to exist for some values of t. Again, this
is due to the infinite discontinuity in p(t) at t = 0, which restricts the solution to the interval
0 < t < ∞.

y

t

3

2

1

–1

–1 1

(1, 2)

FIGURE 2.1.3 Integral curves of ty′ + 2y = 4t2.
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Looking again at Figure 2.1.3, we see that some solutions (those for which c > 0) are asymp-
totic to the positive y-axis as t → 0 from the right, while other solutions (for which c < 0)
are asymptotic to the negative y-axis. The solution for which c = 0, namely, y = t2, remains
bounded and differentiable even at t = 0. If we generalize the initial condition (35) to

y(1) = y0, (39)

then c = y0 − 1 and the solution (38) becomes

y = t2 + y0 − 1
t2

, t > 0 if y0 �= 1. (40)

As in Example 2, this is another instance where there is a critical initial value, namely, y0 = 1,
that separates solutions that behave in one way from others that behave quite differently.

E X A M P L E

4

Solve the initial value problem

2y′ + ty = 2, (41)

y(0) = 1. (42)

To convert the differential equation (41) to the standard form (3), we must divide by two,
obtaining

y′ + (t/2)y = 1. (43)

Thus p(t) = t/2, and the integrating factor is μ(t) = exp(t2/4). Then multiply Eq. (43) by μ(t),
so that

et2/4y′ + t
2

et2/4y = et2/4. (44)

The left side of Eq. (44) is the derivative of et2/4y, so by integrating both sides of Eq. (44), we
obtain

et2/4y =
∫

et2/4 dt + c. (45)

The integral on the right side of Eq. (45) cannot be evaluated in terms of the usual elementary
functions, so we leave the integral unevaluated. However, by choosing the lower limit of
integration as the initial point t = 0, we can replace Eq. (45) by

et2/4y =
∫ t

0
es2/4 ds + c, (46)

where c is an arbitrary constant. It then follows that the general solution y of Eq. (41) is given
by

y = e−t2/4
∫ t

0
es2/4 ds + ce−t2/4. (47)

The initial condition (42) requires that c = 1.
The main purpose of this example is to illustrate that sometimes the solution must be left in

terms of an integral. This is usually at most a slight inconvenience, rather than a serious obsta-
cle. For a given value of t the integral in Eq. (47) is a definite integral and can be approximated
to any desired degree of accuracy by using readily available numerical integrators. By repeat-
ing this process for many values of t and plotting the results, you can obtain a graph of a solu-
tion. Alternatively, you can use a numerical approximation method, such as those discussed
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in Chapter 8, that proceed directly from the differential equation and need no expression
for the solution. Software packages such as Maple and Mathematica readily execute such
procedures and produce graphs of solutions of differential equations.

–3

–2

–1

1

2

3
y

1 2 3 4 5 6 t

FIGURE 2.1.4 Integral curves of 2y′ + ty = 2.

Figure 2.1.4 displays graphs of the solution (47) for several values of c. From the figure it
may be plausible to conjecture that all solutions approach a limit as t → ∞. The limit can be
found analytically (see Problem 32).

PROBLEMS In each of Problems 1 through 12:
(a) Draw a direction field for the given differential equation.
(b) Based on an inspection of the direction field, describe how solutions behave for large t.
(c) Find the general solution of the given differential equation, and use it to determine how
solutions behave as t → ∞.

1. y′ + 3y = t + e−2t 2. y′ − 2y = t2e2t

3. y′ + y = te−t + 1 4. y′ + (1/t)y = 3 cos 2t, t > 0
5. y′ − 2y = 3et 6. ty′ + 2y = sin t, t > 0
7. y′ + 2ty = 2te−t2

8. (1 + t2)y′ + 4ty = (1 + t2)−2

9. 2y′ + y = 3t 10. ty′ − y = t2e−t , t > 0
11. y′ + y = 5 sin 2t 12. 2y′ + y = 3t2

In each of Problems 13 through 20 find the solution of the given initial value problem.
13. y′ − y = 2te2t , y(0) = 1
14. y′ + 2y = te−2t , y(1) = 0
15. ty′ + 2y = t2 − t + 1, y(1) = 1

2 , t > 0
16. y′ + (2/t)y = (cos t)/t2 , y(π) = 0, t > 0
17. y′ − 2y = e2t , y(0) = 2
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18. ty′ + 2y = sin t, y(π/2) = 1, t > 0
19. t3y′ + 4t2y = e−t , y(−1) = 0, t < 0
20. ty′ + (t + 1)y = t, y(ln 2) = 1, t > 0

In each of Problems 21 through 23:
(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as t becomes large? Does the behavior depend on the choice of the initial value a?
Let a0 be the value of a for which the transition from one type of behavior to another occurs.
Estimate the value of a0.
(b) Solve the initial value problem and find the critical value a0 exactly.
(c) Describe the behavior of the solution corresponding to the initial value a0.

21. y′ − 1
2 y = 2 cos t, y(0) = a

22. 2y′ − y = et/3, y(0) = a

23. 3y′ − 2y = e−π t/2, y(0) = a

In each of Problems 24 through 26:
(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as t → 0? Does the behavior depend on the choice of the initial value a? Let a0 be
the value of a for which the transition from one type of behavior to another occurs. Estimate
the value of a0.
(b) Solve the initial value problem and find the critical value a0 exactly.
(c) Describe the behavior of the solution corresponding to the initial value a0.

24. ty′ + (t + 1)y = 2te−t , y(1) = a, t > 0
25. ty′ + 2y = (sin t)/t, y(−π/2) = a, t < 0
26. (sin t)y′ + (cos t)y = et , y(1) = a, 0 < t < π

27. Consider the initial value problem

y′ + 1
2 y = 2 cos t, y(0) = −1.

Find the coordinates of the first local maximum point of the solution for t > 0.
28. Consider the initial value problem

y′ + 2
3 y = 1 − 1

2 t, y(0) = y0.

Find the value of y0 for which the solution touches, but does not cross, the t-axis.
29. Consider the initial value problem

y′ + 1
4 y = 3 + 2 cos 2t, y(0) = 0.

(a) Find the solution of this initial value problem and describe its behavior for large t.
(b) Determine the value of t for which the solution first intersects the line y = 12.

30. Find the value of y0 for which the solution of the initial value problem

y′ − y = 1 + 3 sin t, y(0) = y0

remains finite as t → ∞.
31. Consider the initial value problem

y′ − 3
2 y = 3t + 2et , y(0) = y0.
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Find the value of y0 that separates solutions that grow positively as t → ∞ from those
that grow negatively. How does the solution that corresponds to this critical value of y0

behave as t → ∞?
32. Show that all solutions of 2y′ + ty = 2 [Eq. (41) of the text] approach a limit as t → ∞,

and find the limiting value.
Hint: Consider the general solution, Eq. (47), and use L’Hospital’s rule on the first term.

33. Show that if a and λ are positive constants, and b is any real number, then every solution
of the equation

y′ + ay = be−λt

has the property that y → 0 as t → ∞.
Hint: Consider the cases a = λ and a �= λ separately.

In each of Problems 34 through 37 construct a first order linear differential equation whose
solutions have the required behavior as t → ∞. Then solve your equation and confirm that
the solutions do indeed have the specified property.
34. All solutions have the limit 3 as t → ∞.
35. All solutions are asymptotic to the line y = 3 − t as t → ∞.
36. All solutions are asymptotic to the line y = 2t − 5 as t → ∞.
37. All solutions approach the curve y = 4 − t2 as t → ∞.
38. Variation of Parameters. Consider the following method of solving the general linear

equation of first order:

y′ + p(t)y = g(t). (i)

(a) If g(t) = 0 for all t, show that the solution is

y = A exp
[
−
∫

p(t) dt
]

, (ii)

where A is a constant.
(b) If g(t) is not everywhere zero, assume that the solution of Eq. (i) is of the form

y = A(t) exp
[
−
∫

p(t) dt
]

, (iii)

where A is now a function of t. By substituting for y in the given differential equation,
show that A(t) must satisfy the condition

A′(t) = g(t) exp
[∫

p(t) dt
]

. (iv)

(c) Find A(t) from Eq. (iv). Then substitute for A(t) in Eq. (iii) and determine y. Verify
that the solution obtained in this manner agrees with that of Eq. (33) in the text. This
technique is known as the method of variation of parameters; it is discussed in detail in
Section 3.6 in connection with second order linear equations.

In each of Problems 39 through 42 use the method of Problem 38 to solve the given differential
equation.
39. y′ − 2y = t2e2t 40. y′ + (1/t)y = 3 cos 2t, t > 0
41. ty′ + 2y = sin t, t > 0 42. 2y′ + y = 3t2
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2.2 Separable Equations
In Sections 1.2 and 2.1 we used a process of direct integration to solve first order
linear equations of the form

dy
dt

= ay + b, (1)

where a and b are constants. We will now show that this process is actually applicable
to a much larger class of equations.

We will use x, rather than t, to denote the independent variable in this section for
two reasons. In the first place, different letters are frequently used for the variables in
a differential equation, and you should not become too accustomed to using a single
pair. In particular, x often occurs as the independent variable. Further, we want to
reserve t for another purpose later in the section.

The general first order equation is

dy
dx

= f (x, y). (2)

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear,
then there is no universally applicable method for solving the equation. Here, we
consider a subclass of first order equations that can be solved by direct integration.

To identify this class of equations, we first rewrite Eq. (2) in the form

M(x, y) + N(x, y)
dy
dx

= 0. (3)

It is always possible to do this by setting M(x, y) = −f (x, y) and N(x, y) = 1, but there
may be other ways as well. If it happens that M is a function of x only and N is a
function of y only, then Eq. (3) becomes

M(x) + N(y)
dy
dx

= 0. (4)

Such an equation is said to be separable, because if it is written in the differential
form

M(x) dx + N(y) dy = 0, (5)

then, if you wish, terms involving each variable may be placed on opposite sides of
the equation. The differential form (5) is also more symmetric and tends to suppress
the distinction between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N . We
illustrate the process by an example and then discuss it in general for Eq. (4).

E X A M P L E

1

Show that the equation

dy
dx

= x2

1 − y2
(6)

is separable, and then find an equation for its integral curves.
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If we write Eq. (6) as

−x2 + (1 − y2)
dy
dx

= 0, (7)

then it has the form (4) and is therefore separable. Recall from calculus that if y is a function
of x, then by the chain rule

d
dx

f (y) = d
dy

f (y)
dy
dx

= f ′(y)
dy
dx

.

For example, if f (y) = y − y3/3, then

d
dx

(y − y3/3) = (1 − y2)
dy
dx

.

Thus the second term in Eq. (7) is the derivative with respect to x of y − y3/3, and the first
term is the derivative of −x3/3. Thus Eq. (7) can be written as

d
dx

(
−x3

3

)
+ d

dx

(
y − y3

3

)
= 0,

or
d
dx

(
−x3

3
+ y − y3

3

)
= 0.

Therefore by integrating, we obtain

−x3 + 3y − y3 = c, (8)

where c is an arbitrary constant. Equation (8) is an equation for the integral curves of Eq. (6).
A direction field and several integral curves are shown in Figure 2.2.1. Any differentiable
function y = φ(x) that satisfies Eq. (8) is a solution of Eq. (6). An equation of the integral
curve passing through a particular point (x0, y0) can be found by substituting x0 and y0 for x
and y, respectively, in Eq. (8) and determining the corresponding value of c.

4

2

–4 –2 2 4

–2

–4

y

x

FIGURE 2.2.1 Direction field and integral curves of y′ = x2/(1 − y2).
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Essentially the same procedure can be followed for any separable equation. Re-
turning to Eq. (4), let H1 and H2 be any antiderivatives of M and N , respectively.
Thus

H ′
1(x) = M(x), H ′

2(y) = N(y), (9)

and Eq. (4) becomes

H ′
1(x) + H ′

2(y)
dy
dx

= 0. (10)

According to the chain rule,

H ′
2(y)

dy
dx

= d
dy

H2(y)
dy
dx

= d
dx

H2(y). (11)

Consequently, we can write Eq. (10) as

d
dx

[H1(x) + H2(y)] = 0. (12)

By integrating Eq. (12), we obtain

H1(x) + H2(y) = c, (13)

where c is an arbitrary constant. Any differentiable function y = φ(x) that satisfies
Eq. (13) is a solution of Eq. (4); in other words, Eq. (13) defines the solution implic-
itly rather than explicitly. In practice, Eq. (13) is usually obtained from Eq. (5) by
integrating the first term with respect to x and the second term with respect to y.

The differential equation (4), together with an initial condition

y(x0) = y0, (14)

form an initial value problem. To solve this initial value problem, we must determine
the appropriate value for the constant c in Eq. (13). We do this by setting x = x0 and
y = y0 in Eq. (13) with the result that

c = H1(x0) + H2(y0). (15)

Substituting this value of c in Eq. (13) and noting that

H1(x) − H1(x0) =
∫ x

x0

M(s) ds, H2(y) − H2(y0) =
∫ y

y0

N(s) ds,

we obtain ∫ x

x0

M(s) ds +
∫ y

y0

N(s) ds = 0. (16)

Equation (16) is an implicit representation of the solution of the differential equation
(4) that also satisfies the initial condition (14). You should bear in mind that, to
determine an explicit formula for the solution, Eq. (16) must be solved for y as a
function of x. Unfortunately, it is often impossible to do this analytically; in such
cases you can resort to numerical methods to find approximate values of y for given
values of x.
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E X A M P L E

2

Solve the initial value problem

dy
dx

= 3x2 + 4x + 2
2(y − 1)

, y(0) = −1, (17)

and determine the interval in which the solution exists.
The differential equation can be written as

2(y − 1) dy = (3x2 + 4x + 2) dx.

Integrating the left side with respect to y and the right side with respect to x gives

y2 − 2y = x3 + 2x2 + 2x + c, (18)

where c is an arbitrary constant. To determine the solution satisfying the prescribed initial
condition, we substitute x = 0 and y = −1 in Eq. (18), obtaining c = 3. Hence the solution of
the initial value problem is given implicitly by

y2 − 2y = x3 + 2x2 + 2x + 3. (19)

To obtain the solution explicitly, we must solve Eq. (19) for y in terms of x. That is a simple
matter in this case, since Eq. (19) is quadratic in y, and we obtain

y = 1 ±
√

x3 + 2x2 + 2x + 4. (20)

Equation (20) gives two solutions of the differential equation, only one of which, however,
satisfies the given initial condition. This is the solution corresponding to the minus sign in
Eq. (20), so we finally obtain

y = φ(x) = 1 −
√

x3 + 2x2 + 2x + 4 (21)

as the solution of the initial value problem (17). Note that if the plus sign is chosen by mistake
in Eq. (20), then we obtain the solution of the same differential equation that satisfies the
initial condition y(0) = 3. Finally, to determine the interval in which the solution (21) is valid,
we must find the interval in which the quantity under the radical is positive. The only real zero
of this expression is x = −2, so the desired interval is x > −2. The solution of the initial value
problem and some other integral curves of the differential equation are shown in Figure 2.2.2.

y

x–1 1–2

(–2, 1)

2

–2

–1

1

2

3

(0, –1)

FIGURE 2.2.2 Integral curves of y′ = (3x2 + 4x + 2)/2(y − 1).
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Observe that the boundary of the interval of validity of the solution (21) is determined by the
point (−2, 1) at which the tangent line is vertical.

E X A M P L E

3

Solve the equation
dy
dx

= 4x − x3

4 + y3
(22)

and draw graphs of several integral curves. Also find the solution passing through the point
(0, 1) and determine its interval of validity.

Rewriting Eq. (22) as
(4 + y3) dy = (4x − x3) dx,

integrating each side, multiplying by 4, and rearranging the terms, we obtain

y4 + 16y + x4 − 8x2 = c, (23)

where c is an arbitrary constant. Any differentiable function y = φ(x) that satisfies Eq. (23)
is a solution of the differential equation (22). Graphs of Eq. (23) for several values of c are
shown in Figure 2.2.3.

To find the particular solution passing through (0, 1), we set x = 0 and y = 1 in Eq. (23) with
the result that c = 17. Thus the solution in question is given implicitly by

y4 + 16y + x4 − 8x2 = 17. (24)

It is shown by the heavy curve in Figure 2.2.3. The interval of validity of this solution extends
on either side of the initial point as long as the function remains differentiable. From the figure

–3

–2

–1

1

2

y

–3 –2 –1 1 2 3

x

(–3.3488, –1.5874) (3.3488, –1.5874)

FIGURE 2.2.3 Integral curves of y′ = (4x − x3)/(4 + y3). The solution passing through (0, 1)

is shown by the heavy curve.
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we see that the interval ends when we reach points where the tangent line is vertical. It follows
from the differential equation (22) that these are points where 4 + y3 = 0, or
y = (−4)1/3 ∼= −1.5874. From Eq. (24) the corresponding values of x are x ∼= ±3.3488. These
points are marked on the graph in Figure 2.2.3.

Note 1: Sometimes an equation of the form (2)

dy
dx

= f (x, y)

has a constant solution y = y0. Such a solution is usually easy to find because if
f (x, y0) = 0 for some value y0 and for all x, then the constant function y = y0 is a
solution of the differential equation (2). For example, the equation

dy
dx

= (y − 3) cos x
1 + 2y2

(25)

has the constant solution y = 3. Other solutions of this equation can be found by
separating the variables and integrating.

Note 2: The investigation of a first order nonlinear equation can sometimes be
facilitated by regarding both x and y as functions of a third variable t. Then

dy
dx

= dy/dt
dx/dt

. (26)

If the differential equation is
dy
dx

= F(x, y)

G(x, y)
, (27)

then, by comparing numerators and denominators in Eqs. (26) and (27), we obtain
the system

dx/dt = G(x, y), dy/dt = F(x, y). (28)

At first sight it may seem unlikely that a problem will be simplified by replacing a
single equation by a pair of equations, but, in fact, the system (28) may well be more
amenable to investigation than the single equation (27). Chapter 9 is devoted to
nonlinear systems of the form (28).

Note 3: In Example 2 it was not difficult to solve explicitly for y as a function
of x. However, this situation is exceptional, and often it will be better to leave the
solution in implicit form, as in Examples 1 and 3. Thus, in the problems below and
in other sections where nonlinear equations appear, the words “solve the following
differential equation” mean to find the solution explicitly if it is convenient to do so,
but otherwise to find an equation defining the solution implicitly.

PROBLEMS In each of Problems 1 through 8 solve the given differential equation.
1. y′ = x2/y 2. y′ = x2/y(1 + x3)

3. y′ + y2 sin x = 0 4. y′ = (3x2 − 1)/(3 + 2y)

5. y′ = (cos2 x)(cos2 2y) 6. xy′ = (1 − y2)1/2
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7.
dy
dx

= x − e−x

y + ey
8.

dy
dx

= x2

1 + y2

In each of Problems 9 through 20:
(a) Find the solution of the given initial value problem in explicit form.
(b) Plot the graph of the solution.
(c) Determine (at least approximately) the interval in which the solution is defined.

9. y′ = (1 − 2x)y2, y(0) = −1/6 10. y′ = (1 − 2x)/y, y(1) = −2
11. x dx + ye−xdy = 0, y(0) = 1 12. dr/dθ = r2/θ , r(1) = 2
13. y′ = 2x/(y + x2y), y(0) = −2 14. y′ = xy3(1 + x2)−1/2, y(0) = 1
15. y′ = 2x/(1 + 2y), y(2) = 0 16. y′ = x(x2 + 1)/4y3, y(0) = −1/

√
2

17. y′ = (3x2 − ex)/(2y − 5), y(0) = 1
18. y′ = (e−x − ex)/(3 + 4y), y(0) = 1
19. sin 2x dx + cos 3y dy = 0, y(π/2) = π/3
20. y2(1 − x2)1/2dy = arcsin x dx, y(0) = 1

Some of the results requested in Problems 21 through 28 can be obtained either by solving
the given equations analytically or by plotting numerically generated approximations to the
solutions. Try to form an opinion as to the advantages and disadvantages of each approach.
21. Solve the initial value problem

y′ = (1 + 3x2)/(3y2 − 6y), y(0) = 1

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.

22. Solve the initial value problem

y′ = 3x2/(3y2 − 4), y(1) = 0

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.

23. Solve the initial value problem

y′ = 2y2 + xy2, y(0) = 1

and determine where the solution attains its minimum value.
24. Solve the initial value problem

y′ = (2 − ex)/(3 + 2y), y(0) = 0

and determine where the solution attains its maximum value.
25. Solve the initial value problem

y′ = 2 cos 2x/(3 + 2y), y(0) = −1

and determine where the solution attains its maximum value.
26. Solve the initial value problem

y′ = 2(1 + x)(1 + y2), y(0) = 0

and determine where the solution attains its minimum value.
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27. Consider the initial value problem

y′ = ty(4 − y)/3, y(0) = y0.

(a) Determine how the behavior of the solution as t increases depends on the initial
value y0.
(b) Suppose that y0 = 0.5. Find the time T at which the solution first reaches the value 3.98.

28. Consider the initial value problem

y′ = ty(4 − y)/(1 + t), y(0) = y0 > 0.

(a) Determine how the solution behaves as t → ∞.
(b) If y0 = 2, find the time T at which the solution first reaches the value 3.99.
(c) Find the range of initial values for which the solution lies in the interval 3.99 < y < 4.01
by the time t = 2.

29. Solve the equation
dy
dx

= ay + b
cy + d

,

where a, b, c, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx = f (x, y) can be ex-
pressed as a function of the ratio y/x only, then the equation is said to be homogeneous.1

Such equations can always be transformed into separable equations by a change of the
dependent variable. Problem 30 illustrates how to solve first order homogeneous equa-
tions.

30. Consider the equation
dy
dx

= y − 4x
x − y

. (i)

(a) Show that Eq. (i) can be rewritten as

dy
dx

= (y/x) − 4
1 − (y/x)

; (ii)

thus Eq. (i) is homogeneous.
(b) Introduce a new dependent variable v so that v = y/x, or y = xv(x). Express dy/dx
in terms of x, v, and dv/dx.
(c) Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and
dv/dx. Show that the resulting differential equation is

v + x
dv

dx
= v − 4

1 − v
,

or

x
dv

dx
= v2 − 4

1 − v
. (iii)

Observe that Eq. (iii) is separable.

1The word “homogeneous” has different meanings in different mathematical contexts. The homogeneous
equations considered here have nothing to do with the homogeneous equations that will occur in Chapter 3
and elsewhere.
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(d) Solve Eq. (iii), obtaining v implicitly in terms of x.
(e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).
(f) Draw a direction field and some integral curves for Eq. (i). Recall that the right side
of Eq. (i) actually depends only on the ratio y/x. This means that integral curves have the
same slope at all points on any given straight line through the origin, although the slope
changes from one line to another. Therefore the direction field and the integral curves are
symmetric with respect to the origin. Is this symmetry property evident from your plot?

The method outlined in Problem 30 can be used for any homogeneous equation. That is,
the substitution y = xv(x) transforms a homogeneous equation into a separable equation.
The latter equation can be solved by direct integration, and then replacing v by y/x gives
the solution to the original equation. In each of Problems 31 through 38:
(a) Show that the given equation is homogeneous.
(b) Solve the differential equation.
(c) Draw a direction field and some integral curves. Are they symmetric with respect to
the origin?

31.
dy
dx

= x2 + xy + y2

x2
32.

dy
dx

= x2 + 3y2

2xy

33.
dy
dx

= 4y − 3x
2x − y

34.
dy
dx

= −4x + 3y
2x + y

35.
dy
dx

= x + 3y
x − y

36. (x2 + 3xy + y2) dx − x2 dy = 0

37.
dy
dx

= x2 − 3y2

2xy
38.

dy
dx

= 3y2 − x2

2xy

2.3 Modeling with First Order Equations
Differential equations are of interest to nonmathematicians primarily because of the
possibility of using them to investigate a wide variety of problems in the physical,
biological, and social sciences. One reason for this is that mathematical models and
their solutions lead to equations relating the variables and parameters in the prob-
lem. These equations often enable you to make predictions about how the natural
process will behave in various circumstances. It is often easy to vary parameters in
the mathematical model over wide ranges, whereas this may be very time-consuming
or expensive, if not impossible, in an experimental setting. Nevertheless, mathemat-
ical modeling and experiment or observation are both critically important and have
somewhat complementary roles in scientific investigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other
hand, mathematical analyses may suggest the most promising directions to explore
experimentally, and they may indicate fairly precisely what experimental data will
be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathemati-
cal models. We begin by recapitulating and expanding on some of the conclusions
reached in those sections. Regardless of the specific field of application, there are
three identifiable steps that are always present in the process of mathematical mod-
eling.
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Construction of the Model. In this step you translate the physical situation into mathe-
matical terms, often using the steps listed at the end of Section 1.1. Perhaps most
critical at this stage is to state clearly the physical principle(s) that are believed to
govern the process. For example, it has been observed that in some circumstances
heat passes from a warmer to a cooler body at a rate proportional to the temperature
difference, that objects move about in accordance with Newton’s laws of motion, and
that isolated insect populations grow at a rate proportional to the current population.
Each of these statements involves a rate of change (derivative) and consequently,
when expressed mathematically, leads to a differential equation. The differential
equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only
an approximate description of the actual process. For example, bodies moving at
speeds comparable to the speed of light are not governed by Newton’s laws, insect
populations do not grow indefinitely as stated because of eventual lack of food or
space, and heat transfer is affected by factors other than the temperature difference.
Thus you should always be aware of the limitations of the model so that you will use it
only when it is reasonable to believe that it is accurate. Alternatively, you can adopt
the point of view that the mathematical equations exactly describe the operation of
a simplified physical model, which has been constructed (or conceived of) so as to
embody the most important features of the actual process. Sometimes, the process
of mathematical modeling involves the conceptual replacement of a discrete process
by a continuous one. For instance, the number of members in an insect population
changes by discrete amounts; however, if the population is large, it seems reasonable
to consider it as a continuous variable and even to speak of its derivative.

Analysis of the Model. Once the problem has been formulated mathematically, you are
often faced with the problem of solving one or more differential equations or, fail-
ing that, of finding out as much as possible about the properties of the solution. It
may happen that this mathematical problem is quite difficult, and if so, further ap-
proximations may be indicated at this stage to make the problem mathematically
tractable. For example, a nonlinear equation may be approximated by a linear one,
or a slowly varying coefficient may be replaced by a constant. Naturally, any such
approximations must also be examined from the physical point of view to make sure
that the simplified mathematical problem still reflects the essential features of the
physical process under investigation. At the same time, an intimate knowledge of the
physics of the problem may suggest reasonable mathematical approximations that
will make the mathematical problem more amenable to analysis. This interplay of
understanding of physical phenomena and knowledge of mathematical techniques
and their limitations is characteristic of applied mathematics at its best, and it is
indispensable in successfully constructing useful mathematical models of intricate
physical processes.

Comparison with Experiment or Observation. Finally, having obtained the solution (or at
least some information about it), you must interpret this information in the context
in which the problem arose. In particular, you should always check that the math-
ematical solution appears physically reasonable. If possible, calculate the values of
the solution at selected points and compare them with experimentally observed val-
ues. Or ask whether the behavior of the solution after a long time is consistent with
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observations. Or examine the solutions corresponding to certain special values of pa-
rameters in the problem. Of course, the fact that the mathematical solution appears
to be reasonable does not guarantee that it is correct. However, if the predictions of
the mathematical model are seriously inconsistent with observations of the physical
system it purports to describe, this suggests that errors have been made in solving
the mathematical problem, that the mathematical model itself needs refinement, or
that observations must be made with greater care.

The examples in this section are typical of applications in which first order differ-
ential equations arise.

E X A M P L E

1

Mixing

At time t = 0 a tank contains Q0 lb of salt dissolved in 100 gal of water; see Figure 2.3.1.
Assume that water containing 1

4 lb of salt/gal is entering the tank at a rate of r gal/min and
that the well-stirred mixture is draining from the tank at the same rate. Set up the initial
value problem that describes this flow process. Find the amount of salt Q(t) in the tank at any
time, and also find the limiting amount QL that is present after a very long time. If r = 3 and
Q0 = 2QL, find the time T after which the salt level is within 2% of QL. Also find the flow
rate that is required if the value of T is not to exceed 45 min.

r gal/min,    lb/gal
1
4

r gal/min

FIGURE 2.3.1 The water tank in Example 1.

We assume that salt is neither created nor destroyed in the tank. Therefore variations in
the amount of salt are due solely to the flows in and out of the tank. More precisely, the rate
of change of salt in the tank, dQ/dt, is equal to the rate at which salt is flowing in minus the
rate at which it is flowing out. In symbols,

dQ
dt

= rate in − rate out. (1)

The rate at which salt enters the tank is the concentration 1
4 lb/gal times the flow rate r gal/min,

or (r/4) lb/min. To find the rate at which salt leaves the tank, we need to multiply the concen-
tration of salt in the tank by the rate of outflow, r gal/min. Since the rates of flow in and out
are equal, the volume of water in the tank remains constant at 100 gal, and since the mixture
is “well-stirred,” the concentration throughout the tank is the same, namely, [Q(t)/100] lb/gal.
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Therefore the rate at which salt leaves the tank is [rQ(t)/100] lb/min. Thus the differential
equation governing this process is

dQ
dt

= r
4

− rQ
100

. (2)

The initial condition is
Q(0) = Q0. (3)

Upon thinking about the problem physically,we might anticipate that eventually the mixture
originally in the tank will be essentially replaced by the mixture flowing in,whose concentration
is 1

4 lb/gal. Consequently, we might expect that ultimately the amount of salt in the tank would
be very close to 25 lb. We can also find the limiting amount QL = 25 by setting dQ/dt equal
to zero in Eq. (2) and solving the resulting algebraic equation for Q.

To solve the initial value problem (2), (3) analytically, note that Eq. (2) is both linear and
separable. Rewriting it in the standard form for a linear equation, we have

dQ
dt

+ rQ
100

= r
4
. (4)

Thus the integrating factor is ert/100 and the general solution is

Q(t) = 25 + ce−rt/100, (5)

where c is an arbitrary constant. To satisfy the initial condition (3),we must choose c = Q0 − 25.
Therefore the solution of the initial value problem (2), (3) is

Q(t) = 25 + (Q0 − 25)e−rt/100, (6)

or
Q(t) = 25(1 − e−rt/100) + Q0e−rt/100. (7)

From Eq. (6) or (7), you can see that Q(t) → 25 (lb) as t → ∞, so the limiting value QL is
25, confirming our physical intuition. Further, Q(t) approaches the limit more rapidly as r
increases. In interpreting the solution (7), note that the second term on the right side is the
portion of the original salt that remains at time t, while the first term gives the amount of salt in
the tank due to the action of the flow processes. Plots of the solution for r = 3 and for several
values of Q0 are shown in Figure 2.3.2.

Now suppose that r = 3 and Q0 = 2QL = 50; then Eq. (6) becomes

Q(t) = 25 + 25e−0.03t . (8)

Since 2% of 25 is 0.5, we wish to find the time T at which Q(t) has the value 25.5. Substituting
t = T and Q = 25.5 in Eq. (8) and solving for T , we obtain

T = (ln 50)/0.03 ∼= 130.4 (min). (9)

To determine r so that T = 45, return to Eq. (6), set t = 45, Q0 = 50, Q(t) = 25.5, and solve
for r. The result is

r = (100/45) ln 50 ∼= 8.69 gal/min. (10)

Since this example is hypothetical, the validity of the model is not in question. If the flow
rates are as stated, and if the concentration of salt in the tank is uniform, then the differential
equation (1) is an accurate description of the flow process. Although this particular example
has no special significance, models of this kind are often used in problems involving a pollutant
in a lake, or a drug in an organ of the body, for example, rather than a tank of salt water. In
such cases the flow rates may not be easy to determine or may vary with time. Similarly, the
concentration may be far from uniform in some cases. Finally, the rates of inflow and outflow
may be different, which means that the variation of the amount of liquid in the problem must
also be taken into account.
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FIGURE 2.3.2 Solutions of the initial value problem (2), (3) for r = 3 and several values
of Q0.

E X A M P L E

2

Compound
Interest

Suppose that a sum of money is deposited in a bank or money fund that pays interest at an
annual rate r. The value S(t) of the investment at any time t depends on the frequency with
which interest is compounded as well as on the interest rate. Financial institutions have various
policies concerning compounding: some compound monthly, some weekly, some even daily.
If we assume that compounding takes place continuously, then we can set up a simple initial
value problem that describes the growth of the investment.

The rate of change of the value of the investment is dS/dt, and this quantity is equal to
the rate at which interest accrues, which is the interest rate r times the current value of the
investment S(t). Thus

dS/dt = rS (11)

is the differential equation that governs the process. Suppose that we also know the value of
the investment at some particular time, say,

S(0) = S0. (12)

Then the solution of the initial value problem (11), (12) gives the balance S(t) in the account
at any time t. This initial value problem is readily solved, since the differential equation (11)
is both linear and separable. Consequently, by solving Eqs. (11) and (12), we find that

S(t) = S0ert . (13)

Thus a bank account with continuously compounding interest grows exponentially.
Let us now compare the results from this continuous model with the situation in which

compounding occurs at finite time intervals. If interest is compounded once a year, then after
t years

S(t) = S0(1 + r)t .
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If interest is compounded twice a year, then at the end of 6 months the value of the investment
is S0[1 + (r/2)], and at the end of 1 year it is S0[1 + (r/2)]2. Thus, after t years we have

S(t) = S0

(
1 + r

2

)2t
.

In general, if interest is compounded m times per year, then

S(t) = S0

(
1 + r

m

)mt
. (14)

The relation between formulas (13) and (14) is clarified if we recall from calculus that

lim
m→∞ S0

(
1 + r

m

)mt = S0ert .

The same model applies equally well to more general investments in which dividends and
perhaps capital gains can also accumulate, as well as interest. In recognition of this fact, we
will from now on refer to r as the rate of return.

Table 2.3.1 shows the effect of changing the frequency of compounding for a return rate
r of 8%. The second and third columns are calculated from Eq. (14) for quarterly and daily
compounding, respectively, and the fourth column is calculated from Eq. (13) for continuous
compounding. The results show that the frequency of compounding is not particularly im-
portant in most cases. For example, during a 10-year period the difference between quarterly
and continuous compounding is $17.50 per $1000 invested, or less than $2/year. The differ-
ence would be somewhat greater for higher rates of return and less for lower rates. From the
first row in the table, we see that for the return rate r = 8%, the annual yield for quarterly
compounding is 8.24% and for daily or continuous compounding it is 8.33%.

TABLE 2.3.1 Growth of Capital at a Return Rate r = 8%
for Several Modes of Compounding

S(t)/S(t0) from Eq. (14)
S(t)/S(t0)

Years m = 4 m = 365 from Eq. (13)

1 1.0824 1.0833 1.0833
2 1.1717 1.1735 1.1735
5 1.4859 1.4918 1.4918

10 2.2080 2.2253 2.2255
20 4.8754 4.9522 4.9530
30 10.7652 11.0203 11.0232
40 23.7699 24.5239 24.5325

Returning now to the case of continuous compounding, let us suppose that there may be
deposits or withdrawals in addition to the accrual of interest, dividends, or capital gains. If
we assume that the deposits or withdrawals take place at a constant rate k, then Eq. (11) is
replaced by

dS/dt = rS + k,

or, in standard form,
dS/dt − rS = k, (15)

where k is positive for deposits and negative for withdrawals.
Equation (15) is linear with the integrating factor e−rt , so its general solution is

S(t) = cert − (k/r),
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where c is an arbitrary constant. To satisfy the initial condition (12), we must choose
c = S0 + (k/r). Thus the solution of the initial value problem (15), (12) is

S(t) = S0ert + (k/r)(ert − 1). (16)

The first term in expression (16) is the part of S(t) that is due to the return accumulated on
the initial amount S0, and the second term is the part that is due to the deposit or withdrawal
rate k.

The advantage of stating the problem in this general way without specific values for S0, r, or
k lies in the generality of the resulting formula (16) for S(t). With this formula we can readily
compare the results of different investment programs or different rates of return.

For instance, suppose that one opens an individual retirement account (IRA) at age 25 and
makes annual investments of $2000 thereafter in a continuous manner. Assuming a rate of
return of 8%, what will be the balance in the IRA at age 65? We have S0 = 0, r = 0.08, and
k = $2000, and we wish to determine S(40). From Eq. (16) we have

S(40) = (25,000)(e3.2 − 1) = $588,313. (17)

It is interesting to note that the total amount invested is $80,000, so the remaining amount of
$508,313 results from the accumulated return on the investment. The balance after 40 years
is also fairly sensitive to the assumed rate. For instance, S(40) = $508,948 if r = 0.075 and
S(40) = $681,508 if r = 0.085.

Let us now examine the assumptions that have gone into the model. First, we have assumed
that the return is compounded continuously and that additional capital is invested continu-
ously. Neither of these is true in an actual financial situation. We have also assumed that the
return rate r is constant for the entire period involved, whereas in fact it is likely to fluctuate
considerably. Although we cannot reliably predict future rates, we can use expression (16) to
determine the approximate effect of different rate projections. It is also possible to consider r
and k in Eq. (15) to be functions of t rather than constants; in that case, of course, the solution
may be much more complicated than Eq. (16).

The initial value problem (15), (12) and the solution (16) can also be used to analyze a
number of other financial situations, including annuities, mortgages, and automobile loans.

E X A M P L E

3

Chemicals in
a Pond

Consider a pond that initially contains 10 million gal of fresh water. Water containing an
undesirable chemical flows into the pond at the rate of 5 million gal/yr, and the mixture in the
pond flows out at the same rate. The concentration γ (t) of chemical in the incoming water
varies periodically with time according to the expression γ (t) = 2 + sin 2t g/gal. Construct a
mathematical model of this flow process and determine the amount of chemical in the pond
at any time. Plot the solution and describe in words the effect of the variation in the incoming
concentration.

Since the incoming and outgoing flows of water are the same, the amount of water in the
pond remains constant at 107 gal. Let us denote time by t, measured in years, and the chemical
by Q(t), measured in grams. This example is similar to Example 1, and the same inflow/outflow
principle applies. Thus

dQ
dt

= rate in − rate out,

where “rate in” and “rate out” refer to the rates at which the chemical flows into and out of
the pond, respectively. The rate at which the chemical flows in is given by

rate in = (5 × 106) gal/yr (2 + sin 2t) g/gal. (18)
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The concentration of chemical in the pond is Q(t)/107 g/gal, so the rate of flow out is

rate out = (5 × 106) gal/yr [Q(t)/107] g/gal = Q(t)/2 g/yr. (19)

Thus we obtain the differential equation

dQ
dt

= (5 × 106)(2 + sin 2t) − Q(t)
2

, (20)

where each term has the units of g/yr.
To make the coefficients more manageable, it is convenient to introduce a new dependent

variable defined by q(t) = Q(t)/106 or Q(t) = 106 q(t). This means that q(t) is measured in
millions of grams, or megagrams (metric tons). If we make this substitution in Eq. (20), then
each term contains the factor 106, which can be canceled. If we also transpose the term
involving q(t) to the left side of the equation, we finally have

dq
dt

+ 1
2 q = 10 + 5 sin 2t. (21)

Originally, there is no chemical in the pond, so the initial condition is

q(0) = 0. (22)

Equation (21) is linear, and although the right side is a function of time, the coefficient of
q is a constant. Thus the integrating factor is et/2. Multiplying Eq. (21) by this factor and
integrating the resulting equation, we obtain the general solution

q(t) = 20 − 40
17 cos 2t + 10

17 sin 2t + ce−t/2. (23)

The initial condition (22) requires that c = −300/17, so the solution of the initial value problem
(21), (22) is

q(t) = 20 − 40
17 cos 2t + 10

17 sin 2t − 300
17 e−t/2. (24)

A plot of the solution (24) is shown in Figure 2.3.3, along with the line q = 20. The exponential
term in the solution is important for small t, but it diminishes rapidly as t increases. Later, the
solution consists of an oscillation, due to the sin 2t and cos 2t terms, about the constant level
q = 20. Note that if the sin 2t term were not present in Eq. (21), then q = 20 would be the
equilibrium solution of that equation.

2

22
20
18
16
14
12
10
8

4
6

2

8 104 6 t12 14 16 18 20

q

FIGURE 2.3.3 Solution of the initial value problem (21), (22).
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Let us now consider the adequacy of the mathematical model itself for this problem. The
model rests on several assumptions that have not yet been stated explicitly. In the first place,
the amount of water in the pond is controlled entirely by the rates of flow in and out—none
is lost by evaporation or by seepage into the ground, and none is gained by rainfall. The same
is true of the chemical; it flows into and out of the pond, but none is absorbed by fish or other
organisms living in the pond. In addition, we assume that the concentration of chemical in
the pond is uniform throughout the pond. Whether the results obtained from the model are
accurate depends strongly on the validity of these simplifying assumptions.

E X A M P L E

4

Escape
Veloci ty

A body of constant mass m is projected away from the earth in a direction perpendicular to the
earth’s surface with an initial velocity v0. Assuming that there is no air resistance, but taking
into account the variation of the earth’s gravitational field with distance, find an expression for
the velocity during the ensuing motion. Also find the initial velocity that is required to lift the
body to a given maximum altitude ξ above the surface of the earth, and find the least initial
velocity for which the body will not return to the earth; the latter is the escape velocity.

Let the positive x-axis point away from the center of the earth along the line of motion with
x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn horizontally to remind
you that gravity is directed toward the center of the earth, which is not necessarily downward
from a perspective away from the earth’s surface. The gravitational force acting on the body
(that is, its weight) is inversely proportional to the square of the distance from the center of
the earth and is given by w(x) = −k/(x + R)2, where k is a constant, R is the radius of the
earth, and the minus sign signifies that w(x) is directed in the negative x direction. We know
that on the earth’s surface w(0) is given by −mg, where g is the acceleration due to gravity at
sea level. Therefore k = mgR2 and

w(x) = − mgR2

(R + x)2
. (25)

Since there are no other forces acting on the body, the equation of motion is

m
dv

dt
= − mgR2

(R + x)2
, (26)

and the initial condition is

v(0) = v0. (27)

Unfortunately, Eq. (26) involves too many variables since it depends on t, x, and v. To
remedy this situation, we can eliminate t from Eq. (26) by thinking of x, rather than t, as the
independent variable. Then we can express dv/dt in terms of dv/dx by using the chain rule;
hence

dv

dt
= dv

dx
dx
dt

= v
dv

dx
,

xm

 mgR2

 (R + x)2
R

FIGURE 2.3.4 A body in the earth’s gravitational field.
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and Eq. (26) is replaced by

v
dv

dx
= − gR2

(R + x)2
. (28)

Equation (28) is separable but not linear, so by separating the variables and integrating, we
obtain

v2

2
= gR2

R + x
+ c. (29)

Since x = 0 when t = 0, the initial condition (27) at t = 0 can be replaced by the condition that
v = v0 when x = 0. Hence c = (v2

0/2) − gR and

v = ±
√

v2
0 − 2gR + 2gR2

R + x
. (30)

Note that Eq. (30) gives the velocity as a function of altitude rather than as a function of time.
The plus sign must be chosen if the body is rising, and the minus sign if it is falling back to
earth.

To determine the maximum altitude ξ that the body reaches, we set v = 0 and x = ξ in
Eq. (30) and then solve for ξ , obtaining

ξ = v2
0R

2gR − v2
0

. (31)

Solving Eq. (31) for v0, we find the initial velocity required to lift the body to the altitude ξ ,
namely,

v0 =
√

2gR
ξ

R + ξ
. (32)

The escape velocity ve is then found by letting ξ → ∞. Consequently,

ve = √
2gR. (33)

The numerical value of ve is approximately 6.9 mi/s, or 11.1 km/s.
The preceding calculation of the escape velocity neglects the effect of air resistance, so the

actual escape velocity (including the effect of air resistance) is somewhat higher. On the other
hand, the effective escape velocity can be significantly reduced if the body is transported a
considerable distance above sea level before being launched. Both gravitational and frictional
forces are thereby reduced; air resistance, in particular,diminishes quite rapidly with increasing
altitude. You should keep in mind also that it may well be impractical to impart too large an
initial velocity instantaneously; space vehicles, for instance, receive their initial acceleration
during a period of a few minutes.

PROBLEMS 1. Consider a tank used in certain hydrodynamic experiments. After one experiment the
tank contains 200 L of a dye solution with a concentration of 1 g/L. To prepare for the
next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 2 L/min,
the well-stirred solution flowing out at the same rate. Find the time that will elapse before
the concentration of dye in the tank reaches 1% of its original value.

2. A tank initially contains 120 L of pure water. A mixture containing a concentration of
γ g/L of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture leaves the
tank at the same rate. Find an expression in terms of γ for the amount of salt in the tank
at any time t. Also find the limiting amount of salt in the tank as t → ∞.
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3. A tank originally contains 100 gal of fresh water. Then water containing 1
2 lb of salt per

gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at
the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
salt in the tank at the end of an additional 10 min.

4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 lb of salt
in solution. Water containing 1 lb of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point
of overflowing. Compare this concentration with the theoretical limiting concentration if
the tank had infinite capacity.

5. A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration
of 1

4 (1 + 1
2 sin t) oz/gal flows into the tank at a rate of 2 gal/min, and the mixture in the

tank flows out at the same rate.
(a) Find the amount of salt in the tank at any time.
(b) Plot the solution for a time period long enough so that you see the ultimate behavior
of the graph.
(c) The long-time behavior of the solution is an oscillation about a certain constant level.
What is this level? What is the amplitude of the oscillation?

6. Suppose that a tank containing a certain liquid has an outlet near the bottom. Let h(t) be
the height of the liquid surface above the outlet at time t. Torricelli’s2 principle states that
the outflow velocity v at the outlet is equal to the velocity of a particle falling freely (with
no drag) from the height h.
(a) Show that v = √

2gh, where g is the acceleration due to gravity.
(b) By equating the rate of outflow to the rate of change of liquid in the tank, show that
h(t) satisfies the equation

A(h)
dh
dt

= −αa
√

2gh, (i)

where A(h) is the area of the cross section of the tank at height h and a is the area of
the outlet. The constant α is a contraction coefficient that accounts for the observed fact
that the cross section of the (smooth) outflow stream is smaller than a. The value of α for
water is about 0.6.
(c) Consider a water tank in the form of a right circular cylinder that is 3 m high above
the outlet. The radius of the tank is 1 m and the radius of the circular outlet is 0.1 m. If
the tank is initially full of water, determine how long it takes to drain the tank down to
the level of the outlet.

7. Suppose that a sum S0 is invested at an annual rate of return r compounded continuously.
(a) Find the time T required for the original sum to double in value as a function of r.
(b) Determine T if r = 7%.
(c) Find the return rate that must be achieved if the initial investment is to double in
8 years.

2Evangelista Torricelli (1608–1647), successor to Galileo as court mathematician in Florence, published
this result in 1644. He is also known for constructing the first mercury barometer and for making important
contributions to geometry.
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8. A young person with no initial capital invests k dollars per year at an annual rate of
return r. Assume that investments are made continuously and that the return is com-
pounded continuously.
(a) Determine the sum S(t) accumulated at any time t.
(b) If r = 7.5%, determine k so that $1 million will be available for retirement in 40 years.
(c) If k = $2000/year, determine the return rate r that must be obtained to have $1 million
available in 40 years.

9. A certain college graduate borrows $8000 to buy a car. The lender charges interest at
an annual rate of 10%. Assuming that interest is compounded continuously and that
the borrower makes payments continuously at a constant annual rate k, determine the
payment rate k that is required to pay off the loan in 3 years. Also determine how much
interest is paid during the 3-year period.

10. A home buyer can afford to spend no more than $800/month on mortgage payments.
Suppose that the interest rate is 9% and that the term of the mortgage is 20 years. Assume
that interest is compounded continuously and that payments are also made continuously.
(a) Determine the maximum amount that this buyer can afford to borrow.
(b) Determine the total interest paid during the term of the mortgage.

11. A recent college graduate borrows $100,000 at an interest rate of 9% to purchase a con-
dominium. Anticipating steady salary increases, the buyer expects to make payments at a
monthly rate of 800(1 + t/120), where t is the number of months since the loan was made.
(a) Assuming that this payment schedule can be maintained, when will the loan be fully
paid?
(b) Assuming the same payment schedule, how large a loan could be paid off in exactly
20 years?

12. An important tool in archeological research is radiocarbon dating,developed by theAmer-
ican chemist Willard F. Libby.3 This is a means of determining the age of certain wood
and plant remains, hence of animal or human bones or artifacts found buried at the same
levels. Radiocarbon dating is based on the fact that some wood or plant remains contain
residual amounts of carbon-14, a radioactive isotope of carbon. This isotope is accumu-
lated during the lifetime of the plant and begins to decay at its death. Since the half-life of
carbon-14 is long (approximately 5730 years4), measurable amounts of carbon-14 remain
after many thousands of years. If even a tiny fraction of the original amount of carbon-14
is still present, then by appropriate laboratory measurements the proportion of the orig-
inal amount of carbon-14 that remains can be accurately determined. In other words, if
Q(t) is the amount of carbon-14 at time t and Q0 is the original amount, then the ratio
Q(t)/Q0 can be determined, as long as this quantity is not too small. Present measurement
techniques permit the use of this method for time periods of 50,000 years or more.
(a) Assuming that Q satisfies the differential equation Q′ = −rQ, determine the decay
constant r for carbon-14.
(b) Find an expression for Q(t) at any time t, if Q(0) = Q0.

3Willard F. Libby (1908–1980) was born in rural Colorado and received his education at the University of
California at Berkeley. He developed the method of radiocarbon dating beginning in 1947 while he was
at the University of Chicago. For this work he was awarded the Nobel Prize in chemistry in 1960.
4McGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York: McGraw-Hill, 1997),Vol. 5,
p. 48.
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(c) Suppose that certain remains are discovered in which the current residual amount of
carbon-14 is 20% of the original amount. Determine the age of these remains.

13. The population of mosquitoes in a certain area increases at a rate proportional to the
current population, and in the absence of other factors, the population doubles each
week. There are 200,000 mosquitoes in the area initially, and predators (birds, bats, and
so forth) eat 20,000 mosquitoes/day. Determine the population of mosquitoes in the area
at any time.

14. Suppose that a certain population has a growth rate that varies with time and that this
population satisfies the differential equation

dy/dt = (0.5 + sin t)y/5.

(a) If y(0) = 1, find (or estimate) the time τ at which the population has doubled. Choose
other initial conditions and determine whether the doubling time τ depends on the initial
population.
(b) Suppose that the growth rate is replaced by its average value 1/10. Determine the
doubling time τ in this case.
(c) Suppose that the term sin t in the differential equation is replaced by sin 2π t; that is,
the variation in the growth rate has a substantially higher frequency. What effect does this
have on the doubling time τ?
(d) Plot the solutions obtained in parts (a), (b), and (c) on a single set of axes.

15. Suppose that a certain population satisfies the initial value problem

dy/dt = r(t)y − k, y(0) = y0,

where the growth rate r(t) is given by r(t) = (1 + sin t)/5, and k represents the rate of
predation.
(a) Suppose that k = 1/5. Plot y versus t for several values of y0 between 1/2 and 1.
(b) Estimate the critical initial population yc below which the population will become
extinct.
(c) Choose other values of k and find the corresponding yc for each one.
(d) Use the data you have found in parts (b) and (c) to plot yc versus k.

16. Newton’s law of cooling states that the temperature of an object changes at a rate pro-
portional to the difference between its temperature and that of its surroundings. Suppose
that the temperature of a cup of coffee obeys Newton’s law of cooling. If the coffee has a
temperature of 200◦F when freshly poured, and 1 min later has cooled to 190◦F in a room
at 70◦F, determine when the coffee reaches a temperature of 150◦F.

17. Heat transfer from a body to its surroundings by radiation, based on the Stefan–
Boltzmann5 law, is described by the differential equation

du
dt

= −α(u4 − T4), (i)

where u(t) is the absolute temperature of the body at time t, T is the absolute temperature
of the surroundings, and α is a constant depending on the physical parameters of the body.

5Jozef Stefan (1835–1893), professor of physics at Vienna, stated the radiation law on empirical grounds
in 1879. His student Ludwig Boltzmann (1844–1906) derived it theoretically from the principles of ther-
modynamics in 1884. Boltzmann is best known for his pioneering work in statistical mechanics.
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However, if u is much larger than T , then solutions of Eq. (i) are well approximated by
solutions of the simpler equation

du
dt

= −αu4. (ii)

Suppose that a body with initial temperature 2000◦K is surrounded by a medium with
temperature 300◦K and that α = 2.0 × 10−12 ◦K−3/s.
(a) Determine the temperature of the body at any time by solving Eq. (ii).
(b) Plot the graph of u versus t.
(c) Find the time τ at which u(τ ) = 600, that is, twice the ambient temperature. Up to this
time the error in using Eq. (ii) to approximate the solutions of Eq. (i) is no more than 1%.

18. Consider an insulated box (a building, perhaps) with internal temperature u(t). According
to Newton’s law of cooling, u satisfies the differential equation

du
dt

= −k[u − T(t)], (i)

where T(t) is the ambient (external) temperature. Suppose that T(t) varies sinusoidally;
for example, assume that T(t) = T0 + T1 cos ωt.
(a) Solve Eq. (i) and express u(t) in terms of t, k, T0, T1, and ω. Observe that part of
your solution approaches zero as t becomes large; this is called the transient part. The
remainder of the solution is called the steady state; denote it by S(t).
(b) Suppose that t is measured in hours and that ω = π/12, corresponding a period of 24 h
for T(t). Further, let T0 = 60◦F, T1 = 15◦F, and k = 0.2/h. Draw graphs of S(t) and T(t)
versus t on the same axes. From your graph estimate the amplitude R of the oscillatory
part of S(t). Also estimate the time lag τ between corresponding maxima of T(t) and S(t).
(c) Let k, T0, T1, and ω now be unspecified. Write the oscillatory part of S(t) in the form
R cos[ω(t − τ)]. Use trigonometric identities to find expressions for R and τ . Let T1 and
ω have the values given in part (b), and plot graphs of R and τ versus k.

19. Consider a lake of constant volume V containing at time t an amount Q(t) of pollutant,
evenly distributed throughout the lake with a concentration c(t), where c(t) = Q(t)/V .
Assume that water containing a concentration k of pollutant enters the lake at a rate r,
and that water leaves the lake at the same rate. Suppose that pollutants are also added
directly to the lake at a constant rate P. Note that the given assumptions neglect a num-
ber of factors that may, in some cases, be important—for example, the water added or
lost by precipitation, absorption, and evaporation; the stratifying effect of temperature
differences in a deep lake; the tendency of irregularities in the coastline to produce shel-
tered bays; and the fact that pollutants are not deposited evenly throughout the lake but
(usually) at isolated points around its periphery. The results below must be interpreted in
the light of the neglect of such factors as these.
(a) If at time t = 0 the concentration of pollutant is c0, find an expression for the concen-
tration c(t) at any time. What is the limiting concentration as t → ∞?
(b) If the addition of pollutants to the lake is terminated (k = 0 and P = 0 for t > 0),
determine the time interval T that must elapse before the concentration of pollutants is
reduced to 50% of its original value; to 10% of its original value.
(c) Table 2.3.2 contains data6 for several of the Great Lakes. Using these data, determine

6This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,”
Science 155 (1967), pp. 1242–1243; the information in the table was taken from that source.
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from part (b) the time T necessary to reduce the contamination of each of these lakes to
10% of the original value.

TABLE 2.3.2 Volume and Flow Data for the Great
Lakes

Lake V (km3 × 103) r (km3/year)

Superior 12.2 65.2
Michigan 4.9 158
Erie 0.46 175
Ontario 1.6 209

20. A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a
building 30 m high. Neglect air resistance.
(a) Find the maximum height above the ground that the ball reaches.
(b) Assuming that the ball misses the building on the way down, find the time that it hits
the ground.
(c) Plot the graphs of velocity and position versus time.

21. Assume that the conditions are as in Problem 20 except that there is a force due to air
resistance of |v|/30, where the velocity v is measured in m/s.
(a) Find the maximum height above the ground that the ball reaches.
(b) Find the time that the ball hits the ground.
(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problem 20.

22. Assume that the conditions are as in Problem 20 except that there is a force due to air
resistance of v2/1325, where the velocity v is measured in m/s.
(a) Find the maximum height above the ground that the ball reaches.
(b) Find the time that the ball hits the ground.
(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problems 20 and 21.

23. A sky diver weighing 180 lb (including equipment) falls vertically downward from an
altitude of 5000 ft and opens the parachute after 10 s of free fall. Assume that the force
of air resistance is 0.75|v| when the parachute is closed and 12|v| when the parachute is
open, where the velocity v is measured in ft/s.
(a) Find the speed of the sky diver when the parachute opens.
(b) Find the distance fallen before the parachute opens.
(c) What is the limiting velocity vL after the parachute opens?
(d) Determine how long the sky diver is in the air after the parachute opens.
(e) Plot the graph of velocity versus time from the beginning of the fall until the skydiver
reaches the ground.

24. A rocket sled having an initial speed of 150 mi/h is slowed by a channel of water. Assume
that, during the braking process, the acceleration a is given by a(v) = −μv2, where v is the
velocity and μ is a constant.
(a) As in Example 4 in the text, use the relation dv/dt = v(dv/dx) to write the equation
of motion in terms of v and x.
(b) If it requires a distance of 2000 ft to slow the sled to 15 mi/h, determine the value of μ.
(c) Find the time τ required to slow the sled to 15 mi/h.
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25. A body of constant mass m is projected vertically upward with an initial velocity v0 in a
medium offering a resistance k|v|, where k is a constant. Neglect changes in the gravita-
tional force.
(a) Find the maximum height xm attained by the body and the time tm at which this
maximum height is reached.
(b) Show that if kv0/mg < 1, then tm and xm can be expressed as

tm = v0

g

[
1 − 1

2
kv0

mg
+ 1

3

(
kv0

mg

)2

− · · ·
]

,

xm = v2
0

2g

[
1 − 2

3
kv0

mg
+ 1

2

(
kv0

mg

)2

− · · ·
]

.

(c) Show that the quantity kv0/mg is dimensionless.

26. A body of mass m is projected vertically upward with an initial velocity v0 in a medium
offering a resistance k|v|, where k is a constant. Assume that the gravitational attraction
of the earth is constant.
(a) Find the velocity v(t) of the body at any time.
(b) Use the result of part (a) to calculate the limit of v(t) as k → 0, that is, as the resistance
approaches zero. Does this result agree with the velocity of a mass m projected upward
with an initial velocity v0 in a vacuum?
(c) Use the result of part (a) to calculate the limit of v(t) as m → 0, that is, as the mass
approaches zero.

27. A body falling in a relatively dense fluid, oil for example, is acted on by three forces
(see Figure 2.3.5): a resistive force R, a buoyant force B, and its weight w due to gravity.
The buoyant force is equal to the weight of the fluid displaced by the object. For a slowly
moving spherical body of radius a, the resistive force is given by Stokes’s law, R = 6πμa|v|,
where v is the velocity of the body, and μ is the coefficient of viscosity of the surrounding
fluid.7

R

w

a

B

FIGURE 2.3.5 A body falling in a dense fluid.

7George Gabriel Stokes (1819–1903), professor at Cambridge, was one of the foremost applied mathe-
maticians of the nineteenth century. The basic equations of fluid mechanics (the Navier–Stokes equations)
are named partly in his honor, and one of the fundamental theorems of vector calculus bears his name.
He was also one of the pioneers in the use of divergent (asymptotic) series, a subject of great interest and
importance today.
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(a) Find the limiting velocity of a solid sphere of radius a and density ρ falling freely in a
medium of density ρ ′ and coefficient of viscosity μ.
(b) In 1910 R. A. Millikan8 studied the motion of tiny droplets of oil falling in an electric
field. A field of strength E exerts a force Ee on a droplet with charge e. Assume that E
has been adjusted so the droplet is held stationary (v = 0) and that w and B are as given
above. Find an expression for e. Millikan repeated this experiment many times, and from
the data that he gathered he was able to deduce the charge on an electron.

28. A mass of 0.25 kg is dropped from rest in a medium offering a resistance of 0.2|v|, where
v is measured in m/s.
(a) If the mass is dropped from a height of 30 m, find its velocity when it hits the ground.
(b) If the mass is to attain a velocity of no more than 10 m/s, find the maximum height
from which it can be dropped.
(c) Suppose that the resistive force is k|v|, where v is measured in m/s and k is a constant.
If the mass is dropped from a height of 30 m and must hit the ground with a velocity of no
more than 10 m/s, determine the coefficient of resistance k that is required.

29. Suppose that a rocket is launched straight up from the surface of the earth with initial
velocity v0 = √

2gR, where R is the radius of the earth. Neglect air resistance.
(a) Find an expression for the velocity v in terms of the distance x from the surface of the
earth.
(b) Find the time required for the rocket to go 240,000 mi (the approximate distance from
the earth to the moon). Assume that R = 4000 mi.

30. Let v(t) and w(t), respectively, be the horizontal and vertical components of the velocity
of a batted (or thrown) baseball. In the absence of air resistance, v and w satisfy the
equations

dv/dt = 0, dw/dt = −g.

(a) Show that
v = u cos A, w = −gt + u sin A,

where u is the initial speed of the ball and A is its initial angle of elevation.
(b) Let x(t) and y(t), respectively, be the horizontal and vertical coordinates of the ball at
time t. If x(0) = 0 and y(0) = h, find x(t) and y(t) at any time t.
(c) Let g = 32 ft/s2, u = 125 ft/s, and h = 3 ft. Plot the trajectory of the ball for several
values of the angle A; that is, plot x(t) and y(t) parametrically.
(d) Suppose the outfield wall is at a distance L and has height H . Find a relation between
u and A that must be satisfied if the ball is to clear the wall.
(e) Suppose that L = 350 ft and H = 10 ft. Using the relation in part (d), find (or estimate
from a plot) the range of values of A that correspond to an initial velocity of u = 110 ft/s.
(f) For L = 350 and H = 10, find the minimum initial velocity u and the corresponding
optimal angle A for which the ball will clear the wall.

31. A more realistic model (than that in Problem 30) of a baseball in flight includes the effect
of air resistance. In this case the equations of motion are

dv/dt = −rv, dw/dt = −g − rw,

8Robert A. Millikan (1868–1953) was educated at Oberlin College and Columbia University. Later he
was a professor at the University of Chicago and California Institute of Technology. His determination of
the charge on an electron was published in 1910. For this work, and for other studies of the photoelectric
effect, he was awarded the Nobel Prize in 1923.
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where r is the coefficient of resistance.
(a) Determine v(t) and w(t) in terms of initial speed u and initial angle of elevation A.
(b) Find x(t) and y(t) if x(0) = 0 and y(0) = h.
(c) Plot the trajectory of the ball for r = 1/5, u = 125, h = 3, and for several values of A.
How do the trajectories differ from those in Problem 31 with r = 0?
(d) Assuming that r = 1/5 and h = 3, find the minimum initial velocity u and the optimal
angle A for which the ball will clear a wall that is 350 ft distant and 10 ft high. Compare
this result with that in Problem 30(f).

32. Brachistochrone Problem. One of the famous problems in the history of mathematics is
the brachistochrone9 problem: to find the curve along which a particle will slide without
friction in the minimum time from one given point P to another Q, the second point being
lower than the first but not directly beneath it (see Figure 2.3.6). This problem was posed
by Johann Bernoulli in 1696 as a challenge problem to the mathematicians of his day.
Correct solutions were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottfried Leibniz, and the Marquis de L’Hospital. The brachistochrone
problem is important in the development of mathematics as one of the forerunners of the
calculus of variations.

In solving this problem, it is convenient to take the origin as the upper point P and to
orient the axes as shown in Figure 2.3.6. The lower point Q has coordinates (x0,y0). It is
then possible to show that the curve of minimum time is given by a function y = φ(x) that
satisfies the differential equation

(1 + y′ 2)y = k2, (i)

where k2 is a certain positive constant to be determined later.

xP

y

Q(x0, y0)

FIGURE 2.3.6 The brachistochrone.

(a) Solve Eq. (i) for y′. Why is it necessary to choose the positive square root?
(b) Introduce the new variable t by the relation

y = k2 sin2 t. (ii)

Show that the equation found in part (a) then takes the form

2k2 sin2 t dt = dx. (iii)

9The word “brachistochrone” comes from the Greek words brachistos, meaning shortest, and chronos,
meaning time.
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(c) Letting θ = 2t, show that the solution of Eq. (iii) for which x = 0 when y = 0 is given
by

x = k2(θ − sin θ)/2, y = k2(1 − cos θ)/2. (iv)

Equations (iv) are parametric equations of the solution of Eq. (i) that passes through
(0, 0). The graph of Eqs. (iv) is called a cycloid.
(d) If we make a proper choice of the constant k, then the cycloid also passes through
the point (x0, y0) and is the solution of the brachistochrone problem. Find k if x0 = 1 and
y0 = 2.

2.4 Differences Between Linear and Nonlinear Equations
Up to now, we have been primarily concerned with showing that first order differ-
ential equations can be used to investigate many different kinds of problems in the
natural sciences, and with presenting methods of solving such equations if they are
either linear or separable. Now it is time to turn our attention to some more general
questions about differential equations and to explore in more detail some important
ways in which nonlinear equations differ from linear ones.

Existence and Uniqueness of Solutions. So far,we have discussed a number of initial value
problems, each of which had a solution and apparently only one solution. This raises
the question of whether this is true of all initial value problems for first order equa-
tions. In other words, does every initial value problem have exactly one solution?
This may be an important question even for nonmathematicians. If you encounter
an initial value problem in the course of investigating some physical problem, you
might want to know that it has a solution before spending very much time and effort
in trying to find it. Further, if you are successful in finding one solution, you might
be interested in knowing whether you should continue a search for other possible
solutions or whether you can be sure that there are no other solutions. For linear
equations the answers to these questions are given by the following fundamental
theorem.

Theorem 2.4.1 If the functions p and g are continuous on an open interval I : α < t < β con-
taining the point t = t0, then there exists a unique function y = φ(t) that satisfies
the differential equation

y′ + p(t)y = g(t) (1)

for each t in I , and that also satisfies the initial condition

y(t0) = y0, (2)

where y0 is an arbitrary prescribed initial value.

Observe thatTheorem 2.4.1 states that the given initial value problem has a solution
and also that the problem has only one solution. In other words, the theorem asserts
both the existence and uniqueness of the solution of the initial value problem (1), (2).
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In addition, it states that the solution exists throughout any interval I containing the
initial point t0 in which the coefficients p and g are continuous. That is, the solution
can be discontinuous or fail to exist only at points where at least one of p and g is
discontinuous. Such points can often be identified at a glance.

The proof of this theorem is partly contained in the discussion in Section 2.1 leading
to the formula [Eq. (32) in Section 2.1]

μ(t)y =
∫

μ(t)g(t) dt + c, (3)

where [Eq. (30) in Section 2.1]

μ(t) = exp
∫

p(t) dt. (4)

The derivation in Section 2.1 shows that if Eq. (1) has a solution, then it must be
given by Eq. (3). By looking slightly more closely at that derivation, we can also
conclude that the differential equation (1) must indeed have a solution. Since p is
continuous for α < t < β, it follows that μ is defined in this interval and is a nonzero
differentiable function. Upon multiplying Eq. (1) by μ(t), we obtain

[μ(t)y]′ = μ(t)g(t). (5)

Since both μ and g are continuous, the function μg is integrable, and Eq. (3) follows
from Eq. (5). Further, the integral of μg is differentiable, so y as given by Eq. (3)
exists and is differentiable throughout the interval α < t < β. By substituting the
expression for y from Eq. (3) into either Eq. (1) or Eq. (5), you can verify that
this expression satisfies the differential equation throughout the interval α < t < β.
Finally, the initial condition (2) determines the constant c uniquely, so there is only
one solution of the initial value problem; this completes the proof.

Equation (4) determines the integrating factor μ(t) only up to a multiplicative
factor that depends on the lower limit of integration. If we choose this lower limit to
be t0, then

μ(t) = exp
∫ t

t0
p(s) ds, (6)

and it follows that μ(t0) = 1. Using the integrating factor given by Eq. (6), and
choosing the lower limit of integration in Eq. (3) also to be t0, we obtain the general
solution of Eq. (1) in the form

y = 1
μ(t)

[∫ t

t0
μ(s)g(s) ds + c

]
. (7)

To satisfy the initial condition (2), we must choose c = y0. Thus the solution of the
initial value problem (1), (2) is

y = 1
μ(t)

[∫ t

t0
μ(s)g(s) ds + y0

]
, (8)

where μ(t) is given by Eq. (6).
Turning now to nonlinear differential equations, we must replace Theorem 2.4.1

by a more general theorem, such as the following.
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Theorem 2.4.2 Let the functions f and ∂f /∂y be continuous in some rectangle α < t < β,
γ < y < δ containing the point (t0,y0). Then, in some interval t0 − h < t < t0 + h
contained in α < t < β, there is a unique solution y = φ(t) of the initial value prob-
lem

y′ = f (t, y), y(t0) = y0. (9)

Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem 2.4.1 if
the differential equation is linear. For then f (t, y) = −p(t)y + g(t) and ∂f (t, y)/∂y =
−p(t), so the continuity of f and ∂f /∂y is equivalent to the continuity of p and g in
this case. The proof of Theorem 2.4.1 was comparatively simple because it could be
based on the expression (3) that gives the solution of an arbitrary linear equation.
There is no corresponding expression for the solution of the differential equation (9),
so the proof of Theorem 2.4.2 is much more difficult. It is discussed to some extent in
Section 2.8 and in greater depth in more advanced books on differential equations.

Here we note that the conditions stated inTheorem 2.4.2 are sufficient to guarantee
the existence of a unique solution of the initial value problem (9) in some interval
t0 − h < t < t0 + h, but they are not necessary. That is, the conclusion remains true
under slightly weaker hypotheses about the function f . In fact, the existence of a
solution (but not its uniqueness) can be established on the basis of the continuity of
f alone.

An important geometrical consequence of the uniqueness parts of Theorems 2.4.1
and 2.4.2 is that the graphs of two solutions cannot intersect each other. Otherwise,
there would be two solutions that satisfy the initial condition corresponding to the
point of intersection, in contradiction to Theorem 2.4.1 or 2.4.2.

We now consider some examples.

E X A M P L E

1

Use Theorem 2.4.1 to find an interval in which the initial value problem

ty′ + 2y = 4t2, (10)

y(1) = 2 (11)

has a unique solution.
Rewriting Eq. (10) in the standard form (1), we have

y′ + (2/t)y = 4t,

so p(t) = 2/t and g(t) = 4t. Thus, for this equation,g is continuous for all t,while p is continuous
only for t < 0 or for t > 0. The interval t > 0 contains the initial point; consequently,Theorem
2.4.1 guarantees that the problem (10), (11) has a unique solution on the interval 0 < t < ∞.
In Example 3 of Section 2.1 we found the solution of this initial value problem to be

y = t2 + 1
t2

, t > 0. (12)

Now suppose that the initial condition (11) is changed to y(−1) = 2. Then Theorem 2.4.1
asserts the existence of a unique solution for t < 0. As you can readily verify, the solution is
again given by Eq. (12), but now on the interval −∞ < t < 0.
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E X A M P L E

2

Apply Theorem 2.4.2 to the initial value problem

dy
dx

= 3x2 + 4x + 2
2(y − 1)

, y(0) = −1. (13)

Note that Theorem 2.4.1 is not applicable to this problem since the differential equation is
nonlinear. To apply Theorem 2.4.2, observe that

f (x, y) = 3x2 + 4x + 2
2(y − 1)

,
∂f
∂y

(x, y) = −3x2 + 4x + 2
2(y − 1)2

.

Thus each of these functions is continuous everywhere except on the line y = 1. Consequently,
a rectangle can be drawn about the initial point (0, −1) in which both f and ∂f /∂y are continu-
ous. ThereforeTheorem 2.4.2 guarantees that the initial value problem has a unique solution in
some interval about x = 0. However, even though the rectangle can be stretched infinitely far
in both the positive and negative x directions, this does not necessarily mean that the solution
exists for all x. Indeed, the initial value problem (13) was solved in Example 2 of Section 2.2
and the solution exists only for x > −2.

Now suppose we change the initial condition to y(0) = 1. The initial point now lies on
the line y = 1 so no rectangle can be drawn about it, within which f and ∂f /∂y are contin-
uous. Consequently, Theorem 2.4.2 says nothing about possible solutions of this modified
problem. However, if we separate the variables and integrate, as in Section 2.2, we find
that

y2 − 2y = x3 + 2x2 + 2x + c.

Further, if x = 0 and y = 1, then c = −1. Finally, by solving for y, we obtain

y = 1 ±
√

x3 + 2x2 + 2x. (14)

Equation (14) provides two functions that satisfy the given differential equation for x > 0 and
also satisfy the initial condition y(0) = 1.

E X A M P L E

3

Consider the initial value problem

y′ = y1/3, y(0) = 0 (15)

for t ≥ 0. Apply Theorem 2.4.2 to this initial value problem and then solve the problem.
The function f (t, y) = y1/3 is continuous everywhere, but ∂f /∂y does not exist when y = 0,

and hence is not continuous there. Thus Theorem 2.4.2 does not apply to this problem and
no conclusion can be drawn from it. However, by the remark following Theorem 2.4.2 the
continuity of f does ensure the existence of solutions, but not their uniqueness.

To understand the situation more clearly, we must actually solve the problem, which is easy
to do since the differential equation is separable. Thus we have

y−1/3dy = dt,

so
3
2 y2/3 = t + c

and
y = [

2
3 (t + c)

]3/2
.

The initial condition is satisfied if c = 0, so

y = φ1(t) = (
2
3 t
)3/2

, t ≥ 0 (16)
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satisfies both of Eqs. (15). On the other hand, the function

y = φ2(t) = − (
2
3 t
)3/2

, t ≥ 0 (17)

is also a solution of the initial value problem. Moreover, the function

y = ψ(t) = 0, t ≥ 0 (18)

is yet another solution. Indeed, for an arbitrary positive t0, the functions

y = χ(t) =
{

0, if 0 ≤ t < t0,

± [
2
3 (t − t0)

]3/2
, if t ≥ t0

(19)

are continuous, differentiable (in particular at t = t0), and are solutions of the initial value
problem (15). Hence this problem has an infinite family of solutions; see Figure 2.4.1, where
a few of these solutions are shown.

1(t)φ

2(t)φ–1

1

1 2

y

t

  (t)χ

  (t)χ

(t)ψ

FIGURE 2.4.1 Several solutions of the initial value problem y′ = y1/3, y(0) = 0.

As already noted, the nonuniqueness of the solutions of the problem (15) does not contradict
the existence and uniqueness theorem, since the theorem is not applicable if the initial point
lies on the t-axis. If (t0, y0) is any point not on the t-axis, however, then the theorem guarantees
that there is a unique solution of the differential equation y′ = y1/3 passing through (t0, y0).

Interval of Definition. According to Theorem 2.4.1, the solution of a linear equation (1)

y′ + p(t)y = g(t),

subject to the initial condition y(t0) = y0, exists throughout any interval about t = t0
in which the functions p and g are continuous. Thus, vertical asymptotes or other
discontinuities in the solution can occur only at points of discontinuity of p or g. For
instance, the solutions in Example 1 (with one exception) are asymptotic to the y-
axis, corresponding to the discontinuity at t = 0 in the coefficient p(t) = 2/t, but none
of the solutions has any other point where it fails to exist and to be differentiable.
The one exceptional solution shows that solutions may sometimes remain continuous
even at points of discontinuity of the coefficients.
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On the other hand, for a nonlinear initial value problem satisfying the hypotheses
of Theorem 2.4.2, the interval in which a solution exists may be difficult to determine.
The solution y = φ(t) is certain to exist as long as the point [t, φ(t)] remains within a
region in which the hypotheses ofTheorem 2.4.2 are satisfied. This is what determines
the value of h in that theorem. However, since φ(t) is usually not known, it may be
impossible to locate the point [t, φ(t)] with respect to this region. In any case, the
interval in which a solution exists may have no simple relationship to the function f
in the differential equation y′ = f (t, y). This is illustrated by the following example.

E X A M P L E

4

Solve the initial value problem
y′ = y2, y(0) = 1, (20)

and determine the interval in which the solution exists.
Theorem 2.4.2 guarantees that this problem has a unique solution since f (t, y) = y2 and

∂f /∂y = 2y are continuous everywhere. To find the solution, we separate the variables and
integrate with the result that

y−2 dy = dt (21)

and
−y−1 = t + c.

Then, solving for y, we have

y = − 1
t + c

. (22)

To satisfy the initial condition, we must choose c = −1, so

y = 1
1 − t

(23)

is the solution of the given initial value problem. Clearly, the solution becomes unbounded as
t → 1; therefore, the solution exists only in the interval −∞ < t < 1. There is no indication
from the differential equation itself, however, that the point t = 1 is in any way remarkable.
Moreover, if the initial condition is replaced by

y(0) = y0, (24)

then the constant c in Eq. (22) must be chosen to be c = −1/y0, and it follows that

y = y0

1 − y0t
(25)

is the solution of the initial value problem with the initial condition (24). Observe that the
solution (25) becomes unbounded as t → 1/y0, so the interval of existence of the solution is
−∞ < t < 1/y0 if y0 > 0, and is 1/y0 < t < ∞ if y0 < 0. This example illustrates another fea-
ture of initial value problems for nonlinear equations; namely, the singularities of the solution
may depend in an essential way on the initial conditions as well as on the differential equation.

General Solution. Another way in which linear and nonlinear equations differ concerns
the concept of a general solution. For a first order linear equation it is possible to
obtain a solution containing one arbitrary constant, from which all possible solutions
follow by specifying values for this constant. For nonlinear equations this may not be
the case; even though a solution containing an arbitrary constant may be found, there
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may be other solutions that cannot be obtained by giving values to this constant. For
instance, for the differential equation y′ = y2 in Example 4, the expression in Eq. (22)
contains an arbitrary constant, but does not include all solutions of the differential
equation. To show this,observe that the function y = 0 for all t is certainly a solution of
the differential equation, but it cannot be obtained from Eq. (22) by assigning a value
to c. In this example we might anticipate that something of this sort might happen
because to rewrite the original differential equation in the form (21), we must require
that y is not zero. However, the existence of “additional” solutions is not uncommon
for nonlinear equations; a less obvious example is given in Problem 22. Thus we will
use the term “general solution” only when discussing linear equations.

Implicit Solutions. Recall again that, for an initial value problem for a first order linear
equation, Eq. (8) provides an explicit formula for the solution y = φ(t). As long as
the necessary antiderivatives can be found, the value of the solution at any point can
be determined merely by substituting the appropriate value of t into the equation.
The situation for nonlinear equations is much less satisfactory. Usually, the best that
we can hope for is to find an equation

F(t, y) = 0 (26)

involving t and y that is satisfied by the solution y = φ(t). Even this can be done only
for differential equations of certain particular types, of which separable equations
are the most important. The equation (26) is called an integral, or first integral, of the
differential equation, and (as we have already noted) its graph is an integral curve, or
perhaps a family of integral curves. Equation (26), assuming it can be found, defines
the solution implicitly; that is, for each value of t we must solve Eq. (26) to find the
corresponding value of y. If Eq. (26) is simple enough, it may be possible to solve
it for y by analytical means and thereby obtain an explicit formula for the solution.
However, more frequently this will not be possible, and you will have to resort to a
numerical calculation to determine (approximately) the value of y for a given value
of t. Once several pairs of values of t and y have been calculated, it is often helpful
to plot them and then to sketch the integral curve that passes through them. You
should arrange for a computer to do this for you, if possible.

Examples 2, 3, and 4 are nonlinear problems in which it is easy to solve for an
explicit formula for the solution y = φ(t). On the other hand, Examples 1 and 3 in
Section 2.2 are cases in which it is better to leave the solution in implicit form, and to
use numerical means to evaluate it for particular values of the independent variable.
The latter situation is more typical; unless the implicit relation is quadratic in y, or
has some other particularly simple form, it is unlikely that it can be solved exactly
by analytical methods. Indeed, more often than not, it is impossible even to find an
implicit expression for the solution of a first order nonlinear equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty in obtain-
ing exact analytical solutions of nonlinear differential equations, methods that yield
approximate solutions or other qualitative information about solutions are of cor-
respondingly greater importance. We have already described, in Section 1.1, how
the direction field of a differential equation can be constructed. The direction field
can often show the qualitative form of solutions and can also be helpful in identi-
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fying regions of the ty-plane where solutions exhibit interesting features that merit
more detailed analytical or numerical investigation. Graphical methods for first or-
der equations are discussed further in Section 2.5. An introduction to numerical
methods for first order equations is given in Section 2.7, and a systematic discussion
of numerical methods appears in Chapter 8. However, it is not necessary to study
the numerical algorithms themselves in order to use effectively one of the many
software packages that generate and plot numerical approximations to solutions of
initial value problems.

Summary. The linear equation y′ + p(t)y = g(t) has several nice properties that can
be summarized in the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, containing an
arbitrary constant, that includes all solutions of the differential equation. A particular
solution that satisfies a given initial condition can be picked out by choosing the proper
value for the arbitrary constant.

2. There is an expression for the solution, namely, Eq. (7) or Eq. (8). Moreover, although it
involves two integrations, the expression is an explicit one for the solution y = φ(t) rather
than an equation that defines φ implicitly.

3. The possible points of discontinuity, or singularities, of the solution can be identified (with-
out solving the problem) merely by finding the points of discontinuity of the coefficients.
Thus, if the coefficients are continuous for all t, then the solution also exists and is differ-
entiable for all t.

None of these statements is true, in general, of nonlinear equations. Although a
nonlinear equation may well have a solution involving an arbitrary constant, there
may also be other solutions. There is no general formula for solutions of nonlinear
equations. If you are able to integrate a nonlinear equation,you are likely to obtain an
equation defining solutions implicitly rather than explicitly. Finally, the singularities
of solutions of nonlinear equations can usually be found only by solving the equation
and examining the solution. It is likely that the singularities will depend on the initial
condition as well as the differential equation.

PROBLEMS In each of Problems 1 through 6 determine (without solving the problem) an interval in which
the solution of the given initial value problem is certain to exist.

1. (t − 3)y′ + (ln t)y = 2t, y(1) = 2
2. t(t − 4)y′ + y = 0, y(2) = 1
3. y′ + (tan t)y = sin t, y(π) = 0 4. (4 − t2)y′ + 2ty = 3t2, y(−3) = 1
5. (4 − t2)y′ + 2ty = 3t2, y(1) = −3 6. (ln t)y′ + y = cot t, y(2) = 3

In each of Problems 7 through 12 state where in the ty-plane the hypotheses of Theorem 2.4.2
are satisfied.

7. y′ = t − y
2t + 5y

8. y′ = (1 − t2 − y2)1/2

9. y′ = ln |ty|
1 − t2 + y2

10. y′ = (t2 + y2)3/2
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11.
dy
dt

= 1 + t2

3y − y2
12.

dy
dt

= (cot t)y
1 + y

In each of Problems 13 through 16 solve the given initial value problem and determine how
the interval in which the solution exists depends on the initial value y0.
13. y′ = −4t/y, y(0) = y0 14. y′ = 2ty2, y(0) = y0

15. y′ + y3 = 0, y(0) = y0 16. y′ = t2/y(1 + t3), y(0) = y0

In each of Problems 17 through 20 draw a direction field and plot (or sketch) several solutions
of the given differential equation. Describe how solutions appear to behave as t increases and
how their behavior depends on the initial value y0 when t = 0.
17. y′ = ty(3 − y) 18. y′ = y(3 − ty)

19. y′ = −y(3 − ty) 20. y′ = t − 1 − y2

21. Consider the initial value problem y′ = y1/3, y(0) = 0 from Example 3 in the text.
(a) Is there a solution that passes through the point (1, 1)? If so, find it.
(b) Is there a solution that passes through the point (2, 1)? If so, find it.
(c) Consider all possible solutions of the given initial value problem. Determine the set
of values that these solutions have at t = 2.

22. (a) Verify that both y1(t) = 1 − t and y2(t) = −t2/4 are solutions of the initial value
problem

y′ = −t + (t2 + 4y)1/2

2
, y(2) = −1.

Where are these solutions valid?
(b) Explain why the existence of two solutions of the given problem does not contradict
the uniqueness part of Theorem 2.4.2.
(c) Show that y = ct + c2, where c is an arbitrary constant, satisfies the differential equa-
tion in part (a) for t ≥ −2c. If c = −1, the initial condition is also satisfied, and the
solution y = y1(t) is obtained. Show that there is no choice of c that gives the second
solution y = y2(t).

23. (a) Show that φ(t) = e2t is a solution of y′ − 2y = 0 and that y = cφ(t) is also a solution
of this equation for any value of the constant c.
(b) Show that φ(t) = 1/t is a solution of y′ + y2 = 0 for t > 0 but that y = cφ(t) is not
a solution of this equation unless c = 0 or c = 1. Note that the equation of part (b) is
nonlinear, while that of part (a) is linear.

24. Show that if y = φ(t) is a solution of y′ + p(t)y = 0, then y = cφ(t) is also a solution for
any value of the constant c.

25. Let y = y1(t) be a solution of

y′ + p(t)y = 0, (i)

and let y = y2(t) be a solution of

y′ + p(t)y = g(t). (ii)

Show that y = y1(t) + y2(t) is also a solution of Eq. (ii).

26. (a) Show that the solution (7) of the general linear equation (1) can be written in the
form

y = cy1(t) + y2(t), (i)

where c is an arbitrary constant. Identify the functions y1 and y2.
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(b) Show that y1 is a solution of the differential equation

y′ + p(t)y = 0, (ii)

corresponding to g(t) = 0.
(c) Show that y2 is a solution of the full linear equation (1). We see later (for example,
in Section 3.5) that solutions of higher order linear equations have a pattern similar to
Eq. (i).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear equation by making a
change of the dependent variable that converts it into a linear equation. The most important
such equation has the form

y′ + p(t)y = q(t)yn,

and is called a Bernoulli equation after Jakob Bernoulli. Problems 27 through 31 deal with
equations of this type.

27. (a) Solve Bernoulli’s equation when n = 0; when n = 1.
(b) Show that if n �= 0, 1, then the substitution v = y1−n reduces Bernoulli’s equation to a
linear equation. This method of solution was found by Leibniz in 1696.

In each of Problems 28 through 31 the given equation is a Bernoulli equation. In each case
solve it by using the substitution mentioned in Problem 27(b).
28. t2y′ + 2ty − y3 = 0, t > 0
29. y′ = ry − ky2, r > 0 and k > 0. This equation is important in population dynamics and is

discussed in detail in Section 2.5.
30. y′ = εy − σy3, ε > 0 and σ > 0. This equation occurs in the study of the stability of fluid

flow.
31. dy/dt = (� cos t + T)y − y3, where � and T are constants. This equation also occurs in

the study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes occur in which one or
both of the functions p and g have jump discontinuities. If t0 is such a point of discontinuity,
then it is necessary to solve the equation separately for t < t0 and t > t0. Afterward, the two
solutions are matched so that y is continuous at t0; this is accomplished by a proper choice of
the arbitrary constants. The following two problems illustrate this situation. Note in each case
that it is impossible also to make y′ continuous at t0.
32. Solve the initial value problem

y′ + 2y = g(t), y(0) = 0,

where

g(t) =
{

1, 0 ≤ t ≤ 1,

0, t > 1.

33. Solve the initial value problem

y′ + p(t)y = 0, y(0) = 1,

where

p(t) =
{

2, 0 ≤ t ≤ 1,

1, t > 1.
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2.5 Autonomous Equations and Population Dynamics
An important class of first order equations consists of those in which the independent
variable does not appear explicitly. Such equations are called autonomous and have
the form

dy/dt = f (y). (1)

We will discuss these equations in the context of the growth or decline of the popula-
tion of a given species, an important issue in fields ranging from medicine to ecology
to global economics. A number of other applications are mentioned in some of the
problems. Recall that in Sections 1.1 and 1.2 we considered the special case of Eq. (1)
in which f (y) = ay + b.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but
the main purpose of this section is to show how geometrical methods can be used
to obtain important qualitative information directly from the differential equation,
without solving the equation. Of fundamental importance in this effort are the
concepts of stability and instability of solutions of differential equations. These ideas
were introduced informally in Chapter 1, but without using this terminology. They
are discussed further here and will be examined in greater depth and in a more
general setting in Chapter 9.

Exponential Growth. Let y = φ(t) be the population of the given species at time t. The
simplest hypothesis concerning the variation of population is that the rate of change
of y is proportional10 to the current value of y; that is,

dy/dt = ry, (2)

where the constant of proportionality r is called the rate of growth or decline, de-
pending on whether it is positive or negative. Here, we assume that r > 0, so the
population is growing.

Solving Eq. (2) subject to the initial condition

y(0) = y0, (3)

we obtain
y = y0ert . (4)

Thus the mathematical model consisting of the initial value problem (2), (3) with
r > 0 predicts that the population will grow exponentially for all time, as shown
in Figure 2.5.1 for several values of y0. Under ideal conditions, Eq. (4) has been
observed to be reasonably accurate for many populations, at least for limited periods
of time. However, it is clear that such ideal conditions cannot continue indefinitely;
eventually, limitations on space, food supply,or other resources will reduce the growth
rate and bring an end to uninhibited exponential growth.

10It was apparently the British economist Thomas Malthus (1766–1834) who first observed that many
biological populations increase at a rate proportional to the population. His first paper on populations
appeared in 1798.
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FIGURE 2.5.1 Exponential growth: y versus t for dy/dt = ry.

Logistic Growth. To take account of the fact that the growth rate actually depends on
the population, we replace the constant r in Eq. (2) by a function h(y) and thereby
obtain the modified equation

dy/dt = h(y)y. (5)

We now want to choose h(y) so that h(y) ∼= r > 0 when y is small, h(y) decreases as
y grows larger, and h(y) < 0 when y is sufficiently large. The simplest function that
has these properties is h(y) = r − ay, where a is also a positive constant. Using this
function in Eq. (5), we obtain

dy/dt = (r − ay)y. (6)

Equation (6) is known as the Verhulst11 equation or the logistic equation. It is often
convenient to write the logistic equation in the equivalent form

dy
dt

= r
(

1 − y
K

)
y, (7)

where K = r/a. The constant r is called the intrinsic growth rate, that is, the growth
rate in the absence of any limiting factors. The interpretation of K will become clear
shortly.

We will investigate the solutions of Eq. (7) in some detail later in this section.
Before doing that, however, we will show how you can easily draw a qualitatively
correct sketch of the solutions. The same methods also apply to the more general
Eq. (1).

11P. F. Verhulst (1804–1849) was a Belgian mathematician who introduced Eq. (6) as a model for human
population growth in 1838. He referred to it as logistic growth; hence Eq. (6) is often called the logistic
equation. He was unable to test the accuracy of his model because of inadequate census data, and it did
not receive much attention until many years later. Reasonable agreement with experimental data was
demonstrated by R. Pearl (1930) for Drosophila melanogaster (fruit fly) populations and by G. F. Gause
(1935) for Paramecium and Tribolium (flour beetle) populations.
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We first seek solutions of Eq. (7) of the simplest possible type, that is, constant
functions. For such a solution dy/dt = 0 for all t, so any constant solution of Eq. (7)
must satisfy the algebraic equation

r(1 − y/K)y = 0.

Thus the constant solutions are y = φ1(t) = 0 and y = φ2(t) = K. These solutions
are called equilibrium solutions of Eq. (7) because they correspond to no change or
variation in the value of y as t increases. In the same way, any equilibrium solutions
of the more general Eq. (1) can be found by locating the roots of f (y) = 0. The zeros
of f (y) are also called critical points.

To visualize other solutions of Eq. (7) and to sketch their graphs quickly, we start
by drawing the graph of f (y) versus y. In the case of Eq. (7), f (y) = r(1 − y/K)y,
so the graph is the parabola shown in Figure 2.5.2. The intercepts are (0, 0) and
(K, 0), corresponding to the critical points of Eq. (7), and the vertex of the parabola
is (K/2, rK/4). Observe that dy/dt > 0 for 0 < y < K; therefore, y is an increasing
function of t when y is in this interval; this is indicated by the rightward-pointing
arrows near the y-axis in Figure 2.5.2. Similarly, if y > K, then dy/dt < 0; hence y is
decreasing, as indicated by the leftward-pointing arrow in Figure 2.5.2.

rK /4

f (y)

K/2

(K/2, rK /4)

K y

FIGURE 2.5.2 f (y) versus y for dy/dt = r(1 − y/K)y.

In this context the y-axis is often called the phase line, and it is reproduced in its
more customary vertical orientation in Figure 2.5.3a. The dots at y = 0 and y = K
are the critical points, or equilibrium solutions. The arrows again indicate that y is
increasing whenever 0 < y < K and that y is decreasing whenever y > K.

Further, from Figure 2.5.2, note that if y is near zero or K, then the slope f (y) is
near zero, so the solution curves are relatively flat. They become steeper as the value
of y leaves the neighborhood of zero or K.

To sketch the graphs of solutions of Eq. (7) in the ty-plane, we start with the equi-
librium solutions y = 0 and y = K; then we draw other curves that are increasing
when 0 < y < K, decreasing when y > K, and flatten out as y approaches either of
the values 0 or K. Thus the graphs of solutions of Eq. (7) must have the general
shape shown in Figure 2.5.3b, regardless of the values of r and K.
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FIGURE 2.5.3 Logistic growth: dy/dt = r(1 − y/K)y. (a) The phase line. (b) Plots of y
versus t.

Figure 2.5.3b may seem to show that other solutions intersect the equilibrium
solution y = K, but is this really possible? No, the uniqueness part of Theorem 2.4.2,
the fundamental existence and uniqueness theorem, states that only one solution can
pass through a given point in the ty-plane. Thus, although other solutions may be
asymptotic to the equilibrium solution as t → ∞, they cannot intersect it at any finite
time.

To carry the investigation one step further, we can determine the concavity of the
solution curves and the location of inflection points by finding d2y/dt2. From the
differential equation (1) we obtain (using the chain rule)

d2y
dt2

= d
dt

dy
dt

= d
dt

f (y) = f ′(y)
dy
dt

= f ′(y)f (y). (8)

The graph of y versus t is concave up when y′′ > 0, that is, when f and f ′ have the
same sign. Similarly, it is concave down when y′′ < 0, which occurs when f and f ′
have opposite signs. The signs of f and f ′ can be easily identified from the graph of
f (y) versus y. Inflection points may occur when f ′(y) = 0.

In the case of Eq. (7), solutions are concave up for 0 < y < K/2 where f is positive
and increasing (see Figure 2.5.2), so that both f and f ′ are positive. Solutions are
also concave up for y > K where f is negative and decreasing (both f and f ′ are
negative). For K/2 < y < K, solutions are concave down since here f is positive and
decreasing, so f is positive but f ′ is negative. There is an inflection point whenever
the graph of y versus t crosses the line y = K/2. The graphs in Figure 2.5.3b exhibit
these properties.

Finally, observe that K is the upper bound that is approached, but not exceeded,
by growing populations starting below this value. Thus it is natural to refer to K as
the saturation level, or the environmental carrying capacity, for the given species.

A comparison of Figures 2.5.1 and 2.5.3b reveals that solutions of the nonlinear
equation (7) are strikingly different from those of the linear equation (1), at least
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for large values of t. Regardless of the value of K, that is, no matter how small the
nonlinear term in Eq. (7), solutions of that equation approach a finite value as t → ∞,
whereas solutions of Eq. (1) grow (exponentially) without bound as t → ∞. Thus
even a tiny nonlinear term in the differential equation (7) has a decisive effect on
the solution for large t.

In many situations it is sufficient to have the qualitative information about a solu-
tion y = φ(t) of Eq. (7) that is shown in Figure 2.5.3b. This information was obtained
entirely from the graph of f (y) versus y, and without solving the differential equation
(7). However, if we wish to have a more detailed description of logistic growth—for
example, if we wish to know the value of the population at some particular time—
then we must solve Eq. (7) subject to the initial condition (3). Provided that y �= 0
and y �= K, we can write Eq. (7) in the form

dy
(1 − y/K)y

= r dt.

Using a partial fraction expansion on the left side, we have(
1
y

+ 1/K
1 − y/K

)
dy = r dt.

Then, by integrating both sides, we obtain

ln |y| − ln
∣∣∣1 − y

K

∣∣∣ = rt + c, (9)

where c is an arbitrary constant of integration to be determined from the initial
condition y(0) = y0. We have already noted that if 0 < y0 < K, then y remains in
this interval for all time. Thus in this case we can remove the absolute value bars in
Eq. (9), and by taking the exponential of both sides, we find that

y
1 − (y/K)

= Cert , (10)

where C = ec. In order to satisfy the initial condition y(0) = y0, we must choose
C = y0/[1 − (y0/K)]. Using this value for C in Eq. (10) and solving for y, we obtain

y = y0K
y0 + (K − y0)e−rt

. (11)

We have derived the solution (11) under the assumption that 0 < y0 < K. If
y0 > K, then the details of dealing with Eq. (9) are only slightly different, and we
leave it to you to show that Eq. (11) is also valid in this case. Finally, note that
Eq. (11) also contains the equilibrium solutions y = φ1(t) = 0 and y = φ2(t) = K
corresponding to the initial conditions y0 = 0 and y0 = K, respectively.

All the qualitative conclusions that we reached earlier by geometrical reason-
ing can be confirmed by examining the solution (11). In particular, if y0 = 0, then
Eq. (11) requires that y(t) = 0 for all t. If y0 > 0, and if we let t → ∞ in Eq. (11),
then we obtain

lim
t→∞ y(t) = y0K/y0 = K.

Thus, for each y0 > 0, the solution approaches the equilibrium solution y = φ2(t) = K
asymptotically as t → ∞. Therefore we say that the constant solution φ2(t) = K is
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an asymptotically stable solution of Eq. (7) or that the point y = K is an asymp-
totically stable equilibrium or critical point. After a long time, the population is
close to the saturation level K regardless of the initial population size, as long as
it is positive. Other solutions approach the equilibrium solution more rapidly as r
increases.

On the other hand, the situation for the equilibrium solution y = φ1(t) = 0 is quite
different. Even solutions that start very near zero grow as t increases and, as we
have seen, approach K as t → ∞. We say that φ1(t) = 0 is an unstable equilibrium
solution or that y = 0 is an unstable equilibrium or critical point. This means that the
only way to guarantee that the solution remains near zero is to make sure its initial
value is exactly equal to zero.

E X A M P L E

1

The logistic model has been applied to the natural growth of the halibut population in certain
areas of the Pacific Ocean.12 Let y, measured in kilograms, be the total mass, or biomass, of
the halibut population at time t. The parameters in the logistic equation are estimated to have
the values r = 0.71/year and K = 80.5 × 106 kg. If the initial biomass is y0 = 0.25K, find the
biomass 2 years later. Also find the time τ for which y(τ ) = 0.75K.

It is convenient to scale the solution (11) to the carrying capacity K; thus we write Eq. (11)
in the form

y
K

= y0/K
(y0/K) + [1 − (y0/K)]e−rt

. (12)

Using the data given in the problem, we find that

y(2)

K
= 0.25

0.25 + 0.75e−1.42
∼= 0.5797.

Consequently, y(2) ∼= 46.7 × 106 kg.
To find τ , we can first solve Eq. (12) for t. We obtain

e−rt = (y0/K)[1 − (y/K)]
(y/K)[1 − (y0/K)] ;

hence

t = −1
r

ln
(y0/K)[1 − (y/K)]
(y/K)[1 − (y0/K)] . (13)

Using the given values of r and y0/K and setting y/K = 0.75, we find that

τ = − 1
0.71

ln
(0.25)(0.25)

(0.75)(0.75)
= 1

0.71
ln 9 ∼= 3.095 years.

The graphs of y/K versus t for the given parameter values and for several initial conditions
are shown in Figure 2.5.4.

12A good source of information on the population dynamics and economics involved in making efficient
use of a renewable resource, with particular emphasis on fisheries, is the book by Clark listed in the
references at the end of this chapter. The parameter values used here are given on page 53 of this book
and were obtained from a study by H. S. Mohring.
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FIGURE 2.5.4 y/K versus t for population model of halibut in the Pacific Ocean.

A Critical Threshold. We now turn to a consideration of the equation

dy
dt

= −r
(

1 − y
T

)
y, (14)

where r and T are given positive constants. Observe that (except for replacing the
parameter K by T) this equation differs from the logistic equation (7) only in the
presence of the minus sign on the right side. However, as we will see, the solutions
of Eq. (14) behave very differently from those of Eq. (7).

For Eq. (14) the graph of f (y) versus y is the parabola shown in Figure 2.5.5.
The intercepts on the y-axis are the critical points y = 0 and y = T , corresponding
to the equilibrium solutions φ1(t) = 0 and φ2(t) = T . If 0 < y < T , then dy/dt < 0,
and y decreases as t increases. On the other hand, if y > T , then dy/dt > 0, and y
grows as t increases. Thus φ1(t) = 0 is an asymptotically stable equilibrium solution
and φ2(t) = T is an unstable one. Further, f ′(y) is negative for 0 < y < T/2 and
positive for T/2 < y < T , so the graph of y versus t is concave up and concave down,
respectively, in these intervals. Also, f ′(y) is positive for y > T , so the graph of y
versus t is also concave up there.

f ( y)

–rT /4
(T/2, –rT /4)

T /2 T y

FIGURE 2.5.5 f (y) versus y for dy/dt = −r(1 − y/T)y.
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Figure 2.5.6a shows the phase line (the y-axis) for Eq. (14). The dots at y = 0 and
y = T are the critical points, or equilibrium solutions, and the arrows indicate where
solutions are either increasing or decreasing.

Solution curves of Eq. (14) can now be sketched quickly, as follows. First draw
the equilibrium solutions y = 0 and y = T . Then sketch curves in the strip 0 < y < T
that are decreasing as t increases and change concavity as they cross the line y = T/2.
Next draw some curves above y = T that increase more and more steeply as t and
y increase. Make sure that all curves become flatter as y approaches either zero or
T . The result is Figure 2.5.6b, which is a qualitatively accurate sketch of solutions of
Eq. (14) for any r and T . From this figure it appears that as time increases, y either
approaches zero or grows without bound, depending on whether the initial value y0

is less than or greater than T . Thus T is a threshold level, below which growth does
not occur.

T

0

y

(a) (b)

y

t

T

T /2

2(t) = Tφ

1(t) = 0φ

FIGURE 2.5.6 Growth with a threshold: dy/dt = −r(1 − y/T)y. (a) The phase line.
(b) Plots of y versus t.

We can confirm the conclusions that we have reached through geometrical rea-
soning by solving the differential equation (14). This can be done by separating the
variables and integrating, just as we did for Eq. (7). However, if we note that Eq. (14)
can be obtained from Eq. (7) by replacing K by T and r by −r, then we can make
the same substitutions in the solution (11) and thereby obtain

y = y0T
y0 + (T − y0)ert

, (15)

which is the solution of Eq. (14) subject to the initial condition y(0) = y0.
If 0 < y0 < T , then it follows from Eq. (15) that y → 0 as t → ∞. This agrees with

our qualitative geometric analysis. If y0 > T , then the denominator on the right side
of Eq. (15) is zero for a certain finite value of t. We denote this value by t∗ and
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calculate it from
y0 − (y0 − T)ert∗ = 0,

which gives

t∗ = 1
r

ln
y0

y0 − T
. (16)

Thus, if the initial population y0 is above the threshold T , the threshold model predicts
that the graph of y versus t has a vertical asymptote at t = t∗; in other words, the
population becomes unbounded in a finite time, whose value depends on y0, T , and r.
The existence and location of this asymptote were not apparent from the geometric
analysis, so in this case the explicit solution yields additional important qualitative,
as well as quantitative, information.

The populations of some species exhibit the threshold phenomenon. If too few
are present, then the species cannot propagate itself successfully and the population
becomes extinct. However, if the population is larger than the threshold level, then
further growth occurs. Of course, the population cannot become unbounded, so
eventually Eq. (14) must be modified to take this into account.

Critical thresholds also occur in other circumstances. For example, in fluid mechan-
ics, equations of the form (7) or (14) often govern the evolution of a small disturbance
y in a laminar (or smooth) fluid flow. For instance, if Eq. (14) holds and y < T , then
the disturbance is damped out and the laminar flow persists. However, if y > T , then
the disturbance grows larger and the laminar flow breaks up into a turbulent one. In
this case T is referred to as the critical amplitude. Experimenters speak of keeping
the disturbance level in a wind tunnel sufficiently low so that they can study laminar
flow over an airfoil, for example.

Logistic Growth with a Threshold. As we mentioned in the last subsection, the threshold
model (14) may need to be modified so that unbounded growth does not occur when
y is above the threshold T . The simplest way to do this is to introduce another factor
that will have the effect of making dy/dt negative when y is large. Thus we consider

dy
dt

= −r
(

1 − y
T

) (
1 − y

K

)
y, (17)

where r > 0 and 0 < T < K.
The graph of f (y) versus y is shown in Figure 2.5.7. In this problem there are three

critical points, y = 0, y = T , and y = K, corresponding to the equilibrium solutions
φ1(t) = 0, φ2(t) = T , and φ3(t) = K, respectively. From Figure 2.5.7 we observe that
dy/dt > 0 for T < y < K, and consequently y is increasing there. Further, dy/dt < 0
for y < T and for y > K, so y is decreasing in these intervals. Consequently, the
equilibrium solutions φ1(t) and φ3(t) are asymptotically stable, and the solution φ2(t)
is unstable.

The phase line for Eq. (17) is shown in Figure 2.5.8a, and the graphs of some
solutions are sketched in Figure 2.5.8b. You should make sure that you understand
the relation between these two figures, as well as the relation between Figures 2.5.7
and 2.5.8a. From Figure 2.5.8b we see that if y starts below the threshold T , then
y declines to ultimate extinction. On the other hand, if y starts above T , then y
eventually approaches the carrying capacity K. The inflection points on the graphs
of y versus t in Figure 2.5.8b correspond to the maximum and minimum points, y1
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FIGURE 2.5.7 f (y) versus y for dy/dt = −r(1 − y/T)(1 − y/K)y.
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FIGURE 2.5.8 Logistic growth with a threshold: dy/dt = −r(1 − y/T)(1 − y/K)y. (a) The
phase line. (b) Plots of y versus t.

and y2, respectively, on the graph of f (y) versus y in Figure 2.5.7. These values can
be obtained by differentiating the right side of Eq. (17) with respect to y, setting the
result equal to zero, and solving for y. We obtain

y1,2 = (K + T ±
√

K2 − KT + T2)/3, (18)

where the plus sign yields y1 and the minus sign y2.
A model of this general sort apparently describes the population of the passenger

pigeon,13 which was present in the United States in vast numbers until late in the
nineteenth century. It was heavily hunted for food and for sport, and consequently
its numbers were drastically reduced by the 1880s. Unfortunately, the passenger pi-
geon could apparently breed successfully only when present in a large concentration,
corresponding to a relatively high threshold T . Although a reasonably large number
of individual birds remained alive in the late 1880s, there were not enough in any one

13See, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143–145.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 108 Page number 88 cyan black

88 Chapter 2. First Order Differential Equations

place to permit successful breeding, and the population rapidly declined to extinc-
tion. The last survivor died in 1914. The precipitous decline in the passenger pigeon
population from huge numbers to extinction in a few decades was one of the early
factors contributing to a concern for conservation in this country.

PROBLEMS Problems 1 through 6 involve equations of the form dy/dt = f (y). In each problem sketch
the graph of f (y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable or unstable. Draw the phase line, and sketch several graphs of solutions
in the ty-plane.

1. dy/dt = ay + by2, a > 0, b > 0, y0 ≥ 0
2. dy/dt = ay + by2, a > 0, b > 0, −∞ < y0 < ∞
3. dy/dt = y(y − 1)(y − 2), y0 ≥ 0
4. dy/dt = ey − 1, −∞ < y0 < ∞
5. dy/dt = e−y − 1, −∞ < y0 < ∞
6. dy/dt = −2(arctan y)/(1 + y2), −∞ < y0 < ∞
7. Semistable Equilibrium Solutions. Sometimes a constant equilibrium solution has the

property that solutions lying on one side of the equilibrium solution tend to approach it,
whereas solutions lying on the other side depart from it (see Figure 2.5.9). In this case the
equilibrium solution is said to be semistable.

k

y

t
(b)

k

y

t
(a)

(t) = kφ

(t) = kφ

FIGURE 2.5.9 In both cases the equilibrium solution φ(t) = k is semistable.
(a) dy/dt ≤ 0; (b) dy/dt ≥ 0.

(a) Consider the equation

dy/dt = k(1 − y)2, (i)

where k is a positive constant. Show that y = 1 is the only critical point, with the corre-
sponding equilibrium solution φ(t) = 1.
(b) Sketch f (y) versus y. Show that y is increasing as a function of t for y < 1 and also
for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it, and those above it grow farther away.
Therefore φ(t) = 1 is semistable.
(c) Solve Eq. (i) subject to the initial condition y(0) = y0 and confirm the conclusions
reached in part (b).

Problems 8 through 13 involve equations of the form dy/dt = f (y). In each problem sketch
the graph of f (y) versus y, determine the critical (equilibrium) points, and classify each one
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as asymptotically stable, unstable, or semistable (see Problem 7). Draw the phase line, and
sketch several graphs of solutions in the ty-plane.

8. dy/dt = −k(y − 1)2, k > 0, −∞ < y0 < ∞
9. dy/dt = y2(y2 − 1), −∞ < y0 < ∞

10. dy/dt = y(1 − y2), −∞ < y0 < ∞
11. dy/dt = ay − b

√
y, a > 0, b > 0, y0 ≥ 0

12. dy/dt = y2(4 − y2), −∞ < y0 < ∞
13. dy/dt = y2(1 − y)2, −∞ < y0 < ∞
14. Consider the equation dy/dt = f (y) and suppose that y1 is a critical point, that is, f (y1) = 0.

Show that the constant equilibrium solution φ(t) = y1 is asymptotically stable if f ′(y1) < 0
and unstable if f ′(y1) > 0.

15. Suppose that a certain population obeys the logistic equation dy/dt = ry[1 − (y/K)].
(a) If y0 = K/3, find the time τ at which the initial population has doubled. Find the value
of τ corresponding to r = 0.025 per year.
(b) If y0/K = α, find the time T at which y(T)/K = β, where 0 < α, β < 1. Observe that
T → ∞ as α → 0 or as β → 1. Find the value of T for r = 0.025 per year, α = 0.1, and
β = 0.9.

16. Another equation that has been used to model population growth is the Gompertz14

equation
dy/dt = ry ln(K/y),

where r and K are positive constants.
(a) Sketch the graph of f (y) versus y, find the critical points, and determine whether each
is asymptotically stable or unstable.
(b) For 0 ≤ y ≤ K, determine where the graph of y versus t is concave up and where it is
concave down.
(c) For each y in 0 < y ≤ K, show that dy/dt as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

17. (a) Solve the Gompertz equation

dy/dt = ry ln(K/y),

subject to the initial condition y(0) = y0.
Hint: You may wish to let u = ln(y/K).

(b) For the data given in Example 1 in the text (r = 0.71 per year, K = 80.5 × 106 kg,
y0/K = 0.25), use the Gompertz model to find the predicted value of y(2).
(c) For the same data as in part (b), use the Gompertz model to find the time τ at which
y(τ ) = 0.75K.

18. A pond forms as water collects in a conical depression of radius a and depth h. Suppose
that water flows in at a constant rate k and is lost through evaporation at a rate proportional
to the surface area.
(a) Show that the volume V(t) of water in the pond at time t satisfies the differential
equation

dV/dt = k − απ(3a/πh)2/3V2/3,

where α is the coefficient of evaporation.

14Benjamin Gompertz (1779–1865) was an English actuary. He developed his model for population
growth, published in 1825, in the course of constructing mortality tables for his insurance company.
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(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically
stable?
(c) Find a condition that must be satisfied if the pond is not to overflow.

19. Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate k and leaks out through a small hole of area a in the bottom of the
tank. FromTorricelli’s principle in hydrodynamics (see Problem 6 in Section 2.3) it follows
that the rate at which water flows through the hole is αa

√
2gh, where h is the current depth

of water in the tank, g is the acceleration due to gravity, and α is a contraction coefficient
that satisfies 0.5 ≤ α ≤ 1.0.
(a) Show that the depth of water in the tank at any time satisfies the equation

dh/dt = (k − αa
√

2gh )/A.

(b) Determine the equilibrium depth he of water, and show that it is asymptotically stable.
Observe that he does not depend on A.

Harvesting a Renewable Resource. Suppose that the population y of a certain species of fish
(for example, tuna or halibut) in a given area of the ocean is described by the logistic equation

dy/dt = r(1 − y/K)y.

Although it is desirable to utilize this source of food, it is intuitively clear that if too many
fish are caught, then the fish population may be reduced below a useful level and possibly
even driven to extinction. Problems 20 and 21 explore some of the questions involved in
formulating a rational strategy for managing the fishery.15

20. At a given level of effort, it is reasonable to assume that the rate at which fish are caught
depends on the population y: the more fish there are, the easier it is to catch them. Thus we
assume that the rate at which fish are caught is given by Ey, where E is a positive constant,
with units of 1/time, that measures the total effort made to harvest the given species of
fish. To include this effect, the logistic equation is replaced by

dy/dt = r(1 − y/K)y − Ey. (i)

This equation is known as the Schaefer model after the biologist M. B. Schaefer, who
applied it to fish populations.
(a) Show that if E < r, then there are two equilibrium points, y1 = 0 and
y2 = K(1 − E/r) > 0.
(b) Show that y = y1 is unstable and y = y2 is asymptotically stable.
(c) A sustainable yield Y of the fishery is a rate at which fish can be caught indefinitely.
It is the product of the effort E and the asymptotically stable population y2. Find Y as a
function of the effort E; the graph of this function is known as the yield–effort curve.
(d) Determine E so as to maximize Y and thereby find the maximum sustainable yield Ym.

21. In this problem we assume that fish are caught at a constant rate h independent of the size
of the fish population. Then y satisfies

dy/dt = r(1 − y/K)y − h. (i)

15An excellent treatment of this kind of problem, which goes far beyond what is outlined here, may be
found in the book by Clark mentioned previously, especially in the first two chapters. Numerous additional
references are given there.
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The assumption of a constant catch rate h may be reasonable when y is large but becomes
less so when y is small.
(a) If h < rK/4, show that Eq. (i) has two equilibrium points y1 and y2 with y1 < y2;
determine these points.
(b) Show that y1 is unstable and y2 is asymptotically stable.
(c) From a plot of f (y) versus y, show that if the initial population y0 > y1, then y → y2

as t → ∞, but that if y0 < y1, then y decreases as t increases. Note that y = 0 is not an
equilibrium point, so if y0 < y1, then extinction will be reached in a finite time.
(d) If h > rK/4, show that y decreases to zero as t increases regardless of the value of y0.
(e) If h = rK/4, show that there is a single equilibrium point y = K/2 and that this point
is semistable (see Problem 7). Thus the maximum sustainable yield is hm = rK/4, corre-
sponding to the equilibrium value y = K/2. Observe that hm has the same value as Ym

in Problem 20(d). The fishery is considered to be overexploited if y is reduced to a level
below K/2.

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes
back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years
many mathematical models have been proposed and studied for many different diseases.16

Problems 22 through 24 deal with a few of the simpler models and the conclusions that can be
drawn from them. Similar models have also been used to describe the spread of rumors and
of consumer products.
22. Suppose that a given population can be divided into two parts: those who have a given

disease and can infect others, and those who do not have it but are susceptible. Let x be the
proportion of susceptible individuals and y the proportion of infectious individuals; then
x + y = 1. Assume that the disease spreads by contact between sick and well members
of the population and that the rate of spread dy/dt is proportional to the number of such
contacts. Further, assume that members of both groups move about freely among each
other, so the number of contacts is proportional to the product of x and y. Since x = 1 − y,
we obtain the initial value problem

dy/dt = αy(1 − y), y(0) = y0, (i)

where α is a positive proportionality factor, and y0 is the initial proportion of infectious
individuals.
(a) Find the equilibrium points for the differential equation (i) and determine whether
each is asymptotically stable, semistable, or unstable.
(b) Solve the initial value problem (i) and verify that the conclusions you reached in
part (a) are correct. Show that y(t) → 1 as t → ∞, which means that ultimately the dis-
ease spreads through the entire population.

23. Some diseases (such as typhoid fever) are spread largely by carriers, individuals who can
transmit the disease but who exhibit no overt symptoms. Let x and y, respectively, denote
the proportion of susceptibles and carriers in the population. Suppose that carriers are
identified and removed from the population at a rate β, so

dy/dt = −βy. (i)

16A standard source is the book by Bailey listed in the references. The models in Problems 22 through 24
are discussed by Bailey in Chapters 5, 10, and 20, respectively.
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Suppose also that the disease spreads at a rate proportional to the product of x and y; thus

dx/dt = −αxy. (ii)

(a) Determine y at any time t by solving Eq. (i) subject to the initial condition y(0) = y0.
(b) Use the result of part (a) to find x at any time t by solving Eq. (ii) subject to the initial
condition x(0) = x0.
(c) Find the proportion of the population that escapes the epidemic by finding the limiting
value of x as t → ∞.

24. Daniel Bernoulli’s work in 1760 had the goal of appraising the effectiveness of a contro-
versial inoculation program against smallpox, which at that time was a major threat to
public health. His model applies equally well to any other disease that, once contracted
and survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (t = 0), and let n(t) be the
number of these individuals surviving t years later. Let x(t) be the number of members of
this cohort who have not had smallpox by year t and who are therefore still susceptible.
Let β be the rate at which susceptibles contract smallpox, and let ν be the rate at which
people who contract smallpox die from the disease. Finally, let μ(t) be the death rate from
all causes other than smallpox. Then dx/dt, the rate at which the number of susceptibles
declines, is given by

dx/dt = −[β + μ(t)]x. (i)

The first term on the right side of Eq. (i) is the rate at which susceptibles contract smallpox,
and the second term is the rate at which they die from all other causes. Also

dn/dt = −νβx − μ(t)n, (ii)

where dn/dt is the death rate of the entire cohort, and the two terms on the right side are
the death rates due to smallpox and to all other causes, respectively.
(a) Let z = x/n and show that z satisfies the initial value problem

dz/dt = −βz(1 − νz), z(0) = 1. (iii)

Observe that the initial value problem (iii) does not depend on μ(t).
(b) Find z(t) by solving Eq. (iii).
(c) Bernoulli estimated that ν = β = 1

8 . Using these values, determine the proportion of
20-year-olds who have not had smallpox.
Note: On the basis of the model just described and the best mortality data available at
the time, Bernoulli calculated that if deaths due to smallpox could be eliminated (ν = 0),
then approximately 3 years could be added to the average life expectancy (in 1760) of 26
years, 7 months. He therefore supported the inoculation program.

Bifurcation Points. For an equation of the form

dy/dt = f (a, y), (i)

where a is a real parameter, the critical points (equilibrium solutions) usually depend on the
value of a. As a steadily increases or decreases, it often happens that at a certain value of a,
called a bifurcation point, critical points come together, or separate, and equilibrium solutions
may either be lost or gained. Bifurcation points are of great interest in many applications,
because near them the nature of the solution of the underlying differential equation is under-
going an abrupt change. For example, in fluid mechanics a smooth (laminar) flow may break
up and become turbulent. Or an axially loaded column may suddenly buckle and exhibit a
large lateral displacement. Or, as the amount of one of the chemicals in a certain mixture is in-
creased, spiral wave patterns of varying color may suddenly emerge in an originally quiescent



September 11, 2008 11:18 boyce-9e-bvp Sheet number 113 Page number 93 cyan black

2.5 Autonomous Equations and Population Dynamics 93

fluid. Problems 25 through 27 describe three types of bifurcations that can occur in simple
equations of the form (i).
25. Consider the equation

dy/dt = a − y2. (ii)

(a) Find all of the critical points for Eq. (ii). Observe that there are no critical points if
a < 0, one critical point if a = 0, and two critical points if a > 0.
(b) Draw the phase line in each case and determine whether each critical point is asymp-
totically stable, semistable, or unstable.
(c) In each case sketch several solutions of Eq. (ii) in the ty-plane.
(d) If we plot the location of the critical points as a function of a in the ay-plane, we obtain
Figure 2.5.10. This is called the bifurcation diagram for Eq. (ii). The bifurcation at a = 0
is called a saddle–node bifurcation. This name is more natural in the context of second
order systems, which are discussed in Chapter 9.

–2

–1

1

2

–2 –1 1 2 3 4

Unstable

Asymptotically stable

y

a

FIGURE 2.5.10 Bifurcation diagram for y′ = a − y2.

26. Consider the equation
dy/dt = ay − y3 = y(a − y2). (iii)

(a) Again consider the cases a < 0, a = 0, and a > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.
(b) In each case sketch several solutions of Eq. (iii) in the ty-plane.
(c) Draw the bifurcation diagram for Eq. (iii), that is, plot the location of the critical points
versus a. For Eq. (iii) the bifurcation point at a = 0 is called a pitchfork bifurcation; your
diagram may suggest why this name is appropriate.

27. Consider the equation
dy/dt = ay − y2 = y(a − y). (iv)

(a) Again consider the cases a < 0, a = 0, and a > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.
(b) In each case sketch several solutions of Eq. (iv) in the ty-plane.
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(c) Draw the bifurcation diagram for Eq. (iv). Observe that for Eq. (iv) there are the
same number of critical points for a < 0 and a > 0 but that their stability has changed.
For a < 0 the equilibrium solution y = 0 is asymptotically stable and y = a is unstable,
while for a > 0 the situation is reversed. Thus there has been an exchange of stability as a
passes through the bifurcation point a = 0. This type of bifurcation is called a transcritical
bifurcation.

28. Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of a substance P with one molecule of a substance Q to produce
one molecule of a new substance X ; this is denoted by P + Q → X . Suppose that p and
q, where p �= q, are the initial concentrations of P and Q, respectively, and let x(t) be the
concentration of X at time t. Then p − x(t) and q − x(t) are the concentrations of P and
Q at time t, and the rate at which the reaction occurs is given by the equation

dx/dt = α(p − x)(q − x), (i)

where α is a positive constant.
(a) If x(0) = 0, determine the limiting value of x(t) as t → ∞ without solving the differ-
ential equation. Then solve the initial value problem and find x(t) for any t.
(b) If the substances P and Q are the same, then p = q and Eq. (i) is replaced by

dx/dt = α(p − x)2. (ii)

If x(0) = 0, determine the limiting value of x(t) as t → ∞ without solving the differential
equation. Then solve the initial value problem and determine x(t) for any t.

2.6 Exact Equations and Integrating Factors
For first order equations there are a number of integration methods that are applica-
ble to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a
class of equations known as exact equations for which there is also a well-defined
method of solution. Keep in mind, however, that those first order equations that
can be solved by elementary integration methods are rather special; most first order
equations cannot be solved in this way.

E X A M P L E

1

Solve the differential equation
2x + y2 + 2xyy′ = 0. (1)

The equation is neither linear nor separable, so the methods suitable for those types of
equations are not applicable here. However, observe that the function ψ(x, y) = x2 + xy2 has
the property that

2x + y2 = ∂ψ

∂x
, 2xy = ∂ψ

∂y
. (2)

Therefore the differential equation can be written as

∂ψ

∂x
+ ∂ψ

∂y
dy
dx

= 0. (3)
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Assuming that y is a function of x and calling upon the chain rule, we can write Eq. (3) in the
equivalent form

dψ

dx
= d

dx
(x2 + xy2) = 0. (4)

Therefore
ψ(x, y) = x2 + xy2 = c, (5)

where c is an arbitrary constant, is an equation that defines solutions of Eq. (1) implicitly.

In solving Eq. (1) the key step was the recognition that there is a function ψ that
satisfies Eqs. (2). More generally, let the differential equation

M(x, y) + N(x, y)y′ = 0 (6)

be given. Suppose that we can identify a function ψ such that

∂ψ

∂x
(x, y) = M(x, y),

∂ψ

∂y
(x, y) = N(x, y), (7)

and such that ψ(x, y) = c defines y = φ(x) implicitly as a differentiable function
of x. Then

M(x, y) + N(x, y)y′ = ∂ψ

∂x
+ ∂ψ

∂y
dy
dx

= d
dx

ψ[x, φ(x)]

and the differential equation (6) becomes

d
dx

ψ[x, φ(x)] = 0. (8)

In this case Eq. (6) is said to be an exact differential equation. Solutions of Eq. (6),
or the equivalent Eq. (8), are given implicitly by

ψ(x, y) = c, (9)

where c is an arbitrary constant.
In Example 1 it was relatively easy to see that the differential equation was exact

and, in fact, easy to find its solution, by recognizing the required function ψ . For
more complicated equations it may not be possible to do this so easily. A systematic
way of determining whether a given differential equation is exact is provided by the
following theorem.

Theorem 2.6.1 Let the functions M, N , My, and Nx, where subscripts denote partial derivatives, be
continuous in the rectangular17 region R: α < x < β, γ < y < δ. Then Eq. (6)

M(x, y) + N(x, y)y′ = 0

17It is not essential that the region be rectangular, only that it be simply connected. In two dimensions
this means that the region has no holes in its interior. Thus, for example, rectangular or circular regions
are simply connected, but an annular region is not. More details can be found in most books on advanced
calculus.
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is an exact differential equation in R if and only if

My(x, y) = Nx(x, y) (10)

at each point of R. That is, there exists a function ψ satisfying Eqs. (7),

ψx(x, y) = M(x, y), ψy(x, y) = N(x, y),

if and only if M and N satisfy Eq. (10).

The proof of this theorem has two parts. First, we show that if there is a function
ψ such that Eqs. (7) are true, then it follows that Eq. (10) is satisfied. Computing My

and Nx from Eqs. (7), we obtain

My(x, y) = ψxy(x, y), Nx(x, y) = ψyx(x, y). (11)

Since My and Nx are continuous, it follows that ψxy and ψyx are also continuous. This
guarantees their equality, and Eq. (10) follows.

We now show that if M and N satisfy Eq. (10), then Eq. (6) is exact. The proof
involves the construction of a function ψ satisfying Eqs. (7)

ψx(x, y) = M(x, y), ψy(x, y) = N(x, y).

We begin by integrating the first of Eqs. (7) with respect to x, holding y constant. We
obtain

ψ(x, y) = Q(x, y) + h(y), (12)

where Q(x, y) is any differentiable function such that ∂Q(x, y)/∂x = M(x, y). For
example, we might choose

Q(x, y) =
∫ x

x0

M(s, y) ds, (13)

where x0 is some specified constant in α < x0 < β. The function h in Eq. (12) is an
arbitrary differentiable function of y, playing the role of the arbitrary constant. Now
we must show that it is always possible to choose h(y) so that the second of Eqs. (7)
is satisfied, that is, ψy = N . By differentiating Eq. (12) with respect to y and setting
the result equal to N(x, y), we obtain

ψy(x, y) = ∂Q
∂y

(x, y) + h′(y) = N(x, y).

Then, solving for h′(y), we have

h′(y) = N(x, y) − ∂Q
∂y

(x, y). (14)

In order for us to determine h(y) from Eq. (14), the right side of Eq. (14), despite
its appearance, must be a function of y only. To establish that this is true, we can
differentiate the quantity in question with respect to x, obtaining

∂N
∂x

(x, y) − ∂

∂x
∂Q
∂y

(x, y). (15)

By interchanging the order of differentiation in the second term of Eq. (15), we have

∂N
∂x

(x, y) − ∂

∂y
∂Q
∂x

(x, y),
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or, since ∂Q/∂x = M,
∂N
∂x

(x, y) − ∂M
∂y

(x, y),

which is zero on account of Eq. (10). Hence, despite its apparent form, the right
side of Eq. (14) does not, in fact, depend on x. Then we find h(y) by integrating
Eq. (14), and upon substituting this function in Eq. (12), we obtain the required
function ψ(x, y). This completes the proof of Theorem 2.6.1.

It is possible to obtain an explicit expression for ψ(x, y) in terms of integrals (see
Problem 17),but in solving specific exact equations, it is usually simpler and easier just
to repeat the procedure used in the preceding proof. That is, integrate ψx = M with
respect to x, including an arbitrary function of h(y) instead of an arbitrary constant,
and then differentiate the result with respect to y and set it equal to N . Finally, use
this last equation to solve for h(y). The next example illustrates this procedure.

E X A M P L E

2

Solve the differential equation

(y cos x + 2xey) + (sin x + x2ey − 1)y′ = 0. (16)

By calculating My and Nx, we find that

My(x, y) = cos x + 2xey = Nx(x, y),

so the given equation is exact. Thus there is a ψ(x, y) such that

ψx(x, y) = y cos x + 2xey,

ψy(x, y) = sin x + x2ey − 1.

Integrating the first of these equations, we obtain

ψ(x, y) = y sin x + x2ey + h(y). (17)

Setting ψy = N gives

ψy(x, y) = sin x + x2ey + h′(y) = sin x + x2ey − 1.

Thus h′(y) = −1 and h(y) = −y. The constant of integration can be omitted since any solution
of the preceding differential equation is satisfactory; we do not require the most general one.
Substituting for h(y) in Eq. (17) gives

ψ(x, y) = y sin x + x2ey − y.

Hence solutions of Eq. (16) are given implicitly by

y sin x + x2ey − y = c. (18)

E X A M P L E

3

Solve the differential equation

(3xy + y2) + (x2 + xy)y′ = 0. (19)

We have
My(x, y) = 3x + 2y, Nx(x, y) = 2x + y;

since My �= Nx, the given equation is not exact. To see that it cannot be solved by the procedure
described above, let us seek a function ψ such that

ψx(x, y) = 3xy + y2, ψy(x, y) = x2 + xy. (20)
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Integrating the first of Eqs. (20) gives

ψ(x, y) = 3
2 x2y + xy2 + h(y), (21)

where h is an arbitrary function of y only. To try to satisfy the second of Eqs. (20), we compute
ψy from Eq. (21) and set it equal to N , obtaining

3
2 x2 + 2xy + h′(y) = x2 + xy

or
h′(y) = − 1

2 x2 − xy. (22)

Since the right side of Eq. (22) depends on x as well as y, it is impossible to solve Eq. (22) for
h(y). Thus there is no ψ(x, y) satisfying both of Eqs. (20).

Integrating Factors. It is sometimes possible to convert a differential equation that is
not exact into an exact equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear equations in
Section 2.1. To investigate the possibility of implementing this idea more generally,
let us multiply the equation

M(x, y) dx + N(x, y) dy = 0 (23)

by a function μ and then try to choose μ so that the resulting equation

μ(x, y)M(x, y) dx + μ(x, y)N(x, y) dy = 0 (24)

is exact. By Theorem 2.6.1, Eq. (24) is exact if and only if

(μM)y = (μN)x. (25)

Since M and N are given functions, Eq. (25) states that the integrating factor μ must
satisfy the first order partial differential equation

Mμy − Nμx + (My − Nx)μ = 0. (26)

If a function μ satisfying Eq. (26) can be found, then Eq. (24) will be exact. The
solution of Eq. (24) can then be obtained by the method described in the first part of
this section. The solution found in this way also satisfies Eq. (23), since the integrating
factor μ can be canceled out of Eq. (24).

A partial differential equation of the form (26) may have more than one solution;
if this is the case, any such solution may be used as an integrating factor of Eq. (23).
This possible nonuniqueness of the integrating factor is illustrated in Example 4.

Unfortunately, Eq. (26), which determines the integrating factor μ, is ordinarily at
least as hard to solve as the original equation (23). Therefore, although in principle
integrating factors are powerful tools for solving differential equations, in practice
they can be found only in special cases. The most important situations in which
simple integrating factors can be found occur when μ is a function of only one of the
variables x or y, instead of both. Let us determine necessary conditions on M and N
so that Eq. (23) has an integrating factor μ that depends on x only. Assuming that μ

is a function of x only, we have

(μM)y = μMy, (μN)x = μNx + N
dμ

dx
.
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Thus, if (μM)y is to equal (μN)x, it is necessary that

dμ

dx
= My − Nx

N
μ. (27)

If (My − Nx)/N is a function of x only, then there is an integrating factor μ that also
depends only on x; further,μ(x) can be found by solving Eq. (27), which is both linear
and separable.

A similar procedure can be used to determine a condition under which Eq. (23)
has an integrating factor depending only on y; see Problem 23.

E X A M P L E

4

Find an integrating factor for the equation

(3xy + y2) + (x2 + xy)y′ = 0 (19)

and then solve the equation.
In Example 3 we showed that this equation is not exact. Let us determine whether it has an

integrating factor that depends on x only. On computing the quantity (My − Nx)/N , we find
that

My(x, y) − Nx(x, y)

N(x, y)
= 3x + 2y − (2x + y)

x2 + xy
= 1

x
. (28)

Thus there is an integrating factor μ that is a function of x only, and it satisfies the differential
equation

dμ

dx
= μ

x
. (29)

Hence
μ(x) = x. (30)

Multiplying Eq. (19) by this integrating factor, we obtain

(3x2y + xy2) + (x3 + x2y)y′ = 0. (31)

The latter equation is exact, and its solutions are given implicitly by

x3y + 1
2 x2y2 = c. (32)

Solutions may also be found in explicit form since Eq. (32) is quadratic in y.
You may also verify that a second integrating factor for Eq. (19) is

μ(x, y) = 1
xy(2x + y)

,

and that the same solution is obtained, though with much greater difficulty, if this integrating
factor is used (see Problem 32).

PROBLEMS Determine whether each of the equations in Problems 1 through 12 is exact. If it is exact, find
the solution.

1. (2x + 3) + (2y − 2)y′ = 0 2. (2x + 4y) + (2x − 2y)y′ = 0
3. (3x2 − 2xy + 2) dx + (6y2 − x2 + 3) dy = 0
4. (2xy2 + 2y) + (2x2y + 2x)y′ = 0
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5.
dy
dx

= −ax + by
bx + cy

6.
dy
dx

= −ax − by
bx − cy

7. (ex sin y − 2y sin x) dx + (ex cos y + 2 cos x) dy = 0
8. (ex sin y + 3y) dx − (3x − ex sin y) dy = 0
9. (yexy cos 2x − 2exy sin 2x + 2x) dx + (xexy cos 2x − 3) dy = 0

10. (y/x + 6x) dx + (ln x − 2) dy = 0, x > 0
11. (x ln y + xy) dx + (y ln x + xy) dy = 0; x > 0, y > 0

12.
x dx

(x2 + y2)3/2
+ y dy

(x2 + y2)3/2
= 0

In each of Problems 13 and 14 solve the given initial value problem and determine at least
approximately where the solution is valid.
13. (2x − y) dx + (2y − x) dy = 0, y(1) = 3
14. (9x2 + y − 1) dx − (4y − x) dy = 0, y(1) = 0

In each of Problems 15 and 16 find the value of b for which the given equation is exact, and
then solve it using that value of b.
15. (xy2 + bx2y) dx + (x + y)x2 dy = 0
16. (ye2xy + x) dx + bxe2xy dy = 0
17. Assume that Eq. (6) meets the requirements of Theorem 2.6.1 in a rectangle R and is

therefore exact. Show that a possible function ψ(x, y) is

ψ(x, y) =
∫ x

x0

M(s, y0) ds +
∫ y

y0

N(x, t) dt,

where (x0, y0) is a point in R.
18. Show that any separable equation

M(x) + N(y)y′ = 0
is also exact.

In each of Problems 19 through 22 show that the given equation is not exact but becomes exact
when multiplied by the given integrating factor. Then solve the equation.
19. x2y3 + x(1 + y2)y′ = 0, μ(x, y) = 1/xy3

20.
(

sin y
y

− 2e−x sin x
)

dx +
(

cos y + 2e−x cos x
y

)
dy = 0, μ(x, y) = yex

21. y dx + (2x − yey) dy = 0, μ(x, y) = y

22. (x + 2) sin y dx + x cos y dy = 0, μ(x, y) = xex

23. Show that if (Nx − My)/M = Q, where Q is a function of y only, then the differential
equation

M + Ny′ = 0

has an integrating factor of the form

μ(y) = exp
∫

Q(y) dy.

24. Show that if (Nx − My)/(xM − yN) = R, where R depends on the quantity xy only, then
the differential equation

M + Ny′ = 0

has an integrating factor of the form μ(xy). Find a general formula for this integrating
factor.
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In each of Problems 25 through 31 find an integrating factor and solve the given equation.
25. (3x2y + 2xy + y3) dx + (x2 + y2) dy = 0 26. y′ = e2x + y − 1
27. dx + (x/y − sin y) dy = 0 28. y dx + (2xy − e−2y) dy = 0
29. ex dx + (ex cot y + 2y csc y) dy = 0
30. [4(x3/y2) + (3/y)] dx + [3(x/y2) + 4y] dy = 0

31.
(

3x + 6
y

)
+

(
x2

y
+ 3

y
x

)
dy
dx

= 0

Hint: See Problem 24.
32. Solve the differential equation

(3xy + y2) + (x2 + xy)y′ = 0

using the integrating factor μ(x, y) = [xy(2x + y)]−1. Verify that the solution is the same
as that obtained in Example 4 with a different integrating factor.

2.7 Numerical Approximations: Euler’s Method
Recall two important facts about the first order initial value problem

dy
dt

= f (t, y), y(t0) = y0. (1)

First, if f and ∂f /∂y are continuous, then the initial value problem (1) has a unique
solution y = φ(t) in some interval surrounding the initial point t = t0. Second, it is
usually not possible to find the solution φ by symbolic manipulations of the differ-
ential equation. Up to now we have considered the main exceptions to the latter
statement: differential equations that are linear, separable, or exact, or that can be
transformed into one of these types. Nevertheless, it remains true that solutions of
the vast majority of first order initial value problems cannot be found by analytical
means, such as those considered in the first part of this chapter.

Therefore it is important to be able to approach the problem in other ways. As we
have already seen, one of these ways is to draw a direction field for the differential
equation (which does not involve solving the equation) and then to visualize the
behavior of solutions from the direction field. This has the advantage of being a
relatively simple process, even for complicated differential equations. However, it
does not lend itself to quantitative computations or comparisons, and this is often a
critical shortcoming.

For example, Figure 2.7.1 shows a direction field for the differential equation

dy
dt

= 3 − 2t − 1
2 y. (2)

From the direction field you can visualize the behavior of solutions on the rectangle
shown in the figure. A solution starting at a point on the y-axis initially increases with
t, but it soon reaches a maximum value and then begins to decrease as t increases
further.
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FIGURE 2.7.1 A direction field for Eq. (2).

You may also observe that in Figure 2.7.1 many tangent line segments at successive
values of t almost touch each other. It takes only a bit of imagination to consider
starting at a point on the y-axis and linking line segments for successive values of t in
the grid, thereby producing a piecewise linear graph. Such a graph would apparently
be an approximation to a solution of the differential equation. To convert this idea
into a useful method for generating approximate solutions, we must answer several
questions, including the following:

1. Can we carry out the linking of tangent lines in a systematic and straightforward manner?
2. If so, does the resulting piecewise linear function provide an approximation to an actual

solution of the differential equation?
3. If so, can we assess the accuracy of the approximation? That is, can we estimate how far

the approximation deviates from the solution itself?

It turns out that the answer to each of these questions is affirmative. The resulting
method was originated by Euler about 1768 and is referred to as the tangent line
method or the Euler method. We will deal with the first two questions in this section,
but defer a systematic discussion of the third question until Chapter 8.

To see how the Euler method works, let us consider how we might use tangent
lines to approximate the solution y = φ(t) of Eqs. (1) near t = t0. We know that the
solution passes through the initial point (t0, y0), and from the differential equation, we
also know that its slope at this point is f (t0, y0). Thus we can write down an equation
for the line tangent to the solution curve at (t0, y0), namely,

y = y0 + f (t0, y0)(t − t0). (3)

The tangent line is a good approximation to the actual solution curve on an interval
short enough so that the slope of the solution does not change appreciably from its
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value at the initial point; see Figure 2.7.2. Thus, if t1 is close enough to t0, we can
approximate φ(t1) by the value y1 determined by substituting t = t1 into the tangent
line approximation at t = t0; thus

y1 = y0 + f (t0, y0)(t1 − t0). (4)

t

y

y1

y0

(t1)

t0 t1

Tangent line
y = y0 + f (t0, y0) (t – t0)

Solution
φφ

(t)y = 

FIGURE 2.7.2 A tangent line approximation.

To proceed further,we can try to repeat the process. Unfortunately,we do not know
the value φ(t1) of the solution at t1. The best we can do is to use the approximate
value y1 instead. Thus we construct the line through (t1, y1) with the slope f (t1, y1),

y = y1 + f (t1, y1)(t − t1). (5)

To approximate the value of φ(t) at a nearby point t2, we use Eq. (5) instead, obtaining

y2 = y1 + f (t1, y1)(t2 − t1). (6)

Continuing in this manner, we use the value of y calculated at each step to deter-
mine the slope of the approximation for the next step. The general expression for
the tangent line starting at (tn, yn) is

y = yn + f (tn, yn)(t − tn); (7)

hence the approximate value yn+1 at tn+1 in terms of tn, tn+1, and yn is

yn+1 = yn + f (tn, yn)(tn+1 − tn), n = 0, 1, 2, . . . . (8)

If we introduce the notation fn = f (tn, yn), then we can rewrite Eq. (8) as

yn+1 = yn + fn · (tn+1 − tn), n = 0, 1, 2, . . . . (9)

Finally, if we assume that there is a uniform step size h between the points t0, t1, t2, . . . ,
then tn+1 = tn + h for each n, and we obtain Euler’s formula in the form

yn+1 = yn + fnh, n = 0, 1, 2, . . . . (10)

To use Euler’s method, you simply evaluate Eq. (9) or Eq. (10) repeatedly, de-
pending on whether or not the step size is constant, using the result of each step to
execute the next step. In this way you generate a sequence of values y1, y2, y3, . . . that
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approximate the values of the solution φ(t) at the points t1, t2, t3, . . . . If, instead of a
sequence of points, you need a function to approximate the solution φ(t), then you
can use the piecewise linear function constructed from the collection of tangent line
segments. That is, let y be given in [t0, t1] by Eq. (7) with n = 0, in [t1, t2] by Eq. (7)
with n = 1, and so on.

E X A M P L E

1

Consider the initial value problem

dy
dt

= 3 − 2t − 1
2 y, y(0) = 1. (11)

Use Euler’s method with step size h = 0.2 to find approximate values of the solution of Eqs. (11)
at t = 0.2, 0.4, 0.6, 0.8, and 1. Compare them with the corresponding values of the actual
solution of the initial value problem.

Note that the differential equation in the given initial value problem is the same as in Eq. (2).
This equation is linear, so it can be solved as in Section 2.1, using the integrating factor et/2.
The resulting solution of the initial value problem (11) is

y = φ(t) = 14 − 4t − 13e−t/2. (12)

To approximate this solution by means of Euler’s method, note that in this case
f (t, y) = 3 − 2t − y/2. Using the initial values t0 = 0 and y0 = 1, we find that

f0 = f (t0, y0) = f (0, 1) = 3 − 0 − 0.5 = 2.5

and then, from Eq. (3), the tangent line approximation near t = 0 is

y = 1 + 2.5(t − 0) = 1 + 2.5t. (13)

Setting t = 0.2 in Eq. (13), we find the approximate value y1 of the solution at t = 0.2, namely,

y1 = 1 + (2.5)(0.2) = 1.5.

At the next step we have

f1 = f (0.2, 1.5) = 3 − 2(0.2) − (0.5)(1.5) = 3 − 0.4 − 0.75 = 1.85.

Then the tangent line approximation near t = 0.2 is

y = 1.5 + 1.85(t − 0.2) = 1.13 + 1.85t. (14)

Evaluating the expression in Eq. (14) for t = 0.4, we obtain

y2 = 1.13 + 1.85(0.4) = 1.87.

Repeating this computational procedure three more times, we obtain the results shown in
Table 2.7.1.

The first column contains the t-values separated by the step size h = 0.2. The third column
shows the corresponding y-values computed from Euler’s formula (10). In the fourth column
are the tangent line approximations found from Eq. (7). The second column contains values of
the solution (12) of the initial value problem (11), correct to five decimal places. The solution
(12) and the tangent line approximation are also plotted in Figure 2.7.3.

FromTable 2.7.1 and Figure 2.7.3 we see that the approximations given by Euler’s method for
this problem are greater than the corresponding values of the actual solution. This is because
the graph of the solution is concave down and therefore the tangent line approximations lie
above the graph.
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TABLE 2.7.1 Results of Euler’s Method with h = 0.2 for
y′ = 3 − 2t − 1

2 y, y(0) = 1

Euler
t Exact with h = 0.2 Tangent line

0.0 1.00000 1.00000 y = 1 + 2.5t
0.2 1.43711 1.50000 y = 1.13 + 1.85t
0.4 1.75650 1.87000 y = 1.364 + 1.265t
0.6 1.96936 2.12300 y = 1.6799 + 0.7385t
0.8 2.08584 2.27070 y = 2.05898 + 0.26465t
1.0 2.11510 2.32363

y

t

Tangent line approximation

Solution
2

2.4

1.6

1.2

10.80.60.40.2
FIGURE 2.7.3 Plots of the solution and a tangent line approximation for the initial value

problem (11).

The accuracy of the approximations in this example is not good enough to be satisfactory in
a typical scientific or engineering application. For example, at t = 1 the error in the approxi-
mation is 2.32363 − 2.11510 = 0.20853, which is a percentage error of about 9.86% relative to
the exact solution. One way to achieve more accurate results is to use a smaller step size, with
a corresponding increase in the number of computational steps. We explore this possibility in
the next example.

Of course, computations such as those in Example 1 and in the other examples
in this section are usually done on a computer. Some software packages include
code for the Euler method, while others do not. In any case, it is straightforward to
write a computer program that will carry out the calculations required to produce
results such as those in Table 2.7.1. Basically, what is required is a loop that will



September 11, 2008 11:18 boyce-9e-bvp Sheet number 126 Page number 106 cyan black

106 Chapter 2. First Order Differential Equations

evaluate Eq. (10) repetitively, along with suitable instructions for input and output.
The output can be a list of numbers, as in Table 2.7.1, or a plot, as in Figure 2.7.3.
The specific instructions can be written in any high-level programming language with
which you are familiar.

E X A M P L E

2

Consider again the initial value problem (11)

dy
dt

= 3 − 2t − 1
2 y, y(0) = 1.

Use Euler’s method with various step sizes to calculate approximate values of the solution
for 0 ≤ t ≤ 5. Compare the calculated results with the corresponding values of the exact
solution (12)

y = φ(t) = 14 − 4t − 13e−t/2.

We used step sizes h = 0.1, 0.05, 0.025, and 0.01, corresponding respectively to 50, 100, 200,
and 500 steps, to go from t = 0 to t = 5. The results of these calculations, along with the values
of the exact solution, are presented in Table 2.7.2. All computed entries are rounded to four
decimal places, although more digits were retained in the intermediate calculations.

TABLE 2.7.2 A Comparison of Exact Solution with Euler’s Method for Several
Step Sizes h for y′ = 3 − 2t − 1

2 y, y(0) = 1

t Exact h = 0.1 h = 0.05 h = 0.025 h = 0.01

0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 2.1151 2.2164 2.1651 2.1399 2.1250
2.0 1.2176 1.3397 1.2780 1.2476 1.2295
3.0 −0.9007 −0.7903 −0.8459 −0.8734 −0.8898
4.0 −3.7594 −3.6707 −3.7152 −3.7373 −3.7506
5.0 −7.0671 −7.0003 −7.0337 −7.0504 −7.0604

What conclusions can we draw from the data inTable 2.7.2? The most important observation
is that, for a fixed value of t, the computed approximate values become more accurate as the
step size h decreases. You can see this by reading across a particular row in the table from left
to right. This is what we would expect, of course, but it is encouraging that the data confirm our
expectations. For example, for t = 2 the approximate value with h = 0.1 is too large by 0.1221
(about 10%), whereas the value with h = 0.01 is too large by only 0.0119 (about 1%). In this
case, reducing the step size by a factor of 10 (and performing 10 times as many computations)
also reduces the error by a factor of about 10. By comparing the errors for other pairs of
values in the table, you can verify that this relation between step size and error holds for them
also: reducing the step size by a given factor also reduces the error by approximately the same
factor. Does this mean that for the Euler method the error is approximately proportional to
the step size? Of course, one example does not establish such a general result but it is at least
an interesting conjecture.18

18A more detailed discussion of the errors in using the Euler method appears in Chapter 8.
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A second observation from Table 2.7.2 is that, for a fixed step size h, the approximations
become more accurate as t increases, at least for t > 2. For instance, for h = 0.1 the error for
t = 5 is only 0.0668, which is a little more than one half of the error at t = 2. We will return to
this matter later in this section.

All in all, Euler’s method seems to work rather well for this problem. Reasonably good
results are obtained even for a moderately large step size h = 0.1, and the approximation can
be improved by decreasing h.

Let us now look at another example.

E X A M P L E

3

Consider the initial value problem

dy
dt

= 4 − t + 2y, y(0) = 1. (15)

The general solution of this differential equation was found in Example 2 of Section 2.1, and
the solution of the initial value problem (15) is

y = − 7
4 + 1

2 t + 11
4 e2t . (16)

Use Euler’s method with several step sizes to find approximate values of the solution on the
interval 0 ≤ t ≤ 5. Compare the results with the corresponding values of the solution (16).

Using the same range of step sizes as in Example 2, we obtain the results presented in Table
2.7.3.

TABLE 2.7.3 A Comparison of Exact Solution with Euler’s Method for Several Step Sizes h
for y′ = 4 − t + 2y, y(0) = 1

t Exact h = 0.1 h = 0.05 h = 0.025 h = 0.01

0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 19.06990 15.77728 17.25062 18.10997 18.67278
2.0 149.3949 104.6784 123.7130 135.5440 143.5835
3.0 1109.179 652.5349 837.0745 959.2580 1045.395
4.0 8197.884 4042.122 5633.351 6755.175 7575.577
5.0 60573.53 25026.95 37897.43 47555.35 54881.32

The data in Table 2.7.3 again confirm our expectation that, for a given value of t, accuracy
improves as the step size h is reduced. For example, for t = 1 the percentage error diminishes
from 17.3% when h = 0.1 to 2.1% when h = 0.01. However, the error increases fairly rapidly
as t increases for a fixed h. Even for h = 0.01, the error at t = 5 is 9.4%, and it is much
greater for larger step sizes. Of course, the accuracy that is needed depends on the purpose
for which the results are intended, but the errors in Table 2.7.3 are too large for most scientific
or engineering applications. To improve the situation, one might either try even smaller step
sizes or else restrict the computations to a rather short interval away from the initial point.
Nevertheless, it is clear that Euler’s method is much less effective in this example than in
Example 2.
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To understand better what is happening in these examples, let us look again at
Euler’s method for the general initial value problem (1)

dy
dt

= f (t, y), y(t0) = y0,

whose solution we denote by φ(t). Recall that a first order differential equation has
an infinite family of solutions, indexed by an arbitrary constant c, and that the initial
condition picks out one member of this infinite family by determining the value of c.
Thus in the infinite family of solutions, φ(t) is the one that satisfies the initial con-
dition φ(t0) = y0.

At the first step Euler’s method uses the tangent line approximation to the graph of
y = φ(t) passing through the initial point (t0, y0), and this produces the approximate
value y1 at t1. Usually y1 �= φ(t1), so at the second step Euler’s method uses the
tangent line approximation not to y = φ(t), but to a nearby solution y = φ1(t) that
passes through the point (t1, y1). So it is at each following step. Euler’s method
uses a succession of tangent line approximations to a sequence of different solutions
φ(t), φ1(t), φ2(t), . . . of the differential equation. At each step the tangent line is
constructed to the solution passing through the point determined by the result of
the preceding step, as shown in Figure 2.7.4. The quality of the approximation after
many steps depends strongly on the behavior of the set of solutions that pass through
the points (tn, yn) for n = 1, 2, 3, . . . .

t

y

t0 t1 t2 t3

φ (t)y =
φ (t)y =

(t1, y1)

(t2, y2)

(t3, y3)

1

φ (t)y = 2

y0

FIGURE 2.7.4 The Euler method.

In Example 2 the general solution of the differential equation is

y = 14 − 4t + ce−t/2 (17)

and the solution of the initial value problem (11) corresponds to c = −13. The family
of solutions (17) is a converging family since the term involving the arbitrary constant
c approaches zero as t → ∞. It does not matter very much which solutions we are
approximating by tangent lines in the implementation of Euler’s method, since all
the solutions are getting closer and closer to each other as t increases.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 129 Page number 109 cyan black

2.7 Numerical Approximations: Euler’s Method 109

On the other hand, in Example 3 the general solution of the differential equation is

y = − 7
4 + 1

2 t + ce2t , (18)

and this is a diverging family. Note that solutions corresponding to two nearby values
of c become arbitrarily far apart as t increases. In Example 3 we are trying to follow
the solution for c = 11/4, but in the use of Euler’s method we are actually at each
step following another solution that separates from the desired one faster and faster
as t increases. This explains why the errors in Example 3 are so much larger than
those in Example 2.

In using a numerical procedure such as the Euler method, you must always keep
in mind the question of whether the results are accurate enough to be useful. In
the preceding examples, the accuracy of the numerical results could be determined
directly by a comparison with the solution obtained analytically. Of course, usually
the analytical solution is not available if a numerical procedure is to be employed,
so what is usually needed are bounds for, or at least estimates of, the error that do
not require a knowledge of the exact solution. You should also keep in mind that
the best that we can expect, or hope for, from a numerical approximation is that it
reflects the behavior of the actual solution. Thus a member of a diverging family
of solutions will always be harder to approximate than a member of a converging
family.

If you wish to read more about numerical approximations to solutions of initial
value problems, you may go directly to Chapter 8 at this point. There we present
some information on the analysis of errors and also discuss several algorithms that
are computationally much more efficient than the Euler method.

PROBLEMS Many of the problems in this section call for fairly extensive numerical computations. The
amount of computing that it is reasonable for you to do depends strongly on the type of
computing equipment that you have. A few steps of the requested calculations can be carried
out on almost any pocket calculator—or even by hand if necessary. To do more, you will find at
least a programmable calculator desirable, and for some problems a computer may be needed.

Remember also that numerical results may vary somewhat depending on how your program
is constructed and on how your computer executes arithmetic steps, rounds off, and so forth.
Minor variations in the last decimal place may be due to such causes and do not necessarily
indicate that something is amiss. Answers in the back of the book are recorded to six digits in
most cases, although more digits were retained in the intermediate calculations.

In each of Problems 1 through 4:
(a) Find approximate values of the solution of the given initial value problem at t = 0.1, 0.2,
0.3, and 0.4 using the Euler method with h = 0.1.
(b) Repeat part (a) with h = 0.05. Compare the results with those found in (a).
(c) Repeat part (a) with h = 0.025. Compare the results with those found in (a) and (b).
(d) Find the solution y = φ(t) of the given problem and evaluate φ(t) at t = 0.1, 0.2, 0.3, and
0.4. Compare these values with the results of (a), (b), and (c).

1. y′ = 3 + t − y, y(0) = 1 2. y′ = 2y − 1, y(0) = 1
3. y′ = 0.5 − t + 2y, y(0) = 1 4. y′ = 3 cos t − 2y, y(0) = 0
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In each of Problems 5 through 10 draw a direction field for the given differential equation and
state whether you think that the solutions are converging or diverging.

5. y′ = 5 − 3
√

y 6. y′ = y(3 − ty)

7. y′ = (4 − ty)/(1 + y2) 8. y′ = −ty + 0.1y3

9. y′ = t2 + y2 10. y′ = (y2 + 2ty)/(3 + t2)

In each of Problems 11 through 14 use Euler’s method to find approximate values of the
solution of the given initial value problem at t = 0.5, 1, 1.5, 2, 2.5, and 3:
(a) With h = 0.1. (b) With h = 0.05.
(c) With h = 0.025. (d) With h = 0.01.

11. y′ = 5 − 3
√

y, y(0) = 2
12. y′ = y(3 − ty), y(0) = 0.5
13. y′ = (4 − ty)/(1 + y2), y(0) = −2
14. y′ = −ty + 0.1y3, y(0) = 1

15. Consider the initial value problem

y′ = 3t2/(3y2 − 4), y(1) = 0.

(a) Use Euler’s method with h = 0.1 to obtain approximate values of the solution at
t = 1.2, 1.4, 1.6, and 1.8.
(b) Repeat part (a) with h = 0.05.
(c) Compare the results of parts (a) and (b). Note that they are reasonably close for
t = 1.2, 1.4, and 1.6 but are quite different for t = 1.8. Also note (from the differential
equation) that the line tangent to the solution is parallel to the y-axis when y = ±2/

√
3

∼= ±1.155. Explain how this might cause such a difference in the calculated values.

16. Consider the initial value problem

y′ = t2 + y2, y(0) = 1.

Use Euler’s method with h = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 0 ≤ t ≤ 1. What is your best estimate of the value of the solution at t = 0.8?
At t = 1? Are your results consistent with the direction field in Problem 9?

17. Consider the initial value problem

y′ = (y2 + 2ty)/(3 + t2), y(1) = 2.

Use Euler’s method with h = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 1 ≤ t ≤ 3. What is your best estimate of the value of the solution at t = 2.5?
At t = 3? Are your results consistent with the direction field in Problem 10?

18. Consider the initial value problem

y′ = −ty + 0.1y3, y(0) = α,

where α is a given number.
(a) Draw a direction field for the differential equation (or reexamine the one from Prob-
lem 8). Observe that there is a critical value of α in the interval 2 ≤ α ≤ 3 that separates
converging solutions from diverging ones. Call this critical value α0.
(b) Use Euler’s method with h = 0.01 to estimate α0. Do this by restricting α0 to an
interval [a, b], where b − a = 0.01.

19. Consider the initial value problem

y′ = y2 − t2, y(0) = α,

where α is a given number.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 131 Page number 111 cyan black

2.8 The Existence and Uniqueness Theorem 111

(a) Draw a direction field for the differential equation. Observe that there is a critical
value of α in the interval 0 ≤ α ≤ 1 that separates converging solutions from diverging
ones. Call this critical value α0.
(b) Use Euler’s method with h = 0.01 to estimate α0. Do this by restricting α0 to an
interval [a, b], where b − a = 0.01.

20. Convergence of Euler’s Method. It can be shown that, under suitable conditions on f ,
the numerical approximation generated by the Euler method for the initial value problem
y′ = f (t, y), y(t0) = y0 converges to the exact solution as the step size h decreases. This is
illustrated by the following example. Consider the initial value problem

y′ = 1 − t + y, y(t0) = y0.

(a) Show that the exact solution is y = φ(t) = (y0 − t0)et−t0 + t.
(b) Using the Euler formula, show that

yk = (1 + h)yk−1 + h − htk−1, k = 1, 2, . . . .

(c) Noting that y1 = (1 + h)(y0 − t0) + t1, show by induction that

yn = (1 + h)n(y0 − t0) + tn (i)

for each positive integer n.
(d) Consider a fixed point t > t0 and for a given n choose h = (t − t0)/n. Then tn = t for
every n. Note also that h → 0 as n → ∞. By substituting for h in Eq. (i) and letting
n → ∞, show that yn → φ(t) as n → ∞.
Hint: lim

n→∞(1 + a/n)n = ea.

In each of Problems 21 through 23 use the technique discussed in Problem 20 to show that
the approximation obtained by the Euler method converges to the exact solution at any fixed
point as h → 0.

21. y′ = y, y(0) = 1

22. y′ = 2y − 1, y(0) = 1 Hint: y1 = (1 + 2h)/2 + 1/2

23. y′ = 1
2 − t + 2y, y(0) = 1 Hint: y1 = (1 + 2h) + t1/2

2.8 The Existence and Uniqueness Theorem
In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first order initial value problems. This theorem states that
under certain conditions on f (t, y), the initial value problem

y′ = f (t, y), y(t0) = y0 (1)

has a unique solution in some interval containing the point t0.
In some cases (for example, if the differential equation is linear) the existence

of a solution of the initial value problem (1) can be established directly by actually
solving the problem and exhibiting a formula for the solution. However, in general,
this approach is not feasible because there is no method of solving the differential
equation that applies in all cases. Therefore, for the general case, it is necessary to
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adopt an indirect approach that demonstrates the existence of a solution of Eqs. (1)
but usually does not provide a practical means of finding it. The heart of this method is
the construction of a sequence of functions that converges to a limit function satisfying
the initial value problem, although the members of the sequence individually do
not. As a rule, it is impossible to compute explicitly more than a few members
of the sequence; therefore the limit function can be determined only in rare cases.
Nevertheless, under the restrictions on f (t, y) stated in Theorem 2.4.2, it is possible
to show that the sequence in question converges and that the limit function has
the desired properties. The argument is fairly intricate and depends, in part, on
techniques and results that are usually encountered for the first time in a course on
advanced calculus. Consequently, we do not go into all the details of the proof here;
we do, however, indicate its main features and point out some of the difficulties that
must be overcome.

First of all, we note that it is sufficient to consider the problem in which the initial
point (t0, y0) is the origin; that is, we consider the problem

y′ = f (t, y), y(0) = 0. (2)

If some other initial point is given, then we can always make a preliminary change
of variables, corresponding to a translation of the coordinate axes, that will take the
given point (t0, y0) into the origin. The existence and uniqueness theorem can now
be stated in the following way.

Theorem 2.8.1 If f and ∂f /∂y are continuous in a rectangle R: |t| ≤ a, |y| ≤ b, then there is
some interval |t| ≤ h ≤ a in which there exists a unique solution y = φ(t) of the
initial value problem (2).

For the method of proof discussed here it is necessary to transform the initial value
problem (2) into a more convenient form. If we suppose temporarily that there is a
differentiable function y = φ(t) that satisfies the initial value problem, then f [t, φ(t)]
is a continuous function of t only. Hence we can integrate y′ = f (t, y) from the initial
point t = 0 to an arbitrary value of t, obtaining

φ(t) =
∫ t

0
f [s, φ(s)] ds, (3)

where we have made use of the initial condition φ(0) = 0. We also denote the dummy
variable of integration by s.

Since Eq. (3) contains an integral of the unknown function φ, it is called an integral
equation. This integral equation is not a formula for the solution of the initial value
problem, but it does provide another relation satisfied by any solution of Eqs. (2).
Conversely, suppose that there is a continuous function y = φ(t) that satisfies the
integral equation (3); then this function also satisfies the initial value problem (2). To
show this, we first substitute zero for t in Eq. (3), which shows that the initial condition
is satisfied. Further, since the integrand in Eq. (3) is continuous, it follows from the
fundamental theorem of calculus that φ is differentiable, and that φ′(t) = f [t, φ(t)].
Therefore the initial value problem and the integral equation are equivalent in the
sense that any solution of one is also a solution of the other. It is more convenient
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to show that there is a unique solution of the integral equation in a certain interval
|t| ≤ h. The same conclusion will then hold also for the initial value problem.

One method of showing that the integral equation (3) has a unique solution is
known as the method of successive approximations or Picard’s19 iteration method.
In using this method, we start by choosing an initial function φ0, either arbitrarily or
to approximate in some way the solution of the initial value problem. The simplest
choice is

φ0(t) = 0; (4)

then φ0 at least satisfies the initial condition in Eqs. (2), although presumably not the
differential equation. The next approximation φ1 is obtained by substituting φ0(s)
for φ(s) in the right side of Eq. (3) and calling the result of this operation φ1(t). Thus

φ1(t) =
∫ t

0
f [s, φ0(s)] ds. (5)

Similarly, φ2 is obtained from φ1:

φ2(t) =
∫ t

0
f [s, φ1(s)] ds, (6)

and, in general,

φn+1(t) =
∫ t

0
f [s, φn(s)] ds. (7)

In this manner we generate the sequence of functions {φn} = φ0, φ1, . . . , φn, . . . . Each
member of the sequence satisfies the initial condition, but in general none satisfies
the differential equation. However, if at some stage, say, for n = k, we find that
φk+1(t) = φk(t), then it follows that φk is a solution of the integral equation (3). Hence
φk is also a solution of the initial value problem (2), and the sequence is terminated
at this point. In general, this does not occur, and it is necessary to consider the entire
infinite sequence.

To establish Theorem 2.8.1, we must answer four principal questions:

1. Do all members of the sequence {φn} exist, or may the process break down at some stage?
2. Does the sequence converge?
3. What are the properties of the limit function? In particular, does it satisfy the integral

equation (3) and hence the initial value problem (2)?
4. Is this the only solution, or may there be others?

We first show how these questions can be answered in a specific and relatively simple
example and then comment on some of the difficulties that may be encountered in
the general case.

19Charles-Émile Picard (1856–1914), except for Henri Poincaré, perhaps the most distinguished French
mathematician of his generation, was appointed professor at the Sorbonne before the age of 30. He
is known for important theorems in complex variables and algebraic geometry as well as differential
equations. A special case of the method of successive approximations was first published by Liouville
in 1838. However, the method is usually credited to Picard, who established it in a general and widely
applicable form in a series of papers beginning in 1890.
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E X A M P L E

1

Solve the initial value problem

y′ = 2t(1 + y), y(0) = 0 (8)

by the method of successive approximations.
Note first that if y = φ(t), then the corresponding integral equation is

φ(t) =
∫ t

0
2s[1 + φ(s)] ds. (9)

If the initial approximation is φ0(t) = 0, it follows that

φ1(t) =
∫ t

0
2s[1 + φ0(s)] ds =

∫ t

0
2s ds = t2. (10)

Similarly,

φ2(t) =
∫ t

0
2s[1 + φ1(s)] ds =

∫ t

0
2s[1 + s2] ds = t2 + t4

2
(11)

and

φ3(t) =
∫ t

0
2s[1 + φ2(s)] ds =

∫ t

0
2s

[
1 + s2 + s4

2

]
ds = t2 + t4

2
+ t6

2 · 3
. (12)

Equations (10), (11), and (12) suggest that

φn(t) = t2 + t4

2! + t6

3! + · · · + t2n

n! (13)

for each n ≥ 1, and this result can be established by mathematical induction, as follows. Equa-
tion (13) is certainly true for n = 1; see Eq. (10). We must show that if it is true for n = k, then
it also holds for n = k + 1. We have

φk+1(t) =
∫ t

0
2s[1 + φk(s)] ds

=
∫ t

0
2s

(
1 + s2 + s4

2! + · · · + s2k

k!
)

ds

= t2 + t4

2! + t6

3! + · · · + t2k+2

(k + 1)! , (14)

and the inductive proof is complete.
A plot of the first four iterates, φ1(t), . . . , φ4(t), is shown in Figure 2.8.1. As k increases,

the iterates seem to remain close over a gradually increasing interval, suggesting eventual
convergence to a limit function.

It follows from Eq. (13) that φn(t) is the nth partial sum of the infinite series
∞∑

k=1

t2k

k! ; (15)

hence lim
n→∞ φn(t) exists if and only if the series (15) converges. Applying the ratio test, we see

that, for each t, ∣∣∣∣ t2k+2

(k + 1)!
k!
t2k

∣∣∣∣ = t2

k + 1
→ 0 as k → ∞. (16)

Thus the series (15) converges for all t, and its sum φ(t) is the limit of the sequence {φn(t)}.
Further, since the series (15) is a Taylor series, it can be differentiated or integrated term by
term as long as t remains within the interval of convergence, which in this case is the entire

t-axis. Therefore, we can verify by direct computation that φ(t) =
∞∑

k=1
t2k/k! is a solution of the

integral equation (9). Alternatively, by substituting φ(t) for y in Eqs. (8), we can verify that
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FIGURE 2.8.1 Plots of φ1(t), . . . , φ4(t) for Example 1.

this function satisfies the initial value problem. In this example it is also possible, from the
series (15), to identify φ in terms of elementary functions, namely, φ(t) = et2 − 1. However,
this is not necessary for the discussion of existence and uniqueness.

Explicit knowledge of φ(t) does make it possible to visualize the convergence of the se-
quence of iterates more clearly by plotting φ(t) − φk(t) for various values of k. Figure 2.8.2
shows this difference for k = 1, . . . , 4. This figure clearly shows the gradually increasing inter-
val over which successive iterates provide a good approximation to the solution of the initial
value problem.

y
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FIGURE 2.8.2 Plots of φ(t) − φk(t) for Example 1 for k = 1, . . . , 4.

Finally, to deal with the question of uniqueness, let us suppose that the initial value problem
has two solutions φ and ψ . Since φ and ψ both satisfy the integral equation (9), we have by
subtraction that

φ(t) − ψ(t) =
∫ t

0
2s[φ(s) − ψ(s)] ds.
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Taking absolute values of both sides, we have, if t > 0,

|φ(t) − ψ(t)| =
∣∣∣∣
∫ t

0
2s[φ(s) − ψ(s)] ds

∣∣∣∣ ≤
∫ t

0
2s|φ(s) − ψ(s)| ds.

If we restrict t to lie in the interval 0 ≤ t ≤ A/2, where A is arbitrary, then 2t ≤ A, and

|φ(t) − ψ(t)| ≤ A
∫ t

0
|φ(s) − ψ(s)| ds. (17)

It is now convenient to introduce the function U defined by

U(t) =
∫ t

0
|φ(s) − ψ(s)| ds. (18)

Then it follows at once that

U(0) = 0, (19)

U(t) ≥ 0, for t ≥ 0. (20)

Further, U is differentiable, and U ′(t) = |φ(t) − ψ(t)|. Hence, by Eq. (17),

U ′(t) − AU(t) ≤ 0. (21)

Multiplying Eq. (21) by the positive quantity e−At gives

[e−AtU(t)]′ ≤ 0. (22)

Then, upon integrating Eq. (22) from zero to t and using Eq. (19), we obtain

e−AtU(t) ≤ 0 for t ≥ 0.

Hence U(t) ≤ 0 for t ≥ 0, and in conjunction with Eq. (20), this requires that U(t) = 0 for each
t ≥ 0. Thus U ′(t) ≡ 0, and therefore ψ(t) ≡ φ(t), which contradicts the original hypothesis.
Consequently, there cannot be two different solutions of the initial value problem for t ≥ 0.
A slight modification of this argument leads to the same conclusion for t ≤ 0.

Returning now to the general problem of solving the integral equation (3), let us
consider briefly each of the questions raised earlier:

1. Do all members of the sequence {φn} exist? In the example, f and ∂f /∂y were continuous
in the whole ty-plane, and each member of the sequence could be explicitly calculated.
In contrast, in the general case, f and ∂f /∂y are assumed to be continuous only in the
rectangle R: |t| ≤ a, |y| ≤ b (see Figure 2.8.3). Furthermore, the members of the sequence
cannot as a rule be explicitly determined. The danger is that at some stage, say, for n = k,
the graph of y = φk(t) may contain points that lie outside the rectangle R. Hence at the
next stage—in the computation of φk+1(t)—it would be necessary to evaluate f (t, y) at
points where it is not known to be continuous or even to exist. Thus the calculation of
φk+1(t) might be impossible.

To avoid this danger, it may be necessary to restrict t to a smaller interval than |t| ≤ a.
To find such an interval, we make use of the fact that a continuous function on a closed
bounded region is bounded. Hence f is bounded on R; thus there exists a positive number
M such that

|f (t, y)| ≤ M, (t, y) in R. (23)

We have mentioned before that
φn(0) = 0
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FIGURE 2.8.3 Region of definition for Theorem 2.8.1.

for each n. Since f [t, φk(t)] is equal to φ′
k+1(t), the maximum absolute slope of the graph

of the equation y = φk+1(t) is M. Since this graph contains the point (0, 0), it must lie
in the wedge-shaped shaded region in Figure 2.8.4. Hence the point [t, φk+1(t)] remains
in R at least as long as R contains the wedge-shaped region, which is for |t| ≤ b/M. We
hereafter consider only the rectangle D: |t| ≤ h, |y| ≤ b, where h is equal either to a or to
b/M, whichever is smaller. With this restriction, all members of the sequence {φn(t)} exist.
Note that whenever b/M < a, then you can try to obtain a larger value of h by finding a
better (that is, smaller) bound M for |f (t, y)|, if this is possible.

(a) (b)

y = b

t = a
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M
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M

y
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y
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y =   n(t)φ y =   n(t)φ

FIGURE 2.8.4 Regions in which successive iterates lie. (a) b/M < a; (b) b/M > a.

2. Does the sequence {φn(t)} converge? As in the example, we can identify φn(t) = φ1(t) +
[φ2(t) − φ1(t)] + · · · + [φn(t) − φn−1(t)] as the nth partial sum of the series

φ1(t) +
∞∑

k=1

[φk+1(t) − φk(t)]. (24)

The convergence of the sequence {φn(t)} is established by showing that the series (24)
converges. To do this, it is necessary to estimate the magnitude |φk+1(t) − φk(t)| of the
general term. The argument by which this is done is indicated in Problems 15 through
18 and will be omitted here. Assuming that the sequence converges, we denote the limit
function by φ, so that

φ(t) = lim
n→∞ φn(t). (25)

3. What are the properties of the limit function φ? In the first place, we would like to know
that φ is continuous. This is not, however, a necessary consequence of the convergence
of the sequence {φn(t)}, even though each member of the sequence is itself continuous.
Sometimes a sequence of continuous functions converges to a limit function that is dis-
continuous. A simple example of this phenomenon is given in Problem 13. One way to
show that φ is continuous is to show not only that the sequence {φn} converges, but also
that it converges in a certain manner, known as uniform convergence. We do not take up
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this question here but note only that the argument referred to in paragraph 2 is sufficient
to establish the uniform convergence of the sequence {φn} and, hence, the continuity of
the limit function φ in the interval |t| ≤ h.

Now let us return to Eq. (7)

φn+1(t) =
∫ t

0
f [s, φn(s)] ds.

Allowing n to approach ∞ on both sides, we obtain

φ(t) = lim
n→∞

∫ t

0
f [s, φn(s)] ds. (26)

We would like to interchange the operations of integrating and taking the limit on the
right side of Eq. (26) so as to obtain

φ(t) =
∫ t

0
lim

n→∞ f [s, φn(s)] ds. (27)

In general, such an interchange is not permissible (see Problem 14, for example), but once
again, the fact that the sequence {φn(t)} converges uniformly is sufficient to allow us to
take the limiting operation inside the integral sign. Next, we wish to take the limit inside
the function f , which would give

φ(t) =
∫ t

0
f [s, lim

n→∞ φn(s)] ds (28)

and hence

φ(t) =
∫ t

0
f [s, φ(s)] ds. (29)

The statement that

lim
n→∞ f [s, φn(s)] = f [s, lim

n→∞ φn(s)]

is equivalent to the statement that f is continuous in its second variable, which is known by
hypothesis. Hence Eq. (29) is valid, and the function φ satisfies the integral equation (3).
Thus φ is also a solution of the initial value problem (2).

4. Are there other solutions of the integral equation (3) besides y = φ(t)? To show the
uniqueness of the solution y = φ(t), we can proceed much as in the example. First, assume
the existence of another solution y = ψ(t). It is then possible to show (see Problem 19)
that the difference φ(t) − ψ(t) satisfies the inequality

|φ(t) − ψ(t)| ≤ A
∫ t

0
|φ(s) − ψ(s)| ds (30)

for 0 ≤ t ≤ h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem (2) other than the one generated by the method of successive approximations.

PROBLEMS In each of Problems 1 and 2 transform the given initial value problem into an equivalent
problem with the initial point at the origin.

1. dy/dt = t2 + y2, y(1) = 2 2. dy/dt = 1 − y3, y(−1) = 3
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In each of Problems 3 through 6 let φ0(t) = 0 and use the method of successive approximations
to solve the given initial value problem.
(a) Determine φn(t) for an arbitrary value of n.
(b) Plot φn(t) for n = 1, . . . , 4. Observe whether the iterates appear to be converging.
(c) Express lim

n→∞ φn(t) = φ(t) in terms of elementary functions; that is, solve the given initial

value problem.
(d) Plot |φ(t) − φn(t)| for n = 1, . . . , 4. For each of φ1(t), . . . , φ4(t), estimate the interval in
which it is a reasonably good approximation to the actual solution.

3. y′ = 2(y + 1), y(0) = 0 4. y′ = −y − 1, y(0) = 0
5. y′ = −y/2 + t, y(0) = 0 6. y′ = y + 1 − t, y(0) = 0

In each of Problems 7 and 8 let φ0(t) = 0 and use the method of successive approximations to
solve the given initial value problem.
(a) Determine φn(t) for an arbitrary value of n.
(b) Plot φn(t) for n = 1, . . . , 4. Observe whether the iterates appear to be converging.

7. y′ = ty + 1, y(0) = 0 8. y′ = t2y − t, y(0) = 0

In each of Problems 9 and 10 let φ0(t) = 0 and use the method of successive approximations
to approximate the solution of the given initial value problem.
(a) Calculate φ1(t), . . . , φ3(t).
(b) Plot φ1(t), . . . , φ3(t) and observe whether the iterates appear to be converging.

9. y′ = t2 + y2, y(0) = 0 10. y′ = 1 − y3, y(0) = 0

In each of Problems 11 and 12 let φ0(t) = 0 and use the method of successive approximations
to approximate the solution of the given initial value problem.
(a) Calculate φ1(t), . . . , φ4(t), or (if necessary) Taylor approximations to these iterates. Keep
terms up to order six.
(b) Plot the functions you found in part (a) and observe whether they appear to be converging.

11. y′ = − sin y + 1, y(0) = 0 12. y′ = (3t2 + 4t + 2)/2(y − 1), y(0) = 0

13. Let φn(x) = xn for 0 ≤ x ≤ 1 and show that

lim
n→∞ φn(x) =

{
0, 0 ≤ x < 1,

1, x = 1.

This example shows that a sequence of continuous functions may converge to a limit
function that is discontinuous.

14. Consider the sequence φn(x) = 2nxe−nx2
, 0 ≤ x ≤ 1.

(a) Show that lim
n→∞ φn(x) = 0 for 0 ≤ x ≤ 1; hence

∫ 1

0
lim

n→∞ φn(x) dx = 0.

(b) Show that
∫ 1

0
2nxe−nx2

dx = 1 − e−n; hence

lim
n→∞

∫ 1

0
φn(x) dx = 1.

Thus, in this example,

lim
n→∞

∫ b

a
φn(x) dx �=

∫ b

a
lim

n→∞ φn(x) dx,

even though lim
n→∞ φn(x) exists and is continuous.
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In Problems 15 through 18 we indicate how to prove that the sequence {φn(t)}, defined by
Eqs. (4) through (7), converges.
15. If ∂f /∂y is continuous in the rectangle D, show that there is a positive constant K such

that
|f (t, y1) − f (t, y2)| ≤ K|y1 − y2|, (i)

where (t,y1) and (t,y2) are any two points in D having the same t coordinate. This inequality
is known as a Lipschitz20 condition.
Hint: Hold t fixed and use the mean value theorem on f as a function of y only. Choose
K to be the maximum value of |∂f /∂y| in D.

16. If φn−1(t) and φn(t) are members of the sequence {φn(t)}, use the result of Problem 15 to
show that

|f [t, φn(t)] − f [t, φn−1(t)]| ≤ K|φn(t) − φn−1(t)|.
17. (a) Show that if |t| ≤ h, then

|φ1(t)| ≤ M|t|,
where M is chosen so that |f (t,y)| ≤ M for (t,y) in D.
(b) Use the results of Problem 16 and part (a) of Problem 17 to show that

|φ2(t) − φ1(t)| ≤ MK|t|2
2

.

(c) Show, by mathematical induction, that

|φn(t) − φn−1(t)| ≤ MKn−1|t|n
n! ≤ MKn−1hn

n! .

18. Note that
φn(t) = φ1(t) + [φ2(t) − φ1(t)] + · · · + [φn(t) − φn−1(t)].

(a) Show that

|φn(t)| ≤ |φ1(t)| + |φ2(t) − φ1(t)| + · · · + |φn(t) − φn−1(t)|.
(b) Use the results of Problem 17 to show that

|φn(t)| ≤ M
K

[
Kh + (Kh)2

2! + · · · + (Kh)n

n!
]

.

(c) Show that the sum in part (b) converges as n → ∞ and, hence, the sum in part (a)
also converges as n → ∞. Conclude therefore that the sequence {φn(t)} converges since
it is the sequence of partial sums of a convergent infinite series.

19. In this problem we deal with the question of uniqueness of the solution of the integral
equation (3)

φ(t) =
∫ t

0
f [s, φ(s)] ds.

(a) Suppose that φ and ψ are two solutions of Eq. (3). Show that, for t ≥ 0,

φ(t) − ψ(t) =
∫ t

0
{f [s, φ(s)] − f [s, ψ(s)]} ds.

20Rudolf Lipschitz (1832–1903), professor at the University of Bonn for many years, worked in several ar-
eas of mathematics. The inequality (i) can replace the hypothesis that ∂f /∂y is continuous inTheorem 2.8.1;
this results in a slightly stronger theorem.
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(b) Show that

|φ(t) − ψ(t)| ≤
∫ t

0
|f [s, φ(s)] − f [s, ψ(s)]| ds.

(c) Use the result of Problem 15 to show that

|φ(t) − ψ(t)| ≤ K
∫ t

0
|φ(s) − ψ(s)| ds,

where K is an upper bound for |∂f /∂y| in D. This is the same as Eq. (30), and the rest of
the proof may be constructed as indicated in the text.

2.9 First Order Difference Equations
Although a continuous model leading to a differential equation is reasonable and
attractive for many problems, there are some cases in which a discrete model may
be more natural. For instance, the continuous model of compound interest used
in Section 2.3 is only an approximation to the actual discrete process. Similarly,
sometimes population growth may be described more accurately by a discrete than
by a continuous model. This is true, for example, of species whose generations do
not overlap and that propagate at regular intervals, such as at particular times of
the calendar year. Then the population yn+1 of the species in the year n + 1 is some
function of n and the population yn in the preceding year; that is,

yn+1 = f (n, yn), n = 0, 1, 2, . . . . (1)

Equation (1) is called a first order difference equation. It is first order because the
value of yn+1 depends on the value of yn but not on earlier values yn−1, yn−2, and so
forth. As for differential equations, the difference equation (1) is linear if f is a linear
function of yn; otherwise, it is nonlinear. A solution of the difference equation (1) is
a sequence of numbers y0, y1, y2, . . . that satisfy the equation for each n. In addition
to the difference equation itself, there may also be an initial condition

y0 = α (2)

that prescribes the value of the first term of the solution sequence.
We now assume temporarily that the function f in Eq. (1) depends only on yn, but

not on n. In this case

yn+1 = f (yn), n = 0, 1, 2, . . . . (3)

If y0 is given, then successive terms of the solution can be found from Eq. (3). Thus

y1 = f (y0),

and
y2 = f (y1) = f [f (y0)].

The quantity f [f (y0)] is called the second iterate of the difference equation and is
sometimes denoted by f 2(y0). Similarly, the third iterate y3 is given by

y3 = f (y2) = f {f [f (y0)]} = f 3(y0),
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and so on. In general, the nth iterate yn is

yn = f (yn−1) = f n(y0).

This procedure is referred to as iterating the difference equation. It is often of pri-
mary interest to determine the behavior of yn as n → ∞; in particular, does yn ap-
proach a limit, and if so, what is it?

Solutions for which yn has the same value for all n are called equilibrium solutions.
They are frequently of special importance, just as in the study of differential equations.
If equilibrium solutions exist, one can find them by setting yn+1 equal to yn in Eq. (3)
and solving the resulting equation

yn = f (yn) (4)

for yn.

Linear Equations. Suppose that the population of a certain species in a given region in
year n + 1, denoted by yn+1, is a positive multiple ρn of the population yn in year n;
that is,

yn+1 = ρnyn, n = 0, 1, 2, . . . . (5)

Note that the reproduction rate ρn may differ from year to year. The difference
equation (5) is linear and can easily be solved by iteration. We obtain

y1 = ρ0y0,

y2 = ρ1y1 = ρ1ρ0y0,

and, in general,
yn = ρn−1 · · · ρ0y0, n = 1, 2, . . . . (6)

Thus, if the initial population y0 is given, then the population of each succeeding
generation is determined by Eq. (6). Although for a population problem ρn is intrin-
sically positive, the solution (6) is also valid if ρn is negative for some or all values of
n. Note, however, that if ρn is zero for some n, then yn+1 and all succeeding values of
y are zero; in other words, the species has become extinct.

If the reproduction rate ρn has the same value ρ for each n, then the difference
equation (5) becomes

yn+1 = ρyn (7)

and its solution is
yn = ρny0. (8)

Equation (7) also has an equilibrium solution, namely, yn = 0 for all n, corresponding
to the initial value y0 = 0. The limiting behavior of yn is easy to determine from
Eq. (8). In fact,

lim
n→∞ yn =

⎧⎪⎨
⎪⎩

0, if |ρ| < 1;

y0, if ρ = 1;

does not exist, otherwise.

(9)

In other words, the equilibrium solution yn = 0 is asymptotically stable for |ρ| < 1
and unstable if |ρ| > 1.

Now we will modify the population model represented by Eq. (5) to include the
effect of immigration or emigration. If bn is the net increase in population in year
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n due to immigration, then the population in year n + 1 is the sum of those due to
natural reproduction and those due to immigration. Thus

yn+1 = ρyn + bn, n = 0, 1, 2, . . . , (10)

where we are now assuming that the reproduction rate ρ is constant. We can solve
Eq. (10) by iteration in the same manner as before. We have

y1 = ρy0 + b0,

y2 = ρ(ρy0 + b0) + b1 = ρ2y0 + ρb0 + b1,

y3 = ρ(ρ2y0 + ρb0 + b1) + b2 = ρ3y0 + ρ2b0 + ρb1 + b2,

and so forth. In general, we obtain

yn = ρny0 + ρn−1b0 + · · · + ρbn−2 + bn−1 = ρny0 +
n−1∑
j=0

ρn−1−jbj. (11)

Note that the first term on the right side of Eq. (11) represents the descendants of
the original population, while the other terms represent the population in year n
resulting from immigration in all preceding years.

In the special case where bn = b �= 0 for all n, the difference equation is

yn+1 = ρyn + b, (12)

and from Eq. (11) its solution is

yn = ρny0 + (1 + ρ + ρ2 + · · · + ρn−1)b. (13)

If ρ �= 1, we can write this solution in the more compact form

yn = ρny0 + 1 − ρn

1 − ρ
b, (14)

where again the two terms on the right side are the effects of the original population
and of immigration, respectively. Rewriting Eq. (14) as

yn = ρn
(

y0 − b
1 − ρ

)
+ b

1 − ρ
(15)

makes the long-time behavior of yn more evident. It follows from Eq. (15) that
yn → b/(1 − ρ) if |ρ| < 1. If |ρ| > 1 or if ρ = −1 then yn has no limit unless
y0 = b/(1 − ρ). The quantity b/(1 − ρ), for ρ �= 1, is an equilibrium solution of
Eq. (12), as can readily be seen directly from that equation. Of course, Eq. (14)
is not valid for ρ = 1. To deal with that case, we must return to Eq. (13) and let ρ = 1
there. It follows that

yn = y0 + nb, (16)

so in this case yn becomes unbounded as n → ∞.
The same model also provides a framework for solving many problems of a finan-

cial character. For such problems yn is the account balance in the nth time period,
ρn = 1 + rn, where rn is the interest rate for that period, and bn is the amount
deposited or withdrawn. The following example is typical.
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E X A M P L E

1

A recent college graduate takes out a $10,000 loan to purchase a car. If the interest rate is
12%, what monthly payment is required to pay off the loan in 4 years?

The relevant difference equation is Eq. (12), where yn is the loan balance outstanding in the
nth month, ρ = 1 + r, where r is the interest rate per month, and b is the effect of the monthly
payment. Note that ρ = 1.01, corresponding to a monthly interest rate of 1%. Since payments
reduce the loan balance, b must be negative; the actual payment is |b|.

The solution of the difference equation (12) with this value for ρ and the initial condition
y0 = 10,000 is given by Eq. (15); that is,

yn = (1.01)n(10,000 + 100b) − 100b. (17)

The value of b needed to pay off the loan in 4 years is found by setting y48 = 0 and solving
for b. This gives

b = −100
(1.01)48

(1.01)48 − 1
= −263.34. (18)

The total amount paid on the loan is 48 times |b|, or $12,640.32. Of this amount, $10,000 is
repayment of the principal and the remaining $2640.32 is interest.

Nonlinear Equations. Nonlinear difference equations are much more complicated and
have much more varied solutions than linear equations. We will restrict our attention
to a single equation, the logistic difference equation

yn+1 = ρyn

(
1 − yn

k

)
, (19)

which is analogous to the logistic differential equation

dy
dt

= ry
(

1 − y
K

)
(20)

that was discussed in Section 2.5. Note that if the derivative dy/dt in Eq. (20) is
replaced by the difference (yn+1 − yn)/h, then Eq. (20) reduces to Eq. (19) with
ρ = 1 + hr and k = (1 + hr)K/hr. To simplify Eq. (19) a little more, we can scale the
variable yn by introducing the new variable un = yn/k. Then Eq. (19) becomes

un+1 = ρun(1 − un), (21)

where ρ is a positive parameter.
We begin our investigation of Eq. (21) by seeking the equilibrium, or constant, so-

lutions. These can be found by setting un+1 equal to un in Eq. (21), which corresponds
to setting dy/dt equal to zero in Eq. (20). The resulting equation is

un = ρun − ρu2
n, (22)

so it follows that the equilibrium solutions of Eq. (21) are

un = 0, un = ρ − 1
ρ

. (23)

The next question is whether the equilibrium solutions are asymptotically stable or
unstable. That is, for an initial condition near one of the equilibrium solutions, does
the resulting solution sequence approach or depart from the equilibrium solution?
One way to examine this question is by approximating Eq. (21) by a linear equation
in the neighborhood of an equilibrium solution. For example, near the equilibrium
solution un = 0, the quantity u2

n is small compared to un itself, so we assume that we
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can neglect the quadratic term in Eq. (21) in comparison with the linear terms. This
leaves us with the linear difference equation

un+1 = ρun, (24)

which is presumably a good approximation to Eq. (21) for un sufficiently near zero.
However, Eq. (24) is the same as Eq. (7), and we have already concluded, in Eq. (9),
that un → 0 as n → ∞ if and only if |ρ| < 1, or (since ρ must be positive) for
0 < ρ < 1. Thus the equilibrium solution un = 0 is asymptotically stable for the linear
approximation (24) for this set of ρ values, so we conclude that it is also asymptoti-
cally stable for the full nonlinear equation (21). This conclusion is correct, although
our argument is not complete. What is lacking is a theorem stating that the solutions
of the nonlinear equation (21) resemble those of the linear equation (24) near the
equilibrium solution un = 0. We will not take time to discuss this issue here; the same
question is treated for differential equations in Section 9.3.

Now consider the other equilibrium solution un = (ρ − 1)/ρ. To study solutions
in the neighborhood of this point, we write

un = ρ − 1
ρ

+ vn, (25)

where we assume that vn is small. By substituting from Eq. (25) in Eq. (21) and
simplifying the resulting equation, we eventually obtain

vn+1 = (2 − ρ)vn − ρv2
n. (26)

Since vn is small, we again neglect the quadratic term in comparison with the linear
terms and thereby obtain the linear equation

vn+1 = (2 − ρ)vn. (27)

Referring to Eq. (9) once more, we find that vn → 0 as n → ∞ for |2 − ρ| < 1, that
is, for 1 < ρ < 3. Therefore we conclude that, for this range of values of ρ, the
equilibrium solution un = (ρ − 1)/ρ is asymptotically stable.

Figure 2.9.1 contains the graphs of solutions of Eq. (21) for ρ = 0.8, ρ = 1.5, and
ρ = 2.8, respectively. Observe that the solution converges to zero for ρ = 0.8 and
to the nonzero equilibrium solution for ρ = 1.5 and ρ = 2.8. The convergence is
monotone for ρ = 0.8 and ρ = 1.5 and is oscillatory for ρ = 2.8. The graphs shown
are for particular initial conditions, but the graphs for other initial conditions are
similar.

2 64 8
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( a)
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FIGURE 2.9.1 Solutions of un+1 = ρun(1 − un): (a) ρ = 0.8; (b) ρ = 1.5; (c) ρ = 2.8.
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Another way of displaying the solution of a difference equation is shown in
Figure 2.9.2. In each part of this figure the graphs of the parabola y = ρx(1 − x)

and of the straight line y = x are shown. The equilibrium solutions correspond to
the points of intersection of these two curves. The piecewise linear graph consisting
of successive vertical and horizontal line segments, sometimes called a stairstep di-
agram, represents the solution sequence. The sequence starts at the point u0 on the
x-axis. The vertical line segment drawn upward to the parabola at u0 corresponds to
the calculation of ρu0(1 − u0) = u1. This value is then transferred from the y-axis to
the x-axis; this step is represented by the horizontal line segment from the parabola
to the line y = x. Then the process is repeated over and over again. Clearly, the
sequence converges to the origin in Figure 2.9.2a and to the nonzero equilibrium
solution in the other two cases.
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( a) ( b)
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FIGURE 2.9.2 Iterates of un+1 = ρun(1 − un). (a) ρ = 0.8; (b) ρ = 1.5; (c) ρ = 2.8.
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To summarize our results so far: the difference equation (21) has two equilib-
rium solutions, un = 0 and un = (ρ − 1)/ρ; the former is asymptotically stable for
0 ≤ ρ < 1, and the latter is asymptotically stable for 1 < ρ < 3. When ρ = 1, the two
equilibrium solutions coincide at u = 0; this solution can be shown to be asymptoti-
cally stable. In Figure 2.9.3 the parameter ρ is plotted on the horizontal axis and u on
the vertical axis. The equilibrium solutions u = 0 and u = (ρ − 1)/ρ are shown. The
intervals in which each one is asymptotically stable are indicated by the solid portions
of the curves. There is an exchange of stability from one equilibrium solution to the
other at ρ = 1.

1

0.5

–0.5

1 2 3 ρ

u

u = 0

Asymptotically stable

Unstable

u = (   – 1)/ρ ρ

FIGURE 2.9.3 Exchange of stability for un+1 = ρun(1 − un).

For ρ > 3 neither of the equilibrium solutions is stable, and the solutions of
Eq. (21) exhibit increasing complexity as ρ increases. For ρ somewhat greater than 3,
the sequence un rapidly approaches a steady oscillation of period 2; that is, un oscil-
lates back and forth between two distinct values. For ρ = 3.2 a solution is shown in
Figure 2.9.4. For n greater than about 20, the solution alternates between the values
0.5130 and 0.7995. The graph is drawn for the particular initial condition u0 = 0.3,
but it is similar for all other initial values between 0 and 1. Figure 2.9.4b also shows
the same steady oscillation as a rectangular path that is traversed repeatedly in the
clockwise direction.

At about ρ = 3.449, each state in the oscillation of period 2 separates into two
distinct states, and the solution becomes periodic with period 4; see Figure 2.9.5,
which shows a solution of period 4 for ρ = 3.5. As ρ increases further, periodic
solutions of period 8, 16, . . . appear. The appearance of a new solution at a certain
parameter value is called a bifurcation.

The ρ-values at which the successive period doublings occur approach a limit that
is approximately 3.57. For ρ > 3.57 the solutions possess some regularity, but no
discernible detailed pattern for most values of ρ. For example, a solution for ρ = 3.65
is shown in Figure 2.9.6. It oscillates between approximately 0.3 and 0.9, but its fine
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FIGURE 2.9.4 A solution of un+1 = ρun(1 − un) for ρ = 3.2; period 2. (a) un versus n;
(b) a two-cycle.

structure is unpredictable. The term chaotic is used to describe this situation. One of
the features of chaotic solutions is extreme sensitivity to the initial conditions. This
is illustrated in Figure 2.9.7, where two solutions of Eq. (21) for ρ = 3.65 are shown.
One solution is the same as that in Figure 2.9.6 and has the initial value u0 = 0.3,
while the other solution has the initial value u0 = 0.305. For about 15 iterations the
two solutions remain close and are hard to distinguish from each other in the figure.
After that, although they continue to wander about in approximately the same set
of values, their graphs are quite dissimilar. It would certainly not be possible to use
one of these solutions to estimate the value of the other for values of n larger than
about 15.

It is only comparatively recently that chaotic solutions of difference and differential
equations have become widely known. Equation (20) was one of the first instances
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FIGURE 2.9.5 A solution of un+1 = ρun(1 − un) for ρ = 3.5; period 4. (a) un versus n;
(b) a four-cycle.

of mathematical chaos to be found and studied in detail, by Robert May21 in 1974.
On the basis of his analysis of this equation as a model of the population of certain
insect species, May suggested that if the growth rate ρ is too large, then it will be
impossible to make effective long-range predictions about these insect populations.
The occurrence of chaotic solutions in simple problems has stimulated an enormous
amount of research in recent years, but many questions remain unanswered. It is
increasingly clear, however, that chaotic solutions are much more common than was
suspected at first and that they may be a part of the investigation of a wide range of
phenomena.

21R. M. May,“Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and
Chaos,” Science 186 (1974), pp. 645–647; “Biological Populations Obeying Difference Equations: Stable
Points, Stable Cycles, and Chaos,” Journal of Theoretical Biology 51 (1975), pp. 511–524.
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FIGURE 2.9.6 A solution of un+1 = ρun(1 − un) for ρ = 3.65; a chaotic solution.
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FIGURE 2.9.7 Two solutions of un+1 = ρun(1 − un) for ρ = 3.65; u0 = 0.3 and u0 = 0.305.

PROBLEMS In each of Problems 1 through 6 solve the given difference equation in terms of the initial
value y0. Describe the behavior of the solution as n → ∞.

1. yn+1 = −0.9yn 2. yn+1 = n + 1
n + 2

yn

3. yn+1 =
√

n + 3
n + 1

yn 4. yn+1 = (−1)n+1yn

5. yn+1 = 0.5yn + 6 6. yn+1 = −0.5yn + 6

7. Find the effective annual yield of a bank account that pays interest at a rate of 7%,
compounded daily; that is, divide the difference between the final and initial balances by
the initial balance.
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8. An investor deposits $1000 in an account paying interest at a rate of 8% compounded
monthly, and also makes additional deposits of $25 per month. Find the balance in the
account after 3 years.

9. A certain college graduate borrows $8000 to buy a car. The lender charges interest at an
annual rate of 10%. What monthly payment rate is required to pay off the loan in 3 years?
Compare your result with that of Problem 9 in Section 2.3.

10. A homebuyer wishes to take out a mortgage of $100,000 for a 30-year period. What
monthly payment is required if the interest rate is (a) 9%, (b) 10%, (c) 12%?

11. A homebuyer takes out a mortgage of $100,000 with an interest rate of 9%. What monthly
payment is required to pay off the loan in 30 years? In 20 years? What is the total amount
paid during the term of the loan in each of these cases?

12. If the interest rate on a 20-year mortgage is fixed at 10% and if a monthly payment of
$1000 is the maximum that the buyer can afford, what is the maximum mortgage loan that
can be made under these conditions?

13. A homebuyer wishes to finance the purchase with a $95,000 mortgage with a 20-year term.
What is the maximum interest rate the buyer can afford if the monthly payment is not to
exceed $900?

The Logistic Difference Equation. Problems 14 through 19 deal with the difference equation
(21), un+1 = ρun(1 − un).

14. Carry out the details in the linear stability analysis of the equilibrium solution
un = (ρ − 1)/ρ. That is, derive the difference equation (26) in the text for the pertur-
bation vn.

15. (a) For ρ = 3.2 plot or calculate the solution of the logistic equation (21) for several
initial conditions, say, u0 = 0.2, 0.4, 0.6, and 0.8. Observe that in each case the solution
approaches a steady oscillation between the same two values. This illustrates that the
long-term behavior of the solution is independent of the initial conditions.
(b) Make similar calculations and verify that the nature of the solution for large n is
independent of the initial condition for other values of ρ, such as 2.6, 2.8, and 3.4.

16. Assume that ρ > 1 in Eq. (21).

(a) Draw a qualitatively correct stairstep diagram and thereby show that if u0 < 0, then
un → −∞ as n → ∞.

(b) In a similar way, determine what happens as n → ∞ if u0 > 1.

17. The solutions of Eq. (21) change from convergent sequences to periodic oscillations of
period 2 as the parameter ρ passes through the value 3. To see more clearly how this
happens, carry out the following calculations.

(a) Plot or calculate the solution for ρ = 2.9, 2.95, and 2.99, respectively, using an initial
value u0 of your choice in the interval (0, 1). In each case estimate how many iterations
are required for the solution to get “very close” to the limiting value. Use any convenient
interpretation of what “very close” means in the preceding sentence.

(b) Plot or calculate the solution for ρ = 3.01, 3.05, and 3.1, respectively, using the same
initial condition as in part (a). In each case estimate how many iterations are needed to
reach a steady-state oscillation. Also find or estimate the two values in the steady-state
oscillation.

18. By calculating or plotting the solution of Eq. (21) for different values of ρ, estimate the
value of ρ at which the solution changes from an oscillation of period 2 to one of period
4. In the same way, estimate the value of ρ at which the solution changes from period 4
to period 8.
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19. Let ρk be the value of ρ at which the solution of Eq. (21) changes from period 2k−1 to
period 2k. Thus, as noted in the text, ρ1 = 3, ρ2

∼= 3.449, and ρ3
∼= 3.544.

(a) Using these values of ρ1, ρ2, and ρ3, or those you found in Problem 18, calculate
(ρ2 − ρ1)/(ρ3 − ρ2).

(b) Let δn = (ρn − ρn−1)/(ρn+1 − ρn). It has been shown that δn approaches a limit δ as
n → ∞, where δ ∼= 4.6692 is known as the Feigenbaum 22 number. Determine the per-
centage difference between the limiting value δ and δ2, as calculated in part (a).

(c) Assume that δ3 = δ and use this relation to estimate ρ4, the value of ρ at which solutions
of period 16 appear.

(d) By plotting or calculating solutions near the value of ρ4 found in part (c), try to detect
the appearance of a period 16 solution.

(e) Observe that

ρn = ρ1 + (ρ2 − ρ1) + (ρ3 − ρ2) + · · · + (ρn − ρn−1).

Assuming that (ρ4 − ρ3) = (ρ3 − ρ2)δ
−1, (ρ5 − ρ4) = (ρ3 − ρ2)δ

−2, and so forth, express ρn

as a geometric sum. Then find the limit of ρn as n → ∞. This is an estimate of the value
of ρ at which the onset of chaos occurs in the solution of the logistic equation (21).

PROBLEMS Miscellaneous Problems. One of the difficulties in solving first order equations is that there
are several methods of solution, each of which can be used on a certain type of equation. It
may take some time to become proficient in matching solution methods with equations. The
first 32 of the following problems are presented to give you some practice in identifying the
method or methods applicable to a given equation. The remaining problems involve certain
types of equations that can be solved by specialized methods.

In each of Problems 1 through 32 solve the given differential equation. If an initial condition
is given, also find the solution that satisfies it.

1.
dy
dx

= x3 − 2y
x

2.
dy
dx

= 1 + cos x
2 − sin y

3.
dy
dx

= 2x + y
3 + 3y2 − x

, y(0) = 0 4.
dy
dx

= 3 − 6x + y − 2xy

5.
dy
dx

= −2xy + y2 + 1
x2 + 2xy

6. x
dy
dx

+ xy = 1 − y, y(1) = 0

7.
dy
dx

= 4x3 + 1
y(2 + 3y)

8. x
dy
dx

+ 2y = sin x
x

, y(2) = 1

9.
dy
dx

= −2xy + 1
x2 + 2y

10. (x2y + xy − y) dx + (x2y − 2x2) dy = 0

22This result for the logistic difference equation was discovered by Mitchell Feigenbaum (1944 – )
in August 1975, while he was working at the Los Alamos National Laboratory. Within a few weeks he
had established that the same limiting value also appears in a large class of period-doubling difference
equations. Feigenbaum, who has a doctorate in physics from M.I.T., is now at Rockefeller University.
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11. (x2 + y) dx + (x + ey) dy = 0 12.
dy
dx

+ y = 1
1 + ex

13.
dy
dx

= 1 + 2x + y2 + 2xy2 14. (x + y) dx + (x + 2y) dy = 0, y(2) = 3

15. (ex + 1)
dy
dx

= y − yex 16.
dy
dx

= e−x cos y − e2y cos x
−e−x sin y + 2e2y sin x

17.
dy
dx

= e2x + 3y 18.
dy
dx

+ 2y = e−x2−2x, y(0) = 3

19.
dy
dx

= 3x2 − 2y − y3

2x + 3xy2
20. y′ = ex+y

21.
dy
dx

+ 2y2 + 6xy − 4
3x2 + 4xy + 3y2

= 0 22.
dy
dx

= x2 − 1
y2 + 1

, y(−1) = 1

23. t
dy
dt

+ (t + 1)y = e2t 24. 2 sin y sin x cos x dx + cos y sin2 x dy = 0

25.
(

2
x
y

− y
x2 + y2

)
dx +

(
x

x2 + y2
− x2

y2

)
dy = 0

26. xy′ = y + xey/x 27.
dy
dx

= x
x2y + y3

Hint: Let u = x2.

28. (2y + 3x) dx = −x dy 29.
dy
dx

= x + y
x − y

30. (3y2 + 2xy) dx − (2xy + x2) dy = 0 31.
dy
dx

= − 3x2y + y2

2x3 + 3xy
, y(1) = −2

32. xy′ + y − y2e2x = 0, y(1) = 2

33. Riccati Equations. The equation

dy
dt

= q1(t) + q2(t)y + q3(t)y2

is known as a Riccati23 equation. Suppose that some particular solution y1 of this equation
is known. A more general solution containing one arbitrary constant can be obtained
through the substitution

y = y1(t) + 1
v(t)

.

Show that v(t) satisfies the first order linear equation

dv

dt
= −(q2 + 2q3y1)v − q3.

Note that v(t) will contain a single arbitrary constant.

23Riccati equations are named for Jacopo Francesco Riccati (1676–1754), a Venetian nobleman, who
declined university appointments in Italy,Austria, and Russia to pursue his mathematical studies privately
at home. Riccati studied these equations extensively; however, it was Euler (in 1760) who discovered the
result stated in this problem.
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34. Using the method of Problem 33 and the given particular solution, solve each of the
following Riccati equations:

(a) y′ = 1 + t2 − 2ty + y2; y1(t) = t

(b) y′ = − 1
t2

− y
t

+ y2; y1(t) = 1
t

(c)
dy
dt

= 2 cos2 t − sin2 t + y2

2 cos t
; y1(t) = sin t

35. The propagation of a single action in a large population (for example, drivers turning on
headlights at sunset) often depends partly on external circumstances (gathering darkness)
and partly on a tendency to imitate others who have already performed the action in
question. In this case the proportion y(t) of people who have performed the action can
be described24 by the equation

dy/dt = (1 − y)[x(t) + by], (i)

where x(t) measures the external stimulus and b is the imitation coefficient.
(a) Observe that Eq. (i) is a Riccati equation and that y1(t) = 1 is one solution. Use the
transformation suggested in Problem 33, and find the linear equation satisfied by v(t).
(b) Find v(t) in the case that x(t) = at, where a is a constant. Leave your answer in the
form of an integral.

Some Special Second Order Equations. Second order equations involve the second deriva-
tive of the unknown function and have the general form y′′ = f (t, y, y′). Usually such equations
cannot be solved by methods designed for first order equations. However, there are two types
of second order equations that can be transformed into first order equations by a suitable
change of variable. The resulting equation can sometimes be solved by the methods presented
in this chapter. Problems 36 through 51 deal with these types of equations.

Equations with the Dependent Variable Missing. For a second order differential equation
of the form y′′ = f (t, y′), the substitution v = y′, v′ = y′′ leads to a first order equation of the
form v′ = f (t, v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving the first order equation for
v, and a second is introduced in the integration for y. In each of Problems 36 through 41 use
this substitution to solve the given equation.
36. t2y′′ + 2ty′ − 1 = 0, t > 0 37. ty′′ + y′ = 1, t > 0
38. y′′ + t(y′)2 = 0 39. 2t2y′′ + (y′)3 = 2ty′, t > 0
40. y′′ + y′ = e−t 41. t2y′′ = (y′)2, t > 0

Equations with the Independent Variable Missing. Consider second order differential equa-
tions of the form y′′ = f (y, y′), in which the independent variable t does not appear explicitly. If
we let v = y′, then we obtain dv/dt = f (y, v). Since the right side of this equation depends on y
and v, rather than on t and v, this equation contains too many variables. However, if we think
of y as the independent variable, then by the chain rule, dv/dt = (dv/dy)(dy/dt) = v(dv/dy).
Hence the original differential equation can be written as v(dv/dy) = f (y, v). Provided that
this first order equation can be solved, we obtain v as a function of y. A relation between y
and t results from solving dy/dt = v(y), which is a separable equation. Again, there are two
arbitrary constants in the final result. In each of Problems 42 through 47 use this method to
solve the given differential equation.

24See Anatol Rapoport,“Contribution to the Mathematical Theory of Mass Behavior: I. The Propagation
of Single Acts,” Bulletin of Mathematical Biophysics 14 (1952), pp. 159–169, and John Z. Hearon, “Note
on the Theory of Mass Behavior,” Bulletin of Mathematical Biophysics 17 (1955), pp. 7–13.
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42. yy′′ + (y′)2 = 0 43. y′′ + y = 0
44. y′′ + y(y′)3 = 0 45. 2y2y′′ + 2y(y′)2 = 1
46. yy′′ − (y′)3 = 0 47. y′′ + (y′)2 = 2e−y

Hint: In Problem 47 the transformed equation is a Bernoulli equation. See Problem 27 in
Section 2.4.

In each of Problems 48 through 51 solve the given initial value problem using the methods of
Problems 36 through 47.
48. y′y′′ = 2, y(0) = 1, y′(0) = 2
49. y′′ − 3y2 = 0, y(0) = 2, y′(0) = 4
50. (1 + t2)y′′ + 2ty′ + 3t−2 = 0, y(1) = 2, y′(1) = −1
51. y′y′′ − t = 0, y(1) = 2, y′(1) = 1
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C H A P T E R

3

Second Order Linear
Equations

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. The first is that linear equations have a rich theo-
retical structure that underlies a number of systematic methods of solution. Further,
a substantial portion of this structure and of these methods is understandable at a
fairly elementary mathematical level. In order to present the key ideas in the sim-
plest possible context, we describe them in this chapter for second order equations.
Another reason to study second order linear equations is that they are vital to any
serious investigation of the classical areas of mathematical physics. One cannot go
very far in the development of fluid mechanics, heat conduction, wave motion, or
electromagnetic phenomena without finding it necessary to solve second order lin-
ear differential equations. As an example, we discuss the oscillations of some basic
mechanical and electrical systems at the end of the chapter.

3.1 Homogeneous Equations with Constant Coefficients
A second order ordinary differential equation has the form

d2y
dt2

= f
(

t, y,
dy
dt

)
, (1)

where f is some given function. Usually, we will denote the independent variable
by t since time is often the independent variable in physical problems, but some-
times we will use x instead. We will use y, or occasionally some other letter, to
designate the dependent variable. Equation (1) is said to be linear if the function f
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has the form

f
(

t, y,
dy
dt

)
= g(t) − p(t)

dy
dt

− q(t)y, (2)

that is, if f is linear in y and dy/dt. In Eq. (2) g,p, and q are specified functions of the in-
dependent variable t but do not depend on y. In this case we usually rewrite Eq. (1) as

y′′ + p(t)y′ + q(t)y = g(t), (3)

where the primes denote differentiation with respect to t. Instead of Eq. (3), we
often see the equation

P(t)y′′ + Q(t)y′ + R(t)y = G(t). (4)

Of course, if P(t) �= 0, we can divide Eq. (4) by P(t) and thereby obtain Eq. (3) with

p(t) = Q(t)
P(t)

, q(t) = R(t)
P(t)

, g(t) = G(t)
P(t)

. (5)

In discussing Eq. (3) and in trying to solve it, we will restrict ourselves to intervals in
which p, q, and g are continuous functions.1

If Eq. (1) is not of the form (3) or (4), then it is called nonlinear. Analytical
investigations of nonlinear equations are relatively difficult, so we will have little to
say about them in this book. Numerical or geometical approaches are often more
appropriate, and these are discussed in Chapters 8 and 9.

An initial value problem consists of a differential equation such as Eq. (1), (3), or
(4) together with a pair of initial conditions

y(t0) = y0, y′(t0) = y′
0, (6)

where y0 and y′
0 are given numbers prescribing values for y and y′ at the initial

point t0. Observe that the initial conditions for a second order equation identify not
only a particular point (t0, y0) through which the graph of the solution must pass,
but also the slope y′

0 of the graph at that point. It is reasonable to expect that two
initial conditions are needed for a second order equation because, roughly speaking,
two integrations are required to find a solution and each integration introduces an
arbitrary constant. Presumably, two initial conditions will suffice to determine values
for these two constants.

A second order linear equation is said to be homogeneous if the term g(t) in
Eq. (3), or the term G(t) in Eq. (4), is zero for all t. Otherwise, the equation is
called nonhomogeneous. As a result, the term g(t), or G(t), is sometimes called
the nonhomogeneous term. We begin our discussion with homogeneous equations,
which we will write in the form

P(t)y′′ + Q(t)y′ + R(t)y = 0. (7)

Later, in Sections 3.5 and 3.6, we will show that once the homogeneous equation
has been solved, it is always possible to solve the corresponding nonhomogeneous

1There is a corresponding treatment of higher order linear equations in Chapter 4. If you wish, you may
read the appropriate parts of Chapter 4 in parallel with Chapter 3.
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equation (4), or at least to express the solution in terms of an integral. Thus the
problem of solving the homogeneous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the func-
tions P, Q, and R are constants. In this case, Eq. (7) becomes

ay′′ + by′ + cy = 0, (8)

where a, b, and c are given constants. It turns out that Eq. (8) can always be solved
easily in terms of the elementary functions of calculus. On the other hand, it is
usually much more difficult to solve Eq. (7) if the coefficients are not constants, and
a treatment of that case is deferred until Chapter 5. Before taking up Eq. (8), let
us first gain some experience by looking at a simple example that in many ways is
typical.

E X A M P L E

1

Solve the equation
y′′ − y = 0, (9)

and also find the solution that satisfies the initial conditions

y(0) = 2, y′(0) = −1. (10)

Observe that Eq. (9) is just Eq. (8) with a = 1, b = 0, and c = −1. In words, Eq. (9) says that
we seek a function with the property that the second derivative of the function is the same as the
function itself. Do any of the functions that you studied in calculus have this property? A little
thought will probably produce at least one such function, namely, y1(t) = et , the exponential
function. A little more thought may also produce a second function, y2(t) = e−t . Some further
experimentation reveals that constant multiples of these two solutions are also solutions. For
example, the functions 2et and 5e−t also satisfy Eq. (9), as you can verify by calculating their
second derivatives. In the same way, the functions c1y1(t) = c1et and c2y2(t) = c2e−t satisfy the
differential equation (9) for all values of the constants c1 and c2.

Next, it is vital to notice that the sum of any two solutions of Eq. (9) is also a solution. In
particular, since c1y1(t) and c2y2(t) are solutions of Eq. (9), so is the function

y = c1y1(t) + c2y2(t) = c1et + c2e−t (11)

for any values of c1 and c2. Again, this can be verified by calculating the second derivative y′′

from Eq. (11). We have y′ = c1et − c2e−t and y′′ = c1et + c2e−t ; thus y′′ is the same as y, and
Eq. (9) is satisfied.

Let us summarize what we have done so far in this example. Once we notice that the
functions y1(t) = et and y2(t) = e−t are solutions of Eq. (9), it follows that the general linear
combination (11) of these functions is also a solution. Since the coefficients c1 and c2 in Eq. (11)
are arbitrary, this expression represents an infinite family of solutions of the differential equa-
tion (9).

It is now possible to consider how to pick out a particular member of this infinite family of
solutions that also satisfies a given set of initial conditions (10). In other words, we seek the
solution that passes through the point (0, 2) and at that point has the slope −1. First, we set
t = 0 and y = 2 in Eq. (11); this gives the equation

c1 + c2 = 2. (12)

Next, we differentiate Eq. (11) with the result that

y′ = c1et − c2e−t .
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Then, setting t = 0 and y′ = −1, we obtain

c1 − c2 = −1. (13)

By solving Eqs. (12) and (13) simultaneously for c1 and c2 we find that

c1 = 1
2 , c2 = 3

2 . (14)

Finally, inserting these values in Eq. (11), we obtain

y = 1
2 et + 3

2 e−t , (15)

the solution of the initial value problem consisting of the differential equation (9) and the
initial conditions (10).

What conclusions can we draw from the preceding example that will help us to
deal with the more general equation (8)

ay′′ + by′ + cy = 0,

whose coefficients a, b, and c are arbitrary (real) constants? In the first place, in the
example the solutions were exponential functions. Further, once we had identified
two solutions, we were able to use a linear combination of them to satisfy the given
initial conditions as well as the differential equation itself.

It turns out that by exploiting these two ideas we can solve Eq. (8) for any values
of its coefficients and also satisfy any given set of initial conditions for y and y′. We
start by seeking exponential solutions of the form y = ert , where r is a parameter to
be determined. Then it follows that y′ = rert and y′′ = r2ert . By substituting these
expressions for y, y′, and y′′ in Eq. (8), we obtain

(ar2 + br + c)ert = 0,

or, since ert �= 0,
ar2 + br + c = 0. (16)

Equation (16) is called the characteristic equation for the differential equation (8).
Its significance lies in the fact that if r is a root of the polynomial equation (16), then
y = ert is a solution of the differential equation (8). Since Eq. (16) is a quadratic
equation with real coefficients, it has two roots, which may be real and different, real
but repeated, or complex conjugates. We consider the first case here and the latter
two cases in Sections 3.3 and 3.4.

Assuming that the roots of the characteristic equation (16) are real and different,
let them be denoted by r1 and r2, where r1 �= r2. Then y1(t) = er1t and y2(t) = er2t are
two solutions of Eq. (8). Just as in Example 1, it now follows that

y = c1y1(t) + c2y2(t) = c1er1t + c2er2t (17)

is also a solution of Eq. (8). To verify that this is so,we can differentiate the expression
in Eq. (17); hence

y′ = c1r1er1t + c2r2er2t (18)

and
y′′ = c1r2

1er1t + c2r2
2er2t . (19)
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Substituting these expressions for y, y′, and y′′ in Eq. (8) and rearranging terms, we
obtain

ay′′ + by′ + cy = c1(ar2
1 + br1 + c)er1t + c2(ar2

2 + br2 + c)er2t . (20)

The quantity in each of the parentheses on the right side of Eq. (20) is zero because
r1 and r2 are roots of Eq. (16); therefore, y as given by Eq. (17) is indeed a solution
of Eq. (8), as we wished to verify.

Now suppose that we want to find the particular member of the family of solutions
(17) that satisfies the initial conditions (6)

y(t0) = y0, y′(t0) = y′
0.

By substituting t = t0 and y = y0 in Eq. (17), we obtain

c1er1t0 + c2er2t0 = y0. (21)

Similarly, setting t = t0 and y′ = y′
0 in Eq. (18) gives

c1r1er1t0 + c2r2er2t0 = y′
0. (22)

On solving Eqs. (21) and (22) simultaneously for c1 and c2, we find that

c1 = y′
0 − y0r2

r1 − r2
e−r1t0 , c2 = y0r1 − y′

0

r1 − r2
e−r2t0 . (23)

Recall that r1 − r2 �= 0 so that the expressions in Eq. (23) always make sense. Thus,
no matter what initial conditions are assigned—that is, regardless of the values of t0,
y0, and y′

0 in Eqs. (6)—it is always possible to determine c1 and c2 so that the initial
conditions are satisfied. Moreover, there is only one possible choice of c1 and c2

for each set of initial conditions. With the values of c1 and c2 given by Eq. (23), the
expression (17) is the solution of the initial value problem

ay′′ + by′ + cy = 0, y(t0) = y0, y′(t0) = y′
0. (24)

It is possible to show, on the basis of the fundamental theorem cited in the next
section, that all solutions of Eq. (8) are included in the expression (17), at least for the
case in which the roots of Eq. (16) are real and different. Therefore, we call Eq. (17)
the general solution of Eq. (8). The fact that any possible initial conditions can be
satisfied by the proper choice of the constants in Eq. (17) makes more plausible the
idea that this expression does include all solutions of Eq. (8).

Let us now look at some further examples.

E X A M P L E

2

Find the general solution of
y′′ + 5y′ + 6y = 0. (25)

We assume that y = ert , and it then follows that r must be a root of the characteristic equation

r2 + 5r + 6 = (r + 2)(r + 3) = 0.

Thus the possible values of r are r1 = −2 and r2 = −3; the general solution of Eq. (25) is

y = c1e−2t + c2e−3t . (26)
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E X A M P L E

3

Find the solution of the initial value problem

y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = 3. (27)

The general solution of the differential equation was found in Example 2 and is given by
Eq. (26). To satisfy the first initial condition, we set t = 0 and y = 2 in Eq. (26); thus c1 and c2

must satisfy
c1 + c2 = 2. (28)

To use the second initial condition, we must first differentiate Eq. (26). This gives
y′ = −2c1e−2t − 3c2e−3t . Then, setting t = 0 and y′ = 3, we obtain

−2c1 − 3c2 = 3. (29)

By solving Eqs. (28) and (29), we find that c1 = 9 and c2 = −7. Using these values in the
expression (26), we obtain the solution

y = 9e−2t − 7e−3t (30)

of the initial value problem (27). The graph of the solution is shown in Figure 3.1.1.

y

t

2

1

0.5 1 1.5 2

y = 9e–2 t – 7e–3t

FIGURE 3.1.1 Solution of y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = 3.

E X A M P L E

4

Find the solution of the initial value problem

4y′′ − 8y′ + 3y = 0, y(0) = 2, y′(0) = 1
2 . (31)

If y = ert , then the characteristic equation is

4r2 − 8r + 3 = 0

and its roots are r = 3/2 and r = 1/2. Therefore the general solution of the differential equa-
tion is

y = c1e3t/2 + c2et/2. (32)

Applying the initial conditions, we obtain the following two equations for c1 and c2:

c1 + c2 = 2, 3
2 c1 + 1

2 c2 = 1
2 .

The solution of these equations is c1 = − 1
2 , c2 = 5

2 , so the solution of the initial value problem
(31) is

y = − 1
2 e3t/2 + 5

2 et/2. (33)

Figure 3.1.2 shows the graph of the solution.
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2

1

–1

0.5 1 1.5 2

y = –    e3t/2 +    et/21

2

5

2

y

t

FIGURE 3.1.2 Solution of 4y′′ − 8y′ + 3y = 0, y(0) = 2, y′(0) = 0.5.

E X A M P L E

5

The solution (30) of the initial value problem (27) initially increases (because its initial slope
is positive) but eventually approaches zero (because both terms involve negative exponential
functions). Therefore the solution must have a maximum point, and the graph in Figure 3.1.1
confirms this. Determine the location of this maximum point.

The coordinates of the maximum point can be estimated from the graph, but to find them
more precisely, we seek the point where the solution has a horizontal tangent line. By differ-
entiating the solution (30), y = 9e−2t − 7e−3t , with respect to t, we obtain

y′ = −18e−2t + 21e−3t . (34)

Setting y′ equal to zero and multiplying by e3t , we find that the critical value tm satisfies et = 7/6;
hence

tm = ln(7/6) ∼= 0.15415. (35)

The corresponding maximum value ym is given by

ym = 9e−2tm − 7e−3tm = 108
49

∼= 2.20408. (36)

In this example the initial slope is 3, but the solution of the given differential equation
behaves in a similar way for any other positive initial slope. In Problem 26 you are asked to
determine how the coordinates of the maximum point depend on the initial slope.

Returning to the equation ay′′ + by′ + cy = 0 with arbitrary coefficients, recall that
when r1 �= r2, its general solution (17) is the sum of two exponential functions. There-
fore the solution has a relatively simple geometrical behavior: as t increases, the
magnitude of the solution either tends to zero (when both exponents are negative)
or else grows rapidly (when at least one exponent is positive). These two cases are
illustrated by the solutions of Examples 3 and 4, which are shown in Figures 3.1.1
and 3.1.2, respectively. There is also a third case that occurs less often: the solution
approaches a constant when one exponent is zero and the other is negative.

In Sections 3.3 and 3.4, respectively, we return to the problem of solving the equa-
tion ay′′ + by′ + cy = 0 when the roots of the characteristic equation either are com-
plex conjugates or are real and equal. In the meantime, in Section 3.2, we provide
a systematic discussion of the mathematical structure of the solutions of all second
order linear homogeneous equations.
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PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation.
1. y′′ + 2y′ − 3y = 0 2. y′′ + 3y′ + 2y = 0
3. 6y′′ − y′ − y = 0 4. 2y′′ − 3y′ + y = 0
5. y′′ + 5y′ = 0 6. 4y′′ − 9y = 0
7. y′′ − 9y′ + 9y = 0 8. y′′ − 2y′ − 2y = 0

In each of Problems 9 through 16 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior as t increases.

9. y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = 1
10. y′′ + 4y′ + 3y = 0, y(0) = 2, y′(0) = −1
11. 6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0
12. y′′ + 3y′ = 0, y(0) = −2, y′(0) = 3
13. y′′ + 5y′ + 3y = 0, y(0) = 1, y′(0) = 0
14. 2y′′ + y′ − 4y = 0, y(0) = 0, y′(0) = 1
15. y′′ + 8y′ − 9y = 0, y(1) = 1, y′(1) = 0
16. 4y′′ − y = 0, y(−2) = 1, y′(−2) = −1
17. Find a differential equation whose general solution is y = c1e2t + c2e−3t .
18. Find a differential equation whose general solution is y = c1e−t/2 + c2e−2t .
19. Find the solution of the initial value problem

y′′ − y = 0, y(0) = 5
4 , y′(0) = − 3

4 .

Plot the solution for 0 ≤ t ≤ 2 and determine its minimum value.
20. Find the solution of the initial value problem

2y′′ − 3y′ + y = 0, y(0) = 2, y′(0) = 1
2 .

Then determine the maximum value of the solution and also find the point where the
solution is zero.

21. Solve the initial value problem y′′ − y′ − 2y = 0, y(0) = α, y′(0) = 2. Then find α so that
the solution approaches zero as t → ∞.

22. Solve the initial value problem 4y′′ − y = 0, y(0) = 2, y′(0) = β. Then find β so that the
solution approaches zero as t → ∞.

In each of Problems 23 and 24 determine the values of α, if any, for which all solutions tend to
zero as t → ∞; also determine the values of α, if any, for which all (nonzero) solutions become
unbounded as t → ∞.
23. y′′ − (2α − 1)y′ + α(α − 1)y = 0
24. y′′ + (3 − α)y′ − 2(α − 1)y = 0
25. Consider the initial value problem

2y′′ + 3y′ − 2y = 0, y(0) = 1, y′(0) = −β,

where β > 0.
(a) Solve the initial value problem.
(b) Plot the solution when β = 1. Find the coordinates (t0, y0) of the minimum point of
the solution in this case.
(c) Find the smallest value of β for which the solution has no minimum point.
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26. Consider the initial value problem (see Example 5)

y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = β,

where β > 0.
(a) Solve the initial value problem.
(b) Determine the coordinates tm and ym of the maximum point of the solution as functions
of β.
(c) Determine the smallest value of β for which ym ≥ 4.
(d) Determine the behavior of tm and ym as β → ∞.

27. Consider the equation ay′′ + by′ + cy = d, where a, b, c, and d are constants.
(a) Find all equilibrium, or constant, solutions of this differential equation.
(b) Let ye denote an equilibrium solution, and let Y = y − ye. Thus Y is the deviation of
a solution y from an equilibrium solution. Find the differential equation satisfied by Y .

28. Consider the equation ay′′ + by′ + cy = 0, where a, b, and c are constants with a > 0. Find
conditions on a, b, and c such that the roots of the characteristic equation are:
(a) real, different, and negative.
(b) real with opposite signs.
(c) real, different, and positive.

3.2 Solutions of Linear Homogeneous Equations; the Wronskian
In the preceding section we showed how to solve some differential equations of the
form

ay′′ + by′ + cy = 0,

where a, b, and c are constants. Now we build on those results to provide a clearer
picture of the structure of the solutions of all second order linear homogeneous
equations. In turn, this understanding will assist us in finding the solutions of other
problems that we will encounter later.

To discuss general properties of linear differential equations, it is helpful to intro-
duce a differential operator notation. Let p and q be continuous functions on an
open interval I , that is, for α < t < β. The cases α = −∞, or β = ∞, or both, are
included. Then, for any function φ that is twice differentiable on I , we define the
differential operator L by the equation

L[φ] = φ′′ + pφ′ + qφ. (1)

Note that L[φ] is a function on I . The value of L[φ] at a point t is

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t).

For example, if p(t) = t2, q(t) = 1 + t, and φ(t) = sin 3t, then

L[φ](t) = (sin 3t)′′ + t2(sin 3t)′ + (1 + t) sin 3t

= −9 sin 3t + 3t2 cos 3t + (1 + t) sin 3t.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 166 Page number 146 cyan black

146 Chapter 3. Second Order Linear Equations

The operator L is often written as L = D2 + pD + q, where D is the derivative
operator.

In this section we study the second order linear homogeneous equation
L[φ](t) = 0. Since it is customary to use the symbol y to denote φ(t), we will usually
write this equation in the form

L[y] = y′′ + p(t)y′ + q(t)y = 0. (2)

With Eq. (2) we associate a set of initial conditions

y(t0) = y0, y′(t0) = y′
0, (3)

where t0 is any point in the interval I , and y0 and y′
0 are given real numbers. We

would like to know whether the initial value problem (2), (3) always has a solution,
and whether it may have more than one solution. We would also like to know whether
anything can be said about the form and structure of solutions that might be helpful
in finding solutions of particular problems. Answers to these questions are contained
in the theorems in this section.

The fundamental theoretical result for initial value problems for second order
linear equations is stated in Theorem 3.2.1, which is analogous to Theorem 2.4.1
for first order linear equations. The result applies equally well to nonhomogeneous
equations, so the theorem is stated in that form.

Theorem 3.2.1 (Existence and Uniqueness Theorem)

Consider the initial value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′
0, (4)

where p, q, and g are continuous on an open interval I that contains the point t0.
Then there is exactly one solution y = φ(t) of this problem, and the solution exists
throughout the interval I .

We emphasize that the theorem says three things:

1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is unique.
3. The solution φ is defined throughout the interval I where the coefficients are continuous

and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For instance, we
found in Example 1 of Section 3.1 that the initial value problem

y′′ − y = 0, y(0) = 2, y′(0) = −1 (5)

has the solution
y = 1

2 et + 3
2 e−t . (6)

The fact that we found a solution certainly establishes that a solution exists for this
initial value problem. Further, the solution (6) is twice differentiable, indeed differen-
tiable any number of times, throughout the interval (−∞, ∞) where the coefficients
in the differential equation are continuous. On the other hand, it is not obvious, and
is more difficult to show, that the initial value problem (5) has no solutions other
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than the one given by Eq. (6). Nevertheless, Theorem 3.2.1 states that this solution
is indeed the only solution of the initial value problem (5).

For most problems of the form (4) it is not possible to write down a useful ex-
pression for the solution. This is a major difference between first order and second
order linear equations. Therefore, all parts of the theorem must be proved by general
methods that do not involve having such an expression. The proof ofTheorem 3.2.1 is
fairly difficult, and we do not discuss it here.2 We will, however, accept Theorem 3.2.1
as true and make use of it whenever necessary.

E X A M P L E

1

Find the longest interval in which the solution of the initial value problem

(t2 − 3t)y′′ + ty′ − (t + 3)y = 0, y(1) = 2, y′(1) = 1

is certain to exist.
If the given differential equation is written in the form of Eq. (4), then p(t) = 1/(t − 3),

q(t) = −(t + 3)/t(t − 3), and g(t) = 0. The only points of discontinuity of the coefficients are
t = 0 and t = 3. Therefore, the longest open interval, containing the initial point t = 1, in
which all the coefficients are continuous is 0 < t < 3. Thus, this is the longest interval in which
Theorem 3.2.1 guarantees that the solution exists.

E X A M P L E

2

Find the unique solution of the initial value problem

y′′ + p(t)y′ + q(t)y = 0, y(t0) = 0, y′(t0) = 0,

where p and q are continuous in an open interval I containing t0.
The function y = φ(t) = 0 for all t in I certainly satisfies the differential equation and initial

conditions. By the uniqueness part of Theorem 3.2.1, it is the only solution of the given
problem.

Let us now assume that y1 and y2 are two solutions of Eq. (2); in other words,

L[y1] = y′′
1 + py′

1 + qy1 = 0,

and similarly for y2. Then, just as in the examples in Section 3.1, we can generate
more solutions by forming linear combinations of y1 and y2. We state this result as a
theorem.

Theorem 3.2.2 (Principle of Superposition)

If y1 and y2 are two solutions of the differential equation (2),

L[y] = y′′ + p(t)y′ + q(t)y = 0,

then the linear combination c1y1 + c2y2 is also a solution for any values of the
constants c1 and c2.

2A proof of Theorem 3.2.1 may be found, for example, in Chapter 6, Section 8 of the book by Coddington
listed in the references at the end of this chapter.
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A special case of Theorem 3.2.2 occurs if either c1 or c2 is zero. Then we conclude
that any constant multiple of a solution of Eq. (2) is also a solution.

To prove Theorem 3.2.2, we need only substitute

y = c1y1(t) + c2y2(t) (7)

for y in Eq. (2). By calculating the indicated derivatives and rearranging terms, we
obtain

L[c1y1 + c2y2] = [c1y1 + c2y2]′′ + p[c1y1 + c2y2]′ + q[c1y1 + c2y2]
= c1y′′

1 + c2y′′
2 + c1py′

1 + c2py′
2 + c1qy1 + c2qy2

= c1[y′′
1 + py′

1 + qy1] + c2[y′′
2 + py′

2 + qy2]
= c1L[y1] + c2L[y2].

Since L[y1] = 0 and L[y2] = 0, it follows that L[c1y1 + c2y2] = 0 also. Therefore,
regardless of the values of c1 and c2, y as given by Eq. (7) does satisfy the differential
equation (2), and the proof of Theorem 3.2.2 is complete.

Theorem 3.2.2 states that, beginning with only two solutions of Eq. (2), we can
construct an infinite family of solutions by means of Eq. (7). The next question is
whether all solutions of Eq. (2) are included in Eq. (7) or whether there may be
other solutions of a different form. We begin to address this question by examining
whether the constants c1 and c2 in Eq. (7) can be chosen so as to satisfy the initial
conditions (3). These initial conditions require c1 and c2 to satisfy the equations

c1y1(t0) + c2y2(t0) = y0,
(8)

c1y′
1(t0) + c2y′

2(t0) = y′
0.

The determinant of coefficients of the system (8) is

W =
∣∣∣∣∣y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣∣ = y1(t0)y′
2(t0) − y′

1(t0)y2(t0). (9)

If W �= 0, then Eqs. (8) have a unique solution (c1, c2) regardless of the values of y0

and y′
0. This solution is given by

c1 = y0y′
2(t0) − y′

0y2(t0)
y1(t0)y′

2(t0) − y′
1(t0)y2(t0)

, c2 = −y0y′
1(t0) + y′

0y1(t0)
y1(t0)y′

2(t0) − y′
1(t0)y2(t0)

, (10)

or, in terms of determinants,

c1 =

∣∣∣∣∣y0 y2(t0)

y′
0 y′

2(t0)

∣∣∣∣∣∣∣∣∣∣y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣∣
, c2 =

∣∣∣∣∣y1(t0) y0

y′
1(t0) y′

0

∣∣∣∣∣∣∣∣∣∣y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣∣
. (11)

With these values for c1 and c2, the expression (7) satisfies the initial conditions (3)
as well as the differential equation (2).

On the other hand,if W = 0, then Eqs. (8) have no solution unless y0 and y′
0 satisfy

a certain additional condition; in this case there are infinitely many solutions.
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The determinant W is called the Wronskian3 determinant, or simply the Wron-
skian, of the solutions y1 and y2. Sometimes we use the more extended notation
W(y1, y2)(t0) to stand for the expression on the right side of Eq. (9), thereby empha-
sizing that the Wronskian depends on the functions y1 and y2, and that it is evaluated
at the point t0. The preceding argument establishes the following result.

Theorem 3.2.3 Suppose that y1 and y2 are two solutions of Eq. (2)

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and that the initial conditions (3)

y(t0) = y0, y′(t0) = y′
0

are assigned. Then it is always possible to choose the constants c1, c2 so that

y = c1y1(t) + c2y2(t)

satisfies the differential equation (2) and the initial conditions (3) if and only if the
Wronskian

W = y1y′
2 − y′

1y2

is not zero at t0.

E X A M P L E

3

In Example 2 of Section 3.1 we found that y1(t) = e−2t and y2(t) = e−3t are solutions of the
differential equation

y′′ + 5y′ + 6y = 0.

Find the Wronskian of y1 and y2.
The Wronskian of these two functions is

W =
∣∣∣∣ e−2t e−3t

−2e−2t −3e−3t

∣∣∣∣ = −e−5t .

Since W is nonzero for all values of t, the functions y1 and y2 can be used to construct solutions
of the given differential equation, together with initial conditions prescribed at any value of t.
One such initial value problem was solved in Example 3 of Section 3.1.

The next theorem justifies the term “general solution” that we introduced in Sec-
tion 3.1 for the linear combination c1y1 + c2y2.

Theorem 3.2.4 Suppose that y1 and y2 are two solutions of the differential equation (2),

L[y] = y′′ + p(t)y′ + q(t)y = 0.

Then the family of solutions

y = c1y1(t) + c2y2(t)

with arbitrary coefficients c1 and c2 includes every solution of Eq. (2) if and only if
there is a point t0 where the Wronskian of y1 and y2 is not zero.

3Wronskian determinants are named for Jósef Maria Hoëné-Wronski (1776–1853), who was born in
Poland but spent most of his life in France. Wronski was a gifted but troubled man, and his life was
marked by frequent heated disputes with other individuals and institutions.
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Let φ be any solution of Eq. (2). To prove the theorem, we must determine whether
φ is included in the linear combinations c1y1 + c2y2. That is, we must determine
whether there are values of the constants c1 and c2 that make the linear combination
the same as φ. Let t0 be a point where the Wronskian of y1 and y2 is nonzero. Then
evaluate φ and φ′ at this point and call these values y0 and y′

0, respectively; thus

y0 = φ(t0), y′
0 = φ′(t0).

Next, consider the initial value problem

y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y′(t0) = y′
0. (12)

The function φ is certainly a solution of this initial value problem. Further, since we
are assuming that W(y1, y2)(t0) is nonzero, then it is possible (by Theorem 3.2.3) to
choose c1 and c2 so that y = c1y1(t) + c2y2(t) is also a solution of the initial value
problem (12). In fact, the proper values of c1 and c2 are given by Eqs. (10) or (11).
The uniqueness part ofTheorem 3.2.1 guarantees that these two solutions of the same
initial value problem are actually the same function; thus, for the proper choice of c1

and c2,

φ(t) = c1y1(t) + c2y2(t), (13)

and therefore φ is included in the family of functions c1y1 + c2y2. Finally, since φ

is an arbitrary solution of Eq. (2), it follows that every solution of this equation is
included in this family.

Now suppose that there is no point t0 where the Wronskian is nonzero. Thus
W(y1, y2)(t0) = 0 no matter which point t0 is selected. Then (by Theorem 3.2.3) there
are values of y0 and y′

0 such that the system (8) has no solution for c1 and c2. Select
a pair of such values and choose the solution φ(t) of Eq. (2) that satisfies the initial
condition (3). Observe that such a solution is guaranteed to exist by Theorem 3.2.l.
However, this solution is not included in the family y = c1y1 + c2y2. Thus this linear
combination does not include all solutions of Eq. (2) if W(y1, y2) = 0. This completes
the proof of Theorem 3.2.4.

Theorem 3.2.4 states that, if and only if theWronskian of y1 and y2 is not everywhere
zero, then the linear combination c1y1 + c2y2 contains all solutions of Eq. (2). It is
therefore natural (and we have already done this in the preceding section) to call the
expression

y = c1y1(t) + c2y2(t)

with arbitrary constant coefficients the general solution of Eq. (2). The solutions y1

and y2 are said to form a fundamental set of solutions of Eq. (2) if and only if their
Wronskian is nonzero.

We can restate the result of Theorem 3.2.4 in slightly different language: to find the
general solution, and therefore all solutions, of an equation of the form (2), we need
only find two solutions of the given equation whose Wronskian is nonzero. We did
precisely this in several examples in Section 3.1, although there we did not calculate
the Wronskians. You should now go back and do that, thereby verifying that all the
solutions we called “general solutions” in Section 3.1 do satisfy the necessary Wron-
skian condition. Alternatively, the following example includes all those mentioned
in Section 3.1, as well as many other problems of a similar type.
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E X A M P L E

4

Suppose that y1(t) = er1t and y2(t) = er2 t are two solutions of an equation of the form (2). Show
that they form a fundamental set of solutions if r1 �= r2.

We calculate the Wronskian of y1 and y2:

W =
∣∣∣∣er1t er2 t

r1er1t r2er2 t

∣∣∣∣ = (r2 − r1) exp[(r1 + r2)t].

Since the exponential function is never zero, and since we are assuming that
r2 − r1 �= 0, it follows that W is nonzero for every value of t. Consequently, y1 and y2 form a
fundamental set of solutions.

E X A M P L E

5

Show that y1(t) = t1/2 and y2(t) = t−1 form a fundamental set of solutions of

2t2y′′ + 3ty′ − y = 0, t > 0. (14)

We will show how to solve Eq. (14) later (see Problem 34 in Section 3.3). However, at
this stage we can verify by direct substitution that y1 and y2 are solutions of the differential
equation. Since y′

1(t) = 1
2 t−1/2 and y′′

1(t) = − 1
4 t−3/2, we have

2t2(− 1
4 t−3/2) + 3t( 1

2 t−1/2) − t1/2 = (− 1
2 + 3

2 − 1)t1/2 = 0.

Similarly, y′
2(t) = −t−2 and y′′

2(t) = 2t−3, so

2t2(2t−3) + 3t(−t−2) − t−1 = (4 − 3 − 1)t−1 = 0.

Next we calculate the Wronskian W of y1 and y2:

W =
∣∣∣∣ t1/2 t−1

1
2 t−1/2 −t−2

∣∣∣∣ = − 3
2 t−3/2. (15)

Since W �= 0 for t > 0, we conclude that y1 and y2 form a fundamental set of solutions there.

In several cases we have been able to find a fundamental set of solutions, and
therefore the general solution, of a given differential equation. However, this is
often a difficult task, and the question arises as to whether a differential equation
of the form (2) always has a fundamental set of solutions. The following theorem
provides an affirmative answer to this question.

Theorem 3.2.5 Consider the differential equation (2)

L[y] = y′′ + p(t)y′ + q(t)y = 0,

whose coefficients p and q are continuous on some open interval I . Choose some
point t0 in I . Let y1 be the solution of Eq. (2) that also satisfies the initial conditions

y(t0) = 1, y′(t0) = 0,

and let y2 be the solution of Eq. (2) that satisfies the initial conditions

y(t0) = 0, y′(t0) = 1.

Then y1 and y2 form a fundamental set of solutions of Eq. (2).



September 11, 2008 11:18 boyce-9e-bvp Sheet number 172 Page number 152 cyan black

152 Chapter 3. Second Order Linear Equations

First observe that the existence of the functions y1 and y2 is ensured by the existence
part of Theorem 3.2.1. To show that they form a fundamental set of solutions, we
need only calculate their Wronskian at t0:

W(y1, y2)(t0) =
∣∣∣∣∣y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣∣ =
∣∣∣∣1 0
0 1

∣∣∣∣ = 1.

Since their Wronskian is not zero at the point t0, the functions y1 and y2 do form a
fundamental set of solutions, thus completing the proof of Theorem 3.2.5.

Note that the potentially difficult part of this proof, demonstrating the existence
of a pair of solutions, is taken care of by reference to Theorem 3.2.1. Note also that
Theorem 3.2.5 does not address the question of how to find the solutions y1 and y2

by solving the specified initial value problems. Nevertheless, it may be reassuring to
know that a fundamental set of solutions always exists.

E X A M P L E

6

Find the fundamental set of solutions specified by Theorem 3.2.5 for the differential equation

y′′ − y = 0, (16)

using the initial point t0 = 0.

In Section 3.1 we noted that two solutions of Eq. (16) are y1(t) = et and y2(t) = e−t . The
Wronskian of these solutions is W(y1, y2)(t) = −2 �= 0, so they form a fundamental set of so-
lutions. However, they are not the fundamental solutions indicated by Theorem 3.2.5 because
they do not satisfy the initial conditions mentioned in that theorem at the point t = 0.

To find the fundamental solutions specified by the theorem, we need to find the solutions
satisfying the proper initial conditions. Let us denote by y3(t) the solution of Eq. (16) that
satisfies the initial conditions

y(0) = 1, y′(0) = 0. (17)

The general solution of Eq. (16) is

y = c1et + c2e−t , (18)

and the initial conditions (17) are satisfied if c1 = 1/2 and c2 = 1/2. Thus

y3(t) = 1
2 et + 1

2 e−t = cosh t.

Similarly, if y4(t) satisfies the initial conditions

y(0) = 0, y′(0) = 1, (19)

then
y4(t) = 1

2 et − 1
2 e−t = sinh t.

Since the Wronskian of y3 and y4 is

W(y3, y4)(t) = cosh2 t − sinh2 t = 1,

these functions also form a fundamental set of solutions, as stated byTheorem 3.2.5. Therefore,
the general solution of Eq. (16) can be written as

y = k1 cosh t + k2 sinh t, (20)

as well as in the form (18). We have used k1 and k2 for the arbitrary constants in Eq. (20)
because they are not the same as the constants c1 and c2 in Eq. (18). One purpose of this
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example is to make clear that a given differential equation has more than one fundamental
set of solutions; indeed, it has infinitely many; see Problem 21. As a rule, you should choose
the set that is most convenient.

Now let us examine further the properties of the Wronskian of two solutions of
a second order linear homogeneous differential equation. The following theorem,
perhaps surprisingly, gives a simple explicit formula for the Wronskian of any two
solutions of any such equation, even if the solutions themselves are not known.

Theorem 3.2.6 (Abel’s Theorem)4

If y1 and y2 are solutions of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, (21)

where p and q are continuous on an open interval I , then theWronskian W(y1, y2)(t)
is given by

W(y1, y2)(t) = c exp
[
−
∫

p(t) dt
]

, (22)

where c is a certain constant that depends on y1 and y2, but not on t. Further,
W(y1, y2)(t) either is zero for all t in I (if c = 0) or else is never zero in I (if c �= 0).

To prove Abel’s theorem, we start by noting that y1 and y2 satisfy

y′′
1 + p(t)y′

1 + q(t)y1 = 0,
(23)

y′′
2 + p(t)y′

2 + q(t)y2 = 0.

If we multiply the first equation by −y2, multiply the second by y1, and add the
resulting equations, we obtain

(y1y′′
2 − y′′

1y2) + p(t)(y1y′
2 − y′

1y2) = 0. (24)

Next, we let W(t) = W(y1, y2)(t) and observe that

W ′ = y1y′′
2 − y′′

1y2. (25)

Then we can write Eq. (24) in the form

W ′ + p(t)W = 0. (26)

4The result inTheorem 3.2.6 was derived by the Norwegian mathematician Niels HenrikAbel (1802–1829)
in 1827 and is known as Abel’s formula. Abel also showed that there is no general formula for solving a
quintic, or fifth degree, polynomial equation in terms of explicit algebraic operations on the coefficients,
thereby resolving a question that had been open since the sixteenth century. His greatest contributions,
however, were in analysis, particularly in the study of elliptic functions. Unfortunately, his work was
not widely noticed until after his death. The distinguished French mathematician Legendre called it a
“monument more lasting than bronze.”
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Equation (26) can be solved immediately since it is both a first order linear equation
(Section 2.1) and a separable equation (Section 2.2). Thus

W(t) = c exp
[
−
∫

p(t) dt
]

, (27)

where c is a constant. The value of c depends on which pair of solutions of Eq. (21)
is involved. However, since the exponential function is never zero, W(t) is not
zero unless c = 0, in which case W(t) is zero for all t, which completes the proof of
Theorem 3.2.6.

Note that the Wronskians of any two fundamental sets of solutions of the same
differential equation can differ only by a multiplicative constant, and that the Wron-
skian of any fundamental set of solutions can be determined, up to a multiplicative
constant, without solving the differential equation. Further, since under the condi-
tions of Theorem 3.2.6 the Wronskian W is either always zero or never zero, you can
determine which case actually occurs by evaluating W at any single convenient value
of t.

E X A M P L E

7

In Example 5 we verified that y1(t) = t1/2 and y2(t) = t−1 are solutions of the equation

2t2y′′ + 3ty′ − y = 0, t > 0. (28)

Verify that the Wronskian of y1 and y2 is given by Eq. (22).
From the example just cited we know that W(y1, y2)(t) = −(3/2)t−3/2. To use Eq. (22), we

must write the differential equation (28) in the standard form with the coefficient of y′′ equal
to 1. Thus we obtain

y′′ + 3
2t

y′ − 1
2t2

y = 0,

so p(t) = 3/2t. Hence

W(y1, y2)(t) = c exp
[
−
∫

3
2t

dt
]

= c exp
(

−3
2

ln t
)

= c t−3/2. (29)

Equation (29) gives the Wronskian of any pair of solutions of Eq. (28). For the particular
solutions given in this example we must choose c = −3/2.

Summary. We can summarize the discussion in this section as follows: to find the
general solution of the differential equation

y′′ + p(t)y′ + q(t)y = 0, α < t < β,

we must first find two functions y1 and y2 that satisfy the differential equation in
α < t < β. Then we must make sure that there is a point in the interval where the
Wronskian W of y1 and y2 is nonzero. Under these circumstances y1 and y2 form a
fundamental set of solutions and the general solution is

y = c1y1(t) + c2y2(t),

where c1 and c2 are arbitrary constants. If initial conditions are prescribed at a point
in α < t < β, then c1 and c2 can be chosen so as to satisfy these conditions.
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PROBLEMS In each of Problems 1 through 6 find the Wronskian of the given pair of functions.
1. e2t , e−3t/2 2. cos t, sin t

3. e−2t , te−2t 4. x, xex

5. et sin t, et cos t 6. cos2 θ , 1 + cos 2θ

In each of Problems 7 through 12 determine the longest interval in which the given initial value
problem is certain to have a unique twice differentiable solution. Do not attempt to find the
solution.

7. ty′′ + 3y = t, y(1) = 1, y′(1) = 2
8. (t − 1)y′′ − 3ty′ + 4y = sin t, y(−2) = 2, y′(−2) = 1
9. t(t − 4)y′′ + 3ty′ + 4y = 2, y(3) = 0, y′(3) = −1

10. y′′ + (cos t)y′ + 3(ln |t|)y = 0, y(2) = 3, y′(2) = 1
11. (x − 3)y′′ + xy′ + (ln |x|)y = 0, y(1) = 0, y′(1) = 1
12. (x − 2)y′′ + y′ + (x − 2)(tan x)y = 0, y(3) = 1, y′(3) = 2

13. Verify that y1(t) = t2 and y2(t) = t−1 are two solutions of the differential equation
t2y′′ − 2y = 0 for t > 0. Then show that y = c1t2 + c2t−1 is also a solution of this equa-
tion for any c1 and c2.

14. Verify that y1(t) = 1 and y2(t) = t1/2 are solutions of the differential equation
yy′′ + (y′)2 = 0 for t > 0. Then show that y = c1 + c2t1/2 is not, in general, a solution of
this equation. Explain why this result does not contradict Theorem 3.2.2.

15. Show that if y = φ(t) is a solution of the differential equation y′′ + p(t)y′ + q(t)y = g(t),
where g(t) is not always zero, then y = cφ(t), where c is any constant other than 1, is not a
solution. Explain why this result does not contradict the remark following Theorem 3.2.2.

16. Can y = sin(t2) be a solution on an interval containing t = 0 of an equation
y′′ + p(t)y′ + q(t)y = 0 with continuous coefficients? Explain your answer.

17. If the Wronskian W of f and g is 3e4t , and if f (t) = e2t , find g(t).
18. If the Wronskian W of f and g is t2et , and if f (t) = t, find g(t).
19. If W(f , g) is the Wronskian of f and g, and if u = 2f − g, v = f + 2g, find the Wronskian

W(u, v) of u and v in terms of W(f , g).
20. If theWronskian of f and g is t cos t − sin t, and if u = f + 3g, v = f − g, find theWronskian

of u and v.
21. Assume that y1 and y2 are a fundamental set of solutions of y′′ + p(t)y′ + q(t)y = 0 and

let y3 = a1y1 + a2y2 and y4 = b1y1 + b2y2, where a1, a2, b1, and b2 are any constants. Show
that

W(y3, y4) = (a1b2 − a2b1)W(y1, y2).

Are y3 and y4 also a fundamental set of solutions? Why or why not?

In each of Problems 22 and 23 find the fundamental set of solutions specified by Theorem 3.2.5
for the given differential equation and initial point.
22. y′′ + y′ − 2y = 0, t0 = 0
23. y′′ + 4y′ + 3y = 0, t0 = 1

In each of Problems 24 through 27 verify that the functions y1 and y2 are solutions of the given
differential equation. Do they constitute a fundamental set of solutions?
24. y′′ + 4y = 0; y1(t) = cos 2t, y2(t) = sin 2t

25. y′′ − 2y′ + y = 0; y1(t) = et , y2(t) = tet



September 11, 2008 11:18 boyce-9e-bvp Sheet number 176 Page number 156 cyan black

156 Chapter 3. Second Order Linear Equations

26. x2y′′ − x(x + 2)y′ + (x + 2)y = 0, x > 0; y1(x) = x, y2(x) = xex

27. (1 − x cot x)y′′ − xy′ + y = 0, 0 < x < π ; y1(x) = x, y2(x) = sin x

28. Consider the equation y′′ − y′ − 2y = 0.
(a) Show that y1(t) = e−t and y2(t) = e2t form a fundamental set of solutions.
(b) Let y3(t) = −2e2t , y4(t) = y1(t) + 2y2(t), and y5(t) = 2y1(t) − 2y3(t). Are y3(t), y4(t),
and y5(t) also solutions of the given differential equation?
(c) Determine whether each of the following pairs forms a fundamental set of solutions:
[y1(t), y3(t)]; [y2(t), y3(t)]; [y1(t), y4(t)]; [y4(t), y5(t)].
In each of Problems 29 through 32 find the Wronskian of two solutions of the given
differential equation without solving the equation.
29. t2y′′ − t(t + 2)y′ + (t + 2)y = 0 30. (cos t)y′′ + (sin t)y′ − ty = 0
31. x2y′′ + xy′ + (x2 − ν2)y = 0, Bessel’s equation
32. (1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, Legendre’s equation

33. Show that if p is differentiable and p(t) > 0, then the Wronskian W(t) of two solutions
of [p(t)y′]′ + q(t)y = 0 is W(t) = c/p(t), where c is a constant.

34. If y1 and y2 are a fundamental set of solutions of ty′′ + 2y′ + tety = 0 and if
W(y1, y2)(1) = 2, find the value of W(y1, y2)(5).

35. If y1 and y2 are a fundamental set of solutions of t2y′′ − 2y′ + (3 + t)y = 0 and if
W(y1, y2)(2) = 3, find the value of W(y1, y2)(4).

36. If the Wronskian of any two solutions of y′′ + p(t)y′ + q(t)y = 0 is constant, what does
this imply about the coefficients p and q?

37. If f , g, and h are differentiable functions, show that W(fg, fh) = f 2W(g, h).

In Problems 38 through 40 assume that p and q are continuous and that the functions y1 and
y2 are solutions of the differential equation y′′ + p(t)y′ + q(t)y = 0 on an open interval I .
38. Prove that if y1 and y2 are zero at the same point in I , then they cannot be a fundamental

set of solutions on that interval.
39. Prove that if y1 and y2 have maxima or minima at the same point in I , then they cannot

be a fundamental set of solutions on that interval.
40. Prove that if y1 and y2 have a common point of inflection t0 in I , then they cannot be

a fundamental set of solutions on I unless both p and q are zero at t0.

41. Exact Equations. The equation P(x)y′′ + Q(x)y′ + R(x)y = 0 is said to be exact if it can
be written in the form [P(x)y′]′ + [f (x)y]′ = 0, where f (x) is to be determined in terms of
P(x), Q(x), and R(x). The latter equation can be integrated once immediately, resulting
in a first order linear equation for y that can be solved as in Section 2.1. By equating the
coefficients of the preceding equations and then eliminating f (x), show that a necessary
condition for exactness is P′′(x) − Q′(x) + R(x) = 0. It can be shown that this is also a
sufficient condition.

In each of Problems 42 through 45 use the result of Problem 41 to determine whether the
given equation is exact. If so, solve the equation.
42. y′′ + xy′ + y = 0 43. y′′ + 3x2y′ + xy = 0
44. xy′′ − (cos x)y′ + (sin x)y = 0, x > 0 45. x2y′′ + xy′ − y = 0, x > 0

46. The Adjoint Equation. If a second order linear homogeneous equation is not exact, it
can be made exact by multiplying by an appropriate integrating factor μ(x). Thus we
require that μ(x) be such that μ(x)P(x)y′′ + μ(x)Q(x)y′ + μ(x)R(x)y = 0 can be written
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in the form [μ(x)P(x)y′]′ + [f (x)y]′ = 0. By equating coefficients in these two equations
and eliminating f (x), show that the function μ must satisfy

Pμ′′ + (2P′ − Q)μ′ + (P′′ − Q′ + R)μ = 0.

This equation is known as the adjoint of the original equation and is important in the
advanced theory of differential equations. In general, the problem of solving the ad-
joint differential equation is as difficult as that of solving the original equation, so only
occasionally is it possible to find an integrating factor for a second order equation.

In each of Problems 47 through 49 use the result of Problem 46 to find the adjoint of the given
differential equation.
47. x2y′′ + xy′ + (x2 − ν2)y = 0, Bessel’s equation
48. (1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, Legendre’s equation
49. y′′ − xy = 0, Airy’s equation

50. For the second order linear equation P(x)y′′ + Q(x)y′ + R(x)y = 0, show that the adjoint
of the adjoint equation is the original equation.

51. A second order linear equation P(x)y′′ + Q(x)y′ + R(x)y = 0 is said to be self-adjoint if
its adjoint is the same as the original equation. Show that a necessary condition for this
equation to be self-adjoint is that P′(x) = Q(x). Determine whether each of the equations
in Problems 47 through 49 is self-adjoint.

3.3 Complex Roots of the Characteristic Equation
We continue our discussion of the equation

ay′′ + by′ + cy = 0, (1)

where a, b, and c are given real numbers. In Section 3.1 we found that if we seek
solutions of the form y = ert , then r must be a root of the characteristic equation

ar2 + br + c = 0. (2)

If the roots r1 and r2 are real and different, which occurs whenever the discriminant
b2 − 4ac is positive, then the general solution of Eq. (1) is

y = c1er1t + c2er2t . (3)

Suppose now that b2 − 4ac is negative. Then the roots of Eq. (2) are conjugate
complexnumbers; we denote them by

r1 = λ + iμ, r2 = λ − iμ, (4)

where λ and μ are real. The corresponding expressions for y are

y1(t) = exp[(λ + iμ)t], y2(t) = exp[(λ − iμ)t]. (5)

Our first task is to explore what is meant by these expressions, which involve evaluat-
ing the exponential function for a complex exponent. For example, if
λ = −1, μ = 2, and t = 3, then from Eq. (5),

y1(3) = e−3+6i. (6)
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What does it mean to raise the number e to a complex power? The answer is provided
by an important relation known as Euler’s formula.

Euler’s Formula. To assign a meaning to the expressions in Eqs. (5), we need to give
a definition of the complex exponential function. Of course, we want the definition
to reduce to the familiar real exponential function when the exponent is real. There
are several ways to discover how this extension of the exponential function should
be defined. Here we use a method based on infinite series; an alternative is outlined
in Problem 28.

Recall from calculus that the Taylor series for et about t = 0 is

et =
∞∑

n=0

tn

n! , −∞ < t < ∞. (7)

If we now assume that we can substitute it for t in Eq. (7), then we have

eit =
∞∑

n=0

(it)n

n!

=
∞∑

n=0

(−1)nt2n

(2n)! + i
∞∑

n=1

(−1)n−1t2n−1

(2n − 1)! , (8)

where we have separated the sum into its real and imaginary parts, making use of the
fact that i2 = −1, i3 = −i, i4 = 1, and so forth. The first series in Eq. (8) is precisely
the Taylor series for cos t about t = 0, and the second is the Taylor series for sin t
about t = 0. Thus we have

eit = cos t + i sin t. (9)

Equation (9) is known as Euler’s formula and is an extremely important mathe-
matical relationship. Although our derivation of Eq. (9) is based on the unverified
assumption that the series (7) can be used for complex as well as real values of the
independent variable, our intention is to use this derivation only to make Eq. (9)
seem plausible. We now put matters on a firm foundation by adopting Eq. (9) as the
definition of eit . In other words, whenever we write eit , we mean the expression on
the right side of Eq. (9).

There are some variations of Euler’s formula that are also worth noting. If we
replace t by −t in Eq. (9) and recall that cos(−t) = cos t and sin(−t) = − sin t, then
we have

e−it = cos t − i sin t. (10)

Further, if t is replaced by μt in Eq. (9), then we obtain a generalized version of
Euler’s formula, namely,

eiμt = cos μt + i sin μt. (11)

Next, we want to extend the definition of the exponential function to arbitrary com-
plex exponents of the form (λ + iμ)t. Since we want the usual properties of the expo-
nential function to hold for complex exponents, we certainly want
exp[(λ + iμ)t] to satisfy

e(λ+iμ)t = eλteiμt . (12)
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Then, substituting for eiμt from Eq. (11), we obtain

e(λ+iμ)t = eλt(cos μt + i sin μt)

= eλt cos μt + ieλt sin μt. (13)

We now take Eq. (13) as the definition of exp[(λ + iμ)t]. The value of the exponential
function with a complex exponent is a complex number whose real and imaginary
parts are given by the terms on the right side of Eq. (13). Observe that the real
and imaginary parts of exp[(λ + iμ)t] are expressed entirely in terms of elementary
real-valued functions. For example, the quantity in Eq. (6) has the value

e−3+6i = e−3 cos 6 + ie−3 sin 6 ∼= 0.0478041 − 0.0139113i.

With the definitions (9) and (13) it is straightforward to show that the usual laws of
exponents are valid for the complex exponential function. You can also use Eq. (13)
to verify that the differentiation formula

d
dt

(ert) = rert (14)

holds for complex values of r.

E X A M P L E

1

Find the general solution of the differential equation

y′′ + y′ + 9.25y = 0, (15)

Also find the solution that satisfies the initial conditions

y(0) = 2, y′(0) = 8, (16)

and draw its graph.
The characteristic equation for Eq. (15) is

r2 + r + 9.25 = 0

so its roots are
r1 = − 1

2 + 3i, r2 = − 1
2 − 3i.

Therefore two solutions of Eq. (15) are

y1(t) = exp[(− 1
2 + 3i)t] = e−t/2(cos 3t + i sin 3t) (17)

and
y2(t) = exp[(− 1

2 − 3i)t] = e−t/2(cos 3t − i sin 3t). (18)

You can verify that the Wronskian W(y1, y2)(t) = −6ie−t , which is not zero, so the general
solution of Eq. (15) can be expressed as a linear combination of y1(t) and y2(t) with arbitrary
coefficients.

However, rather than using the complex-valued solutions y1(t) and y2(t), let us seek instead
a fundamental set of solutions of Eq. (15) that are real-valued. From Theorem 3.2.2 we
know that any linear combination of two solutions is also a solution, so let us form the linear
combinations y1(t) + y2(t) and y1(t) − y2(t). In this way we obtain from Eqs. (17) and (18)

y1(t) + y2(t) = 2e−t/2 cos 3t, y1(t) − y2(t) = 2ie−t/2 sin 3t.
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FIGURE 3.3.1 Solution of the initial value problem
y′′ + y′ + 9.25y = 0, y(0) = 2, y′(0) = 8

Dropping the multiplicative constants 2 and 2i for convenience, we are left with

u(t) = e−t/2 cos 3t, v(t) = e−t/2 sin 3t (19)

as real-valued solutions of Eq. (15). [If you are not completely sure that u(t) and v(t) are
solutions of the given differential equation, you should substitute these functions into Eq. (15)
and confirm that they satisfy it.] On calculating the Wronskian of u(t) and v(t), we find
that W(u, v)(t) = 3e−t ; thus u(t) and v(t) form a fundamental set of solutions and the general
solution of Eq. (15) can be written as

y = c1u(t) + c2v(t) = e−t/2(c1 cos 3t + c2 sin 3t), (20)

where c1 and c2 are arbitrary constants.
To satisfy the initial conditions (16), we first substitute t = 0 and y = 2 in Eq. (20) with

the result that c1 = 2. Then by differentiating Eq. (20), setting t = 0, and y′ = 8, we obtain
− 1

2 c1 + 3c2 = 8, so that c2 = 3. Thus the solution of the initial value problem (15), (16) is

y = e−t/2(2 cos 3t + 3 sin 3t). (21)

The graph of this solution is shown in Figure 3.3.1.
From the graph we see that the solution of this problem is a decaying oscillation. The sine

and cosine factors control the oscillatory nature of the solution, while the negative exponential
factor in each term causes the magnitude of the oscillations to diminish as time increases.

Complex Roots; The General Case. The functions y1(t) and y2(t), given by Eqs. (5) and
with the meaning expressed by Eq. (13), are solutions of Eq. (1) when the roots
of the characteristic equation (2) are complex numbers λ ± iμ. Unfortunately, the
solutions y1 and y2 are complex-valued functions, whereas in general we would prefer
to have real-valued solutions, if possible, because the differential equation itself has
real coefficients. We can proceed just as in Example 1 to find a fundamental set of
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real-valued solutions. In particular, let us form the sum and then the difference of y1

and y2. We have

y1(t) + y2(t) = eλt(cos μt + i sin μt) + eλt(cos μt − i sin μt)

= 2eλt cos μt

and

y1(t) − y2(t) = eλt(cos μt + i sin μt) − eλt(cos μt − i sin μt)

= 2ieλt sin μt.

Hence, neglecting the constant multipliers 2 and 2i, respectively, we have obtained a
pair of real-valued solutions

u(t) = eλt cos μt, v(t) = eλt sin μt. (22)

Observe that u and v are simply the real and imaginary parts, respectively, of y1.
By direct computation you can show that the Wronskian of u and v is

W(u, v)(t) = μe2λt . (23)

Thus, as long as μ �= 0, the Wronskian W is not zero, so u and v form a fundamental
set of solutions. (Of course, if μ = 0, then the roots are real and the discussion in this
section is not applicable.) Consequently, if the roots of the characteristic equation
are complex numbers λ ± iμ, with μ �= 0, then the general solution of Eq. (1) is

y = c1eλt cos μt + c2eλt sin μt, (24)

where c1 and c2 are arbitrary constants. Note that the solution (24) can be written
down as soon as the values of λ and μ are known. Let us now consider some further
examples.

E X A M P L E

2

Find the solution of the initial value problem

16y′′ − 8y′ + 145y = 0, y(0) = −2, y′(0) = 1. (25)

The characteristic equation is 16r2 − 8r + 145 = 0 and its roots are r = 1/4 ± 3i. Thus the
general solution of the differential equation is

y = c1et/4 cos 3t + c2et/4 sin 3t. (26)

To apply the first initial condition, we set t = 0 in Eq. (26); this gives

y(0) = c1 = −2.

For the second initial condition we must differentiate Eq. (26) and then set t = 0. In this way
we find that

y′(0) = 1
4 c1 + 3c2 = 1,

from which c2 = 1/2. Using these values of c1 and c2 in Eq. (26), we obtain

y = −2et/4 cos 3t + 1
2 et/4 sin 3t (27)

as the solution of the initial value problem (25). The graph of this solution is shown in Fig-
ure 3.3.2.
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FIGURE 3.3.2 Solution of 16y′′ − 8y′ + 145y = 0, y(0) = −2, y′(0) = 1.

In this case we observe that the solution is a growing oscillation. Again the trigonometric
factors in Eq. (27) determine the oscillatory part of the solution, while the exponential factor
(with a positive exponent this time) causes the magnitude of the oscillation to increase with
time.

E X A M P L E

3

Find the general solution of
y′′ + 9y = 0. (28)

The characteristic equation is r2 + 9 = 0 with the roots r = ±3i; thus λ = 0 and μ = 3. The
general solution is

y = c1 cos 3t + c2 sin 3t; (29)

y

t

2

1

–1

–2

–3

3

642 8 10

FIGURE 3.3.3 Two typical solutions of y′′ + 9y = 0.
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note that if the real part of the roots is zero, as in this example, then there is no exponential
factor in the solution. Figure 3.3.3 shows the graph of two typical solutions of Eq. (28). In each
case the solution is a pure oscillation whose amplitude is determined by the initial conditions.
Since there is no exponential factor in the solution (29), the amplitude of each oscillation
remains constant in time.

PROBLEMS In each of Problems 1 through 6 use Euler’s formula to write the given expression in the form
a + ib.

1. exp(1 + 2i) 2. exp(2 − 3i)

3. eiπ 4. e2−(π/2)i

5. 21−i 6. π−1+2i

In each of Problems 7 through 16 find the general solution of the given differential equation.
7. y′′ − 2y′ + 2y = 0 8. y′′ − 2y′ + 6y = 0
9. y′′ + 2y′ − 8y = 0 10. y′′ + 2y′ + 2y = 0

11. y′′ + 6y′ + 13y = 0 12. 4y′′ + 9y = 0
13. y′′ + 2y′ + 1.25y = 0 14. 9y′′ + 9y′ − 4y = 0
15. y′′ + y′ + 1.25y = 0 16. y′′ + 4y′ + 6.25y = 0

In each of Problems 17 through 22 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior for increasing t.
17. y′′ + 4y = 0, y(0) = 0, y′(0) = 1
18. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0
19. y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2
20. y′′ + y = 0, y(π/3) = 2, y′(π/3) = −4
21. y′′ + y′ + 1.25y = 0, y(0) = 3, y′(0) = 1
22. y′′ + 2y′ + 2y = 0, y(π/4) = 2, y′(π/4) = −2
23. Consider the initial value problem

3u′′ − u′ + 2u = 0, u(0) = 2, u′(0) = 0.

(a) Find the solution u(t) of this problem.
(b) For t > 0 find the first time at which |u(t)| = 10.

24. Consider the initial value problem

5u′′ + 2u′ + 7u = 0, u(0) = 2, u′(0) = 1.

(a) Find the solution u(t) of this problem.
(b) Find the smallest T such that |u(t)| ≤ 0.1 for all t > T .

25. Consider the initial value problem

y′′ + 2y′ + 6y = 0, y(0) = 2, y′(0) = α ≥ 0.

(a) Find the solution y(t) of this problem.
(b) Find α so that y = 0 when t = 1.
(c) Find, as a function of α, the smallest positive value of t for which y = 0.
(d) Determine the limit of the expression found in part (c) as α → ∞.
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26. Consider the initial value problem

y′′ + 2ay′ + (a2 + 1)y = 0, y(0) = 1, y′(0) = 0.

(a) Find the solution y(t) of this problem.
(b) For a = 1 find the smallest T such that |y(t)| < 0.1 for t > T .
(c) Repeat part (b) for a = 1/4, 1/2, and 2.
(d) Using the results of parts (b) and (c), plot T versus a and describe the relation between
T and a.

27. Show that W(eλt cos μt, eλt sin μt) = μe2λt .

28. In this problem we outline a different derivation of Euler’s formula.
(a) Show that y1(t) = cos t and y2(t) = sin t are a fundamental set of solutions of
y′′ + y = 0; that is, show that they are solutions and that their Wronskian is not zero.
(b) Show (formally) that y = eit is also a solution of y′′ + y = 0. Therefore

eit = c1 cos t + c2 sin t (i)

for some constants c1 and c2. Why is this so?
(c) Set t = 0 in Eq. (i) to show that c1 = 1.
(d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set t = 0 to conclude that
c2 = i. Use the values of c1 and c2 in Eq. (i) to arrive at Euler’s formula.

29. Using Euler’s formula, show that

cos t = (eit + e−it)/2, sin t = (eit − e−it)/2i.

30. If ert is given by Eq. (13), show that e(r1+r2)t = er1ter2 t for any complex numbers r1 and r2.
31. If ert is given by Eq. (13), show that

d
dt

ert = rert

for any complex number r.
32. Let the real-valued functions p and q be continuous on the open interval I , and let

y = φ(t) = u(t) + iv(t) be a complex-valued solution of

y′′ + p(t)y′ + q(t)y = 0, (i)

where u and v are real-valued functions. Show that u and v are also solutions of Eq. (i).
Hint: Substitute y = φ(t) in Eq. (i) and separate into real and imaginary parts.

33. If the functions y1 and y2 are a fundamental set of solutions of y′′ + p(t)y′ + q(t)y = 0,
show that between consecutive zeros of y1 there is one and only one zero of y2. Note
that this result is illustrated by the solutions y1(t) = cos t and y2(t) = sin t of the equation
y′′ + y = 0.
Hint: Suppose that t1 and t2 are two zeros of y1 between which there are no zeros of y2.
Apply Rolle’s theorem to y1/y2 to reach a contradiction.

Change of Variables. Sometimes a differential equation with variable coefficients,

y′′ + p(t)y′ + q(t)y = 0, (i)

can be put in a more suitable form for finding a solution by making a change of the independent
variable. We explore these ideas in Problems 34 through 46. In particular, in Problem 34 we
show that a class of equations known as Euler equations can be transformed into equations
with constant coefficients by a simple change of the independent variable. Problems 35 through
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42 are examples of this type of equation. Problem 43 determines conditions under which the
more general Eq. (i) can be transformed into a differential equation with constant coefficients.
Problems 44 through 46 give specific applications of this procedure.
34. Euler Equations. An equation of the form

t2 d2y
dt2

+ αt
dy
dt

+ βy = 0, t > 0, (ii)

where α and β are real constants, is called an Euler equation.
(a) Let x = ln t and calculate dy/dt and d2y/dt2 in terms of dy/dx and d2y/dx2.
(b) Use the results of part (a) to transform Eq. (ii) into

d2y
dx2

+ (α − 1)
dy
dx

+ βy = 0. (iii)

Observe that Eq. (iii) has constant coefficients. If y1(x) and y2(x) form a fundamental set
of solutions of Eq. (iii), then y1(ln t) and y2(ln t) form a fundamental set of solutions of
Eq. (ii).

In each of Problems 35 through 42 use the method of Problem 34 to solve the given equation
for t > 0.
35. t2y′′ + ty′ + y = 0 36. t2y′′ + 4ty′ + 2y = 0
37. t2y′′ + 3ty′ + 1.25y = 0 38. t2y′′ − 4ty′ − 6y = 0
39. t2y′′ − 4ty′ + 6y = 0 40. t2y′′ − ty′ + 5y = 0
41. t2y′′ + 3ty′ − 3y = 0 42. t2y′′ + 7ty′ + 10y = 0

43. In this problem we determine conditions on p and q that enable Eq. (i) to be transformed
into an equation with constant coefficients by a change of the independent variable. Let
x = u(t) be the new independent variable, with the relation between x and t to be specified
later.
(a) Show that

dy
dt

= dx
dt

dy
dx

,
d2y
dt2

=
(

dx
dt

)2 d2y
dx2

+ d2x
dt2

dy
dx

.

(b) Show that the differential equation (i) becomes(
dx
dt

)2 d2y
dx2

+
(

d2x
dt2

+ p(t)
dx
dt

)
dy
dx

+ q(t)y = 0. (iv)

(c) In order for Eq. (iv) to have constant coefficients, the coefficients of d2y/dx2 and of y
must be proportional. If q(t) > 0, then we can choose the constant of proportionality to
be 1; hence

x = u(t) =
∫

[q(t)]1/2 dt. (v)

(d) With x chosen as in part (c), show that the coefficient of dy/dx in Eq. (iv) is also a
constant, provided that the expression

q′(t) + 2p(t)q(t)
2[q(t)]3/2

(vi)

is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients
by a change of the independent variable, provided that the function (q′ + 2pq)/q3/2 is a
constant. How must this result be modified if q(t) < 0?
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In each of Problems 44 through 46 try to transform the given equation into one with constant
coefficients by the method of Problem 43. If this is possible, find the general solution of the
given equation.

44. y′′ + ty′ + e−t2
y = 0, −∞ < t < ∞

45. y′′ + 3ty′ + t2y = 0, −∞ < t < ∞
46. ty′′ + (t2 − 1)y′ + t3y = 0, 0 < t < ∞

3.4 Repeated Roots; Reduction of Order
In earlier sections we showed how to solve the equation

ay′′ + by′ + cy = 0 (1)

when the roots of the characteristic equation

ar2 + br + c = 0 (2)

either are real and different or are complex conjugates. Now we consider the third
possibility, namely, that the two roots r1 and r2 are equal. This case is transitional
between the other two and occurs when the discriminant b2 − 4ac is zero. Then it
follows from the quadratic formula that

r1 = r2 = −b/2a. (3)

The difficulty is immediately apparent; both roots yield the same solution

y1(t) = e−bt/2a (4)

of the differential equation (1), and it is not obvious how to find a second solution.

E X A M P L E

1

Solve the differential equation
y′′ + 4y′ + 4y = 0. (5)

The characteristic equation is

r2 + 4r + 4 = (r + 2)2 = 0,

so r1 = r2 = −2. Therefore one solution of Eq. (5) is y1(t) = e−2t . To find the general solution
of Eq. (5), we need a second solution that is not a multiple of y1. This second solution can
be found in several ways (see Problems 20 through 22); here we use a method originated by
D’Alembert5 in the eighteenth century. Recall that since y1(t) is a solution of Eq. (1), so is
cy1(t) for any constant c. The basic idea is to generalize this observation by replacing c by a

5Jean d’Alembert (1717–1783), a French mathematician, was a contemporary of Euler and Daniel
Bernoulli and is known primarily for his work in mechanics and differential equations. D’Alembert’s
principle in mechanics and d’Alembert’s paradox in hydrodynamics are named for him, and the wave
equation first appeared in his paper on vibrating strings in 1747. In his later years he devoted himself
primarily to philosophy and to his duties as science editor of Diderot’s Encyclopédie.
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function v(t) and then trying to determine v(t) so that the product v(t)y1(t) is also a solution
of Eq. (1).

To carry out this program,we substitute y = v(t)y1(t) in Eq. (5) and use the resulting equation
to find v(t). Starting with

y = v(t)y1(t) = v(t)e−2t , (6)

we have
y′ = v′(t)e−2t − 2v(t)e−2t (7)

and
y′′ = v′′(t)e−2t − 4v′(t)e−2t + 4v(t)e−2t . (8)

By substituting the expressions in Eqs. (6), (7), and (8) in Eq. (5) and collecting terms, we
obtain

[v′′(t) − 4v′(t) + 4v(t) + 4v′(t) − 8v(t) + 4v(t)]e−2t = 0,

which simplifies to
v′′(t) = 0. (9)

Therefore
v′(t) = c1

and
v(t) = c1t + c2, (10)

where c1 and c2 are arbitrary constants. Finally, substituting for v(t) in Eq. (6), we obtain

y = c1te−2t + c2e−2t . (11)

The second term on the right side of Eq. (11) corresponds to the original solution
y1(t) = exp(−2t), but the first term arises from a second solution, namely, y2(t) = t exp(−2t).
We can verify that these two solutions form a fundamental set by calculating their Wronskian:

W(y1, y2)(t) =
∣∣∣∣ e−2t te−2t

−2e−2t (1 − 2t)e−2t

∣∣∣∣
= e−4t − 2te−4t + 2te−4t = e−4t �= 0.

Therefore
y1(t) = e−2t , y2(t) = te−2t (12)

form a fundamental set of solutions of Eq. (5), and the general solution of that equation is
given by Eq. (11). Note that both y1(t) and y2(t) tend to zero as t → ∞; consequently, all
solutions of Eq. (5) behave in this way. The graph of a typical solution is shown in Figure 3.4.1.

2

1

0.5 1 1.5 2

y

t

FIGURE 3.4.1 A typical solution of y′′ + 4y′ + 4y = 0.
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The procedure used in Example 1 can be extended to a general equation whose
characteristic equation has repeated roots. That is, we assume that the coefficients
in Eq. (1) satisfy b2 − 4ac = 0, in which case

y1(t) = e−bt/2a

is a solution. To find a second solution, we assume that

y = v(t)y1(t) = v(t)e−bt/2a (13)

and substitute for y in Eq. (1) to determine v(t). We have

y′ = v′(t)e−bt/2a − b
2a

v(t)e−bt/2a (14)

and

y′′ = v′′(t)e−bt/2a − b
a
v′(t)e−bt/2a + b2

4a2
v(t)e−bt/2a. (15)

Then, by substituting in Eq. (1), we obtain{
a
[
v′′(t) − b

a
v′(t) + b2

4a2
v(t)

]
+ b

[
v′(t) − b

2a
v(t)

]
+ cv(t)

}
e−bt/2a = 0. (16)

Canceling the factor exp(−bt/2a), which is nonzero, and rearranging the remaining
terms, we find that

av′′(t) + (−b + b)v′(t) +
(

b2

4a
− b2

2a
+ c

)
v(t) = 0. (17)

The term involving v′(t) is obviously zero. Further, the coefficient of v(t) is
c − (b2/4a), which is also zero because b2 − 4ac = 0 in the problem that we are
considering. Thus, just as in Example 1, Eq. (17) reduces to

v′′(t) = 0;

therefore
v(t) = c1 + c2t.

Hence, from Eq. (13), we have

y = c1e−bt/2a + c2te−bt/2a. (18)

Thus y is a linear combination of the two solutions

y1(t) = e−bt/2a, y2(t) = te−bt/2a. (19)

The Wronskian of these two solutions is

W(y1, y2)(t) =

∣∣∣∣∣∣∣
e−bt/2a te−bt/2a

− b
2a

e−bt/2a

(
1 − bt

2a

)
e−bt/2a

∣∣∣∣∣∣∣ = e−bt/a. (20)

Since W(y1, y2)(t) is never zero, the solutions y1 and y2 given by Eq. (19) are a
fundamental set of solutions. Further, Eq. (18) is the general solution of Eq. (1)
when the roots of the characteristic equation are equal. In other words, in this case
there is one exponential solution corresponding to the repeated root, and a second
solution that is obtained by multiplying the exponential solution by t.
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E X A M P L E

2

Find the solution of the initial value problem

y′′ − y′ + 0.25y = 0, y(0) = 2, y′(0) = 1
3 . (21)

The characteristic equation is
r2 − r + 0.25 = 0,

so the roots are r1 = r2 = 1/2. Thus the general solution of the differential equation is

y = c1et/2 + c2tet/2. (22)

The first initial condition requires that

y(0) = c1 = 2.

To satisfy the second initial condition, we first differentiate Eq. (22) and then set t = 0. This
gives

y′(0) = 1
2 c1 + c2 = 1

3 ,

so c2 = −2/3. Thus the solution of the initial value problem is

y = 2et/2 − 2
3 tet/2. (23)

The graph of this solution is shown in Figure 3.4.2.

4

3

2

1

–1

1 2 3

y

t

y'(0) = 2:  y = 2et/2 + tet/2

y'(0) =    :  y = 2et/2 –    tet/21
3

2
3

FIGURE 3.4.2 Solutions of y′′ − y′ + 0.25y = 0, y(0) = 2,
with y′(0) = 1/3 and with y′(0) = 2, respectively.

Let us now modify the initial value problem (21) by changing the initial slope; to be specific,
let the second initial condition be y′(0) = 2. The solution of this modified problem is

y = 2et/2 + tet/2,

and its graph is also shown in Figure 3.4.2. The graphs shown in this figure suggest that there is a
critical initial slope, with a value between 1

3 and 2, that separates solutions that grow positively
from those that ultimately grow negatively. In Problem 16 you are asked to determine this
critical initial slope.
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The geometrical behavior of solutions is similar in this case to that when the roots
are real and different. If the exponents are either positive or negative, then the
magnitude of the solution grows or decays accordingly; the linear factor t has little
influence. A decaying solution is shown in Figure 3.4.1 and growing solutions in
Figure 3.4.2. However, if the repeated root is zero, then the differential equation is
y′′ = 0 and the general solution is a linear function of t.

Summary. We can now summarize the results that we have obtained for second order
linear homogeneous equations with constant coefficients

ay′′ + by′ + cy = 0. (1)

Let r1 and r2 be the roots of the corresponding characteristic polynomial

ar2 + br + c = 0. (2)

If r1 and r2 are real but not equal, then the general solution of the differential
equation (1) is

y = c1er1t + c2er2t . (24)

If r1 and r2 are complex conjugates λ ± iμ, then the general solution is

y = c1eλt cos μt + c2eλt sin μt. (25)

If r1 = r2, then the general solution is

y = c1er1t + c2ter1t . (26)

Reduction of Order. It is worth noting that the procedure used in this section for equa-
tions with constant coefficients is more generally applicable. Suppose that we know
one solution y1(t), not everywhere zero, of

y′′ + p(t)y′ + q(t)y = 0. (27)

To find a second solution, let
y = v(t)y1(t); (28)

then
y′ = v′(t)y1(t) + v(t)y′

1(t)

and
y′′ = v′′(t)y1(t) + 2v′(t)y′

1(t) + v(t)y′′
1(t).

Substituting for y, y′, and y′′ in Eq. (27) and collecting terms, we find that

y1v
′′ + (2y′

1 + py1)v
′ + (y′′

1 + py′
1 + qy1)v = 0. (29)

Since y1 is a solution of Eq. (27), the coefficient of v in Eq. (29) is zero, so that Eq. (29)
becomes

y1v
′′ + (2y′

1 + py1)v
′ = 0. (30)

Despite its appearance, Eq. (30) is actually a first order equation for the function v′
and can be solved either as a first order linear equation or as a separable equation.
Once v′ has been found, then v is obtained by an integration. Finally, y is determined
from Eq. (28). This procedure is called the method of reduction of order, because the
crucial step is the solution of a first order differential equation for v′ rather than the
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original second order equation for y. Although it is possible to write down a formula
for v(t), we will instead illustrate how this method works by an example.

E X A M P L E

3

Given that y1(t) = t−1 is a solution of

2t2y′′ + 3ty′ − y = 0, t > 0, (31)

find a fundamental set of solutions.
We set y = v(t)t−1; then

y′ = v′t−1 − vt−2, y′′ = v′′t−1 − 2v′t−2 + 2vt−3.

Substituting for y, y′, and y′′ in Eq. (31) and collecting terms, we obtain

2t2(v′′t−1 − 2v′t−2 + 2vt−3) + 3t(v′t−1 − vt−2) − vt−1

= 2tv′′ + (−4 + 3)v′ + (4t−1 − 3t−1 − t−1)v

= 2tv′′ − v′ = 0. (32)

Note that the coefficient of v is zero, as it should be; this provides a useful check on our algebra.
Separating the variables in Eq. (32) and solving for v′(t), we find that

v′(t) = ct1/2 ;

then
v(t) = 2

3 ct3/2 + k.

It follows that
y = 2

3 ct1/2 + kt−1, (33)

where c and k are arbitrary constants. The second term on the right side of Eq. (33) is a
multiple of y1(t) and can be dropped, but the first term provides a new solution y2(t) = t1/2.
You can verify that the Wronskian of y1 and y2 is

W(y1, y2)(t) = 3
2 t−3/2, t > 0. (34)

Consequently, y1 and y2 form a fundamental set of solutions of Eq. (31).

PROBLEMS In each of Problems 1 through 10 find the general solution of the given differential equation.
1. y′′ − 2y′ + y = 0 2. 9y′′ + 6y′ + y = 0
3. 4y′′ − 4y′ − 3y = 0 4. 4y′′ + 12y′ + 9y = 0
5. y′′ − 2y′ + 10y = 0 6. y′′ − 6y′ + 9y = 0
7. 4y′′ + 17y′ + 4y = 0 8. 16y′′ + 24y′ + 9y = 0
9. 25y′′ − 20y′ + 4y = 0 10. 2y′′ + 2y′ + y = 0

In each of Problems 11 through 14 solve the given initial value problem. Sketch the graph of
the solution and describe its behavior for increasing t.
11. 9y′′ − 12y′ + 4y = 0, y(0) = 2, y′(0) = −1
12. y′′ − 6y′ + 9y = 0, y(0) = 0, y′(0) = 2
13. 9y′′ + 6y′ + 82y = 0, y(0) = −1, y′(0) = 2
14. y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1
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15. Consider the initial value problem

4y′′ + 12y′ + 9y = 0, y(0) = 1, y′(0) = −4.

(a) Solve the initial value problem and plot its solution for 0 ≤ t ≤ 5.
(b) Determine where the solution has the value zero.
(c) Determine the coordinates (t0, y0) of the minimum point.
(d) Change the second initial condition to y′(0) = b and find the solution as a function
of b. Then find the critical value of b that separates solutions that always remain positive
from those that eventually become negative.

16. Consider the following modification of the initial value problem in Example 2:

y′′ − y′ + 0.25y = 0, y(0) = 2, y′(0) = b.

Find the solution as a function of b and then determine the critical value of b that separates
solutions that grow positively from those that eventually grow negatively.

17. Consider the initial value problem

4y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 2.

(a) Solve the initial value problem and plot the solution.
(b) Determine the coordinates (tM , yM) of the maximum point.
(c) Change the second initial condition to y′(0) = b > 0 and find the solution as a function
of b.
(d) Find the coordinates (tM , yM) of the maximum point in terms of b. Describe the
dependence of tM and yM on b as b increases.

18. Consider the initial value problem

9y′′ + 12y′ + 4y = 0, y(0) = a > 0, y′(0) = −1.

(a) Solve the initial value problem.
(b) Find the critical value of a that separates solutions that become negative from those
that are always positive.

19. If the roots of the characteristic equation are real, show that a solution of
ay′′ + by′ + cy = 0 is either everywhere zero or else can take on the value zero at most
once.

Problems 20 through 22 indicate other ways of finding the second solution when the charac-
teristic equation has repeated roots.

20. (a) Consider the equation y′′ + 2ay′ + a2y = 0. Show that the roots of the characteristic
equation are r1 = r2 = −a, so that one solution of the equation is e−at .
(b) Use Abel’s formula [Eq. (22) of Section 3.2] to show that the Wronskian of any two
solutions of the given equation is

W(t) = y1(t)y′
2(t) − y′

1(t)y2(t) = c1e−2at ,

where c1 is a constant.
(c) Let y1(t) = e−at and use the result of part (b) to obtain a differential equation satisfied
by a second solution y2(t). By solving this equation, show that y2(t) = te−at .

21. Suppose that r1 and r2 are roots of ar2 + br + c = 0 and that r1 �= r2; then exp(r1t)
and exp(r2t) are solutions of the differential equation ay′′ + by′ + cy = 0. Show that
φ(t; r1, r2) = [exp(r2t) − exp(r1t)]/(r2 − r1) is also a solution of the equation for r2 �= r1.
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Then think of r1 as fixed and use L’Hospital’s rule to evaluate the limit of φ(t; r1, r2) as
r2 → r1, thereby obtaining the second solution in the case of equal roots.

22. (a) If ar2 + br + c = 0 has equal roots r1, show that

L[ert] = a(ert)′′ + b(ert)′ + cert = a(r − r1)
2ert . (i)

Since the right side of Eq. (i) is zero when r = r1, it follows that exp(r1t) is a solution of
L[y] = ay′′ + by′ + cy = 0.
(b) Differentiate Eq. (i) with respect to r and interchange differentiation with respect to
r and with respect to t, thus showing that

∂

∂r
L[ert] = L

[
∂

∂r
ert

]
= L[tert] = atert(r − r1)

2 + 2aert(r − r1). (ii)

Since the right side of Eq. (ii) is zero when r = r1, conclude that t exp(r1t) is also a solution
of L[y] = 0.

In each of Problems 23 through 30 use the method of reduction of order to find a second
solution of the given differential equation.
23. t2y′′ − 4ty′ + 6y = 0, t > 0; y1(t) = t2

24. t2y′′ + 2ty′ − 2y = 0, t > 0; y1(t) = t

25. t2y′′ + 3ty′ + y = 0, t > 0; y1(t) = t−1

26. t2y′′ − t(t + 2)y′ + (t + 2)y = 0, t > 0; y1(t) = t

27. xy′′ − y′ + 4x3y = 0, x > 0; y1(x) = sin x2

28. (x − 1)y′′ − xy′ + y = 0, x > 1; y1(x) = ex

29. x2y′′ − (x − 0.1875)y = 0, x > 0; y1(x) = x1/4e2
√

x

30. x2y′′ + xy′ + (x2 − 0.25)y = 0, x > 0; y1(x) = x−1/2 sin x

31. The differential equation
xy′′ − (x + N)y′ + Ny = 0,

where N is a nonnegative integer, has been discussed by several authors.6 One reason
why it is interesting is that it has an exponential solution and a polynomial solution.
(a) Verify that one solution is y1(x) = ex.

(b) Show that a second solution has the form y2(x) = cex

∫
xN e−x dx. Calculate y2(x) for

N = 1 and N = 2; convince yourself that, with c = −1/N!,

y2(x) = 1 + x
1! + x2

2! + · · · + xN

N! .

Note that y2(x) is exactly the first N + 1 terms in the Taylor series about x = 0 for ex, that
is, for y1(x).

32. The differential equation
y′′ + δ(xy′ + y) = 0

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Verify
that y1(x) = exp(−δx2/2) is one solution and then find the general solution in the form of
an integral.

6T. A. Newton, “On Using a Differential Equation to Generate Polynomials,” American Mathematical
Monthly 81 (1974), pp. 592–601. Also see the references given there.
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33. The method of Problem 20 can be extended to second order equations with variable
coefficients. If y1 is a known nonvanishing solution of y′′ + p(t)y′ + q(t)y = 0, show that
a second solution y2 satisfies (y2/y1)

′ = W(y1, y2)/y2
1, where W(y1, y2) is the Wronskian of

y1 and y2. Then use Abel’s formula [Eq. (22) of Section 3.2] to determine y2.

In each of Problems 34 through 37 use the method of Problem 33 to find a second independent
solution of the given equation.
34. t2y′′ + 3ty′ + y = 0, t > 0; y1(t) = t−1

35. ty′′ − y′ + 4t3y = 0, t > 0; y1(t) = sin(t2)

36. (x − 1)y′′ − xy′ + y = 0, x > 1; y1(x) = ex

37. x2y′′ + xy′ + (x2 − 0.25)y = 0, x > 0; y1(x) = x−1/2 sin x

Behavior of Solutions as t → ∞. Problems 38 through 40 are concerned with the behavior
of solutions as t → ∞.
38. If a, b, and c are positive constants, show that all solutions of ay′′ + by′ + cy = 0 approach

zero as t → ∞.

39. (a) If a > 0 and c > 0, but b = 0, show that the result of Problem 38 is no longer true, but
that all solutions are bounded as t → ∞.
(b) If a > 0 and b > 0, but c = 0, show that the result of Problem 38 is no longer true, but
that all solutions approach a constant that depends on the initial conditions as t → ∞.
Determine this constant for the initial conditions y(0) = y0, y′(0) = y′

0.

40. Show that y = sin t is a solution of

y′′ + (k sin2 t)y′ + (1 − k cos t sin t)y = 0

for any value of the constant k. If 0 < k < 2, show that 1 − k cos t sin t > 0 and k sin2 t ≥ 0.
Thus observe that even though the coefficients of this variable-coefficient differential equa-
tion are nonnegative (and the coefficient of y′ is zero only at the points t = 0, π , 2π , . . .),
it has a solution that does not approach zero as t → ∞. Compare this situation with the
result of Problem 38. Thus we observe a not unusual situation in the study of differential
equations: equations that are apparently very similar can have quite different properties.

Euler Equations. In each of Problems 41 through 46 use the substitution introduced in Prob-
lem 34 in Section 3.3 to solve the given differential equation.
41. t2y′′ − 3ty′ + 4y = 0, t > 0
42. t2y′′ + 2ty′ + 0.25y = 0, t > 0
43. 2t2y′′ − 5ty′ + 5y = 0, t > 0
44. t2y′′ + 3ty′ + y = 0, t > 0
45. 4t2y′′ − 8ty′ + 9y = 0, t > 0
46. t2y′′ + 5ty′ + 13y = 0, t > 0

3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients
We now return to the nonhomogeneous equation

L[y] = y′′ + p(t)y′ + q(t)y = g(t), (1)

where p, q, and g are given (continuous) functions on the open interval I . The
equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, (2)
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in which g(t) = 0 and p and q are the same as in Eq. (1), is called the homogeneous
equation corresponding to Eq. (1). The following two results describe the structure
of solutions of the nonhomogeneous equation (1) and provide a basis for constructing
its general solution.

Theorem 3.5.1 If Y1 and Y2 are two solutions of the nonhomogeneous equation (1), then their
difference Y1 − Y2 is a solution of the corresponding homogeneous equation (2).
If, in addition, y1 and y2 are a fundamental set of solutions of Eq. (2), then

Y1(t) − Y2(t) = c1y1(t) + c2y2(t), (3)

where c1 and c2 are certain constants.

To prove this result, note that Y1 and Y2 satisfy the equations

L[Y1](t) = g(t), L[Y2](t) = g(t). (4)

Subtracting the second of these equations from the first, we have

L[Y1](t) − L[Y2](t) = g(t) − g(t) = 0. (5)

However,
L[Y1] − L[Y2] = L[Y1 − Y2],

so Eq. (5) becomes
L[Y1 − Y2](t) = 0. (6)

Equation (6) states that Y1 − Y2 is a solution of Eq. (2). Finally, since all solutions of
Eq. (2) can be expressed as linear combinations of a fundamental set of solutions by
Theorem 3.2.4, it follows that the solution Y1 − Y2 can be so written. Hence Eq. (3)
holds and the proof is complete.

Theorem 3.5.2 The general solution of the nonhomogeneous equation (1) can be written in the
form

y = φ(t) = c1y1(t) + c2y2(t) + Y(t), (7)

where y1 and y2 are a fundamental set of solutions of the corresponding homoge-
neous equation (2), c1 and c2 are arbitrary constants, and Y is some specific solution
of the nonhomogeneous equation (1).

The proof of Theorem 3.5.2 follows quickly from the preceding theorem. Note
that Eq. (3) holds if we identify Y1 with an arbitrary solution φ of Eq. (1) and Y2 with
the specific solution Y . From Eq. (3) we thereby obtain

φ(t) − Y(t) = c1y1(t) + c2y2(t), (8)

which is equivalent to Eq. (7). Since φ is an arbitrary solution of Eq. (1), the expres-
sion on the right side of Eq. (7) includes all solutions of Eq. (1); thus it is natural to
call it the general solution of Eq. (1).
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In somewhat different words, Theorem 3.5.2 states that to solve the nonhomoge-
neous equation (1), we must do three things:

1. Find the general solution c1y1(t) + c2y2(t) of the corresponding homogeneous equation.
This solution is frequently called the complementary solution and may be denoted by yc(t).

2. Find some single solution Y(t) of the nonhomogeneous equation. Often this solution is
referred to as a particular solution.

3. Add together the functions found in the two preceding steps.

We have already discussed how to find yc(t), at least when the homogeneous equa-
tion (2) has constant coefficients. Therefore, in the remainder of this section and in
the next, we will focus on finding a particular solution Y(t) of the nonhomogeneous
equation (1). There are two methods that we wish to discuss. They are known as the
method of undetermined coefficients (discussed here) and the method of variation
of parameters (see Section 3.6), respectively. Each has some advantages and some
possible shortcomings.

Method of Undetermined Coefficients. The method of undetermined coefficients requires
us to make an initial assumption about the form of the particular solution Y(t), but
with the coefficients left unspecified. We then substitute the assumed expression into
Eq. (1) and attempt to determine the coefficients so as to satisfy that equation. If we
are successful, then we have found a solution of the differential equation (1) and can
use it for the particular solution Y(t). If we cannot determine the coefficients, then
this means that there is no solution of the form that we assumed. In this case we may
modify the initial assumption and try again.

The main advantage of the method of undetermined coefficients is that it is straight-
forward to execute once the assumption is made as to the form of Y(t). Its major
limitation is that it is useful primarily for equations for which we can easily write
down the correct form of the particular solution in advance. For this reason, this
method is usually used only for problems in which the homogeneous equation has
constant coefficients and the nonhomogeneous term is restricted to a relatively small
class of functions. In particular, we consider only nonhomogeneous terms that con-
sist of polynomials, exponential functions, sines, and cosines. Despite this limitation,
the method of undetermined coefficients is useful for solving many problems that
have important applications. However, the algebraic details may become tedious,
and a computer algebra system can be very helpful in practical applications. We will
illustrate the method of undetermined coefficients by several simple examples and
then summarize some rules for using it.

E X A M P L E

1

Find a particular solution of

y′′ − 3y′ − 4y = 3e2t . (9)

We seek a function Y such that the combination Y ′′(t) − 3Y ′(t) − 4Y(t) is equal to 3e2t .
Since the exponential function reproduces itself through differentiation, the most plausible
way to achieve the desired result is to assume that Y(t) is some multiple of e2t , that is,

Y(t) = Ae2t ,
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where the coefficient A is yet to be determined. To find A, we calculate

Y ′(t) = 2Ae2t , Y ′′(t) = 4Ae2t ,

and substitute for y, y′, and y′′ in Eq. (9). We obtain

(4A − 6A − 4A)e2t = 3e2t .

Hence −6Ae2t must equal 3e2t , so A = −1/2. Thus a particular solution is

Y(t) = − 1
2 e2t . (10)

E X A M P L E

2

Find a particular solution of
y′′ − 3y′ − 4y = 2 sin t. (11)

By analogy with Example 1, let us first assume that Y(t) = A sin t, where A is a constant to
be determined. On substituting in Eq. (11) and rearranging the terms, we obtain

−5A sin t − 3A cos t = 2 sin t,

or
(2 + 5A) sin t + 3A cos t = 0. (12)

We want Eq. (12) to hold for all t. Thus it must hold for two specific points, such as t = 0
and t = π/2. At these points Eq. (12) reduces to 3A = 0 and 2 + 5A = 0, respectively. These
contradictory requirements mean that there is no choice of the constant A that makes Eq. (12)
true for t = 0 and t = π/2,much less for all t. Thus we conclude that our assumption concerning
Y(t) is inadequate. The appearance of the cosine term in Eq. (12) suggests that we modify our
original assumption to include a cosine term in Y(t); that is,

Y(t) = A sin t + B cos t,

where A and B are to be determined. Then

Y ′(t) = A cos t − B sin t, Y ′′(t) = −A sin t − B cos t.

By substituting these expressions for y, y′, and y′′ in Eq. (11) and collecting terms, we obtain

(−A + 3B − 4A) sin t + (−B − 3A − 4B) cos t = 2 sin t. (13)

To satisfy Eq. (13), we must match the coefficients of sin t and cos t on each side of the equation;
thus A and B must satisfy the equations

−5A + 3B = 2, −3A − 5B = 0.

Hence A = −5/17 and B = 3/17, so a particular solution of Eq. (11) is

Y(t) = − 5
17 sin t + 3

17 cos t.

The method illustrated in the preceding examples can also be used when the right
side of the equation is a polynomial. Thus, to find a particular solution of

y′′ − 3y′ − 4y = 4t2 − 1, (14)

we initially assume that Y(t) is a polynomial of the same degree as the nonhomoge-
neous term, that is, Y(t) = At2 + Bt + C.
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To summarize our conclusions up to this point: if the nonhomogeneous term g(t)
in Eq. (1) is an exponential function eαt , then assume that Y(t) is proportional to
the same exponential function; if g(t) is sin βt or cos βt, then assume that Y(t) is a
linear combination of sin βt and cos βt; if g(t) is a polynomial, then assume that Y(t)
is a polynomial of like degree. The same principle extends to the case where g(t) is
a product of any two, or all three, of these types of functions, as the next example
illustrates.

E X A M P L E

3

Find a particular solution of
y′′ − 3y′ − 4y = −8et cos 2t. (15)

In this case we assume that Y(t) is the product of et and a linear combination of cos 2t and
sin 2t, that is,

Y(t) = Aet cos 2t + Bet sin 2t.

The algebra is more tedious in this example, but it follows that

Y ′(t) = (A + 2B)et cos 2t + (−2A + B)et sin 2t

and
Y ′′(t) = (−3A + 4B)et cos 2t + (−4A − 3B)et sin 2t.

By substituting these expressions in Eq. (15), we find that A and B must satisfy

10A + 2B = 8, 2A − 10B = 0.

Hence A = 10/13 and B = 2/13; therefore a particular solution of Eq. (15) is

Y(t) = 10
13 et cos 2t + 2

13 et sin 2t.

Now suppose that g(t) is the sum of two terms, g(t) = g1(t) + g2(t), and suppose
that Y1 and Y2 are solutions of the equations

ay′′ + by′ + cy = g1(t) (16)

and
ay′′ + by′ + cy = g2(t), (17)

respectively. Then Y1 + Y2 is a solution of the equation

ay′′ + by′ + cy = g(t). (18)

To prove this statement, substitute Y1(t) + Y2(t) for y in Eq. (18) and make use
of Eqs. (16) and (17). A similar conclusion holds if g(t) is the sum of any finite
number of terms. The practical significance of this result is that for an equation
whose nonhomogeneous function g(t) can be expressed as a sum, one can consider
instead several simpler equations and then add the results together. The following
example is an illustration of this procedure.

E X A M P L E

4

Find a particular solution of

y′′ − 3y′ − 4y = 3e2t + 2 sin t − 8et cos 2t. (19)

By splitting up the right side of Eq. (19), we obtain the three equations

y′′ − 3y′ − 4y = 3e2t ,

y′′ − 3y′ − 4y = 2 sin t,
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and
y′′ − 3y′ − 4y = −8et cos 2t.

Solutions of these three equations have been found in Examples 1, 2, and 3, respectively.
Therefore a particular solution of Eq. (19) is their sum, namely,

Y(t) = − 1
2 e2t + 3

17 cos t − 5
17 sin t + 10

13 et cos 2t + 2
13 et sin 2t.

The procedure illustrated in these examples enables us to solve a fairly large class
of problems in a reasonably efficient manner. However, there is one difficulty that
sometimes occurs. The next example illustrates how it arises.

E X A M P L E

5

Find a particular solution of
y′′ − 3y′ − 4y = 2e−t . (20)

Proceeding as in Example 1, we assume that Y(t) = Ae−t . By substituting in Eq. (20), we
then obtain

(A + 3A − 4A)e−t = 2e−t . (21)

Since the left side of Eq. (21) is zero, there is no choice of A that satisfies this equation.
Therefore, there is no particular solution of Eq. (20) of the assumed form. The reason for this
possibly unexpected result becomes clear if we solve the homogeneous equation

y′′ − 3y′ − 4y = 0 (22)

that corresponds to Eq. (20). A fundamental set of solutions of Eq. (22) is y1(t) = e−t and
y2(t) = e4t . Thus our assumed particular solution of Eq. (20) is actually a solution of the
homogeneous equation (22); consequently, it cannot possibly be a solution of the nonhomo-
geneous equation (20). To find a solution of Eq. (20), we must therefore consider functions of
a somewhat different form.

At this stage, we have several possible alternatives. One is simply to try to guess the proper
form of the particular solution of Eq. (20). Another is to solve this equation in some different
way and then to use the result to guide our assumptions if this situation arises again in the
future; see Problems 27 and 33 for other solution methods. Still another possibility is to
seek a simpler equation where this difficulty occurs and to use its solution to suggest how we
might proceed with Eq. (20). Adopting the latter approach, we look for a first order equation
analogous to Eq. (20). One possibility is the linear equation

y′ + y = 2e−t . (23)

If we try to find a particular solution of Eq. (23) of the form Ae−t , we will fail because e−t is
a solution of the homogeneous equation y′ + y = 0. However, from Section 2.1 we already
know how to solve Eq. (23). An integrating factor is μ(t) = et , and by multiplying by μ(t) and
then integrating both sides, we obtain the solution

y = 2te−t + ce−t . (24)

The second term on the right side of Eq. (24) is the general solution of the homogeneous
equation y′ + y = 0, but the first term is a solution of the full nonhomogeneous equation (23).
Observe that it involves the exponential factor e−t multiplied by the factor t. This is the clue
that we were looking for.

We now return to Eq. (20) and assume a particular solution of the form Y(t) = Ate−t . Then

Y ′(t) = Ae−t − Ate−t , Y ′′(t) = −2Ae−t + Ate−t . (25)
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Substituting these expressions for y, y′, and y′′ in Eq. (20), we obtain

(−2A − 3A)e−t + (A + 3A − 4A)te−t = 2e−t .

Hence −5A = 2, so A = −2/5. Thus a particular solution of Eq. (20) is

Y(t) = − 2
5 te−t . (26)

The outcome of Example 5 suggests a modification of the principle stated pre-
viously: if the assumed form of the particular solution duplicates a solution of the
corresponding homogeneous equation, then modify the assumed particular solution
by multiplying it by t. Occasionally, this modification will be insufficient to remove
all duplication with the solutions of the homogeneous equation, in which case it is
necessary to multiply by t a second time. For a second order equation, it will never
be necessary to carry the process further than this.

Summary. We now summarize the steps involved in finding the solution of an initial
value problem consisting of a nonhomogeneous equation of the form

ay′′ + by′ + cy = g(t), (27)

where the coefficients a, b, and c are constants, together with a given set of initial
conditions:

1. Find the general solution of the corresponding homogeneous equation.
2. Make sure that the function g(t) in Eq. (27) belongs to the class of functions discussed

in this section; that is, be sure it involves nothing more than exponential functions, sines,
cosines, polynomials, or sums or products of such functions. If this is not the case, use the
method of variation of parameters (discussed in the next section).

3. If g(t) = g1(t) + · · · + gn(t), that is, if g(t) is a sum of n terms, then form n subproblems,
each of which contains only one of the terms g1(t), . . . , gn(t). The ith subproblem consists
of the equation

ay′′ + by′ + cy = gi(t),

where i runs from 1 to n.
4. For the ith subproblem assume a particular solution Yi(t) consisting of the appropriate

exponential function, sine, cosine, polynomial, or combination thereof. If there is any
duplication in the assumed form of Yi(t) with the solutions of the homogeneous equation
(found in step 1), then multiply Yi(t) by t, or (if necessary) by t2, so as to remove the
duplication. See Table 3.5.1.

5. Find a particular solution Yi(t) for each of the subproblems. Then the sum
Y1(t) + · · · + Yn(t) is a particular solution of the full nonhomogeneous equation (27).

6. Form the sum of the general solution of the homogeneous equation (step 1) and the
particular solution of the nonhomogeneous equation (step 5). This is the general solution
of the nonhomogeneous equation.

7. Use the initial conditions to determine the values of the arbitrary constants remaining in
the general solution.

For some problems this entire procedure is easy to carry out by hand, but in many
cases it requires considerable algebra. Once you understand clearly how the method
works, a computer algebra system can be of great assistance in executing the details.
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TABLE 3.5.1 The Particular Solution of ay′′ + by′ + cy = gi(t)

gi(t) Yi(t)

Pn(t) = a0tn + a1tn−1 + · · · + an ts(A0tn + A1tn−1 + · · · + An)

Pn(t)eαt ts(A0tn + A1tn−1 + · · · + An)eαt

Pn(t)eαt

{
sin βt

cos βt
ts[(A0tn + A1tn−1 + · · · + An)eαt cos βt

+ (B0tn + B1tn−1 + · · · + Bn)eαt sin βt]
Notes. Here s is the smallest nonnegative integer (s = 0, 1, or 2) that will ensure that no
term in Yi(t) is a solution of the corresponding homogeneous equation. Equivalently,
for the three cases, s is the number of times 0 is a root of the characteristic equation, α is
a root of the characteristic equation, and α + iβ is a root of the characteristic equation,
respectively.

The method of undetermined coefficients is self-correcting in the sense that if you
assume too little for Y(t), then a contradiction is soon reached that usually points the
way to the modification that is needed in the assumed form. On the other hand, if you
assume too many terms, then some unnecessary work is done and some coefficients
turn out to be zero, but at least the correct answer is obtained.

Proof of the Method of Undetermined Coefficients. In the preceding discussion we have de-
scribed the method of undetermined coefficients on the basis of several examples.
To prove that the procedure always works as stated, we now give a general argu-
ment, in which we consider several cases corresponding to different forms for the
nonhomogeneous term g(t).

g(t) = Pn(t) = a0tn + a1tn−1 + · · · + an . In this case Eq. (27) becomes

ay′′ + by′ + cy = a0tn + a1tn−1 + · · · + an. (28)

To obtain a particular solution, we assume that

Y(t) = A0tn + A1tn−1 + · · · + An−2t2 + An−1t + An. (29)

Substituting in Eq. (28), we obtain

a[n(n − 1)A0tn−2 + · · · + 2An−2] + b(nA0tn−1 + · · · + An−1)

+ c(A0tn + A1tn−1 + · · · + An) = a0tn + · · · + an. (30)

Equating the coefficients of like powers of t gives

cA0 = a0,

cA1 + nbA0 = a1,
...

cAn + bAn−1 + 2aAn−2 = an.

Provided that c �= 0, the solution of the first equation is A0 = a0/c, and the remaining
equations determine A1, . . . , An successively. If c = 0 but b �= 0, then the polynomial
on the left side of Eq. (30) is of degree n − 1, and we cannot satisfy Eq. (30). To be
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sure that aY ′′(t) + bY ′(t) is a polynomial of degree n, we must choose Y(t) to be a
polynomial of degree n + 1. Hence we assume that

Y(t) = t(A0tn + · · · + An).

There is no constant term in this expression for Y(t), but there is no need to include
such a term since a constant is a solution of the homogeneous equation when c = 0.
Since b �= 0, we have A0 = a0/b(n + 1), and the other coefficients A1, . . . , An can be
determined similarly. If both c and b are zero, we assume that

Y(t) = t2(A0tn + · · · + An).

The term aY ′′(t) gives rise to a term of degree n, and we can proceed as before.
Again the constant and linear terms in Y(t) are omitted, since in this case they are
both solutions of the homogeneous equation.

g(t) = eαtPn(t). The problem of determining a particular solution of

ay′′ + by′ + cy = eαtPn(t) (31)

can be reduced to the preceding case by a substitution. Let

Y(t) = eαtu(t);

then
Y ′(t) = eαt[u′(t) + αu(t)]

and
Y ′′(t) = eαt[u′′(t) + 2αu′(t) + α2u(t)].

Substituting for y, y′, and y′′ in Eq. (31), canceling the factor eαt , and collecting terms,
we obtain

au′′(t) + (2aα + b)u′(t) + (aα2 + bα + c)u(t) = Pn(t). (32)

The determination of a particular solution of Eq. (32) is precisely the same problem,
except for the names of the constants, as solving Eq. (28). Therefore, if aα2 + bα + c
is not zero, we assume that u(t) = A0tn + · · · + An; hence a particular solution of
Eq. (31) is of the form

Y(t) = eαt(A0tn + A1tn−1 + · · · + An). (33)

On the other hand, if aα2 + bα + c is zero but 2aα + b is not, we must take u(t)
to be of the form t(A0tn + · · · + An). The corresponding form for Y(t) is t times
the expression on the right side of Eq. (33). Note that if aα2 + bα + c is zero, then
eαt is a solution of the homogeneous equation. If both aα2 + bα + c and 2aα + b
are zero (and this implies that both eαt and teαt are solutions of the homogeneous
equation), then the correct form for u(t) is t2(A0tn + · · · + An). Hence Y(t) is t2 times
the expression on the right side of Eq. (33).

g(t) = eαtPn(t) cos βt or eαtPn(t) sin βt. These two cases are similar, so we con-
sider only the latter. We can reduce this problem to the preceding one by noting that,
as a consequence of Euler’s formula, sin βt = (eiβt − e−iβt)/2i. Hence g(t) is of the
form

g(t) = Pn(t)
e(α+iβ)t − e(α−iβ)t

2i
,
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and we should choose

Y(t) = e(α+iβ)t(A0tn + · · · + An) + e(α−iβ)t(B0tn + · · · + Bn),

or, equivalently,

Y(t) = eαt(A0tn + · · · + An) cos βt + eαt(B0tn + · · · + Bn) sin βt.

Usually, the latter form is preferred. If α ± iβ satisfy the characteristic equation
corresponding to the homogeneous equation, we must, of course, multiply each of
the polynomials by t to increase their degrees by one.

If the nonhomogeneous function involves both cos βt and sin βt, it is usually con-
venient to treat these terms together, since each one individually may give rise to the
same form for a particular solution. For example, if g(t) = t sin t + 2 cos t, the form
for Y(t) would be

Y(t) = (A0t + A1) sin t + (B0t + B1) cos t,

provided that sin t and cos t are not solutions of the homogeneous equation.

PROBLEMS In each of Problems 1 through 12 find the general solution of the given differential equation.
1. y′′ − 2y′ − 3y = 3e2t 2. y′′ + 2y′ + 5y = 3 sin 2t

3. y′′ − 2y′ − 3y = −3te−t 4. y′′ + 2y′ = 3 + 4 sin 2t

5. y′′ + 9y = t2e3t + 6 6. y′′ + 2y′ + y = 2e−t

7. 2y′′ + 3y′ + y = t2 + 3 sin t 8. y′′ + y = 3 sin 2t + t cos 2t

9. u′′ + ω2
0u = cos ωt, ω2 �= ω2

0 10. u′′ + ω2
0u = cos ω0t

11. y′′ + y′ + 4y = 2 sinh t Hint: sinh t = (et − e−t)/2
12. y′′ − y′ − 2y = cosh 2t Hint: cosh t = (et + e−t)/2

In each of Problems 13 through 18 find the solution of the given initial value problem.
13. y′′ + y′ − 2y = 2t, y(0) = 0, y′(0) = 1
14. y′′ + 4y = t2 + 3et , y(0) = 0, y′(0) = 2
15. y′′ − 2y′ + y = tet + 4, y(0) = 1, y′(0) = 1
16. y′′ − 2y′ − 3y = 3te2t , y(0) = 1, y′(0) = 0
17. y′′ + 4y = 3 sin 2t, y(0) = 2, y′(0) = −1
18. y′′ + 2y′ + 5y = 4e−t cos 2t, y(0) = 1, y′(0) = 0

In each of Problems 19 through 26:
(a) Determine a suitable form for Y(t) if the method of undetermined coefficients is to be
used.
(b) Use a computer algebra system to find a particular solution of the given equation.

19. y′′ + 3y′ = 2t4 + t2e−3t + sin 3t

20. y′′ + y = t(1 + sin t)

21. y′′ − 5y′ + 6y = et cos 2t + e2t(3t + 4) sin t

22. y′′ + 2y′ + 2y = 3e−t + 2e−t cos t + 4e−t t2 sin t

23. y′′ − 4y′ + 4y = 2t2 + 4te2t + t sin 2t

24. y′′ + 4y = t2 sin 2t + (6t + 7) cos 2t

25. y′′ + 3y′ + 2y = et(t2 + 1) sin 2t + 3e−t cos t + 4et
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26. y′′ + 2y′ + 5y = 3te−t cos 2t − 2te−2t cos t

27. Consider the equation

y′′ − 3y′ − 4y = 2e−t (i)

from Example 5. Recall that y1(t) = e−t and y2(t) = e4t are solutions of the corresponding
homogeneous equation. Adapting the method of reduction of order (Section 3.4), seek a
solution of the nonhomogeneous equation of the form Y(t) = v(t)y1(t) = v(t)e−t , where
v(t) is to be determined.
(a) Substitute Y(t), Y ′(t), and Y ′′(t) into Eq. (i) and show that v(t) must satisfy
v′′ − 5v′ = 2.
(b) Let w(t) = v′(t) and show that w(t) must satisfy w′ − 5w = 2. Solve this equation
for w(t).
(c) Integrate w(t) to find v(t) and then show that

Y(t) = − 2
5 te−t + 1

5 c1e4t + c2e−t .

The first term on the right side is the desired particular solution of the nonhomogeneous
equation. Note that it is a product of t and e−t .

28. Determine the general solution of

y′′ + λ2y =
N∑

m=1

am sin mπ t,

where λ > 0 and λ �= mπ for m = 1, . . . , N.

29. In many physical problems the nonhomogeneous term may be specified by different for-
mulas in different time periods. As an example, determine the solution y = φ(t) of

y′′ + y =
{

t, 0 ≤ t ≤ π ,
πeπ−t , t > π ,

satisfying the initial conditions y(0) = 0 and y′(0) = 1. Assume that y and y′ are also
continuous at t = π . Plot the nonhomogeneous term and the solution as functions of time.
Hint: First solve the initial value problem for t ≤ π ; then solve for t > π , determining the
constants in the latter solution from the continuity conditions at t = π .

30. Follow the instructions in Problem 29 to solve the differential equation

y′′ + 2y′ + 5y =
{

1, 0 ≤ t ≤ π/2,
0, t > π/2

with the initial conditions y(0) = 0 and y′(0) = 0.

Behavior of Solutions as t → ∞. In Problems 31 and 32 we continue the discussion started
with Problems 38 through 40 of Section 3.4. Consider the differential equation

ay′′ + by′ + cy = g(t), (i)

where a, b, and c are positive.
31. If Y1(t) and Y2(t) are solutions of Eq. (i), show that Y1(t) − Y2(t) → 0 as t → ∞. Is this

result true if b = 0?
32. If g(t) = d, a constant, show that every solution of Eq. (i) approaches d/c as t → ∞. What

happens if c = 0? What if b = 0 also?
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33. In this problem we indicate an alternative procedure7 for solving the differential equation

y′′ + by′ + cy = (D2 + bD + c)y = g(t), (i)

where b and c are constants, and D denotes differentiation with respect to t. Let r1 and r2

be the zeros of the characteristic polynomial of the corresponding homogeneous equation.
These roots may be real and different, real and equal, or conjugate complex numbers.
(a) Verify that Eq. (i) can be written in the factored form

(D − r1)(D − r2)y = g(t),

where r1 + r2 = −b and r1r2 = c.
(b) Let u = (D − r2)y. Then show that the solution of Eq (i) can be found by solving the
following two first order equations:

(D − r1)u = g(t), (D − r2)y = u(t).

In each of Problems 34 through 37 use the method of Problem 33 to solve the given differential
equation.
34. y′′ − 3y′ − 4y = 3e2t (see Example 1)
35. 2y′′ + 3y′ + y = t2 + 3 sin t (see Problem 7)
36. y′′ + 2y′ + y = 2e−t (see Problem 6)
37. y′′ + 2y′ = 3 + 4 sin 2t (see Problem 4)

3.6 Variation of Parameters
In this section we describe another method of finding a particular solution of a non-
homogeneous equation. This method, known as variation of parameters, is due to
Lagrange and complements the method of undetermined coefficients rather well.
The main advantage of variation of parameters is that it is a general method; in
principle at least, it can be applied to any equation, and it requires no detailed as-
sumptions about the form of the solution. In fact, later in this section we use this
method to derive a formula for a particular solution of an arbitrary second order
linear nonhomogeneous differential equation. On the other hand, the method of
variation of parameters eventually requires us to evaluate certain integrals involving
the nonhomogeneous term in the differential equation, and this may present diffi-
culties. Before looking at this method in the general case, we illustrate its use in an
example.

E X A M P L E

1

Find a particular solution of
y′′ + 4y = 3 csc t. (1)

Observe that this problem is not a good candidate for the method of undetermined coeffi-
cients, as described in Section 3.5, because the nonhomogeneous term g(t) = 3 csc t involves

7R. S. Luthar, “Another Approach to a Standard Differential Equation,” Two Year College Mathematics
Journal 10 (1979), pp. 200–201; also see D. C. Sandell and F. M. Stein, “Factorization of Operators of
Second Order Linear Homogeneous Ordinary Differential Equations,” Two Year College Mathematics
Journal 8 (1977), pp. 132–141, for a more general discussion of factoring operators.
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a quotient (rather than a sum or a product) of sin t or cos t. Therefore, we need a different
approach. Observe also that the homogeneous equation corresponding to Eq. (1) is

y′′ + 4y = 0, (2)

and that the general solution of Eq. (2) is

yc(t) = c1 cos 2t + c2 sin 2t. (3)

The basic idea in the method of variation of parameters is to replace the constants c1 and c2

in Eq. (3) by functions u1(t) and u2(t), respectively, and then to determine these functions so
that the resulting expression

y = u1(t) cos 2t + u2(t) sin 2t (4)

is a solution of the nonhomogeneous equation (1).
To determine u1 and u2, we need to substitute for y from Eq. (4) in Eq. (1). However, even

without carrying out this substitution, we can anticipate that the result will be a single equation
involving some combination of u1, u2, and their first two derivatives. Since there is only one
equation and two unknown functions, we can expect that there are many possible choices of
u1 and u2 that will meet our needs. Alternatively, we may be able to impose a second condition
of our own choosing, thereby obtaining two equations for the two unknown functions u1 and
u2. We will soon show (following Lagrange) that it is possible to choose this second condition
in a way that makes the computation markedly more efficient.

Returning now to Eq. (4), we differentiate it and rearrange the terms, thereby obtaining

y′ = −2u1(t) sin 2t + 2u2(t) cos 2t + u′
1(t) cos 2t + u′

2(t) sin 2t. (5)

Keeping in mind the possibility of choosing a second condition on u1 and u2, let us require the
sum of the last two terms on the right side of Eq. (5) to be zero; that is, we require that

u′
1(t) cos 2t + u′

2(t) sin 2t = 0. (6)

It then follows from Eq. (5) that

y′ = −2u1(t) sin 2t + 2u2(t) cos 2t. (7)

Although the ultimate effect of the condition (6) is not yet clear,at the very least it has simplified
the expression for y′. Further, by differentiating Eq. (7), we obtain

y′′ = −4u1(t) cos 2t − 4u2(t) sin 2t − 2u′
1(t) sin 2t + 2u′

2(t) cos 2t. (8)

Then, substituting for y and y′′ in Eq. (1) from Eqs. (4) and (8), respectively, we find that u1

and u2 must satisfy
−2u′

1(t) sin 2t + 2u′
2(t) cos 2t = 3 csc t. (9)

Summarizing our results to this point, we want to choose u1 and u2 so as to satisfy Eqs. (6)
and (9). These equations can be viewed as a pair of linear algebraic equations for the two
unknown quantities u′

1(t) and u′
2(t). Equations (6) and (9) can be solved in various ways. For

example, solving Eq. (6) for u′
2(t), we have

u′
2(t) = −u′

1(t)
cos 2t
sin 2t

. (10)

Then, substituting for u′
2(t) in Eq. (9) and simplifying, we obtain

u′
1(t) = −3 csc t sin 2t

2
= −3 cos t. (11)
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Further, putting this expression for u′
1(t) back in Eq. (10) and using the double-angle formulas,

we find that

u′
2(t) = 3 cos t cos 2t

sin 2t
= 3(1 − 2 sin2 t)

2 sin t
= 3

2
csc t − 3 sin t. (12)

Having obtained u′
1(t) and u′

2(t), we next integrate so as to find u1(t) and u2(t). The result is

u1(t) = −3 sin t + c1 (13)

and
u2(t) = 3

2 ln | csc t − cot t| + 3 cos t + c2. (14)

On substituting these expressions in Eq. (4), we have

y = −3 sin t cos 2t + 3
2 ln | csc t − cot t| sin 2t + 3 cos t sin 2t

+ c1 cos 2t + c2 sin 2t.

Finally, by using the double-angle formulas once more, we obtain

y = 3 sin t + 3
2 ln | csc t − cot t| sin 2t + c1 cos 2t + c2 sin 2t. (15)

The terms in Eq. (15) involving the arbitrary constants c1 and c2 are the general solution of the
corresponding homogeneous equation, while the remaining terms are a particular solution of
the nonhomogeneous equation (1). Thus Eq. (15) is the general solution of Eq. (1).

In the preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of Eq. (1). The next
question is whether this method can be applied effectively to an arbitrary equation.
Therefore we consider

y′′ + p(t)y′ + q(t)y = g(t), (16)

where p, q, and g are given continuous functions. As a starting point, we assume that
we know the general solution

yc(t) = c1y1(t) + c2y2(t) (17)

of the corresponding homogeneous equation

y′′ + p(t)y′ + q(t)y = 0. (18)

This is a major assumption because so far we have shown how to solve Eq. (18) only if
it has constant coefficients. If Eq. (18) has coefficients that depend on t, then usually
the methods described in Chapter 5 must be used to obtain yc(t).

The crucial idea, as illustrated in Example 1, is to replace the constants c1 and c2

in Eq. (17) by functions u1(t) and u2(t), respectively; this gives

y = u1(t)y1(t) + u2(t)y2(t). (19)

Then we try to determine u1(t) and u2(t) so that the expression in Eq. (19) is a solution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18).
Thus we differentiate Eq. (19), obtaining

y′ = u′
1(t)y1(t) + u1(t)y′

1(t) + u′
2(t)y2(t) + u2(t)y′

2(t). (20)

As in Example 1, we now set the terms involving u′
1(t) and u′

2(t) in Eq. (20) equal to
zero; that is, we require that

u′
1(t)y1(t) + u′

2(t)y2(t) = 0. (21)
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Then, from Eq. (20), we have

y′ = u1(t)y′
1(t) + u2(t)y′

2(t). (22)

Further, by differentiating again, we obtain

y′′ = u′
1(t)y

′
1(t) + u1(t)y′′

1(t) + u′
2(t)y

′
2(t) + u2(t)y′′

2(t). (23)

Now we substitute for y, y′, and y′′ in Eq. (16) from Eqs. (19), (22), and (23),
respectively. After rearranging the terms in the resulting equation, we find that

u1(t)[y′′
1(t) + p(t)y′

1(t) + q(t)y1(t)]
+ u2(t)[y′′

2(t) + p(t)y′
2(t) + q(t)y2(t)]

+ u′
1(t)y

′
1(t) + u′

2(t)y
′
2(t) = g(t). (24)

Each of the expressions in square brackets in Eq. (24) is zero because both y1 and y2

are solutions of the homogeneous equation (18). Therefore Eq. (24) reduces to

u′
1(t)y

′
1(t) + u′

2(t)y
′
2(t) = g(t). (25)

Equations (21) and (25) form a system of two linear algebraic equations for the
derivatives u′

1(t) and u′
2(t) of the unknown functions. They correspond exactly to

Eqs. (6) and (9) in Example 1.
By solving the system (21), (25) we obtain

u′
1(t) = − y2(t)g(t)

W(y1, y2)(t)
, u′

2(t) = y1(t)g(t)
W(y1, y2)(t)

, (26)

where W(y1, y2) is the Wronskian of y1 and y2. Note that division by W is permissible
since y1 and y2 are a fundamental set of solutions, and therefore their Wronskian is
nonzero. By integrating Eqs. (26), we find the desired functions u1(t) and u2(t),
namely,

u1(t) = −
∫

y2(t)g(t)
W(y1, y2)(t)

dt + c1, u2(t) =
∫

y1(t)g(t)
W(y1, y2)(t)

dt + c2. (27)

If the integrals in Eqs. (27) can be evaluated in terms of elementary functions, then we
substitute the results in Eq. (19), thereby obtaining the general solution of Eq. (16).
More generally, the solution can always be expressed in terms of integrals, as stated
in the following theorem.

Theorem 3.6.1 If the functions p, q, and g are continuous on an open interval I , and if the functions
y1 and y2 are a fundamental set of solutions of the homogeneous equation (18)
corresponding to the nonhomogeneous equation (16)

y′′ + p(t)y′ + q(t)y = g(t),

then a particular solution of Eq. (16) is

Y(t) = −y1(t)
∫ t

t0

y2(s)g(s)
W(y1, y2)(s)

ds + y2(t)
∫ t

t0

y1(s)g(s)
W(y1, y2)(s)

ds, (28)
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where t0 is any conveniently chosen point in I . The general solution is

y = c1y1(t) + c2y2(t) + Y(t), (29)

as prescribed by Theorem 3.5.2.

By examining the expression (28) and reviewing the process by which we derived
it, we can see that there may be two major difficulties in using the method of variation
of parameters. As we have mentioned earlier, one is the determination of y1(t) and
y2(t), a fundamental set of solutions of the homogeneous equation (18), when the
coefficients in that equation are not constants. The other possible difficulty lies in
the evaluation of the integrals appearing in Eq. (28). This depends entirely on the
nature of the functions y1, y2, and g. In using Eq. (28), be sure that the differential
equation is exactly in the form (16); otherwise, the nonhomogeneous term g(t) will
not be correctly identified.

A major advantage of the method of variation of parameters is that Eq. (28) pro-
vides an expression for the particular solution Y(t) in terms of an arbitrary forcing
function g(t). This expression is a good starting point if you wish to investigate the
effect of variations in the forcing function, or if you wish to analyze the response of
a system to a number of different forcing functions.

PROBLEMS In each of Problems 1 through 4 use the method of variation of parameters to find a particular
solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.

1. y′′ − 5y′ + 6y = 2et 2. y′′ − y′ − 2y = 2e−t

3. y′′ + 2y′ + y = 3e−t 4. 4y′′ − 4y′ + y = 16et/2

In each of Problems 5 through 12 find the general solution of the given differential equation.
In Problems 11 and 12, g is an arbitrary continuous function.

5. y′′ + y = tan t, 0 < t < π/2 6. y′′ + 9y = 9 sec2 3t, 0 < t < π/6
7. y′′ + 4y′ + 4y = t−2e−2t , t > 0 8. y′′ + 4y = 3 csc 2t, 0 < t < π/2
9. 4y′′ + y = 2 sec(t/2), −π < t < π 10. y′′ − 2y′ + y = et/(1 + t2)

11. y′′ − 5y′ + 6y = g(t) 12. y′′ + 4y = g(t)

In each of Problems 13 through 20 verify that the given functions y1 and y2 satisfy the corre-
sponding homogeneous equation; then find a particular solution of the given nonhomogeneous
equation. In Problems 19 and 20, g is an arbitrary continuous function.
13. t2y′′ − 2y = 3t2 − 1, t > 0; y1(t) = t2, y2(t) = t−1

14. t2y′′ − t(t + 2)y′ + (t + 2)y = 2t3, t > 0; y1(t) = t, y2(t) = tet

15. ty′′ − (1 + t)y′ + y = t2e2t , t > 0; y1(t) = 1 + t, y2(t) = et

16. (1 − t)y′′ + ty′ − y = 2(t − 1)2e−t , 0 < t < 1; y1(t) = et , y2(t) = t

17. x2y′′ − 3xy′ + 4y = x2 ln x, x > 0; y1(x) = x2, y2(x) = x2 ln x

18. x2y′′ + xy′ + (x2 − 0.25)y = 3x3/2 sin x, x > 0;
y1(x) = x−1/2 sin x, y2(x) = x−1/2 cos x

19. (1 − x)y′′ + xy′ − y = g(x), 0 < x < 1; y1(x) = ex, y2(x) = x

20. x2y′′ + xy′ + (x2 − 0.25)y = g(x), x > 0; y1(x) = x−1/2 sin x, y2(x) = x−1/2 cos x
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21. Show that the solution of the initial value problem

L[y] = y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′
0 (i)

can be written as y = u(t) + v(t), where u and v are solutions of the two initial value
problems

L[u] = 0, u(t0) = y0, u′(t0) = y′
0, (ii)

L[v] = g(t), v(t0) = 0, v′(t0) = 0, (iii)

respectively. In other words, the nonhomogeneities in the differential equation and in
the initial conditions can be dealt with separately. Observe that u is easy to find if a
fundamental set of solutions of L[u] = 0 is known.

22. By choosing the lower limit of integration in Eq. (28) in the text as the initial point t0,
show that Y(t) becomes

Y(t) =
∫ t

t0

y1(s)y2(t) − y1(t)y2(s)
y1(s)y′

2(s) − y′
1(s)y2(s)

g(s) ds.

Show that Y(t) is a solution of the initial value problem

L[y] = g(t), y(t0) = 0, y′(t0) = 0.

Thus Y can be identified with v in Problem 21.

23. (a) Use the result of Problem 22 to show that the solution of the initial value problem

y′′ + y = g(t), y(t0) = 0, y′(t0) = 0 (i)

is

y =
∫ t

t0

sin(t − s)g(s) ds. (ii)

(b) Use the result of Problem 21 to find the solution of the initial value problem

y′′ + y = g(t), y(0) = y0, y′(0) = y′
0.

24. Use the result of Problem 22 to find the solution of the initial value problem

L[y] = (D − a)(D − b)y = g(t), y(t0) = 0, y′(t0) = 0,

where a and b are real numbers with a �= b.
25. Use the result of Problem 22 to find the solution of the initial value problem

L[y] = [D2 − 2λD + (λ2 + μ2)]y = g(t), y(t0) = 0, y′(t0) = 0.

Note that the roots of the characteristic equation are λ ± iμ.

26. Use the result of Problem 22 to find the solution of the initial value problem

L[y] = (D − a)2y = g(t), y(t0) = 0, y′(t0) = 0,

where a is any real number.
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27. By combining the results of Problems 24 through 26, show that the solution of the initial
value problem

L[y] = (D2 + bD + c)y = g(t), y(t0) = 0, y′(t0) = 0,

where b and c are constants, has the form

y = φ(t) =
∫ t

t0

K(t − s)g(s) ds. (i)

The function K depends only on the solutions y1 and y2 of the corresponding homogeneous
equation and is independent of the nonhomogeneous term. Once K is determined, all
nonhomogeneous problems involving the same differential operator L are reduced to the
evaluation of an integral. Note also that although K depends on both t and s, only the
combination t − s appears, so K is actually a function of a single variable. When we think
of g(t) as the input to the problem and of φ(t) as the output, it follows from Eq. (i) that the
output depends on the input over the entire interval from the initial point t0 to the current
value t. The integral in Eq. (i) is called the convolution of K and g, and K is referred to as
the kernel.

28. The method of reduction of order (Section 3.4) can also be used for the nonhomogeneous
equation

y′′ + p(t)y′ + q(t)y = g(t), (i)

provided one solution y1 of the corresponding homogeneous equation is known. Let
y = v(t)y1(t) and show that y satisfies Eq. (i) if v is a solution of

y1(t)v′′ + [2y′
1(t) + p(t)y1(t)]v′ = g(t). (ii)

Equation (ii) is a first order linear equation for v′. Solving this equation, integrating the
result, and then multiplying by y1(t) lead to the general solution of Eq. (i).

In each of Problems 29 through 32 use the method outlined in Problem 28 to solve the given
differential equation.
29. t2y′′ − 2ty′ + 2y = 4t2, t > 0; y1(t) = t

30. t2y′′ + 7ty′ + 5y = t, t > 0; y1(t) = t−1

31. ty′′ − (1 + t)y′ + y = t2e2t , t > 0; y1(t) = 1 + t (see Problem 15)
32. (1 − t)y′′ + ty′ − y = 2(t − 1)2e−t , 0 < t < 1; y1(t) = et (see Problem 16)

3.7 Mechanical and Electrical Vibrations
One of the reasons why second order linear equations with constant coefficients
are worth studying is that they serve as mathematical models of some important
physical processes. Two important areas of application are the fields of mechanical
and electrical oscillations. For example, the motion of a mass on a vibrating spring,
the torsional oscillations of a shaft with a flywheel, the flow of electric current in
a simple series circuit, and many other physical problems are all described by the
solution of an initial value problem of the form

ay′′ + by′ + cy = g(t), y(0) = y0, y′(0) = y′
0. (1)
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This illustrates a fundamental relationship between mathematics and physics:
many physical problems may have the same mathematical model. Thus, once we
know how to solve the initial value problem (1), it is only necessary to make appro-
priate interpretations of the constants a, b, and c, and of the functions y and g, to
obtain solutions of different physical problems.

We will study the motion of a mass on a spring in detail because an understanding
of the behavior of this simple system is the first step in the investigation of more
complex vibrating systems. Further, the principles involved are common to many
problems. Consider a mass m hanging on the end of a vertical spring of original
length l, as shown in Figure 3.7.1. The mass causes an elongation L of the spring in
the downward (positive) direction. There are two forces acting at the point where
the mass is attached to the spring; see Figure 3.7.2. The gravitational force, or weight
of the mass, acts downward and has magnitude mg, where g is the acceleration due to
gravity. There is also a force Fs, due to the spring, that acts upward. If we assume that
the elongation L of the spring is small, the spring force is very nearly proportional
to L; this is known as Hooke’s8 law. Thus we write Fs = −kL, where the constant of
proportionality k is called the spring constant, and the minus sign is due to the fact
that the spring force acts in the upward (negative) direction. Since the mass is in
equilibrium, the two forces balance each other, which means that

mg − kL = 0. (2)

For a given weight w = mg, one can measure L and then use Eq. (2) to determine k.
Note that k has the units of force/length.

m
m

u

l + L + u

L

l

FIGURE 3.7.1 A spring–mass system.

In the corresponding dynamic problem, we are interested in studying the motion
of the mass when it is acted on by an external force or is initially displaced. Let
u(t), measured positive downward, denote the displacement of the mass from its
equilibrium position at time t; see Figure 3.7.1. Then u(t) is related to the forces
acting on the mass through Newton’s law of motion

mu′′(t) = f (t), (3)

8Robert Hooke (1635–1703) was an English scientist with wide-ranging interests. His most important
book, Micrographia, was published in 1665 and described a variety of microscopical observations. Hooke
first published his law of elastic behavior in 1676 as ceiiinosssttuv; in 1678 he gave the interpretation ut
tensio sic vis, which means, roughly, “as the force so is the displacement.”
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Fs = –kL

w = mg
FIGURE 3.7.2 Force diagram for a spring–mass system.

where u′′ is the acceleration of the mass and f is the net force acting on the mass.
Observe that both u and f are functions of time. In determining f there are four
separate forces that must be considered:

1. The weight w = mg of the mass always acts downward.
2. The spring force Fs is assumed to be proportional to the total elongation L + u of the

spring and always acts to restore the spring to its natural position. If L + u > 0, then the
spring is extended, and the spring force is directed upward. In this case

Fs = −k(L + u). (4)

On the other hand, if L + u < 0, then the spring is compressed a distance |L + u|, and
the spring force, which is now directed downward, is given by Fs = k|L + u|. However,
when L + u < 0, it follows that |L + u| = −(L + u), so Fs is again given by Eq. (4). Thus,
regardless of the position of the mass, the force exerted by the spring is always expressed
by Eq. (4).

3. The damping or resistive force Fd always acts in the direction opposite to the direction of
motion of the mass. This force may arise from several sources: resistance from the air or
other medium in which the mass moves, internal energy dissipation due to the extension or
compression of the spring, friction between the mass and the guides (if any) that constrain
its motion to one dimension, or a mechanical device (dashpot) that imparts a resistive
force to the mass. In any case, we assume that the resistive force is proportional to the
speed |du/dt| of the mass; this is usually referred to as viscous damping. If du/dt > 0, then
u is increasing, so the mass is moving downward. Then Fd is directed upward and is given
by

Fd(t) = −γ u′(t), (5)

where γ is a positive constant of proportionality known as the damping constant. On
the other hand, if du/dt < 0, then u is decreasing, the mass is moving upward, and Fd is
directed downward. In this case, Fd = γ |u′(t)|; since |u′(t)| = −u′(t), it follows that Fd(t)
is again given by Eq. (5). Thus, regardless of the direction of motion of the mass, the
damping force is always expressed by Eq. (5).

The damping force may be rather complicated, and the assumption that it is modeled
adequately by Eq. (5) may be open to question. Some dashpots do behave as Eq. (5)
states, and if the other sources of dissipation are small, it may be possible to neglect
them altogether or to adjust the damping constant γ to approximate them. An important
benefit of the assumption (5) is that it leads to a linear (rather than a nonlinear) differential
equation. In turn, this means that a thorough analysis of the system is straightforward, as
we will show in this section and the next.

4. An applied external force F(t) is directed downward or upward as F(t) is positive or
negative. This could be a force due to the motion of the mount to which the spring is
attached, or it could be a force applied directly to the mass. Often the external force is
periodic.
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Taking account of these forces, we can now rewrite Newton’s law (3) as

mu′′(t) = mg + Fs(t) + Fd(t) + F(t)

= mg − k[L + u(t)] − γ u′(t) + F(t). (6)

Since mg − kL = 0 by Eq. (2), it follows that the equation of motion of the mass is

mu′′(t) + γ u′(t) + ku(t) = F(t), (7)

where the constants m, γ , and k are positive. Note that Eq. (7) has the same form as
Eq. (1).

It is important to understand that Eq. (7) is only an approximate equation for
the displacement u(t). In particular, both Eqs. (4) and (5) should be viewed as
approximations for the spring force and the damping force, respectively. In our
derivation we have also neglected the mass of the spring in comparison with the
mass of the attached body.

The complete formulation of the vibration problem requires that we specify two
initial conditions, namely, the initial position u0 and the initial velocity v0 of the mass:

u(0) = u0, u′(0) = v0. (8)

It follows fromTheorem 3.2.1 that these conditions give a mathematical problem that
has a unique solution. This is consistent with our physical intuition that if the mass is
set in motion with a given initial displacement and velocity, then its position will be
determined uniquely at all future times. The position of the mass is given (approxi-
mately) by the solution of Eq. (7) subject to the prescribed initial conditions (8).

E X A M P L E

1

A mass weighing 4 lb stretches a spring 2 in. Suppose that the mass is displaced an additional
6 in. in the positive direction and then released. The mass is in a medium that exerts a viscous
resistance of 6 lb when the mass has a velocity of 3 ft/s. Under the assumptions discussed in
this section, formulate the initial value problem that governs the motion of the mass.

The required initial value problem consists of the differential equation (7) and initial condi-
tions (8), so our task is to determine the various constants that appear in these equations. The
first step is to choose the units of measurement. Based on the statement of the problem, it is
natural to use the English rather than the metric system of units. The only time unit mentioned
is the second, so we will measure t in seconds. On the other hand, both the foot and the inch
appear in the statement as units of length. It is immaterial which one we use, but having made
a choice, we must be consistent. To be definite, let us measure the displacement u in feet.

Since nothing is said in the statement of the problem about an external force, we assume
that F(t) = 0. To determine m, note that

m = w

g
= 4 lb

32 ft/s2
= 1

8
lb·s2

ft
.

The damping coefficient γ is determined from the statement that γ u′ is equal to 6 lb when u′

is 3 ft/s. Therefore

γ = 6 lb
3 ft/s

= 2
lb·s
ft

.

The spring constant k is found from the statement that the mass stretches the spring by 2 in.,
or 1/6 ft. Thus

k = 4 lb
1/6 ft

= 24
lb
ft

.
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Consequently, Eq. (7) becomes

1
8 u′′ + 2u′ + 24u = 0,

or
u′′ + 16u′ + 192u = 0. (9)

The initial conditions are
u(0) = 1

2 , u′(0) = 0. (10)

The second initial condition is implied by the word “released” in the statement of the problem,
which we interpret to mean that the mass is set in motion with no initial velocity.

Undamped Free Vibrations. If there is no external force, then F(t) = 0 in Eq. (7). Let
us also suppose that there is no damping, so that γ = 0; this is an idealized config-
uration of the system, seldom (if ever) completely attainable in practice. However,
if the actual damping is very small, then the assumption of no damping may yield
satisfactory results over short to moderate time intervals. In this case the equation
of motion (7) reduces to

mu′′ + ku = 0. (11)

The general solution of Eq. (11) is

u = A cos ω0t + B sin ω0t, (12)

where
ω2

0 = k/m. (13)

The arbitrary constants A and B can be determined if initial conditions of the form
(8) are given.

In discussing the solution of Eq. (11), it is convenient to rewrite Eq. (12) in the
form

u = R cos(ω0t − δ), (14)

or
u = R cos δ cos ω0t + R sin δ sin ω0t. (15)

By comparing Eq. (15) with Eq. (12), we find that A, B, R, and δ are related by the
equations

A = R cos δ, B = R sin δ. (16)

Thus
R =

√
A2 + B2, tan δ = B/A. (17)

In calculating δ, we must take care to choose the correct quadrant; this can be done
by checking the signs of cos δ and sin δ in Eqs. (16).

The graph of Eq. (14),or the equivalent Eq. (12), for a typical set of initial conditions
is shown in Figure 3.7.3. The graph is a displaced cosine wave that describes a periodic,
or simple harmonic, motion of the mass. The period of the motion is

T = 2π

ω0
= 2π

(m
k

)1/2
. (18)

The circular frequency ω0 = √
k/m, measured in radians per unit time, is called the

natural frequency of the vibration. The maximum displacement R of the mass from
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equilibrium is the amplitude of the motion. The dimensionless parameter δ is called
the phase, or phase angle, and measures the displacement of the wave from its normal
position corresponding to δ = 0.

R

u

–R

δ

R cos δ

 + 2 πδ  +  πδ 0tω

FIGURE 3.7.3 Simple harmonic motion; u = R cos(ω0t − δ).

Note that the motion described by Eq. (14) has a constant amplitude that does not
diminish with time. This reflects the fact that, in the absence of damping, there is no
way for the system to dissipate the energy imparted to it by the initial displacement
and velocity. Further, for a given mass m and spring constant k, the system always
vibrates at the same frequency ω0, regardless of the initial conditions. However, the
initial conditions do help to determine the amplitude of the motion. Finally, observe
from Eq. (18) that T increases as m increases, so larger masses vibrate more slowly.
On the other hand, T decreases as k increases, which means that stiffer springs cause
the system to vibrate more rapidly.

E X A M P L E

2

Suppose that a mass weighing 10 lb stretches a spring 2 in. If the mass is displaced an additional
2 in. and is then set in motion with an initial upward velocity of 1 ft/s, determine the position
of the mass at any later time. Also determine the period, amplitude, and phase of the motion.

The spring constant is k = 10 lb/2 in.= 60 lb/ft, and the mass is m = w/g = 10/32 lb·s2
/ft.

Hence the equation of motion reduces to

u′′ + 192u = 0, (19)

and the general solution is

u = A cos(8
√

3t) + B sin(8
√

3t).

The solution satisfying the initial conditions u(0) = 1/6 ft and u′(0) = −1 ft/s is

u = 1
6

cos(8
√

3t) − 1

8
√

3
sin(8

√
3t). (20)

The natural frequency is ω0 = √
192 ∼= 13.856 rad/s, so the period is T = 2π/ω0

∼= 0.45345 s.
The amplitude R and phase δ are found from Eqs. (17). We have

R2 = 1
36

+ 1
192

= 19
576

, so R ∼= 0.18162 ft.
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The second of Eqs. (17) yields tan δ = −√
3/4. There are two solutions of this equation, one

in the second quadrant and one in the fourth. In the present problem cos δ > 0 and sin δ < 0,
so δ is in the fourth quadrant, namely,

δ = −arctan(
√

3/4) ∼= −0.40864 rad.

The graph of the solution (20) is shown in Figure 3.7.4.

0.2

– 0.2

0.5 1 1.5

T = 0.453~

u = 0.182 cos(8√3 t + 0.409)R = 0.182~

u

t

FIGURE 3.7.4 An undamped free vibration; u′′ + 192u = 0, u(0) = 1/6, u′(0) = −1.

Damped Free Vibrations. If we include the effect of damping, the differential equation
governing the motion of the mass is

mu′′ + γ u′ + ku = 0. (21)

We are especially interested in examining the effect of variations in the damping
coefficient γ for given values of the mass m and spring constant k. The roots of the
corresponding characteristic equation are

r1, r2 = −γ ± √
γ 2 − 4km

2m
= γ

2m

(
−1 ±

√
1 − 4km

γ 2

)
. (22)

Depending on the sign of γ 2 − 4km, the solution u has one of the following forms:

γ 2 − 4km > 0, u = Aer1t + Ber2t ; (23)

γ 2 − 4km = 0, u = (A + Bt)e−γ t/2m; (24)

γ 2 − 4km < 0, u = e−γ t/2m(A cos μt + B sin μt), μ = (4km − γ 2)1/2

2m
> 0. (25)

Since m, γ , and k are positive, γ 2 − 4km is always less than γ 2. Hence, if
γ 2 − 4km ≥ 0, then the values of r1 and r2 given by Eq. (22) are negative. If
γ 2 − 4km < 0, then the values of r1 and r2 are complex, but with negative real part.
Thus, in all cases, the solution u tends to zero as t → ∞; this occurs regardless of the
values of the arbitrary constants A and B, that is, regardless of the initial conditions.
This confirms our intuitive expectation, namely, that damping gradually dissipates
the energy initially imparted to the system, and consequently the motion dies out
with increasing time.
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The most important case is the third one, which occurs when the damping is small.
If we let A = R cos δ and B = R sin δ in Eq. (25), then we obtain

u = Re−γ t/2m cos(μt − δ). (26)

The displacement u lies between the curves u = ±Re−γ t/2m; hence it resembles a
cosine wave whose amplitude decreases as t increases. A typical example is sketched
in Figure 3.7.5. The motion is called a damped oscillation or a damped vibration.
The amplitude factor R depends on m, γ , k, and the initial conditions.

u

δ  + 3

δR cos

Re–  t/2mγ

−Re–  t/2mγ

tμδ       π + 2δ       πδ    π+

FIGURE 3.7.5 Damped vibration; u = Re−γ t/2m cos(μt − δ).

Although the motion is not periodic, the parameter μ determines the frequency
with which the mass oscillates back and forth; consequently, μ is called the quasi
frequency. By comparing μ with the frequency ω0 of undamped motion, we find that

μ

ω0
= (4km − γ 2)1/2/2m√

k/m
=

(
1 − γ 2

4km

)1/2
∼= 1 − γ 2

8km
. (27)

The last approximation is valid when γ 2/4km is small; we refer to this situation as
“small damping.” Thus the effect of small damping is to reduce slightly the frequency
of the oscillation. By analogy with Eq. (18), the quantity Td = 2π/μ is called the
quasi period. It is the time between successive maxima or successive minima of
the position of the mass, or between successive passages of the mass through its
equilibrium position while going in the same direction. The relation between Td and
T is given by

Td

T
= ω0

μ
=

(
1 − γ 2

4km

)−1/2
∼=

(
1 + γ 2

8km

)
, (28)

where again the last approximation is valid when γ 2/4km is small. Thus small damp-
ing increases the quasi period.

Equations (27) and (28) reinforce the significance of the dimensionless ratio
γ 2/4km. It is not the magnitude of γ alone that determines whether damping is
large or small, but the magnitude of γ 2 compared to 4km. When γ 2/4km is small,
then damping has a small effect on the quasi frequency and quasi period of the mo-
tion. On the other hand, if we want to study the detailed motion of the mass for all
time, then we can never neglect the damping force, no matter how small.
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As γ 2/4km increases, the quasi frequency μ decreases and the quasi period Td

increases. In fact,μ → 0 and Td → ∞ as γ → 2
√

km. As indicated by Eqs. (23), (24),
and (25), the nature of the solution changes as γ passes through the value 2

√
km.

This value is known as critical damping, while for larger values of γ the motion is said
to be overdamped. In these cases, given by Eqs. (24) and (23), respectively, the mass
creeps back to its equilibrium position but does not oscillate about it, as for small γ .
Two typical examples of critically damped motion are shown in Figure 3.7.6, and the
situation is discussed further in Problems 21 and 22.

2

1

–1

2 4 6 108

u

t

u(0) =   ,  u'(0) =1
2

7
4

u =     + 2t e–t /21
2( )

u(0) =   ,  u'(0) = –1
2

7
4

u =      –    t e–t /21
2

3
2( )

FIGURE 3.7.6 Critically damped motions: u′′ + u′ + 0.25u = 0; u = (A + Bt)e−t/2.

E X A M P L E

3

The motion of a certain spring–mass system is governed by the differential equation

u′′ + 0.125u′ + u = 0, (29)

where u is measured in feet and t in seconds. If u(0) = 2 and u′(0) = 0, determine the position
of the mass at any time. Find the quasi frequency and the quasi period, as well as the time
at which the mass first passes through its equilibrium position. Also find the time τ such that
|u(t)| < 0.1 for all t > τ .

The solution of Eq. (29) is

u = e−t/16

[
A cos

√
255
16

t + B sin

√
255
16

t

]
.

To satisfy the initial conditions, we must choose A = 2 and B = 2/
√

255; hence the solution of
the initial value problem is

u = e−t/16

(
2 cos

√
255
16

t + 2√
255

sin

√
255
16

t

)

= 32√
255

e−t/16 cos

(√
255
16

t − δ

)
, (30)

where tan δ = 1/
√

255, so δ ∼= 0.06254. The displacement of the mass as a function of time is
shown in Figure 3.7.7. For purposes of comparison, we also show the motion if the damping
term is neglected.

The quasi frequency is μ = √
255/16 ∼= 0.998 and the quasi period is Td = 2π/μ ∼= 6.295 s.

These values differ only slightly from the corresponding values (1 and 2π , respectively) for
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2

1

–1

–2

u

t

u" + u = 0
u" + 0.125 u' + u = 0

u(0) = 2,  u' (0) = 0

10 20 30 40 50

FIGURE 3.7.7 Vibration with small damping (solid curve) and with no damping (dashed
curve).

0.1

0.05

–0.05

–0.1

–0.15

40 45 50 55 60

τ

u = –0.1

u = 0.1

u =         e–t/16 cos           t – 0.0625432

√255 16
√255( )

u

t

FIGURE 3.7.8 Solution of Example 3; determination of τ .

the undamped oscillation. This is evident also from the graphs in Figure 3.7.7, which rise
and fall almost together. The damping coefficient is small in this example, only one-sixteenth
of the critical value, in fact. Nevertheless, the amplitude of the oscillation is reduced rather
rapidly. Figure 3.7.8 shows the graph of the solution for 40 ≤ t ≤ 60, together with the graphs
of u = ±0.1. From the graph it appears that τ is about 47.5, and by a more precise calculation
we find that τ ∼= 47.5149 s.

To find the time at which the mass first passes through its equilibrium position, we refer to
Eq. (30) and set

√
255t/16 − δ equal to π/2, the smallest positive zero of the cosine function.

Then, by solving for t, we obtain

t = 16√
255

(π

2
+ δ

) ∼= 1.637 s.
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Electric Circuits. A second example of the occurrence of second order linear differen-
tial equations with constant coefficients is their use as a model of the flow of electric
current in the simple series circuit shown in Figure 3.7.9. The current I , measured in
amperes (A), is a function of time t. The resistance R in ohms (�), the capacitance
C in farads (F), and the inductance L in henrys (H) are all positive and are assumed
to be known constants. The impressed voltage E in volts (V) is a given function of
time. Another physical quantity that enters the discussion is the total charge Q in
coulombs (C) on the capacitor at time t. The relation between charge Q and cur-
rent I is

I = dQ/dt. (31)

Resistance R Capacitance C

Inductance L

Impressed voltage E(t)

I

FIGURE 3.7.9 A simple electric circuit.

The flow of current in the circuit is governed by Kirchhoff’s9 second law: In a
closed circuit the impressed voltage is equal to the sum of the voltage drops in the rest
of the circuit.

According to the elementary laws of electricity, we know that

The voltage drop across the resistor is IR.

The voltage drop across the capacitor is Q/C.

The voltage drop across the inductor is LdI/dt.

Hence, by Kirchhoff’s law,

L
dI
dt

+ RI + 1
C

Q = E(t). (32)

The units have been chosen so that 1 volt = 1 ohm · 1 ampere = 1 coulomb/1 farad
= 1 henry · 1 ampere/1 second.

Substituting for I from Eq. (31), we obtain the differential equation

LQ′′ + RQ′ + 1
C

Q = E(t) (33)

for the charge Q. The initial conditions are

Q(t0) = Q0, Q′(t0) = I(t0) = I0. (34)

9Gustav Kirchhoff (1824–1887), professor at Breslau, Heidelberg, and Berlin, was one of the leading
physicists of the nineteenth century. He discovered the basic laws of electric circuits about 1845 while
still a student at Königsberg. He is also famous for fundamental work in electromagnetic absorption and
emission and was one of the founders of spectroscopy.
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Thus we must know the charge on the capacitor and the current in the circuit at some
initial time t0.

Alternatively, we can obtain a differential equation for the current I by differenti-
ating Eq. (33) with respect to t, and then substituting for dQ/dt from Eq. (31). The
result is

LI ′′ + RI ′ + 1
C

I = E′(t), (35)

with the initial conditions

I(t0) = I0, I ′(t0) = I ′
0. (36)

From Eq. (32) it follows that

I ′
0 = E(t0) − RI0 − (1/C)Q0

L
. (37)

Hence I ′
0 is also determined by the initial charge and current, which are physically

measurable quantities.
The most important conclusion from this discussion is that the flow of current in

the circuit is described by an initial value problem of precisely the same form as
the one that describes the motion of a spring–mass system. This is a good example
of the unifying role of mathematics: Once you know how to solve second order
linear equations with constant coefficients, you can interpret the results in terms of
mechanical vibrations, electric circuits, or any other physical situation that leads to
the same problem.

PROBLEMS In each of Problems 1 through 4 determine ω0, R, and δ so as to write the given expression in
the form u = R cos(ω0t − δ).

1. u = 3 cos 2t + 4 sin 2t 2. u = − cos t + √
3 sin t

3. u = 4 cos 3t − 2 sin 3t 4. u = −2 cos π t − 3 sin π t

5. A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in.
and then released, and if there is no damping, determine the position u of the mass at any
time t. Plot u versus t. Find the frequency, period, and amplitude of the motion.

6. A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium posi-
tion with a downward velocity of 10 cm/s,and if there is no damping,determine the position
u of the mass at any time t. When does the mass first return to its equilibrium position?

7. A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting
the spring a distance of 1 in., and then set in motion with a downward velocity of 2 ft/s,
and if there is no damping, find the position u of the mass at any time t. Determine the
frequency, period, amplitude, and phase of the motion.

8. A series circuit has a capacitor of 0.25 × 10−6 F and an inductor of 1 H. If the initial charge
on the capacitor is 10−6 C and there is no initial current, find the charge Q on the capacitor
at any time t.

9. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a vis-
cous damper with a damping constant of 400 dyn·s/cm. If the mass is pulled down an
additional 2 cm and then released, find its position u at any time t. Plot u versus t. Deter-
mine the quasi frequency and the quasi period. Determine the ratio of the quasi period
to the period of the corresponding undamped motion. Also find the time τ such that
|u(t)| < 0.05 cm for all t > τ .
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10. A mass weighing 16 lb stretches a spring 3 in. The mass is attached to a viscous damper
with a damping constant of 2 lb·s/ft. If the mass is set in motion from its equilibrium
position with a downward velocity of 3 in/s, find its position u at any time t. Plot u versus
t. Determine when the mass first returns to its equilibrium position. Also find the time τ

such that |u(t)| < 0.01 in for all t > τ .

11. A spring is stretched 10 cm by a force of 3 N. A mass of 2 kg is hung from the spring and
is also attached to a viscous damper that exerts a force of 3 N when the velocity of the
mass is 5 m/s. If the mass is pulled down 5 cm below its equilibrium position and given an
initial downward velocity of 10 cm/s, determine its position u at any time t. Find the quasi
frequency μ and the ratio of μ to the natural frequency of the corresponding undamped
motion.

12. A series circuit has a capacitor of 10−5 F, a resistor of 3 × 102 �, and an inductor of 0.2 H.
The initial charge on the capacitor is 10−6 C and there is no initial current. Find the charge
Q on the capacitor at any time t.

13. A certain vibrating system satisfies the equation u′′ + γ u′ + u = 0. Find the value of the
damping coefficient γ for which the quasi period of the damped motion is 50% greater
than the period of the corresponding undamped motion.

14. Show that the period of motion of an undamped vibration of a mass hanging from a ver-
tical spring is 2π

√
L/g, where L is the elongation of the spring due to the mass and g is

the acceleration due to gravity.

15. Show that the solution of the initial value problem

mu′′ + γ u′ + ku = 0, u(t0) = u0, u′(t0) = u′
0

can be expressed as the sum u = v + w, where v satisfies the initial conditions
v(t0) = u0, v′(t0) = 0, w satisfies the initial conditions w(t0) = 0, w′(t0) = u′

0, and both v

and w satisfy the same differential equation as u. This is another instance of superposing
solutions of simpler problems to obtain the solution of a more general problem.

16. Show that A cos ω0t + B sin ω0t can be written in the form r sin(ω0t − θ). Determine r
and θ in terms of A and B. If R cos(ω0t − δ) = r sin(ω0t − θ), determine the relationship
among R, r, δ, and θ .

17. A mass weighing 8 lb stretches a spring 1.5 in. The mass is also attached to a damper with
coefficient γ . Determine the value of γ for which the system is critically damped; be sure
to give the units for γ .

18. If a series circuit has a capacitor of C = 0.8 × 10−6 F and an inductor of L = 0.2 H, find
the resistance R so that the circuit is critically damped.

19. Assume that the system described by the equation mu′′ + γ u′ + ku = 0 is either critically
damped or overdamped. Show that the mass can pass through the equilibrium position
at most once, regardless of the initial conditions.
Hint: Determine all possible values of t for which u = 0.

20. Assume that the system described by the equation mu′′ + γ u′ + ku = 0 is critically damped
and that the initial conditions are u(0) = u0, u′(0) = v0. If v0 = 0, show that u → 0 as
t → ∞ but that u is never zero. If u0 is positive, determine a condition on v0 that will
ensure that the mass passes through its equilibrium position after it is released.

21. Logarithmic Decrement. (a) For the damped oscillation described by Eq. (26), show
that the time between successive maxima is Td = 2π/μ.
(b) Show that the ratio of the displacements at two successive maxima is given by
exp(γ Td/2m). Observe that this ratio does not depend on which pair of maxima is
chosen. The natural logarithm of this ratio is called the logarithmic decrement and is
denoted by �.
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(c) Show that � = πγ/mμ. Since m, μ, and � are quantities that can be measured easily
for a mechanical system, this result provides a convenient and practical method for de-
termining the damping constant of the system, which is more difficult to measure directly.
In particular, for the motion of a vibrating mass in a viscous fluid, the damping constant
depends on the viscosity of the fluid; for simple geometric shapes the form of this depen-
dence is known, and the preceding relation allows the experimental determination of the
viscosity. This is one of the most accurate ways of determining the viscosity of a gas at
high pressure.

22. Referring to Problem 21, find the logarithmic decrement of the system in Problem 10.
23. For the system in Problem 17 suppose that � = 3 and Td = 0.3 s. Referring to Problem

21, determine the value of the damping coefficient γ .
24. The position of a certain spring–mass system satisfies the initial value problem

3
2 u′′ + ku = 0, u(0) = 2, u′(0) = v.

If the period and amplitude of the resulting motion are observed to be π and 3, respectively,
determine the values of k and v.

25. Consider the initial value problem

u′′ + γ u′ + u = 0, u(0) = 2, u′(0) = 0.

We wish to explore how long a time interval is required for the solution to become “neg-
ligible” and how this interval depends on the damping coefficient γ . To be more precise,
let us seek the time τ such that |u(t)| < 0.01 for all t > τ . Note that critical damping for
this problem occurs for γ = 2.
(a) Let γ = 0.25 and determine τ , or at least estimate it fairly accurately from a plot of
the solution.
(b) Repeat part (a) for several other values of γ in the interval 0 < γ < 1.5. Note that τ

steadily decreases as γ increases for γ in this range.
(c) Create a graph of τ versus γ by plotting the pairs of values found in parts (a) and (b).
Is the graph a smooth curve?
(d) Repeat part (b) for values of γ between 1.5 and 2. Show that τ continues to de-
crease until γ reaches a certain critical value γ0, after which τ increases. Find γ0 and the
corresponding minimum value of τ to two decimal places.
(e) Another way to proceed is to write the solution of the initial value problem in the
form (26). Neglect the cosine factor and consider only the exponential factor and the
amplitude R. Then find an expression for τ as a function of γ . Compare the approximate
results obtained in this way with the values determined in parts (a), (b), and (d).

26. Consider the initial value problem

mu′′ + γ u′ + ku = 0, u(0) = u0, u′(0) = v0.

Assume that γ 2 < 4km.
(a) Solve the initial value problem.
(b) Write the solution in the form u(t) = R exp(−γ t/2m) cos(μt − δ). Determine R in
terms of m, γ , k, u0, and v0.
(c) Investigate the dependence of R on the damping coefficient γ for fixed values of the
other parameters.

27. A cubic block of side l and mass density ρ per unit volume is floating in a fluid of mass
density ρ0 per unit volume, where ρ0 > ρ. If the block is slightly depressed and then re-
leased, it oscillates in the vertical direction. Assuming that the viscous damping of the
fluid and air can be neglected, derive the differential equation of motion and determine
the period of the motion.
Hint: Use Archimedes’s principle. An object that is completely or partially submerged in
a fluid is acted on by an upward (buoyant) force equal to the weight of the displaced fluid.
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28. The position of a certain undamped spring–mass system satisfies the initial value problem

u′′ + 2u = 0, u(0) = 0, u′(0) = 2.

(a) Find the solution of this initial value problem.
(b) Plot u versus t and u′ versus t on the same axes.
(c) Plot u′ versus u; that is, plot u(t) and u′(t) parametrically with t as the parameter. This
plot is known as a phase plot, and the uu′-plane is called the phase plane. Observe that
a closed curve in the phase plane corresponds to a periodic solution u(t). What is the
direction of motion on the phase plot as t increases?

29. The position of a certain spring–mass system satisfies the initial value problem

u′′ + 1
4 u′ + 2u = 0, u(0) = 0, u′(0) = 2.

(a) Find the solution of this initial value problem.
(b) Plot u versus t and u′ versus t on the same axes.
(c) Plot u′ versus u in the phase plane (see Problem 28). Identify several corresponding
points on the curves in parts (b) and (c). What is the direction of motion on the phase
plot as t increases?

30. In the absence of damping the motion of a spring–mass system satisfies the initial value
problem

mu′′ + ku = 0, u(0) = a, u′(0) = b.

(a) Show that the kinetic energy initially imparted to the mass is mb2/2 and that the po-
tential energy initially stored in the spring is ka2/2, so that initially the total energy in the
system is (ka2 + mb2)/2.
(b) Solve the given initial value problem.
(c) Using the solution in part (b), determine the total energy in the system at any time t.
Your result should confirm the principle of conservation of energy for this system.

31. Suppose that a mass m slides without friction on a horizontal surface. The mass is at-
tached to a spring with spring constant k, as shown in Figure 3.7.10, and is also subject
to viscous air resistance with coefficient γ . Show that the displacement u(t) of the mass
from its equilibrium position satisfies Eq. (21). How does the derivation of the equation
of motion in this case differ from the derivation given in the text?

k
m

u(t)

FIGURE 3.7.10 A spring–mass system.

32. In the spring–mass system of Problem 31, suppose that the spring force is not given by
Hooke’s law but instead satisfies the relation

Fs = −(ku + εu3),

where k > 0 and ε is small but may be of either sign. The spring is called a hardening
spring if ε > 0 and a softening spring if ε < 0. Why are these terms appropriate?
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(a) Show that the displacement u(t) of the mass from its equilibrium position satisfies the
differential equation

mu′′ + γ u′ + ku + εu3 = 0.

Suppose that the initial conditions are

u(0) = 0, u′(0) = 1.

In the remainder of this problem assume that m = 1, k = 1, and γ = 0.
(b) Find u(t) when ε = 0 and also determine the amplitude and period of the motion.
(c) Let ε = 0.1. Plot a numerical approximation to the solution. Does the motion appear
to be periodic? Estimate the amplitude and period.
(d) Repeat part (c) for ε = 0.2 and ε = 0.3.
(e) Plot your estimated values of the amplitude A and the period T versus ε. Describe
the way in which A and T , respectively, depend on ε.
(f) Repeat parts (c), (d), and (e) for negative values of ε.

3.8 Forced Vibrations
We will now investigate the situation in which a periodic external force is applied
to a spring–mass system. The behavior of this simple system models that of many
oscillatory systems with an external force due, for example, to a motor attached to
the system. We will first consider the case in which damping is present and will look
later at the idealized special case in which there is assumed to be no damping.

Forced Vibrations with Damping. The algebraic calculations can be fairly complicated in
this kind of problem, so we will begin with a relatively simple example.

E X A M P L E

1

Suppose that the motion of a certain spring–mass system satisfies the differential equation

u′′ + u′ + 1.25u = 3 cos t (1)

and the initial conditions
u(0) = 2, u′(0) = 3. (2)

Find the solution of this initial value problem and describe the behavior of the solution for
large t.

The homogeneous equation corresponding to Eq. (1) has the characteristic equation
r2 + r + 1.25 = 0 with roots r = −0.5 ± i. Thus the general solution uc(t) of this homogeneous
equation is

uc(t) = c1e−t/2 cos t + c2e−t/2 sin t. (3)

A particular solution of Eq. (1) has the form U(t) = A cos t + B sin t, where A and B
are found by substituting U(t) for u in Eq. (1). We have U ′(t) = −A sin t + B cos t and
U ′′(t) = −A cos t − B sin t. Thus, from Eq. (1) we obtain

(0.25A + B) cos t + (−A + 0.25B) sin t = 3 cos t.

Consequently, A and B must satisfy the equations

0.25A + B = 3, −A + 0.25B = 0,
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with the result that A = 12/17 and B = 48/17. Therefore the particular solution is

U(t) = 12
17 cos t + 48

17 sin t, (4)

and the general solution of Eq. (1) is

u = uc(t) + U(t) = c1e−t/2 cos t + c2e−t/2 sin t + 12
17 cos t + 48

17 sin t. (5)

The remaining constants c1 and c2 are determined by the initial conditions (2). From Eq. (5)
we have

u(0) = c1 + 12
17 = 2, u′(0) = − 1

2 c1 + c2 + 48
17 = 3,

so c1 = 22/17 and c2 = 14/17. Thus we finally obtain the solution of the given initial value
problem, namely,

u = 22
17 e−t/2 cos t + 14

17 e−t/2 sin t + 12
17 cos t + 48

17 sin t. (6)

The graph of the solution (6) is shown by the black curve in Figure 3.8.1.

u

t

2

1

–1

–2

–3

3

1284 16

full solution 

steady state 

transient 

FIGURE 3.8.1 Solution of the initial value problem (1), (2).

It is important to note that the solution consists of two distinct parts. The first two terms on
the right side of Eq. (6) contain the exponential factor e−t/2; as a result they rapidly approach
zero. It is customary to call these terms transient. The remaining terms in Eq. (6) involve only
sines and cosines, and therefore represent an oscillation that continues indefinitely. We refer to
them as a steady state. The solid and dashed blue curves in Figure 3.8.1 show the transient and
the steady state parts of the solution, respectively. The transient part comes from the solution
of the homogeneous equation corresponding to Eq. (1) and is needed to satisfy the initial
conditions. The steady state is the particular solution of the full nonhomogeneous equation.
After a fairly short time the transient is vanishingly small and the full solution is essentially
indistinguishable from the steady state.
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The equation of motion of a general spring–mass system subject to an external
force F(t) is [Eq. (7) in Section 3.7]

mu′′(t) + γ u′(t) + ku(t) = F(t), (7)

where m,γ , and k are the mass,damping coefficient,and spring constant of the spring–
mass system. Suppose now that the external force is given by F0 cos ωt, where F0 and
ω are positive constants representing the amplitude and frequency, respectively, of
the force. Then Eq. (7) becomes

mu′′ + γ u′ + ku = F0 cos ωt. (8)

Solutions of Eq. (8) behave very much like the solution in the preceding example.
The general solution of Eq. (8) must have the form

u = c1u1(t) + c2u2(t) + A cos ωt + B sin ωt = uc(t) + U(t). (9)

The first two terms on the right side of Eq. (9) are the general solution uc(t) of
the homogeneous equation corresponding to Eq. (8), while the latter two terms
are a particular solution U(t) of the full nonhomogeneous equation. The coeffi-
cients A and B can be found, as usual, by substituting these terms into the differ-
ential equation (8), while the arbitrary constants c1 and c2 are available to satisfy
initial conditions, if any are prescribed. The solutions u1(t) and u2(t) of the ho-
mogeneous equation depend on the roots r1 and r2 of the characteristic equation
mr2 + γ r + k = 0. Since m, γ , and k are all positive, it follows that r1 and r2 either
are real and negative or are complex conjugates with negative real part. In either
case, both u1(t) and u2(t) approach zero as t → ∞. Since uc(t) dies out as t increases,
it is called the transient solution. In many applications, it is of little importance and
(depending on the value of γ ) may well be undetectable after only a few seconds.

The remaining terms in Eq. (9), namely, U(t) = A cos ωt + B sin ωt, do not die out
as t increases but persist indefinitely, or as long as the external force is applied. They
represent a steady oscillation with the same frequency as the external force and
are called the steady state solution or the forced response. The transient solution
enables us to satisfy whatever initial conditions may be imposed; with increasing time,
the energy put into the system by the initial displacement and velocity is dissipated
through the damping force, and the motion then becomes the response of the system
to the external force. Without damping, the effect of the initial conditions would
persist for all time.

It is convenient to express U(t) as a single trigonometric term rather than as a sum
of two terms. Recall that we did this for other similar expressions in Section 3.7.
Thus we write

U(t) = R cos(ωt − δ). (10)

The amplitude R and phase δ depend directly on A and B and indirectly on the
parameters in the differential equation (8). It is possible to show, by straightforward
but somewhat lengthy algebraic computations, that

R = F0

�
, cos δ = m(ω2

0 − ω2)

�
, sin δ = γω

�
, (11)

where

� =
√

m2(ω2
0 − ω2)2 + γ 2ω2 and ω2

0 = k/m. (12)
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Recall that ω0 is the natural frequency of the unforced system in the absence of
damping.

We now investigate how the amplitude R of the steady state oscillation depends on
the frequency ω of the external force. Substituting from Eq. (12) into the expression
for R in Eq. (11) and executing some algebraic manipulations, we find that

Rk
F0

= 1

/[(
1 − ω2

ω2
0

)2

+ �
ω2

ω2
0

]1/2

, (13)

where � = γ 2/mk. Observe that the quantity Rk/F0 is the ratio of the amplitude R
of the forced response to F0/k, the static displacement of the spring produced by a
force F0.

For low frequency excitation, that is, as ω → 0, it follows from Eq. (13) that
Rk/F0 → 1 or R → F0/k. At the other extreme, for very high frequency excita-
tion, Eq. (13) implies that R → 0 as ω → ∞. At an intermediate value of ω the
amplitude may have a maximum. To find this maximum point, we can differentiate
R with respect to ω and set the result equal to zero. In this way we find that the
maximum amplitude occurs when ω = ωmax, where

ω2
max = ω2

0 − γ 2

2m2
= ω2

0

(
1 − γ 2

2mk

)
. (14)

Note that ωmax < ω0 and that ωmax is close to ω0 when γ is small. The maximum
value of R is

Rmax = F0

γω0

√
1 − (γ 2/4mk)

∼= F0

γω0

(
1 + γ 2

8mk

)
, (15)

where the last expression is an approximation for small γ . If γ 2/mk > 2, then ωmax

as given by Eq. (14) is imaginary; in this case the maximum value of R occurs for
ω = 0, and R is a monotone decreasing function of ω. Recall that critical damping
occurs when γ 2/mk = 4.

For small γ it follows from Eq. (15) that Rmax
∼= F0/γω0. Thus, for lightly damped

systems, the amplitude R of the forced response when ω is near ω0 is quite large
even for relatively small external forces, and the smaller the value of γ , the more
pronounced is this effect. This phenomenon is known as resonance, and it is often an
important design consideration. Resonance can be either good or bad, depending
on the circumstances. It must be taken very seriously in the design of structures,
such as buildings and bridges, where it can produce instabilities that might lead to
the catastrophic failure of the structure. On the other hand, resonance can be put
to good use in the design of instruments, such as seismographs, that are intended to
detect weak periodic incoming signals.

Figure 3.8.2 contains some representative graphs of Rk/F0 versus ω/ω0 for several
values of � = γ 2/mk. The graph corresponding to � = 0.015625 is included because
this is the value of � that occurs in Example 2 below. Note particularly the sharp
peak in the curve corresponding to � = 0.015625 near ω/ω0 = 1. The limiting case
as � → 0 is also shown. It follows from Eq. (13), or from Eqs. (11) and (12), that
R → F0/m|ω2

0 − ω2| as γ → 0 and hence Rk/F0 is asymptotic to the vertical line
ω = ω0, as shown in the figure. As the damping in the system increases, the peak
response gradually diminishes.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 230 Page number 210 cyan black

210 Chapter 3. Second Order Linear Equations

2

4

6

8

10

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Γ = 2Γ = 0.5

Rk/F0

/   oω ω

Γ = 0.1

Γ = 0.015625

Γ → 0

FIGURE 3.8.2 Forced vibration with damping: amplitude of steady state response versus
frequency of driving force; � = γ 2/mk.
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FIGURE 3.8.3 Forced vibration with damping: phase of steady state response versus
frequency of driving force; � = γ 2/mk.

Figure 3.8.2 also illustrates the usefulness of dimensionless variables. You can
easily verify that each of the quantities Rk/F0, ω/ω0, and � is dimensionless. The
importance of this observation is that the number of significant parameters in the
problem has been reduced to three rather than the five that appear in Eq. (8). Thus
only one family of curves, of which a few are shown in Figure 3.8.2, is needed to
describe the response-versus-frequency behavior of all systems governed by Eq. (8).

The phase angle δ also depends in an interesting way on ω. For ω near zero,
it follows from Eqs. (11) and (12) that cos δ ∼= 1 and sin δ ∼= 0. Thus δ ∼= 0, and
the response is nearly in phase with the excitation, meaning that they rise and fall
together and, in particular, assume their respective maxima nearly together and their
respective minima nearly together. For ω = ω0 we find that cos δ = 0 and sin δ = 1,
so δ = π/2. In this case the response lags behind the excitation by π/2; that is, the
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peaks of the response occur π/2 later than the peaks of the excitation, and similarly
for the valleys. Finally, for ω very large, we have cos δ ∼= −1 and sin δ ∼= 0. Thus δ ∼= π ,
so that the response is nearly out of phase with the excitation; this means that the
response is minimum when the excitation is maximum, and vice versa. Figure 3.8.3
shows the graphs of δ versus ω/ω0 for several values of �. For small damping, the
phase transition from near δ = 0 to near δ = π occurs rather abruptly, whereas for
larger values of the damping parameter, the transition takes place more gradually.

E X A M P L E

2

Consider the initial value problem

u′′ + 0.125u′ + u = 3 cos ωt, u(0) = 2, u′(0) = 0. (16)

Show plots of the solution for different values of the forcing frequency ω, and compare them
with corresponding plots of the forcing function.

For this system we have ω0 = 1 and � = 1/64 = 0.015625. Its unforced motion was discussed
in Example 3 of Section 3.7, and Figure 3.7.7 shows the graph of the solution of the unforced
problem. Figures 3.8.4,3.8.5,and 3.8.6 show the solution of the forced problem (16) for ω = 0.3,
ω = 1, and ω = 2, respectively. The graph of the corresponding forcing function is also shown
in each figure. In this example the static displacement, F0/k, is equal to 3.

–3

–2

–1

1

2

3

10 20 30 40 50 60 70 80 t

u

Solution Forcing function
FIGURE 3.8.4 A forced vibration with damping; solution of u′′ + 0.125u′ + u = 3 cos 0.3t,

u(0) = 2, u′(0) = 0.

Figure 3.8.4 shows the low frequency case,ω/ω0 = 0.3. After the initial transient response is
substantially damped out, the remaining steady state response is essentially in phase with the
excitation, and the amplitude of the response is somewhat larger than the static displacement.
To be specific, R ∼= 3.2939 and δ ∼= 0.041185.

The resonant case, ω/ω0 = 1, is shown in Figure 3.8.5. Here the amplitude of the steady
state response is eight times the static displacement, and the figure also shows the predicted
phase lag of π/2 relative to the external force.

The case of comparatively high frequency excitation is shown in Figure 3.8.6. Observe that
the amplitude of the steady forced response is approximately one-third the static displacement
and that the phase difference between the excitation and response is approximately π . More
precisely, we find that R ∼= 0.99655 and that δ ∼= 3.0585.
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FIGURE 3.8.5 A forced vibration with damping; solution of u′′ + 0.125u′ + u = 3 cos t,
u(0) = 2, u′(0) = 0.
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FIGURE 3.8.6 A forced vibration with damping; solution of u′′ + 0.125u′ + u = 3 cos 2t,
u(0) = 2, u′(0) = 0.

Forced Vibrations Without Damping. We now assume that γ = 0 in Eq. (8), thereby ob-
taining the equation of motion of an undamped forced oscillator

mu′′ + ku = F0 cos ωt. (17)

The form of the general solution of Eq. (17) is different, depending on whether the
forcing frequency ω is different from or equal to the natural frequency ω0 = √

k/m
of the unforced system. First consider the case ω �= ω0; then the general solution of
Eq. (17) is

u = c1 cos ω0t + c2 sin ω0t + F0

m(ω2
0 − ω2)

cos ωt. (18)
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The constants c1 and c2 are determined by the initial conditions. The resulting motion
is, in general, the sum of two periodic motions of different frequencies (ω0 and ω)

and different amplitudes as well.
It is particularly interesting to suppose that the mass is initially at rest, so that the

initial conditions are u(0) = 0 and u′(0) = 0. Then the energy driving the system
comes entirely from the external force, with no contribution from the initial con-
ditions. In this case it turns out that the constants c1 and c2 in Eq. (18) are given
by

c1 = − F0

m(ω2
0 − ω2)

, c2 = 0, (19)

and the solution of Eq. (17) is

u = F0

m(ω2
0 − ω2)

(cos ωt − cos ω0t). (20)

This is the sum of two periodic functions of different periods but the same amplitude.
Making use of the trigonometric identities for cos(A ± B) with A = (ω0 + ω)t/2 and
B = (ω0 − ω)t/2, we can write Eq. (20) in the form

u =
[

2F0

m(ω2
0 − ω2)

sin
(ω0 − ω)t

2

]
sin

(ω0 + ω)t
2

. (21)

If |ω0 − ω| is small, then ω0 + ω is much greater than |ω0 − ω|. Consequently,
sin(ω0 + ω)t/2 is a rapidly oscillating function compared to sin(ω0 − ω)t/2. Thus
the motion is a rapid oscillation with frequency (ω0 + ω)/2 but with a slowly varying
sinusoidal amplitude

2F0

m|ω2
0 − ω2|

∣∣∣ sin
(ω0 − ω)t

2

∣∣∣.
This type of motion, possessing a periodic variation of amplitude, exhibits what is
called a beat. For example, such a phenomenon occurs in acoustics when two tuning
forks of nearly equal frequency are excited simultaneously. In this case the peri-
odic variation of amplitude is quite apparent to the unaided ear. In electronics, the
variation of the amplitude with time is called amplitude modulation.

E X A M P L E

3

Solve the initial value problem

u′′ + u = 0.5 cos 0.8t, u(0) = 0, u′(0) = 0, (22)

and plot the solution.
In this case ω0 = 1,ω = 0.8, and F0 = 0.5, so from Eq. (21) the solution of the given problem

is
u = 2.77778(sin 0.1t)(sin 0.9t). (23)

A graph of this solution is shown in Figure 3.8.7. The amplitude variation has a slow frequency
of 0.1 and a corresponding slow period of 20π . Note that a half-period of 10π corresponds to
a single cycle of increasing and then decreasing amplitude. The displacement of the spring–
mass system oscillates with a relatively fast frequency of 0.9, which is only slightly less than
the natural frequency ω0.
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u = –2.77778 sin 0.1t

u = 2.77778 sin 0.1t sin 0.9t

u
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FIGURE 3.8.7 A beat; solution of u′′ + u = 0.5 cos 0.8t, u(0) = 0, u′(0) = 0;
u = 2.77778(sin 0.1t)(sin 0.9t).

Now imagine that the forcing frequency ω is further increased, say, to ω = 0.9. Then the
slow frequency is halved to 0.05, and the corresponding slow half-period is doubled to 20π .
The multiplier 2.7778 also increases substantially, to 5.2632. However, the fast frequency is
only marginally increased, to 0.95. Can you visualize what happens as ω takes on values closer
and closer to the natural frequency ω0 = 1?

10

10 20 30 40

5

–5

–10

u

t

u = 0.25t sin t

u = 0.25t

u = – 0.25t

FIGURE 3.8.8 Resonance; solution of u′′ + u = 0.5 cos t, u(0) = 0, u′(0) = 0;
u = 0.25t sin t.
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Now let us return to Eq. (17) and consider the case of resonance, where ω = ω0;
that is, the frequency of the forcing function is the same as the natural frequency of the
system. Then the nonhomogeneous term F0 cos ωt is a solution of the homogeneous
equation. In this case the solution of Eq. (17) is

u = c1 cos ω0t + c2 sin ω0t + F0

2mω0
t sin ω0t. (24)

Because of the term t sin ω0t, the solution (24) predicts that the motion will become
unbounded as t → ∞ regardless of the values of c1 and c2; see Figure 3.8.8 for a
typical example. Of course, in reality, unbounded oscillations do not occur. As soon
as u becomes large, the mathematical model on which Eq. (17) is based is no longer
valid, since the assumption that the spring force depends linearly on the displacement
requires that u be small. As we have seen, if damping is included in the model, the
predicted motion remains bounded; however, the response to the input function
F0 cos ωt may be quite large if the damping is small and ω is close to ω0.

PROBLEMS In each of Problems 1 through 4 write the given expression as a product of two trigonometric
functions of different frequencies.

1. cos 9t − cos 7t 2. sin 7t − sin 6t

3. cos π t + cos 2π t 4. sin 3t + sin 4t

5. A mass weighing 4 lb stretches a spring 1.5 in. The mass is displaced 2 in. in the positive
direction from its equilibrium position and released with no initial velocity. Assuming
that there is no damping and that the mass is acted on by an external force of 2 cos 3t lb,
formulate the initial value problem describing the motion of the mass.

6. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of
10 sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when
the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position
with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion
of the mass.

7. (a) Find the solution of Problem 5.
(b) Plot the graph of the solution.
(c) If the given external force is replaced by a force 4 sin ωt of frequency ω, find the value
of ω for which resonance occurs.

8. (a) Find the solution of the initial value problem in Problem 6.
(b) Identify the transient and steady state parts of the solution.
(c) Plot the graph of the steady state solution.
(d) If the given external force is replaced by a force of 2 cos ωt of frequency ω, find the
value of ω for which the amplitude of the forced response is maximum.

9. If an undamped spring–mass system with a mass that weighs 6 lb and a spring constant
1 lb/in is suddenly set in motion at t = 0 by an external force of 4 cos 7t lb, determine the
position of the mass at any time and draw a graph of the displacement versus t.

10. A mass that weighs 8 lb stretches a spring 6 in. The system is acted on by an external force
of 8 sin 8t lb. If the mass is pulled down 3 in and then released, determine the position of
the mass at any time. Determine the first four times at which the velocity of the mass is
zero.
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11. A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot
mechanism that has a damping constant of 0.25 lb·s/ft and is acted on by an external force
of 4 cos 2t lb.
(a) Determine the steady state response of this system.
(b) If the given mass is replaced by a mass m, determine the value of m for which the
amplitude of the steady state response is maximum.

12. A spring–mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the
spring, and the motion takes place in a viscous fluid that offers a resistance numerically
equal to the magnitude of the instantaneous velocity. If the system is driven by an external
force of (3 cos 3t − 2 sin 3t) N, determine the steady state response. Express your answer
in the form R cos(ωt − δ).

13. In this problem we ask you to supply some of the details in the analysis of a forced damped
oscillator.
(a) Derive Eqs. (10), (11), and (12) for the steady state solution of Eq. (8).
(b) Derive the expression in Eq. (13) for Rk/F0.
(c) Show that ω2

max and Rmax are given by Eqs. (14) and (15), respectively.

14. Find the velocity of the steady state response given by Eq. (10). Then show that the
velocity is maximum when ω = ω0.

15. Find the solution of the initial value problem

u′′ + u = F(t), u(0) = 0, u′(0) = 0,

where

F(t) =

⎧⎪⎨
⎪⎩

F0t, 0 ≤ t ≤ π ,
F0(2π − t), π < t ≤ 2π ,
0, 2π < t.

Hint: Treat each time interval separately, and match the solutions in the different intervals
by requiring u and u′ to be continuous functions of t.

16. A series circuit has a capacitor of 0.25 × 10−6 F, a resistor of 5 × 103 �, and an inductor
of 1 H. The initial charge on the capacitor is zero. If a 12-volt battery is connected to the
circuit and the circuit is closed at t = 0, determine the charge on the capacitor at t = 0.001 s,
at t = 0.01 s, and at any time t. Also determine the limiting charge as t → ∞.

17. Consider a vibrating system described by the initial value problem

u′′ + 1
4 u′ + 2u = 2 cos ωt, u(0) = 0, u′(0) = 2.

(a) Determine the steady state part of the solution of this problem.
(b) Find the amplitude A of the steady state solution in terms of ω.
(c) Plot A versus ω.
(d) Find the maximum value of A and the frequency ω for which it occurs.

18. Consider the forced but undamped system described by the initial value problem

u′′ + u = 3 cos ωt, u(0) = 0, u′(0) = 0.

(a) Find the solution u(t) for ω �= 1.
(b) Plot the solution u(t) versus t for ω = 0.7, ω = 0.8, and ω = 0.9. Describe how the
response u(t) changes as ω varies in this interval. What happens as ω takes on values
closer and closer to 1? Note that the natural frequency of the unforced system is ω0 = 1.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 237 Page number 217 cyan black

3.8 Forced Vibrations 217

19. Consider the vibrating system described by the initial value problem

u′′ + u = 3 cos ωt, u(0) = 1, u′(0) = 1.

(a) Find the solution for ω �= 1.
(b) Plot the solution u(t) versus t for ω = 0.7, ω = 0.8, and ω = 0.9. Compare the results
with those of Problem 18; that is, describe the effect of the nonzero initial conditions.

20. For the initial value problem in Problem 18 plot u′ versus u for ω = 0.7, ω = 0.8, and
ω = 0.9. Such a plot is called a phase plot. Use a t interval that is long enough so that the
phase plot appears as a closed curve. Mark your curve with arrows to show the direction
in which it is traversed as t increases.

Problems 21 through 23 deal with the initial value problem

u′′ + 0.125u′ + 4u = F(t), u(0) = 2, u′(0) = 0.

In each of these problems:
(a) Plot the given forcing function F(t) versus t, and also plot the solution u(t) versus t on the
same set of axes. Use a t interval that is long enough so the initial transients are substantially
eliminated. Observe the relation between the amplitude and phase of the forcing term and
the amplitude and phase of the response. Note that ω0 = √

k/m = 2.
(b) Draw the phase plot of the solution; that is, plot u′ versus u.

21. F(t) = 3 cos(t/4)

22. F(t) = 3 cos 2t

23. F(t) = 3 cos 6t

24. A spring–mass system with a hardening spring (Problem 32 of Section 3.7) is acted on by
a periodic external force. In the absence of damping, suppose that the displacement of
the mass satisfies the initial value problem

u′′ + u + 1
5 u3 = cos ωt, u(0) = 0, u′(0) = 0.

(a) Let ω = 1 and plot a computer-generated solution of the given problem. Does the
system exhibit a beat?
(b) Plot the solution for several values of ω between 1/2 and 2. Describe how the solution
changes as ω increases.

25. Suppose that the system of Problem 24 is modified to include a damping term and that
the resulting initial value problem is

u′′ + 1
5 u′ + u + 1

5 u3 = cos ωt, u(0) = 0, u′(0) = 0.

(a) Plot a computer-generated solution of the given problem for several values of ω

between 1/2 and 2, and estimate the amplitude R of the steady response in each case.
(b) Using the data from part (a), plot the graph of R versus ω. For what frequency ω is
the amplitude greatest?
(c) Compare the results of parts (a) and (b) with the corresponding results for the linear
spring.

REFERENCES Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-
Hall, 1961; New York: Dover, 1989).
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C H A P T E R

4

Higher Order Linear
Equations

The theoretical structure and methods of solution developed in the preceding chapter
for second order linear equations extend directly to linear equations of third and
higher order. In this chapter we briefly review this generalization, taking particular
note of those instances where new phenomena may appear, because of the greater
variety of situations that can occur for equations of higher order.

4.1 General Theory of nth Order Linear Equations
An nth order linear differential equation is an equation of the form

P0(t)
dny
dtn

+ P1(t)
dn−1y
dtn−1

+ · · · + Pn−1(t)
dy
dt

+ Pn(t)y = G(t). (1)

We assume that the functions P0, . . . , Pn, and G are continuous real-valued functions
on some interval I : α < t < β, and that P0 is nowhere zero in this interval. Then,
dividing Eq. (1) by P0(t), we obtain

L[y] = dny
dtn

+ p1(t)
dn−1y
dtn−1

+ · · · + pn−1(t)
dy
dt

+ pn(t)y = g(t). (2)

The linear differential operator L of order n defined by Eq. (2) is similar to the second
order operator introduced in Chapter 3. The mathematical theory associated with
Eq. (2) is completely analogous to that for the second order linear equation; for this
reason we simply state the results for the nth order problem. The proofs of most of
the results are also similar to those for the second order equation and are usually left
as exercises.
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Since Eq. (2) involves the nth derivative of y with respect to t, it will, so to speak,
require n integrations to solve Eq. (2). Each of these integrations introduces an
arbitrary constant. Hence we can expect that, to obtain a unique solution, it is
necessary to specify n initial conditions

y(t0) = y0, y′(t0) = y′
0, . . . , y(n−1)(t0) = y(n−1)

0 , (3)

where t0 may be any point in the interval I and y0, y′
0, . . . , y(n−1)

0 is any set of prescribed
real constants. The following theorem, which is similar to Theorem 3.2.1, guarantees
that the initial value problem (2), (3) has a solution and that it is unique.

Theorem 4.1.1 If the functions p1, p2, . . . , pn, and g are continuous on the open interval I ,
then there exists exactly one solution y = φ(t) of the differential equation (2)
that also satisfies the initial conditions (3). This solution exists throughout the
interval I .

We will not give a proof of this theorem here. However, if the coefficients p1, . . . , pn

are constants, then we can construct the solution of the initial value problem (2), (3)
much as in Chapter 3; see Sections 4.2 through 4.4. Even though we may find a
solution in this case, we do not know that it is unique without the use of Theo-
rem 4.1.1. A proof of the theorem can be found in Ince (Section 3.32) or Coddington
(Chapter 6).

The Homogeneous Equation. As in the corresponding second order problem, we first
discuss the homogeneous equation

L[y] = y(n) + p1(t)y(n−1) + · · · + pn−1(t)y′ + pn(t)y = 0. (4)

If the functions y1, y2, . . . , yn are solutions of Eq. (4), then it follows by direct com-
putation that the linear combination

y = c1y1(t) + c2y2(t) + · · · + cnyn(t), (5)

where c1, . . . , cn are arbitrary constants, is also a solution of Eq. (4). It is then natural
to ask whether every solution of Eq. (4) can be expressed as a linear combination
of y1, . . . , yn. This will be true if, regardless of the initial conditions (3) that are pre-
scribed, it is possible to choose the constants c1, . . . , cn so that the linear combination
(5) satisfies the initial conditions. That is, for any choice of the point t0 in I , and for
any choice of y0, y′

0, . . . , y(n−1)

0 , we must be able to determine c1, . . . , cn so that the
equations

c1y1(t0) + · · · + cnyn(t0) = y0

c1y′
1(t0) + · · · + cny′

n(t0) = y′
0

(6)
...

c1y(n−1)

1 (t0) + · · · + cny(n−1)
n (t0) = y(n−1)

0

are satisfied. Equations (6) can be solved uniquely for the constants c1, . . . , cn,
provided that the determinant of coefficients is not zero. On the other hand, if
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the determinant of coefficients is zero, then it is always possible to choose values
of y0, y′

0, . . . , y(n−1)

0 so that Eqs. (6) do not have a solution. Hence a necessary and
sufficient condition for the existence of a solution of Eqs. (6) for arbitrary values of
y0, y′

0, . . . , y(n−1)

0 is that the Wronskian

W(y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y′
1 y′

2 · · · y′
n

...
...

...

y(n−1)

1 y(n−1)

2 · · · y(n−1)
n

∣∣∣∣∣∣∣∣∣∣
(7)

is not zero at t = t0. Since t0 can be any point in the interval I , it is necessary and
sufficient that W(y1,y2, . . . , yn) be nonzero at every point in the interval. Just as for
the second order linear equation, it can be shown that if y1, y2, . . . , yn are solutions
of Eq. (4), then W(y1, y2, . . . , yn) either is zero for every t in the interval I or else is
never zero there; see Problem 20. Hence we have the following theorem.

Theorem 4.1.2 If the functions p1, p2, . . . , pn are continuous on the open interval I , if the
functions y1, y2, . . . , yn are solutions of Eq. (4), and if W(y1, y2, . . . , yn)(t) �= 0 for
at least one point in I , then every solution of Eq. (4) can be expressed as a linear
combination of the solutions y1, y2, . . . , yn.

A set of solutions y1, . . . , yn of Eq. (4) whose Wronskian is nonzero is referred to
as a fundamental set of solutions. The existence of a fundamental set of solutions can
be demonstrated in precisely the same way as for the second order linear equation
(see Theorem 3.2.5). Since all solutions of Eq. (4) are of the form (5), we use the
term general solution to refer to an arbitrary linear combination of any fundamental
set of solutions of Eq. (4).

Linear Dependence and Independence. We now explore the relationship between funda-
mental sets of solutions and the concept of linear independence, a central idea in the
study of linear algebra. The functions f1, f2, . . . , fn are said to be linearly dependent
on an interval I if there exists a set of constants k1, k2, . . . , kn, not all zero, such that

k1f1(t) + k2f2(t) + · · · + knfn(t) = 0 (8)

for all t in I . The functions f1, . . . , fn are said to be linearly independent on I if they
are not linearly dependent there.

E X A M P L E

1

Determine whether the functions f1(t) = 1, f2(t) = t, and f3(t) = t2 are linearly independent or
dependent on the interval I : −∞ < t < ∞.

Form the linear combination

k1f1(t) + k2f2(t) + k3f3(t) = k1 + k2t + k3t2,

and set it equal to zero to obtain

k1 + k2t + k3t2 = 0. (9)
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If Eq. (9) is to hold for all t in I , then it must certainly be true at any three distinct points in I .
Any three points will serve our purpose, but it is convenient to choose t = 0, t = 1, and t = −1.
Evaluating Eq. (9) at each of these points, we obtain the system of equations

k1 = 0,

k1 + k2 + k3 = 0, (10)

k1 − k2 + k3 = 0.

From the first of Eqs. (10) we note that k1 = 0; then from the other two equations it follows
that k2 = k3 = 0 as well. Therefore there is no set of constants k1, k2, k3, not all zero, for which
Eq. (9) holds even at the three chosen points, much less throughout I . Thus the given functions
are not linearly dependent on I , so they must be linearly independent. Indeed, they are linearly
independent on any interval. This can be established just as in this example, possibly using a
different set of three points.

E X A M P L E

2

Determine whether the functions f1(t) = 1, f2(t) = 2 + t, f3(t) = 3 − t2, and
f4(t) = 4t + t2 are linearly independent or dependent on any interval I .

Form the linear combination

k1f1(t) + k2f2(t) + k3f3(t) + k4f4(t) = k1 + k2(2 + t) + k3(3 − t2) + k4(4t + t2)

= (k1 + 2k2 + 3k3) + (k2 + 4k4)t + (−k3 + k4)t2. (11)

This expression is zero throughout an interval provided that

k1 + 2k2 + 3k3 = 0, k2 + 4k4 = 0, −k3 + k4 = 0.

These three equations, with four unknowns, have many solutions. For instance, if k4 = 1, then
k3 = 1, k2 = −4, and k1 = 5. Thus the given functions are linearly dependent on every interval.

The concept of linear independence provides an alternative characterization of
fundamental sets of solutions of the homogeneous equation (4). Suppose that the
functions y1, . . . , yn are solutions of Eq. (4) on an interval I and consider the equation

k1y1(t) + · · · + knyn(t) = 0. (12)

By differentiating Eq. (12) repeatedly, we obtain the additional n − 1 equations

k1y′
1(t) + · · · + kny′

n(t) = 0,
... (13)

k1y(n−1)

1 (t) + · · · + kny(n−1)
n (t) = 0.

The system consisting of Eqs. (12) and (13) is a system of n linear algebraic equations
for the n unknowns k1, . . . , kn. The determinant of coefficients for this system is the
Wronskian W(y1, . . . , yn)(t) of y1, . . . , yn. This leads to the following theorem.
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Theorem 4.1.3 If y1(t), . . . , yn(t) is a fundamental set of solutions of Eq. (4)

L[y] = y(n) + p1(t)y(n−1) + · · · + pn−1(t)y′ + pn(t)y = 0

on an interval I , then y1(t), . . . , yn(t) are linearly independent on I . Conversely, if
y1(t), . . . , yn(t) are linearly independent solutions of Eq. (4) on I , then they form a
fundamental set of solutions on I .

To prove this theorem, first suppose that y1(t), . . . , yn(t) is a fundamental set of
solutions of Eq. (4) on I . Then the Wronskian W(y1, . . . , yn)(t) �= 0 for every t in I .
Hence the system (12), (13) has only the solution k1 = · · · = kn = 0 for every t in I .
Thus y1(t), . . . , yn(t) cannot be linearly dependent on I and must therefore be linearly
independent there.

To demonstrate the converse, let y1(t), . . . , yn(t) be linearly independent on I . To
show that they form a fundamental set of solutions, we need to show that their
Wronskian is never zero in I . Suppose that this is not true; then there is at least
one point t0 where the Wronskian is zero. At this point the system (12), (13) has a
nonzero solution; let us denote it by k∗

1 , . . . , k∗
n. Now form the linear combination

φ(t) = k∗
1y1(t) + · · · + k∗

nyn(t). (14)

Then φ(t) satisfies the initial value problem

L[y] = 0, y(t0) = 0, y′(t0) = 0, . . . , y(n−1)(t0) = 0. (15)

The function φ satisfies the differential equation because it is a linear combination of
solutions; it satisfies the initial conditions because these are just the equations in the
system (12), (13) evaluated at t0. However, the function y(t) = 0 for all t in I is also
a solution of this initial value problem and, by Theorem 4.1.1, the solution is unique.
Thus φ(t) = 0 for all t in I . Consequently, y1(t), . . . , yn(t) are linearly dependent on
I , which is a contradiction. Hence the assumption that there is a point where the
Wronskian is zero is untenable. Therefore the Wronskian is never zero on I , as was
to be proved.

Note that for a set of functions f1, . . . , fn that are not solutions of Eq. (4) the con-
verse part of Theorem 4.1.3 is not necessarily true. They may be linearly independent
on I even though the Wronskian is zero at some points, or even every point, but with
different sets of constants k1, . . . , kn at different points. See Problem 25 for an ex-
ample.

The Nonhomogeneous Equation. Now consider the nonhomogeneous equation (2)

L[y] = y(n) + p1(t)y(n−1) + · · · + pn(t)y = g(t).

If Y1 and Y2 are any two solutions of Eq. (2), then it follows immediately from the
linearity of the operator L that

L[Y1 − Y2](t) = L[Y1](t) − L[Y2](t) = g(t) − g(t) = 0.

Hence the difference of any two solutions of the nonhomogeneous equation (2) is a
solution of the homogeneous equation (4). Since any solution of the homogeneous
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equation can be expressed as a linear combination of a fundamental set of solutions
y1, . . . , yn, it follows that any solution of Eq. (2) can be written as

y = c1y1(t) + c2y2(t) + · · · + cnyn(t) + Y(t), (16)

where Y is some particular solution of the nonhomogeneous equation (2). The linear
combination (16) is called the general solution of the nonhomogeneous equation (2).

Thus the primary problem is to determine a fundamental set of solutions y1, . . . , yn

of the homogeneous equation (4). If the coefficients are constants, this is a fairly
simple problem; it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as
the order of the equation increases.

The method of reduction of order (Section 3.4) also applies to nth order linear
equations. If y1 is one solution of Eq. (4), then the substitution y = v(t)y1(t) leads to
a linear differential equation of order n − 1 for v′ (see Problem 26 for the case when
n = 3). However, if n ≥ 3, the reduced equation is itself at least of second order, and
only rarely will it be significantly simpler than the original equation. Thus, in practice,
reduction of order is seldom useful for equations of higher than second order.

PROBLEMS In each of Problems 1 through 6 determine intervals in which solutions are sure to exist.
1. y(4) + 4y′′′ + 3y = t 2. ty′′′ + (sin t)y′′ + 3y = cos t

3. t(t − 1)y(4) + ety′′ + 4t2y = 0 4. y′′′ + ty′′ + t2y′ + t3y = ln t

5. (x − 1)y(4) + (x + 1)y′′ + (tan x)y = 0 6. (x2 − 4)y(6) + x2y′′′ + 9y = 0

In each of Problems 7 through 10 determine whether the given set of functions is linearly
dependent or linearly independent. If they are linearly dependent, find a linear relation
among them.

7. f1(t) = 2t − 3, f2(t) = t2 + 1, f3(t) = 2t2 − t

8. f1(t) = 2t − 3, f2(t) = 2t2 + 1, f3(t) = 3t2 + t

9. f1(t) = 2t − 3, f2(t) = t2 + 1, f3(t) = 2t2 − t, f4(t) = t2 + t + 1
10. f1(t) = 2t − 3, f2(t) = t3 + 1, f3(t) = 2t2 − t, f4(t) = t2 + t + 1

In each of Problems 11 through 16 verify that the given functions are solutions of the differential
equation, and determine their Wronskian.
11. y′′′ + y′ = 0; 1, cos t, sin t

12. y(4) + y′′ = 0; 1, t, cos t, sin t

13. y′′′ + 2y′′ − y′ − 2y = 0; et , e−t , e−2t

14. y(4) + 2y′′′ + y′′ = 0; 1, t, e−t , te−t

15. xy′′′ − y′′ = 0; 1, x, x3

16. x3y′′′ + x2y′′ − 2xy′ + 2y = 0; x, x2, 1/x

17. Show that W(5, sin2 t, cos 2t) = 0 for all t. Can you establish this result without direct
evaluation of the Wronskian?

18. Verify that the differential operator defined by

L[y] = y(n) + p1(t)y(n−1) + · · · + pn(t)y
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is a linear differential operator. That is, show that

L[c1y1 + c2y2] = c1L[y1] + c2L[y2],
where y1 and y2 are n times differentiable functions and c1 and c2 are arbitrary constants.
Hence, show that if y1, y2, . . . , yn are solutions of L[y] = 0, then the linear combination
c1y1 + · · · + cnyn is also a solution of L[y] = 0.

19. Let the linear differential operator L be defined by

L[y] = a0y(n) + a1y(n−1) + · · · + any,

where a0, a1, . . . , an are real constants.
(a) Find L[tn].
(b) Find L[ert].
(c) Determine four solutions of the equation y(4) − 5y′′ + 4y = 0. Do you think the four
solutions form a fundamental set of solutions? Why?

20. In this problem we show how to generalize Theorem 3.2.6 (Abel’s theorem) to higher
order equations. We first outline the procedure for the third order equation

y′′′ + p1(t)y′′ + p2(t)y′ + p3(t)y = 0.

Let y1, y2, and y3 be solutions of this equation on an interval I .
(a) If W = W(y1, y2, y3), show that

W ′ =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′
1 y′

2 y′
3

y′′′
1 y′′′

2 y′′′
3

∣∣∣∣∣∣∣∣
.

Hint: The derivative of a 3-by-3 determinant is the sum of three 3-by-3 determinants
obtained by differentiating the first, second, and third rows, respectively.
(b) Substitute for y′′′

1 , y′′′
2 , and y′′′

3 from the differential equation; multiply the first row by
p3, multiply the second row by p2, and add these to the last row to obtain

W ′ = −p1(t)W .

(c) Show that

W(y1, y2, y3)(t) = c exp
[
−
∫

p1(t) dt
]

.

It follows that W is either always zero or nowhere zero on I .
(d) Generalize this argument to the nth order equation

y(n) + p1(t)y(n−1) + · · · + pn(t)y = 0

with solutions y1, . . . , yn. That is, establish Abel’s formula

W(y1, . . . , yn)(t) = c exp
[
−
∫

p1(t) dt
]

for this case.

In each of Problems 21 through 24 use Abel’s formula (Problem 20) to find the Wronskian of
a fundamental set of solutions of the given differential equation.
21. y′′′ + 2y′′ − y′ − 3y = 0 22. y(4) + y = 0
23. ty′′′ + 2y′′ − y′ + ty = 0 24. t2y(4) + ty′′′ + y′′ − 4y = 0
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25. (a) Show that the functions f (t) = t2|t| and g(t) = t3 are linearly dependent on
0 < t < 1 and on −1 < t < 0.
(b) Show that f (t) and g(t) are linearly independent on −1 < t < 1.
(c) Show that W(f , g)(t) is zero for all t in −1 < t < 1.

26. Show that if y1 is a solution of

y′′′ + p1(t)y′′ + p2(t)y′ + p3(t)y = 0,

then the substitution y = y1(t)v(t) leads to the following second order equation for v′:

y1v
′′′ + (3y′

1 + p1y1)v
′′ + (3y′′

1 + 2p1y′
1 + p2y1)v

′ = 0.

In each of Problems 27 and 28 use the method of reduction of order (Problem 26) to solve the
given differential equation.
27. (2 − t)y′′′ + (2t − 3)y′′ − ty′ + y = 0, t < 2; y1(t) = et

28. t2(t + 3)y′′′ − 3t(t + 2)y′′ + 6(1 + t)y′ − 6y = 0, t > 0; y1(t) = t2, y2(t) = t3

4.2 Homogeneous Equations with Constant Coefficients
Consider the nth order linear homogeneous differential equation

L[y] = a0y(n) + a1y(n−1) + · · · + an−1y′ + any = 0, (1)

where a0, a1, . . . , an are real constants. From our knowledge of second order linear
equations with constant coefficients, it is natural to anticipate that y = ert is a solution
of Eq. (1) for suitable values of r. Indeed,

L[ert] = ert(a0rn + a1rn−1 + · · · + an−1r + an) = ertZ(r) (2)

for all r, where
Z(r) = a0rn + a1rn−1 + · · · + an−1r + an. (3)

For those values of r for which Z(r) = 0, it follows that L[ert] = 0 and y = ert is a
solution of Eq. (1). The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the differential equation (1).
A polynomial of degree n has n zeros,1 say, r1, r2, . . . , rn, some of which may be equal;
hence we can write the characteristic polynomial in the form

Z(r) = a0(r − r1)(r − r2) · · · (r − rn). (4)

1An important question in mathematics for more than 200 years was whether every polynomial equation
has at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was
given by Carl Friedrich Gauss (1777–1855) in his doctoral dissertation in 1799, although his proof does
not meet modern standards of rigor. Several other proofs have been discovered since, including three
by Gauss himself. Today, students often meet the fundamental theorem of algebra in a first course on
complex variables, where it can be established as a consequence of some of the basic properties of complex
analytic functions.
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Real and Unequal Roots. If the roots of the characteristic equation are real and no two
are equal, then we have n distinct solutions er1t , er2t , . . . , ernt of Eq. (1). If these
functions are linearly independent, then the general solution of Eq. (1) is

y = c1er1t + c2er2t + · · · + cnernt . (5)

One way to establish the linear independence of er1t , er2t , . . . , ernt is to evaluate their
Wronskian determinant. Another way is outlined in Problem 40.

E X A M P L E

1

Find the general solution of

y(4) + y′′′ − 7y′′ − y′ + 6y = 0. (6)

Also find the solution that satisfies the initial conditions

y(0) = 1, y′(0) = 0, y′′(0) = −2, y′′′(0) = −1 (7)

and plot its graph.
Assuming that y = ert , we must determine r by solving the polynomial equation

r4 + r3 − 7r2 − r + 6 = 0. (8)

The roots of this equation are r1 = 1, r2 = −1, r3 = 2, and r4 = −3. Therefore the general
solution of Eq. (6) is

y = c1et + c2e−t + c3e2t + c4e−3t . (9)

The initial conditions (7) require that c1, . . . , c4 satisfy the four equations

c1 + c2 + c3 + c4 = 1,

c1 − c2 + 2c3 − 3c4 = 0,
(10)

c1 + c2 + 4c3 + 9c4 = −2,

c1 − c2 + 8c3 − 27c4 = −1.

By solving this system of four linear algebraic equations, we find that

c1 = 11
8 , c2 = 5

12 , c3 = − 2
3 , c4 = − 1

8 .

Therefore the solution of the initial value problem is

y = 11
8 et + 5

12 e−t − 2
3 e2t − 1

8 e−3t . (11)

The graph of the solution is shown in Figure 4.2.1.

–1

1

0.5 1

y

t

FIGURE 4.2.1 Solution of the initial value problem of Example 1.
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As Example 1 illustrates, the procedure for solving an nth order linear differential
equation with constant coefficients depends on finding the roots of a corresponding
nth degree polynomial equation. If initial conditions are prescribed, then a system
of n linear algebraic equations must be solved to determine the proper values of the
constants c1, . . . , cn. Although each of these tasks becomes much more complicated as
n increases, they can often be handled without difficulty with a calculator or computer.

For third and fourth degree polynomials there are formulas,2 analogous to the
formula for quadratic equations but more complicated, that give exact expressions for
the roots. Root-finding algorithms are readily available on calculators and computers.
Sometimes they are included in the differential equation solver, so that the process of
factoring the characteristic polynomial is hidden and the solution of the differential
equation is produced automatically.

If you are faced with the need to factor the characteristic polynomial by hand, here
is one result that is sometimes helpful. Suppose that the polynomial

a0rn + a1rn−1 + · · · + an−1r + an = 0 (12)

has integer coefficients. If r = p/q is a rational root, where p and q have no common
factors, then p must be a factor of an, and q must be a factor of a0. For example, in
Eq. (8) the factors of a0 are ±1 and the factors of an are ±1, ±2, ±3, and ±6. Thus
the only possible rational roots of this equation are ±1, ±2, ±3, and ±6. By testing
these possible roots, we find that 1, −1, 2, and −3 are actual roots. In this case there
are no other roots, since the polynomial is of fourth degree. If some of the roots are
irrational or complex, as is usually the case, then this process will not find them, but
at least the degree of the polynomial can be reduced by dividing the polynomial by
the factors corresponding to the rational roots.

If the roots of the characteristic equation are real and different, we have seen that
the general solution (5) is simply a sum of exponential functions. For large values of t
the solution is dominated by the term corresponding to the algebraically largest root.
If this root is positive, then solutions become exponentially unbounded, whereas if
it is negative, then solutions tend exponentially to zero. Finally, if the largest root
is zero, then solutions approach a nonzero constant as t becomes large. Of course,
for certain initial conditions, the coefficient of the otherwise dominant term may be
zero; then the nature of the solution for large t is determined by the next largest root.

Complex Roots. If the characteristic equation has complex roots, they must occur in
conjugate pairs, λ ± iμ, since the coefficients a0, . . . , an are real numbers. Provided
that none of the roots is repeated, the general solution of Eq. (1) is still of the form
(5). However, just as for the second order equation (Section 3.3), we can replace the

2The method for solving the cubic equation was apparently discovered by Scipione dal Ferro (1465–
1526) about 1500, although it was first published in 1545 by Girolamo Cardano (1501–1576) in his Ars
Magna. This book also contains a method for solving quartic equations that Cardano attributes to his
pupil Ludovico Ferrari (1522–1565). The question of whether analogous formulas exist for the roots of
higher degree equations remained open for more than two centuries, until 1826, when Niels Abel showed
that no general solution formulas can exist for polynomial equations of degree five or higher. A more
general theory was developed by Evariste Galois (1811–1832) in 1831, but unfortunately it did not become
widely known for several decades.
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complex-valued solutions e(λ+iμ)t and e(λ−iμ)t by the real-valued solutions

eλt cos μt, eλt sin μt (13)

obtained as the real and imaginary parts of e(λ+iμ)t . Thus, even though some of the
roots of the characteristic equation are complex, it is still possible to express the
general solution of Eq. (1) as a linear combination of real-valued solutions.

E X A M P L E

2

Find the general solution of

y(4) − y = 0. (14)

Also find the solution that satisfies the initial conditions

y(0) = 7/2, y′(0) = −4, y′′(0) = 5/2, y′′′(0) = −2 (15)

and draw its graph.
Substituting ert for y, we find that the characteristic equation is

r4 − 1 = (r2 − 1)(r2 + 1) = 0.

Therefore the roots are r = 1, −1, i, −i, and the general solution of Eq. (14) is

y = c1et + c2e−t + c3 cos t + c4 sin t.

If we impose the initial conditions (15), we find that

c1 = 0, c2 = 3, c3 = 1/2, c4 = −1;

thus the solution of the given initial value problem is

y = 3e−t + 1
2 cos t − sin t. (16)

The graph of this solution is shown in Figure 4.2.2.
Observe that the initial conditions (15) cause the coefficient c1 of the exponentially growing

term in the general solution to be zero. Therefore this term is absent in the solution (16),
which describes an exponential decay to a steady oscillation, as Figure 4.2.2 shows. However,
if the initial conditions are changed slightly, then c1 is likely to be nonzero, and the nature of
the solution changes enormously. For example, if the first three initial conditions remain the
same, but the value of y′′′(0) is changed from −2 to −15/8, then the solution of the initial value
problem becomes

y = 1
32 et + 95

32 e−t + 1
2 cos t − 17

16 sin t. (17)

The coefficients in Eq. (17) differ only slightly from those in Eq. (16), but the exponentially
growing term, even with the relatively small coefficient of 1/32, completely dominates the
solution by the time t is larger than about 4 or 5. This is clearly seen in Figure 4.2.3, which
shows the graphs of the two solutions (16) and (17).
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2
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FIGURE 4.2.2 A plot of the solution (16).
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FIGURE 4.2.3 Plots of the solutions (16) (light curve) and (17) (heavy curve).

Repeated Roots. If the roots of the characteristic equation are not distinct—that is,
if some of the roots are repeated—then the solution (5) is clearly not the general
solution of Eq. (1). Recall that if r1 is a repeated root for the second order linear
equation a0y′′ + a1y′ + a2y = 0, then two linearly independent solutions are er1t and
ter1t . For an equation of order n, if a root of Z(r) = 0, say r = r1, has multiplicity s
(where s ≤ n), then

er1t , ter1t , t2er1t , . . . , ts−1er1t (18)

are corresponding solutions of Eq. (1); see Problem 41 for a proof of this statement.
If a complex root λ + iμ is repeated s times, the complex conjugate λ − iμ is

also repeated s times. Corresponding to these 2s complex-valued solutions, we can
find 2s real-valued solutions by noting that the real and imaginary parts of e(λ+iμ)t ,
te(λ+iμ)t , . . . , ts−1e(λ+iμ)t are also linearly independent solutions:

eλt cos μt, eλt sin μt, teλt cos μt, teλt sin μt,

. . . , ts−1eλt cos μt, ts−1eλt sin μt.

Hence the general solution of Eq. (1) can always be expressed as a linear combination
of n real-valued solutions. Consider the following example.

E X A M P L E

3

Find the general solution of
y(4) + 2y′′ + y = 0. (19)

The characteristic equation is

r4 + 2r2 + 1 = (r2 + 1)(r2 + 1) = 0.

The roots are r = i, i, −i, −i, and the general solution of Eq. (19) is

y = c1 cos t + c2 sin t + c3t cos t + c4t sin t.
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In determining the roots of the characteristic equation, it may be necessary to
compute the cube roots, the fourth roots, or even higher roots of a (possibly com-
plex) number. This can usually be done most conveniently by using Euler’s formula
eit = cos t + i sin t and the algebraic laws given in Section 3.3. This is illustrated in
the following example.

E X A M P L E

4

Find the general solution of
y(4) + y = 0. (20)

The characteristic equation is
r4 + 1 = 0.

To solve the equation, we must compute the fourth roots of −1. Now −1, thought of as a
complex number, is −1 + 0i. It has magnitude 1 and polar angle π . Thus

−1 = cos π + i sin π = eiπ .

Moreover, the angle is determined only up to a multiple of 2π . Thus

−1 = cos(π + 2mπ) + i sin(π + 2mπ) = ei(π+2mπ),

where m is zero or any positive or negative integer. Thus

(−1)1/4 = ei(π/4+mπ/2) = cos
(π

4
+ mπ

2

)
+ i sin

(π

4
+ mπ

2

)
.

The four fourth roots of −1 are obtained by setting m = 0, 1, 2, and 3; they are

1 + i√
2

,
−1 + i√

2
,

−1 − i√
2

,
1 − i√

2
.

It is easy to verify that, for any other value of m, we obtain one of these four roots. For example,
corresponding to m = 4, we obtain (1 + i)/

√
2. The general solution of Eq. (20) is

y = et/
√

2

(
c1 cos

t√
2

+ c2 sin
t√
2

)
+ e−t/

√
2

(
c3 cos

t√
2

+ c4 sin
t√
2

)
. (21)

In conclusion, we note that the problem of finding all the roots of a polynomial
equation may not be entirely straightforward, even with computer assistance. For
instance, it may be difficult to determine whether two roots are equal or merely
very close together. Recall that the form of the general solution is different in these
two cases.

If the constants a0, a1, . . . , an in Eq. (1) are complex numbers, the solution of Eq. (1)
is still of the form (4). In this case, however, the roots of the characteristic equation
are, in general, complex numbers, and it is no longer true that the complex conjugate
of a root is also a root. The corresponding solutions are complex-valued.

PROBLEMS In each of Problems 1 through 6 express the given complex number in the form
R(cos θ + i sin θ) = Reiθ .

1. 1 + i 2. −1 + √
3i

3. −3 4. −i

5.
√

3 − i 6. −1 − i
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In each of Problems 7 through 10 follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 11/3 8. (1 − i)1/2

9. 11/4 10. [2(cos π/3 + i sin π/3)]1/2

In each of Problems 11 through 28 find the general solution of the given differential equation.

11. y′′′ − y′′ − y′ + y = 0 12. y′′′ − 3y′′ + 3y′ − y = 0
13. 2y′′′ − 4y′′ − 2y′ + 4y = 0 14. y(4) − 4y′′′ + 4y′′ = 0
15. y(6) + y = 0 16. y(4) − 5y′′ + 4y = 0
17. y(6) − 3y(4) + 3y′′ − y = 0 18. y(6) − y′′ = 0
19. y(5) − 3y(4) + 3y′′′ − 3y′′ + 2y′ = 0 20. y(4) − 8y′ = 0
21. y(8) + 8y(4) + 16y = 0 22. y(4) + 2y′′ + y = 0
23. y′′′ − 5y′′ + 3y′ + y = 0 24. y′′′ + 5y′′ + 6y′ + 2y = 0
25. 18y′′′ + 21y′′ + 14y′ + 4y = 0 26. y(4) − 7y′′′ + 6y′′ + 30y′ − 36y = 0
27. 12y(4)+ 31y′′′+ 75y′′+ 37y′+ 5y = 0 28. y(4) + 6y′′′ + 17y′′ + 22y′ + 14y = 0

In each of Problems 29 through 36 find the solution of the given initial value problem, and
plot its graph. How does the solution behave as t → ∞?

29. y′′′ + y′ = 0; y(0) = 0, y′(0) = 1, y′′(0) = 2
30. y(4) + y = 0; y(0) = 0, y′(0) = 0, y′′(0) = −1, y′′′(0) = 0
31. y(4) − 4y′′′ + 4y′′ = 0; y(1) = −1, y′(1) = 2, y′′(1) = 0, y′′′(1) = 0
32. y′′′ − y′′ + y′ − y = 0; y(0) = 2, y′(0) = −1, y′′(0) = −2
33. 2y(4) − y′′′ − 9y′′ + 4y′ + 4y = 0; y(0) = −2, y′(0) = 0, y′′(0) = −2,

y′′′(0) = 0
34. 4y′′′ + y′ + 5y = 0; y(0) = 2, y′(0) = 1, y′′(0) = −1
35. 6y′′′ + 5y′′ + y′ = 0; y(0) = −2, y′(0) = 2, y′′(0) = 0
36. y(4) + 6y′′′ + 17y′′ + 22y′ + 14y = 0; y(0) = 1, y′(0) = −2, y′′(0) = 0,

y′′′(0) = 3
37. Show that the general solution of y(4) − y = 0 can be written as

y = c1 cos t + c2 sin t + c3 cosh t + c4 sinh t.

Determine the solution satisfying the initial conditions y(0) = 0, y′(0) = 0, y′′(0) = 1,
y′′′(0) = 1. Why is it convenient to use the solutions cosh t and sinh t rather than et

and e−t?
38. Consider the equation y(4) − y = 0.

(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a funda-
mental set of solutions of the given equation.
(b) Determine the Wronskian of the solutions et , e−t , cos t, and sin t.
(c) Determine the Wronskian of the solutions cosh t, sinh t, cos t, and sin t.

39. Consider the spring–mass system, shown in Figure 4.2.4, consisting of two unit masses
suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.
(a) Show that the displacements u1 and u2 of the masses from their respective equilibrium
positions satisfy the equations

u′′
1 + 5u1 = 2u2, u′′

2 + 2u2 = 2u1. (i)
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u1

k1 = 3

m1 = 1

m2 = 1

k2 = 2

u2

FIGURE 4.2.4 A two-spring, two-mass system.

(b) Solve the first of Eqs. (i) for u2 and substitute into the second equation, thereby
obtaining the following fourth order equation for u1:

u(4)

1 + 7u′′
1 + 6u1 = 0. (ii)

Find the general solution of Eq. (ii).
(c) Suppose that the initial conditions are

u1(0) = 1, u′
1(0) = 0, u2(0) = 2, u′

2(0) = 0. (iii)

Use the first of Eqs. (i) and the initial conditions (iii) to obtain values for u′′
1(0) and u′′′

1 (0).
Then show that the solution of Eq. (ii) that satisfies the four initial conditions on u1 is
u1(t) = cos t. Show that the corresponding solution u2 is u2(t) = 2 cos t.
(d) Now suppose that the initial conditions are

u1(0) = −2, u′
1(0) = 0, u2(0) = 1, u′

2(0) = 0. (iv)

Proceed as in part (c) to show that the corresponding solutions are u1(t) = −2 cos
√

6 t
and u2(t) = cos

√
6 t.

(e) Observe that the solutions obtained in parts (c) and (d) describe two distinct modes
of vibration. In the first, the frequency of the motion is 1, and the two masses move in
phase, both moving up or down together; the second mass moves twice as far as the first.
The second motion has frequency

√
6, and the masses move out of phase with each other,

one moving down while the other is moving up, and vice versa. In this mode the first mass
moves twice as far as the second. For other initial conditions, not proportional to either
of Eqs. (iii) or (iv), the motion of the masses is a combination of these two modes.

40. In this problem we outline one way to show that if r1, . . . , rn are all real and different, then
er1t , . . . , ernt are linearly independent on −∞ < t < ∞. To do this, we consider the linear
relation

c1er1t + · · · + cnernt = 0, −∞ < t < ∞ (i)

and show that all the constants are zero.
(a) Multiply Eq. (i) by e−r1t and differentiate with respect to t, thereby obtaining

c2(r2 − r1)e(r2−r1)t + · · · + cn(rn − r1)e(rn−r1)t = 0.
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(b) Multiply the result of part (a) by e−(r2−r1)t and differentiate with respect to t to obtain

c3(r3 − r2)(r3 − r1)e(r3−r2)t + · · · + cn(rn − r2)(rn − r1)e(rn−r2)t = 0.

(c) Continue the procedure from parts (a) and (b), eventually obtaining

cn(rn − rn−1) · · · (rn − r1)e(rn−rn−1)t = 0.

Hence cn = 0, and therefore

c1er1t + · · · + cn−1ern−1t = 0.

(d) Repeat the preceding argument to show that cn−1 = 0. In a similar way it follows that
cn−2 = · · · = c1 = 0. Thus the functions er1t , . . . , ernt are linearly independent.

41. In this problem we indicate one way to show that if r = r1 is a root of multiplicity s of the
characteristic polynomial Z(r), then er1t , ter1t , . . . , ts−1er1t are solutions of Eq. (1). This
problem extends to nth order equations the method for second order equations given in
Problem 22 of Section 3.4. We start from Eq. (2) in the text

L[ert] = ertZ(r) (i)

and differentiate repeatedly with respect to r, setting r = r1 after each differentiation.
(a) Observe that if r1 is a root of multiplicity s, then Z(r) = (r − r1)

sq(r), where q(r) is
a polynomial of degree n − s and q(r1) �= 0. Show that Z(r1), Z′(r1), . . . , Z(s−1)(r1) are all
zero, but Z(s)(r1) �= 0.
(b) By differentiating Eq. (i) repeatedly with respect to r, show that

∂

∂r
L[ert] = L

[
∂

∂r
ert

]
= L[tert],

...

∂ s−1

∂rs−1
L[ert] = L[ts−1ert].

(c) Show that er1t , ter1t , . . . , ts−1er1t are solutions of Eq. (1).

4.3 The Method of Undetermined Coefficients
A particular solution Y of the nonhomogeneous nth order linear equation with con-
stant coefficients

L[y] = a0y(n) + a1y(n−1) + · · · + an−1y′ + any = g(t) (1)

can be obtained by the method of undetermined coefficients, provided that g(t) is of
an appropriate form. Although the method of undetermined coefficients is not as
general as the method of variation of parameters described in the next section, it is
usually much easier to use when it is applicable.
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Just as for the second order linear equation, when the constant coefficient linear
differential operator L is applied to a polynomial A0tm + A1tm−1 + · · · + Am, an ex-
ponential function eαt , a sine function sin βt, or a cosine function cos βt, the result
is a polynomial, an exponential function, or a linear combination of sine and cosine
functions, respectively. Hence, if g(t) is a sum of polynomials, exponentials, sines, and
cosines, or products of such functions, we can expect that it is possible to find Y(t)
by choosing a suitable combination of polynomials, exponentials, and so forth, mul-
tiplied by a number of undetermined constants. The constants are then determined
by substituting the assumed expression into Eq. (1).

The main difference in using this method for higher order equations stems from
the fact that roots of the characteristic polynomial equation may have multiplicity
greater than 2. Consequently, terms proposed for the nonhomogeneous part of the
solution may need to be multiplied by higher powers of t to make them different from
terms in the solution of the corresponding homogeneous equation. The following
examples illustrate this. In these examples we have omitted numerous straightfor-
ward algebraic steps, because our main goal is to show how to arrive at the correct
form for the assumed solution.

E X A M P L E

1

Find the general solution of
y′′′ − 3y′′ + 3y′ − y = 4et . (2)

The characteristic polynomial for the homogeneous equation corresponding to Eq. (2) is

r3 − 3r2 + 3r − 1 = (r − 1)3,

so the general solution of the homogeneous equation is

yc(t) = c1et + c2tet + c3t2et . (3)

To find a particular solution Y(t) of Eq. (2), we start by assuming that Y(t) = Aet . However,
since et , tet , and t2et are all solutions of the homogeneous equation, we must multiply this
initial choice by t3. Thus our final assumption is that Y(t) = At3et , where A is an undeter-
mined coefficient. To find the correct value for A, we differentiate Y(t) three times, substitute
for y and its derivatives in Eq. (2), and collect terms in the resulting equation. In this way
we obtain

6Aet = 4et .

Thus A = 2
3 and the particular solution is

Y(t) = 2
3 t3et . (4)

The general solution of Eq. (2) is the sum of yc(t) from Eq. (3) and Y(t) from Eq. (4), that is,

y = c1et + c2tet + c3t2et + 2
3 t3et .

E X A M P L E

2

Find a particular solution of the equation

y(4) + 2y′′ + y = 3 sin t − 5 cos t. (5)

The general solution of the homogeneous equation was found in Example 3 of Section 4.2;
it is

yc(t) = c1 cos t + c2 sin t + c3t cos t + c4t sin t, (6)
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corresponding to the roots r = i, i, −i, and −i of the characteristic equation. Our initial
assumption for a particular solution is Y(t) = A sin t + B cos t, but we must multiply this choice
by t2 to make it different from all solutions of the homogeneous equation. Thus our final
assumption is

Y(t) = At2 sin t + Bt2 cos t.

Next, we differentiate Y(t) four times, substitute into the differential equation (4), and collect
terms, obtaining finally

−8A sin t − 8B cos t = 3 sin t − 5 cos t.

Thus A = − 3
8 , B = 5

8 , and the particular solution of Eq. (4) is

Y(t) = − 3
8 t2 sin t + 5

8 t2 cos t. (7)

If g(t) is a sum of several terms, it may be easier in practice to compute separately
the particular solution corresponding to each term in g(t). As for the second order
equation, the particular solution of the complete problem is the sum of the particular
solutions of the individual component problems. This is illustrated in the following
example.

E X A M P L E

3

Find a particular solution of

y′′′ − 4y′ = t + 3 cos t + e−2t . (8)

First we solve the homogeneous equation. The characteristic equation is r3 − 4r = 0, and
the roots are r = 0, ±2; hence

yc(t) = c1 + c2e2t + c3e−2t .

We can write a particular solution of Eq. (8) as the sum of particular solutions of the differential
equations

y′′′ − 4y′ = t, y′′′ − 4y′ = 3 cos t, y′′′ − 4y′ = e−2t .

Our initial choice for a particular solution Y1(t) of the first equation is A0t + A1, but a constant
is a solution of the homogeneous equation, so we multiply by t. Thus

Y1(t) = t(A0t + A1).

For the second equation we choose

Y2(t) = B cos t + C sin t,

and there is no need to modify this initial choice since sin t and cos t are not solutions of
the homogeneous equation. Finally, for the third equation, since e−2t is a solution of the
homogeneous equation, we assume that

Y3(t) = Ete−2t .

The constants are determined by substituting into the individual differential equations; they
are A0 = − 1

8 , A1 = 0, B = 0, C = − 3
5 , and E = 1

8 . Hence a particular solution of Eq. (8) is

Y(t) = − 1
8 t2 − 3

5 sin t + 1
8 te−2t . (9)

You should keep in mind that the amount of algebra required to calculate the
coefficients may be quite substantial for higher order equations, especially if the
nonhomogeneous term is even moderately complicated. A computer algebra system
can be extremely helpful in executing these algebraic calculations.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 257 Page number 237 cyan black

4.3 The Method of Undetermined Coefficients 237

The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y(t). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the type described previously. For more complicated problems we can use the method
of variation of parameters, which is discussed in the next section.

PROBLEMS In each of Problems 1 through 8 determine the general solution of the given differential
equation.

1. y′′′ − y′′ − y′ + y = 2e−t + 3 2. y(4) − y = 3t + cos t

3. y′′′ + y′′ + y′ + y = e−t + 4t 4. y′′′ − y′ = 2 sin t

5. y(4) − 4y′′ = t2 + et 6. y(4) + 2y′′ + y = 3 + cos 2t

7. y(6) + y′′′ = t 8. y(4) + y′′′ = sin 2t

In each of Problems 9 through 12 find the solution of the given initial value problem. Then
plot a graph of the solution.

9. y′′′ + 4y′ = t; y(0) = y′(0) = 0, y′′(0) = 1
10. y(4) + 2y′′ + y = 3t + 4; y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1
11. y′′′ − 3y′′ + 2y′ = t + et ; y(0) = 1, y′(0) = − 1

4 , y′′(0) = − 3
2

12. y(4) + 2y′′′ + y′′ + 8y′ − 12y = 12 sin t − e−t ; y(0) = 3, y′(0) = 0,
y′′(0) = −1, y′′′(0) = 2

In each of Problems 13 through 18 determine a suitable form for Y(t) if the method of unde-
termined coefficients is to be used. Do not evaluate the constants.
13. y′′′ − 2y′′ + y′ = t3 + 2et 14. y′′′ − y′ = te−t + 2 cos t

15. y(4) − 2y′′ + y = et + sin t 16. y(4) + 4y′′ = sin 2t + tet + 4
17. y(4) − y′′′ − y′′ + y′ = t2 + 4 + t sin t 18. y(4) + 2y′′′ + 2y′′ = 3et + 2te−t + e−t sin t

19. Consider the nonhomogeneous nth order linear differential equation

a0y(n) + a1y(n−1) + · · · + any = g(t), (i)

where a0, . . . , an are constants. Verify that if g(t) is of the form

eαt(b0tm + · · · + bm),

then the substitution y = eαtu(t) reduces Eq. (i) to the form

k0u(n) + k1u(n−1) + · · · + knu = b0tm + · · · + bm, (ii)

where k0, . . . , kn are constants. Determine k0 and kn in terms of the a’s and α. Thus
the problem of determining a particular solution of the original equation is reduced to
the simpler problem of determining a particular solution of an equation with constant
coefficients and a polynomial for the nonhomogeneous term.

Method ofAnnihilators. In Problems 20 through 22 we consider another way of arriving at the
proper form of Y(t) for use in the method of undetermined coefficients. The procedure is based
on the observation that exponential, polynomial, or sinusoidal terms (or sums and products of
such terms) can be viewed as solutions of certain linear homogeneous differential equations
with constant coefficients. It is convenient to use the symbol D for d/dt. Then, for example, e−t

is a solution of (D + 1)y = 0; the differential operator D + 1 is said to annihilate, or to be an
annihilator of,e−t . Similarly,D2 + 4 is an annihilator of sin 2t or cos 2t, (D − 3)2 = D2 − 6D + 9
is an annihilator of e3t or te3t , and so forth.
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20. Show that linear differential operators with constant coefficients obey the commutative
law. That is, show that

(D − a)(D − b)f = (D − b)(D − a)f

for any twice differentiable function f and any constants a and b. The result extends at
once to any finite number of factors.

21. Consider the problem of finding the form of a particular solution Y(t) of

(D − 2)3(D + 1)Y = 3e2t − te−t , (i)

where the left side of the equation is written in a form corresponding to the factorization
of the characteristic polynomial.
(a) Show that D − 2 and (D + 1)2, respectively, are annihilators of the terms on the right
side of Eq. (i), and that the combined operator (D − 2)(D + 1)2 annihilates both terms on
the right side of Eq. (i) simultaneously.
(b) Apply the operator (D − 2)(D + 1)2 to Eq. (i) and use the result of Problem 20 to
obtain

(D − 2)4(D + 1)3Y = 0. (ii)

Thus Y is a solution of the homogeneous equation (ii). By solving Eq. (ii), show that

Y(t) = c1e2t + c2te2t + c3t2e2t + c4t3e2t + c5e−t + c6te−t + c7t2e−t , (iii)

where c1, . . . , c7 are constants, as yet undetermined.
(c) Observe that e2t , te2t , t2e2t , and e−t are solutions of the homogeneous equation cor-
responding to Eq. (i); hence these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose c1, c2, c3, and c5 to be zero in Eq. (iii), so that

Y(t) = c4t3e2t + c6te−t + c7t2e−t . (iv)

This is the form of the particular solution Y of Eq. (i). The values of the coefficients c4, c6,
and c7 can be found by substituting from Eq. (iv) in the differential equation (i).

Summary. Suppose that
L(D)y = g(t), (v)

where L(D) is a linear differential operator with constant coefficients, and g(t) is a sum or
product of exponential, polynomial, or sinusoidal terms. To find the form of a particular
solution of Eq. (v), you can proceed as follows:

(a) Find a differential operator H(D) with constant coefficients that annihilates g(t), that is,
an operator such that H(D)g(t) = 0.

(b) Apply H(D) to Eq. (v), obtaining

H(D)L(D)y = 0, (vi)

which is a homogeneous equation of higher order.

(c) Solve Eq. (vi).

(d) Eliminate from the solution found in step (c) the terms that also appear in the solution of
L(D)y = 0. The remaining terms constitute the correct form of a particular solution of Eq. (v).

22. Use the method of annihilators to find the form of a particular solution Y(t) for each of
the equations in Problems 13 through 18. Do not evaluate the coefficients.
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4.4 The Method of Variation of Parameters
The method of variation of parameters for determining a particular solution of the
nonhomogeneous nth order linear differential equation

L[y] = y(n) + p1(t)y(n−1) + · · · + pn−1(t)y′ + pn(t)y = g(t) (1)

is a direct extension of the method for the second order differential equation (see
Section 3.6). As before, to use the method of variation of parameters, it is first nec-
essary to solve the corresponding homogeneous differential equation. In general,
this may be difficult unless the coefficients are constants. However, the method of
variation of parameters is still more general than the method of undetermined coef-
ficients in that it leads to an expression for the particular solution for any continuous
function g, whereas the method of undetermined coefficients is restricted in practice
to a limited class of functions g.

Suppose then that we know a fundamental set of solutions y1, y2, . . . , yn of the
homogeneous equation. Then the general solution of the homogeneous equation is

yc(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t). (2)

The method of variation of parameters for determining a particular solution of Eq. (1)
rests on the possibility of determining n functions u1, u2, . . . , un such that Y(t) is of
the form

Y(t) = u1(t)y1(t) + u2(t)y2(t) + · · · + un(t)yn(t). (3)

Since we have n functions to determine, we will have to specify n conditions. One
of these is clearly that Y satisfy Eq. (1). The other n − 1 conditions are chosen
so as to make the calculations as simple as possible. Since we can hardly expect a
simplification in determining Y if we must solve high order differential equations for
u1, . . . , un, it is natural to impose conditions to suppress the terms that lead to higher
derivatives of u1, . . . , un. From Eq. (3) we obtain

Y ′ = (u1y′
1 + u2y′

2 + · · · + uny′
n) + (u′

1y1 + u′
2y2 + · · · + u′

nyn), (4)

where we have omitted the independent variable t on which each function in Eq. (4)
depends. Thus the first condition that we impose is that

u′
1y1 + u′

2y2 + · · · + u′
nyn = 0. (5)

Continuing this process in a similar manner through n − 1 derivatives of Y gives

Y (m) = u1y(m)

1 + u2y(m)

2 + · · · + uny(m)
n , m = 0, 1, 2, . . . , n − 1, (6)

and the following n − 1 conditions on the functions u1, . . . , un:

u′
1y(m−1)

1 + u′
2y(m−1)

2 + · · · + u′
ny(m−1)

n = 0, m = 1, 2, . . . , n − 1. (7)

The nth derivative of Y is

Y (n) = (u1y(n)

1 + · · · + uny(n)
n ) + (u′

1y(n−1)

1 + · · · + u′
ny(n−1)

n ). (8)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 260 Page number 240 cyan black

240 Chapter 4. Higher Order Linear Equations

Finally, we impose the condition that Y must be a solution of Eq. (1). On substi-
tuting for the derivatives of Y from Eqs. (6) and (8), collecting terms, and making
use of the fact that L[yi] = 0, i = 1, 2, . . . , n, we obtain

u′
1y(n−1)

1 + u′
2y(n−1)

2 + · · · + u′
ny(n−1)

n = g. (9)

Equation (9), coupled with the n − 1 equations (7), gives n simultaneous linear non-
homogeneous algebraic equations for u′

1, u′
2, . . . , u′

n:

y1u′
1 + y2u′

2 + · · · + ynu′
n = 0,

y′
1u′

1 + y′
2u′

2 + · · · + y′
nu′

n = 0,

y′′
1u′

1 + y′′
2u′

2 + · · · + y′′
nu′

n = 0, (10)
...

y(n−1)

1 u′
1 + · · · + y(n−1)

n u′
n = g.

The system (10) is a linear algebraic system for the unknown quantities u′
1, . . . , u′

n.
By solving this system and then integrating the resulting expressions, you can obtain
the coefficients u1, . . . , un. A sufficient condition for the existence of a solution of the
system of equations (10) is that the determinant of coefficients is nonzero for each
value of t. However, the determinant of coefficients is precisely W(y1, y2, . . . , yn),
and it is nowhere zero since y1, . . . , yn is a fundamental set of solutions of the ho-
mogeneous equation. Hence it is possible to determine u′

1, . . . , u′
n. Using Cramer’s3

rule, we can write the solution of the system of equations (10) in the form

u′
m(t) = g(t)Wm(t)

W(t)
, m = 1, 2, . . . , n. (11)

Here W(t) = W(y1, y2, . . . , yn)(t), and Wm is the determinant obtained from W by
replacing the mth column by the column (0, 0, . . . , 0, 1). With this notation a particular
solution of Eq. (1) is given by

Y(t) =
n∑

m=1

ym(t)
∫ t

t0

g(s)Wm(s)
W(s)

ds, (12)

where t0 is arbitrary. Although the procedure is straightforward, the algebraic com-
putations involved in determining Y(t) from Eq. (12) become more and more com-
plicated as n increases. In some cases the calculations may be simplified to some
extent by using Abel’s identity (Problem 20 of Section 4.1)

W(t) = W(y1, . . . , yn)(t) = c exp
[
−
∫

p1(t) dt
]

.

The constant c can be determined by evaluating W at some convenient point.

3Cramer’s rule is credited to Gabriel Cramer (1704–1752), professor at theAcadémie de Calvin in Geneva,
who published it in a general form (but without proof) in 1750. For small systems the result had been
known earlier.
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E X A M P L E

1

Given that y1(t) = et , y2(t) = tet , and y3(t) = e−t are solutions of the homogeneous equation
corresponding to

y′′′ − y′′ − y′ + y = g(t), (13)

determine a particular solution of Eq. (13) in terms of an integral.
We use Eq. (12). First, we have

W(t) = W(et , tet , e−t)(t) =

∣∣∣∣∣∣∣
et tet e−t

et (t + 1)et −e−t

et (t + 2)et e−t

∣∣∣∣∣∣∣ .
Factoring et from each of the first two columns and e−t from the third column, we obtain

W(t) = et

∣∣∣∣∣∣∣
1 t 1

1 t + 1 −1

1 t + 2 1

∣∣∣∣∣∣∣ .
Then, by subtracting the first row from the second and third rows, we have

W(t) = et

∣∣∣∣∣∣∣
1 t 1

0 1 −2

0 2 0

∣∣∣∣∣∣∣ .
Finally, evaluating the latter determinant by minors associated with the first column, we find
that

W(t) = 4et .

Next,

W1(t) =

∣∣∣∣∣∣∣
0 tet e−t

0 (t + 1)et −e−t

1 (t + 2)et e−t

∣∣∣∣∣∣∣ .
Using minors associated with the first column, we obtain

W1(t) =
∣∣∣∣∣ tet e−t

(t + 1)et −e−t

∣∣∣∣∣ = −2t − 1.

In a similar way

W2(t) =

∣∣∣∣∣∣∣
et 0 e−t

et 0 −e−t

et 1 e−t

∣∣∣∣∣∣∣ = −
∣∣∣∣∣e

t e−t

et −e−t

∣∣∣∣∣ = 2,

and

W3(t) =

∣∣∣∣∣∣∣
et tet 0

et (t + 1)et 0

et (t + 2)et 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣e

t tet

et (t + 1)et

∣∣∣∣∣ = e2t .

Substituting these results in Eq. (12), we have

Y(t) = et
∫ t

t0

g(s)(−1 − 2s)
4es

ds + tet
∫ t

t0

g(s)(2)

4es
ds + e−t

∫ t

t0

g(s)e2s

4es
ds

= 1
4

∫ t

t0

{
et−s[−1 + 2(t − s)] + e−(t−s)

}
g(s) ds.
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PROBLEMS In each of Problems 1 through 6 use the method of variation of parameters to determine the
general solution of the given differential equation.

1. y′′′ + y′ = tan t, 0 < t < π 2. y′′′ − y′ = t

3. y′′′ − 2y′′ − y′ + 2y = e4t 4. y′′′ + y′ = sec t, −π/2 < t < π/2
5. y′′′ − y′′ + y′ − y = e−t sin t 6. y(4) + 2y′′ + y = sin t

In each of Problems 7 and 8 find the general solution of the given differential equation. Leave
your answer in terms of one or more integrals.

7. y′′′ − y′′ + y′ − y = sec t, −π/2 < t < π/2
8. y′′′ − y′ = csc t, 0 < t < π

In each of Problems 9 through 12 find the solution of the given initial value problem. Then
plot a graph of the solution.

9. y′′′ + y′ = sec t; y(0) = 2, y′(0) = 1, y′′(0) = −2
10. y(4) + 2y′′ + y = sin t; y(0) = 2, y′(0) = 0, y′′(0) = −1, y′′′(0) = 1
11. y′′′ − y′′ + y′ − y = sec t; y(0) = 2, y′(0) = −1, y′′(0) = 1
12. y′′′ − y′ = csc t; y(π/2) = 2, y′(π/2) = 1, y′′(π/2) = −1

13. Given that x, x2, and 1/x are solutions of the homogeneous equation corresponding to

x3y′′′ + x2y′′ − 2xy′ + 2y = 2x4, x > 0,

determine a particular solution.
14. Find a formula involving integrals for a particular solution of the differential equation

y′′′ − y′′ + y′ − y = g(t).

15. Find a formula involving integrals for a particular solution of the differential equation

y(4) − y = g(t).

Hint: The functions sin t, cos t, sinh t, and cosh t form a fundamental set of solutions of the
homogeneous equation.

16. Find a formula involving integrals for a particular solution of the differential equation

y′′′ − 3y′′ + 3y′ − y = g(t).

If g(t) = t−2et , determine Y(t).
17. Find a formula involving integrals for a particular solution of the differential equation

x3y′′′ − 3x2y′′ + 6xy′ − 6y = g(x), x > 0.

Hint: Verify that x, x2, and x3 are solutions of the homogeneous equation.

REFERENCES Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-
Hall, 1961; New York: Dover, 1989).

Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover, 1953).
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C H A P T E R

5

Series Solutions
of Second Order
Linear Equations

Finding the general solution of a linear differential equation depends on determining
a fundamental set of solutions of the homogeneous equation. So far, we have given
a systematic procedure for constructing fundamental solutions only if the equation
has constant coefficients. To deal with the much larger class of equations that have
variable coefficients, it is necessary to extend our search for solutions beyond the
familiar elementary functions of calculus. The principal tool that we need is the
representation of a given function by a power series. The basic idea is similar to
that in the method of undetermined coefficients: we assume that the solutions of a
given differential equation have power series expansions, and then we attempt to
determine the coefficients so as to satisfy the differential equation.

5.1 Review of Power Series
In this chapter we discuss the use of power series to construct fundamental sets of
solutions of second order linear differential equations whose coefficients are func-
tions of the independent variable. We begin by summarizing very briefly the pertinent
results about power series that we need. Readers who are familiar with power series
may go on to Section 5.2. Those who need more details than are presented here
should consult a book on calculus.
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1. A power series
∞∑

n=0
an(x − x0)

n is said to converge at a point x if

lim
m→∞

m∑
n=0

an(x − x0)
n

exists for that x. The series certainly converges for x = x0; it may converge for all x, or it
may converge for some values of x and not for others.

2. The series
∞∑

n=0
an(x − x0)

n is said to converge absolutely at a point x if the series

∞∑
n=0

|an(x − x0)
n| =

∞∑
n=0

|an||x − x0|n

converges. It can be shown that if the series converges absolutely, then the series also
converges; however, the converse is not necessarily true.

3. One of the most useful tests for the absolute convergence of a power series is the ratio
test. If an �= 0, and if, for a fixed value of x,

lim
n→∞

∣∣∣∣an+1(x − x0)
n+1

an(x − x0)n

∣∣∣∣ = |x − x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x − x0|L,

then the power series converges absolutely at that value of x if |x − x0|L < 1 and diverges
if |x − x0|L > 1. If |x − x0|L = 1, the test is inconclusive.

E X A M P L E

1

For which values of x does the power series

∞∑
n=1

(−1)n+1n(x − 2)n

converge?
To test for convergence, we use the ratio test. We have

lim
n→∞

∣∣∣∣ (−1)n+2(n + 1)(x − 2)n+1

(−1)n+1n(x − 2)n

∣∣∣∣ = |x − 2| lim
n→∞

n + 1
n

= |x − 2|.

According to statement 3, the series converges absolutely for |x − 2| < 1, or 1 < x < 3, and
diverges for |x − 2| > 1. The values of x corresponding to |x − 2| = 1 are x = 1 and x = 3. The
series diverges for each of these values of x since the nth term of the series does not approach
zero as n → ∞.

4. If the power series
∞∑

n=0
an(x − x0)

n converges at x = x1, it converges absolutely for

|x − x0| < |x1 − x0|; and if it diverges at x = x1, it diverges for |x − x0| > |x1 − x0|.
5. There is a nonnegative number ρ, called the radius of convergence, such that

∞∑
n=0

an(x − x0)
n converges absolutely for |x − x0| < ρ and diverges for |x − x0| > ρ. For

a series that converges only at x0, we define ρ to be zero; for a series that converges for
all x, we say that ρ is infinite. If ρ > 0, then the interval |x − x0| < ρ is called the interval
of convergence; it is indicated by the hatched lines in Figure 5.1.1. The series may either
converge or diverge when |x − x0| = ρ.
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x

Series
diverges

Series
diverges

Series 
converges
absolutely

x0 x0 + 

Series may
converge or diverge

x0 – ρ ρ

FIGURE 5.1.1 The interval of convergence of a power series.

E X A M P L E

2

Determine the radius of convergence of the power series

∞∑
n=1

(x + 1)n

n2n
.

We apply the ratio test:

lim
n→∞

∣∣∣∣ (x + 1)n+1

(n + 1)2n+1

n2n

(x + 1)n

∣∣∣∣ = |x + 1|
2

lim
n→∞

n
n + 1

= |x + 1|
2

.

Thus the series converges absolutely for |x + 1| < 2, or −3 < x < 1, and diverges for
|x + 1| > 2. The radius of convergence of the power series is ρ = 2. Finally, we check the
endpoints of the interval of convergence. At x = 1 the series becomes the harmonic series

∞∑
n=1

1
n

,

which diverges. At x = −3 we have

∞∑
n=1

(−3 + 1)n

n2n
=

∞∑
n=1

(−1)n

n
,

which converges but does not converge absolutely. The series is said to converge conditionally
at x = −3. To summarize, the given power series converges for −3 ≤ x < 1 and diverges
otherwise. It converges absolutely for −3 < x < 1 and has a radius of convergence 2.

Suppose that
∞∑

n=0
an(x − x0)

n and
∞∑

n=0
bn(x − x0)

n converge to f (x) and g(x), respec-

tively, for |x − x0| < ρ, ρ > 0.

6. The series can be added or subtracted termwise, and

f (x) ± g(x) =
∞∑

n=0

(an ± bn)(x − x0)
n;

the resulting series converges at least for |x − x0| < ρ.
7. The series can be formally multiplied, and

f (x)g(x) =
[ ∞∑

n=0

an(x − x0)
n

][ ∞∑
n=0

bn(x − x0)
n

]
=

∞∑
n=0

cn(x − x0)
n,

where cn = a0bn + a1bn−1 + · · · + anb0. The resulting series converges at least for
|x − x0| < ρ.
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Further, if g(x0) �= 0, the series can be formally divided, and

f (x)

g(x)
=

∞∑
n=0

dn(x − x0)
n.

In most cases the coefficients dn can be most easily obtained by equating coefficients in
the equivalent relation

∞∑
n=0

an(x − x0)
n =

[ ∞∑
n=0

dn(x − x0)
n

][ ∞∑
n=0

bn(x − x0)
n

]

=
∞∑

n=0

(
n∑

k=0

dkbn−k

)
(x − x0)

n.

In the case of division the radius of convergence of the resulting power series may be less
than ρ.

8. The function f is continuous and has derivatives of all orders for |x − x0| < ρ. Further, f ′,
f ′′, . . . can be computed by differentiating the series termwise; that is,

f ′(x) = a1 + 2a2(x − x0) + · · · + nan(x − x0)
n−1 + · · ·

=
∞∑

n=1

nan(x − x0)
n−1,

f ′′(x) = 2a2 + 6a3(x − x0) + · · · + n(n − 1)an(x − x0)
n−2 + · · ·

=
∞∑

n=2

n(n − 1)an(x − x0)
n−2,

and so forth, and each of the series converges absolutely for |x − x0| < ρ.
9. The value of an is given by

an = f (n)(x0)

n! .

The series is called the Taylor1 series for the function f about x = x0.

10. If
∞∑

n=0
an(x − x0)

n =
∞∑

n=0
bn(x − x0)

n for each x in some open interval with center x0, then

an = bn for n = 0, 1, 2, 3, . . . . In particular, if
∞∑

n=0
an(x − x0)

n = 0 for each such x, then

a0 = a1 = · · · = an = · · · = 0.

A function f that has a Taylor series expansion about x = x0

f (x) =
∞∑

n=0

f (n)(x0)

n! (x − x0)
n,

with a radius of convergence ρ > 0, is said to be analytic at x = x0. All of the familiar
functions of calculus are analytic except perhaps at certain easily recognized points.

1Brook Taylor (1685–1731) was the leading English mathematician in the generation following Newton.
In 1715 he published a general statement of the expansion theorem that is named for him, a result that is
fundamental in all branches of analysis. He was also one of the founders of the calculus of finite differences
and was the first to recognize the existence of singular solutions of differential equations.
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For example, sin x and ex are analytic everywhere, 1/x is analytic except at x = 0, and
tan x is analytic except at odd multiples of π/2. According to statements 6 and 7, if
f and g are analytic at x0, then f ± g, f · g, and f /g [provided that g(x0) �= 0] are also
analytic at x = x0. In many respects the natural context for the use of power series
is the complex plane. The methods and results of this chapter nearly always can be
directly extended to differential equations in which the independent and dependent
variables are complex-valued.

Shift of Index of Summation. The index of summation in an infinite series is a dummy
parameter just as the integration variable in a definite integral is a dummy variable.
Thus it is immaterial which letter is used for the index of summation. For example,

∞∑
n=0

2nxn

n! =
∞∑

j=0

2jxj

j! .

Just as we make changes of the variable of integration in a definite integral, we find
it convenient to make changes of summation indices in calculating series solutions of
differential equations. We illustrate by several examples how to shift the summation
index.

E X A M P L E

3

Write
∞∑

n=2
anxn as a series whose first term corresponds to n = 0 rather than n = 2.

Let m = n − 2; then n = m + 2, and n = 2 corresponds to m = 0. Hence

∞∑
n=2

anxn =
∞∑

m=0

am+2xm+2. (1)

By writing out the first few terms of each of these series, you can verify that they contain
precisely the same terms. Finally, in the series on the right side of Eq. (1), we can replace the
dummy index m by n, obtaining

∞∑
n=2

anxn =
∞∑

n=0

an+2xn+2. (2)

In effect, we have shifted the index upward by 2 and have compensated by starting to count
at a level 2 lower than originally.

E X A M P L E

4

Write the series
∞∑

n=2

(n + 2)(n + 1)an(x − x0)
n−2 (3)

as a series whose generic term involves (x − x0)
n rather than (x − x0)

n−2.
Again, we shift the index by 2 so that n is replaced by n + 2 and start counting 2 lower. We

obtain ∞∑
n=0

(n + 4)(n + 3)an+2(x − x0)
n. (4)

You can readily verify that the terms in the series (3) and (4) are exactly the same.
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E X A M P L E

5

Write the expression

x2
∞∑

n=0

(r + n)anxr+n−1 (5)

as a series whose generic term involves xr+n.
First, take the x2 inside the summation, obtaining

∞∑
n=0

(r + n)anxr+n+1. (6)

Next, shift the index down by 1 and start counting 1 higher. Thus

∞∑
n=0

(r + n)anxr+n+1 =
∞∑

n=1

(r + n − 1)an−1xr+n. (7)

Again, you can easily verify that the two series in Eq. (7) are identical and that both are exactly
the same as the expression (5).

E X A M P L E

6

Assume that
∞∑

n=1

nanxn−1 =
∞∑

n=0

anxn (8)

for all x, and determine what this implies about the coefficients an.
We want to use statement 10 to equate corresponding coefficients in the two series. In order

to do this, we must first rewrite Eq. (8) so that the series display the same power of x in their
generic terms. For instance, in the series on the left side of Eq. (8), we can replace n by n + 1
and start counting 1 lower. Thus Eq. (8) becomes

∞∑
n=0

(n + 1)an+1xn =
∞∑

n=0

anxn. (9)

According to statement 10, we conclude that

(n + 1)an+1 = an, n = 0, 1, 2, 3, . . .

or

an+1 = an

n + 1
, n = 0, 1, 2, 3, . . . . (10)

Hence, choosing successive values of n in Eq. (10), we have

a1 = a0, a2 = a1

2
= a0

2
, a3 = a2

3
= a0

3! ,

and so forth. In general,

an = a0

n! , n = 1, 2, 3, . . . . (11)

Thus the relation (8) determines all the following coefficients in terms of a0. Finally, using the
coefficients given by Eq. (11), we obtain

∞∑
n=0

anxn = a0

∞∑
n=0

xn

n! = a0ex,

where we have followed the usual convention that 0! = 1.
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PROBLEMS In each of Problems 1 through 8 determine the radius of convergence of the given power series.

1.
∞∑

n=0
(x − 3)n 2.

∞∑
n=0

n
2n

xn

3.
∞∑

n=0

x2n

n! 4.
∞∑

n=0
2nxn

5.
∞∑

n=1

(2x + 1)n

n2
6.

∞∑
n=1

(x − x0)
n

n

7.
∞∑

n=1

(−1)nn2(x + 2)n

3n
8.

∞∑
n=1

n!xn

nn

In each of Problems 9 through 16 determine the Taylor series about the point x0 for the given
function. Also determine the radius of convergence of the series.

9. sin x, x0 = 0 10. ex, x0 = 0

11. x, x0 = 1 12. x2, x0 = −1

13. ln x, x0 = 1 14.
1

1 + x
, x0 = 0

15.
1

1 − x
, x0 = 0 16.

1
1 − x

, x0 = 2

17. Given that y =
∞∑

n=0
nxn, compute y′ and y′′ and write out the first four terms of each series

as well as the coefficient of xn in the general term.

18. Given that y =
∞∑

n=0
anxn, compute y′ and y′′ and write out the first four terms of each

series as well as the coefficient of xn in the general term. Show that if y′′ = y, then the
coefficients a0 and a1 are arbitrary, and determine a2 and a3 in terms of a0 and a1. Show
that an+2 = an/(n + 2)(n + 1), n = 0, 1, 2, 3, . . . .

In each of Problems 19 and 20 verify the given equation.

19.
∞∑

n=0
an(x − 1)n+1 =

∞∑
n=1

an−1(x − 1)n

20.
∞∑

k=0
ak+1xk +

∞∑
k=0

akxk+1 = a1 +
∞∑

k=1
(ak+1 + ak−1)xk

In each of Problems 21 through 27 rewrite the given expression as a sum whose generic term
involves xn.

21.
∞∑

n=2
n(n − 1)anxn−2 22.

∞∑
n=0

anxn+2

23. x
∞∑

n=1
nanxn−1 +

∞∑
k=0

akxk 24. (1 − x2)
∞∑

n=2
n(n − 1)anxn−2

25.
∞∑

m=2
m(m − 1)amxm−2 + x

∞∑
k=1

kakxk−1 26.
∞∑

n=1
nanxn−1 + x

∞∑
n=0

anxn

27. x
∞∑

n=2
n(n − 1)anxn−2 +

∞∑
n=0

anxn
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28. Determine the an so that the equation

∞∑
n=1

nanxn−1 + 2
∞∑

n=0

anxn = 0

is satisfied. Try to identify the function represented by the series
∞∑

n=0
anxn.

5.2 Series Solutions Near an Ordinary Point, Part I
In Chapter 3 we described methods of solving second order linear differential equa-
tions with constant coefficients. We now consider methods of solving second order
linear equations when the coefficients are functions of the independent variable. In
this chapter we will denote the independent variable by x. It is sufficient to consider
the homogeneous equation

P(x)
d2y
dx2

+ Q(x)
dy
dx

+ R(x)y = 0, (1)

since the procedure for the corresponding nonhomogeneous equation is similar.
Many problems in mathematical physics lead to equations of the form (1) having

polynomial coefficients; examples include the Bessel equation

x2y′′ + xy′ + (x2 − ν2)y = 0,

where ν is a constant, and the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0,

where α is a constant. For this reason, as well as to simplify the algebraic com-
putations, we primarily consider the case in which the functions P, Q, and R are
polynomials. However, as we will see, the method of solution is also applicable when
P, Q, and R are general analytic functions.

For the present, then, suppose that P, Q, and R are polynomials and that they have
no common factors. Suppose also that we wish to solve Eq. (1) in the neighborhood
of a point x0. The solution of Eq. (1) in an interval containing x0 is closely associated
with the behavior of P in that interval.

A point x0 such that P(x0) �= 0 is called an ordinary point. Since P is continuous, it
follows that there is an interval about x0 in which P(x) is never zero. In that interval
we can divide Eq. (1) by P(x) to obtain

y′′ + p(x)y′ + q(x)y = 0, (2)

where p(x) = Q(x)/P(x) and q(x) = R(x)/P(x) are continuous functions. Hence,
according to the existence and uniqueness Theorem 3.2.1, there exists in that inter-
val a unique solution of Eq. (1) that also satisfies the initial conditions y(x0) = y0,
y′(x0) = y′

0 for arbitrary values of y0 and y′
0. In this and the following section we

discuss the solution of Eq. (1) in the neighborhood of an ordinary point.
On the other hand, if P(x0) = 0, then x0 is called a singular point of Eq. (1). In

this case at least one of Q(x0) and R(x0) is not zero. Consequently, at least one of
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the coefficients p and q in Eq. (2) becomes unbounded as x → x0, and therefore
Theorem 3.2.1 does not apply in this case. Sections 5.4 through 5.7 deal with finding
solutions of Eq. (1) in the neighborhood of a singular point.

We now take up the problem of solving Eq. (1) in the neighborhood of an ordinary
point x0. We look for solutions of the form

y = a0 + a1(x − x0) + · · · + an(x − x0)
n + · · · =

∞∑
n=0

an(x − x0)
n (3)

and assume that the series converges in the interval |x − x0| < ρ for some ρ > 0.
While at first sight it may appear unattractive to seek a solution in the form of a
power series, this is actually a convenient and useful form for a solution. Within their
intervals of convergence, power series behave very much like polynomials and are
easy to manipulate both analytically and numerically. Indeed, even if we can obtain
a solution in terms of elementary functions, such as exponential or trigonometric
functions, we are likely to need a power series or some equivalent expression if we
want to evaluate them numerically or to plot their graphs.

The most practical way to determine the coefficients an is to substitute the series
(3) and its derivatives for y, y′, and y′′ in Eq. (1). The following examples illustrate this
process. The operations, such as differentiation, that are involved in the procedure
are justified so long as we stay within the interval of convergence. The differential
equations in these examples are also of considerable importance in their own right.

E X A M P L E

1

Find a series solution of the equation

y′′ + y = 0, −∞ < x < ∞. (4)

As we know, a fundamental set of solutions of this equation are sin x and cos x, so series
methods are not needed to solve this equation. However, this example illustrates the use of
power series in a relatively simple case. For Eq. (4), P(x) = 1, Q(x) = 0, and R(x) = 1; hence
every point is an ordinary point.

We look for a solution in the form of a power series about x0 = 0

y = a0 + a1x + a2x2 + · · · + anxn + · · · =
∞∑

n=0

anxn (5)

and assume that the series converges in some interval |x| < ρ. Differentiating Eq. (5) term by
term yields

y′ = a1 + 2a2x + · · · + nanxn−1 + · · · =
∞∑

n=1

nanxn−1, (6)

y′′ = 2a2 + · · · + n(n − 1)anxn−2 + · · · =
∞∑

n=2

n(n − 1)anxn−2. (7)

Substituting the series (5) and (7) for y and y′′ in Eq. (4) gives

∞∑
n=2

n(n − 1)anxn−2 +
∞∑

n=0

anxn = 0.
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To combine the two series, we need to rewrite at least one of them so that both series display
the same generic term. Thus, in the first sum, we shift the index of summation by replacing n
by n + 2 and starting the sum at 0 rather than 2. We obtain

∞∑
n=0

(n + 2)(n + 1)an+2xn +
∞∑

n=0

anxn = 0

or
∞∑

n=0

[(n + 2)(n + 1)an+2 + an] xn = 0.

For this equation to be satisfied for all x, the coefficient of each power of x must be zero; hence
we conclude that

(n + 2)(n + 1)an+2 + an = 0, n = 0, 1, 2, 3, . . . . (8)

Equation (8) is referred to as a recurrence relation. The successive coefficients can be
evaluated one by one by writing the recurrence relation first for n = 0, then for n = 1, and
so forth. In this example Eq. (8) relates each coefficient to the second one before it. Thus
the even-numbered coefficients (a0, a2, a4, . . .) and the odd-numbered ones (a1, a3, a5, . . .) are
determined separately. For the even-numbered coefficients we have

a2 = − a0

2 · 1
= −a0

2! , a4 = − a2

4 · 3
= +a0

4! , a6 = − a4

6 · 5
= −a0

6! , . . . .

These results suggest that in general, if n = 2k, then

an = a2k = (−1)k

(2k)! a0, k = 1, 2, 3, . . . . (9)

We can prove Eq. (9) by mathematical induction. First, observe that it is true for k = 1. Next,
assume that it is true for an arbitrary value of k and consider the case k + 1. We have

a2k+2 = − a2k

(2k + 2)(2k + 1)
= − (−1)k

(2k + 2)(2k + 1)(2k)!a0 = (−1)k+1

(2k + 2)!a0.

Hence Eq. (9) is also true for k + 1, and consequently it is true for all positive integers k.
Similarly, for the odd-numbered coefficients

a3 = − a1

2 · 3
= −a1

3! , a5 = − a3

5 · 4
= +a1

5! , a7 = − a5

7 · 6
= −a1

7! , . . . ,

and in general, if n = 2k + 1, then2

an = a2k+1 = (−1)k

(2k + 1)!a1, k = 1, 2, 3, . . . . (10)

Substituting these coefficients into Eq. (5), we have

2The result given in Eq. (10) and other similar formulas in this chapter can be proved by an induction
argument resembling the one just given for Eq. (9). We assume that the results are plausible and omit the
inductive argument hereafter.
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y = a0 + a1x − a0

2! x2 − a1

3! x3 + a0

4! x4 + a1

5! x5

+ · · · + (−1)na0

(2n)! x2n + (−1)na1

(2n + 1)!x2n+1 + · · ·

= a0

[
1 − x2

2! + x4

4! + · · · + (−1)n

(2n)! x2n + · · ·
]

+ a1

[
x − x3

3! + x5

5! + · · · + (−1)n

(2n + 1)!x2n+1 + · · ·
]

= a0

∞∑
n=0

(−1)n

(2n)! x2n + a1

∞∑
n=0

(−1)n

(2n + 1)!x2n+1. (11)

Now that we have formally obtained two series solutions of Eq. (4), we can test them for
convergence. Using the ratio test, we can show that each of the series in Eq. (11) converges
for all x, and this justifies retroactively all the steps used in obtaining the solutions. Indeed,
we recognize that the first series in Eq. (11) is exactly the Taylor series for cos x about x = 0
and that the second is the Taylor series for sin x about x = 0. Thus, as expected, we obtain the
solution y = a0 cos x + a1 sin x.

Notice that no conditions are imposed on a0 and a1; hence they are arbitrary. From Eqs. (5)
and (6) we see that y and y′ evaluated at x = 0 are a0 and a1, respectively. Since the initial
conditions y(0) and y′(0) can be chosen arbitrarily, it follows that a0 and a1 should be arbitrary
until specific initial conditions are stated.

Figures 5.2.1 and 5.2.2 show how the partial sums of the series in Eq. (11) approximate cos x
and sin x. As the number of terms increases, the interval over which the approximation is
satisfactory becomes longer, and for each x in this interval the accuracy of the approximation
improves. However, you should always remember that a truncated power series provides only
a local approximation of the solution in a neighborhood of the initial point x = 0; it cannot
adequately represent the solution for large |x|.

2

2 4 6

1

–1

–2

8 10

y = cos x

y

x

n = 4 n = 8 n = 20n = 16n = 12

n = 2 n = 6 n = 10 n = 14 n = 18

FIGURE 5.2.1 Polynomial approximations to cos x. The value of n is the degree of the
approximating polynomial.
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n = 3 n = 7 n = 11 n = 15 n = 19

FIGURE 5.2.2 Polynomial approximations to sin x. The value of n is the degree of the
approximating polynomial.

In Example 1 we knew from the start that sin x and cos x form a fundamental set of
solutions of Eq. (4). However, if we had not known this and had simply solved Eq. (4)
using series methods, we would still have obtained the solution (11). In recognition
of the fact that the differential equation (4) often occurs in applications, we might
decide to give the two solutions of Eq. (11) special names, perhaps

C(x) =
∞∑

n=0

(−1)n

(2n)! x2n, S(x) =
∞∑

n=0

(−1)n

(2n + 1)!x2n+1. (12)

Then we might ask what properties these functions have. For instance, can we be
sure that C(x) and S(x) form a fundamental set of solutions? It follows at once from
the series expansions that C(0) = 1 and S(0) = 0. By differentiating the series for
C(x) and S(x) term by term, we find that

S′(x) = C(x), C′(x) = −S(x). (13)

Thus, at x = 0 we have S′(0) = 1 and C′(0) = 0. Consequently, the Wronskian of C
and S at x = 0 is

W(C, S)(0) =
∣∣∣∣∣1 0

0 1

∣∣∣∣∣ = 1, (14)

so these functions do indeed form a fundamental set of solutions. By substituting −x
for x in each of Eqs. (12), we obtain C(−x) = C(x), and S(−x) = −S(x). Moreover,
by calculating with the infinite series,3 we can show that the functions C(x) and S(x)

have all the usual analytical and algebraic properties of the cosine and sine functions,
respectively.

3Such an analysis is given in Section 24 of K. Knopp,Theory and Applications of Infinite Series (New York:
Hafner, 1951).
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Although you probably first saw the sine and cosine functions defined in a more
elementary manner in terms of right triangles, it is interesting that these functions
can be defined as solutions of a certain simple second order linear differential equa-
tion. To be precise, the function sin x can be defined as the unique solution of the
initial value problem y′′ + y = 0, y(0) = 0, y′(0) = 1; similarly, cos x can be defined
as the unique solution of the initial value problem y′′ + y = 0, y(0) = 1, y′(0) = 0.
Many other functions that are important in mathematical physics are also defined as
solutions of certain initial value problems. For most of these functions there is no
simpler or more elementary way to approach them.

E X A M P L E

2

Find a series solution in powers of x of Airy’s4 equation

y′′ − xy = 0, −∞ < x < ∞. (15)

For this equation P(x) = 1, Q(x) = 0, and R(x) = −x; hence every point is an ordinary point.
We assume that

y =
∞∑

n=0

anxn (16)

and that the series converges in some interval |x| < ρ. The series for y′′ is given by Eq. (7); as
explained in the preceding example, we can rewrite it as

y′′ =
∞∑

n=0

(n + 2)(n + 1)an+2xn. (17)

Substituting the series (16) and (17) for y and y′′ in Eq. (15), we obtain

∞∑
n=0

(n + 2)(n + 1)an+2xn = x
∞∑

n=0

anxn =
∞∑

n=0

anxn+1. (18)

Next, we shift the index of summation in the series on the right side of Eq. (18) by replacing
n by n − 1 and starting the summation at 1 rather than zero. Thus we have

2 · 1a2 +
∞∑

n=1

(n + 2)(n + 1)an+2xn =
∞∑

n=1

an−1xn.

Again, for this equation to be satisfied for all x in some interval, the coefficients of like powers
of x must be equal; hence a2 = 0, and we obtain the recurrence relation

(n + 2)(n + 1)an+2 = an−1 for n = 1, 2, 3, . . . . (19)

Since an+2 is given in terms of an−1, the a’s are determined in steps of three. Thus a0

determines a3, which in turn determines a6, . . . ; a1 determines a4, which in turn determines
a7, . . . ; and a2 determines a5, which in turn determines a8, . . . . Since a2 = 0, we immediately
conclude that a5 = a8 = a11 = · · · = 0.

4Sir George Biddell Airy (1801–1892), an English astronomer and mathematician, was director of the
Greenwich Observatory from 1835 to 1881. One reason why Airy’s equation is of interest is that for
x negative the solutions are oscillatory, similar to trigonometric functions, and for x positive they are
monotonic, similar to hyperbolic functions. Can you explain why it is reasonable to expect such behavior?
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For the sequence a0, a3, a6, a9, . . . we set n = 1, 4, 7, 10, . . . in the recurrence relation:

a3 = a0

2 · 3
, a6 = a3

5 · 6
= a0

2 · 3 · 5 · 6
, a9 = a6

8 · 9
= a0

2 · 3 · 5 · 6 · 8 · 9
, . . . .

These results suggest the general formula

a3n = a0

2 · 3 · 5 · 6 · · · (3n − 1)(3n)
, n ≥ 4.

For the sequence a1, a4, a7, a10, . . . , we set n = 2, 5, 8, 11, . . . in the recurrence relation:

a4 = a1

3 · 4
, a7 = a4

6 · 7
= a1

3 · 4 · 6 · 7
, a10 = a7

9 · 10
= a1

3 · 4 · 6 · 7 · 9 · 10
, . . . .

In general, we have

a3n+1 = a1

3 · 4 · 6 · 7 · · · (3n)(3n + 1)
, n ≥ 4.

Thus the general solution of Airy’s equation is

y = a0

[
1 + x3

2 · 3
+ x6

2 · 3 · 5 · 6
+ · · · + x3n

2 · 3 · · · (3n − 1)(3n)
+ · · ·

]

+ a1

[
x + x4

3 · 4
+ x7

3 · 4 · 6 · 7
+ · · · + x3n+1

3 · 4 · · · (3n)(3n + 1)
+ · · ·

]
. (20)

Having obtained these two series solutions, we can now investigate their convergence. Be-
cause of the rapid growth of the denominators of the terms in the series (20), we might expect
these series to have a large radius of convergence. Indeed, it is easy to use the ratio test to
show that both these series converge for all x; see Problem 20.

Assuming for the moment that the series do converge for all x, let y1 and y2 denote the
functions defined by the expressions in the first and second sets of brackets, respectively, in
Eq. (20). Then, by choosing first a0 = 1, a1 = 0 and then a0 = 0, a1 = 1, it follows that y1

and y2 are individually solutions of Eq. (15). Notice that y1 satisfies the initial conditions
y1(0) = 1, y′

1(0) = 0 and that y2 satisfies the initial conditions y2(0) = 0, y′
2(0) = 1. Thus

W(y1, y2)(0) = 1 �= 0, and consequently y1 and y2 are a fundamental set of solutions. Hence
the general solution of Airy’s equation is

y = a0y1(x) + a1y2(x), −∞ < x < ∞.

In Figures 5.2.3 and 5.2.4, respectively, we show the graphs of the solutions y1 and y2 of
Airy’s equation, as well as graphs of several partial sums of the two series in Eq. (20). Again,
the partial sums provide local approximations to the solutions in a neighborhood of the origin.
Although the quality of the approximation improves as the number of terms increases, no
polynomial can adequately represent y1 and y2 for large |x|. A practical way to estimate the
interval in which a given partial sum is reasonably accurate is to compare the graphs of that
partial sum and the next one, obtained by including one more term. As soon as the graphs
begin to separate noticeably, we can be confident that the original partial sum is no longer
accurate. For example, in Figure 5.2.3 the graphs for n = 24 and n = 27 begin to separate
at about x = −9/2. Thus, beyond this point, the partial sum of degree 24 is worthless as an
approximation to the solution.

Observe that both y1 and y2 are monotone for x > 0 and oscillatory for x < 0. You can
also see from the figures that the oscillations are not uniform but, rather, decay in amplitude
and increase in frequency as the distance from the origin increases. In contrast to Example 1,
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FIGURE 5.2.3 Polynomial approximations to the solution y1(x) of Airy’s equation. The
value of n is the degree of the approximating polynomial.
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FIGURE 5.2.4 Polynomial approximations to the solution y2(x) of Airy’s equation. The
value of n is the degree of the approximating polynomial.

the solutions y1 and y2 of Airy’s equation are not elementary functions that you have already
encountered in calculus. However, because of their importance in some physical applications,
these functions have been extensively studied, and their properties are well known to applied
mathematicians and scientists.

E X A M P L E

3

Find a solution of Airy’s equation in powers of x − 1.
The point x = 1 is an ordinary point of Eq. (15), and thus we look for a solution of the form

y =
∞∑

n=0

an(x − 1)n,
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where we assume that the series converges in some interval |x − 1| < ρ. Then

y′ =
∞∑

n=1

nan(x − 1)n−1 =
∞∑

n=0

(n + 1)an+1(x − 1)n,

and

y′′ =
∞∑

n=2

n(n − 1)an(x − 1)n−2 =
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n.

Substituting for y and y′′ in Eq. (12), we obtain
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n = x
∞∑

n=0

an(x − 1)n. (21)

Now to equate the coefficients of like powers of (x − 1), we must express x, the coefficient of
y in Eq. (15), in powers of x − 1; that is, we write x = 1 + (x − 1). Note that this is precisely
the Taylor series for x about x = 1. Then Eq. (21) takes the form

∞∑
n=0

(n + 2)(n + 1)an+2(x − 1)n = [1 + (x − 1)]
∞∑

n=0

an(x − 1)n

=
∞∑

n=0

an(x − 1)n +
∞∑

n=0

an(x − 1)n+1.

Shifting the index of summation in the second series on the right gives
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n =
∞∑

n=0

an(x − 1)n +
∞∑

n=1

an−1(x − 1)n.

Equating coefficients of like powers of x − 1, we obtain

2a2 = a0,

(3 · 2)a3 = a1 + a0,

(4 · 3)a4 = a2 + a1,

(5 · 4)a5 = a3 + a2,
...

The general recurrence relation is

(n + 2)(n + 1)an+2 = an + an−1 for n ≥ 1. (22)

Solving for the first few coefficients an in terms of a0 and a1, we find that

a2 = a0

2
, a3 = a1

6
+ a0

6
, a4 = a2

12
+ a1

12
= a0

24
+ a1

12
, a5 = a3

20
+ a2

20
= a0

30
+ a1

120
.

Hence

y = a0

[
1 + (x − 1)2

2
+ (x − 1)3

6
+ (x − 1)4

24
+ (x − 1)5

30
+ · · ·

]

+ a1

[
(x − 1) + (x − 1)3

6
+ (x − 1)4

12
+ (x − 1)5

120
+ · · ·

]
. (23)

In general, when the recurrence relation has more than two terms, as in Eq. (22), the
determination of a formula for an in terms a0 and a1 will be fairly complicated, if not impossible.
In this example such a formula is not readily apparent. Lacking such a formula, we cannot test
the two series in Eq. (23) for convergence by direct methods such as the ratio test. However,
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we shall see in Section 5.3 that even without knowing the formula for an, it is possible to
establish that the two series in Eq. (23) converge for all x. Further, they define functions y3

and y4 that are a fundamental set of solutions of the Airy equation (15). Thus

y = a0y3(x) + a1y4(x)

is the general solution of Airy’s equation for −∞ < x < ∞.

It is worth emphasizing, as we saw in Example 3, that if we look for a solution

of Eq. (1) of the form y =
∞∑

n=0
an(x − x0)

n, then the coefficients P(x), Q(x), and R(x)

in Eq. (1) must also be expressed in powers of x − x0. Alternatively, we can make
the change of variable x − x0 = t, obtaining a new differential equation for y as a

function of t, and then look for solutions of this new equation of the form
∞∑

n=0
antn.

When we have finished the calculations, we replace t by x − x0 (see Problem 19).
In Examples 2 and 3 we have found two sets of solutions of Airy’s equation. The

functions y1 and y2 defined by the series in Eq. (20) are a fundamental set of solutions
of Eq. (15) for all x, and this is also true for the functions y3 and y4 defined by the series
in Eq. (23). According to the general theory of second order linear equations, each
of the first two functions can be expressed as a linear combination of the latter two
functions and vice versa—a result that is certainly not obvious from an examination
of the series alone.

Finally, we emphasize that it is not particularly important if, as in Example 3, we
are unable to determine the general coefficient an in terms of a0 and a1. What is
essential is that we can determine as many coefficients as we want. Thus we can find
as many terms in the two series solutions as we want, even if we cannot determine
the general term. While the task of calculating several coefficients in a power series
solution is not difficult, it can be tedious. A symbolic manipulation package can be
very helpful here; some are able to find a specified number of terms in a power series
solution in response to a single command. With a suitable graphics package we can
also produce plots such as those shown in the figures in this section.

PROBLEMS In each of Problems 1 through 14:
(a) Seek power series solutions of the given differential equation about the given point x0;
find the recurrence relation.
(b) Find the first four terms in each of two solutions y1 and y2 (unless the series terminates
sooner).
(c) By evaluating the Wronskian W(y1, y2)(x0), show that y1 and y2 form a fundamental set
of solutions.
(d) If possible, find the general term in each solution.

1. y′′ − y = 0, x0 = 0 2. y′′ − xy′ − y = 0, x0 = 0

3. y′′ − xy′ − y = 0, x0 = 1 4. y′′ + k2x2y = 0, x0 = 0, k a constant

5. (1 − x)y′′ + y = 0, x0 = 0 6. (2 + x2)y′′ − xy′ + 4y = 0, x0 = 0

7. y′′ + xy′ + 2y = 0, x0 = 0 8. xy′′ + y′ + xy = 0, x0 = 1

9. (1 + x2)y′′ − 4xy′ + 6y = 0, x0 = 0 10. (4 − x2)y′′ + 2y = 0, x0 = 0
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11. (3 − x2)y′′ − 3xy′ − y = 0, x0 = 0 12. (1 − x)y′′ + xy′ − y = 0, x0 = 0
13. 2y′′ + xy′ + 3y = 0, x0 = 0 14. 2y′′ + (x + 1)y′ + 3y = 0, x0 = 2

In each of Problems 15 through 18:
(a) Find the first five nonzero terms in the solution of the given initial value problem.
(b) Plot the four-term and the five-term approximations to the solution on the same axes.
(c) From the plot in part (b) estimate the interval in which the four-term approximation is
reasonably accurate.

15. y′′ − xy′ − y = 0, y(0) = 2, y′(0) = 1; see Problem 2
16. (2 + x2)y′′ − xy′ + 4y = 0, y(0) = −1, y′(0) = 3; see Problem 6
17. y′′ + xy′ + 2y = 0, y(0) = 4, y′(0) = −1; see Problem 7
18. (1 − x)y′′ + xy′ − y = 0, y(0) = −3, y′(0) = 2; see Problem 12

19. (a) By making the change of variable x − 1 = t and assuming that y has a Taylor series in
powers of t, find two series solutions of

y′′ + (x − 1)2y′ + (x2 − 1)y = 0

in powers of x − 1.
(b) Show that you obtain the same result by assuming that y has a Taylor series in powers
of x − 1 and also expressing the coefficient x2 − 1 in powers of x − 1.

20. Show directly, using the ratio test, that the two series solutions of Airy’s equation about
x = 0 converge for all x; see Eq. (20) of the text.

21. The Hermite Equation. The equation

y′′ − 2xy′ + λy = 0, −∞ < x < ∞,

where λ is a constant, is known as the Hermite5 equation. It is an important equation in
mathematical physics.
(a) Find the first four terms in each of two solutions about x = 0 and show that they form
a fundamental set of solutions.
(b) Observe that if λ is a nonnegative even integer, then one or the other of the series
solutions terminates and becomes a polynomial. Find the polynomial solutions for λ = 0,
2, 4, 6, 8, and 10. Note that each polynomial is determined only up to a multiplicative
constant.
(c) The Hermite polynomial Hn(x) is defined as the polynomial solution of the Hermite
equation with λ = 2n for which the coefficient of xn is 2n. Find H0(x), . . . , H5(x).

22. Consider the initial value problem y′ = √
1 − y2, y(0) = 0.

(a) Show that y = sin x is the solution of this initial value problem.
(b) Look for a solution of the initial value problem in the form of a power series about
x = 0. Find the coefficients up to the term in x3 in this series.

In each of Problems 23 through 28 plot several partial sums in a series solution of the given
initial value problem about x = 0, thereby obtaining graphs analogous to those in Figures 5.2.1
through 5.2.4.

5Charles Hermite (1822–1901) was an influential French analyst and algebraist. He introduced the Her-
mite functions in 1864 and showed in 1873 that e is a transcendental number (that is, e is not a root of any
polynomial equation with rational coefficients). His name is also associated with Hermitian matrices (see
Section 7.3), some of whose properties he discovered.
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23. y′′ − xy′ − y = 0, y(0) = 1, y′(0) = 0; see Problem 2

24. (2 + x2)y′′ − xy′ + 4y = 0, y(0) = 1, y′(0) = 0; see Problem 6

25. y′′ + xy′ + 2y = 0, y(0) = 0, y′(0) = 1; see Problem 7

26. (4 − x2)y′′ + 2y = 0, y(0) = 0, y′(0) = 1; see Problem 10

27. y′′ + x2y = 0, y(0) = 1, y′(0) = 0; see Problem 4

28. (1 − x)y′′ + xy′ − 2y = 0, y(0) = 0, y′(0) = 1

5.3 Series Solutions Near an Ordinary Point, Part II
In the preceding section we considered the problem of finding solutions of

P(x)y′′ + Q(x)y′ + R(x)y = 0, (1)

where P, Q, and R are polynomials, in the neighborhood of an ordinary point x0.
Assuming that Eq. (1) does have a solution y = φ(x) and that φ has a Taylor series

y = φ(x) =
∞∑

n=0

an(x − x0)
n, (2)

which converges for |x − x0| < ρ, where ρ > 0, we found that the an can be deter-
mined by directly substituting the series (2) for y in Eq. (1).

Let us now consider how we might justify the statement that if x0 is an ordinary
point of Eq. (1), then there exist solutions of the form (2). We also consider the
question of the radius of convergence of such a series. In doing this, we are led to a
generalization of the definition of an ordinary point.

Suppose, then, that there is a solution of Eq. (1) of the form (2). By differentiating
Eq. (2) m times and setting x equal to x0, we obtain

m!am = φ(m)(x0).

Hence, to compute an in the series (2), we must show that we can determine φ(n)(x0)

for n = 0, 1, 2, . . . from the differential equation (1).
Suppose that y = φ(x) is a solution of Eq. (1) satisfying the initial conditions

y(x0) = y0, y′(x0) = y′
0. Then a0 = y0 and a1 = y′

0. If we are solely interested in
finding a solution of Eq. (1) without specifying any initial conditions, then a0 and a1

remain arbitrary. To determine φ(n)(x0) and the corresponding an for n = 2, 3, . . . ,
we turn to Eq. (1). Since φ is a solution of Eq. (1), we have

P(x)φ′′(x) + Q(x)φ′(x) + R(x)φ(x) = 0.

For the interval about x0 for which P is nonvanishing, we can write this equation in
the form

φ′′(x) = −p(x)φ′(x) − q(x)φ(x), (3)

where p(x) = Q(x)/P(x) and q(x) = R(x)/P(x). Setting x equal to x0 in Eq. (3) gives

φ′′(x0) = −p(x0)φ
′(x0) − q(x0)φ(x0).
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Hence a2 is given by

2!a2 = φ′′(x0) = −p(x0)a1 − q(x0)a0. (4)

To determine a3, we differentiate Eq. (3) and then set x equal to x0, obtaining

3!a3 = φ′′′(x0) = −[pφ′′ + (p′ + q)φ′ + q′φ]
∣∣∣
x=x0

= −2!p(x0)a2 − [p′(x0) + q(x0)]a1 − q′(x0)a0. (5)

Substituting for a2 from Eq. (4) gives a3 in terms of a1 and a0. Since P, Q, and R are
polynomials and P(x0) �= 0, all the derivatives of p and q exist at x0. Hence, we can
continue to differentiate Eq. (3) indefinitely, determining after each differentiation
the successive coefficients a4, a5, . . . by setting x equal to x0.

Notice that the important property that we used in determining the an was that we
could compute infinitely many derivatives of the functions p and q. It might seem
reasonable to relax our assumption that the functions p and q are ratios of polyno-
mials and simply require that they be infinitely differentiable in the neighborhood
of x0. Unfortunately, this condition is too weak to ensure that we can prove the con-
vergence of the resulting series expansion for y = φ(x). What is needed is to assume
that the functions p and q are analytic at x0; that is, they have Taylor series expansions
that converge to them in some interval about the point x0:

p(x) = p0 + p1(x − x0) + · · · + pn(x − x0)
n + · · · =

∞∑
n=0

pn(x − x0)
n, (6)

q(x) = q0 + q1(x − x0) + · · · + qn(x − x0)
n + · · · =

∞∑
n=0

qn(x − x0)
n. (7)

With this idea in mind, we can generalize the definitions of an ordinary point and
a singular point of Eq. (1) as follows: if the functions p = Q/P and q = R/P are
analytic at x0, then the point x0 is said to be an ordinary point of the differential
equation (1); otherwise, it is a singular point.

Now let us turn to the question of the interval of convergence of the series solution.
One possibility is actually to compute the series solution for each problem and then
to apply one of the tests for convergence of an infinite series to determine its radius
of convergence. Unfortunately, these tests require us to obtain an expression for the
general coefficient an as a function of n, and this task is often quite difficult, if not
impossible; recall Example 3 in Section 5.2. However, the question can be answered
at once for a wide class of problems by the following theorem.

Theorem 5.3.1 If x0 is an ordinary point of the differential equation (1)

P(x)y′′ + Q(x)y′ + R(x)y = 0,

that is, if p = Q/P and q = R/P are analytic at x0, then the general solution of
Eq. (1) is

y =
∞∑

n=0

an(x − x0)
n = a0y1(x) + a1y2(x), (8)
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where a0 and a1 are arbitrary, and y1 and y2 are two power series solutions that are
analytic at x0. The solutions y1 and y2 form a fundamental set of solutions. Further,
the radius of convergence for each of the series solutions y1 and y2 is at least as
large as the minimum of the radii of convergence of the series for p and q.

To see that y1 and y2 are a fundamental set of solutions,note that they have the form
y1(x) = 1 + b2(x − x0)

2 + · · · and y2(x) = (x − x0) + c2(x − x0)
2 + · · ·, where b2 +

c2 = a2. Hence y1 satisfies the initial conditions y1(x0) = 1, y′
1(x0) = 0, and y2 satisfies

the initial conditions y2(x0) = 0, y′
2(x0) = 1. Thus W(y1, y2)(x0) = 1.

Also note that although calculating the coefficients by successively differentiating
the differential equation is excellent in theory, it is usually not a practical computa-
tional procedure. Rather, one should substitute the series (2) for y in the differential
equation (1) and determine the coefficients so that the differential equation is satis-
fied, as in the examples in the preceding section.

We will not prove this theorem, which in a slightly more general form was estab-
lished by Fuchs.6 What is important for our purposes is that there is a series solution
of the form (2) and that the radius of convergence of the series solution cannot be
less than the smaller of the radii of convergence of the series for p and q; hence we
need only determine these.

This can be done in either of two ways. Again, one possibility is simply to compute
the power series for p and q and then to determine the radii of convergence by
using one of the convergence tests for infinite series. However, there is an easier
way when P, Q, and R are polynomials. It is shown in the theory of functions of a
complex variable that the ratio of two polynomials, say, Q/P, has a convergent power
series expansion about a point x = x0 if P(x0) �= 0. Further, if we assume that any
factors common to Q and P have been canceled, then the radius of convergence of
the power series for Q/P about the point x0 is precisely the distance from x0 to the
nearest zero of P. In determining this distance, we must remember that P(x) = 0
may have complex roots, and these must also be considered.

E X A M P L E

1

What is the radius of convergence of the Taylor series for (1 + x2)−1 about x = 0?
One way to proceed is to find the Taylor series in question, namely,

1
1 + x2

= 1 − x2 + x4 − x6 + · · · + (−1)nx2n + · · · .

Then it can be verified by the ratio test that ρ = 1. Another approach is to note that the zeros
of 1 + x2 are x = ±i. Since the distance in the complex plane from 0 to i or to −i is 1, the radius
of convergence of the power series about x = 0 is 1.

6Immanuel Lazarus Fuchs (1833–1902) was a student and later a professor at the University of Berlin.
He proved the result of Theorem 5.3.1 in 1866. His most important research was on singular points of
linear differential equations. He recognized the significance of regular singular points (Section 5.4), and
equations whose only singularities, including the point at infinity, are regular singular points are known as
Fuchsian equations.
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E X A M P L E

2

What is the radius of convergence of the Taylor series for (x2 − 2x + 2)−1 about x = 0? about
x = 1?

First notice that
x2 − 2x + 2 = 0

has solutions x = 1 ± i. The distance in the complex plane from x = 0 to either x = 1 + i or

x = 1 − i is
√

2; hence the radius of convergence of the Taylor series expansion
∞∑

n=0
anxn about

x = 0 is
√

2.
The distance in the complex plane from x = 1 to either x = 1 + i or x = 1 − i is 1; hence the

radius of convergence of the Taylor series expansion
∞∑

n=0
bn(x − 1)n about x = 1 is 1.

According to Theorem 5.3.1, the series solutions of the Airy equation in Examples
2 and 3 of the preceding section converge for all values of x and x − 1, respectively,
since in each problem P(x) = 1 and hence is never zero.

A series solution may converge for a wider range of x than indicated by Theorem
5.3.1, so the theorem actually gives only a lower bound on the radius of convergence
of the series solution. This is illustrated by the Legendre polynomial solution of the
Legendre equation given in the next example.

E X A M P L E

3

Determine a lower bound for the radius of convergence of series solutions about x = 0 for the
Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0,

where α is a constant.
Note that P(x) = 1 − x2, Q(x) = −2x, and R(x) = α(α + 1) are polynomials, and that the

zeros of P, namely, x = ±1, are a distance 1 from x = 0. Hence a series solution of the form
∞∑

n=0
anxn converges at least for |x| < 1, and possibly for larger values of x. Indeed, it can be

shown that if α is a positive integer, one of the series solutions terminates after a finite number
of terms and hence converges not just for |x| < 1 but for all x. For example, if α = 1, the
polynomial solution is y = x. See Problems 22 through 29 at the end of this section for a more
comprehensive discussion of the Legendre equation.

E X A M P L E

4

Determine a lower bound for the radius of convergence of series solutions of the differential
equation

(1 + x2)y′′ + 2xy′ + 4x2y = 0 (9)

about the point x = 0; about the point x = − 1
2 .

Again P, Q, and R are polynomials, and P has zeros at x = ±i. The distance in the complex

plane from 0 to ±i is 1, and from − 1
2 to ±i is

√
1 + 1

4 = √
5/2. Hence in the first case the

series
∞∑

n=0
anxn converges at least for |x| < 1, and in the second case the series

∞∑
n=0

bn
(
x + 1

2

)n

converges at least for |x + 1
2 | <

√
5/2.

An interesting observation that we can make about Eq. (9) follows from Theorems 3.2.1
and 5.3.1. Suppose that initial conditions y(0) = y0 and y′(0) = y′

0 are given. Since 1 + x2 �= 0
for all x, we know from Theorem 3.2.1 that there exists a unique solution of the initial value
problem on −∞ < x < ∞. On the other hand,Theorem 5.3.1 only guarantees a series solution

of the form
∞∑

n=0
anxn (with a0 = y0, a1 = y′

0) for −1 < x < 1. The unique solution on the interval

−∞ < x < ∞ may not have a power series about x = 0 that converges for all x.
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E X A M P L E

5

Can we determine a series solution about x = 0 for the differential equation

y′′ + (sin x)y′ + (1 + x2)y = 0,

and if so, what is the radius of convergence?
For this differential equation, p(x) = sin x and q(x) = 1 + x2. Recall from calculus that sin x

has a Taylor series expansion about x = 0 that converges for all x. Further, q also has a Taylor
series expansion about x = 0, namely, q(x) = 1 + x2, that converges for all x. Thus there is a

series solution of the form y =
∞∑

n=0
anxn with a0 and a1 arbitrary, and the series converges for

all x.

PROBLEMS In each of Problems 1 through 4 determine φ′′(x0), φ′′′(x0), and φ(4)(x0) for the given point x0

if y = φ(x) is a solution of the given initial value problem.

1. y′′ + xy′ + y = 0; y(0) = 1, y′(0) = 0

2. y′′ + (sin x)y′ + (cos x)y = 0; y(0) = 0, y′(0) = 1

3. x2y′′ + (1 + x)y′ + 3(ln x)y = 0; y(1) = 2, y′(1) = 0

4. y′′ + x2y′ + (sin x)y = 0; y(0) = a0, y′(0) = a1

In each of Problems 5 through 8 determine a lower bound for the radius of convergence of
series solutions about each given point x0 for the given differential equation.

5. y′′ + 4y′ + 6xy = 0; x0 = 0, x0 = 4

6. (x2 − 2x − 3)y′′ + xy′ + 4y = 0; x0 = 4, x0 = −4, x0 = 0

7. (1 + x3)y′′ + 4xy′ + y = 0; x0 = 0, x0 = 2

8. xy′′ + y = 0; x0 = 1

9. Determine a lower bound for the radius of convergence of series solutions about the given
x0 for each of the differential equations in Problems 1 through 14 of Section 5.2.

10. The Chebyshev Equation. The Chebyshev7 differential equation is

(1 − x2)y′′ − xy′ + α2y = 0,

where α is a constant.
(a) Determine two solutions in powers of x for |x| < 1 and show that they form a funda-
mental set of solutions.
(b) Show that if α is a nonnegative integer n, then there is a polynomial solution of
degree n. These polynomials, when properly normalized, are called the Chebyshev
polynomials. They are very useful in problems that require a polynomial approximation
to a function defined on −1 ≤ x ≤ 1.
(c) Find a polynomial solution for each of the cases α = n = 0, 1, 2, 3.

7Pafnuty L. Chebyshev (1821–1894), professor at Petersburg University for 35 years and the most influen-
tial nineteenth-century Russian mathematician, founded the so-called Petersburg school, which produced
a long line of distinguished mathematicians. His study of Chebyshev polynomials began about 1854 as
part of an investigation of the approximation of functions by polynomials. Chebyshev is also known for
his work in number theory and probability.
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For each of the differential equations in Problems 11 through 14 find the first four nonzero
terms in each of two power series solutions about the origin. Show that they form a funda-
mental set of solutions. What do you expect the radius of convergence to be for each solution?

11. y′′ + (sin x)y = 0 12. exy′′ + xy = 0

13. (cos x)y′′ + xy′ − 2y = 0 14. e−xy′′ + ln(1 + x)y′ − xy = 0

15. Let x and x2 be solutions of a differential equation P(x)y′′ + Q(x)y′ + R(x)y = 0. Can you
say whether the point x = 0 is an ordinary point or a singular point? Prove your answer.

First Order Equations. The series methods discussed in this section are directly applicable
to the first order linear differential equation P(x)y′ + Q(x)y = 0 at a point x0, if the function
p = Q/P has a Taylor series expansion about that point. Such a point is called an ordinary

point, and further, the radius of convergence of the series y =
∞∑

n=0
an(x − x0)

n is at least as

large as the radius of convergence of the series for Q/P. In each of Problems 16 through 21
solve the given differential equation by a series in powers of x and verify that a0 is arbitrary
in each case. Problems 20 and 21 involve nonhomogeneous differential equations to which
series methods can be easily extended. Where possible, compare the series solution with the
solution obtained by using the methods of Chapter 2.

16. y′ − y = 0 17. y′ − xy = 0

18. y′ = ex2
y, three terms only 19. (1 − x)y′ = y

20. y′ − y = x2 21. y′ + xy = 1 + x

The Legendre Equation. Problems 22 through 29 deal with the Legendre8 equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0.

As indicated in Example 3, the point x = 0 is an ordinary point of this equation,and the distance
from the origin to the nearest zero of P(x) = 1 − x2 is 1. Hence the radius of convergence of
series solutions about x = 0 is at least 1. Also notice that we need to consider only α > −1
because if α ≤ −1, then the substitution α = −(1 + γ ), where γ ≥ 0, leads to the Legendre
equation (1 − x2)y′′ − 2xy′ + γ (γ + 1)y = 0.

22. Show that two solutions of the Legendre equation for |x| < 1 are

y1(x) = 1 − α(α + 1)

2! x2 + α(α − 2)(α + 1)(α + 3)

4! x4

+
∞∑

m=3

(−1)m α · · · (α − 2m + 2)(α + 1) · · · (α + 2m − 1)

(2m)! x2m,

y2(x) = x − (α − 1)(α + 2)

3! x3 + (α − 1)(α − 3)(α + 2)(α + 4)

5! x5

+
∞∑

m=3

(−1)m (α − 1) · · · (α − 2m + 1)(α + 2) · · · (α + 2m)

(2m + 1)! x2m+1.

8Adrien-Marie Legendre (1752–1833) held various positions in the French Académie des Sciences from
1783 onward. His primary work was in the fields of elliptic functions and number theory. The Legendre
functions, solutions of Legendre’s equation,first appeared in 1784 in his study of the attraction of spheroids.
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23. Show that, if α is zero or a positive even integer 2n, the series solution y1 reduces to a
polynomial of degree 2n containing only even powers of x. Find the polynomials corre-
sponding to α = 0, 2, and 4. Show that, if α is a positive odd integer 2n + 1, the series
solution y2 reduces to a polynomial of degree 2n + 1 containing only odd powers of x.
Find the polynomials corresponding to α = 1, 3, and 5.

24. The Legendre polynomial Pn(x) is defined as the polynomial solution of the Legendre
equation with α = n that also satisfies the condition Pn(1) = 1.
(a) Using the results of Problem 23, find the Legendre polynomials P0(x), . . . , P5(x).
(b) Plot the graphs of P0(x), . . . , P5(x) for −1 ≤ x ≤ 1.
(c) Find the zeros of P0(x), . . . , P5(x).

25. It can be shown that the general formula for Pn(x) is

Pn(x) = 1
2n

n/2�∑
k=0

(−1)k(2n − 2k)!
k!(n − k)!(n − 2k)!xn−2k,

where n/2� denotes the greatest integer less than or equal to n/2. By observing the form
of Pn(x) for n even and n odd, show that Pn(−1) = (−1)n.

26. The Legendre polynomials play an important role in mathematical physics. For example, in
solving Laplace’s equation (the potential equation) in spherical coordinates, we encounter
the equation

d2F(ϕ)

dϕ2
+ cot ϕ

dF(ϕ)

dϕ
+ n(n + 1)F(ϕ) = 0, 0 < ϕ < π ,

where n is a positive integer. Show that the change of variable x = cos ϕ leads to the
Legendre equation with α = n for y = f (x) = F(arccos x).

27. Show that for n = 0, 1, 2, 3, the corresponding Legendre polynomial is given by

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n.

This formula, known as Rodrigues’ formula,9 is true for all positive integers n.
28. Show that the Legendre equation can also be written as

[(1 − x2)y′]′ = −α(α + 1)y.

Then it follows that

[(1 − x2)P′
n(x)]′ = −n(n + 1)Pn(x) and [(1 − x2)P′

m(x)]′ = −m(m + 1)Pm(x).

By multiplying the first equation by Pm(x) and the second equation by Pn(x), integrating
by parts, and then subtracting one equation from the other, show that∫ 1

−1
Pn(x)Pm(x) dx = 0 if n �= m.

This property of the Legendre polynomials is known as the orthogonality property. If
m = n, it can be shown that the value of the preceding integral is 2/(2n + 1).

9Olinde Rodrigues (1794–1851) published this result as part of his doctoral thesis from the École Normale
in Paris in 1816. He later became a banker and social reformer.
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29. Given a polynomial f of degree n, it is possible to express f as a linear combination of
P0, P1, P2, . . . , Pn:

f (x) =
n∑

k=0

akPk(x).

Using the result of Problem 28, show that

ak = 2k + 1
2

∫ 1

−1
f (x)Pk(x) dx.

5.4 Euler Equations; Regular Singular Points
In this section we will begin to consider how to solve equations of the form

P(x)y′′ + Q(x)y′ + R(x)y = 0 (1)

in the neighborhood of a singular point x0. Recall that if the functions P, Q, and R
are polynomials having no common factors, then the singular points of Eq. (1) are
the points for which P(x) = 0.

Euler Equations. A relatively simple differential equation that has a singular point is
the Euler equation10

L[y] = x2y′′ + αxy′ + βy = 0, (2)

where α and β are real constants. In this case P(x) = x2, so x = 0 is the only singular
point for Eq. (2); all other points are ordinary points. For convenience we first
consider the interval x > 0; later we extend our results to the interval x < 0.

Observe that (xr)′ = rxr−1 and (xr)′′ = r(r − 1)xr−2. Hence, if we assume that
Eq. (2) has a solution of the form

y = xr , (3)

then we obtain

L[xr] = x2(xr)′′ + αx(xr)′ + βxr

= xr[r(r − 1) + αr + β]. (4)

If r is a root of the quadratic equation

F(r) = r(r − 1) + αr + β = 0, (5)

then L[xr] is zero, and y = xr is a solution of Eq. (2). The roots of Eq. (5) are

r1, r2 = −(α − 1) ± √
(α − 1)2 − 4β

2
, (6)

and F(r) = (r − r1)(r − r2). As for second order linear equations with constant coef-
ficients, we consider separately the cases in which the roots are real and different, real

10This equation is sometimes called the Cauchy–Euler equation or the equidimensional equation. It was
studied by Euler about 1740, but its solution was known to Johann Bernoulli before 1700.
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but equal, and complex conjugates. Indeed, the entire discussion of Euler equations
is similar to the treatment of second order linear equations with constant coefficients
in Chapter 3, with erx replaced by xr .

Real, Distinct Roots. If F(r) = 0 has real roots r1 and r2, with r1 �= r2, then y1(x) = xr1

and y2(x) = xr2 are solutions of Eq. (2). Since

W(xr1 , xr2) = (r2 − r1)xr1+r2−1

is nonvanishing for r1 �= r2 and x > 0, it follows that the general solution of Eq. (2) is

y = c1xr1 + c2xr2 , x > 0. (7)

Note that if r is not a rational number, then xr is defined by xr = er ln x.

E X A M P L E

1

Solve
2x2y′′ + 3xy′ − y = 0, x > 0. (8)

Substituting y = xr in Eq. (8) gives

xr[2r(r − 1) + 3r − 1] = xr(2r2 + r − 1) = xr(2r − 1)(r + 1) = 0.

Hence r1 = 1
2 and r2 = −1, so the general solution of Eq. (8) is

y = c1x1/2 + c2x−1, x > 0. (9)

Equal Roots. If the roots r1 and r2 are equal, then we obtain only one solution
y1(x) = xr1 of the assumed form. A second solution can be obtained by the method
of reduction of order, but for the purpose of our future discussion we consider an
alternative method. Since r1 = r2, it follows that F(r) = (r − r1)

2. Thus in this case
not only does F(r1) = 0 but also F ′(r1) = 0. This suggests differentiating Eq. (4) with
respect to r and then setting r equal to r1. Differentiating Eq. (4) with respect to r
gives

∂

∂r
L[xr] = ∂

∂r
[xrF(r)].

Substituting for F(r), interchanging differentiation with respect to x and with respect
to r, and noting that ∂(xr)/∂r = xr ln x, we obtain

L[xr ln x] = (r − r1)
2xr ln x + 2(r − r1)xr. (10)

The right side of Eq. (10) is zero for r = r1; consequently,

y2(x) = xr1 ln x, x > 0 (11)

is a second solution of Eq. (2). By evaluating the Wronskian, we find that

W(xr1 , xr1 ln x) = x2r1−1.

Hence xr1 and xr1 ln x are a fundamental set of solutions for x > 0, and the general
solution of Eq. (2) is

y = (c1 + c2 ln x)xr1 , x > 0. (12)
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E X A M P L E

2

Solve
x2y′′ + 5xy′ + 4y = 0, x > 0. (13)

Substituting y = xr in Eq. (13) gives

xr[r(r − 1) + 5r + 4] = xr(r2 + 4r + 4) = 0.

Hence r1 = r2 = −2, and
y = x−2(c1 + c2 ln x), x > 0 (14)

is the general solution of Eq. (13).

Complex Roots. Finally, suppose that the roots r1 and r2 of Eq. (5) are complex con-
jugates, say, r1 = λ + iμ and r2 = λ − iμ, with μ �= 0. We must now explain what is
meant by xr when r is complex. Remembering that

xr = er ln x (15)

when x > 0 and r is real, we can use this equation to define xr when r is complex.
Then, using Euler’s formula for eiμ ln x, we obtain

xλ+iμ = e(λ+iμ) ln x = eλ ln xeiμ ln x = xλeiμ ln x

= xλ[cos(μ ln x) + i sin(μ ln x)], x > 0. (16)

With this definition of xr for complex values of r, it can be verified that the usual
laws of algebra and the differential calculus hold, and hence xr1 and xr2 are indeed
solutions of Eq. (2). The general solution of Eq. (2) is

y = c1xλ+iμ + c2xλ−iμ. (17)

The disadvantage of this expression is that the functions xλ+iμ and xλ−iμ are complex-
valued. Recall that we had a similar situation for the second order differential equa-
tion with constant coefficients when the roots of the characteristic equation were
complex. In the same way as we did then, we observe that the real and imaginary
parts of xλ+iμ, namely,

xλ cos(μ ln x) and xλ sin(μ ln x) (18)

are also solutions of Eq. (2). A straightforward calculation shows that

W[xλ cos(μ ln x), xλ sin(μ ln x)] = μx2λ−1.

Hence these solutions form a fundamental set of solutions for x > 0, and the general
solution of Eq. (2) is

y = c1xλ cos(μ ln x) + c2xλ sin(μ ln x), x > 0. (19)

E X A M P L E

3

Solve
x2y′′ + xy′ + y = 0. (20)

Substituting y = xr in Eq. (20) gives

xr[r(r − 1) + r + 1] = xr(r2 + 1) = 0.

Hence r = ±i, and the general solution is

y = c1 cos(ln x) + c2 sin(ln x), x > 0. (21)

The factor xλ does not appear explicitly in Eq. (21) because in this example λ = 0 and xλ = 1.
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Now let us consider the qualitative behavior of the solutions of Eq. (2) near the
singular point x = 0. This depends entirely on the values of the exponents r1 and r2.
First, if r is real and positive, then xr → 0 as x tends to zero through positive values.
On the other hand, if r is real and negative, then xr becomes unbounded. Finally, if
r = 0, then xr = 1. Figure 5.4.1 shows these possibilities for various values of r. If r is
complex, then a typical solution is xλ cos(μ ln x). This function becomes unbounded
or approaches zero if λ is negative or positive, respectively, and also oscillates more
and more rapidly as x → 0. This behavior is shown in Figures 5.4.2 and 5.4.3 for
selected values of λ and μ. If λ = 0, the oscillation is of constant amplitude. Finally,
if there are repeated roots, then one solution is of the form xr ln x, which tends to
zero if r > 0 and becomes unbounded if r ≤ 0. An example of each case is shown in
Figure 5.4.4.

The extension of the solutions of Eq. (2) into the interval x < 0 can be carried out
in a relatively straightforward manner. The difficulty lies in understanding what is
meant by xr when x is negative and r is not an integer; similarly, ln x has not been
defined for x < 0. The solutions of the Euler equation that we have given for x > 0
can be shown to be valid for x < 0, but in general they are complex-valued. Thus in
Example 1 the solution x1/2 is imaginary for x < 0.

It is always possible to obtain real-valued solutions of the Euler equation (2) in
the interval x < 0 by making the following change of variable. Let x = −ξ , where

2

1
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y = x0

y = x–1/2

y = x1/2

y = x–3/2

y = x3/2

y

x

FIGURE 5.4.1 Solutions of an Euler equation; real roots.
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FIGURE 5.4.2 Solution of an Euler equa-
tion; complex roots with negative real part.
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y = x1/2 cos(5 ln x)
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x

FIGURE 5.4.3 Solution of an Euler equa-
tion; complex roots with positive real part.
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y = x –1 ln x

y

x

y = x ln x

1

–1

0.5 1 1.5 2

FIGURE 5.4.4 Typical second solutions of an Euler equation with equal roots.

ξ > 0, and let y = u(ξ). Then we have

dy
dx

= du
dξ

dξ

dx
= −du

dξ
,

d2y
dx2

= d
dξ

(
−du

dξ

)
dξ

dx
= d2u

dξ 2
. (22)

Thus, for x < 0, Eq. (2) takes the form

ξ 2 d2u
dξ 2

+ αξ
du
dξ

+ βu = 0, ξ > 0. (23)

But,except for names of the variables, this is exactly the same as Eq. (2); from Eqs. (7),
(12), and (19) we have

u(ξ) =

⎧⎪⎨
⎪⎩

c1ξ
r1 + c2ξ

r2

(c1 + c2 ln ξ)ξ r1

c1ξ
λ cos(μ ln ξ) + c2ξ

λ sin(μ ln ξ),

(24)

depending on whether the zeros of F(r) = r(r − 1) + αr + β are real and different,
real and equal, or complex conjugates. To obtain u in terms of x, we replace ξ by −x
in Eqs. (24).

We can combine the results for x > 0 and x < 0 by recalling that |x| = x when x > 0
and that |x| = −x when x < 0. Thus we need only replace x by |x| in Eqs. (7), (12), and
(19) to obtain real-valued solutions valid in any interval not containing the origin.

Hence the general solution of the Euler equation (2)

x2y′′ + αxy′ + βy = 0

in any interval not containing the origin is determined by the roots r1 and r2 of the
equation

F(r) = r(r − 1) + αr + β = 0

as follows. If the roots are real and different, then

y = c1|x|r1 + c2|x|r2 . (25)

If the roots are real and equal, then

y = (c1 + c2 ln |x|)|x|r1 . (26)

If the roots are complex conjugates, then

y = |x|λ [c1 cos(μ ln |x|) + c2 sin(μ ln |x|)] , (27)

where r1, r2 = λ ± iμ.
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The solutions of an Euler equation of the form

(x − x0)
2y′′ + α(x − x0)y′ + βy = 0 (28)

are similar. If we look for solutions of the form y = (x − x0)
r , then the general solution

is given by Eq. (25), Eq. (26), or Eq. (27) with x replaced by x − x0. Alternatively,
we can reduce Eq. (28) to the form of Eq. (2) by making the change of independent
variable t = x − x0.

Regular Singular Points. We now return to a consideration of the general equation (1)

P(x)y′′ + Q(x)y′ + R(x)y = 0

where x0 is a singular point. This means that P(x0) = 0 and at least one of Q and R
is not zero at x0.

Unfortunately, if we attempt to use the methods of the preceding two sections to
solve Eq. (1) in the neighborhood of a singular point x0, we find that these methods
fail. This is because the solution of Eq. (1) is often not analytic at x0 and consequently
cannot be represented by a Taylor series in powers of x − x0. Examples 1, 2, and 3
above illustrate this fact; in each of these examples the solution fails to have a power
series expansion about the singular point x = 0. Therefore, to have any chance of
solving Eq. (1) in the neighborhood of a singular point, we must use a more general
type of series expansion.

Since the singular points of a differential equation are usually few in number, we
might ask whether we can simply ignore them, especially since we already know how
to construct solutions about ordinary points. However, this is not feasible because
the singular points determine the principal features of the solution to a much larger
extent than you might at first suspect. In the neighborhood of a singular point the
solution often becomes large in magnitude or experiences rapid changes in magni-
tude. For example, the solutions found in Examples 1, 2, and 3 are illustrations of this
fact. Thus the behavior of a physical system modeled by a differential equation fre-
quently is most interesting in the neighborhood of a singular point. Often geometric
singularities in a physical problem, such as corners or sharp edges, lead to singular
points in the corresponding differential equation. Thus, although at first we might
want to avoid the few points where a differential equation is singular, it is precisely
at these points that it is necessary to study the solution most carefully.

As an alternative to analytical methods, we can consider the use of numerical
methods, which are discussed in Chapter 8. However, these methods are ill suited
for the study of solutions near a singular point. Thus, even if we adopt a numerical
approach, it is advantageous to combine it with the analytical methods of this chapter
in order to examine the behavior of solutions near singular points.

Without any additional information about the behavior of Q/P and R/P in the
neighborhood of the singular point, it is impossible to describe the behavior of the
solutions of Eq. (1) near x = x0. It may be that there are two distinct solutions of
Eq. (1) that remain bounded as x → x0 (as in Example 3); or there may be only one,
with the other becoming unbounded as x → x0 (as in Example 1); or they may both
become unbounded as x → x0 (as in Example 2). If Eq. (1) has solutions that become
unbounded as x → x0, it is often important to determine how these solutions behave
as x → x0. For example, does y → ∞ in the same way as (x − x0)

−1 or |x − x0|−1/2,
or in some other manner?
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Our goal is to extend the method already developed for solving Eq. (1) near an
ordinary point so that it also applies to the neighborhood of a singular point x0. To
do this in a reasonably simple manner, it is necessary to restrict ourselves to cases in
which the singularities in the functions Q/P and R/P at x = x0 are not too severe—
that is, to what we might call “weak singularities.” At this stage it is not clear exactly
what is an acceptable singularity. However, as we develop the method of solution,
you will see that the appropriate conditions (see also Section 5.6, Problem 21) to
distinguish “weak singularities” are

lim
x→x0

(x − x0)
Q(x)

P(x)
is finite (29)

and

lim
x→x0

(x − x0)
2 R(x)

P(x)
is finite. (30)

This means that the singularity in Q/P can be no worse than (x − x0)
−1 and the singu-

larity in R/P can be no worse than (x − x0)
−2. Such a point is called a regular singular

point of Eq. (1). For equations with more general coefficients than polynomials, x0

is a regular singular point of Eq. (1) if it is a singular point and if both11

(x − x0)
Q(x)

P(x)
and (x − x0)

2 R(x)

P(x)
(31)

have convergentTaylor series about x0—that is, if the functions in Eq. (31) are analytic
at x = x0. Equations (29) and (30) imply that this will be the case when P, Q, and R
are polynomials. Any singular point of Eq. (1) that is not a regular singular point is
called an irregular singular point of Eq. (1).

Observe that the conditions in Eqs. (29) and (30) are satisfied by the Euler equation
(28). Thus the singularity in an Euler equation is a regular singular point. Indeed,
we will see that all equations of the form (1) behave very much like Euler equations
near a regular singular point. That is, solutions near a regular singular point may
include powers of x with negative or nonintegral exponents, logarithms, or sines or
cosines of logarithmic arguments.

In the following sections we discuss how to solve Eq. (1) in the neighborhood of a
regular singular point. A discussion of the solutions of differential equations in the
neighborhood of irregular singular points is more complicated and may be found in
more advanced books.

E X A M P L E

4

Determine the singular points of the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0 (32)

and determine whether they are regular or irregular.

11The functions given in Eq. (31) may not be defined at x0, in which case their values at x0 are to be
assigned as their limits as x → x0.
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In this case P(x) = 1 − x2, so the singular points are x = 1 and x = −1. Observe that when
we divide Eq. (32) by 1 − x2, the coefficients of y′ and y are −2x/(1 − x2) and α(α + 1)/(1 − x2),
respectively. We consider the point x = 1 first. Thus, from Eqs. (29) and (30), we calculate

lim
x→1

(x − 1)
−2x

1 − x2
= lim

x→1

(x − 1)(−2x)

(1 − x)(1 + x)
= lim

x→1

2x
1 + x

= 1

and

lim
x→1

(x − 1)2 α(α + 1)

1 − x2
= lim

x→1

(x − 1)2α(α + 1)

(1 − x)(1 + x)

= lim
x→1

(x − 1)(−α)(α + 1)

1 + x
= 0.

Since these limits are finite, the point x = 1 is a regular singular point. It can be shown in a
similar manner that x = −1 is also a regular singular point.

E X A M P L E

5

Determine the singular points of the differential equation

2x(x − 2)2y′′ + 3xy′ + (x − 2)y = 0

and classify them as regular or irregular.
Dividing the differential equation by 2x(x − 2)2, we have

y′′ + 3
2(x − 2)2

y′ + 1
2x(x − 2)

y = 0,

so p(x) = Q(x)/P(x) = 3/2(x − 2)2 and q(x) = R(x)/P(x) = 1/2x(x − 2). The singular points
are x = 0 and x = 2. Consider x = 0. We have

lim
x→0

xp(x) = lim
x→0

x
3

2(x − 2)2
= 0,

lim
x→0

x2q(x) = lim
x→0

x2 1
2x(x − 2)

= 0.

Since these limits are finite, x = 0 is a regular singular point. For x = 2 we have

lim
x→2

(x − 2)p(x) = lim
x→2

(x − 2)
3

2(x − 2)2
= lim

x→2

3
2(x − 2)

,

so the limit does not exist; hence x = 2 is an irregular singular point.

E X A M P L E

6

Determine the singular points of(
x − π

2

)2
y′′ + (cos x)y′ + (sin x)y = 0

and classify them as regular or irregular.
The only singular point is x = π/2. To study it, we consider the functions(

x − π

2

)
p(x) =

(
x − π

2

) Q(x)

P(x)
= cos x

x − π/2

and
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(
x − π

2

)2
q(x) =

(
x − π

2

)2 R(x)

P(x)
= sin x.

Starting from the Taylor series for cos x about x = π/2, we find that

cos x
x − π/2

= −1 + (x − π/2)2

3! − (x − π/2)4

5! + · · · ,

which converges for all x. Similarly, sin x is analytic at x = π/2. Therefore we conclude that
π/2 is a regular singular point for this equation.

PROBLEMS
In each of Problems 1 through 12 determine the general solution of the given differential
equation that is valid in any interval not including the singular point.

1. x2y′′ + 4xy′ + 2y = 0 2. (x + 1)2y′′+ 3(x + 1)y′+ 0.75y = 0

3. x2y′′ − 3xy′ + 4y = 0 4. x2y′′ + 3xy′ + 5y = 0

5. x2y′′ − xy′ + y = 0 6. (x − 1)2y′′ + 8(x − 1)y′ + 12y = 0

7. x2y′′ + 6xy′ − y = 0 8. 2x2y′′ − 4xy′ + 6y = 0

9. x2y′′ − 5xy′ + 9y = 0 10. (x − 2)2y′′ + 5(x − 2)y′ + 8y = 0

11. x2y′′ + 2xy′ + 4y = 0 12. x2y′′ − 4xy′ + 4y = 0

In each of Problems 13 through 16 find the solution of the given initial value problem. Plot
the graph of the solution and describe how the solution behaves as x → 0.

13. 2x2y′′ + xy′ − 3y = 0, y(1) = 1, y′(1) = 4

14. 4x2y′′ + 8xy′ + 17y = 0, y(1) = 2, y′(1) = −3

15. x2y′′ − 3xy′ + 4y = 0, y(−1) = 2, y′(−1) = 3

16. x2y′′ + 3xy′ + 5y = 0, y(1) = 1, y′(1) = −1

In each of Problems 17 through 34 find all singular points of the given equation and determine
whether each one is regular or irregular.
17. xy′′ + (1 − x)y′ + xy = 0 18. x2(1 − x)2y′′ + 2xy′ + 4y = 0
19. x2(1 − x)y′′ + (x − 2)y′ − 3xy = 0 20. x2(1 − x2)y′′ + (2/x)y′ + 4y = 0
21. (1 − x2)2y′′ + x(1 − x)y′ + (1 + x)y = 0
22. x2y′′ + xy′ + (x2 − ν2)y = 0, Bessel equation

23. (x + 3)y′′ − 2xy′ + (1 − x2)y = 0

24. x(1 − x2)3y′′ + (1 − x2)2y′ + 2(1 + x)y = 0

25. (x + 2)2(x − 1)y′′ + 3(x − 1)y′ − 2(x + 2)y = 0

26. x(3 − x)y′′ + (x + 1)y′ − 2y = 0

27. (x2 + x − 2)y′′ + (x + 1)y′ + 2y = 0 28. xy′′ + exy′ + (3 cos x)y = 0

29. y′′ + (ln |x|)y′ + 3xy = 0 30. x2y′′ + 2(ex − 1)y′ + (e−x cos x)y = 0

31. x2y′′ − 3(sin x)y′ + (1 + x2)y = 0 32. xy′′ + y′ + (cot x)y = 0

33. (sin x)y′′ + xy′ + 4y = 0 34. (x sin x)y′′ + 3y′ + xy = 0

35. Find all values of α for which all solutions of x2y′′ + αxy′ + (5/2)y = 0 approach zero as
x → 0.
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36. Find all values of β for which all solutions of x2y′′ + βy = 0 approach zero as x → 0.

37. Find γ so that the solution of the initial value problem x2y′′ − 2y = 0, y(1) = 1, y′(1) = γ

is bounded as x → 0.

38. Find all values of α for which all solutions of x2y′′ + αxy′ + (5/2)y = 0 approach zero as
x → ∞.

39. Consider the Euler equation x2y′′ + αxy′ + βy = 0. Find conditions on α and β so that:
(a) All solutions approach zero as x → 0.
(b) All solutions are bounded as x → 0.
(c) All solutions approach zero as x → ∞.
(d) All solutions are bounded as x → ∞.
(e) All solutions are bounded both as x → 0 and as x → ∞.

40. Using the method of reduction of order, show that if r1 is a repeated root of

r(r − 1) + αr + β = 0,

then xr1 and xr1 ln x are solutions of x2y′′ + αxy′ + βy = 0 for x > 0.

In each of Problems 41 and 42 show that the point x = 0 is a regular singular point. In each

problem try to find solutions of the form
∞∑

n=0
anxn. Show that (except for constant multiples)

there is only one nonzero solution of this form in Problem 41 and that there are no nonzero
solutions of this form in Problem 42. Thus in neither case can the general solution be found
in this manner. This is typical of equations with singular points.

41. 2xy′′ + 3y′ + xy = 0

42. 2x2y′′ + 3xy′ − (1 + x)y = 0

43. Singularities at Infinity. The definitions of an ordinary point and a regular singular point
given in the preceding sections apply only if the point x0 is finite. In more advanced work
in differential equations it is often necessary to consider the point at infinity. This is done
by making the change of variable ξ = 1/x and studying the resulting equation at ξ = 0.
Show that, for the differential equation

P(x)y′′ + Q(x)y′ + R(x)y = 0,

the point at infinity is an ordinary point if

1
P(1/ξ)

[
2P(1/ξ)

ξ
− Q(1/ξ)

ξ 2

]
and

R(1/ξ)

ξ 4P(1/ξ)

have Taylor series expansions about ξ = 0. Show also that the point at infinity is a regular
singular point if at least one of the above functions does not have aTaylor series expansion,
but both

ξ

P(1/ξ)

[
2P(1/ξ)

ξ
− Q(1/ξ)

ξ 2

]
and

R(1/ξ)

ξ 2P(1/ξ)

do have such expansions.

In each of Problems 44 through 49 use the results of Problem 43 to determine whether the
point at infinity is an ordinary point, a regular singular point, or an irregular singular point of
the given differential equation.

44. y′′ + y = 0

45. x2y′′ + xy′ − 4y = 0
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46. (1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, Legendre equation

47. x2y′′ + xy′ + (x2 − ν2)y = 0, Bessel equation

48. y′′ − 2xy′ + λy = 0, Hermite equation

49. y′′ − xy = 0, Airy equation

5.5 Series Solutions Near a Regular Singular Point, Part I
We now consider the question of solving the general second order linear equation

P(x)y′′ + Q(x)y′ + R(x)y = 0 (1)

in the neighborhood of a regular singular point x = x0. For convenience we assume
that x0 = 0. If x0 �= 0, we can transform the equation into one for which the regular
singular point is at the origin by letting x − x0 equal t.

The fact that x = 0 is a regular singular point of Eq. (1) means that xQ(x)/P(x) =
xp(x) and x2R(x)/P(x) = x2q(x) have finite limits as x → 0 and are analytic at x = 0.
Thus they have convergent power series expansions of the form

xp(x) =
∞∑

n=0

pnxn, x2q(x) =
∞∑

n=0

qnxn, (2)

on some interval |x| < ρ about the origin, where ρ > 0. To make the quantities xp(x)

and x2q(x) appear in Eq. (1), it is convenient to divide Eq. (1) by P(x) and then to
multiply by x2, obtaining

x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0, (3)

or

x2y′′ + x(p0 + p1x + · · · + pnxn + · · ·)y′

+ (q0 + q1x + · · · + qnxn + · · ·)y = 0. (4)

If all of the coefficients pn and qn are zero, except possibly

p0 = lim
x→0

xQ(x)

P(x)
and q0 = lim

x→0

x2R(x)

P(x)
, (5)

then Eq. (4) reduces to the Euler equation

x2y′′ + p0xy′ + q0y = 0, (6)

which was discussed in the preceding section. In general, of course, some of the
pn and qn, n ≥ 1, are not zero. However, the essential character of solutions of
Eq. (4) is identical to that of solutions of the Euler equation (6). The presence of
the terms p1x + · · · + pnxn + · · · and q1x + · · · + qnxn + · · · merely complicates the
calculations.

We restrict our discussion primarily to the interval x > 0. The interval x < 0 can
be treated, just as for the Euler equation, by making the change of variable x = −ξ

and then solving the resulting equation for ξ > 0.
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Since the coefficients in Eq. (4) are “Euler coefficients” times power series, it is
natural to seek solutions in the form of “Euler solutions” times power series. Thus
we assume that

y = xr(a0 + a1x + · · · + anxn + · · ·) = xr
∞∑

n=0

anxn =
∞∑

n=0

anxr+n, (7)

where a0 �= 0. In other words, r is the exponent of the first term in the series, and a0

is its coefficient. As part of the solution we have to determine:

1. The values of r for which Eq. (1) has a solution of the form (7).
2. The recurrence relation for the coefficients an.

3. The radius of convergence of the series
∞∑

n=0
anxn.

The general theory was constructed by Frobenius12 and is fairly complicated.
Rather than trying to present this theory, we simply assume in this and the next
two sections that there does exist a solution of the stated form. In particular, we
assume that any power series in an expression for a solution has a nonzero radius of
convergence and concentrate on showing how to determine the coefficients in such
a series. To illustrate the method of Frobenius, we first consider an example.

E X A M P L E

1

Solve the differential equation

2x2y′′ − xy′ + (1 + x)y = 0. (8)

It is easy to show that x = 0 is a regular singular point of Eq. (8). Further, xp(x) = −1/2
and x2q(x) = (1 + x)/2. Thus p0 = −1/2, q0 = 1/2, q1 = 1/2, and all other p’s and q’s are zero.
Then, from Eq. (6), the Euler equation corresponding to Eq. (8) is

2x2y′′ − xy′ + y = 0. (9)

To solve Eq. (8), we assume that there is a solution of the form (7). Then y′ and y′′ are
given by

y′ =
∞∑

n=0

an(r + n)xr+n−1 (10)

and

y′′ =
∞∑

n=0

an(r + n)(r + n − 1)xr+n−2. (11)

By substituting the expressions for y, y′, and y′′ in Eq. (8), we obtain

2x2y′′ − xy′ + (1 + x)y =
∞∑

n=0

2an(r + n)(r + n − 1)xr+n

−
∞∑

n=0

an(r + n)xr+n +
∞∑

n=0

anxr+n +
∞∑

n=0

anxr+n+1. (12)

12Ferdinand Georg Frobenius (1849–1917) was (like Fuchs) a student and eventually a professor at the
University of Berlin. He showed how to construct series solutions about regular singular points in 1874.
His most distinguished work, however, was in algebra, where he was one of the foremost early developers
of group theory.
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The last term in Eq. (12) can be written as
∞∑

n=1
an−1xr+n, so by combining the terms in Eq. (12),

we obtain

2x2y′′ − xy′ + (1 + x)y = a0[2r(r − 1) − r + 1]xr

+
∞∑

n=1

{
[2(r + n)(r + n − 1) − (r + n) + 1] an + an−1

}
xr+n = 0. (13)

If Eq. (13) is to be satisfied for all x, the coefficient of each power of x in Eq. (13) must be
zero. From the coefficient of xr we obtain, since a0 �= 0,

2r(r − 1) − r + 1 = 2r2 − 3r + 1 = (r − 1)(2r − 1) = 0. (14)

Equation (14) is called the indicial equation for Eq. (8). Note that it is exactly the polynomial
equation we would obtain for the Euler equation (9) associated with Eq. (8). The roots of the
indicial equation are

r1 = 1, r2 = 1/2. (15)

These values of r are called the exponents at the singularity for the regular singular point
x = 0. They determine the qualitative behavior of the solution (7) in the neighborhood of the
singular point.

Now we return to Eq. (13) and set the coefficient of xr+n equal to zero. This gives the relation

[2(r + n)(r + n − 1) − (r + n) + 1] an + an−1 = 0, n ≥ 1, (16)

or

an = − an−1

2(r + n)2 − 3(r + n) + 1

= − an−1

[(r + n) − 1][2(r + n) − 1] , n ≥ 1. (17)

For each root r1 and r2 of the indicial equation,we use the recurrence relation (17) to determine
a set of coefficients a1, a2, . . . . For r = r1 = 1, Eq. (17) becomes

an = − an−1

(2n + 1)n
, n ≥ 1.

Thus

a1 = − a0

3 · 1
,

a2 = − a1

5 · 2
= a0

(3 · 5)(1 · 2)
,

and
a3 = − a2

7 · 3
= − a0

(3 · 5 · 7)(1 · 2 · 3)
.

In general, we have

an = (−1)n

[3 · 5 · 7 · · · (2n + 1)]n!a0, n ≥ 4. (18)

Multiplying the numerator and denominator of the right side of Eq. (18) by 2 · 4 · 6 · · · 2n =
2nn!, we can rewrite an as

an = (−1)n2n

(2n + 1)!a0, n ≥ 1.
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Hence, if we omit the constant multiplier a0, one solution of Eq. (8) is

y1(x) = x

[
1 +

∞∑
n=1

(−1)n2n

(2n + 1)!xn

]
, x > 0. (19)

To determine the radius of convergence of the series in Eq. (19), we use the ratio test:

lim
n→∞

∣∣∣∣an+1xn+1

anxn

∣∣∣∣ = lim
n→∞

2|x|
(2n + 2)(2n + 3)

= 0

for all x. Thus the series converges for all x.
Corresponding to the second root r = r2 = 1

2 , we proceed similarly. From Eq. (17) we have

an = − an−1

2n
(
n − 1

2

) = − an−1

n(2n − 1)
, n ≥ 1.

Hence

a1 = − a0

1 · 1
,

a2 = − a1

2 · 3
= a0

(1 · 2)(1 · 3)
,

a3 = − a2

3 · 5
= − a0

(1 · 2 · 3)(1 · 3 · 5)
,

and, in general,

an = (−1)n

n![1 · 3 · 5 · · · (2n − 1)]a0, n ≥ 4. (20)

Just as in the case of the first root r1, we multiply the numerator and denominator by
2 · 4 · 6 · · · 2n = 2nn!. Then we have

an = (−1)n2n

(2n)! a0, n ≥ 1.

Again omitting the constant multiplier a0, we obtain the second solution

y2(x) = x1/2

[
1 +

∞∑
n=1

(−1)n2n

(2n)! xn

]
, x > 0. (21)

As before, we can show that the series in Eq. (21) converges for all x. Since y1 and y2 behave
like x and x1/2, respectively, near x = 0, they form a fundamental set of solutions. Hence the
general solution of Eq. (8) is

y = c1y1(x) + c2y2(x), x > 0.

The preceding example illustrates that if x = 0 is a regular singular point, then
sometimes there are two solutions of the form (7) in the neighborhood of this point.
Similarly, if there is a regular singular point at x = x0, then there may be two solutions
of the form

y = (x − x0)
r

∞∑
n=0

an(x − x0)
n (22)

that are valid near x = x0. However, just as an Euler equation may not have two
solutions of the form y = xr , so a more general equation with a regular singular point
may not have two solutions of the form (7) or (22). In particular, we show in the next
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section that if the roots r1 and r2 of the indicial equation are equal, or differ by an
integer, then the second solution normally has a more complicated structure. In all
cases, though, it is possible to find at least one solution of the form (7) or (22); if r1

and r2 differ by an integer, this solution corresponds to the larger value of r. If there
is only one such solution, then the second solution involves a logarithmic term, just as
for the Euler equation when the roots of the characteristic equation are equal. The
method of reduction of order or some other procedure can be invoked to determine
the second solution in such cases. This is discussed in Sections 5.6 and 5.7.

If the roots of the indicial equation are complex, then they cannot be equal or
differ by an integer, so there are always two solutions of the form (7) or (22). Of
course, these solutions are complex-valued functions of x. However, as for the Euler
equation, it is possible to obtain real-valued solutions by taking the real and imaginary
parts of the complex solutions.

Finally, we mention a practical point. If P, Q, and R are polynomials, it is often
much better to work directly with Eq. (1) than with Eq. (3). This avoids the necessity
of expressing xQ(x)/P(x) and x2R(x)/P(x) as power series. For example, it is more
convenient to consider the equation

x(1 + x)y′′ + 2y′ + xy = 0

than to write it in the form

x2y′′ + 2x
1 + x

y′ + x2

1 + x
y = 0,

which would entail expanding 2x/(1 + x) and x2/(1 + x) in power series.

PROBLEMS In each of Problems 1 through 10:
(a) Show that the given differential equation has a regular singular point at x = 0.
(b) Determine the indicial equation, the recurrence relation, and the roots of the indicial
equation.
(c) Find the series solution (x > 0) corresponding to the larger root.
(d) If the roots are unequal and do not differ by an integer, find the series solution corre-
sponding to the smaller root also.

1. 2xy′′ + y′ + xy = 0 2. x2y′′ + xy′ + (
x2 − 1

9

)
y = 0

3. xy′′ + y = 0 4. xy′′ + y′ − y = 0
5. 3x2y′′ + 2xy′ + x2y = 0 6. x2y′′ + xy′ + (x − 2)y = 0
7. xy′′ + (1 − x)y′ − y = 0 8. 2x2y′′ + 3xy′ + (2x2 − 1)y = 0
9. x2y′′ − x(x + 3)y′ + (x + 3)y = 0 10. x2y′′ + (

x2 + 1
4

)
y = 0

11. The Legendre equation of order α is

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0.

The solution of this equation near the ordinary point x = 0 was discussed in Problems 22
and 23 of Section 5.3. In Example 4 of Section 5.4 it was shown that x = ±1 are regular
singular points.
(a) Determine the indicial equation and its roots for the point x = 1.
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(b) Find a series solution in powers of x − 1 for x − 1 > 0.
Hint: Write 1 + x = 2 + (x − 1) and x = 1 + (x − 1). Alternatively, make the change of
variable x − 1 = t and determine a series solution in powers of t.

12. The Chebyshev equation is

(1 − x2)y′′ − xy′ + α2y = 0,

where α is a constant; see Problem 10 of Section 5.3.
(a) Show that x = 1 and x = −1 are regular singular points, and find the exponents at
each of these singularities.
(b) Find two solutions about x = 1.

13. The Laguerre13 differential equation is

xy′′ + (1 − x)y′ + λy = 0.

(a) Show that x = 0 is a regular singular point.
(b) Determine the indicial equation, its roots, and the recurrence relation.
(c) Find one solution (x > 0). Show that if λ = m, a positive integer, this solution reduces
to a polynomial. When properly normalized, this polynomial is known as the Laguerre
polynomial, Lm(x).

14. The Bessel equation of order zero is

x2y′′ + xy′ + x2y = 0.

(a) Show that x = 0 is a regular singular point.
(b) Show that the roots of the indicial equation are r1 = r2 = 0.
(c) Show that one solution for x > 0 is

J0(x) = 1 +
∞∑

n=1

(−1)nx2n

22n(n!)2
.

(d) Show that the series for J0(x) converges for all x. The function J0 is known as the
Bessel function of the first kind of order zero.

15. Referring to Problem 14, use the method of reduction of order to show that the second
solution of the Bessel equation of order zero contains a logarithmic term.
Hint: If y2(x) = J0(x)v(x), then

y2(x) = J0(x)

∫
dx

x[J0(x)]2
.

Find the first term in the series expansion of 1/x[J0(x)]2.
16. The Bessel equation of order one is

x2y′′ + xy′ + (x2 − 1)y = 0.

(a) Show that x = 0 is a regular singular point.
(b) Show that the roots of the indicial equation are r1 = 1 and r2 = −1.

13Edmond Nicolas Laguerre (1834–1886), a French geometer and analyst, studied the polynomials named
for him about 1879.
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(c) Show that one solution for x > 0 is

J1(x) = x
2

∞∑
n=0

(−1)nx2n

(n + 1)! n! 22n
.

(d) Show that the series for J1(x) converges for all x. The function J1 is known as the
Bessel function of the first kind of order one.
(e) Show that it is impossible to determine a second solution of the form

x−1
∞∑

n=0

bnxn, x > 0.

5.6 Series Solutions Near a Regular Singular Point, Part II
Now let us consider the general problem of determining a solution of the equation

L[y] = x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0, (1)

where

xp(x) =
∞∑

n=0

pnxn, x2q(x) =
∞∑

n=0

qnxn, (2)

and both series converge in an interval |x| < ρ for some ρ > 0. The point x = 0 is a
regular singular point, and the corresponding Euler equation is

x2y′′ + p0xy′ + q0y = 0. (3)

We seek a solution of Eq. (1) for x > 0 and assume that it has the form

y = φ(r, x) = xr
∞∑

n=0

anxn =
∞∑

n=0

anxr+n, (4)

where a0 �= 0, and we have written y = φ(r, x) to emphasize that φ depends on r as
well as x. It follows that

y′ =
∞∑

n=0

(r + n)anxr+n−1, y′′ =
∞∑

n=0

(r + n)(r + n − 1)anxr+n−2. (5)

Then, substituting from Eqs. (2), (4), and (5) in Eq. (1) gives

a0r(r − 1)xr + a1(r + 1)rxr+1 + · · · + an(r + n)(r + n − 1)xr+n + · · ·
+ (p0 + p1x + · · · + pnxn + · · ·)

× [a0rxr + a1(r + 1)xr+1 + · · · + an(r + n)xr+n + · · ·]
+ (q0 + q1x + · · · + qnxn + · · ·)

× (a0xr + a1xr+1 + · · · + anxr+n + · · ·) = 0.
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Multiplying the infinite series together and then collecting terms, we obtain

a0F(r)xr + [a1F(r + 1) + a0(p1r + q1)]xr+1

+ {
a2F(r + 2) + a0(p2r + q2) + a1[p1(r + 1) + q1]

}
xr+2

+ · · · + {
anF(r + n) + a0(pnr + qn) + a1[pn−1(r + 1) + qn−1]

+ · · · + an−1[p1(r + n − 1) + q1]
}

xr+n + · · · = 0,

or, in a more compact form,

L[φ](r, x) = a0F(r)xr

+
∞∑

n=1

{
F(r + n)an +

n−1∑
k=0

ak[(r + k)pn−k + qn−k]
}

xr+n = 0, (6)

where

F(r) = r(r − 1) + p0r + q0. (7)

For Eq. (6) to be satisfied for all x > 0, the coefficient of each power of x must be
zero.

Since a0 �= 0, the term involving xr yields the equation F(r) = 0. This equation is
called the indicial equation; note that it is exactly the equation we would obtain in
looking for solutions y = xr of the Euler equation (3). Let us denote the roots of
the indicial equation by r1 and r2 with r1 ≥ r2 if the roots are real. If the roots are
complex, the designation of the roots is immaterial. Only for these values of r can we
expect to find solutions of Eq. (1) of the form (4). The roots r1 and r2 are called the
exponents at the singularity; they determine the qualitative nature of the solution in
the neighborhood of the singular point.

Setting the coefficient of xr+n in Eq. (6) equal to zero gives the recurrence relation

F(r + n)an +
n−1∑
k=0

ak[(r + k)pn−k + qn−k] = 0, n ≥ 1. (8)

Equation (8) shows that, in general, an depends on the value of r and all the pre-
ceding coefficients a0, a1, . . . , an−1. It also shows that we can successively compute
a1, a2, . . . , an, . . . in terms of a0 and the coefficients in the series for xp(x) and x2q(x),
provided that F(r + 1), F(r + 2), . . . , F(r + n), . . . are not zero. The only values of
r for which F(r) = 0 are r = r1 and r = r2; since r1 ≥ r2, it follows that r1 + n is not
equal to r1 or r2 for n ≥ 1. Consequently, F(r1 + n) �= 0 for n ≥ 1. Hence we can
always determine one solution of Eq. (1) in the form (4), namely,

y1(x) = xr1

[
1 +

∞∑
n=1

an(r1)xn

]
, x > 0. (9)

Here we have introduced the notation an(r1) to indicate that an has been determined
from Eq. (8) with r = r1. To specify the arbitrary constant in the solution, we have
taken a0 to be 1.
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If r2 is not equal to r1, and r1 − r2 is not a positive integer, then r2 + n is not equal
to r1 for any value of n ≥ 1; hence F(r2 + n) �= 0, and we can also obtain a second
solution

y2(x) = xr2

[
1 +

∞∑
n=1

an(r2)xn

]
, x > 0. (10)

Just as for the series solutions about ordinary points discussed in Section 5.3, the
series in Eqs. (9) and (10) converge at least in the interval |x| < ρ where the series for
both xp(x) and x2q(x) converge. Within their radii of convergence, the power series

1 +
∞∑

n=1
an(r1)xn and 1 +

∞∑
n=1

an(r2)xn define functions that are analytic at x = 0. Thus

the singular behavior, if there is any, of the solutions y1 and y2 is due to the factors
xr1 and xr2 that multiply these two analytic functions. Next, to obtain real-valued
solutions for x < 0, we can make the substitution x = −ξ with ξ > 0. As we might
expect from our discussion of the Euler equation, it turns out that we need only
replace xr1 in Eq. (9) and xr2 in Eq. (10) by |x|r1 and |x|r2 , respectively. Finally, note
that if r1 and r2 are complex numbers, then they are necessarily complex conjugates
and r2 �= r1 + N for any positive integer N . Thus, in this case we can always find two
series solutions of the form (4); however, they are complex-valued functions of x.
Real-valued solutions can be obtained by taking the real and imaginary parts of the
complex-valued solutions. The exceptional cases in which r1 = r2 or r1 − r2 = N ,
where N is a positive integer, require more discussion and will be considered later in
this section.

It is important to realize that r1 and r2, the exponents at the singular point, are easy
to find and that they determine the qualitative behavior of the solutions. To calculate
r1 and r2, it is only necessary to solve the quadratic indicial equation

r(r − 1) + p0r + q0 = 0, (11)

whose coefficients are given by

p0 = lim
x→0

xp(x), q0 = lim
x→0

x2q(x). (12)

Note that these are exactly the limits that must be evaluated in order to classify the
singularity as a regular singular point; thus they have usually been determined at an
earlier stage of the investigation.

Further, if x = 0 is a regular singular point of the equation

P(x)y′′ + Q(x)y′ + R(x)y = 0, (13)

where the functions P, Q, and R are polynomials, then xp(x) = xQ(x)/P(x) and
x2q(x) = x2R(x)/P(x). Thus

p0 = lim
x→0

x
Q(x)

P(x)
, q0 = lim

x→0
x2 R(x)

P(x)
. (14)

Finally, the radii of convergence for the series in Eqs. (9) and (10) are at least equal
to the distance from the origin to the nearest zero of P other than x = 0 itself.
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E X A M P L E

1

Discuss the nature of the solutions of the equation

2x(1 + x)y′′ + (3 + x)y′ − xy = 0

near the singular points.
This equation is of the form (13) with P(x) = 2x(1 + x), Q(x) = 3 + x, and R(x) = −x. The

points x = 0 and x = −1 are the only singular points. The point x = 0 is a regular singular
point, since

lim
x→0

x
Q(x)

P(x)
= lim

x→0
x

3 + x
2x(1 + x)

= 3
2

,

lim
x→0

x2 R(x)

P(x)
= lim

x→0
x2 −x

2x(1 + x)
= 0.

Further, from Eq. (14), p0 = 3
2 and q0 = 0. Thus the indicial equation is r(r − 1) + 3

2 r = 0, and
the roots are r1 = 0, r2 = − 1

2 . Since these roots are not equal and do not differ by an integer,
there are two solutions of the form

y1(x) = 1 +
∞∑

n=1

an(0)xn and y2(x) = |x|−1/2

[
1 +

∞∑
n=1

an
(− 1

2

)
xn

]

for 0 < |x| < ρ. A lower bound for the radius of convergence of each series is 1, the distance
from x = 0 to x = −1, the other zero of P(x). Note that the solution y1 is bounded as x → 0,
indeed is analytic there, and that the second solution y2 is unbounded as x → 0.

The point x = −1 is also a regular singular point, since

lim
x→−1

(x + 1)
Q(x)

P(x)
= lim

x→−1

(x + 1)(3 + x)

2x(1 + x)
= −1,

lim
x→−1

(x + 1)2 R(x)

P(x)
= lim

x→−1

(x + 1)2(−x)

2x(1 + x)
= 0.

In this case p0 = −1, q0 = 0, so the indicial equation is r(r − 1) − r = 0.The roots of the indicial
equation are r1 = 2 and r2 = 0. Corresponding to the larger root there is a solution of the form

y1(x) = (x + 1)2

[
1 +

∞∑
n=1

an(2)(x + 1)n

]
.

The series converges at least for |x + 1| < 1, and y1 is an analytic function there. Since the two
roots differ by a positive integer, there may or may not be a second solution of the form

y2(x) = 1 +
∞∑

n=1

an(0)(x + 1)n.

We cannot say more without further analysis.
Observe that no complicated calculations were required to discover the information about

the solutions presented in this example. All that was needed was to evaluate a few limits and
solve two quadratic equations.

We now consider the cases in which the roots of the indicial equation are equal, or
differ by a positive integer, r1 − r2 = N . As we have shown earlier, there is always one
solution of the form (9) corresponding to the larger root r1 of the indicial equation.
By analogy with the Euler equation, we might expect that if r1 = r2, then the second
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solution contains a logarithmic term. This may also be true if the roots differ by an
integer.

Equal Roots. The method of finding the second solution is essentially the same as the
one we used in finding the second solution of the Euler equation (see Section 5.4)
when the roots of the indicial equation were equal. We consider r to be a continuous
variable and determine an as a function of r by solving the recurrence relation (8).
For this choice of an(r) for n ≥ 1, Eq. (6) reduces to

L[φ](r, x) = a0F(r)xr = a0(r − r1)
2xr , (15)

since r1 is a repeated root of F(r). Setting r = r1 in Eq. (15), we find that
L[φ](r1, x) = 0; hence, as we already know, y1(x) given by Eq. (9) is one solution
of Eq. (1). But more important, it also follows from Eq. (15), just as for the Euler
equation, that

L
[
∂φ

∂r

]
(r1, x) = a0

∂

∂r
[xr(r − r1)

2]
∣∣∣
r=r1

= a0[(r − r1)
2xr ln x + 2(r − r1)xr]

∣∣∣
r=r1

= 0. (16)

Hence, a second solution of Eq. (1) is

y2(x) = ∂φ(r, x)

∂r

∣∣∣∣∣
r=r1

= ∂

∂r

{
xr

[
a0 +

∞∑
n=1

an(r)xn

]} ∣∣∣∣∣
r=r1

= (xr1 ln x)

[
a0 +

∞∑
n=1

an(r1)xn

]
+ xr1

∞∑
n=1

a′
n(r1)xn

= y1(x) ln x + xr1

∞∑
n=1

a′
n(r1)xn, x > 0, (17)

where a′
n(r1) denotes dan/dr evaluated at r = r1.

It may turn out that it is difficult to determine an(r) as a function of r from the
recurrence relation (8) and then to differentiate the resulting expression with respect
to r. An alternative is simply to assume that y has the form of Eq. (17). That is, assume
that

y = y1(x) ln x + xr1

∞∑
n=1

bnxn, x > 0, (18)

where y1(x) has already been found. The coefficients bn are calculated, as usual, by
substituting into the differential equation, collecting terms, and setting the coefficient
of each power of x equal to zero. A third possibility is to use the method of reduction
of order to find y2(x) once y1(x) is known.

Roots r1 and r2 Differing by an Integer N. For this case the derivation of the second so-
lution is considerably more complicated and will not be given here. The form of
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this solution is stated in Eq. (24) in the following theorem. The coefficients cn(r2) in
Eq. (24) are given by

cn(r2) = d
dr

[(r − r2)an(r)]
∣∣∣
r=r2

, n = 1, 2, . . . , (19)

where an(r) is determined from the recurrence relation (8) with a0 = 1. Further, the
coefficient a in Eq. (24) is

a = lim
r→r2

(r − r2)aN(r). (20)

If aN(r2) is finite, then a = 0 and there is no logarithmic term in y2. A full derivation
of formulas (19) and (20) may be found in Coddington (Chapter 4).

In practice, the best way to determine whether a is zero in the second solution is
simply to try to compute the an corresponding to the root r2 and to see whether it is
possible to determine aN(r2). If so, there is no further problem. If not, we must use
the form (24) with a �= 0.

When r1 − r2 = N , there are again three ways to find a second solution. First, we
can calculate a and cn(r2) directly by substituting the expression (24) for y in Eq. (1).
Second, we can calculate cn(r2) and a of Eq. (24) using the formulas (19) and (20).
If this is the planned procedure, then in calculating the solution corresponding to
r = r1, be sure to obtain the general formula for an(r) rather than just an(r1). The
third alternative is to use the method of reduction of order.

Theorem 5.6.1 Consider the differential equation (1)

x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0,

where x = 0 is a regular singular point. Then xp(x) and x2q(x) are analytic at x = 0
with convergent power series expansions

xp(x) =
∞∑

n=0

pnxn, x2q(x) =
∞∑

n=0

qnxn

for |x| < ρ, where ρ > 0 is the minimum of the radii of convergence of the power
series for xp(x) and x2q(x). Let r1 and r2 be the roots of the indicial equation

F(r) = r(r − 1) + p0r + q0 = 0,

with r1 ≥ r2 if r1 and r2 are real. Then in either the interval −ρ < x < 0 or the
interval 0 < x < ρ, there exists a solution of the form

y1(x) = |x|r1

[
1 +

∞∑
n=1

an(r1)xn

]
, (21)

where the an(r1) are given by the recurrence relation (8) with a0 = 1 and r = r1.
If r1 − r2 is not zero or a positive integer, then in either the interval −ρ < x < 0

or the interval 0 < x < ρ, there exists a second solution of the form

y2(x) = |x|r2

[
1 +

∞∑
n=1

an(r2)xn

]
. (22)
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The an(r2) are also determined by the recurrence relation (8) with a0 = 1 and r = r2.
The power series in Eqs. (21) and (22) converge at least for |x| < ρ.

If r1 = r2, then the second solution is

y2(x) = y1(x) ln |x| + |x|r1

∞∑
n=1

bn(r1)xn. (23)

If r1 − r2 = N , a positive integer, then

y2(x) = ay1(x) ln |x| + |x|r2

[
1 +

∞∑
n=1

cn(r2)xn

]
. (24)

The coefficients an(r1), bn(r1), cn(r2), and the constant a can be determined by
substituting the form of the series solutions for y in Eq. (1). The constant a may
turn out to be zero, in which case there is no logarithmic term in the solution (24).
Each of the series in Eqs. (23) and (24) converges at least for |x| < ρ and defines a
function that is analytic in some neighborhood of x = 0.

In all three cases the two solutions y1(x) and y2(x) form a fundamental set of
solutions of the given differential equation.

PROBLEMS In each of Problems 1 through 12:
(a) Find all the regular singular points of the given differential equation.
(b) Determine the indicial equation and the exponents at the singularity for each regular
singular point.

1. xy′′ + 2xy′ + 6exy = 0 2. x2y′′ − x(2 + x)y′ + (2 + x2)y = 0

3. x(x − 1)y′′ + 6x2y′ + 3y = 0 4. y′′ + 4xy′ + 6y = 0

5. x2y′′ + 3(sin x)y′ − 2y = 0 6. 2x(x + 2)y′′ + y′ − xy = 0

7. x2y′′ + 1
2 (x + sin x)y′ + y = 0 8. (x + 1)2y′′ + 3(x2 − 1)y′ + 3y = 0

9. x2(1 − x)y′′ − (1 + x)y′ + 2xy = 0 10. (x − 2)2(x + 2)y′′ + 2xy′ + 3(x − 2)y = 0

11. (4 − x2)y′′ + 2xy′ + 3y = 0 12. x(x + 3)2y′′ − 2(x + 3)y′ − xy = 0

In each of Problems 13 through 17:
(a) Show that x = 0 is a regular singular point of the given differential equation.
(b) Find the exponents at the singular point x = 0.
(c) Find the first three nonzero terms in each of two solutions (not multiples of each other)
about x = 0.

13. xy′′ + y′ − y = 0

14. xy′′ + 2xy′ + 6exy = 0; see Problem 1

15. x(x − 1)y′′ + 6x2y′ + 3y = 0; see Problem 3

16. xy′′ + y = 0

17. x2y′′ + (sin x)y′ − (cos x)y = 0

18. (a) Show that
(ln x)y′′ + 1

2 y′ + y = 0

has a regular singular point at x = 1.
(b) Determine the roots of the indicial equation at x = 1.
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(c) Determine the first three nonzero terms in the series
∞∑

n=0
an(x − 1)r+n corresponding

to the larger root. Take x − 1 > 0.
(d) What would you expect the radius of convergence of the series to be?

19. In several problems in mathematical physics it is necessary to study the differential equa-
tion

x(1 − x)y′′ + [γ − (1 + α + β)x]y′ − αβy = 0, (i)

where α, β, and γ are constants. This equation is known as the hypergeometric equation.
(a) Show that x = 0 is a regular singular point and that the roots of the indicial equation
are 0 and 1 − γ .
(b) Show that x = 1 is a regular singular point and that the roots of the indicial equation
are 0 and γ − α − β.
(c) Assuming that 1 − γ is not a positive integer, show that, in the neighborhood of x = 0,
one solution of Eq. (i) is

y1(x) = 1 + αβ

γ · 1!x + α(α + 1)β(β + 1)

γ (γ + 1)2! x2 + · · · .

What would you expect the radius of convergence of this series to be?
(d) Assuming that 1 − γ is not an integer or zero, show that a second solution for 0 < x < 1
is

y2(x) = x1−γ

[
1 + (α − γ + 1)(β − γ + 1)

(2 − γ )1! x

+ (α − γ + 1)(α − γ + 2)(β − γ + 1)(β − γ + 2)

(2 − γ )(3 − γ )2! x2 + · · ·
]

.

(e) Show that the point at infinity is a regular singular point and that the roots of the
indicial equation are α and β. See Problem 43 of Section 5.4.

20. Consider the differential equation

x3y′′ + αxy′ + βy = 0,

where α and β are real constants and α �= 0.
(a) Show that x = 0 is an irregular singular point.

(b) By attempting to determine a solution of the form
∞∑

n=0
anxr+n, show that the indicial

equation for r is linear and that, consequently, there is only one formal solution of the
assumed form.
(c) Show that ifβ/α = −1, 0, 1, 2, . . . , then the formal series solution terminates and there-
fore is an actual solution. For other values of β/α, show that the formal series solution has
a zero radius of convergence and so does not represent an actual solution in any interval.

21. Consider the differential equation

y′′ + α

xs
y′ + β

xt
y = 0, (i)

where α �= 0 and β �= 0 are real numbers, and s and t are positive integers that for the
moment are arbitrary.
(a) Show that if s > 1 or t > 2, then the point x = 0 is an irregular singular point.
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(b) Try to find a solution of Eq. (i) of the form

y =
∞∑

n=0

anxr+n, x > 0. (ii)

Show that if s = 2 and t = 2, then there is only one possible value of r for which there is a
formal solution of Eq. (i) of the form (ii).
(c) Show that if s = 1 and t = 3, then there are no solutions of Eq. (i) of the form (ii).
(d) Show that the maximum values of s and t for which the indicial equation is quadratic in
r [and hence we can hope to find two solutions of the form (ii)] are s = 1 and t = 2. These
are precisely the conditions that distinguish a “weak singularity,” or a regular singular
point, from an irregular singular point, as we defined them in Section 5.4.
As a note of caution, we point out that although it is sometimes possible to obtain a formal
series solution of the form (ii) at an irregular singular point, the series may not have a
positive radius of convergence. See Problem 20 for an example.

5.7 Bessel’s Equation
In this section we illustrate the discussion in Section 5.6 by considering three special
cases of Bessel’s14 equation,

x2y′′ + xy′ + (x2 − ν2)y = 0, (1)

where ν is a constant. It is easy to show that x = 0 is a regular singular point of
Eq. (1). We have

p0 = lim
x→0

x
Q(x)

P(x)
= lim

x→0
x

1
x

= 1,

q0 = lim
x→0

x2 R(x)

P(x)
= lim

x→0
x2 x2 − ν2

x2
= −ν2.

Thus the indicial equation is

F(r) = r(r − 1) + p0r + q0 = r(r − 1) + r − ν2 = r2 − ν2 = 0,

with the roots r = ±ν. We will consider the three cases ν = 0, ν = 1
2 , and ν = 1 for

the interval x > 0.

Bessel Equation of Order Zero. In this case ν = 0, so Eq. (1) reduces to

L[y] = x2y′′ + xy′ + x2y = 0, (2)

14Friedrich Wilhelm Bessel (1784–1846) embarked on a career in business as a youth but soon became
interested in astronomy and mathematics. He was appointed director of the observatory at Königsberg in
1810 and held this position until his death. His study of planetary perturbations led him in 1824 to make
the first systematic analysis of the solutions, known as Bessel functions, of Eq. (1). He is also famous for
making, in 1838, the first accurate determination of the distance from the earth to a star.
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and the roots of the indicial equation are equal: r1 = r2 = 0. Substituting

y = φ(r, x) = a0xr +
∞∑

n=1

anxr+n, (3)

in Eq. (2), we obtain

L[φ](r, x) =
∞∑

n=0

an[(r + n)(r + n − 1) + (r + n)]xr+n +
∞∑

n=0

anxr+n+2

= a0[r(r − 1) + r]xr + a1[(r + 1)r + (r + 1)]xr+1

+
∞∑

n=2

{
an[(r + n)(r + n − 1) + (r + n)] + an−2

}
xr+n = 0. (4)

As we have already noted, the roots of the indicial equation F(r) = r(r − 1) + r = 0
are r1 = 0 and r2 = 0. The recurrence relation is

an(r) = − an−2(r)
(r + n)(r + n − 1) + (r + n)

= − an−2(r)
(r + n)2

, n ≥ 2. (5)

To determine y1(x), we set r equal to 0. Then, from Eq. (4), it follows that for
the coefficient of xr+1 to be zero we must choose a1 = 0. Hence, from Eq. (5),
a3 = a5 = a7 = · · · = 0. Further,

an(0) = −an−2(0)/n2, n = 2, 4, 6, 8, . . . ,

or, letting n = 2m, we obtain

a2m(0) = −a2m−2(0)/(2m)2, m = 1, 2, 3, . . . .

Thus
a2(0) = −a0

22
, a4(0) = a0

2422
, a6(0) = − a0

26(3 · 2)2
,

and, in general,

a2m(0) = (−1)ma0

22m(m!)2
, m = 1, 2, 3, . . . . (6)

Hence

y1(x) = a0

[
1 +

∞∑
m=1

(−1)mx2m

22m(m!)2

]
, x > 0. (7)

The function in brackets is known as the Bessel function of the first kind of order
zero and is denoted by J0(x). It follows from Theorem 5.6.1 that the series converges
for all x and that J0 is analytic at x = 0. Some of the important properties of J0 are
discussed in the problems. Figure 5.7.1 shows the graphs of y = J0(x) and some of
the partial sums of the series (7).

To determine y2(x), we will calculate a′
n(0).15 First we note from the coeffi-

cient of xr+1 in Eq. (4) that (r + 1)2a1(r) = 0. Thus a1(r) = 0 for all r near r = 0.

15Problem 10 outlines an alternative procedure, in which we simply substitute the form (23) of Section 5.6
in Eq. (2) and then determine the bn.
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FIGURE 5.7.1 Polynomial approximations to J0(x). The value of n is the degree of the
approximating polynomial.

So not only does a1(0) = 0 but also a′
1(0) = 0. From the recurrence relation (5) it

follows that a′
3(0) = a′

5(0) = · · · = a′
2n+1(0) = · · · = 0; hence we need only compute

a′
2m(0), m = 1, 2, 3, . . . . From Eq. (5) we have

a2m(r) = −a2m−2(r)/(r + 2m)2, m = 1, 2, 3, . . . .

By solving this recurrence relation, we obtain

a2(r) = − a0

(r + 2)2
, a4(r) = a0

(r + 2)2(r + 4)2
,

and, in general,

a2m(r) = (−1)ma0

(r + 2)2 · · · (r + 2m)2
, m ≥ 3. (8)

The computation of a′
2m(r) can be carried out most conveniently by noting that if

f (x) = (x − α1)
β1(x − α2)

β2(x − α3)
β3 · · · (x − αn)

βn ,

and if x is not equal to α1, α2, . . . , αn, then

f ′(x)

f (x)
= β1

x − α1
+ β2

x − α2
+ · · · + βn

x − αn
.

Applying this result to a2m(r) from Eq. (8), we find that

a′
2m(r)

a2m(r)
= −2

(
1

r + 2
+ 1

r + 4
+ · · · + 1

r + 2m

)
,

and setting r equal to 0, we obtain

a′
2m(0) = −2

[
1
2

+ 1
4

+ · · · + 1
2m

]
a2m(0).

Substituting for a2m(0) from Eq. (6), and letting

Hm = 1 + 1
2

+ 1
3

+ · · · + 1
m

, (9)
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we obtain, finally,

a′
2m(0) = −Hm

(−1)ma0

22m(m!)2
, m = 1, 2, 3, . . . .

The second solution of the Bessel equation of order zero is found by setting a0 = 1
and substituting for y1(x) and a′

2m(0) = b2m(0) in Eq. (23) of Section 5.6. We obtain

y2(x) = J0(x) ln x +
∞∑

m=1

(−1)m+1Hm

22m(m!)2
x2m, x > 0. (10)

Instead of y2, the second solution is usually taken to be a certain linear combination
of J0 and y2. It is known as the Bessel function of the second kind of order zero
and is denoted by Y0. Following Copson (Chapter 12), we define16

Y0(x) = 2
π

[y2(x) + (γ − ln 2)J0(x)]. (11)

Here γ is a constant known as the Euler–Máscheroni17 constant; it is defined by the
equation

γ = lim
n→∞(Hn − ln n) ∼= 0.5772. (12)

Substituting for y2(x) in Eq. (11), we obtain

Y0(x) = 2
π

[(
γ + ln

x
2

)
J0(x) +

∞∑
m=1

(−1)m+1Hm

22m(m!)2
x2m

]
, x > 0. (13)

The general solution of the Bessel equation of order zero for x > 0 is

y = c1J0(x) + c2Y0(x).

Note that J0(x) → 1 as x → 0 and that Y0(x) has a logarithmic singularity at x = 0;
that is, Y0(x) behaves as (2/π) ln x when x → 0 through positive values. Thus, if we
are interested in solutions of Bessel’s equation of order zero that are finite at the
origin, which is often the case, we must discard Y0. The graphs of the functions J0

and Y0 are shown in Figure 5.7.2.
It is interesting to note from Figure 5.7.2 that for x large, both J0(x) and Y0(x) are

oscillatory. Such a behavior might be anticipated from the original equation; indeed
it is true for the solutions of the Bessel equation of order ν. If we divide Eq. (1) by
x2, we obtain

y′′ + 1
x

y′ +
(

1 − ν2

x2

)
y = 0.

16Other authors use other definitions for Y0. The present choice for Y0 is also known as the Weber
function, after Heinrich Weber (1842–1913), who taught at several German universities.
17Lorenzo Máscheroni (1750–1800) was an Italian priest and professor at the University of Pavia. He
correctly calculated the first 19 decimal places of γ in 1790.
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FIGURE 5.7.2 The Bessel functions J0 and Y0.

For x very large it is reasonable to conjecture that the terms (1/x)y′ and (ν2/x2)y are
small and hence can be neglected. If this is true, then the Bessel equation of order ν

can be approximated by

y′′ + y = 0.

The solutions of this equation are sin x and cos x; thus we might anticipate that the
solutions of Bessel’s equation for large x are similar to linear combinations of sin x
and cos x. This is correct insofar as the Bessel functions are oscillatory; however, it is
only partly correct. For x large the functions J0 and Y0 also decay as x increases; thus
the equation y′′ + y = 0 does not provide an adequate approximation to the Bessel
equation for large x, and a more delicate analysis is required. In fact, it is possible to
show that

J0(x) ∼=
(

2
πx

)1/2

cos
(

x − π

4

)
as x → ∞, (14)

and that

Y0(x) ∼=
(

2
πx

)1/2

sin
(

x − π

4

)
as x → ∞. (15)

These asymptotic approximations, as x → ∞, are actually very good. For example,
Figure 5.7.3 shows that the asymptotic approximation (14) to J0(x) is reasonably
accurate for all x ≥ 1. Thus to approximate J0(x) over the entire range from zero to
infinity, you can use two or three terms of the series (7) for x ≤ 1 and the asymptotic
approximation (14) for x ≥ 1.

Bessel Equation of Order One-Half. This case illustrates the situation in which the roots
of the indicial equation differ by a positive integer but there is no logarithmic term
in the second solution. Setting ν = 1

2 in Eq. (1) gives

L[y] = x2y′′ + xy′ + (
x2 − 1

4

)
y = 0. (16)
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FIGURE 5.7.3 Asymptotic approximation to J0(x).

When we substitute the series (3) for y = φ(r, x), we obtain

L[φ](r, x) =
∞∑

n=0

[
(r + n)(r + n − 1) + (r + n) − 1

4

]
anxr+n +

∞∑
n=0

anxr+n+2

= (
r2 − 1

4

)
a0xr + [

(r + 1)2 − 1
4

]
a1xr+1

+
∞∑

n=2

{[
(r + n)2 − 1

4

]
an + an−2

}
xr+n = 0. (17)

The roots of the indicial equation are r1 = 1
2 , r2 = − 1

2 ; hence the roots differ by an
integer. The recurrence relation is[

(r + n)2 − 1
4

]
an = −an−2, n ≥ 2. (18)

Corresponding to the larger root r1 = 1
2 ,we find from the coefficient of xr+1 in Eq. (17)

that a1 = 0. Hence, from Eq. (18), a3 = a5 = · · · = a2n+1 = · · · = 0. Further, for
r = 1

2 ,

an = − an−2

n(n + 1)
, n = 2, 4, 6 . . . ,

or, letting n = 2m, we obtain

a2m = − a2m−2

2m(2m + 1)
, m = 1, 2, 3, . . . .

By solving this recurrence relation, we find that

a2 = −a0

3! , a4 = a0

5! , . . .

and, in general,

a2m = (−1)ma0

(2m + 1)! , m = 1, 2, 3, . . . .
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Hence, taking a0 = 1, we obtain

y1(x) = x1/2

[
1 +

∞∑
m=1

(−1)mx2m

(2m + 1)!

]
= x−1/2

∞∑
m=0

(−1)mx2m+1

(2m + 1)! , x > 0. (19)

The second power series in Eq. (19) is precisely the Taylor series for sin x; hence one
solution of the Bessel equation of order one-half is x−1/2 sin x. The Bessel function
of the first kind of order one-half, J1/2, is defined as (2/π)1/2y1. Thus

J1/2(x) =
(

2
πx

)1/2

sin x, x > 0. (20)

Corresponding to the root r2 = − 1
2 , it is possible that we may have difficulty in

computing a1 since N = r1 − r2 = 1. However, from Eq. (17) for r = − 1
2 , the coef-

ficients of xr and xr+1 are both zero regardless of the choice of a0 and a1. Hence a0

and a1 can be chosen arbitrarily. From the recurrence relation (18) we obtain a set
of even-numbered coefficients corresponding to a0 and a set of odd-numbered coef-
ficients corresponding to a1. Thus no logarithmic term is needed to obtain a second
solution in this case. It is left as an exercise to show that, for r = − 1

2 ,

a2n = (−1)na0

(2n)! , a2n+1 = (−1)na1

(2n + 1)! , n = 1, 2, . . . .

Hence

y2(x) = x−1/2

[
a0

∞∑
n=0

(−1)nx2n

(2n)! + a1

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

]

= a0
cos x
x1/2

+ a1
sin x
x1/2

, x > 0. (21)

The constant a1 simply introduces a multiple of y1(x). The second solution of the
Bessel equation of order one-half is usually taken to be the solution for which
a0 = (2/π)1/2 and a1 = 0. It is denoted by J−1/2. Then

J−1/2(x) =
(

2
πx

)1/2

cos x, x > 0. (22)

The general solution of Eq. (16) is y = c1J1/2(x) + c2J−1/2(x).
By comparing Eqs. (20) and (22) with Eqs. (14) and (15), we see that, except for a

phase shift of π/4, the functions J−1/2 and J1/2 resemble J0 and Y0, respectively, for
large x. The graphs of J1/2 and J−1/2 are shown in Figure 5.7.4.

Bessel Equation of Order One. This case illustrates the situation in which the roots of
the indicial equation differ by a positive integer and the second solution involves a
logarithmic term. Setting ν = 1 in Eq. (1) gives

L[y] = x2y′′ + xy′ + (x2 − 1)y = 0. (23)
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FIGURE 5.7.4 The Bessel functions J1/2 and J−1/2.

If we substitute the series (3) for y = φ(r, x) and collect terms as in the preceding
cases, we obtain

L[φ](r, x) = a0(r2 − 1)xr + a1[(r + 1)2 − 1]xr+1

+
∞∑

n=2

{ [
(r + n)2 − 1

]
an + an−2

}
xr+n = 0. (24)

The roots of the indicial equation are r1 = 1 and r2 = −1. The recurrence relation is

[(r + n)2 − 1]an(r) = −an−2(r), n ≥ 2. (25)

Corresponding to the larger root r = 1, the recurrence relation becomes

an = − an−2

(n + 2)n
, n = 2, 3, 4, . . . .

We also find from the coefficient of xr+1 in Eq. (24) that a1 = 0; hence from the
recurrence relation, a3 = a5 = · · · = 0. For even values of n, let n = 2m; then

a2m = − a2m−2

(2m + 2)(2m)
= − a2m−2

22(m + 1)m
, m = 1, 2, 3, . . . .

By solving this recurrence relation, we obtain

a2m = (−1)ma0

22m(m + 1)!m! , m = 1, 2, 3, . . . . (26)

The Bessel function of the first kind of order one, denoted by J1, is obtained by
choosing a0 = 1/2. Hence

J1(x) = x
2

∞∑
m=0

(−1)mx2m

22m(m + 1)!m! . (27)

The series converges absolutely for all x, so the function J1 is analytic everywhere.
In determining a second solution of Bessel’s equation of order one, we illustrate

the method of direct substitution. The calculation of the general term in Eq. (28)
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below is rather complicated, but the first few coefficients can be found fairly easily.
According to Theorem 5.6.1, we assume that

y2(x) = aJ1(x) ln x + x−1

[
1 +

∞∑
n=1

cnxn

]
, x > 0. (28)

Computing y′
2(x), y′′

2(x), substituting in Eq. (23), and making use of the fact that J1 is
a solution of Eq. (23), we obtain

2axJ ′
1(x) +

∞∑
n=0

[(n − 1)(n − 2)cn + (n − 1)cn − cn] xn−1 +
∞∑

n=0

cnxn+1 = 0, (29)

where c0 = 1. Substituting for J1(x) from Eq. (27), shifting the indices of summation
in the two series, and carrying out several steps of algebra, we arrive at

−c1 + [0 · c2 + c0]x +
∞∑

n=2

[(n2 − 1)cn+1 + cn−1]xn

= −a

[
x +

∞∑
m=1

(−1)m(2m + 1)x2m+1

22m(m + 1)! m!

]
. (30)

From Eq. (30) we observe first that c1 = 0, and a = −c0 = −1. Further, since there
are only odd powers of x on the right, the coefficient of each even power of x on the
left must be zero. Thus, since c1 = 0, we have c3 = c5 = · · · = 0. Corresponding to
the odd powers of x, we obtain the recurrence relation [let n = 2m + 1 in the series
on the left side of Eq. (30)]

[(2m + 1)2 − 1]c2m+2 + c2m = (−1)m(2m + 1)

22m(m + 1)! m! , m = 1, 2, 3, . . . . (31)

When we set m = 1 in Eq. (31), we obtain

(32 − 1)c4 + c2 = (−1)3/(22 · 2!).
Notice that c2 can be selected arbitrarily, and then this equation determines c4. Also
notice that in the equation for the coefficient of x, c2 appeared multiplied by 0, and
that equation was used to determine a. That c2 is arbitrary is not surprising, since c2

is the coefficient of x in the expression x−1

[
1 +

∞∑
n=1

cnxn

]
. Consequently, c2 simply

generates a multiple of J1, and y2 is determined only up to an additive multiple of J1.
In accordance with the usual practice, we choose c2 = 1/22. Then we obtain

c4 = −1
24 · 2

[
3
2

+ 1
]

= −1
242!

[(
1 + 1

2

)
+ 1

]

= (−1)

24 · 2! (H2 + H1).

It is possible to show that the solution of the recurrence relation (31) is

c2m = (−1)m+1(Hm + Hm−1)

22mm!(m − 1)! , m = 1, 2, . . .
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with the understanding that H0 = 0. Thus

y2(x) = −J1(x) ln x + 1
x

[
1 −

∞∑
m=1

(−1)m(Hm + Hm−1)

22mm!(m − 1)! x2m

]
, x > 0. (32)

The calculation of y2(x) using the alternative procedure [see Eqs. (19) and (20)
of Section 5.6] in which we determine the cn(r2) is slightly easier. In particular, the
latter procedure yields the general formula for c2m without the necessity of solving a
recurrence relation of the form (31) (see Problem 11). In this regard, you may also
wish to compare the calculations of the second solution of Bessel’s equation of order
zero in the text and in Problem 10.

The second solution of Eq. (23), the Bessel function of the second kind of order
one, Y1, is usually taken to be a certain linear combination of J1 and y2. Following
Copson (Chapter 12), Y1 is defined as

Y1(x) = 2
π

[−y2(x) + (γ − ln 2)J1(x)], (33)

where γ is defined in Eq. (12). The general solution of Eq. (23) for x > 0 is

y = c1J1(x) + c2Y1(x).

Notice that although J1 is analytic at x = 0, the second solution Y1 becomes un-
bounded in the same manner as 1/x as x → 0. The graphs of J1 and Y1 are shown in
Figure 5.7.5.

–0.5

2 4 8 10 14

0.5

1

y

x6 12

y = J1(x)

y = Y1(x)

FIGURE 5.7.5 The Bessel functions J1 and Y1.

PROBLEMS In each of Problems 1 through 4 show that the given differential equation has a regular singular
point at x = 0, and determine two solutions for x > 0.

1. x2y′′ + 2xy′ + xy = 0 2. x2y′′ + 3xy′ + (1 + x)y = 0

3. x2y′′ + xy′ + 2xy = 0 4. x2y′′ + 4xy′ + (2 + x)y = 0

5. Find two solutions (not multiples of each other) of the Bessel equation of order 3
2

x2y′′ + xy′ + (
x2 − 9

4

)
y = 0, x > 0.
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6. Show that the Bessel equation of order one-half

x2y′′ + xy′ + (
x2 − 1

4

)
y = 0, x > 0

can be reduced to the equation
v′′ + v = 0

by the change of dependent variable y = x−1/2v(x). From this conclude that
y1(x) = x−1/2 cos x and y2(x) = x−1/2 sin x are solutions of the Bessel equation of order
one-half.

7. Show directly that the series for J0(x), Eq. (7), converges absolutely for all x.

8. Show directly that the series for J1(x), Eq. (27), converges absolutely for all x and that
J ′

0(x) = −J1(x).

9. Consider the Bessel equation of order ν

x2y′′ + xy′ + (x2 − ν2)y = 0, x > 0,

where ν is real and positive.
(a) Show that x = 0 is a regular singular point and that the roots of the indicial equation
are ν and −ν.
(b) Corresponding to the larger root ν, show that one solution is

y1(x) = xν

[
1 − 1

1!(1 + ν)

(x
2

)2 + 1
2!(1 + ν)(2 + ν)

(x
2

)4

+
∞∑

m=3

(−1)m

m!(1 + ν) · · · (m + ν)

(x
2

)2m
]

.

(c) If 2ν is not an integer, show that a second solution is

y2(x) = x−ν

[
1 − 1

1!(1 − ν)

(x
2

)2 + 1
2!(1 − ν)(2 − ν)

(x
2

)4

+
∞∑

m=3

(−1)m

m!(1 − ν) · · · (m − ν)

(x
2

)2m
]

.

Note that y1(x) → 0 as x → 0, and that y2(x) is unbounded as x → 0.
(d) Verify by direct methods that the power series in the expressions for y1(x) and y2(x)

converge absolutely for all x. Also verify that y2 is a solution provided only that ν is not
an integer.

10. In this section we showed that one solution of Bessel’s equation of order zero

L[y] = x2y′′ + xy′ + x2y = 0

is J0, where J0(x) is given by Eq. (7) with a0 = 1. According to Theorem 5.6.1, a second
solution has the form (x > 0)

y2(x) = J0(x) ln x +
∞∑

n=1

bnxn.

(a) Show that

L[y2](x) =
∞∑

n=2

n(n − 1)bnxn +
∞∑

n=1

nbnxn +
∞∑

n=1

bnxn+2 + 2xJ ′
0(x). (i)
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(b) Substituting the series representation for J0(x) in Eq. (i), show that

b1x + 22b2x2 +
∞∑

n=3

(n2bn + bn−2)xn = −2
∞∑

n=1

(−1)n2nx2n

22n(n!)2
. (ii)

(c) Note that only even powers of x appear on the right side of Eq. (ii). Show that
b1 = b3 = b5 = · · · = 0, b2 = 1/22(1!)2, and that

(2n)2b2n + b2n−2 = −2(−1)n(2n)/22n(n!)2, n = 2, 3, 4, . . . .

Deduce that

b4 = − 1
22 42

(
1 + 1

2

)
and b6 = 1

22 42 62

(
1 + 1

2
+ 1

3

)
.

The general solution of the recurrence relation is b2n = (−1)n+1Hn/22n(n!)2. Substituting
for bn in the expression for y2(x), we obtain the solution given in Eq. (10).

11. Find a second solution of Bessel’s equation of order one by computing the cn(r2) and a
of Eq. (24) of Section 5.6 according to the formulas (19) and (20) of that section. Some
guidelines along the way of this calculation are the following. First, use Eq. (24) of this
section to show that a1(−1) and a′

1(−1) are 0. Then show that c1(−1) = 0 and, from the
recurrence relation, that cn(−1) = 0 for n = 3, 5, . . . . Finally, use Eq. (25) to show that

a2(r) = − a0

(r + 1)(r + 3)
, a4(r) = a0

(r + 1)(r + 3)(r + 3)(r + 5)
,

and that

a2m(r) = (−1)ma0

(r + 1) · · · (r + 2m − 1)(r + 3) · · · (r + 2m + 1)
, m ≥ 3.

Then show that

c2m(−1) = (−1)m+1(Hm + Hm−1)/22mm!(m − 1)!, m ≥ 1.

12. By a suitable change of variables it is sometimes possible to transform another differential
equation into a Bessel equation. For example, show that a solution of

x2y′′ + (
α2β2x2β + 1

4 − ν2β2) y = 0, x > 0

is given by y = x1/2f (αxβ), where f (ξ) is a solution of the Bessel equation of order ν.
13. Using the result of Problem 12, show that the general solution of the Airy equation

y′′ − xy = 0, x > 0

is y = x1/2[c1f1(
2
3 ix3/2) + c2f2(

2
3 ix3/2)], where f1(ξ) and f2(ξ) are a fundamental set of solu-

tions of the Bessel equation of order one-third.
14. It can be shown that J0 has infinitely many zeros for x > 0. In particular, the first three

zeros are approximately 2.405, 5.520, and 8.653 (see Figure 5.7.1). Let λj , j = 1, 2, 3, . . . ,
denote the zeros of J0; it follows that

J0(λjx) =
{

1, x = 0,
0, x = 1.

Verify that y = J0(λjx) satisfies the differential equation

y′′ + 1
x

y′ + λ2
j y = 0, x > 0.
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Hence show that ∫ 1

0
xJ0(λix)J0(λjx) dx = 0 if λi �= λj.

This important property of J0(λix), known as the orthogonality property, is useful in solving
boundary value problems.
Hint: Write the differential equation for J0(λix). Multiply it by xJ0(λjx) and subtract it
from xJ0(λix) times the differential equation for J0(λjx). Then integrate from 0 to 1.

REFERENCES Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-
Hall, 1961; New York: Dover, 1989).

Copson, E. T., An Introduction to the Theory of Functions of a Complex Variable (Oxford: Oxford Uni-
versity Press, 1935).

Proofs of Theorems 5.3.1 and 5.6.1 can be found in intermediate or advanced books; for example, see
Chapters 3 and 4 of Coddington or Chapters 3 and 4 of

Rainville, E. D., Intermediate Differential Equations (2nd ed.) (New York: Macmillan, 1964).

Also see these texts for a discussion of the point at infinity, which was mentioned in Problem 43 of
Section 5.4. The behavior of solutions near an irregular singular point is an even more advanced topic; a
brief discussion can be found in Chapter 5 of

Coddington, E.A., and Levinson, N.,Theory of Ordinary Differential Equations (NewYork: McGraw-Hill,
1955).

Fuller discussions of the Bessel equation, the Legendre equation, and many of the other named equa-
tions can be found in advanced books on differential equations, methods of applied mathematics, and
special functions. A text dealing with special functions such as the Legendre polynomials and the Bessel
functions is

Hochstadt, H., Special Functions of Mathematical Physics (New York: Holt, 1961).

An excellent compilation of formulas, graphs, and tables of Bessel functions, Legendre functions, and
other special functions of mathematical physics may be found in

Abramowitz, M., and Stegun, I. A. (eds.), Handbook of Mathematical Functions (New York: Dover, 1965);
originally published by the National Bureau of Standards, Washington, DC, 1964.
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C H A P T E R

6

The Laplace
Transform

Many practical engineering problems involve mechanical or electrical systems acted
on by discontinuous or impulsive forcing terms. For such problems the methods
described in Chapter 3 are often rather awkward to use. Another method that is es-
pecially well suited to these problems, although useful much more generally, is based
on the Laplace transform. In this chapter we describe how this important method
works, emphasizing problems typical of those that arise in engineering applications.

6.1 Definition of the Laplace Transform

Improper Integrals. Since the Laplace transform involves an integral from zero to in-
finity, a knowledge of improper integrals of this type is necessary to appreciate the
subsequent development of the properties of the transform. We provide a brief
review of such improper integrals here. If you are already familiar with improper
integrals, you may wish to skip over this review. On the other hand, if improper
integrals are new to you, then you should probably consult a calculus book, where
many more details and examples will be found.

An improper integral over an unbounded interval is defined as a limit of integrals
over finite intervals; thus ∫ ∞

a
f (t) dt = lim

A→∞

∫ A

a
f (t) dt, (1)

where A is a positive real number. If the integral from a to A exists for each A > a,
and if the limit as A → ∞ exists, then the improper integral is said to converge to
that limiting value. Otherwise the integral is said to diverge, or to fail to exist. The
following examples illustrate both possibilities.
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E X A M P L E

1

Let f (t) = ect , t ≥ 0, where c is a real nonzero constant. Then

∫ ∞

0
ect dt = lim

A→∞

∫ A

0
ect dt = lim

A→∞
ect

c

∣∣∣∣∣
A

0

= lim
A→∞

1
c
(ecA − 1).

It follows that the improper integral converges to the value −1/c if c < 0 and diverges if c > 0.
If c = 0, the integrand f (t) is the constant function with value 1, and the integral again diverges.

E X A M P L E

2

Let f (t) = 1/t, t ≥ 1. Then ∫ ∞

1

dt
t

= lim
A→∞

∫ A

1

dt
t

= lim
A→∞

ln A.

Since lim
A→∞

ln A = ∞, the improper integral diverges.

E X A M P L E

3

Let f (t) = t−p, t ≥ 1, where p is a real constant and p �= 1; the case p = 1 was considered in
Example 2. Then ∫ ∞

1
t−p dt = lim

A→∞

∫ A

1
t−p dt = lim

A→∞
1

1 − p
(A1−p − 1).

As A → ∞, A1−p → 0 if p > 1, but A1−p → ∞ if p < 1. Hence
∫ ∞

1
t−p dt converges to the

value 1/(p − 1) for p > 1 but (incorporating the result of Example 2) diverges for p ≤ 1.

These results are analogous to those for the infinite series
∞∑

n=1
n−p.

Before discussing the possible existence of
∫ ∞

a
f (t) dt, it is helpful to define certain

terms. A function f is said to be piecewise continuous on an interval α ≤ t ≤ β if the
interval can be partitioned by a finite number of points α = t0 < t1 < · · · < tn = β so
that

1. f is continuous on each open subinterval ti−1 < t < ti.
2. f approaches a finite limit as the endpoints of each subinterval are approached from within

the subinterval.

In other words, f is piecewise continuous on α ≤ t ≤ β if it is continuous there except
for a finite number of jump discontinuities. If f is piecewise continuous on α ≤ t ≤ β

for every β > α, then f is said to be piecewise continuous on t ≥ α. An example of a
piecewise continuous function is shown in Figure 6.1.1.

The integral of a piecewise continuous function on a finite interval is just the sum
of the integrals on the subintervals created by the partition points. For instance, for
the function f (t) shown in Figure 6.1.1, we have∫ β

α

f (t) dt =
∫ t1

α

f (t) dt +
∫ t2

t1
f (t) dt +

∫ β

t2
f (t) dt. (2)
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y

tα βt1 t2

FIGURE 6.1.1 A piecewise continuous function y = f (t).

For the function shown in Figure 6.1.1 we have assigned values to the function at
the endpoints α and β and at the partition points t1 and t2. However, as far as the
integrals in Eq. (2) are concerned, it does not matter whether f (t) is defined at these
points, or what values may be assigned to f (t) at them. The values of the integrals in
Eq. (2) remain the same regardless.

Thus, if f is piecewise continuous on the interval a ≤ t ≤ A, then
∫ A

a
f (t) dt exists.

Hence, if f is piecewise continuous for t ≥ a, then
∫ A

a
f (t) dt exists for each A > a.

However, piecewise continuity is not enough to ensure convergence of the improper

integral
∫ ∞

a
f (t) dt, as the preceding examples show.

If f cannot be integrated easily in terms of elementary functions, the definition of

convergence of
∫ ∞

a
f (t) dt may be difficult to apply. Frequently, the most convenient

way to test the convergence or divergence of an improper integral is by the following
comparison theorem, which is analogous to a similar theorem for infinite series.

Theorem 6.1.1 If f is piecewise continuous for t ≥ a, if |f (t)| ≤ g(t) when t ≥ M for some positive

constant M, and if
∫ ∞

M
g(t) dt converges, then

∫ ∞

a
f (t) dt also converges. On the

other hand, if f (t) ≥ g(t) ≥ 0 for t ≥ M, and if
∫ ∞

M
g(t) dt diverges, then

∫ ∞

a
f (t) dt

also diverges.

The proof of this result from calculus will not be given here. It is made plausible,

however, by comparing the areas represented by
∫ ∞

M
g(t) dt and

∫ ∞

M
|f (t)| dt. The

functions most useful for comparison purposes are ect and t−p, which we considered
in Examples 1, 2, and 3.

The Laplace Transform. Among the tools that are very useful for solving linear differ-
ential equations are integral transforms. An integral transform is a relation of the
form

F(s) =
∫ β

α

K(s, t)f (t) dt, (3)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 328 Page number 308 cyan black

308 Chapter 6. The Laplace Transform

where K(s, t) is a given function, called the kernel of the transformation, and the
limits of integration α and β are also given. It is possible that α = −∞ or β = ∞,
or both. The relation (3) transforms the function f into another function F , which is
called the transform of f .

There are several integral transforms that are useful in applied mathematics, but
in this chapter we consider only the Laplace1 transform. This transform is defined
in the following way. Let f (t) be given for t ≥ 0, and suppose that f satisfies certain
conditions to be stated a little later. Then the Laplace transform of f , which we will
denote by L{f (t)} or by F(s), is defined by the equation

L{f (t)} = F(s) =
∫ ∞

0
e−st f (t) dt, (4)

whenever this improper integral converges. The Laplace transform makes use of the
kernel K(s, t) = e−st . Since the solutions of linear differential equations with constant
coefficients are based on the exponential function, the Laplace transform is partic-
ularly useful for such equations. The general idea in using the Laplace transform to
solve a differential equation is as follows:

1. Use the relation (4) to transform an initial value problem for an unknown function f in
the t-domain into a simpler problem (indeed, an algebraic problem) for F in the s-domain.

2. Solve this algebraic problem to find F .
3. Recover the desired function f from its transform F . This last step is known as “inverting

the transform.”

In general, the parameter s may be complex, and the full power of the Laplace
transform becomes available only when we regard F(s) as a function of a complex
variable. However, for the problems discussed here, it is sufficient to consider only
real values of s. The Laplace transform F of a function f exists if f satisfies certain
conditions, such as those stated in the following theorem.

Theorem 6.1.2 Suppose that

1. f is piecewise continuous on the interval 0 ≤ t ≤ A for any positive A.
2. |f (t)| ≤ Keat when t ≥ M. In this inequality, K, a, and M are real constants, K and M

necessarily positive.

Then the Laplace transform L{f (t)} = F(s), defined by Eq. (4), exists for s > a.

To establish this theorem, we must show that the integral in Eq. (4) converges for
s > a. Splitting the improper integral into two parts, we have∫ ∞

0
e−st f (t) dt =

∫ M

0
e−st f (t) dt +

∫ ∞

M
e−st f (t) dt. (5)

1The Laplace transform is named for the eminent French mathematician P. S. Laplace, who studied the
relation (3) in 1782. However, the techniques described in this chapter were not developed until a century
or more later. We owe them mainly to Oliver Heaviside (1850–1925), an innovative but unconventional
English electrical engineer, who made significant contributions to the development and application of
electromagnetic theory.
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The first integral on the right side of Eq. (5) exists by hypothesis (1) of the theorem;
hence the existence of F(s) depends on the convergence of the second integral. By
hypothesis (2) we have, for t ≥ M,

|e−st f (t)| ≤ Ke−steat = Ke(a−s)t ,

and thus, by Theorem 6.1.1, F(s) exists provided that
∫ ∞

M
e(a−s)t dt converges. Refer-

ring to Example 1 with c replaced by a − s, we see that this latter integral converges
when a − s < 0, which establishes Theorem 6.1.2.

In this chapter (except in Section 6.5) we deal almost exclusively with functions that
satisfy the conditions of Theorem 6.1.2. Such functions are described as piecewise
continuous and of exponential order as t → ∞. Note that there are functions that
are not of exponential order as t → ∞. One such function is f (t) = et2

. As t → ∞,
this function increases faster than Keat regardless of how large the constants K and
a may be.

The Laplace transforms of some important elementary functions are given in the
following examples.

E X A M P L E

4

Let f (t) = 1, t ≥ 0. Then, as in Example 1,

L{1} =
∫ ∞

0
e−st dt = − lim

A→∞
e−st

s

∣∣∣∣∣
A

0

= 1
s

, s > 0.

E X A M P L E

5

Let f (t) = eat , t ≥ 0. Then, again referring to Example 1,

L{eat} =
∫ ∞

0
e−steat dt =

∫ ∞

0
e−(s−a)t dt

= 1
s − a

, s > a.

E X A M P L E

6

Let

f (t) =

⎧⎪⎨
⎪⎩

1, 0 ≤ t < 1,
k, t = 1,
0, t > 1,

where k is a constant. In engineering contexts f (t) often represents a unit pulse, perhaps of
force or voltage.

Note that f is a piecewise continuous function. Then

L{f (t)} =
∫ ∞

0
e−st f (t) dt =

∫ 1

0
e−st dt = −e−st

s

∣∣∣∣∣
1

0

= 1 − e−s

s
, s > 0.

Observe that L{f (t)} does not depend on k, the function value at the point of discontinuity.
Even if f (t) is not defined at this point, the Laplace transform of f remains the same. Thus
there are many functions, differing only in their value at a single point, that have the same
Laplace transform.
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E X A M P L E

7

Let f (t) = sin at, t ≥ 0. Then

L{sin at} = F(s) =
∫ ∞

0
e−st sin at dt, s > 0.

Since

F(s) = lim
A→∞

∫ A

0
e−st sin at dt,

upon integrating by parts, we obtain

F(s) = lim
A→∞

⎡
⎣−e−st cos at

a

∣∣∣∣∣
A

0

− s
a

∫ A

0
e−st cos at dt

⎤
⎦

= 1
a

− s
a

∫ ∞

0
e−st cos at dt.

A second integration by parts then yields

F(s) = 1
a

− s2

a2

∫ ∞

0
e−st sin at dt

= 1
a

− s2

a2
F(s).

Hence, solving for F(s), we have

F(s) = a
s2 + a2

, s > 0.

Now let us suppose that f1 and f2 are two functions whose Laplace transforms exist
for s > a1 and s > a2, respectively. Then, for s greater than the maximum of a1 and a2,

L{c1f1(t) + c2f2(t)} =
∫ ∞

0
e−st[c1f1(t) + c2f2(t)] dt

= c1

∫ ∞

0
e−st f1(t) dt + c2

∫ ∞

0
e−st f2(t) dt;

hence
L{c1f1(t) + c2f2(t)} = c1L{f1(t)} + c2L{f2(t)}. (6)

Equation (6) states that the Laplace transform is a linear operator, and we make
frequent use of this property later. The sum in Eq. (6) can be readily extended to an
arbitrary number of terms.

E X A M P L E

8

Find the Laplace transform of f (t) = 5e−2t − 3 sin 4t, t ≥ 0.
Using Eq. (6), we write

L{f (t)} = 5L{e−2t} − 3L{sin 4t}.
Then, from Examples 5 and 6, we obtain

L{f (t)} = 5
s + 2

− 12
s2 + 16

, s > 0.
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PROBLEMS In each of Problems 1 through 4 sketch the graph of the given function. In each case determine
whether f is continuous, piecewise continuous, or neither on the interval 0 ≤ t ≤ 3.

1. f (t) =
⎧⎨
⎩

t2, 0 ≤ t ≤ 1
2 + t, 1 < t ≤ 2
6 − t, 2 < t ≤ 3

2. f (t) =
⎧⎨
⎩

t2, 0 ≤ t ≤ 1
(t − 1)−1, 1 < t ≤ 2
1, 2 < t ≤ 3

3. f (t) =
⎧⎨
⎩

t2, 0 ≤ t ≤ 1
1, 1 < t ≤ 2
3 − t, 2 < t ≤ 3

4. f (t) =
⎧⎨
⎩

t, 0 ≤ t ≤ 1
3 − t, 1 < t ≤ 2
1, 2 < t ≤ 3

5. Find the Laplace transform of each of the following functions:
(a) f (t) = t

(b) f (t) = t2

(c) f (t) = tn, where n is a positive integer

6. Find the Laplace transform of f (t) = cos at, where a is a real constant.

Recall that cosh bt = (ebt + e−bt)/2 and sinh bt = (ebt − e−bt)/2. In each of Problems 7 through
10 find the Laplace transform of the given function; a and b are real constants.

7. f (t) = cosh bt 8. f (t) = sinh bt

9. f (t) = eat cosh bt 10. f (t) = eat sinh bt

In each of Problems 11 through 14 recall that cos bt = (eibt + e−ibt)/2 and
sin bt = (eibt − e−ibt)/2i. Assuming that the necessary elementary integration formulas extend
to this case, find the Laplace transform of the given function; a and b are real constants.
11. f (t) = sin bt 12. f (t) = cos bt

13. f (t) = eat sin bt 14. f (t) = eat cos bt

In each of Problems 15 through 20 use integration by parts to find the Laplace transform of
the given function; n is a positive integer and a is a real constant.

15. f (t) = teat 16. f (t) = t sin at

17. f (t) = t cosh at 18. f (t) = tneat

19. f (t) = t2 sin at 20. f (t) = t2 sinh at

In each of Problems 21 through 24 determine whether the given integral converges or diverges.

21.
∫ ∞

0
(t2 + 1)−1 dt 22.

∫ ∞

0
te−t dt

23.
∫ ∞

1
t−2et dt 24.

∫ ∞

0
e−t cos t dt

25. Suppose that f and f ′ are continuous for t ≥ 0 and of exponential order as t → ∞. Use
integration by parts to show that if F(s) = L{f (t)}, then lim

s→∞ F(s) = 0. The result is actually

true under less restrictive conditions, such as those of Theorem 6.1.2.
26. The Gamma Function. The gamma function is denoted by �(p) and is defined by the

integral

�(p + 1) =
∫ ∞

0
e−xxp dx. (i)
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The integral converges as x → ∞ for all p. For p < 0 it is also improper because the
integrand becomes unbounded as x → 0. However, the integral can be shown to converge
at x = 0 for p > −1.
(a) Show that, for p > 0,

�(p + 1) = p�(p).

(b) Show that �(1) = 1.
(c) If p is a positive integer n, show that

�(n + 1) = n!.
Since �(p) is also defined when p is not an integer, this function provides an extension of
the factorial function to nonintegral values of the independent variable. Note that it is
also consistent to define 0! = 1.
(d) Show that, for p > 0,

p(p + 1)(p + 2) · · · (p + n − 1) = �(p + n)/�(p).

Thus �(p) can be determined for all positive values of p if �(p) is known in a single interval
of unit length, say, 0 < p ≤ 1. It is possible to show that �

(
1
2

) = √
π . Find �

(
3
2

)
and �

(
11
2

)
.

27. Consider the Laplace transform of tp, where p > −1.
(a) Referring to Problem 26, show that

L{tp} =
∫ ∞

0
e−st tp dt = 1

sp+1

∫ ∞

0
e−xxp dx

= �(p + 1)/sp+1, s > 0.

(b) Let p be a positive integer n in (a); show that

L{tn} = n!/sn+1, s > 0.

(c) Show that

L{t−1/2} = 2√
s

∫ ∞

0
e−x2

dx, s > 0.

It is possible to show that ∫ ∞

0
e−x2

dx =
√

π

2
;

hence
L{t−1/2} = √

π/s, s > 0.

(d) Show that
L{t1/2} = √

π/(2s3/2), s > 0.

6.2 Solution of Initial Value Problems
In this section we show how the Laplace transform can be used to solve initial value
problems for linear differential equations with constant coefficients. The useful-
ness of the Laplace transform in this connection rests primarily on the fact that the
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transform of f ′ is related in a simple way to the transform of f . The relationship is
expressed in the following theorem.

Theorem 6.2.1 Suppose that f is continuous and f ′ is piecewise continuous on any interval
0 ≤ t ≤ A. Suppose further that there exist constants K, a, and M such that
|f (t)| ≤ Keat for t ≥ M. Then L{f ′(t)} exists for s > a, and moreover

L{f ′(t)} = sL{f (t)} − f (0). (1)

To prove this theorem, we consider the integral∫ A

0
e−st f ′(t) dt.

If f ′ has points of discontinuity in the interval 0 ≤ t ≤ A, let them be denoted by
t1, t2, . . . , tn. Then we can write this integral as∫ A

0
e−st f ′(t) dt =

∫ t1

0
e−st f ′(t) dt +

∫ t2

t1
e−st f ′(t) dt + · · · +

∫ A

tn
e−st f ′(t) dt.

Integrating each term on the right by parts yields∫ A

0
e−st f ′(t) dt = e−st f (t)

∣∣∣t1
0

+ e−st f (t)
∣∣∣t2
t1

+ · · · + e−st f (t)
∣∣∣A
tn

+ s
[∫ t1

0
e−st f (t) dt +

∫ t2

t1
e−st f (t) dt + · · · +

∫ A

tn
e−st f (t) dt

]
.

Since f is continuous, the contributions of the integrated terms at t1, t2, . . . , tn cancel.
Combining the integrals gives∫ A

0
e−st f ′(t) dt = e−sAf (A) − f (0) + s

∫ A

0
e−st f (t) dt.

For A ≥ M, we have |f (A)| ≤ KeaA; consequently, |e−sAf (A)| ≤ Ke−(s−a)A. Hence
e−sAf (A) → 0 as A → ∞ whenever s > a. Therefore, for s > a,

L{f ′(t)} = sL{f (t)} − f (0),

which establishes the theorem.
If f ′ and f ′′ satisfy the same conditions that are imposed on f and f ′, respectively,

in Theorem 6.2.1, then it follows that the Laplace transform of f ′′ also exists for s > a
and is given by

L{f ′′(t)} = s2L{f (t)} − sf (0) − f ′(0). (2)

Indeed, provided the function f and its derivatives satisfy suitable conditions, an
expression for the transform of the nth derivative f (n) can be derived by successive
applications of this theorem. The result is given in the following corollary.
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Corollary 6.2.2 Suppose that the functions f , f ′, . . . , f (n−1) are continuous and that f (n) is piecewise
continuous on any interval 0 ≤ t ≤ A. Suppose further that there exist constants
K, a, and M such that |f (t)| ≤ Keat , |f ′(t)| ≤ Keat , . . . , |f (n−1)(t)| ≤ Keat for t ≥ M.
Then L{f (n)(t)} exists for s > a and is given by

L{f (n)(t)} = snL{f (t)} − sn−1f (0) − · · · − sf (n−2)(0) − f (n−1)(0). (3)

We now show how the Laplace transform can be used to solve initial value prob-
lems. It is most useful for problems involving nonhomogeneous differential equa-
tions, as we will demonstrate in later sections of this chapter. However, we begin by
looking at some homogeneous equations, which are a bit simpler.

E X A M P L E

1

Consider the differential equation

y′′ − y′ − 2y = 0 (4)

and the initial conditions
y(0) = 1, y′(0) = 0. (5)

This problem is easily solved by the methods of Section 3.1. The characteristic equation is

r2 − r − 2 = (r − 2)(r + 1) = 0, (6)

and consequently the general solution of Eq. (4) is

y = c1e−t + c2e2t . (7)

To satisfy the initial conditions (5), we must have c1 + c2 = 1 and −c1 + 2c2 = 0; hence c1 = 2
3

and c2 = 1
3 , so that the solution of the initial value problem (4) and (5) is

y = φ(t) = 2
3 e−t + 1

3 e2t . (8)

Now let us solve the same problem by using the Laplace transform. To do this, we must
assume that the problem has a solution y = φ(t), which with its first two derivatives satisfies the
conditions of Corollary 6.2.2. Then, taking the Laplace transform of the differential equation
(4), we obtain

L{y′′} − L{y′} − 2L{y} = 0, (9)

where we have used the linearity of the transform to write the transform of a sum as the sum
of the separate transforms. Upon using the corollary to express L{y′′} and L{y′} in terms of
L{y}, we find that Eq. (9) becomes

s2L{y} − sy(0) − y′(0) − [sL{y} − y(0)] − 2L{y} = 0,

or
(s2 − s − 2)Y(s) + (1 − s)y(0) − y′(0) = 0, (10)

where Y(s) = L{y}. Substituting for y(0) and y′(0) in Eq. (10) from the initial conditions (5),
and then solving for Y(s), we obtain

Y(s) = s − 1
s2 − s − 2

= s − 1
(s − 2)(s + 1)

. (11)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 335 Page number 315 cyan black

6.2 Solution of Initial Value Problems 315

We have thus obtained an expression for the Laplace transform Y(s) of the solution y = φ(t)
of the given initial value problem. To determine the function φ, we must find the function
whose Laplace transform is Y(s), as given by Eq. (11).

This can be done most easily by expanding the right side of Eq. (11) in partial fractions.
Thus we write

Y(s) = s − 1
(s − 2)(s + 1)

= a
s − 2

+ b
s + 1

= a(s + 1) + b(s − 2)

(s − 2)(s + 1)
, (12)

where the coefficients a and b are to be determined. By equating numerators of the second
and fourth members of Eq. (12), we obtain

s − 1 = a(s + 1) + b(s − 2),

an equation that must hold for all s. In particular, if we set s = 2, then it follows that a = 1
3 .

Similarly, if we set s = −1, then we find that b = 2
3 . By substituting these values for a and b,

respectively, we have

Y(s) = 1/3
s − 2

+ 2/3
s + 1

. (13)

Finally, if we use the result of Example 5 of Section 6.1, it follows that 1
3 e2t has the transform

1
3 (s − 2)−1; similarly, 2

3 e−t has the transform 2
3 (s + 1)−1. Hence, by the linearity of the Laplace

transform,
y = φ(t) = 1

3 e2t + 2
3 e−t

has the transform (13) and is therefore the solution of the initial value problem (4), (5).
Observe that it does satisfy the conditions of Corollary 6.2.2, as we assumed initially. Of
course, this is the same solution that we obtained earlier.

The same procedure can be applied to the general second order linear equation
with constant coefficients

ay′′ + by′ + cy = f (t). (14)

Assuming that the solution y = φ(t) satisfies the conditions of Corollary 6.2.2 for
n = 2, we can take the transform of Eq. (14) and thereby obtain

a[s2Y(s) − sy(0) − y′(0)] + b[sY(s) − y(0)] + cY(s) = F(s), (15)

where F(s) is the transform of f (t). By solving Eq. (15) for Y(s), we find that

Y(s) = (as + b)y(0) + ay′(0)

as2 + bs + c
+ F(s)

as2 + bs + c
. (16)

The problem is then solved, provided that we can find the function y = φ(t) whose
transform is Y(s).

Even at this early stage of our discussion we can point out some of the essential fea-
tures of the transform method. In the first place, the transform Y(s) of the unknown
function y = φ(t) is found by solving an algebraic equation rather than a differential
equation, Eq. (10) rather than Eq. (4) in Example 1, or in general Eq. (15) rather
than Eq. (14). This is the key to the usefulness of Laplace transforms for solving
linear, constant coefficient, ordinary differential equations—the problem is reduced
from a differential equation to an algebraic one. Next, the solution satisfying given
initial conditions is automatically found, so that the task of determining appropriate
values for the arbitrary constants in the general solution does not arise. Further, as
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indicated in Eq. (15), nonhomogeneous equations are handled in exactly the same
way as homogeneous ones; it is not necessary to solve the corresponding homoge-
neous equation first. Finally, the method can be applied in the same way to higher
order equations, as long as we assume that the solution satisfies the conditions of the
corollary for the appropriate value of n.

Observe that the polynomial as2 + bs + c in the denominator on the right side of
Eq. (16) is precisely the characteristic polynomial associated with Eq. (14). Since
the use of a partial fraction expansion of Y(s) to determine φ(t) requires us to factor
this polynomial, the use of Laplace transforms does not avoid the necessity of finding
roots of the characteristic equation. For equations of higher than second order this
may require a numerical approximation, particularly if the roots are irrational or
complex.

The main difficulty that occurs in solving initial value problems by the transform
method lies in the problem of determining the function y = φ(t) corresponding to
the transform Y(s). This problem is known as the inversion problem for the Laplace
transform; φ(t) is called the inverse transform corresponding to Y(s), and the process
of finding φ(t) from Y(s) is known as inverting the transform. We also use the notation
L−1{Y(s)} to denote the inverse transform of Y(s). There is a general formula for
the inverse Laplace transform, but its use requires a familiarity with functions of a
complex variable, and we do not consider it in this book. However, it is still possible
to develop many important properties of the Laplace transform, and to solve many
interesting problems, without the use of complex variables.

In solving the initial value problem (4), (5), we did not consider the question of
whether there may be functions other than the one given by Eq. (8) that also have
the transform (13). We know, by Theorem 3.2.1, that the initial value problem has no
other solutions. Consistent with this fact, it can be shown that if f and g are continuous
functions with the same Laplace transform, then f and g must be identical. On the
other hand, if f and g are only piecewise continuous, then they may differ at one or
more points of discontinuity and yet have the same Laplace transform; see Example 6
in Section 6.1. This lack of uniqueness of the inverse Laplace transform for piecewise
continuous functions is of no practical significance in applications.

Thus there is essentially a one-to-one correspondence between functions and their
Laplace transforms. This fact suggests the compilation of a table, such as Table 6.2.1,
giving the transforms of functions frequently encountered,and vice versa. The entries
in the second column of Table 6.2.1 are the transforms of those in the first column.
Perhaps more important, the functions in the first column are the inverse transforms
of those in the second column. Thus, for example, if the transform of the solution
of a differential equation is known, the solution itself can often be found merely
by looking it up in the table. Some of the entries in Table 6.2.1 have been used as
examples, or appear as problems in Section 6.1, while others will be developed later in
the chapter. The third column of the table indicates where the derivation of the given
transforms may be found. Although Table 6.2.1 is sufficient for the examples and
problems in this book, much larger tables are also available (see the list of references
at the end of the chapter). Transforms and inverse transforms can also be readily
obtained electronically by using a computer algebra system.

Frequently, a Laplace transform F(s) is expressible as a sum of several terms

F(s) = F1(s) + F2(s) + · · · + Fn(s). (17)
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TABLE 6.2.1 Elementary Laplace Transforms

f (t) = L−1{F(s)} F(s) = L{f (t)} Notes

1. 1
1
s

, s > 0 Sec. 6.1; Ex. 4

2. eat 1
s − a

, s > a Sec. 6.1; Ex. 5

3. tn, n = positive integer
n!

sn+1
, s > 0 Sec. 6.1; Prob. 27

4. tp, p > −1
�(p + 1)

sp+1
, s > 0 Sec. 6.1; Prob. 27

5. sin at
a

s2 + a2
, s > 0 Sec. 6.1; Ex. 7

6. cos at
s

s2 + a2
, s > 0 Sec. 6.1; Prob. 6

7. sinh at
a

s2 − a2
, s > |a| Sec. 6.1; Prob. 8

8. cosh at
s

s2 − a2
, s > |a| Sec. 6.1; Prob. 7

9. eat sin bt
b

(s − a)2 + b2
, s > a Sec. 6.1; Prob. 13

10. eat cos bt
s − a

(s − a)2 + b2
, s > a Sec. 6.1; Prob. 14

11. tneat , n = positive integer
n!

(s − a)n+1
, s > a Sec. 6.1; Prob. 18

12. uc(t)
e−cs

s
, s > 0 Sec. 6.3

13. uc(t)f (t − c) e−csF(s) Sec. 6.3

14. ectf (t) F(s − c) Sec. 6.3

15. f (ct)
1
c

F
( s

c

)
, c > 0 Sec. 6.3; Prob. 25

16.
∫ t

0
f (t − τ)g(τ ) dτ F(s)G(s) Sec. 6.6

17. δ(t − c) e−cs Sec. 6.5

18. f (n)(t) snF(s) − sn−1f (0) − · · · − f (n−1)(0) Sec. 6.2

19. (−t)nf (t) F (n)(s) Sec. 6.2; Prob. 28
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Suppose that f1(t) = L−1{F1(s)}, . . . , fn(t) = L−1{Fn(s)}. Then the function

f (t) = f1(t) + · · · + fn(t)

has the Laplace transform F(s). By the uniqueness property stated previously, no
other continuous function f has the same transform. Thus

L−1{F(s)} = L−1{F1(s)} + · · · + L−1{Fn(s)}; (18)

that is, the inverse Laplace transform is also a linear operator.
In many problems it is convenient to make use of this property by decomposing a

given transform into a sum of functions whose inverse transforms are already known
or can be found in the table. Partial fraction expansions are particularly useful in this
connection, and a general result covering many cases is given in Problem 38. Other
useful properties of Laplace transforms are derived later in this chapter.

As further illustrations of the technique of solving initial value problems by means
of the Laplace transform and partial fraction expansions, consider the following
examples.

E X A M P L E

2

Find the solution of the differential equation

y′′ + y = sin 2t, (19)

satisfying the initial conditions

y(0) = 2, y′(0) = 1. (20)

We assume that this initial value problem has a solution y = φ(t), which with its first two
derivatives satisfies the conditions of Corollary 6.2.2. Then, taking the Laplace transform of
the differential equation, we have

s2Y(s) − sy(0) − y′(0) + Y(s) = 2/(s2 + 4),

where the transform of sin 2t has been obtained from line 5 of Table 6.2.1. Substituting for
y(0) and y′(0) from the initial conditions and solving for Y(s), we obtain

Y(s) = 2s3 + s2 + 8s + 6
(s2 + 1)(s2 + 4)

. (21)

Using partial fractions, we can write Y(s) in the form

Y(s) = as + b
s2 + 1

+ cs + d
s2 + 4

= (as + b)(s2 + 4) + (cs + d)(s2 + 1)

(s2 + 1)(s2 + 4)
. (22)

By expanding the numerator on the right side of Eq. (22) and equating it to the numerator in
Eq. (21), we find that

2s3 + s2 + 8s + 6 = (a + c)s3 + (b + d)s2 + (4a + c)s + (4b + d)

for all s. Then, comparing coefficients of like powers of s, we have

a + c = 2, b + d = 1,

4a + c = 8, 4b + d = 6.

Consequently, a = 2, c = 0, b = 5
3 , and d = − 2

3 , from which it follows that

Y(s) = 2s
s2 + 1

+ 5/3
s2 + 1

− 2/3
s2 + 4

. (23)
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From lines 5 and 6 of Table 6.2.1, the solution of the given initial value problem is

y = φ(t) = 2 cos t + 5
3 sin t − 1

3 sin 2t. (24)

E X A M P L E

3

Find the solution of the initial value problem

y(4) − y = 0, (25)

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0. (26)

In this problem we need to assume that the solution y = φ(t) satisfies the conditions of
Corollary 6.2.2 for n = 4. The Laplace transform of the differential equation (25) is

s4Y(s) − s3y(0) − s2y′(0) − sy′′(0) − y′′′(0) − Y(s) = 0.

Then, using the initial conditions (26) and solving for Y(s), we have

Y(s) = s2

s4 − 1
. (27)

A partial fraction expansion of Y(s) is

Y(s) = as + b
s2 − 1

+ cs + d
s2 + 1

,

and it follows that
(as + b)(s2 + 1) + (cs + d)(s2 − 1) = s2 (28)

for all s. By setting s = 1 and s = −1, respectively, in Eq. (28), we obtain the pair of equations

2(a + b) = 1, 2(−a + b) = 1,

and therefore a = 0 and b = 1
2 . If we set s = 0 in Eq. (28), then b − d = 0, so d = 1

2 . Finally,
equating the coefficients of the cubic terms on each side of Eq. (28), we find that a + c = 0, so
c = 0. Thus

Y(s) = 1/2
s2 − 1

+ 1/2
s2 + 1

, (29)

and from lines 7 and 5 of Table 6.2.1, the solution of the initial value problem (25), (26) is

y = φ(t) = sinh t + sin t
2

. (30)

The most important elementary applications of the Laplace transform are in the
study of mechanical vibrations and in the analysis of electric circuits; the govern-
ing equations were derived in Section 3.7. A vibrating spring–mass system has the
equation of motion

m
d2u
dt2

+ γ
du
dt

+ ku = F(t), (31)

where m is the mass, γ the damping coefficient, k the spring constant, and F(t) the
applied external force. The equation that describes an electric circuit containing an
inductance L, a resistance R, and a capacitance C (an LRC circuit) is

L
d2Q
dt2

+ R
dQ
dt

+ 1
C

Q = E(t), (32)
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where Q(t) is the charge on the capacitor and E(t) is the applied voltage. In terms
of the current I(t) = dQ(t)/dt, we can differentiate Eq. (32) and write

L
d2I
dt2

+ R
dI
dt

+ 1
C

I = dE
dt

(t). (33)

Suitable initial conditions on u, Q, or I must also be prescribed.
We have noted previously, in Section 3.7, that Eq. (31) for the spring–mass system

and Eq. (32) or (33) for the electric circuit are identical mathematically, differing
only in the interpretation of the constants and variables appearing in them. There
are other physical problems that also lead to the same differential equation. Thus,
once the mathematical problem is solved, its solution can be interpreted in terms of
whichever corresponding physical problem is of immediate interest.

In the problem lists following this and other sections in this chapter are numerous
initial value problems for second order linear differential equations with constant
coefficients. Many can be interpreted as models of particular physical systems, but
usually we do not point this out explicitly.

PROBLEMS In each of Problems 1 through 10 find the inverse Laplace transform of the given function.

1. F(s) = 3
s2 + 4

2. F(s) = 4
(s − 1)3

3. F(s) = 2
s2 + 3s − 4

4. F(s) = 3s
s2 − s − 6

5. F(s) = 2s + 2
s2 + 2s + 5

6. F(s) = 2s − 3
s2 − 4

7. F(s) = 2s + 1
s2 − 2s + 2

8. F(s) = 8s2 − 4s + 12
s(s2 + 4)

9. F(s) = 1 − 2s
s2 + 4s + 5

10. F(s) = 2s − 3
s2 + 2s + 10

In each of Problems 11 through 23 use the Laplace transform to solve the given initial value
problem.

11. y′′ − y′ − 6y = 0; y(0) = 1, y′(0) = −1

12. y′′ + 3y′ + 2y = 0; y(0) = 1, y′(0) = 0

13. y′′ − 2y′ + 2y = 0; y(0) = 0, y′(0) = 1

14. y′′ − 4y′ + 4y = 0; y(0) = 1, y′(0) = 1

15. y′′ − 2y′ + 4y = 0; y(0) = 2, y′(0) = 0

16. y′′ + 2y′ + 5y = 0; y(0) = 2, y′(0) = −1

17. y(4) − 4y′′′ + 6y′′ − 4y′ + y = 0; y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1

18. y(4) − y = 0; y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0

19. y(4) − 4y = 0; y(0) = 1, y′(0) = 0, y′′(0) = −2, y′′′(0) = 0

20. y′′ + ω2y = cos 2t, ω2 �= 4; y(0) = 1, y′(0) = 0
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21. y′′ − 2y′ + 2y = cos t; y(0) = 1, y′(0) = 0

22. y′′ − 2y′ + 2y = e−t ; y(0) = 0, y′(0) = 1

23. y′′ + 2y′ + y = 4e−t ; y(0) = 2, y′(0) = −1

In each of Problems 24 through 26 find the Laplace transform Y(s) = L{y} of the solution of
the given initial value problem. A method of determining the inverse transform is developed
in Section 6.3.

24. y′′ + 4y =
{

1, 0 ≤ t < π ,
0, π ≤ t < ∞;

y(0) = 1, y′(0) = 0

25. y′′ + y =
{

t, 0 ≤ t < 1,
0, 1 ≤ t < ∞;

y(0) = 0, y′(0) = 0

26. y′′ + 4y =
{

t, 0 ≤ t < 1,
1, 1 ≤ t < ∞;

y(0) = 0, y′(0) = 0

27. The Laplace transforms of certain functions can be found conveniently from their Taylor
series expansions.
(a) Using the Taylor series for sin t

sin t =
∞∑

n=0

(−1)nt2n+1

(2n + 1)!

and assuming that the Laplace transform of this series can be computed term by term,
verify that

L{sin t} = 1
s2 + 1

, s > 1.

(b) Let

f (t) =
{

(sin t)/t, t �= 0,
1, t = 0.

Find the Taylor series for f about t = 0. Assuming that the Laplace transform of this
function can be computed term by term, verify that

L{f (t)} = arctan(1/s), s > 1.

(c) The Bessel function of the first kind of order zero, J0, has the Taylor series (see
Section 5.7)

J0(t) =
∞∑

n=0

(−1)nt2n

22n(n!)2
.

Assuming that the following Laplace transforms can be computed term by term, verify
that

L{J0(t)} = (s2 + 1)−1/2, s > 1,

and

L{J0(
√

t)} = s−1e−1/(4s), s > 0.
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Problems 28 through 36 are concerned with differentiation of the Laplace transform.

28. Let

F(s) =
∫ ∞

0
e−st f (t) dt.

It is possible to show that as long as f satisfies the conditions of Theorem 6.1.2, it is
legitimate to differentiate under the integral sign with respect to the parameter s when
s > a.
(a) Show that F ′(s) = L{−tf (t)}.
(b) Show that F (n)(s) = L{(−t)nf (t)}; hence differentiating the Laplace transform corre-
sponds to multiplying the original function by −t.

In each of Problems 29 through 34 use the result of Problem 28 to find the Laplace transform
of the given function; a and b are real numbers and n is a positive integer.

29. f (t) = teat 30. f (t) = t2 sin bt

31. f (t) = tn 32. f (t) = tneat

33. f (t) = teat sin bt 34. f (t) = teat cos bt

35. Consider Bessel’s equation of order zero

ty′′ + y′ + ty = 0.

Recall from Section 5.4 that t = 0 is a regular singular point for this equation,and therefore
solutions may become unbounded as t → 0. However, let us try to determine whether
there are any solutions that remain finite at t = 0 and have finite derivatives there. As-
suming that there is such a solution y = φ(t), let Y(s) = L{φ(t)}.
(a) Show that Y(s) satisfies

(1 + s2)Y ′(s) + sY(s) = 0.

(b) Show that Y(s) = c(1 + s2)−1/2, where c is an arbitrary constant.
(c) Writing (1 + s2)−1/2 = s−1(1 + s−2)−1/2, expanding in a binomial series valid for s > 1,
and assuming that it is permissible to take the inverse transform term by term, show that

y = c
∞∑

n=0

(−1)nt2n

22n(n!)2
= cJ0(t),

where J0 is the Bessel function of the first kind of order zero. Note that J0(0) = 1 and that
J0 has finite derivatives of all orders at t = 0. It was shown in Section 5.7 that the second
solution of this equation becomes unbounded as t → 0.

36. For each of the following initial value problems use the results of Problem 28 to find
the differential equation satisfied by Y(s) = L{φ(t)}, where y = φ(t) is the solution of the
given initial value problem.
(a) y′′ − ty = 0; y(0) = 1, y′(0) = 0 (Airy’s equation)
(b) (1 − t2)y′′ − 2ty′ + α(α + 1)y = 0; y(0) = 0, y′(0) = 1 (Legendre’s equation)

Note that the differential equation for Y(s) is of first order in part (a), but of second order
in part (b). This is due to the fact that t appears at most to the first power in the equation
of part (a), whereas it appears to the second power in that of part (b). This illustrates that
the Laplace transform is not often useful in solving differential equations with variable
coefficients, unless all the coefficients are at most linear functions of the independent
variable.
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37. Suppose that

g(t) =
∫ t

0
f (τ ) dτ.

If G(s) and F(s) are the Laplace transforms of g(t) and f (t), respectively, show that

G(s) = F(s)/s.

38. In this problem we show how a general partial fraction expansion can be used to calculate
many inverse Laplace transforms. Suppose that

F(s) = P(s)/Q(s),

where Q(s) is a polynomial of degree n with distinct zeros r1, . . . , rn, and P(s) is a
polynomial of degree less than n. In this case it is possible to show that P(s)/Q(s) has a
partial fraction expansion of the form

P(s)
Q(s)

= A1

s − r1
+ · · · + An

s − rn
, (i)

where the coefficients A1, . . . , An must be determined.
(a) Show that

Ak = P(rk)/Q′(rk), k = 1, . . . , n. (ii)

Hint: One way to do this is to multiply Eq. (i) by s − rk and then to take the limit as s → rk.
(b) Show that

L−1{F(s)} =
n∑

k=1

P(rk)

Q′(rk)
erkt . (iii)

6.3 Step Functions
In Section 6.2 we outlined the general procedure involved in solving initial value
problems by means of the Laplace transform. Some of the most interesting elemen-
tary applications of the transform method occur in the solution of linear differential
equations with discontinuous or impulsive forcing functions. Equations of this type
frequently arise in the analysis of the flow of current in electric circuits or the vibra-
tions of mechanical systems. In this section and the following ones we develop some
additional properties of the Laplace transform that are useful in the solution of such
problems. Unless a specific statement is made to the contrary, all functions appearing
below will be assumed to be piecewise continuous and of exponential order, so that
their Laplace transforms exist, at least for s sufficiently large.

To deal effectively with functions having jump discontinuities, it is very helpful to
introduce a function known as the unit step function or Heaviside function.

This function will be denoted by uc and is defined by

uc(t) =
{

0, t < c,
1, t ≥ c,

c ≥ 0. (1)
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The graph of y = uc(t) is shown in Figure 6.3.1. We have somewhat arbitrarily as-
signed the value one to uc at t = c. However, for a piecewise continuous function
such as uc, recall that the value at a discontinuity point is usually irrelevant. The step
can also be negative. For instance, Figure 6.3.2 shows the graph y = 1 − uc(t).

1

y

tc

FIGURE 6.3.1 Graph of
y = uc(t).

1

y

tc

FIGURE 6.3.2 Graph of
y=1−uc(t).

E X A M P L E

1

Sketch the graph of y = h(t), where

h(t) = uπ (t) − u2π (t), t ≥ 0.

From the definition of uc(t) in Eq. (1), we have

h(t) =

⎧⎪⎨
⎪⎩

0 − 0 = 0, 0 ≤ t < π ,
1 − 0 = 1, π ≤ t < 2π ,
1 − 1 = 0, 2π ≤ t < ∞.

Thus the equation y = h(t) has the graph shown in Figure 6.3.3. This function can be thought
of as a rectangular pulse.

y

tπ2 ππ 3

1

FIGURE 6.3.3 Graph of y = uπ (t) − u2π (t).

E X A M P L E

2

Consider the function

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, 0 ≤ t < 4,
5, 4 ≤ t < 7,

−1, 7 ≤ t < 9,
1, t ≥ 9,

(2)

whose graph is shown in Figure 6.3.4. Express f (t) in terms of uc(t).
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1

–1

3

2

y

t

FIGURE 6.3.4 Graph of the function in Eq. (2).

We start with the function f1(t) = 2, which agrees with f (t) on [0, 4). To produce the jump
of three units at t = 4, we add 3u4(t) to f1(t), obtaining

f2(t) = 2 + 3u4(t),

which agrees with f (t) on [0, 7). The negative jump of six units at t = 7 corresponds to adding
−6u7(t), which gives

f3(t) = 2 + 3u4(t) − 6u7(t).

Finally, we must add 2u9(t) to match the jump of two units at t = 9. Thus we obtain

f (t) = 2 + 3u4(t) − 6u7(t) + 2u9(t). (3)

The Laplace transform of uc is easily determined:

L{uc(t)} =
∫ ∞

0
e−stuc(t) dt =

∫ ∞

c
e−st dt

= e−cs

s
, s > 0. (4)

For a given function f defined for t ≥ 0, we will often want to consider the related
function g defined by

y = g(t) =
{

0, t < c,
f (t − c), t ≥ c,

which represents a translation of f a distance c in the positive t direction; see Fig-
ure 6.3.5. In terms of the unit step function we can write g(t) in the convenient
form

g(t) = uc(t)f (t − c).

The unit step function is particularly important in transform use because of the fol-
lowing relation between the transform of f (t) and that of its translation uc(t)f (t − c).
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y

t

y

t

f (0) f (0)

(a) (b)

c

FIGURE 6.3.5 A translation of the given function. (a) y = f (t); (b) y = uc(t)f (t − c).

Theorem 6.3.1 If F(s) = L{f (t)} exists for s > a ≥ 0, and if c is a positive constant, then

L{uc(t)f (t − c)} = e−csL{f (t)} = e−csF(s), s > a. (5)

Conversely, if f (t) = L−1{F(s)}, then

uc(t)f (t − c) = L−1{e−csF(s)}. (6)

Theorem 6.3.1 simply states that the translation of f (t) a distance c in the positive t
direction corresponds to the multiplication of F(s) by e−cs. To prove Theorem 6.3.1,
it is sufficient to compute the transform of uc(t)f (t − c):

L{uc(t)f (t − c)} =
∫ ∞

0
e−stuc(t)f (t − c) dt

=
∫ ∞

c
e−st f (t − c) dt.

Introducing a new integration variable ξ = t − c, we have

L{uc(t)f (t − c)} =
∫ ∞

0
e−(ξ+c)sf (ξ) dξ = e−cs

∫ ∞

0
e−sξ f (ξ) dξ

= e−csF(s).

Thus Eq. (5) is established; Eq. (6) follows by taking the inverse transform of both
sides of Eq. (5).

A simple example of this theorem occurs if we take f (t) = 1. Recalling that
L{1} = 1/s, we immediately have from Eq. (5) that L{uc(t)} = e−cs/s. This result
agrees with that of Eq. (4). Examples 3 and 4 illustrate further how Theorem 6.3.1
can be used in the calculation of transforms and inverse transforms.

E X A M P L E

3

If the function f is defined by

f (t) =
{

sin t, 0 ≤ t < π/4,
sin t + cos(t − π/4), t ≥ π/4,

find L{f (t)}. The graph of y = f (t) is shown in Figure 6.3.6.
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y

t

y = sin t + u  /4(t)cos(t –   )π
π
4

2

1.5

1

0.5

0.5 1 1.5 2 2.5 3π
4

FIGURE 6.3.6 Graph of the function in Example 3.

Note that f (t) = sin t + g(t), where

g(t) =
{

0, t < π/4,
cos(t − π/4), t ≥ π/4.

Thus
g(t) = uπ/4(t) cos(t − π/4),

and

L{f (t)} = L{sin t} + L{uπ/4(t) cos(t − π/4)}
= L{sin t} + e−πs/4L{cos t}.

Introducing the transforms of sin t and cos t, we obtain

L{f (t)} = 1
s2 + 1

+ e−πs/4 s
s2 + 1

= 1 + se−πs/4

s2 + 1
.

You should compare this method with the calculation of L{f (t)} directly from the definition.

E X A M P L E

4

Find the inverse transform of

F(s) = 1 − e−2s

s2
.

From the linearity of the inverse transform we have

f (t) = L−1{F(s)} = L−1
{

1
s2

}
− L−1

{
e−2s

s2

}
= t − u2(t)(t − 2).

The function f may also be written as

f (t) =
{

t, 0 ≤ t < 2,
2, t ≥ 2.

The following theorem contains another very useful property of Laplace trans-
forms that is somewhat analogous to that given in Theorem 6.3.1.
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Theorem 6.3.2 If F(s) = L{f (t)} exists for s > a ≥ 0, and if c is a constant, then

L{ectf (t)} = F(s − c), s > a + c. (7)

Conversely, if f (t) = L−1{F(s)}, then

ectf (t) = L−1{F(s − c)}. (8)

According to Theorem 6.3.2, multiplication of f (t) by ect results in a translation of
the transform F(s) a distance c in the positive s direction, and conversely. To prove
this theorem, we evaluate L{ectf (t)}. Thus

L{ectf (t)} =
∫ ∞

0
e−stectf (t) dt =

∫ ∞

0
e−(s−c)t f (t) dt

= F(s − c),

which is Eq. (7). The restriction s > a + c follows from the observation that, ac-
cording to hypothesis (ii) of Theorem 6.1.2, |f (t)| ≤ Keat ; hence |ectf (t)| ≤ Ke(a+c)t .
Equation (8) is obtained by taking the inverse transform of Eq. (7), and the proof is
complete.

The principal application of Theorem 6.3.2 is in the evaluation of certain inverse
transforms, as illustrated by Example 5.

E X A M P L E

5

Find the inverse transform of

G(s) = 1
s2 − 4s + 5

.

By completing the square in the denominator, we can write

G(s) = 1
(s − 2)2 + 1

= F(s − 2),

where F(s) = (s2 + 1)−1. Since L−1{F(s)} = sin t, it follows from Theorem 6.3.2 that

g(t) = L−1{G(s)} = e2t sin t.

The results of this section are often useful in solving differential equations, partic-
ularly those that have discontinuous forcing functions. The next section is devoted
to examples illustrating this fact.

PROBLEMS In each of Problems 1 through 6 sketch the graph of the given function on the interval t ≥ 0.

1. g(t) = u1(t) + 2u3(t) − 6u4(t) 2. g(t) = (t − 3)u2(t) − (t − 2)u3(t)

3. g(t) = f (t − π)uπ (t), where f (t) = t2 4. g(t) = f (t − 3)u3(t), where f (t) = sin t

5. g(t) = f (t − 1)u2(t), where f (t) = 2t

6. g(t) = (t − 1)u1(t) − 2(t − 2)u2(t) + (t − 3)u3(t)
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In each of Problems 7 through 12:
(a) Sketch the graph of the given function.
(b) Express f (t) in terms of the unit step function uc(t).

7. f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ t < 3,
−2, 3 ≤ t < 5,

2, 5 ≤ t < 7,
1, t ≥ 7.

8. f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, 0 ≤ t < 1,
−1, 1 ≤ t < 2,

1, 2 ≤ t < 3,
−1, 3 ≤ t < 4,

0, t ≥ 4.

9. f (t) =
{

1, 0 ≤ t < 2,
e−(t−2), t ≥ 2.

10. f (t) =
{

t2, 0 ≤ t < 2,
1, t ≥ 2.

11. f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t, 0 ≤ t < 1,
t − 1, 1 ≤ t < 2,
t − 2, 2 ≤ t < 3,
0, t ≥ 3.

12. f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t, 0 ≤ t < 2,
2, 2 ≤ t < 5,
7 − t, 5 ≤ t < 7,
0, t ≥ 7.

In each of Problems 13 through 18 find the Laplace transform of the given function.

13. f (t) =
{

0, t < 2
(t − 2)2, t ≥ 2

14. f (t) =
{

0, t < 1
t2 − 2t + 2, t ≥ 1

15. f (t) =

⎧⎪⎨
⎪⎩

0, t < π

t − π , π ≤ t < 2π

0, t ≥ 2π

16. f (t) = u1(t) + 2u3(t) − 6u4(t)

17. f (t) = (t − 3)u2(t) − (t − 2)u3(t) 18. f (t) = t − u1(t)(t − 1), t ≥ 0

In each of Problems 19 through 24 find the inverse Laplace transform of the given function.

19. F(s) = 3!
(s − 2)4

20. F(s) = e−2s

s2 + s − 2

21. F(s) = 2(s − 1)e−2s

s2 − 2s + 2
22. F(s) = 2e−2s

s2 − 4

23. F(s) = (s − 2)e−s

s2 − 4s + 3
24. F(s) = e−s + e−2s − e−3s − e−4s

s

25. Suppose that F(s) = L{f (t)} exists for s > a ≥ 0.
(a) Show that if c is a positive constant, then

L{f (ct)} = 1
c

F
( s

c

)
, s > ca.

(b) Show that if k is a positive constant, then

L−1{F(ks)} = 1
k

f
(

t
k

)
.

(c) Show that if a and b are constants with a > 0, then

L−1{F(as + b)} = 1
a

e−bt/af
(

t
a

)
.
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In each of Problems 26 through 29 use the results of Problem 25 to find the inverse Laplace
transform of the given function.

26. F(s) = 2n+1n!
sn+1

27. F(s) = 2s + 1
4s2 + 4s + 5

28. F(s) = 1
9s2 − 12s + 3

29. F(s) = e2e−4s

2s − 1

In each of Problems 30 through 33 find the Laplace transform of the given function. In Problem
33 assume that term-by-term integration of the infinite series is permissible.

30. f (t) =
{

1, 0 ≤ t < 1
0, t ≥ 1

31. f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ t < 1
0, 1 ≤ t < 2
1, 2 ≤ t < 3
0, t ≥ 3

32. f (t) = 1 − u1(t) + · · · + u2n(t) − u2n+1(t) = 1 +
2n+1∑
k=1

(−1)kuk(t)

33. f (t) = 1 +
∞∑

k=1

(−1)kuk(t). See Figure 6.3.7.

y

t

1

1 2 3 4 5
FIGURE 6.3.7 A square wave.

34. Let f satisfy f (t + T) = f (t) for all t ≥ 0 and for some fixed positive number T ; f is said
to be periodic with period T on 0 ≤ t < ∞. Show that

L{f (t)} =

∫ T

0
e−st f (t) dt

1 − e−sT
.

In each of Problems 35 through 38, use the result of Problem 34 to find the Laplace transform
of the given function.

35. f (t) =
{

1, 0 ≤ t < 1,
0, 1 ≤ t < 2;

f (t + 2) = f (t).

Compare with Problem 33.

36. f (t) =
{

1, 0 ≤ t < 1,
−1, 1 ≤ t < 2;

f (t + 2) = f (t).

See Figure 6.3.8.

y

t

–1

1

1 2 3 4 5

FIGURE 6.3.8 A square wave.
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37. f (t) = t, 0 ≤ t < 1;
f (t + 1) = f (t).

See Figure 6.3.9.

38. f (t) = sin t, 0 ≤ t < π ;
f (t + π) = f (t).

See Figure 6.3.10.

y

t

1

1 2 3 4
FIGURE 6.3.9 A sawtooth wave.

y

tπ2 ππ 3

1

FIGURE 6.3.10 A rectified sine wave.

39. (a) If f (t) = 1 − u1(t), find L{f (t)}; compare with Problem 30. Sketch the graph of
y = f (t).

(b) Let g(t) =
∫ t

0
f (ξ) dξ , where the function f is defined in part (a). Sketch the graph of

y = g(t) and find L{g(t)}.
(c) Let h(t) = g(t) − u1(t)g(t − 1), where g is defined in part (b). Sketch the graph of
y = h(t) and find L{h(t)}.

40. Consider the function p defined by

p(t) =
{

t, 0 ≤ t < 1,
2 − t, 1 ≤ t < 2;

p(t + 2) = p(t).

(a) Sketch the graph of y = p(t).

(b) Find L{p(t)} by noting that p is the periodic extension of the function h in Prob-
lem 39(c) and then using the result of Problem 34.

(c) Find L{p(t)} by noting that

p(t) =
∫ t

0
f (t) dt,

where f is the function in Problem 36, and then using Theorem 6.2.1.

6.4 Differential Equations with Discontinuous Forcing Functions
In this section we turn our attention to some examples in which the nonhomogeneous
term, or forcing function, is discontinuous.

E X A M P L E

1

Find the solution of the differential equation

2y′′ + y′ + 2y = g(t), (1)

where

g(t) = u5(t) − u20(t) =
{

1, 5 ≤ t < 20,
0, 0 ≤ t < 5 and t ≥ 20.

(2)
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Assume that the initial conditions are

y(0) = 0, y′(0) = 0. (3)

This problem governs the charge on the capacitor in a simple electric circuit with a unit
voltage pulse for 5 ≤ t < 20. Alternatively,y may represent the response of a damped oscillator
subject to the applied force g(t).

The Laplace transform of Eq. (1) is

2s2Y(s) − 2sy(0) − 2y′(0) + sY(s) − y(0) + 2Y(s) = L{u5(t)} − L{u20(t)}
= (e−5s − e−20s)/s.

Introducing the initial values (3) and solving for Y(s), we obtain

Y(s) = e−5s − e−20s

s(2s2 + s + 2)
. (4)

To find y = φ(t), it is convenient to write Y(s) as

Y(s) = (e−5s − e−20s)H(s), (5)

where

H(s) = 1
s(2s2 + s + 2)

. (6)

Then, if h(t) = L−1{H(s)}, we have

y = φ(t) = u5(t)h(t − 5) − u20(t)h(t − 20). (7)

Observe that we have used Theorem 6.3.1 to write the inverse transforms of e−5sH(s) and
e−20sH(s), respectively. Finally, to determine h(t), we use the partial fraction expansion of
H(s):

H(s) = a
s

+ bs + c
2s2 + s + 2

. (8)

Upon determining the coefficients, we find that a = 1
2 , b = −1, and c = − 1

2 . Thus

H(s) = 1/2
s

− s + 1
2

2s2 + s + 2

= 1/2
s

−
(

1
2

) (
s + 1

4

) + 1
4(

s + 1
4

)2 + 15
16

, (9)

so that, by referring to lines 9 and 10 of Table 6.2.1, we obtain

h(t) = 1
2 − 1

2

[
e−t/4 cos(

√
15 t/4) + (

√
15/15)e−t/4 sin(

√
15 t/4)

]
. (10)

In Figure 6.4.1 the graph of y = φ(t) from Eqs. (7) and (10) shows that the solution consists
of three distinct parts. For 0 < t < 5 the differential equation is

2y′′ + y′ + 2y = 0 (11)

and the initial conditions are given by Eq. (3). Since the initial conditions impart no energy to
the system, and since there is no external forcing, the system remains at rest; that is, y = 0 for
0 < t < 5. This can be confirmed by solving Eq. (11) subject to the initial conditions (3). In
particular, evaluating the solution and its derivative at t = 5, or, more precisely, as t approaches
5 from below, we have

y(5) = 0, y′(5) = 0. (12)

Once t > 5, the differential equation becomes
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2y′′ + y′ + 2y = 1, (13)

whose solution is the sum of a constant (the response to the constant forcing function) and
a damped oscillation (the solution of the corresponding homogeneous equation). The plot
in Figure 6.4.1 shows this behavior clearly for the interval 5 ≤ t ≤ 20. An expression for this
portion of the solution can be found by solving the differential equation (13) subject to the
initial conditions (12). Finally, for t > 20 the differential equation becomes Eq. (11) again,
and the initial conditions are obtained by evaluating the solution of Eqs. (13), (12) and its
derivative at t = 20. These values are

y(20) ∼= 0.50162, y′(20) ∼= 0.01125. (14)

The initial value problem (11), (14) contains no external forcing, so its solution is a damped
oscillation about y = 0, as can be seen in Figure 6.4.1.

y

t

0.6

0.4

0.8

0.2

–0.2

10 20 4030

FIGURE 6.4.1 Solution of the initial value problem (1), (2), (3).

Although it may be helpful to visualize the solution shown in Figure 6.4.1 as composed of
solutions of three separate initial value problems in three separate intervals, it is somewhat
tedious to find the solution by solving these separate problems. Laplace transform methods
provide a much more convenient and elegant approach to this problem and to others having
discontinuous forcing functions.

The effect of the discontinuity in the forcing function can be seen if we examine the
solution φ(t) of Example 1 more closely. According to the existence and uniqueness
Theorem 3.2.1, the solution φ and its first two derivatives are continuous except
possibly at the points t = 5 and t = 20, where g is discontinuous. This can also be
seen at once from Eq. (7). One can also show by direct computation from Eq. (7)
that φ and φ′ are continuous even at t = 5 and t = 20. However, if we calculate φ′′,
we find that

lim
t→5−

φ′′(t) = 0, lim
t→5+

φ′′(t) = 1/2.
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Consequently, φ′′(t) has a jump of 1/2 at t = 5. In a similar way we can show that
φ′′(t) has a jump of −1/2 at t = 20. Thus the jump in the forcing term g(t) at these
points is balanced by a corresponding jump in the highest order term 2y′′ on the left
side of the equation.

Consider now the general second order linear equation

y′′ + p(t)y′ + q(t)y = g(t), (15)

where p and q are continuous on some interval α < t < β, but g is only piecewise
continuous there. If y = ψ(t) is a solution of Eq. (15), then ψ and ψ ′ are continuous
on α < t < β,but ψ ′′ has jump discontinuities at the same points as g. Similar remarks
apply to higher order equations; the highest derivative of the solution appearing in
the differential equation has jump discontinuities at the same points as the forcing
function, but the solution itself and its lower derivatives are continuous even at those
points.

E X A M P L E

2

Describe the qualitative nature of the solution of the initial value problem

y′′ + 4y = g(t), (16)

y(0) = 0, y′(0) = 0, (17)

where

g(t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ t < 5,
(t − 5)/5, 5 ≤ t < 10,
1, t ≥ 10,

(18)

and then find the solution.
In this example the forcing function has the graph shown in Figure 6.4.2 and is known as

ramp loading. It is relatively easy to identify the general form of the solution. For t < 5 the
solution is simply y = 0. On the other hand, for t > 10 the solution has the form

y = c1 cos 2t + c2 sin 2t + 1/4. (19)

The constant 1/4 is a particular solution of the nonhomogeneous equation, while the other
two terms are the general solution of the corresponding homogeneous equation. Thus the
solution (19) is a simple harmonic oscillation about y = 1/4. Similarly, in the intermediate
range 5 < t < 10, the solution is an oscillation about a certain linear function. In an engineering
context, for example, we might be interested in knowing the amplitude of the eventual steady
oscillation.

To solve the problem, it is convenient to write

g(t) = [
u5(t)(t − 5) − u10(t)(t − 10)

]
/5, (20)

as you may verify. Then we take the Laplace transform of the differential equation and use
the initial conditions, thereby obtaining

(s2 + 4)Y(s) = (e−5s − e−10s)/5s2

or
Y(s) = (e−5s − e−10s)H(s)/5, (21)

where

H(s) = 1
s2(s2 + 4)

. (22)
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y

t

1

5

0.5

10 15 20

y = g(t)

FIGURE 6.4.2 Ramp loading; y = g(t) from Eq. (18).

Thus the solution of the initial value problem (16), (17), (18) is

y = φ(t) = [
u5(t)h(t − 5) − u10(t)h(t − 10)

]
/5, (23)

where h(t) is the inverse transform of H(s). The partial fraction expansion of H(s) is

H(s) = 1/4
s2

− 1/4
s2 + 4

, (24)

and it then follows from lines 3 and 5 of Table 6.2.1 that

h(t) = 1
4 t − 1

8 sin 2t. (25)

The graph of y = φ(t) is shown in Figure 6.4.3. Observe that it has the qualitative form that
we indicated earlier. To find the amplitude of the eventual steady oscillation, it is sufficient to
locate one of the maximum or minimum points for t > 10. Setting the derivative of the solution
(23) equal to zero, we find that the first maximum is located approximately at (10.642, 0.2979),
so the amplitude of the oscillation is approximately 0.0479.

y

t

0.30

0.20

0.10

5 10 15 20

FIGURE 6.4.3 Solution of the initial value problem (16), (17), (18).

Note that in this example the forcing function g is continuous but g′ is discontinuous at
t = 5 and t = 10. It follows that the solution φ and its first two derivatives are continuous
everywhere, but φ′′′ has discontinuities at t = 5 and at t = 10 that match the discontinuities in
g′ at those points.
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PROBLEMS In each of Problems 1 through 13:
(a) Find the solution of the given initial value problem.
(b) Draw the graphs of the solution and of the forcing function; explain how they are related.

1. y′′ + y = f (t); y(0) = 0, y′(0) = 1; f (t) =
{

1, 0 ≤ t < 3π

0, 3π ≤ t < ∞

2. y′′ + 2y′ + 2y = h(t); y(0) = 0, y′(0) = 1; h(t) =
{

1, π ≤ t < 2π

0, 0 ≤ t < π and t ≥ 2π

3. y′′ + 4y = sin t − u2π (t) sin(t − 2π); y(0) = 0, y′(0) = 0

4. y′′ + 4y = sin t + uπ (t) sin(t − π); y(0) = 0, y′(0) = 0

5. y′′ + 3y′ + 2y = f (t); y(0) = 0, y′(0) = 0; f (t) =
{

1, 0 ≤ t < 10
0, t ≥ 10

6. y′′ + 3y′ + 2y = u2(t); y(0) = 0, y′(0) = 1

7. y′′ + y = u3π (t); y(0) = 1, y′(0) = 0

8. y′′ + y′ + 5
4 y = t − uπ/2(t)(t − π/2); y(0) = 0, y′(0) = 0

9. y′′ + y = g(t); y(0) = 0, y′(0) = 1; g(t) =
{

t/2, 0 ≤ t < 6
3, t ≥ 6

10. y′′ + y′ + 5
4 y = g(t); y(0) = 0, y′(0) = 0; g(t) =

{
sin t, 0 ≤ t < π

0, t ≥ π

11. y′′ + 4y = uπ (t) − u3π (t); y(0) = 0, y′(0) = 0

12. y(4) − y = u1(t) − u2(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

13. y(4) + 5y′′ + 4y = 1 − uπ (t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

14. Find an expression involving uc(t) for a function f that ramps up from zero at t = t0 to the
value h at t = t0 + k.

15. Find an expression involving uc(t) for a function g that ramps up from zero at t = t0 to the
value h at t = t0 + k and then ramps back down to zero at t = t0 + 2k.

16. A certain spring–mass system satisfies the initial value problem

u′′ + 1
4 u′ + u = kg(t), u(0) = 0, u′(0) = 0,

where g(t) = u3/2(t) − u5/2(t) and k > 0 is a parameter.

(a) Sketch the graph of g(t). Observe that it is a pulse of unit magnitude extending over
one time unit.
(b) Solve the initial value problem.
(c) Plot the solution for k = 1/2, k = 1, and k = 2. Describe the principal features of the
solution and how they depend on k.
(d) Find, to two decimal places, the smallest value of k for which the solution u(t) reaches
the value 2.
(e) Suppose k = 2. Find the time τ after which |u(t)| < 0.1 for all t > τ .

17. Modify the problem in Example 2 of this section by replacing the given forcing function
g(t) by

f (t) = [
u5(t)(t − 5) − u5+k(t)(t − 5 − k)

]
/k.
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(a) Sketch the graph of f (t) and describe how it depends on k. For what value of k is f (t)
identical to g(t) in the example?
(b) Solve the initial value problem

y′′ + 4y = f (t), y(0) = 0, y′(0) = 0.

(c) The solution in part (b) depends on k, but for sufficiently large t the solution is always
a simple harmonic oscillation about y = 1/4. Try to decide how the amplitude of this
eventual oscillation depends on k. Then confirm your conclusion by plotting the solution
for a few different values of k.

18. Consider the initial value problem

y′′ + 1
3 y′ + 4y = fk(t), y(0) = 0, y′(0) = 0,

where

fk(t) =
{

1/2k, 4 − k ≤ t < 4 + k

0, 0 ≤ t < 4 − k and t ≥ 4 + k

and 0 < k < 4.
(a) Sketch the graph of fk(t). Observe that the area under the graph is independent of k.
If fk(t) represents a force, this means that the product of the magnitude of the force and
the time interval during which it acts does not depend on k.
(b) Write fk(t) in terms of the unit step function and then solve the given initial value
problem.
(c) Plot the solution for k = 2, k = 1, and k = 1

2 . Describe how the solution depends
on k.

Resonance and Beats. In Section 3.8 we observed that an undamped harmonic oscillator
(such as a spring–mass system) with a sinusoidal forcing term experiences resonance if
the frequency of the forcing term is the same as the natural frequency. If the forcing
frequency is slightly different from the natural frequency, then the system exhibits a beat.
In Problems 19 through 23 we explore the effect of some nonsinusoidal periodic forcing
functions.

19. Consider the initial value problem

y′′ + y = f (t), y(0) = 0, y′(0) = 0,

where

f (t) = u0(t) + 2
n∑

k=1

(−1)kukπ (t).

(a) Draw the graph of f (t) on an interval such as 0 ≤ t ≤ 6π .
(b) Find the solution of the initial value problem.
(c) Let n = 15 and plot the graph of the solution for 0 ≤ t ≤ 60. Describe the solution
and explain why it behaves as it does.
(d) Investigate how the solution changes as n increases. What happens as n → ∞?

20. Consider the initial value problem

y′′ + 0.1y′ + y = f (t), y(0) = 0, y′(0) = 0,

where f (t) is the same as in Problem 19.
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(a) Plot the graph of the solution. Use a large enough value of n and a long enough
t-interval so that the transient part of the solution has become negligible and the steady
state is clearly shown.
(b) Estimate the amplitude and frequency of the steady state part of the solution.
(c) Compare the results of part (b) with those from Section 3.8 for a sinusoidally forced
oscillator.

21. Consider the initial value problem

y′′ + y = g(t), y(0) = 0, y′(0) = 0,

where

g(t) = u0(t) +
n∑

k=1

(−1)kukπ (t).

(a) Draw the graph of g(t) on an interval such as 0 ≤ t ≤ 6π . Compare the graph with
that of f (t) in Problem 19(a).
(b) Find the solution of the initial value problem.
(c) Let n = 15 and plot the graph of the solution for 0 ≤ t ≤ 60. Describe the solution
and explain why it behaves as it does. Compare it with the solution of Problem 19.
(d) Investigate how the solution changes as n increases. What happens as n → ∞?

22. Consider the initial value problem

y′′ + 0.1y′ + y = g(t), y(0) = 0, y′(0) = 0,

where g(t) is the same as in Problem 21.
(a) Plot the graph of the solution. Use a large enough value of n and a long enough
t-interval so that the transient part of the solution has become negligible and the steady
state is clearly shown.
(b) Estimate the amplitude and frequency of the steady state part of the solution.
(c) Compare the results of part (b) with those from Problem 20 and from Section 3.8 for
a sinusoidally forced oscillator.

23. Consider the initial value problem

y′′ + y = h(t), y(0) = 0, y′(0) = 0,

where

f (t) = u0(t) + 2
n∑

k=1

(−1)ku11k/4(t).

Observe that this problem is identical to Problem 19 except that the frequency of the
forcing term has been increased somewhat.
(a) Find the solution of this initial value problem.
(b) Let n ≥ 33 and plot the solution for 0 ≤ t ≤ 90 or longer. Your plot should show a
clearly recognizable beat.
(c) From the graph in part (b) estimate the “slow period” and the “fast period” for this
oscillator.
(d) For a sinusoidally forced oscillator, it was shown in Section 3.8 that the “slow fre-
quency” is given by |ω − ω0|/2, where ω0 is the natural frequency of the system and ω is
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the forcing frequency. Similarly, the “fast frequency” is (ω + ω0)/2. Use these expressions
to calculate the “fast period” and the “slow period” for the oscillator in this problem. How
well do the results compare with your estimates from part (c)?

6.5 Impulse Functions
In some applications it is necessary to deal with phenomena of an impulsive nature—
for example, voltages or forces of large magnitude that act over very short time
intervals. Such problems often lead to differential equations of the form

ay′′ + by′ + cy = g(t), (1)

where g(t) is large during a short interval t0 − τ < t < t0 + τ and is otherwise zero.
The integral I(τ ), defined by

I(τ ) =
∫ t0+τ

t0−τ

g(t) dt, (2)

or, since g(t) = 0 outside of the interval (t0 − τ , t0 + τ),

I(τ ) =
∫ ∞

−∞
g(t) dt, (3)

is a measure of the strength of the forcing function. In a mechanical system, where
g(t) is a force, I(τ ) is the total impulse of the force g(t) over the time interval
(t0 − τ , t0 + τ). Similarly, if y is the current in an electric circuit and g(t) is the time
derivative of the voltage, then I(τ ) represents the total voltage impressed on the
circuit during the interval (t0 − τ , t0 + τ).

In particular, let us suppose that t0 is zero and that g(t) is given by

g(t) = dτ (t) =
{

1/2τ , −τ < t < τ ,
0, t ≤ −τ or t ≥ τ ,

(4)

where τ is a small positive constant (see Figure 6.5.1). According to Eq. (2) or (3),
it follows immediately that in this case I(τ ) = 1 independent of the value of τ , as
long as τ �= 0. Now let us idealize the forcing function dτ by prescribing it to act
over shorter and shorter time intervals; that is, we require that τ → 0, as indicated in
Figure 6.5.2. As a result of this limiting operation, we obtain

lim
τ→0

dτ (t) = 0, t �= 0. (5)

τ2
1

τ τ–

y

t

FIGURE 6.5.1 Graph of y = dτ (t).
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y

t
FIGURE 6.5.2 Graphs of y = dτ (t) as τ → 0.

Further, since I(τ ) = 1 for each τ �= 0, it follows that

lim
τ→0

I(τ ) = 1. (6)

Equations (5) and (6) can be used to define an idealized unit impulse function δ,
which imparts an impulse of magnitude one at t = 0 but is zero for all values of t
other than zero. That is, the “function” δ is defined to have the properties

δ(t) = 0, t �= 0; (7)∫ ∞

−∞
δ(t) dt = 1. (8)

There is no ordinary function of the kind studied in elementary calculus that satisfies
both Eqs. (7) and (8). The “function” δ, defined by those equations, is an example of
what are known as generalized functions; it is usually called the Dirac2 delta function.
Since δ(t) corresponds to a unit impulse at t = 0, a unit impulse at an arbitrary point
t = t0 is given by δ(t − t0). From Eqs. (7) and (8) it follows that

δ(t − t0) = 0, t �= t0; (9)∫ ∞

−∞
δ(t − t0) dt = 1. (10)

The delta function does not satisfy the conditions of Theorem 6.1.2, but its Laplace
transform can nevertheless be formally defined. Since δ(t) is defined as the limit of
dτ (t) as τ → 0, it is natural to define the Laplace transform of δ as a similar limit of

2Paul A. M. Dirac (1902–1984), English mathematical physicist, received his Ph.D. from Cambridge in
1926 and was professor of mathematics there until 1969. He was awarded the Nobel Prize in 1933 (with
Erwin Schrödinger) for fundamental work in quantum mechanics. His most celebrated result was the
relativistic equation for the electron, published in 1928. From this equation he predicted the existence of
an“anti-electron,”or positron,which was first observed in 1932. Following his retirement from Cambridge,
Dirac moved to the United States and held a research professorship at Florida State University.
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the transform of dτ . In particular, we will assume that t0 > 0 and define L{δ(t − t0)}
by the equation

L{δ(t − t0)} = lim
τ→0

L{dτ (t − t0)}. (11)

To evaluate the limit in Eq. (11), we first observe that if τ < t0, which must eventually
be the case as τ → 0, then t0 − τ > 0. Since dτ (t − t0) is nonzero only in the interval
from t0 − τ to t0 + τ , we have

L{dτ (t − t0)} =
∫ ∞

0
e−stdτ (t − t0) dt

=
∫ t0+τ

t0−τ

e−stdτ (t − t0) dt.

Substituting for dτ (t − t0) from Eq. (4), we obtain

L{dτ (t − t0)} = 1
2τ

∫ t0+τ

t0−τ

e−st dt = − 1
2sτ

e−st
∣∣∣t=t0+τ

t=t0−τ

= 1
2sτ

e−st0(esτ − e−sτ )

or

L{dτ (t − t0)} = sinh sτ
sτ

e−st0 . (12)

The quotient (sinh sτ)/sτ is indeterminate as τ → 0, but its limit can be evaluated by
L’Hospital’s rule. We obtain

lim
τ→0

sinh sτ
sτ

= lim
τ→0

s cosh sτ
s

= 1.

Then from Eq. (11) it follows that

L{δ(t − t0)} = e−st0 . (13)

Equation (13) defines L{δ(t − t0)} for any t0 > 0. We extend this result, to allow t0 to
be zero, by letting t0 → 0 on the right side of Eq. (13); thus

L{δ(t)} = lim
t0→0

e−st0 = 1. (14)

In a similar way it is possible to define the integral of the product of the delta
function and any continuous function f . We have∫ ∞

−∞
δ(t − t0)f (t) dt = lim

τ→0

∫ ∞

−∞
dτ (t − t0)f (t) dt. (15)

Using the definition (4) of dτ (t) and the mean value theorem for integrals, we find
that ∫ ∞

−∞
dτ (t − t0)f (t) dt = 1

2τ

∫ t0+τ

t0−τ

f (t) dt

= 1
2τ

· 2τ · f (t∗) = f (t∗),
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where t0 − τ < t∗ < t0 + τ . Hence t∗ → t0 as τ → 0, and it follows from Eq. (15) that∫ ∞

−∞
δ(t − t0)f (t) dt = f (t0). (16)

The following example illustrates the use of the delta function in solving an initial
value problem with an impulsive forcing function.

E X A M P L E

1

Find the solution of the initial value problem

2y′′ + y′ + 2y = δ(t − 5), (17)

y(0) = 0, y′(0) = 0. (18)

This initial value problem arises from the study of the same electrical circuit or mechanical
oscillator as in Example 1 of Section 6.4. The only difference is in the forcing term.

To solve the given problem, we take the Laplace transform of the differential equation and
use the initial conditions, obtaining

(2s2 + s + 2)Y(s) = e−5s.

Thus

Y(s) = e−5s

2s2 + s + 2
= e−5s

2
1(

s + 1
4

)2 + 15
16

. (19)

By Theorem 6.3.2 or from line 9 of Table 6.2.1,

L−1

{
1(

s + 1
4

)2 + 15
16

}
= 4√

15
e−t/4 sin

√
15
4

t. (20)

Hence, by Theorem 6.3.1, we have

y = L−1{Y(s)} = 2√
15

u5(t)e−(t−5)/4 sin

√
15
4

(t − 5), (21)

0.3

0.2

0.1

5 10 15 20

y

t

–0.1

FIGURE 6.5.3 Solution of the initial value problem (17), (18).
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which is the formal solution of the given problem. It is also possible to write y in the form

y =

⎧⎪⎨
⎪⎩

0, t < 5,

2√
15

e−(t−5)/4 sin

√
15
4

(t − 5), t ≥ 5.
(22)

The graph of Eq. (22) is shown in Figure 6.5.3. Since the initial conditions at t = 0 are
homogeneous and there is no external excitation until t = 5, there is no response in the interval
0 < t < 5. The impulse at t = 5 produces a decaying oscillation that persists indefinitely. The
response is continuous at t = 5 despite the singularity in the forcing function at that point.
However, the first derivative of the solution has a jump discontinuity at t = 5, and the second
derivative has an infinite discontinuity there. This is required by the differential equation (17),
since a singularity on one side of the equation must be balanced by a corresponding singularity
on the other side.

In dealing with problems with impulsive forcing the use of the delta function usually
simplifies the mathematical calculations, often quite significantly. However, if the
actual excitation extends over a short, but nonzero, time interval, then an error will
be introduced by modeling the excitation as taking place instantaneously. This error
may be negligible, but in a practical problem it should not be dismissed without
consideration. In Problem 16 you are asked to investigate this issue for a simple
harmonic oscillator.

PROBLEMS In each of Problems 1 through 12:
(a) Find the solution of the given initial value problem.
(b) Draw a graph of the solution.

1. y′′ + 2y′ + 2y = δ(t − π); y(0) = 1, y′(0) = 0

2. y′′ + 4y = δ(t − π) − δ(t − 2π); y(0) = 0, y′(0) = 0

3. y′′ + 3y′ + 2y = δ(t − 5) + u10(t); y(0) = 0, y′(0) = 1/2

4. y′′ − y = −20δ(t − 3); y(0) = 1, y′(0) = 0

5. y′′ + 2y′ + 3y = sin t + δ(t − 3π); y(0) = 0, y′(0) = 0

6. y′′ + 4y = δ(t − 4π); y(0) = 1/2, y′(0) = 0

7. y′′ + y = δ(t − 2π) cos t; y(0) = 0, y′(0) = 1

8. y′′ + 4y = 2δ(t − π/4); y(0) = 0, y′(0) = 0

9. y′′ + y = uπ/2(t) + 3δ(t − 3π/2) − u2π (t); y(0) = 0, y′(0) = 0

10. 2y′′ + y′ + 4y = δ(t − π/6) sin t; y(0) = 0, y′(0) = 0

11. y′′ + 2y′ + 2y = cos t + δ(t − π/2); y(0) = 0, y′(0) = 0

12. y(4) − y = δ(t − 1); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

13. Consider again the system in Example 1 of this section, in which an oscillation is excited
by a unit impulse at t = 5. Suppose that it is desired to bring the system to rest again after
exactly one cycle—that is, when the response first returns to equilibrium moving in the
positive direction.
(a) Determine the impulse kδ(t − t0) that should be applied to the system in order to
accomplish this objective. Note that k is the magnitude of the impulse and t0 is the time
of its application.
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(b) Solve the resulting initial value problem and plot its solution to confirm that it behaves
in the specified manner.

14. Consider the initial value problem

y′′ + γ y′ + y = δ(t − 1), y(0) = 0, y′(0) = 0,

where γ is the damping coefficient (or resistance).
(a) Let γ = 1

2 . Find the solution of the initial value problem and plot its graph.

(b) Find the time t1 at which the solution attains its maximum value. Also find the maxi-
mum value y1 of the solution.

(c) Let γ = 1
4 and repeat parts (a) and (b).

(d) Determine how t1 and y1 vary as γ decreases. What are the values of t1 and y1 when
γ = 0?

15. Consider the initial value problem

y′′ + γ y′ + y = kδ(t − 1), y(0) = 0, y′(0) = 0,

where k is the magnitude of an impulse at t = 1 and γ is the damping coefficient (or
resistance).

(a) Let γ = 1
2 . Find the value of k for which the response has a peak value of 2; call this

value k1.

(b) Repeat part (a) for γ = 1
4 .

(c) Determine how k1 varies as γ decreases. What is the value of k1 when γ = 0?

16. Consider the initial value problem

y′′ + y = fk(t), y(0) = 0, y′(0) = 0,

where fk(t) = [u4−k(t) − u4+k(t)]/2k with 0 < k ≤ 1.

(a) Find the solution y = φ(t, k) of the initial value problem.

(b) Calculate lim
k→0

φ(t, k) from the solution found in part (a).

(c) Observe that lim
k→0

fk(t) = δ(t − 4). Find the solution φ0(t) of the given initial value

problem with fk(t) replaced by δ(t − 4). Is it true that φ0(t) = lim
k→0

φ(t, k)?

(d) Plot φ(t, 1/2), φ(t, 1/4), and φ0(t) on the same axes. Describe the relation between
φ(t, k) and φ0(t).

Problems 17 through 22 deal with the effect of a sequence of impulses on an undamped
oscillator. Suppose that

y′′ + y = f (t), y(0) = 0, y′(0) = 0.

For each of the following choices for f (t):

(a) Try to predict the nature of the solution without solving the problem.
(b) Test your prediction by finding the solution and drawing its graph.
(c) Determine what happens after the sequence of impulses ends.

17. f (t) =
20∑

k=1
δ(t − kπ) 18. f (t) =

20∑
k=1

(−1)k+1δ(t − kπ)

19. f (t) =
20∑

k=1
δ(t − kπ/2) 20. f (t) =

20∑
k=1

(−1)k+1δ(t − kπ/2)
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21. f (t) =
15∑

k=1
δ[t − (2k − 1)π ] 22. f (t) =

40∑
k=1

(−1)k+1δ(t − 11k/4)

23. The position of a certain lightly damped oscillator satisfies the initial value problem

y′′ + 0.1y′ + y =
20∑

k=1

(−1)k+1δ(t − kπ), y(0) = 0, y′(0) = 0.

Observe that, except for the damping term, this problem is the same as Problem 18.

(a) Try to predict the nature of the solution without solving the problem.

(b) Test your prediction by finding the solution and drawing its graph.

(c) Determine what happens after the sequence of impulses ends.

24. Proceed as in Problem 23 for the oscillator satisfying

y′′ + 0.1y′ + y =
15∑

k=1

δ[t − (2k − 1)π ], y(0) = 0, y′(0) = 0.

Observe that, except for the damping term, this problem is the same as Problem 21.

25. (a) By the method of variation of parameters, show that the solution of the initial value
problem

y′′ + 2y′ + 2y = f (t); y(0) = 0, y′(0) = 0

is

y =
∫ t

0
e−(t−τ)f (τ ) sin(t − τ) dτ.

(b) Show that if f (t) = δ(t − π), then the solution of part (a) reduces to

y = uπ (t)e−(t−π) sin(t − π).

(c) Use a Laplace transform to solve the given initial value problem with
f (t) = δ(t − π) and confirm that the solution agrees with the result of part (b).

6.6 The Convolution Integral
Sometimes it is possible to identify a Laplace transform H(s) as the product of two
other transforms F(s) and G(s), the latter transforms corresponding to known func-
tions f and g, respectively. In this event, we might anticipate that H(s) would be the
transform of the product of f and g. However, this is not the case; in other words,
the Laplace transform cannot be commuted with ordinary multiplication. On the
other hand, if an appropriately defined “generalized product” is introduced, then the
situation changes, as stated in the following theorem.

Theorem 6.6.1 If F(s) = L{f (t)} and G(s) = L{g(t)} both exist for s > a ≥ 0, then

H(s) = F(s)G(s) = L{h(t)}, s > a, (1)
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where

h(t) =
∫ t

0
f (t − τ)g(τ ) dτ =

∫ t

0
f (τ )g(t − τ) dτ. (2)

The function h is known as the convolution of f and g; the integrals in Eq. (2) are
known as convolution integrals.

The equality of the two integrals in Eq. (2) follows by making the change of vari-
able t − τ = ξ in the first integral. Before giving the proof of this theorem, let us
make some observations about the convolution integral. According to this theorem,
the transform of the convolution of two functions, rather than the transform of their
ordinary product, is given by the product of the separate transforms. It is conven-
tional to emphasize that the convolution integral can be thought of as a “generalized
product” by writing

h(t) = (f ∗ g)(t). (3)

In particular, the notation (f ∗ g)(t) serves to indicate the first integral appearing in
Eq. (2).

The convolution f ∗ g has many of the properties of ordinary multiplication. For
example, it is relatively simple to show that

f ∗ g = g ∗ f (commutative law) (4)

f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2 (distributive law) (5)

(f ∗ g) ∗ h = f ∗ (g ∗ h) (associative law) (6)

f ∗ 0 = 0 ∗ f = 0. (7)

In Eq. (7) the zeros denote not the number 0 but the function that has the value 0
for each value of t. The proofs of these properties are left to you as exercises.

However, there are other properties of ordinary multiplication that the convolution
integral does not have. For example, it is not true in general that f ∗ 1 is equal to f .
To see this, note that

(f ∗ 1)(t) =
∫ t

0
f (t − τ) · 1 dτ =

∫ t

0
f (t − τ) dτ.

If, for example, f (t) = cos t, then

(f ∗ 1)(t) =
∫ t

0
cos(t − τ) dτ = − sin(t − τ)

∣∣∣τ=t

τ=0

= − sin 0 + sin t

= sin t.

Clearly, (f ∗ 1)(t) �= f (t) in this case. Similarly, it may not be true that f ∗ f is non-
negative. See Problem 3 for an example.

Convolution integrals arise in various applications in which the behavior of the
system at time t depends not only on its state at time t but also on its past history.
Systems of this kind are sometimes called hereditary systems and occur in such diverse
fields as neutron transport, viscoelasticity, and population dynamics, among others.
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Turning now to the proof of Theorem 6.6.1, we note first that if

F(s) =
∫ ∞

0
e−sξ f (ξ) dξ

and

G(s) =
∫ ∞

0
e−sτ g(τ ) dτ ,

then

F(s)G(s) =
∫ ∞

0
e−sξ f (ξ) dξ

∫ ∞

0
e−sτ g(τ ) dτ. (8)

Since the integrand of the first integral does not depend on the integration variable
of the second, we can write F(s)G(s) as an iterated integral

F(s)G(s) =
∫ ∞

0
e−sτ g(τ )

[ ∫ ∞

0
e−sξ f (ξ) dξ

]
dτ

=
∫ ∞

0
g(τ )

[ ∫ ∞

0
e−s(ξ+τ)f (ξ) dξ

]
dτ. (9)

The latter integral can be put into a more convenient form by introducing a change
of variable. Let ξ = t − τ , for fixed τ , so that dξ = dt. Further, ξ = 0 corresponds to
t = τ and ξ = ∞ corresponds to t = ∞; then the integral with respect to ξ in Eq. (9)
is transformed into one with respect to t:

F(s)G(s) =
∫ ∞

0
g(τ )

[ ∫ ∞

τ

e−st f (t − τ) dt
]

dτ. (10)

The iterated integral on the right side of Eq. (10) is carried out over the shaded wedge-
shaped region extending to infinity in the tτ -plane shown in Figure 6.6.1. Assuming
that the order of integration can be reversed, we finally obtain

F(s)G(s) =
∫ ∞

0
e−st

[ ∫ t

0
f (t − τ)g(τ ) dτ

]
dt (11)

t

τ

= 0τ

t →∞t =τ

= tτ

FIGURE 6.6.1 Region of integration in F(s)G(s).
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or

F(s)G(s) =
∫ ∞

0
e−sth(t) dt

= L{h(t)}, (12)

where h(t) is defined by Eq. (2). This completes the proof of Theorem 6.6.1.

E X A M P L E

1

Find the inverse transform of
H(s) = a

s2(s2 + a2)
. (13)

It is convenient to think of H(s) as the product of s−2 and a/(s2 + a2), which, according to
lines 3 and 5 of Table 6.2.1, are the transforms of t and sin at, respectively. Hence, by Theorem
6.6.1, the inverse transform of H(s) is

h(t) =
∫ t

0
(t − τ) sin aτ dτ = at − sin at

a2
. (14)

You can verify that the same result is obtained if h(t) is written in the alternative form

h(t) =
∫ t

0
τ sin a(t − τ) dτ ,

which confirms Eq. (2) in this case. Of course, h(t) can also be found by expanding H(s) in
partial fractions.

E X A M P L E

2

Find the solution of the initial value problem

y′′ + 4y = g(t), (15)

y(0) = 3, y′(0) = −1. (16)

By taking the Laplace transform of the differential equation and using the initial conditions,
we obtain

s2Y(s) − 3s + 1 + 4Y(s) = G(s)

or

Y(s) = 3s − 1
s2 + 4

+ G(s)
s2 + 4

. (17)

Observe that the first and second terms on the right side of Eq. (17) contain the dependence
of Y(s) on the initial conditions and forcing function, respectively. It is convenient to write
Y(s) in the form

Y(s) = 3
s

s2 + 4
− 1

2
2

s2 + 4
+ 1

2
2

s2 + 4
G(s). (18)

Then, using lines 5 and 6 of Table 6.2.1 and Theorem 6.6.1, we obtain

y = 3 cos 2t − 1
2 sin 2t + 1

2

∫ t

0
sin 2(t − τ)g(τ ) dτ. (19)

If a specific forcing function g is given, then the integral in Eq. (19) can be evaluated (by
numerical means, if necessary).

Example 2 illustrates the power of the convolution integral as a tool for writing
the solution of an initial value problem in terms of an integral. In fact, it is possible
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to proceed in much the same way in more general problems. Consider the problem
consisting of the differential equation

ay′′ + by′ + cy = g(t), (20)

where a, b, and c are real constants and g is a given function, together with the initial
conditions

y(0) = y0, y′(0) = y′
0. (21)

The transform approach yields some important insights concerning the structure of
the solution of any problem of this type.

The initial value problem (20), (21) is often referred to as an input–output problem.
The coefficients a, b, and c describe the properties of some physical system, and g(t)
is the input to the system. The values y0 and y′

0 describe the initial state, and the
solution y is the output at time t.

By taking the Laplace transform of Eq. (20) and using the initial conditions (21),
we obtain

(as2 + bs + c)Y(s) − (as + b)y0 − ay′
0 = G(s).

If we let

�(s) = (as + b)y0 + ay′
0

as2 + bs + c
, �(s) = G(s)

as2 + bs + c
, (22)

then we can write
Y(s) = �(s) + �(s). (23)

Consequently,
y = φ(t) + ψ(t), (24)

where φ(t) = L−1{�(s)} and ψ(t) = L−1{�(s)}. Observe that φ(t) is the solution of
the initial value problem

ay′′ + by′ + cy = 0, y(0) = y0, y′(0) = y′
0, (25)

obtained from Eqs. (20) and (21) by setting g(t) equal to zero. Similarly, ψ(t) is the
solution of

ay′′ + by′ + cy = g(t), y(0) = 0, y′(0) = 0, (26)

in which the initial values y0 and y′
0 are each replaced by zero.

Once specific values of a, b, and c are given, we can find φ(t) = L−1{�(s)} by using
Table 6.2.1, possibly in conjunction with a translation or a partial fraction expansion.
To find ψ(t) = L−1{�(s)}, it is convenient to write �(s) as

�(s) = H(s)G(s), (27)

where H(s) = (as2 + bs + c)−1. The function H is known as the transfer function3

and depends only on the properties of the system under consideration; that is, H(s) is
determined entirely by the coefficients a, b, and c. On the other hand, G(s) depends

3This terminology arises from the fact that H(s) is the ratio of the transforms of the output and the input
of the problem (26).
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only on the external excitation g(t) that is applied to the system. By the convolution
theorem we can write

ψ(t) = L−1{H(s)G(s)} =
∫ t

0
h(t − τ)g(τ ) dτ , (28)

where h(t) = L−1{H(s)}, and g(t) is the given forcing function.
To obtain a better understanding of the significance of h(t), we consider the case in

which G(s) = 1; consequently, g(t) = δ(t) and �(s) = H(s). This means that y = h(t)
is the solution of the initial value problem

ay′′ + by′ + cy = δ(t), y(0) = 0, y′(0) = 0, (29)

obtained from Eq. (26) by replacing g(t) by δ(t). Thus h(t) is the response of the
system to a unit impulse applied at t = 0, and it is natural to call h(t) the impulse
response of the system. Equation (28) then says that ψ(t) is the convolution of the
impulse response and the forcing function.

Referring to Example 2, we note that in that case, the transfer function is
H(s) = 1/(s2 + 4) and the impulse response is h(t) = (sin 2t)/2. Also, the first two
terms on the right side of Eq. (19) constitute the function φ(t), the solution of the
corresponding homogeneous equation that satisfies the given initial conditions.

PROBLEMS 1. Establish the commutative, distributive, and associative properties of the convolution
integral.
(a) f ∗ g = g ∗ f

(b) f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

(c) f ∗ (g ∗ h) = (f ∗ g) ∗ h

2. Find an example different from the one in the text showing that (f ∗ 1)(t) need not be
equal to f (t).

3. Show, by means of the example f (t) = sin t, that f ∗ f is not necessarily nonnegative.

In each of Problems 4 through 7 find the Laplace transform of the given function.

4. f (t) =
∫ t

0
(t − τ)2 cos 2τ dτ 5. f (t) =

∫ t

0
e−(t−τ) sin τ dτ

6. f (t) =
∫ t

0
(t − τ)eτ dτ 7. f (t) =

∫ t

0
sin(t − τ) cos τ dτ

In each of Problems 8 through 11 find the inverse Laplace transform of the given function by
using the convolution theorem.

8. F(s) = 1
s4(s2 + 1)

9. F(s) = s
(s + 1)(s2 + 4)

10. F(s) = 1
(s + 1)2(s2 + 4)

11. F(s) = G(s)
s2 + 1

12. (a) If f (t) = tm and g(t) = tn, where m and n are positive integers, show that

f ∗ g = tm+n+1
∫ 1

0
um(1 − u)n du.
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(b) Use the convolution theorem to show that

∫ 1

0
um(1 − u)n du = m! n!

(m + n + 1)! .

(c) Extend the result of part (b) to the case where m and n are positive numbers but not
necessarily integers.

In each of Problems 13 through 20 express the solution of the given initial value problem in
terms of a convolution integral.

13. y′′ + ω2y = g(t); y(0) = 0, y′(0) = 1

14. y′′ + 2y′ + 2y = sin αt; y(0) = 0, y′(0) = 0

15. 4y′′ + 4y′ + 17y = g(t); y(0) = 0, y′(0) = 0

16. y′′ + y′ + 5
4 y = 1 − uπ (t); y(0) = 1, y′(0) = −1

17. y′′ + 4y′ + 4y = g(t); y(0) = 2, y′(0) = −3

18. y′′ + 3y′ + 2y = cos αt; y(0) = 1, y′(0) = 0

19. y(4) − y = g(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

20. y(4) + 5y′′ + 4y = g(t); y(0) = 1, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

21. Consider the equation

φ(t) +
∫ t

0
k(t − ξ)φ(ξ) dξ = f (t),

in which f and k are known functions, and φ is to be determined. Since the unknown
function φ appears under an integral sign, the given equation is called an integral equation;
in particular, it belongs to a class of integral equations known asVolterra integral equations.
Take the Laplace transform of the given integral equation and obtain an expression for
L{φ(t)} in terms of the transforms L{f (t)} and L{k(t)} of the given functions f and k. The
inverse transform of L{φ(t)} is the solution of the original integral equation.

22. Consider the Volterra integral equation (see Problem 21)

φ(t) +
∫ t

0
(t − ξ)φ(ξ) dξ = sin 2t. (i)

(a) Solve the integral equation (i) by using the Laplace transform.
(b) By differentiating Eq. (i) twice, show that φ(t) satisfies the differential equation

φ′′(t) + φ(t) = −4 sin 2t.

Show also that the initial conditions are

φ(0) = 0, φ′(0) = 2.

(c) Solve the initial value problem in part (b) and verify that the solution is the same as
the one in part (a).

In each of Problems 23 through 25:
(a) Solve the given Volterra integral equation by using the Laplace transform.
(b) Convert the integral equation into an initial value problem, as in Problem 22(b).
(c) Solve the initial value problem in part (b) and verify that the solution is the same as the
one in part (a).
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23. φ(t) +
∫ t

0
(t − ξ)φ(ξ) dξ = 1 24. φ(t) −

∫ t

0
(t − ξ)φ(ξ) dξ = 1

25. φ(t) + 2
∫ t

0
cos(t − ξ)φ(ξ) dξ = e−t

There are also equations, known as integro-differential equations, in which both derivatives
and integrals of the unknown function appear. In each of Problems 26 through 28:
(a) Solve the given integro-differential equation by using the Laplace transform.
(b) By differentiating the integro-differential equation a sufficient number of times, convert
it into an initial value problem.
(c) Solve the initial value problem in part (b) and verify that the solution is the same as the
one in part (a).

26. φ′(t) +
∫ t

0
(t − ξ)φ(ξ) dξ = t, φ(0) = 0

27. φ′(t) − 1
2

∫ t

0
(t − ξ)2φ(ξ) dξ = −t, φ(0) = 1

28. φ′(t) + φ(t) =
∫ t

0
sin(t − ξ)φ(ξ) dξ , φ(0) = 1

29. The Tautochrone. A problem of interest in the history of mathematics is that of finding
the tautochrone4—the curve down which a particle will slide freely under gravity alone,
reaching the bottom in the same time regardless of its starting point on the curve. This
problem arose in the construction of a clock pendulum whose period is independent of
the amplitude of its motion. The tautochrone was found by Christian Huygens (1629–
1695) in 1673 by geometrical methods, and later by Leibniz and Jakob Bernoulli using
analytical arguments. Bernoulli’s solution (in 1690) was one of the first occasions on
which a differential equation was explicitly solved. The geometric configuration is shown
in Figure 6.6.2.

y

x

s

C

P(a, b)

FIGURE 6.6.2 The tautochrone.

The starting point P(a, b) is joined to the terminal point (0, 0) by the arc C. Arc length s
is measured from the origin, and f (y) denotes the rate of change of s with respect to y:

f (y) = ds
dy

=
[

1 +
(

dx
dy

)2
]1/2

. (i)

4The word “tautochrone” comes from the Greek words tauto, meaning same, and chronos, meaning time.
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Then it follows from the principle of conservation of energy that the time T(b) required
for a particle to slide from P to the origin is

T(b) = 1√
2g

∫ b

0

f (y)√
b − y

dy. (ii)

(a) Assume that T(b) = T0, a constant, for each b. By taking the Laplace transform of
Eq. (ii) in this case, and using the convolution theorem, show that

F(s) =
√

2g
π

T0√
s

; (iii)

then show that

f (y) =
√

2g
π

T0√
y
. (iv)

Hint: See Problem 27 of Section 6.1.
(b) Combining Eqs. (i) and (iv), show that

dx
dy

=
√

2α − y
y

, (v)

where α = gT2
0 /π2.

(c) Use the substitution y = 2α sin2
(θ/2) to solve Eq. (v), and show that

x = α(θ + sin θ), y = α(1 − cos θ). (vi)

Equations (vi) can be identified as parametric equations of a cycloid. Thus the tautochrone
is an arc of a cycloid.
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C H A P T E R

7

Systems of First
Order Linear
Equations

There are many physical problems that involve a number of separate elements linked
together in some manner. For example, electrical networks have this character, as
do many problems in mechanics and in other fields. In these and similar cases, the
corresponding mathematical problem consists of a system of two or more differential
equations, which can always be written as first order equations. In this chapter we
focus on systems of first order linear equations, and in particular equations having
constant coefficients, utilizing some of the elementary aspects of linear algebra to
unify the presentation. In many respects this chapter follows the same lines as the
treatment of second order linear equations in Chapter 3.

7.1 Introduction
Systems of simultaneous ordinary differential equations arise naturally in problems
involving several dependent variables, each of which is a function of the same single
independent variable. We will denote the independent variable by t, and will let
x1, x2, x3, . . . represent dependent variables that are functions of t. Differentiation
with respect to t will be denoted by a prime.

For example, consider the spring–mass system in Figure 7.1.1. The two masses
move on a frictionless surface under the influence of external forces F1(t) and F2(t),
and they are also constrained by the three springs whose constants are k1, k2, and k3,
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respectively. Using arguments similar to those in Section 3.7, we find the following
equations for the coordinates x1 and x2 of the two masses:

m1
d2x1

dt2
= k2(x2 − x1) − k1x1 + F1(t)

= −(k1 + k2)x1 + k2x2 + F1(t),
(1)

m2
d2x2

dt2
= −k3x2 − k2(x2 − x1) + F2(t)

= k2x1 − (k2 + k3)x2 + F2(t).

A derivation of Eqs. (1) is outlined in Problem 17.

k1

F1(t) F2(t)

k2

m1 m2

x1 x2

k3

FIGURE 7.1.1 A two-mass, three-spring system.

Next, consider the parallel LRC circuit shown in Figure 7.1.2. Let V be the voltage
drop across the capacitor and I the current through the inductor. Then, referring to
Section 3.7 and to Problem 19 of this section,we can show that the voltage and current
are described by the system of equations

dI
dt

= V
L

,
(2)

dV
dt

= − I
C

− V
RC

,

where L is the inductance, C is the capacitance, and R is the resistance.

C

R

L

FIGURE 7.1.2 A parallel LRC circuit.

One reason why systems of first order equations are particularly important is that
equations of higher order can always be transformed into such systems. This is usually
required if a numerical approach is planned, because almost all codes for generat-
ing numerical approximations to solutions of differential equations are written for
systems of first order equations. The following example illustrates how easy it is to
make the transformation.
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E X A M P L E

1

The motion of a certain spring–mass system (see Example 3 of Section 3.7) is described by the
second order differential equation

u′′ + 0.125u′ + u = 0. (3)

Rewrite this equation as a system of first order equations.
Let x1 = u and x2 = u′. Then it follows that x′

1 = x2. Further, u′′ = x′
2. Then, by substituting

for u, u′, and u′′ in Eq. (3), we obtain

x′
2 + 0.125x2 + x1 = 0.

Thus x1 and x2 satisfy the following system of two first order differential equations:

x′
1 = x2,

(4)
x′

2 = −x1 − 0.125x2.

The general equation of motion of a spring–mass system

mu′′ + γ u′ + ku = F(t) (5)

can be transformed into a system of first order equations in the same manner. If we
let x1 = u and x2 = u′, and proceed as in Example 1, we quickly obtain the system

x′
1 = x2,

(6)
x′

2 = −(k/m)x1 − (γ /m)x2 + F(t)/m.

To transform an arbitrary nth order equation

y(n) = F(t, y, y′, . . . , y(n−1)) (7)

into a system of n first order equations, we extend the method of Example 1 by
introducing the variables x1, x2, . . . , xn defined by

x1 = y, x2 = y′, x3 = y′′, . . . , xn = y(n−1). (8)

It then follows immediately that

x′
1 = x2,

x′
2 = x3,

(9)
...

x′
n−1 = xn,

and, from Eq. (7),
x′

n = F(t, x1, x2, . . . , xn). (10)

Equations (9) and (10) are a special case of the more general system

x′
1 = F1(t, x1, x2, . . . , xn),

x′
2 = F2(t, x1, x2, . . . , xn), (11)

...

x′
n = Fn(t, x1, x2, . . . , xn).
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In a similar way the system (1) can be reduced to a system of four first order equations
of the form (11), and the system (2) is already in this form. In fact, systems of the
form (11) include almost all cases of interest, so much of the more advanced theory
of differential equations is devoted to such systems.

A solution of the system (11) on the interval I : α < t < β is a set of n functions

x1 = φ1(t), x2 = φ2(t), . . . , xn = φn(t) (12)

that are differentiable at all points in the interval I and that satisfy the system of equa-
tions (11) at all points in this interval. In addition to the given system of differential
equations, there may also be given initial conditions of the form

x1(t0) = x0
1, x2(t0) = x0

2, . . . , xn(t0) = x0
n, (13)

that t0 is a specified value of t in I , and x0
1, . . . , x0

n are prescribed numbers. The
differential equations (11) and the initial conditions (13) together form an initial
value problem.

A solution (12) can be viewed as a set of parametric equations in an n-dimensional
space. For a given value of t, Eqs. (12) give values for the coordinates x1, . . . , xn

of a point in the space. As t changes, the coordinates in general also change. The
collection of points corresponding to α < t < β forms a curve in the space. It is
often helpful to think of the curve as the trajectory, or path, of a particle moving in
accordance with the system of differential equations (11). The initial conditions (13)
determine the starting point of the moving particle.

The following conditions on F1, F2, . . . , Fn, which are easily checked in specific
problems, are sufficient to ensure that the initial value problem (11), (13) has a
unique solution. Theorem 7.1.1 is analogous to Theorem 2.4.2, the existence and
uniqueness theorem for a single first order equation.

Theorem 7.1.1 Let each of the functions F1, . . . , Fn and the partial derivatives ∂F1/∂x1,
. . . , ∂F1/∂xn, . . . , ∂Fn/∂x1, . . . , ∂Fn/∂xn be continuous in a region R of
tx1x2 · · · xn-space defined by α < t < β, α1 < x1 < β1, . . . , αn < xn < βn, and let the
point (t0, x0

1, x0
2, . . . , x0

n) be in R. Then there is an interval |t − t0| < h in which there
exists a unique solution x1 = φ1(t), . . . , xn = φn(t) of the system of differential equa-
tions (11) that also satisfies the initial conditions (13).

The proof of this theorem can be constructed by generalizing the argument in
Section 2.8, but we do not give it here. However, note that, in the hypotheses of the
theorem, nothing is said about the partial derivatives of F1, . . . , Fn with respect to the
independent variable t. Also, in the conclusion, the length 2h of the interval in which
the solution exists is not specified exactly, and in some cases it may be very short.
Finally, the same result can be established on the basis of somewhat weaker but more
complicated hypotheses, so the theorem as stated is not the most general one known,
and the given conditions are sufficient, but not necessary, for the conclusion to hold.

If each of the functions F1, . . . , Fn in Eqs. (11) is a linear function of the dependent
variables x1, . . . , xn, then the system of equations is said to be linear; otherwise, it is
nonlinear. Thus the most general system of n first order linear equations has the form
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x′
1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),

x′
2 = p21(t)x1 + · · · + p2n(t)xn + g2(t), (14)

...

x′
n = pn1(t)x1 + · · · + pnn(t)xn + gn(t).

If each of the functions g1(t), . . . , gn(t) is zero for all t in the interval I , then the
system (14) is said to be homogeneous; otherwise, it is nonhomogeneous. Observe
that the systems (1) and (2) are both linear. The system (1) is nonhomogeneous unless
F1(t) = F2(t) = 0, while the system (2) is homogeneous. For the linear system (14),
the existence and uniqueness theorem is simpler and also has a stronger conclusion.
It is analogous to Theorems 2.4.1 and 3.2.1.

Theorem 7.1.2 If the functions p11, p12, . . . , pnn, g1, . . . , gn are continuous on an open interval
I : α < t < β, then there exists a unique solution x1 = φ1(t), . . . , xn = φn(t) of the
system (14) that also satisfies the initial conditions (13), where t0 is any point in I ,
and x0

1, . . . , x0
n are any prescribed numbers. Moreover, the solution exists through-

out the interval I .

Note that, in contrast to the situation for a nonlinear system, the existence and
uniqueness of the solution of a linear system are guaranteed throughout the interval
in which the hypotheses are satisfied. Furthermore, for a linear system the initial
values x0

1, . . . , x0
n at t = t0 are completely arbitrary, whereas in the nonlinear case the

initial point must lie in the region R defined in Theorem 7.1.1.
The rest of this chapter is devoted to systems of linear first order equations (non-

linear systems are included in the discussion in Chapters 8 and 9). Our presentation
makes use of matrix notation and assumes that you have some familiarity with the
properties of matrices. The basic facts about matrices are summarized in Sections 7.2
and 7.3, and some more advanced material is reviewed as needed in later sections.

PROBLEMS In each of Problems 1 through 4 transform the given equation into a system of first order
equations.

1. u′′ + 0.5u′ + 2u = 0 2. u′′ + 0.5u′ + 2u = 3 sin t

3. t2u′′ + tu′ + (t2 − 0.25)u = 0 4. u(4) − u = 0

In each of Problems 5 and 6 transform the given initial value problem into an initial value
problem for two first order equations.

5. u′′ + 0.25u′ + 4u = 2 cos 3t, u(0) = 1, u′(0) = −2
6. u′′ + p(t)u′ + q(t)u = g(t), u(0) = u0, u′(0) = u′

0

7. Systems of first order equations can sometimes be transformed into a single equation of
higher order. Consider the system

x′
1 = −2x1 + x2, x′

2 = x1 − 2x2.

(a) Solve the first equation for x2 and substitute into the second equation, thereby ob-
taining a second order equation for x1. Solve this equation for x1 and then determine x2

also.
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(b) Find the solution of the given system that also satisfies the initial conditions x1(0) = 2,
x2(0) = 3.

(c) Sketch the curve, for t ≥ 0, given parametrically by the expressions for x1 and x2

obtained in part (b).

In each of Problems 8 through 12 proceed as in Problem 7.
(a) Transform the given system into a single equation of second order.
(b) Find x1 and x2 that also satisfy the given initial conditions.
(c) Sketch the graph of the solution in the x1x2-plane for t ≥ 0.

8. x′
1 = 3x1 − 2x2, x1(0) = 3

x′
2 = 2x1 − 2x2, x2(0) = 1

2

9. x′
1 = 1.25x1 + 0.75x2, x1(0) = −2

x′
2 = 0.75x1 + 1.25x2, x2(0) = 1

10. x′
1 = x1 − 2x2, x1(0) = −1

x′
2 = 3x1 − 4x2, x2(0) = 2

11. x′
1 = 2x2, x1(0) = 3

x′
2 = −2x1, x2(0) = 4

12. x′
1 = −0.5x1 + 2x2, x1(0) = −2

x′
2 = −2x1 − 0.5x2, x2(0) = 2

13. Transform Eqs. (2) for the parallel circuit into a single second order equation.
14. Show that if a11, a12, a21, and a22 are constants with a12 and a21 not both zero, and if the

functions g1 and g2 are differentiable, then the initial value problem

x′
1 = a11x1 + a12x2 + g1(t), x1(0) = x0

1

x′
2 = a21x1 + a22x2 + g2(t), x2(0) = x0

2

can be transformed into an initial value problem for a single second order equation. Can
the same procedure be carried out if a11, . . . , a22 are functions of t?

15. Consider the linear homogeneous system

x′ = p11(t)x + p12(t)y,

y′ = p21(t)x + p22(t)y.

Show that if x = x1(t), y = y1(t) and x = x2(t), y = y2(t) are two solutions of the given
system, then x = c1x1(t) + c2x2(t), y = c1y1(t) + c2y2(t) is also a solution for any constants
c1 and c2. This is the principle of superposition.

16. Let x = x1(t), y = y1(t) and x = x2(t), y = y2(t) be any two solutions of the linear nonho-
mogeneous system

x′ = p11(t)x + p12(t)y + g1(t),

y′ = p21(t)x + p22(t)y + g2(t).

Show that x = x1(t) − x2(t), y = y1(t) − y2(t) is a solution of the corresponding homoge-
neous system.

17. Equations (1) can be derived by drawing a free-body diagram showing the forces acting
on each mass. Figure 7.1.3a shows the situation when the displacements x1 and x2 of the
two masses are both positive (to the right) and x2 > x1. Then springs 1 and 2 are elongated
and spring 3 is compressed, giving rise to forces as shown in Figure 7.1.3b. Use Newton’s
law (F = ma) to derive Eqs. (1).

18. Transform the system (1) into a system of first order equations by letting y1 = x1, y2 = x2,
y3 = x′

1, and y4 = x′
2.
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k1

F1(t)k1x1 k2(x2 – x1)

k2(x2 – x1) k3x2

F2(t)

k2

m1 m2

x1 x2

k3

(a)

(b)

m2m1

FIGURE 7.1.3 (a) The displacements x1 and x2 are both positive. (b) The free-body diagram
for the spring–mass system.

Electric Circuits. The theory of electric circuits, such as that shown in Figure 7.1.2, consisting
of inductors, resistors, and capacitors, is based on Kirchhoff’s laws: (1) The net flow of current
into each node (or junction) is zero, and (2) the net voltage drop around each closed loop
is zero. In addition to Kirchhoff’s laws, we also have the relation between the current I in
amperes through each circuit element and the voltage drop V in volts across the element:

V = RI , R = resistance in ohms;

C
dV
dt

= I , C = capacitance in farads1;

L
dI
dt

= V , L = inductance in henrys.

Kirchhoff’s laws and the current–voltage relation for each circuit element provide a system of
algebraic and differential equations from which the voltage and current throughout the circuit
can be determined. Problems 19 through 21 illustrate the procedure just described.

19. Consider the circuit shown in Figure 7.1.2. Let I1, I2, and I3 be the currents through
the capacitor, resistor, and inductor, respectively. Likewise, let V1, V2, and V3 be the
corresponding voltage drops. The arrows denote the arbitrarily chosen directions in which
currents and voltage drops will be taken to be positive.

(a) Applying Kirchhoff’s second law to the upper loop in the circuit, show that

V1 − V2 = 0. (i)

In a similar way, show that
V2 − V3 = 0. (ii)

(b) Applying Kirchhoff’s first law to either node in the circuit, show that

I1 + I2 + I3 = 0. (iii)

(c) Use the current–voltage relation through each element in the circuit to obtain the
equations

CV ′
1 = I1, V2 = RI2, LI ′

3 = V3. (iv)

1Actual capacitors typically have capacitances measured in microfarads. We use farad as the unit for
numerical convenience.
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(d) Eliminate V2, V3, I1, and I2 among Eqs. (i) through (iv) to obtain

CV ′
1 = −I3 − V1

R
, LI ′

3 = V1. (v)

Observe that if we omit the subscripts in Eqs. (v), then we have the system (2) of this
section.

20. Consider the circuit shown in Figure 7.1.4. Use the method outlined in Problem 19 to
show that the current I through the inductor and the voltage V across the capacitor satisfy
the system of differential equations

dI
dt

= −I − V ,
dV
dt

= 2I − V .

R = 1 ohm

R = 2 ohms
L = 1 henry

C =    farad1
2

FIGURE 7.1.4 The circuit in Problem 20.

21. Consider the circuit shown in Figure 7.1.5. Use the method outlined in Problem 19 to
show that the current I through the inductor and the voltage V across the capacitor satisfy
the system of differential equations

L
dI
dt

= −R1I − V , C
dV
dt

= I − V
R2

.

C

L

R2R1

FIGURE 7.1.5 The circuit in Problem 21.

22. Consider the two interconnected tanks shown in Figure 7.1.6. Tank 1 initially contains
30 gal of water and 25 oz of salt, and Tank 2 initially contains 20 gal of water and 15 oz
of salt. Water containing 1 oz/gal of salt flows into Tank 1 at a rate of 1.5 gal/min. The
mixture flows from Tank 1 to Tank 2 at a rate of 3 gal/min. Water containing 3 oz/gal of
salt also flows into Tank 2 at a rate of 1 gal/min (from the outside). The mixture drains
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1.5 gal/min

1 gal/min

3 gal/min

3 oz/gal

Tank 1 Tank 2

Q1(t) oz salt

30 gal water

Q2(t) oz salt

20 gal water

2.5 gal/min

1 oz/gal

1.5 gal/min

FIGURE 7.1.6 Two interconnected tanks (Problem 22).

from Tank 2 at a rate of 4 gal/min, of which some flows back into Tank 1 at a rate of 1.5
gal/min, while the remainder leaves the system.
(a) Let Q1(t) and Q2(t), respectively, be the amount of salt in each tank at time t. Write
down differential equations and initial conditions that model the flow process. Observe
that the system of differential equations is nonhomogeneous.

(b) Find the values of Q1 and Q2 for which the system is in equilibrium, that is, does not
change with time. Let QE

1 and QE
2 be the equilibrium values. Can you predict which tank

will approach its equilibrium state more rapidly?

(c) Let x1 = Q1(t) − QE
1 and x2 = Q2(t) − QE

2 . Determine an initial value problem for x1

and x2. Observe that the system of equations for x1 and x2 is homogeneous.

23. Consider two interconnected tanks similar to those in Figure 7.1.6. Tank 1 initially contains
60 gal of water and Q0

1 oz of salt, and Tank 2 initially contains 100 gal of water and Q0
2

oz of salt. Water containing q1 oz/gal of salt flows into Tank 1 at a rate of 3 gal/min. The
mixture in Tank 1 flows out at a rate of 4 gal/min, of which half flows into Tank 2, while
the remainder leaves the system. Water containing q2 oz/gal of salt also flows into Tank 2
from the outside at the rate of 1 gal/min. The mixture in Tank 2 leaves the tank at a rate
of 3 gal/min, of which some flows back into Tank 1 at a rate of 1 gal/min, while the rest
leaves the system.

(a) Draw a diagram that depicts the flow process described above. Let Q1(t) and Q2(t),
respectively, be the amount of salt in each tank at time t. Write down differential equations
and initial conditions for Q1 and Q2 that model the flow process.

(b) Find the equilibrium values QE
1 and QE

2 in terms of the concentrations q1 and q2.
(c) Is it possible (by adjusting q1 and q2) to obtain QE

1 = 60 and QE
2 = 50 as an equilibrium

state?

(d) Describe which equilibrium states are possible for this system for various values of q1

and q2.
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7.2 Review of Matrices
For both theoretical and computational reasons, it is advisable to bring some of the
results of matrix algebra2 to bear on the initial value problem for a system of linear
differential equations. For reference purposes this section and the next are devoted
to a brief summary of the facts that will be needed later. More details can be found
in any elementary book on linear algebra. We assume, however, that you are familiar
with determinants and how to evaluate them.

We designate matrices by boldfaced capitals A, B, C, . . . , occasionally using bold-
faced Greek capitals �,�, . . . .A matrix A consists of a rectangular array of numbers,
or elements, arranged in m rows and n columns—that is,

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠ . (1)

We speak of A as an m × n matrix. Although later in the chapter we will often assume
that the elements of certain matrices are real numbers, in this section we assume that
the elements of matrices may be complex numbers. The element lying in the ith
row and jth column is designated by aij, the first subscript identifying its row and the
second its column. Sometimes the notation (aij) is used to denote the matrix whose
generic element is aij.

Associated with each matrix A is the matrix AT , which is known as the transpose
of A and is obtained from A by interchanging the rows and columns of A. Thus, if
A = (aij), then AT = (aji). Also, we will denote by aij the complex conjugate of aij,
and by A the matrix obtained from A by replacing each element aij by its conjugate
aij. The matrix A is called the conjugate of A. It will also be necessary to consider

the transpose of the conjugate matrix A
T

. This matrix is called the adjoint of A and
will be denoted by A∗.

For example, let

A =
(

3 2 − i
4 + 3i −5 + 2i

)
.

Then

AT =
(

3 4 + 3i
2 − i −5 + 2i

)
, A =

(
3 2 + i

4 − 3i −5 − 2i

)
,

A∗ =
(

3 4 − 3i
2 + i −5 − 2i

)
.

2The properties of matrices were first extensively explored in 1858 in a paper by the English algebraist
Arthur Cayley (1821–1895), although the word“matrix”was introduced by his good friend James Sylvester
(1814–1897) in 1850. Cayley did some of his best mathematical work while practicing law from 1849 to
1863; he then became professor of mathematics at Cambridge, a position he held for the rest of his life.
After Cayley’s groundbreaking work, the development of matrix theory proceeded rapidly, with significant
contributions by Charles Hermite, Georg Frobenius, and Camille Jordan, among others.
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We are particularly interested in two somewhat special kinds of matrices: square
matrices, which have the same number of rows and columns—that is, m = n; and
vectors (or column vectors), which can be thought of as n × 1 matrices, or matrices
having only one column. Square matrices having n rows and n columns are said to
be of order n. We denote (column) vectors by boldfaced lowercase letters, x, y, ξ , η,
. . . . The transpose xT of an n × 1 column vector is a 1 × n row vector—that is, the
matrix consisting of one row whose elements are the same as the elements in the
corresponding positions of x.

Properties of Matrices.
1. Equality. Two m × n matrices A and B are said to be equal if all corresponding

elements are equal—that is, if aij = bij for each i and j.
2. Zero. The symbol 0 will be used to denote the matrix (or vector), each of whose

elements is zero.
3. Addition. The sum of two m × n matrices A and B is defined as the matrix

obtained by adding corresponding elements:

A + B = (aij) + (bij) = (aij + bij). (2)

With this definition, it follows that matrix addition is commutative and associative,
so that

A + B = B + A, A + (B + C) = (A + B) + C. (3)

4. Multiplication by a Number. The product of a matrix A by a complex number
α is defined as follows:

αA = α(aij) = (αaij); (4)

that is, each element of A is multiplied by α. The distributive laws

α(A + B) = αA + αB, (α + β)A = αA + βA (5)

are satisfied for this type of multiplication. In particular, the negative of A, denoted
by −A, is defined by

−A = (−1)A. (6)

5. Subtraction. The difference A − B of two m × n matrices is defined by

A − B = A + (−B). (7)

Thus

A − B = (aij) − (bij) = (aij − bij), (8)

which is similar to Eq. (2).
6. Multiplication. The product AB of two matrices is defined whenever the num-

ber of columns in the first factor is the same as the number of rows in the second. If
A and B are m × n and n × r matrices, respectively, then the product C = AB is an
m × r matrix. The element in the ith row and jth column of C is found by multiplying
each element of the ith row of A by the corresponding element of the jth column of
B and then adding the resulting products. In symbols,

cij =
n∑

k=1

aikbkj. (9)
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By direct calculation, it can be shown that matrix multiplication satisfies the associa-
tive law

(AB)C = A(BC) (10)

and the distributive law
A(B + C) = AB + AC. (11)

However, in general, matrix multiplication is not commutative. For both products
AB and BA to exist and to be of the same size, it is necessary that A and B be square
matrices of the same order. Even in that case the two products are usually unequal,
so that, in general,

AB �= BA. (12)

E X A M P L E

1

To illustrate the multiplication of matrices, and also the fact that matrix multiplication is not
necessarily commutative, consider the matrices

A =
⎛
⎜⎝

1 −2 1
0 2 −1
2 1 1

⎞
⎟⎠ , B =

⎛
⎜⎝

2 1 −1
1 −1 0
2 −1 1

⎞
⎟⎠ .

From the definition of multiplication given in Eq. (9) we have

AB =
⎛
⎜⎝

2 − 2 + 2 1 + 2 − 1 −1 + 0 + 1
0 + 2 − 2 0 − 2 + 1 0 + 0 − 1
4 + 1 + 2 2 − 1 − 1 −2 + 0 + 1

⎞
⎟⎠

=
⎛
⎜⎝

2 2 0
0 −1 −1
7 0 −1

⎞
⎟⎠ .

Similarly, we find that

BA =
⎛
⎜⎝

0 −3 0
1 −4 2
4 −5 4

⎞
⎟⎠ .

Clearly, AB �= BA.

7. Multiplication of Vectors. There are several ways of forming a product of two
vectors x and y, each with n components. One is a direct extension to n dimensions
of the familiar dot product from physics and calculus; we denote it by xT y and write

xT y =
n∑

i=1

xiyi. (13)

The result of Eq. (13) is a (complex) number, and it follows directly from Eq. (13)
that

xT y = yT x, xT (y + z) = xT y + xT z, (αx)T y = α(xT y) = xT (αy). (14)
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There is another vector product that is also defined for any two vectors having the
same number of components. This product, denoted by (x, y), is called the scalar or
inner product, and is defined by

(x, y) =
n∑

i=1

xiyi. (15)

The scalar product is also a (complex) number, and by comparing Eqs. (13) and (15),
we see that

(x, y) = xT y. (16)

Thus, if all the elements of y are real, then the two products (13) and (15) are identical.
From Eq. (15) it follows that

(x, y) = (y, x), (x, y + z) = (x, y) + (x, z),
(17)

(αx, y) = α(x, y), (x, αy) = α(x, y).

Note that even if the vector x has elements with nonzero imaginary parts, the scalar
product of x with itself yields a nonnegative real number

(x, x) =
n∑

i=1

xixi =
n∑

i=1

|xi|2. (18)

The nonnegative quantity (x, x)1/2, often denoted by ‖x‖, is called the length, or
magnitude, of x. If (x, y) = 0, then the two vectors x and y are said to be orthogonal.
For example, the unit vectors i, j, k of three-dimensional vector geometry form an
orthogonal set. On the other hand, if some of the elements of x are not real, then the
product

xT x =
n∑

i=1

x2
i (19)

may not be a real number.
For example, let

x =
⎛
⎜⎝

i
−2

1 + i

⎞
⎟⎠ , y =

⎛
⎜⎝

2 − i
i
3

⎞
⎟⎠ .

Then

xT y = (i)(2 − i) + (−2)(i) + (1 + i)(3) = 4 + 3i,

(x, y) = (i)(2 + i) + (−2)(−i) + (1 + i)(3) = 2 + 7i,

xT x = (i)2 + (−2)2 + (1 + i)2 = 3 + 2i,

(x, x) = (i)(−i) + (−2)(−2) + (1 + i)(1 − i) = 7.

8. Identity. The multiplicative identity, or simply the identity matrix I, is given by

I =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎞
⎟⎟⎟⎠ . (20)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 388 Page number 368 cyan black

368 Chapter 7. Systems of First Order Linear Equations

From the definition of matrix multiplication we have

AI = IA = A (21)

for any (square) matrix A. Hence the commutative law does hold for square matrices
if one of the matrices is the identity.

9. Inverse. The square matrix A is said to be nonsingular or invertible if there is
another matrix B such that AB = I and BA = I, where I is the identity. If there is
such a B, it can be shown that there is only one. It is called the multiplicative inverse,
or simply the inverse, of A, and we write B = A−1. Then

AA−1 = A−1A = I. (22)

Matrices that do not have an inverse are called singular or noninvertible.
There are various ways to compute A−1 from A, assuming that it exists. One way

involves the use of determinants. Associated with each element aij of a given matrix
is the minor Mij, which is the determinant of the matrix obtained by deleting the ith
row and jth column of the original matrix—that is, the row and column containing
aij. Also associated with each element aij is the cofactor Cij defined by the equation

Cij = (−1)i+jMij. (23)

If B = A−1, then it can be shown that the general element bij is given by

bij = Cji

det A
. (24)

Although Eq. (24) is not an efficient way3 to calculate A−1, it does suggest a con-
dition that A must satisfy for it to have an inverse. In fact, the condition is both
necessary and sufficient: A is nonsingular if and only if det A �= 0. If det A = 0, then
A is singular.

Another and usually better way to compute A−1 is by means of elementary row
operations. There are three such operations:

1. Interchange of two rows.
2. Multiplication of a row by a nonzero scalar.
3. Addition of any multiple of one row to another row.

The transformation of a matrix by a sequence of elementary row operations is re-
ferred to as row reduction or Gaussian4 elimination. Any nonsingular matrix A can
be transformed into the identity I by a systematic sequence of these operations. It is
possible to show that if the same sequence of operations is then performed on I, it is

3For large n the number of multiplications required to evaluate A−1 by Eq. (24) is proportional to n!.
If one uses more efficient methods, such as the row reduction procedure described later, the number of
multiplications is proportional only to n3. Even for small values of n (such as n = 4), determinants are
not an economical tool in calculating inverses, and row reduction methods are preferred.
4Carl Friedrich Gauss (1777–1855) spent most of his life at Göttingen and made major contributions to
many areas of mathematics, including number theory, algebra, non-Euclidean and differential geometry,
and analysis, as well as to more applied fields such as geodesy, statistics, and celestial mechanics. He is
generally considered to be among the half-dozen best mathematicians of all time.
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transformed into A−1. It is most efficient to perform the sequence of operations on
both matrices at the same time by forming the augmented matrix A | I. The following
example illustrates the calculation of an inverse matrix in this way.

E X A M P L E

2

Find the inverse of

A =
⎛
⎜⎝

1 −1 −1
3 −1 2
2 2 3

⎞
⎟⎠ .

We begin by forming the augmented matrix A | I:

A | I =
⎛
⎜⎝

1 −1 −1 | 1 0 0
3 −1 2 | 0 1 0
2 2 3 | 0 0 1

⎞
⎟⎠ .

The matrix A can be transformed into I by the following sequence of operations, and at the
same time, I is transformed into A−1. The result of each step appears below the statement.
(a) Obtain zeros in the off-diagonal positions in the first column by adding (−3) times the
first row to the second row and adding (−2) times the first row to the third row.

⎛
⎜⎝

1 −1 −1 | 1 0 0
0 2 5 | −3 1 0
0 4 5 | −2 0 1

⎞
⎟⎠

(b) Obtain a 1 in the diagonal position in the second column by multiplying the second row
by 1

2 . ⎛
⎜⎝

1 −1 −1 | 1 0 0

0 1 5
2 | − 3

2
1
2 0

0 4 5 | −2 0 1

⎞
⎟⎠

(c) Obtain zeros in the off-diagonal positions in the second column by adding the second row
to the first row and adding (−4) times the second row to the third row.

⎛
⎜⎝

1 0 3
2 | − 1

2
1
2 0

0 1 5
2 | − 3

2
1
2 0

0 0 −5 | 4 −2 1

⎞
⎟⎠

(d) Obtain a 1 in the diagonal position in the third column by multiplying the third row by
(− 1

5 ). ⎛
⎜⎝

1 0 3
2 | − 1

2
1
2 0

0 1 5
2 | − 3

2
1
2 0

0 0 1 | − 4
5

2
5 − 1

5

⎞
⎟⎠
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(e) Obtain zeros in the off-diagonal positions in the third column by adding (− 3
2 ) times the

third row to the first row and adding (− 5
2 ) times the third row to the second row.

⎛
⎜⎝

1 0 0 | 7
10 − 1

10
3

10

0 1 0 | 1
2 − 1

2
1
2

0 0 1 | − 4
5

2
5 − 1

5

⎞
⎟⎠

The last of these matrices is I |A−1, a fact that can be verified by direct multiplication with
the original matrix A.

This example was made slightly simpler by the fact that the original matrix A had
a 1 in the upper left corner (a11 = 1). If this is not the case, then the first step is to
produce a 1 there by multiplying the first row by 1/a11, as long as a11 �= 0. If a11 = 0,
then the first row must be interchanged with some other row to bring a nonzero
element into the upper left position before proceeding.

Matrix Functions. We sometimes need to consider vectors or matrices whose elements
are functions of a real variable t. We write

x(t) =
⎛
⎜⎝

x1(t)
...

xn(t)

⎞
⎟⎠ , A(t) =

⎛
⎜⎝

a11(t) · · · a1n(t)
...

...

am1(t) · · · amn(t)

⎞
⎟⎠ , (25)

respectively.
The matrix A(t) is said to be continuous at t = t0 or on an interval α < t < β if each

element of A is a continuous function at the given point or on the given interval.
Similarly, A(t) is said to be differentiable if each of its elements is differentiable, and
its derivative dA/dt is defined by

dA
dt

=
(

daij

dt

)
; (26)

that is, each element of dA/dt is the derivative of the corresponding element of A.
In the same way, the integral of a matrix function is defined as

∫ b

a
A(t) dt =

(∫ b

a
aij(t) dt

)
. (27)

For example, if

A(t) =
(

sin t t
1 cos t

)
,

then

A′(t) =
(

cos t 1
0 − sin t

)
,

∫ π

0
A(t) dt =

(
2 π2/2
π 0

)
.
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Many of the rules of elementary calculus extend easily to matrix functions; in partic-
ular,

d
dt

(CA) = C
dA
dt

, where C is a constant matrix; (28)

d
dt

(A + B) = dA
dt

+ dB
dt

; (29)

d
dt

(AB) = A
dB
dt

+ dA
dt

B. (30)

In Eqs. (28) and (30), care must be taken in each term to avoid interchanging the
order of multiplication. The definitions expressed by Eqs. (26) and (27) also apply
as special cases to vectors.

PROBLEMS
1. If A =

⎛
⎜⎝

1 −2 0
3 2 −1

−2 1 3

⎞
⎟⎠ and B =

⎛
⎜⎝

4 −2 3
−1 5 0

6 1 2

⎞
⎟⎠, find

(a) 2A + B (b) A − 4B
(c) AB (d) BA

2. If A =
(

1 + i −1 + 2i

3 + 2i 2 − i

)
and B =

(
i 3
2 −2i

)
, find

(a) A −2B (b) 3A + B
(c) AB (d) BA

3. If A =
⎛
⎜⎝

−2 1 2
1 0 −3
2 −1 1

⎞
⎟⎠ and B =

⎛
⎜⎝

1 2 3
3 −1 −1

−2 1 0

⎞
⎟⎠, find

(a) AT (b) BT

(c) AT + BT (d) (A + B)T

4. If A =
(

3 − 2i 1 + i

2 − i −2 + 3i

)
, find

(a) AT (b) A (c) A∗

5. If A =
⎛
⎜⎝

3 2 −1
2 −1 2
1 2 1

⎞
⎟⎠ and B =

⎛
⎜⎝

2 1 −1
−2 3 3

1 0 2

⎞
⎟⎠,

verify that 2(A + B) = 2A + 2B.

6. If A =
⎛
⎜⎝

1 −2 0
3 2 −1

−2 0 3

⎞
⎟⎠, B =

⎛
⎜⎝

2 1 −1
−2 3 3

1 0 2

⎞
⎟⎠, and C =

⎛
⎜⎝

2 1 0
1 2 2
0 1 −1

⎞
⎟⎠,

verify that

(a) (AB)C = A(BC) (b) (A + B) + C = A + (B + C)

(c) A(B + C) = AB + AC
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7. Prove each of the following laws of matrix algebra:
(a) A + B = B + A (b) A + (B + C) = (A + B) + C
(c) α(A + B) = αA + αB (d) (α + β)A = αA + βA
(e) A(BC) = (AB)C (f) A(B + C) = AB + AC

8. If x =
⎛
⎜⎝

2
3i

1 − i

⎞
⎟⎠ and y =

⎛
⎜⎝

−1 + i

2
3 − i

⎞
⎟⎠, find

(a) xT y (b) yT y
(c) (x, y) (d) (y, y)

9. If x =
⎛
⎜⎝

1 − 2i

i

2

⎞
⎟⎠ and y =

⎛
⎜⎝

2
3 − i

1 + 2i

⎞
⎟⎠, show that

(a) xT y = yT x (b) (x,y) = (y, x)

In each of Problems 10 through 19 either compute the inverse of the given matrix, or else show
that it is singular.

10.

(
1 4

−2 3

)
11.

(
3 −1
6 2

)

12.

⎛
⎜⎝

1 2 3
2 4 5
3 5 6

⎞
⎟⎠ 13.

⎛
⎜⎝

1 1 −1
2 −1 1
1 1 2

⎞
⎟⎠

14.

⎛
⎜⎝

1 2 1
−2 1 8

1 −2 −7

⎞
⎟⎠ 15.

⎛
⎜⎝

2 1 0
0 2 1
0 0 2

⎞
⎟⎠

16.

⎛
⎜⎝

1 −1 −1
2 1 0
3 −2 1

⎞
⎟⎠ 17.

⎛
⎜⎝

2 3 1
−1 2 1

4 −1 −1

⎞
⎟⎠

18.

⎛
⎜⎜⎜⎝

1 0 0 −1
0 −1 1 0

−1 0 1 0
0 1 −1 1

⎞
⎟⎟⎟⎠ 19.

⎛
⎜⎜⎜⎝

1 −1 2 0
−1 2 −4 2

1 0 1 3
−2 2 0 −1

⎞
⎟⎟⎟⎠

20. Prove that if there are two matrices B and C such that AB = I and AC = I, then B = C.
This shows that a matrix A can have only one inverse.

21. If A(t) =
⎛
⎜⎝

et 2e−t e2t

2et e−t −e2t

−et 3e−t 2e2t

⎞
⎟⎠ and B(t) =

⎛
⎜⎝

2et e−t 3e2t

−et 2e−t e2t

3et −e−t −e2t

⎞
⎟⎠, find

(a) A + 3B (b) AB

(c) dA/dt (d)
∫ 1

0
A(t) dt
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In each of Problems 22 through 24 verify that the given vector satisfies the given differential
equation.

22. x′ =
(

3 −2
2 −2

)
x, x =

(
4
2

)
e2t

23. x′ =
(

2 −1
3 −2

)
x +

(
1

−1

)
et , x =

(
1
0

)
et + 2

(
1
1

)
tet

24. x′ =
⎛
⎜⎝

1 1 1
2 1 −1
0 −1 1

⎞
⎟⎠ x, x =

⎛
⎜⎝

6
−8
−4

⎞
⎟⎠ e−t + 2

⎛
⎜⎝

0
1

−1

⎞
⎟⎠ e2t

In each of Problems 25 and 26 verify that the given matrix satisfies the given differential
equation.

25. � ′ =
(

1 1
4 −2

)
�, �(t) =

(
e−3t e2t

−4e−3t e2t

)

26. � ′ =
⎛
⎜⎝

1 −1 4
3 2 −1
2 1 −1

⎞
⎟⎠�, �(t) =

⎛
⎜⎝

et e−2t e3t

−4et −e−2t 2e3t

−et −e−2t e3t

⎞
⎟⎠

7.3 Systems of Linear Algebraic Equations; Linear Independence,
Eigenvalues, Eigenvectors

In this section we review some results from linear algebra that are important for the
solution of systems of linear differential equations. Some of these results are easily
proved and others are not; since we are interested simply in summarizing some useful
information in compact form, we give no indication of proofs in either case. All the
results in this section depend on some basic facts about the solution of systems of
linear algebraic equations.

Systems of Linear Algebraic Equations. A set of n simultaneous linear algebraic equations
in n variables

a11x1 + a12x2 + · · · + a1nxn = b1,
... (1)

an1x1 + an2x2 + · · · + annxn = bn

can be written as

Ax = b, (2)
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where the n × n matrix A and the vector b are given, and the components of x are
to be determined. If b = 0, the system is said to be homogeneous; otherwise, it is
nonhomogeneous.

If the coefficient matrix A is nonsingular—that is, if det A is not zero—then there
is a unique solution of the system (2). Since A is nonsingular, A−1 exists, and the
solution can be found by multiplying each side of Eq. (2) on the left by A−1; thus

x = A−1b. (3)

In particular, the homogeneous problem Ax = 0, corresponding to b = 0 in Eq. (2),
has only the trivial solution x = 0.

On the other hand, if A is singular—that is, if det A is zero—then solutions of
Eq. (2) either do not exist, or do exist but are not unique. Since A is singular, A−1

does not exist, so Eq. (3) is no longer valid. The homogeneous system

Ax = 0 (4)

has (infinitely many) nonzero solutions in addition to the trivial solution. The situ-
ation for the nonhomogeneous system (2) is more complicated. This system has no
solution unless the vector b satisfies a certain further condition. This condition is that

(b, y) = 0, (5)

for all vectors y satisfying A∗y = 0, where A∗ is the adjoint of A. If condition (5) is
met, then the system (2) has (infinitely many) solutions. These solutions are of the
form

x = x(0) + ξ , (6)

where x(0) is a particular solution of Eq. (2), and ξ is the most general solution of the
homogeneous system (4). Note the resemblance between Eq. (6) and the solution of
a nonhomogeneous linear differential equation. The proofs of some of the preceding
statements are outlined in Problems 26 through 30.

The results in the preceding paragraph are important as a means of classifying the
solutions of linear systems. However, for solving particular systems, it is generally
best to use row reduction to transform the system into a much simpler one from which
the solution(s), if there are any, can be written down easily. To do this efficiently, we
can form the augmented matrix

A | b =
⎛
⎜⎝

a11 · · · a1n | b1
...

... | ...

an1 · · · ann | bn

⎞
⎟⎠ (7)

by adjoining the vector b to the coefficient matrix A as an additional column. The
dashed line replaces the equals sign and is said to partition the augmented matrix. We
now perform row operations on the augmented matrix so as to transform A into an
upper triangular matrix—that is, a matrix whose elements below the main diagonal
are all zero. Once this is done, it is easy to see whether the system has solutions, and
to find them if it does. Observe that elementary row operations on the augmented
matrix (7) correspond to legitimate operations on the equations in the system (1).
The following examples illustrate the process.
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E X A M P L E

1

Solve the system of equations

x1 − 2x2 + 3x3 = 7,

−x1 + x2 − 2x3 = −5, (8)

2x1 − x2 − x3 = 4.

The augmented matrix for the system (8) is⎛
⎜⎝

1 −2 3 | 7
−1 1 −2 | −5

2 −1 −1 | 4

⎞
⎟⎠ . (9)

We now perform row operations on the matrix (9) with a view to introducing zeros in the lower
left part of the matrix. Each step is described and the result recorded below.

(a) Add the first row to the second row and add (−2) times the first row to the third row.⎛
⎜⎝

1 −2 3 | 7
0 −1 1 | 2
0 3 −7 | −10

⎞
⎟⎠

(b) Multiply the second row by −1. ⎛
⎜⎝

1 −2 3 | 7
0 1 −1 | −2
0 3 −7 | −10

⎞
⎟⎠

(c) Add (−3) times the second row to the third row.⎛
⎜⎝

1 −2 3 | 7
0 1 −1 | −2
0 0 −4 | −4

⎞
⎟⎠

(d) Divide the third row by −4. ⎛
⎜⎝

1 −2 3 | 7
0 1 −1 | −2
0 0 1 | 1

⎞
⎟⎠

The matrix obtained in this manner corresponds to the system of equations

x1 − 2x2 + 3x3 = 7,

x2 − x3 = −2, (10)

x3 = 1,

which is equivalent to the original system (8). Note that the coefficients in Eqs. (10) form
a triangular matrix. From the last of Eqs. (10) we have x3 = 1, from the second equation
x2 = −2 + x3 = −1, and from the first equation x1 = 7 + 2x2 − 3x3 = 2. Thus we obtain

x =
⎛
⎜⎝

2
−1

1

⎞
⎟⎠ ,
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which is the solution of the given system (8). Incidentally, since the solution is unique, we
conclude that the coefficient matrix is nonsingular.

E X A M P L E

2

Discuss solutions of the system

x1 − 2x2 + 3x3 = b1,

−x1 + x2 − 2x3 = b2, (11)

2x1 − x2 + 3x3 = b3

for various values of b1, b2, and b3.
Observe that the coefficients in the system (11) are the same as those in the system (8)

except for the coefficient of x3 in the third equation. The augmented matrix for the system
(11) is ⎛

⎜⎝
1 −2 3 | b1

−1 1 −2 | b2

2 −1 3 | b3

⎞
⎟⎠ . (12)

By performing steps (a), (b), and (c) as in Example 1, we transform the matrix (12) into⎛
⎜⎝

1 −2 3 | b1

0 1 −1 | −b1 − b2

0 0 0 | b1 + 3b2 + b3

⎞
⎟⎠ . (13)

The equation corresponding to the third row of the matrix (13) is

b1 + 3b2 + b3 = 0; (14)

thus the system (11) has no solution unless the condition (14) is satisfied by b1, b2, and b3. It
is possible to show that this condition is just Eq. (5) for the system (11).

Let us now assume that b1 = 2, b2 = 1, and b3 = −5, in which case Eq. (14) is satisfied. Then
the first two rows of the matrix (13) correspond to the equations

x1 − 2x2 + 3x3 = 2,
(15)

x2 − x3 = −3.

To solve the system (15), we can choose one of the unknowns arbitrarily and then solve for
the other two. If we let x3 = α, where α is arbitrary, it then follows that

x2 = α − 3,

x1 = 2(α − 3) − 3α + 2 = −α − 4.

If we write the solution in vector notation, we have

x =
⎛
⎜⎝

−α − 4
α − 3
α

⎞
⎟⎠ = α

⎛
⎜⎝

−1
1
1

⎞
⎟⎠ +

⎛
⎜⎝

−4
−3

0

⎞
⎟⎠ . (16)

It is easy to verify that the second term on the right side of Eq. (16) is a solution of the nonho-
mogeneous system (11) and that the first term is the most general solution of the homogeneous
system corresponding to (11).
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Row reduction is also useful in solving homogeneous systems and systems in which
the number of equations is different from the number of unknowns.

Linear Independence. A set of k vectors x(1), . . . , x(k) is said to be linearly dependent if
there exists a set of (complex) numbers c1, . . . , ck, at least one of which is nonzero,
such that

c1x(1) + · · · + ckx(k) = 0. (17)

In other words, x(1), . . . , x(k) are linearly dependent if there is a linear relation among
them. On the other hand, if the only set c1, . . . , ck for which Eq. (17) is satisfied is
c1 = c2 = · · · = ck = 0, then x(1), . . . , x(k) are said to be linearly independent.

Consider now a set of n vectors, each of which has n components. Let xij = x(j)
i be

the ith component of the vector x(j), and let X = (xij). Then Eq. (17) can be written
as

⎛
⎜⎝

x(1)

1 c1 + · · · + x(n)

1 cn
...

...

x(1)
n c1 + · · · + x(n)

n cn

⎞
⎟⎠ =

⎛
⎜⎝

x11c1 + · · · + x1ncn
...

...

xn1c1 + · · · + xnncn

⎞
⎟⎠ = Xc = 0. (18)

If det X �= 0, then the only solution of Eq. (18) is c = 0, but if det X = 0, there are
nonzero solutions. Thus the set of vectors x(1), . . . , x(n) is linearly independent if and
only if det X �= 0.

E X A M P L E

3

Determine whether the vectors

x(1) =
⎛
⎜⎝

1
2

−1

⎞
⎟⎠ , x(2) =

⎛
⎜⎝

2
1
3

⎞
⎟⎠ , x(3) =

⎛
⎜⎝

−4
1

−11

⎞
⎟⎠ (19)

are linearly independent or linearly dependent. If they are linearly dependent, find a linear
relation among them.

To determine whether x(1), x(2), and x(3) are linearly dependent, we seek constants c1, c2, and
c3 such that

c1x(1) + c2x(2) + c3x(3) = 0. (20)

Equation (20) can also be written in the form⎛
⎜⎝

1 2 −4
2 1 1

−1 3 −11

⎞
⎟⎠

⎛
⎜⎝

c1

c2

c3

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ (21)

and solved by means of elementary row operations starting from the augmented matrix⎛
⎜⎝

1 2 −4 | 0
2 1 1 | 0

−1 3 −11 | 0

⎞
⎟⎠ . (22)

We proceed as in Examples 1 and 2.
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(a) Add (−2) times the first row to the second row, and add the first row to the third row.⎛
⎜⎝

1 2 −4 | 0
0 −3 9 | 0
0 5 −15 | 0

⎞
⎟⎠

(b) Divide the second row by −3; then add (−5) times the second row to the third row.⎛
⎜⎝

1 2 −4 | 0
0 1 −3 | 0
0 0 0 | 0

⎞
⎟⎠

Thus we obtain the equivalent system

c1 + 2c2 − 4c3 = 0,
(23)

c2 − 3c3 = 0.

From the second of Eqs. (23) we have c2 = 3c3, and from the first we obtain
c1 = 4c3 − 2c2 = −2c3. Thus we have solved for c1 and c2 in terms of c3, with the latter remain-
ing arbitrary. If we choose c3 = −1 for convenience, then c1 = 2 and c2 = −3. In this case the
relation (20) becomes

2x(1) − 3x(2) − x(3) = 0,

and the given vectors are linearly dependent.
Alternatively, we can compute det(xij), whose columns are the components of x(1), x(2), and

x(3), respectively. Thus

det(xij) =
∣∣∣∣∣∣

1 2 −4
2 1 1

−1 3 −11

∣∣∣∣∣∣
and direct calculation shows that it is zero. Hence x(1), x(2), and x(3) are linearly dependent.
However, if the coefficients c1, c2, and c3 are required, we still need to solve Eq. (20) to find
them.

Frequently, it is useful to think of the columns (or rows) of a matrix A as vectors.
These column (or row) vectors are linearly independent if and only if det A �= 0.
Further, if C = AB, then it can be shown that det C = (det A)(det B). Therefore, if
the columns (or rows) of both A and B are linearly independent, then the columns
(or rows) of C are also linearly independent.

Now let us extend the concepts of linear dependence and independence to a set
of vector functions x(1)(t), . . . , x(k)(t) defined on an interval α < t < β. The vectors
x(1)(t), . . . , x(k)(t) are said to be linearly dependent on α < t < β if there exists a set of
constants c1, . . . , ck, not all of which are zero, such that c1x(1)(t) + · · · + ckx(k)(t) = 0
for all t in the interval. Otherwise, x(1)(t), . . . , x(k)(t) are said to be linearly indepen-
dent. Note that if x(1)(t), . . . , x(k)(t) are linearly dependent on an interval, they are
linearly dependent at each point in the interval. However, if x(1)(t), . . . , x(k)(t) are
linearly independent on an interval, they may or may not be linearly independent at
each point; they may, in fact, be linearly dependent at each point, but with different
sets of constants at different points. See Problem 15 for an example.
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Eigenvalues and Eigenvectors. The equation

Ax = y (24)

can be viewed as a linear transformation that maps (or transforms) a given vector x
into a new vector y. Vectors that are transformed into multiples of themselves are
important in many applications.5 To find such vectors, we set y = λx, where λ is a
scalar proportionality factor, and seek solutions of the equation

Ax = λx, (25)

or
(A − λI)x = 0. (26)

The latter equation has nonzero solutions if and only if λ is chosen so that

det(A − λI) = 0. (27)

Values of λ that satisfy Eq. (27) are called eigenvalues of the matrix A, and the
nonzero solutions of Eq. (25) or (26) that are obtained by using such a value of λ are
called the eigenvectors corresponding to that eigenvalue.

If A is a 2 × 2 matrix, then Eq. (26) has the form(
a11 − λ a12

a21 a22 − λ

)(
x1

x2

)
=

(
0
0

)
(28)

and Eq. (27) becomes

(a11 − λ)(a22 − λ) − a12a21 = 0. (29)

The following example illustrates how eigenvalues and eigenvectors are found.

E X A M P L E

4

Find the eigenvalues and eigenvectors of the matrix

A =
(

3 −1
4 −2

)
. (30)

The eigenvalues λ and eigenvectors x satisfy the equation (A − λI)x = 0, or(
3 − λ −1

4 −2 − λ

)(
x1

x2

)
=

(
0
0

)
. (31)

The eigenvalues are the roots of the equation

det(A − λI) =
∣∣∣∣∣3 − λ −1

4 −2 − λ

∣∣∣∣∣ = λ2 − λ − 2 = 0. (32)

Thus the eigenvalues are λ1 = 2 and λ2 = −1.

5For example, this problem is encountered in finding the principal axes of stress or strain in an elastic
body, and in finding the modes of free vibration in a conservative system with a finite number of degrees
of freedom.
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To find the eigenvectors, we return to Eq. (31) and replace λ by each of the eigenvalues in
turn. For λ = 2 we have (

1 −1
4 −4

)(
x1

x2

)
=

(
0
0

)
. (33)

Hence each row of this vector equation leads to the condition x1 − x2 = 0, so x1 and x2 are
equal but their value is not determined. If x1 = c, then x2 = c also, and the eigenvector x(1) is

x(1) = c

(
1
1

)
, c �= 0. (34)

Thus there is an infinite family of eigenvectors, indexed by the arbitrary constant c, correspond-
ing to the eigenvalue λ1. We will choose a single member of this family as a representative of
the rest; in this example it seems simplest to let c = 1. Then, instead of Eq. (34), we write

x(1) =
(

1
1

)
(35)

and remember that any nonzero multiple of this vector is also an eigenvector. We say that x(1)

is the eigenvector corresponding to the eigenvalue λ1 = 2.
Now, setting λ = −1 in Eq. (31), we obtain(

4 −1
4 −1

)(
x1

x2

)
=

(
0
0

)
. (36)

Again we obtain a single condition on x1 and x2, namely, 4x1 − x2 = 0. Thus the eigenvector
corresponding to the eigenvalue λ2 = −1 is

x(2) =
(

1
4

)
(37)

or any nonzero multiple of this vector.

As Example 4 illustrates, eigenvectors are determined only up to an arbitrary
nonzero multiplicative constant; if this constant is specified in some way, then the
eigenvectors are said to be normalized. In Example 4, we chose the constant c so
that the components of the eigenvectors would be small integers. However, any
other choice of c is equally valid, although perhaps less convenient. Sometimes it
is useful to normalize an eigenvector x by choosing the constant so that its length
‖x‖ = (x, x)1/2 = 1.

Equation (27) is a polynomial equation of degree n in λ, so there are n eigenvalues
λ1, . . . , λn, some of which may be repeated. If a given eigenvalue appears m times as
a root of Eq. (27), then that eigenvalue is said to have algebraic multiplicity m. Each
eigenvalue has at least one associated eigenvector, and an eigenvalue of algebraic
multiplicity m may have q linearly independent eigenvectors. The number q is called
the geometric multiplicity of the eigenvalue, and it is possible to show that

1 ≤ q ≤ m. (38)

Further, examples demonstrate that q may be any integer in this interval. If each
eigenvalue of A is simple (has algebraic multiplicity one), then each eigenvalue also
has geometric multiplicity one.
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It is possible to show that if λ1 and λ2 are two eigenvalues of A, then their corre-
sponding eigenvectors x(1) and x(2) are linearly independent (Problem 34). This result
extends to any set λ1, . . . , λk of distinct eigenvalues: their eigenvectors x(1), . . . , x(k)

are linearly independent. Thus, if each eigenvalue of an n × n matrix is simple, then
the n eigenvectors of A, one for each eigenvalue, are linearly independent. On the
other hand, ifA has one or more repeated eigenvalues, then there may be fewer than n
linearly independent eigenvectors associated with A, since for a repeated eigenvalue
we may have q < m. As we will see in Section 7.8, this fact may lead to complications
later on in the solution of systems of differential equations.

E X A M P L E

5

Find the eigenvalues and eigenvectors of the matrix

A =
⎛
⎜⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎠ . (39)

The eigenvalues λ and eigenvectors x satisfy the equation (A − λI)x = 0, or⎛
⎜⎝

−λ 1 1
1 −λ 1
1 1 −λ

⎞
⎟⎠

⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ . (40)

The eigenvalues are the roots of the equation

det(A − λI) =

∣∣∣∣∣∣∣
−λ 1 1

1 −λ 1
1 1 −λ

∣∣∣∣∣∣∣ = −λ3 + 3λ + 2 = 0. (41)

The roots of Eq. (41) are λ1 = 2, λ2 = −1, and λ3 = −1. Thus 2 is a simple eigenvalue, and −1
is an eigenvalue of algebraic multiplicity 2, or a double eigenvalue.

To find the eigenvector x(1) corresponding to the eigenvalue λ1, we substitute λ = 2 in
Eq. (40); this gives the system⎛

⎜⎝
−2 1 1

1 −2 1
1 1 −2

⎞
⎟⎠

⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ . (42)

We can reduce this to the equivalent system⎛
⎜⎝

2 −1 −1
0 1 −1
0 0 0

⎞
⎟⎠

⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ (43)

by elementary row operations. Solving this system yields the eigenvector

x(1) =
⎛
⎜⎝

1
1
1

⎞
⎟⎠ . (44)

For λ = −1, Eqs. (40) reduce immediately to the single equation

x1 + x2 + x3 = 0. (45)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 402 Page number 382 cyan black

382 Chapter 7. Systems of First Order Linear Equations

Thus values for two of the quantities x1, x2, x3 can be chosen arbitrarily, and the third is
determined from Eq. (45). For example, if x1 = c1 and x2 = c2, then x3 = −c1 − c2. In vector
notation we have

x =
⎛
⎜⎝

c1

c2

−c1 − c2

⎞
⎟⎠ = c1

⎛
⎜⎝

1
0

−1

⎞
⎟⎠ + c2

⎛
⎜⎝

0
1

−1

⎞
⎟⎠ . (46)

For example, by choosing c1 = 1 and c2 = 0, we obtain the eigenvector

x(2) =
⎛
⎜⎝

1
0

−1

⎞
⎟⎠ . (47)

Any nonzero multiple of x(2) is also an eigenvector, but a second independent eigenvector can
be found by making another choice of c1 and c2—for instance, c1 = 0 and c2 = 1. In this case
we obtain

x(3) =
⎛
⎜⎝

0
1

−1

⎞
⎟⎠ , (48)

which is linearly independent of x(2). Therefore, in this example, two linearly independent
eigenvectors are associated with the double eigenvalue.

An important special class of matrices, called self-adjoint or Hermitian matrices,
are those for which A∗ = A; that is, aji = aij. Hermitian matrices include as a subclass
real symmetric matrices—that is, matrices that have real elements and for which
AT = A. The eigenvalues and eigenvectors of Hermitian matrices always have the
following useful properties:

1. All eigenvalues are real.
2. There always exists a full set of n linearly independent eigenvectors, regardless of the

algebraic multiplicities of the eigenvalues.
3. If x(1) and x(2) are eigenvectors that correspond to different eigenvalues, then

(x(1), x(2)) = 0. Thus, if all eigenvalues are simple, then the associated eigenvectors form
an orthogonal set of vectors.

4. Corresponding to an eigenvalue of algebraic multiplicity m, it is possible to choose m
eigenvectors that are mutually orthogonal. Thus the full set of n eigenvectors can always
be chosen to be orthogonal as well as linearly independent.

The proofs of statements 1 and 3 above are outlined in Problems 32 and 33. Ex-
ample 5 involves a real symmetric matrix and illustrates properties 1, 2, and 3, but
the choice we have made for x(2) and x(3) does not illustrate property 4. However,
it is always possible to choose an x(2) and x(3) so that (x(2), x(3)) = 0. For instance, in
Example 5 we could have chosen x(2) as before and x(3) by using c1 = 1 and c2 = −2
in Eq. (46). In this way we obtain
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x(2) =
⎛
⎜⎝

1
0

−1

⎞
⎟⎠ , x(3) =

⎛
⎜⎝

1
−2

1

⎞
⎟⎠

as the eigenvectors associated with the eigenvalue λ = −1. These eigenvectors are
orthogonal to each other as well as to the eigenvector x(1) that corresponds to the
eigenvalue λ = 2.

PROBLEMS In each of Problems 1 through 6 either solve the given system of equations, or else show that
there is no solution.

1. x1 − x3 = 0
3x1 + x2 + x3 = 1
−x1 + x2 + 2x3 = 2

2. x1 + 2x2 − x3 = 1
2x1 + x2 + x3 = 1

x1 − x2 + 2x3 = 1

3. x1 + 2x2 − x3 = 2
2x1 + x2 + x3 = 1

x1 − x2 + 2x3 = −1

4. x1 + 2x2 − x3 = 0
2x1 + x2 + x3 = 0

x1 − x2 + 2x3 = 0

5. x1 − x3 = 0
3x1 + x2 + x3 = 0
−x1 + x2 + 2x3 = 0

6. x1 + 2x2 − x3 = −2
−2x1 − 4x2 + 2x3 = 4

2x1 + 4x2 − 2x3 = −4

In each of Problems 7 through 11 determine whether the members of the given set of vectors
are linearly independent. If they are linearly dependent, find a linear relation among them.
The vectors are written as row vectors to save space but may be considered as column vectors;
that is, the transposes of the given vectors may be used instead of the vectors themselves.

7. x(1) = (1, 1, 0), x(2) = (0, 1, 1), x(3) = (1, 0, 1)

8. x(1) = (2, 1, 0), x(2) = (0, 1, 0), x(3) = (−1, 2, 0)

9. x(1) = (1, 2, 2, 3), x(2) = (−1, 0, 3, 1), x(3) = (−2, −1, 1, 0), x(4) = (−3, 0, −1, 3)

10. x(1) = (1, 2, −1, 0), x(2) = (2, 3, 1, −1), x(3) = (−1, 0, 2, 2), x(4) = (3, −1, 1, 3)

11. x(1) = (1, 2, −2), x(2) = (3, 1, 0), x(3) = (2, −1, 1), x(4) = (4, 3, −2)

12. Suppose that each of the vectors x(1), . . . , x(m) has n components, where n < m. Show that
x(1), . . . , x(m) are linearly dependent.

In each of Problems 13 and 14 determine whether the members of the given set of vectors are
linearly independent for −∞ < t < ∞. If they are linearly dependent, find the linear relation
among them. As in Problems 7 through 11, the vectors are written as row vectors to save space.

13. x(1)(t) = (e−t , 2e−t), x(2)(t) = (e−t , e−t), x(3)(t) = (3e−t , 0)

14. x(1)(t) = (2 sin t, sin t), x(2)(t) = (sin t, 2 sin t)

15. Let

x(1)(t) =
(

et

tet

)
, x(2)(t) =

(
1
t

)
.

Show that x(1)(t) and x(2)(t) are linearly dependent at each point in the interval 0 ≤ t ≤ 1.
Nevertheless, show that x(1)(t) and x(2)(t) are linearly independent on 0 ≤ t ≤ 1.
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In each of Problems 16 through 25 find all eigenvalues and eigenvectors of the given matrix.

16.

(
5 −1
3 1

)
17.

(
3 −2
4 −1

)

18.

(
−2 1

1 −2

)
19.

(
1 i

−i 1

)

20.

(
1

√
3√

3 −1

)
21.

(
−3 3/4
−5 1

)

22.

⎛
⎜⎝

1 0 0
2 1 −2
3 2 1

⎞
⎟⎠ 23.

⎛
⎜⎝

3 2 2
1 4 1

−2 −4 −1

⎞
⎟⎠

24.

⎛
⎜⎝

11/9 −2/9 8/9
−2/9 2/9 10/9

8/9 10/9 5/9

⎞
⎟⎠ 25.

⎛
⎜⎝

3 2 4
2 0 2
4 2 3

⎞
⎟⎠

Problems 26 through 30 deal with the problem of solving Ax = b when det A = 0.

26. (a) Suppose that A is a real-valued n × n matrix. Show that (Ax, y) = (x, AT y) for any
vectors x and y.
Hint: You may find it simpler to consider first the case n = 2; then extend the result to an
arbitrary value of n.
(b) If A is not necessarily real, show that (Ax, y) = (x, A∗y) for any vectors x and y.
(c) If A is Hermitian, show that (Ax, y) = (x, Ay) for any vectors x and y.

27. Suppose that, for a given matrix A, there is a nonzero vector x such that Ax = 0. Show
that there is also a nonzero vector y such that A∗y = 0.

28. Suppose that det A = 0 and that Ax = b has solutions. Show that (b, y) = 0, where y is any
solution of A∗y = 0. Verify that this statement is true for the set of equations in Example 2.
Hint: Use the result of Problem 26(b).

29. Suppose that det A = 0 and that x = x(0) is a solution of Ax = b. Show that if ξ is a solution
of Aξ = 0 and α is any constant, then x = x(0) + αξ is also a solution of Ax = b.

30. Suppose that det A = 0 and that y is a solution of A∗y = 0. Show that if (b, y) = 0 for
every such y, then Ax = b has solutions. Note that this is the converse of Problem 28; the
form of the solution is given by Problem 29.
Hint: What does the relation A∗y = 0 say about the rows of A? Again, it may be helpful
to consider the case n = 2 first.

31. Prove that λ = 0 is an eigenvalue of A if and only if A is singular.

32. In this problem we show that the eigenvalues of a Hermitian matrix A are real. Let x be
an eigenvector corresponding to the eigenvalue λ.

(a) Show that (Ax, x) = (x, Ax). Hint: See Problem 26(c).

(b) Show that λ(x, x) = λ(x, x). Hint: Recall that Ax = λx.

(c) Show that λ = λ; that is, the eigenvalue λ is real.
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33. Show that if λ1 and λ2 are eigenvalues of a Hermitian matrix A, and if λ1 �= λ2, then the
corresponding eigenvectors x(1) and x(2) are orthogonal.
Hint: Use the results of Problems 26(c) and 32 to show that (λ1 − λ2)(x(1), x(2)) = 0.

34. Show that if λ1 and λ2 are eigenvalues of any matrix A, and if λ1 �= λ2, then the corre-
sponding eigenvectors x(1) and x(2) are linearly independent.
Hint: Start from c1x(1) + c2x(2) = 0; multiply by A to obtain c1λ1x(1) + c2λ2x(2) = 0. Then
show that c1 = c2 = 0.

7.4 Basic Theory of Systems of First Order Linear Equations
The general theory of a system of n first order linear equations

x′
1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),

... (1)

x′
n = pn1(t)x1 + · · · + pnn(t)xn + gn(t)

closely parallels that of a single linear equation of nth order. The discussion in this
section therefore follows the same general lines as that in Sections 3.2 and 4.1. To
discuss the system (1) most effectively, we write it in matrix notation. That is, we
consider x1 = φ1(t), . . . , xn = φn(t) to be components of a vector x = φ(t); similarly,
g1(t), . . . , gn(t) are components of a vector g(t), and p11(t), . . . , pnn(t) are elements of
an n × n matrix P(t). Equation (1) then takes the form

x′ = P(t)x + g(t). (2)

The use of vectors and matrices not only saves a great deal of space and facilitates
calculations but also emphasizes the similarity between systems of equations and
single (scalar) equations.

A vector x = φ(t) is said to be a solution of Eq. (2) if its components satisfy the sys-
tem of equations (1). Throughout this section we assume that P and g are continuous
on some interval α < t < β; that is, each of the scalar functions p11, . . . , pnn, g1, . . . , gn

is continuous there. According to Theorem 7.1.2, this is sufficient to guarantee the
existence of solutions of Eq. (2) on the interval α < t < β.

It is convenient to consider first the homogeneous equation

x′ = P(t)x (3)

obtained from Eq. (2) by setting g(t) = 0. Once the homogeneous equation has been
solved, there are several methods that can be used to solve the nonhomogeneous
equation (2); this is taken up in Section 7.9. We use the notation

x(1)(t) =

⎛
⎜⎜⎜⎝

x11(t)
x21(t)

...

xn1(t)

⎞
⎟⎟⎟⎠ , . . . , x(k)(t) =

⎛
⎜⎜⎜⎝

x1k(t)
x2k(t)

...

xnk(t)

⎞
⎟⎟⎟⎠ , . . . (4)

to designate specific solutions of the system (3). Note that xij(t) = x(j)
i (t) refers to

the ith component of the jth solution x(j)(t). The main facts about the structure
of solutions of the system (3) are stated in Theorems 7.4.1 to 7.4.4. They closely
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resemble the corresponding theorems in Sections 3.2 and 4.1; some of the proofs are
left to you as exercises.

Theorem 7.4.1 If the vector functions x(1) and x(2) are solutions of the system (3), then the linear
combination c1x(1) + c2x(2) is also a solution for any constants c1 and c2.

This is the principle of superposition; it is proved simply by differentiating
c1x(1) + c2x(2) and using the fact that x(1) and x(2) satisfy Eq. (3). By repeated appli-
cation of Theorem 7.4.1 we reach the conclusion that if x(1), . . . , x(k) are solutions of
Eq. (3), then

x = c1x(1)(t) + · · · + ckx(k)(t) (5)

is also a solution for any constants c1, . . . , ck. As an example, it can be verified that

x(1)(t) =
(

e3t

2e3t

)
=

(
1
2

)
e3t , x(2)(t) =

(
e−t

−2e−t

)
=

(
1

−2

)
e−t (6)

satisfy the equation

x′ =
(

1 1
4 1

)
x. (7)

According to Theorem 7.4.1,

x = c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t

= c1x(1)(t) + c2x(2)(t) (8)

also satisfies Eq. (7).
As we indicated previously, by repeatedly applying Theorem 7.4.1, it follows that

every finite linear combination of solutions of Eq. (3) is also a solution. The question
that now arises is whether all solutions of Eq. (3) can be found in this way. By analogy
with previous cases, it is reasonable to expect that for the system (3) of n first order
equations, it is sufficient to form linear combinations of n properly chosen solutions.
Therefore let x(1), . . . , x(n) be n solutions of the system (3), and consider the matrix
X(t) whose columns are the vectors x(1)(t), . . . , x(n)(t):

X(t) =
⎛
⎜⎝

x11(t) · · · x1n(t)
...

...

xn1(t) · · · xnn(t)

⎞
⎟⎠ . (9)

Recall from Section 7.3 that the columns of X(t) are linearly independent for a given
value of t if and only if det X �= 0 for that value of t. This determinant is called the
Wronskian of the n solutions x(1), . . . , x(n) and is also denoted by W[x(1), . . . , x(n)];
that is,

W[x(1), . . . , x(n)](t) = det X(t). (10)

The solutions x(1), . . . , x(n) are then linearly independent at a point if and only if
W[ x(1), . . . , x(n)] is not zero there.
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Theorem 7.4.2 If the vector functions x(1), . . . , x(n) are linearly independent solutions of the system
(3) for each point in the interval α < t < β, then each solution x = φ(t) of the system
(3) can be expressed as a linear combination of x(1), . . . , x(n)

φ(t) = c1x(1)(t) + · · · + cnx(n)(t) (11)

in exactly one way.

Before provingTheorem 7.4.2,note that according toTheorem 7.4.1,all expressions
of the form (11) are solutions of the system (3), while by Theorem 7.4.2 all solutions
of Eq. (3) can be written in the form (11). If the constants c1, . . . , cn are thought of as
arbitrary, then Eq. (11) includes all solutions of the system (3), and it is customary to
call it the general solution. Any set of solutions x(1), . . . , x(n) of Eq. (3) that is linearly
independent at each point in the interval α < t < β is said to be a fundamental set
of solutions for that interval.

To prove Theorem 7.4.2, we will show, given any solution φ of Eq. (3), that
φ(t) = c1x(1)(t) + · · · + cnx(n)(t) for suitable values of c1, . . . , cn. Let t = t0 be some
point in the interval α < t < β and let ξ = φ(t0). We now wish to determine whether
there is any solution of the form x = c1x(1)(t) + · · · + cnx(n)(t) that also satisfies the
same initial condition x(t0) = ξ . That is, we wish to know whether there are values
of c1, . . . , cn such that

c1x(1)(t0) + · · · + cnx(n)(t0) = ξ , (12)

or, in scalar form,

c1x11(t0) + · · · + cnx1n(t0) = ξ1,
... (13)

c1xn1(t0) + · · · + cnxnn(t0) = ξn.

The necessary and sufficient condition that Eqs. (13) possess a unique solution
c1, . . . , cn is precisely the nonvanishing of the determinant of coefficients, which is
the Wronskian W[ x(1), . . . , x(n)] evaluated at t = t0. The hypothesis that x(1), . . . , x(n)

are linearly independent throughout α < t < β guarantees that W[x(1), . . . , x(n)] is
not zero at t = t0, and therefore there is a (unique) solution of Eq. (3) of the form
x = c1x(1)(t) + · · · + cnx(n)(t) that also satisfies the initial condition (12). By the
uniqueness part of Theorem 7.1.2, this solution is identical to φ(t), and hence
φ(t) = c1x(1)(t) + · · · + cnx(n)(t), as was to be proved.

Theorem 7.4.3 If x(1), . . . , x(n) are solutions of Eq. (3) on the interval α < t < β, then in this interval
W[x(1), . . . , x(n)] either is identically zero or else never vanishes.

The significance of Theorem 7.4.3 lies in the fact that it relieves us of the necessity
of examining W[x(1), . . . , x(n)] at all points in the interval of interest, and enables us
to determine whether x(1), . . . , x(n) form a fundamental set of solutions merely by
evaluating their Wronskian at any convenient point in the interval.
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Theorem 7.4.3 is proved by first establishing that the Wronskian of x(1), . . . , x(n)

satisfies the differential equation (see Problem 2)

dW
dt

= (p11 + p22 + · · · + pnn)W . (14)

Hence

W(t) = c exp
{∫

[p11(t) + · · · + pnn(t)] dt
}

, (15)

where c is an arbitrary constant, and the conclusion of the theorem follows imme-
diately. The expression for W(t) in Eq. (15) is known as Abel’s formula; note the
similarity to Eq. (27) of Section 3.2.

Alternatively, Theorem 7.4.3 can be established by showing that if n solutions
x(1), . . . , x(n) of Eq. (3) are linearly dependent at one point t = t0, then they must
be linearly dependent at each point in α < t < β (see Problem 8). Consequently, if
x(1), . . . , x(n) are linearly independent at one point, they must be linearly independent
at each point in the interval.

The next theorem states that the system (3) always has at least one fundamental
set of solutions.

Theorem 7.4.4 Let

e(1) =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ , e(2) =

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ , . . . , e(n) =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎠ ;

further let x(1), . . . , x(n) be the solutions of the system (3) that satisfy the initial
conditions

x(1)(t0) = e(1), . . . , x(n)(t0) = e(n), (16)

respectively, where t0 is any point in α < t < β. Then x(1), . . . , x(n) form a funda-
mental set of solutions of the system (3).

To prove this theorem, note that the existence and uniqueness of the solutions
x(1), . . . , x(n) mentioned in Theorem 7.4.4 are ensured by Theorem 7.1.2. It is not
hard to see that the Wronskian of these solutions is equal to 1 when t = t0; therefore
x(1), . . . , x(n) are a fundamental set of solutions.

Once one fundamental set of solutions has been found, other sets can be gener-
ated by forming (independent) linear combinations of the first set. For theoretical
purposes the set given by Theorem 7.4.4 is usually the simplest.

To summarize:

1. Any set of n linearly independent solutions of the system x′ = P(t)x constitutes a funda-
mental set of solutions.

2. Under the conditions given in this section, such fundamental sets always exist.
3. Every solution of the system x′ = P(t)x can be represented as a linear combination of any

fundamental set of solutions.
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PROBLEMS 1. Prove the statement following Theorem 7.4.1 for an arbitrary value of the integer k.

2. In this problem we outline a proof of Theorem 7.4.3 in the case n = 2. Let x(1) and x(2)

be solutions of Eq. (3) for α < t < β, and let W be the Wronskian of x(1) and x(2).
(a) Show that

dW
dt

=

∣∣∣∣∣∣∣∣
dx(1)

1

dt
dx(2)

1

dt

x(1)

2 x(2)

2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
x(1)

1 x(2)

1

dx(1)

2

dt
dx(2)

2

dt

∣∣∣∣∣∣∣∣
.

(b) Using Eq. (3), show that

dW
dt

= (p11 + p22)W .

(c) Find W(t) by solving the differential equation obtained in part (b). Use this expression
to obtain the conclusion stated in Theorem 7.4.3.
(d) Prove Theorem 7.4.3 for an arbitrary value of n by generalizing the procedure of parts
(a), (b), and (c).

3. Show that the Wronskians of two fundamental sets of solutions of the system (3) can differ
at most by a multiplicative constant.
Hint: Use Eq. (15).

4. If x1 = y and x2 = y′, then the second order equation

y′′ + p(t)y′ + q(t)y = 0 (i)

corresponds to the system

x′
1 = x2,

x′
2 = −q(t)x1 − p(t)x2. (ii)

Show that if x(1) and x(2) are a fundamental set of solutions of Eqs. (ii), and if y(1) and y(2)

are a fundamental set of solutions of Eq. (i), then W[y(1), y(2)] = cW[x(1), x(2)], where c is a
nonzero constant.
Hint: y(1)(t) and y(2)(t) must be linear combinations of x11(t) and x12(t).

5. Show that the general solution of x′ = P(t)x + g(t) is the sum of any particular solution x(p)

of this equation and the general solution x(c) of the corresponding homogeneous equation.

6. Consider the vectors x(1)(t) =
(

t
1

)
and x(2)(t) =

(
t2

2t

)
.

(a) Compute the Wronskian of x(1) and x(2).

(b) In what intervals are x(1) and x(2) linearly independent?

(c) What conclusion can be drawn about the coefficients in the system of homogeneous
differential equations satisfied by x(1) and x(2)?

(d) Find this system of equations and verify the conclusions of part (c).

7. Consider the vectors x(1)(t) =
(

t2

2t

)
and x(2)(t) =

(
et

et

)
, and answer the same questions as

in Problem 6.
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The following two problems indicate an alternative derivation of Theorem 7.4.2.

8. Let x(1), . . . , x(m) be solutions of x′ = P(t)x on the interval α < t < β. Assume that P is
continuous and let t0 be an arbitrary point in the given interval. Show that x(1), . . . , x(m)

are linearly dependent for α < t < β if (and only if) x(1)(t0), . . . , x(m)(t0) are linearly de-
pendent. In other words x(1), . . . , x(m) are linearly dependent on the interval (α, β) if they
are linearly dependent at any point in it.
Hint: There are constants c1, . . . , cm such that c1x(1)(t0) + · · · + cmx(m)(t0) = 0. Let
z(t) = c1x(1)(t) + · · · + cmx(m)(t), and use the uniqueness theorem to show that z(t) = 0
for each t in α < t < β.

9. Let x(1), . . . , x(n) be linearly independent solutions of x′ = P(t)x, where P is continuous on
α < t < β.

(a) Show that any solution x = z(t) can be written in the form

z(t) = c1x(1)(t) + · · · + cnx(n)(t)

for suitable constants c1, . . . , cn.
Hint: Use the result of Problem 12 of Section 7.3, and also Problem 8 above.

(b) Show that the expression for the solution z(t) in part (a) is unique; that is, if
z(t) = k1x(1)(t) + · · · + knx(n)(t), then k1 = c1, . . . , kn = cn.

Hint: Show that (k1 − c1)x(1)(t) + · · · + (kn − cn)x(n)(t) = 0 for each t in α < t < β, and use
the linear independence of x(1), . . . , x(n).

7.5 Homogeneous Linear Systems with Constant Coefficients
We will concentrate most of our attention on systems of homogeneous linear equa-
tions with constant coefficients—that is, systems of the form

x′ = Ax, (1)

where A is a constant n × n matrix. Unless stated otherwise, we will assume further
that all the elements of A are real (rather than complex) numbers.

If n = 1, then the system reduces to a single first order equation

dx
dt

= ax, (2)

whose solution is x = ceat . In Section 2.5 we noted that x = 0 is the only equilibrium
solution if a �= 0. Other solutions approach x = 0 if a < 0, and in this case we say
that x = 0 is an asymptotically stable equilibrium solution. On the other hand, if
a > 0, then x = 0 is unstable, since other solutions depart from it. For systems of n
equations, the situation is somewhat analogous but more complicated. Equilibrium
solutions are found by solving Ax = 0. We usually assume that det A �= 0, so x = 0
is the only equilibrium solution. An important question is whether other solutions
approach this equilibrium solution or depart from it as t increases; in other words, is
x = 0 asymptotically stable or unstable? Or are there still other possibilities?

The case n = 2 is particularly important and lends itself to visualization in the
x1x2-plane, called the phase plane. By evaluating Ax at a large number of points
and plotting the resulting vectors, we obtain a direction field of tangent vectors to
solutions of the system of differential equations. A qualitative understanding of the
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behavior of solutions can usually be gained from a direction field. More precise
information results from including in the plot some solution curves, or trajectories.
A plot that shows a representative sample of trajectories for a given system is called
a phase portrait. Examples of direction fields and phase portraits appear later in this
section.

To find solutions of the system (1), we will try to generalize the treatment of second
order linear equations in Section 3.1. Thus we assume that a solution will involve an
exponential function ert . Further, solutions of Eq. (1) are vectors, so let us multiply
ert by a constant vector ξ . Thus we seek solutions of Eq. (1) of the form

x = ξert , (3)

where the exponent r and the vector ξ are to be determined. Substituting from
Eq. (3) for x in the system (1) gives

rξert = Aξert .

Upon canceling the nonzero scalar factor ert , we obtain Aξ = rξ , or

(A − rI)ξ = 0, (4)

where I is the n × n identity matrix. Thus, to solve the system of differential equations
(1), we must solve the system of algebraic equations (4). This latter problem is
precisely the one that determines the eigenvalues and eigenvectors of the matrix A.
Therefore the vector x given by Eq. (3) is a solution of Eq. (1), provided that r is an
eigenvalue and ξ an associated eigenvector of the coefficient matrix A.

The following two examples illustrate the solution procedure in the case of
2 × 2 coefficient matrices. We also show how to construct the corresponding phase
portraits. Later in the section we return to a further discussion of the general n × n
system.

E X A M P L E

1

Consider the system

x′ =
(

1 1
4 1

)
x. (5)

Plot a direction field and determine the qualitative behavior of solutions. Then find the general
solution and draw several trajectories.

A direction field for this system is shown in Figure 7.5.1. From this figure it is easy to see
that a typical solution departs from the neighborhood of the origin and ultimately has a slope
of approximately 2 in either the first or the third quadrant.

To find solutions explicitly, we assume that x = ξert and substitute for x in Eq. (5). We are
led to the system of algebraic equations(

1 − r 1
4 1 − r

)(
ξ1

ξ2

)
=

(
0
0

)
. (6)

Equations (6) have a nontrivial solution if and only if the determinant of coefficients is zero.
Thus allowable values of r are found from the equation∣∣∣∣∣1 − r 1

4 1 − r

∣∣∣∣∣ = (1 − r)2 − 4

= r2 − 2r − 3 = 0. (7)
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2

1

–1

–2

–2 –1 1 2 x1

x2

FIGURE 7.5.1 Direction field for the system (5).

Equation (7) has the roots r1 = 3 and r2 = −1; these are the eigenvalues of the coefficient
matrix in Eq. (5). If r = 3, then the system (6) reduces to the single equation

−2ξ1 + ξ2 = 0. (8)

Thus ξ2 = 2ξ1, and the eigenvector corresponding to r1 = 3 can be taken as

ξ (1) =
(

1
2

)
. (9)

Similarly, corresponding to r2 = −1, we find that ξ2 = −2ξ1, so the eigenvector is

ξ (2) =
(

1
−2

)
. (10)

The corresponding solutions of the differential equation are

x(1)(t) =
(

1
2

)
e3t , x(2)(t) =

(
1

−2

)
e−t . (11)

The Wronskian of these solutions is

W[x(1), x(2)](t) =
∣∣∣∣∣ e3t e−t

2e3t −2e−t

∣∣∣∣∣ = −4e2t , (12)

which is never zero. Hence the solutions x(1) and x(2) form a fundamental set, and the general
solution of the system (5) is

x = c1x(1)(t) + c2x(2)(t)

= c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t , (13)

where c1 and c2 are arbitrary constants.
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To visualize the solution (13), it is helpful to consider its graph in the x1x2-plane for various
values of the constants c1 and c2. We start with x = c1x(1)(t) or, in scalar form,

x1 = c1e3t , x2 = 2c1e3t .

By eliminating t between these two equations, we see that this solution lies on the straight line
x2 = 2x1; see Figure 7.5.2a. This is the line through the origin in the direction of the eigenvector
ξ (1). If we look on the solution as the trajectory of a moving particle, then the particle is in the
first quadrant when c1 > 0 and in the third quadrant when c1 < 0. In either case the particle
departs from the origin as t increases. Next consider x = c2x(2)(t), or

x1 = c2e−t , x2 = −2c2e−t .

This solution lies on the line x2 = −2x1, whose direction is determined by the eigenvector ξ (2).
The solution is in the fourth quadrant when c2 > 0 and in the second quadrant when c2 < 0, as
shown in Figure 7.5.2a. In both cases the particle moves toward the origin as t increases. The
solution (13) is a combination of x(1)(t) and x(2)(t). For large t the term c1x(1)(t) is dominant
and the term c2x(2)(t) becomes negligible. Thus all solutions for which c1 �= 0 are asymptotic to
the line x2 = 2x1 as t → ∞. Similarly, all solutions for which c2 �= 0 are asymptotic to the line
x2 = −2x1 as t → −∞. The graphs of several solutions are shown in Figure 7.5.2a. The pattern
of trajectories in this figure is typical of all 2 × 2 systems x′ = Ax for which the eigenvalues
are real and of opposite signs. The origin is called a saddle point in this case. Saddle points
are always unstable because almost all trajectories depart from them as t increases.

In the preceding paragraph we have described how to draw by hand a qualitatively correct
sketch of the trajectories of a system such as Eq. (5), once the eigenvalues and eigenvectors
have been determined. However, to produce a detailed and accurate drawing, such as Figure
7.5.2a and other figures that appear later in this chapter, a computer is extremely helpful, if
not indispensable.

As an alternative to Figure 7.5.2a, you can also plot x1 or x2 as a function of t; some typical
plots of x1 versus t are shown in Figure 7.5.2b, and those of x2 versus t are similar. For certain
initial conditions it follows that c1 = 0 in Eq. (13),so that x1 = c2e−t and x1 → 0 as t → ∞. One
such graph is shown in Figure 7.5.2b, corresponding to a trajectory that approaches the origin

1

x1x2

t0.51–1–2 2

–2

1

2

–1

–2

2

x(2)(t)

x(1)(t)

x1

(a) (b)
FIGURE 7.5.2 (a) Trajectories of the system (5); the origin is a saddle point. (b) Plots of x1

versus t for the system (5).
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in Figure 7.5.2a. For most initial conditions, however, c1 �= 0 and x1 is given by x1 = c1e3t +
c2e−t . Then the presence of the positive exponential term causes x1 to grow exponentially in
magnitude as t increases. Several graphs of this type are shown in Figure 7.5.2b, corresponding
to trajectories that depart from the neighborhood of the origin in Figure 7.5.2a. It is important
to understand the relation between parts (a) and (b) of Figure 7.5.2 and other similar figures
that appear later, since you may want to visualize solutions either in the x1x2-plane or as
functions of the independent variable t.

E X A M P L E

2

Consider the system

x′ =
(

−3
√

2√
2 −2

)
x. (14)

Draw a direction field for this system; then find its general solution and plot several trajectories
in the phase plane.

The direction field for the system (14) in Figure 7.5.3 shows clearly that all solutions approach
the origin. To find the solutions, we assume that x = ξert ; then we obtain the algebraic system

(
−3 − r

√
2√

2 −2 − r

)(
ξ1

ξ2

)
=

(
0
0

)
. (15)

The eigenvalues satisfy

(−3 − r)(−2 − r) − 2 = r2 + 5r + 4

= (r + 1)(r + 4) = 0, (16)

so r1 = −1 and r2 = −4. For r = −1, Eq. (15) becomes

(
−2

√
2√

2 −1

)(
ξ1

ξ2

)
=

(
0
0

)
. (17)

2

1

–1

–2

–2 –1 1 2 x1

x2

FIGURE 7.5.3 Direction field for the system (14).
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Hence ξ2 = √
2 ξ1, and the eigenvector ξ (1) corresponding to the eigenvalue r1 = −1 can be

taken as

ξ (1) =
(

1√
2

)
. (18)

Similarly, corresponding to the eigenvalue r2 = −4 we have ξ1 = −√
2 ξ2, so the eigenvector is

ξ (2) =
(

−√
2

1

)
. (19)

Thus a fundamental set of solutions of the system (14) is

x(1)(t) =
(

1√
2

)
e−t , x(2)(t) =

(
−√

2
1

)
e−4t , (20)

and the general solution is

x = c1x(1)(t) + c2x(2) = c1

(
1√
2

)
e−t + c2

(
−√

2
1

)
e−4t . (21)

Graphs of the solution (21) for several values of c1 and c2 are shown in Figure 7.5.4a.
The solution x(1)(t) approaches the origin along the line x2 = √

2 x1, and the solution x(2)(t)
approaches the origin along the line x1 = −√

2 x2. The directions of these lines are determined
by the eigenvectors ξ (1) and ξ (2), respectively. In general, we have a combination of these
two fundamental solutions. As t → ∞, the solution x(2)(t) is negligible compared to x(1)(t).
Thus, unless c1 = 0, the solution (21) approaches the origin tangent to the line x2 = √

2x1.

The pattern of trajectories shown in Figure 7.5.4a is typical of all 2 × 2 systems x′ = Ax for
which the eigenvalues are real, different, and of the same sign. The origin is called a node
for such a system. If the eigenvalues were positive rather than negative, then the trajectories
would be similar but traversed in the outward direction. Nodes are asymptotically stable if
the eigenvalues are negative and unstable if the eigenvalues are positive.

x1

t0.5 1–2

–2

–1

–1

–1

1 2

2

1
1

(a) (b)

x2

x1

x(1)(t)

x(2)(t)

FIGURE 7.5.4 (a) Trajectories of the system (14); the origin is a node. (b) Plots of x1 versus
t for the system (14).
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Although Figure 7.5.4a was computer-generated, a qualitatively correct sketch of the tra-
jectories can be drawn quickly by hand on the basis of a knowledge of the eigenvalues and
eigenvectors.

Some typical plots of x1 versus t are shown in Figure 7.5.4b. Observe that each of the
graphs approaches the t-axis asymptotically as t increases, corresponding to a trajectory that
approaches the origin in Figure 7.5.2a. The behavior of x2 as a function of t is similar.

The two preceding examples illustrate the two main cases for 2 × 2 systems having
eigenvalues that are real and different: the eigenvalues have either opposite signs
(Example 1) or the same sign (Example 2). The other possibility is that zero is an
eigenvalue, but in this case it follows that det A = 0, which violates the assumption
made at the beginning of this section. However, see Problems 7 and 8.

Returning to the general system (1), we proceed as in the examples. To find solu-
tions of the differential equation (1), we must find the eigenvalues and eigenvectors
of A from the associated algebraic system (4). The eigenvalues r1, . . . , rn (which need
not all be different) are roots of the nth degree polynomial equation

det(A − rI) = 0. (22)

The nature of the eigenvalues and the corresponding eigenvectors determines the
nature of the general solution of the system (1). If we assume that A is a real-valued
matrix, there are three possibilities for the eigenvalues of A:

1. All eigenvalues are real and different from each other.
2. Some eigenvalues occur in complex conjugate pairs.
3. Some eigenvalues are repeated.

If the eigenvalues are all real and different, as in the two preceding examples,
then associated with each eigenvalue ri is a real eigenvector ξ (i), and the n eigen-
vectors ξ (1), . . . , ξ (n) are linearly independent. The corresponding solutions of the
differential system (1) are

x(1)(t) = ξ (1)er1t , . . . , x(n)(t) = ξ (n)ernt . (23)

To show that these solutions form a fundamental set, we evaluate their Wronskian:

W[x(1), . . . , x(n)](t) =

∣∣∣∣∣∣∣
ξ

(1)

1 er1t · · · ξ
(n)

1 ernt

...
...

ξ (1)
n er1t · · · ξ (n)

n ernt

∣∣∣∣∣∣∣

= e(r1+···+rn)t

∣∣∣∣∣∣∣
ξ

(1)

1 · · · ξ
(n)

1
...

...

ξ (1)
n · · · ξ (n)

n

∣∣∣∣∣∣∣ . (24)

First, we observe that the exponential function is never zero. Next, since the eigen-
vectors ξ (1), . . . , ξ (n) are linearly independent, the determinant in the last term of
Eq. (24) is nonzero. As a consequence, the Wronskian W[x(1), . . . , x(n)](t) is never
zero; hence x(1), . . . , x(n) form a fundamental set of solutions. Thus the general solu-
tion of Eq. (1) is

x = c1ξ
(1)er1t + · · · + cnξ

(n)ernt . (25)
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If A is real and symmetric (a special case of Hermitian matrices), recall from
Section 7.3 that all the eigenvalues r1, . . . , rn must be real. Further, even if some of the
eigenvalues are repeated, there is always a full set of n eigenvectors ξ (1), . . . , ξ (n) that
are linearly independent (in fact, orthogonal). Hence the corresponding solutions of
the differential system (1) given by Eq. (23) again form a fundamental set of solutions,
and the general solution is again given by Eq. (25). The following example illustrates
this case.

E X A M P L E

3

Find the general solution of

x′ =
⎛
⎜⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎠ x. (26)

Observe that the coefficient matrix is real and symmetric. The eigenvalues and eigenvectors
of this matrix were found in Example 5 of Section 7.3:

r1 = 2, ξ (1) =
⎛
⎜⎝

1
1
1

⎞
⎟⎠ ; (27)

r2 = −1, r3 = −1; ξ (2) =
⎛
⎜⎝

1
0

−1

⎞
⎟⎠ , ξ (3) =

⎛
⎜⎝

0
1

−1

⎞
⎟⎠ . (28)

Hence a fundamental set of solutions of Eq. (26) is

x(1)(t) =
⎛
⎜⎝

1
1
1

⎞
⎟⎠ e2t , x(2)(t) =

⎛
⎜⎝

1
0

−1

⎞
⎟⎠ e−t , x(3)(t) =

⎛
⎜⎝

0
1

−1

⎞
⎟⎠ e−t , (29)

and the general solution is

x = c1

⎛
⎜⎝

1
1
1

⎞
⎟⎠ e2t + c2

⎛
⎜⎝

1
0

−1

⎞
⎟⎠ e−t + c3

⎛
⎜⎝

0
1

−1

⎞
⎟⎠ e−t . (30)

This example illustrates the fact that even though an eigenvalue (r = −1) has algebraic mul-
tiplicity 2, it may still be possible to find two linearly independent eigenvectors ξ (2) and ξ (3)

and, as a consequence, to construct the general solution (30).
The behavior of the solution (30) depends critically on the initial conditions. For large t the

first term on the right side of Eq. (30) is the dominant one; therefore, if c1 �= 0, all components
of x become unbounded as t → ∞. On the other hand, for certain initial points c1 will be
zero. In this case, the solution involves only the negative exponential terms, and x → 0 as
t → ∞. The initial points that cause c1 to be zero are precisely those that lie in the plane
determined by the eigenvectors ξ (2) and ξ (3) corresponding to the two negative eigenvalues.
Thus solutions that start in this plane approach the origin as t → ∞, while all other solutions
become unbounded.

If some of the eigenvalues occur in complex conjugate pairs, then there are still n
linearly independent solutions of the form (23), provided that all the eigenvalues are
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different. Of course, the solutions arising from complex eigenvalues are complex-
valued. However, as in Section 3.3, it is possible to obtain a full set of real-valued
solutions. This is discussed in Section 7.6.

More serious difficulties can occur if an eigenvalue is repeated. In this event the
number of corresponding linearly independent eigenvectors may be smaller than the
algebraic multiplicity of the eigenvalue. If so, the number of linearly independent
solutions of the form ξert will be smaller than n. To construct a fundamental set
of solutions, it is then necessary to seek additional solutions of another form. The
situation is somewhat analogous to that for an nth order linear equation with constant
coefficients; a repeated root of the characteristic equation gave rise to solutions of
the form ert , tert , t2ert , . . . . The case of repeated eigenvalues is treated in Section 7.8.

Finally, if A is complex, then complex eigenvalues need not occur in conjugate
pairs, and the eigenvectors are normally complex-valued even though the associated
eigenvalue may be real. The solutions of the differential equation (1) are still of the
form (23), provided that the eigenvalues are distinct, but in general all the solutions
are complex-valued.

PROBLEMS In each of Problems 1 through 6:
(a) Find the general solution of the given system of equations and describe the behavior of
the solution as t → ∞.
(b) Draw a direction field and plot a few trajectories of the system.

1. x′ =
(

3 −2
2 −2

)
x 2. x′ =

(
1 −2
3 −4

)
x

3. x′ =
(

2 −1
3 −2

)
x 4. x′ =

(
1 1
4 −2

)
x

5. x′ =
(

−2 1
1 −2

)
x 6. x′ =

(
5
4

3
4

3
4

5
4

)
x

In each of Problems 7 and 8:
(a) Find the general solution of the given system of equations.
(b) Draw a direction field and a few of the trajectories. In each of these problems the coef-
ficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from
those in the examples in the text.

7. x′ =
(

4 −3
8 −6

)
x 8. x′ =

(
3 6

−1 −2

)
x

In each of Problems 9 through 14 find the general solution of the given system of equations.

9. x′ =
(

1 i

−i 1

)
x 10. x′ =

(
2 2 + i

−1 −1 − i

)
x

11. x′ =
⎛
⎜⎝

1 1 2
1 2 1
2 1 1

⎞
⎟⎠ x 12. x′ =

⎛
⎜⎝

3 2 4
2 0 2
4 2 3

⎞
⎟⎠ x
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13. x′ =
⎛
⎜⎝

1 1 1
2 1 −1

−8 −5 −3

⎞
⎟⎠ x 14. x′ =

⎛
⎜⎝

1 −1 4
3 2 −1
2 1 −1

⎞
⎟⎠ x

In each of Problems 15 through 18 solve the given initial value problem. Describe the behavior
of the solution as t → ∞.

15. x′ =
(

5 −1
3 1

)
x, x(0) =

(
2

−1

)
16. x′ =

(
−2 1
−5 4

)
x, x(0) =

(
1
3

)

17. x′ =
⎛
⎜⎝

1 1 2
0 2 2

−1 1 3

⎞
⎟⎠ x, x(0) =

⎛
⎜⎝

2
0
1

⎞
⎟⎠ 18. x′ =

⎛
⎜⎝

0 0 −1
2 0 0

−1 2 4

⎞
⎟⎠ x, x(0) =

⎛
⎜⎝

7
5
5

⎞
⎟⎠

19. The system tx′ = Ax is analogous to the second order Euler equation (Section 5.4). Assum-
ing that x = ξ tr , where ξ is a constant vector, show that ξ and r must satisfy (A − rI)ξ = 0
in order to obtain nontrivial solutions of the given differential equation.

Referring to Problem 19, solve the given system of equations in each of Problems 20 through
23. Assume that t > 0.

20. tx′ =
(

2 −1
3 −2

)
x 21. tx′ =

(
5 −1
3 1

)
x

22. tx′ =
(

4 −3
8 −6

)
x 23. tx′ =

(
3 −2
2 −2

)
x

In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix A are given.
Consider the corresponding system x′ = Ax.
(a) Sketch a phase portrait of the system.
(b) Sketch the trajectory passing through the initial point (2, 3).
(c) For the trajectory in part (b) sketch the graphs of x1 versus t and of x2 versus t on the same
set of axes.

24. r1 = −1, ξ (1) =
(

−1
2

)
; r2 = −2, ξ (2) =

(
1
2

)

25. r1 = 1, ξ (1) =
(

−1
2

)
; r2 = −2, ξ (2) =

(
1
2

)

26. r1 = −1, ξ (1) =
(

−1
2

)
; r2 = 2, ξ (2) =

(
1
2

)

27. r1 = 1, ξ (1) =
(

1
2

)
; r2 = 2, ξ (2) =

(
1

−2

)

28. Consider a 2 × 2 system x′ = Ax. If we assume that r1 �= r2, the general solution is
x = c1ξ

(1)er1t + c2ξ
(2)er2 t , provided that ξ (1) and ξ (2) are linearly independent. In this

problem we establish the linear independence of ξ (1) and ξ (2) by assuming that they are
linearly dependent, and then showing that this leads to a contradiction.
(a) Note that ξ (1) satisfies the matrix equation (A − r1I)ξ (1) = 0; similarly, note that
(A − r2I)ξ (2) = 0.
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(b) Show that (A − r2I)ξ (1) = (r1 − r2)ξ
(1).

(c) Suppose that ξ (1) and ξ (2) are linearly dependent. Then c1ξ
(1) + c2ξ

(2) = 0 and at least
one of c1 and c2 is not zero; suppose that c1 �= 0. Show that (A − r2I)(c1ξ

(1) + c2ξ
(2)) = 0,

and also show that (A − r2I)(c1ξ
(1) + c2ξ

(2)) = c1(r1 − r2)ξ
(1). Hence c1 = 0, which is a

contradiction. Therefore ξ (1) and ξ (2) are linearly independent.

(d) Modify the argument of part (c) if we assume that c2 �= 0.

(e) Carry out a similar argument for the case in which the order n is equal to 3; note that
the procedure can be extended to an arbitrary value of n.

29. Consider the equation
ay′′ + by′ + cy = 0, (i)

where a, b, and c are constants with a �= 0. In Chapter 3 it was shown that the general
solution depended on the roots of the characteristic equation

ar2 + br + c = 0. (ii)

(a) Transform Eq. (i) into a system of first order equations by letting x1 = y, x2 = y′. Find

the system of equations x′ = Ax satisfied by x =
(

x1

x2

)
.

(b) Find the equation that determines the eigenvalues of the coefficient matrix A in part
(a). Note that this equation is just the characteristic equation (ii) of Eq. (i).

30. The two-tank system of Problem 22 in Section 7.1 leads to the initial value problem

x′ =
(− 1

10
3

40
1

10 − 1
5

)
x, x(0) =

(
−17
−21

)
,

where x1 and x2 are the deviations of the salt levels Q1 and Q2 from their respective
equilibria.
(a) Find the solution of the given initial value problem.

(b) Plot x1 versus t and x2 versus t on the same set of axes.

(c) Find the smallest time T such that |x1(t)| ≤ 0.5 and |x2(t)| ≤ 0.5 for all t ≥ T .

31. Consider the system

x′ =
(

−1 −1
−α −1

)
x.

(a) Solve the system for α = 0.5. What are the eigenvalues of the coefficient matrix?
Classify the equilibrium point at the origin as to type.

(b) Solve the system for α = 2. What are the eigenvalues of the coefficient matrix? Clas-
sify the equilibrium point at the origin as to type.

(c) In parts (a) and (b) solutions of the system exhibit two quite different types of behav-
ior. Find the eigenvalues of the coefficient matrix in terms of α and determine the value
of α between 0.5 and 2 where the transition from one type of behavior to the other occurs.

Electric Circuits. Problems 32 and 33 are concerned with the electric circuit described by the
system of differential equations in Problem 21 of Section 7.1:

d
dt

(
I

V

)
=

⎛
⎜⎜⎝

−R1

L
− 1

L

1
C

− 1
CR2

⎞
⎟⎟⎠

(
I

V

)
. (i)
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32. (a) Find the general solution of Eq. (i) if R1 = 1 �, R2 = 3
5 �, L = 2 H, and C = 2

3 F.

(b) Show that I(t) → 0 and V(t) → 0 as t → ∞ regardless of the initial values I(0) and
V(0).

33. Consider the preceding system of differential equations (i).

(a) Find a condition on R1, R2, C, and L that must be satisfied if the eigenvalues of the
coefficient matrix are to be real and different.

(b) If the condition found in part (a) is satisfied, show that both eigenvalues are negative.
Then show that I(t) → 0 and V(t) → 0 as t → ∞ regardless of the initial conditions.

(c) If the condition found in part (a) is not satisfied, then the eigenvalues are either
complex or repeated. Do you think that I(t) → 0 and V(t) → 0 as t → ∞ in these cases
as well?
Hint: In part (c) one approach is to change the system (i) into a single second order
equation. We also discuss complex and repeated eigenvalues in Sections 7.6 and 7.8.

7.6 Complex Eigenvalues
In this section we consider again a system of n linear homogeneous equations with
constant coefficients

x′ = Ax, (1)

where the coefficient matrixA is real-valued. If we seek solutions of the form x = ξert ,
then it follows, as in Section 7.5, that r must be an eigenvalue and ξ a corresponding
eigenvector of the coefficient matrix A. Recall that the eigenvalues r1, . . . , rn of A
are the roots of the equation

det(A − rI) = 0, (2)

and that the corresponding eigenvectors satisfy

(A − rI)ξ = 0. (3)

If A is real, then the coefficients in the polynomial equation (2) for r are real, and
any complex eigenvalues must occur in conjugate pairs. For example, if r1 = λ + iμ,
where λ and μ are real, is an eigenvalue of A, then so is r2 = λ − iμ. To explore the
effect of complex eigenvalues, we begin with an example.

E X A M P L E

1

Find a fundamental set of real-valued solutions of the system

x′ =
(− 1

2 1

−1 − 1
2

)
x (4)

and display them graphically.
A direction field for the system (4) is shown in Figure 7.6.1. This plot suggests that the

trajectories in the phase plane spiral clockwise toward the origin.
To find a fundamental set of solutions, we assume that

x = ξert (5)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 422 Page number 402 cyan black

402 Chapter 7. Systems of First Order Linear Equations

2

–2

1

–1

1 2–2 –1 x1

x2

FIGURE 7.6.1 A direction field for the system (4).

and obtain the set of linear algebraic equations(− 1
2 − r 1

−1 − 1
2 − r

)(
ξ1

ξ2

)
=

(
0
0

)
(6)

for the eigenvalues and eigenvectors of A. The characteristic equation is∣∣∣∣∣−
1
2 − r 1

−1 − 1
2 − r

∣∣∣∣∣ = r2 + r + 5
4 = 0; (7)

therefore the eigenvalues are r1 = − 1
2 + i and r2 = − 1

2 − i. From Eq. (6) a straightforward
calculation shows that the corresponding eigenvectors are

ξ (1) =
(

1
i

)
, ξ (2) =

(
1

−i

)
. (8)

Observe that the eigenvectors ξ (1) and ξ (2) are also complex conjugates. Hence a fundamental
set of solutions of the system (4) is

x(1)(t) =
(

1
i

)
e(−1/2+i)t , x(2)(t) =

(
1

−i

)
e(−1/2−i)t . (9)

To obtain a set of real-valued solutions, we can proceed as in Section 3.3 and find the real
and imaginary parts of either x(1) or x(2). In fact,

x(1)(t) =
(

1
i

)
e−t/2(cos t + i sin t) =

(
e−t/2 cos t

−e−t/2 sin t

)
+ i

(
e−t/2 sin t

e−t/2 cos t

)
. (10)

Hence

u(t) = e−t/2

(
cos t

− sin t

)
, v(t) = e−t/2

(
sin t

cos t

)
(11)
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is a set of real-valued solutions. To verify that u(t) and v(t) are linearly independent, we
compute their Wronskian:

W(u, v)(t) =
∣∣∣∣∣ e−t/2 cos t e−t/2 sin t

−e−t/2 sin t e−t/2 cos t

∣∣∣∣∣
= e−t(cos2 t + sin2 t) = e−t .

Since the Wronskian is never zero, it follows that u(t) and v(t) constitute a fundamental set of
(real-valued) solutions of the system (4).

The graphs of the solutions u(t) and v(t) are shown in Figure 7.6.2a. Since

u(0) =
(

1
0

)
, v(0) =

(
0
1

)
,

the graphs of u(t) and v(t) pass through the points (1, 0) and (0, 1), respectively. Other solutions
of the system (4) are linear combinations of u(t) and v(t), and graphs of a few of these solutions
are also shown in Figure 7.6.2a. Each trajectory approaches the origin along a spiral path as
t → ∞, making infinitely many circuits about the origin; this is due to the fact that the solutions
(11) are products of decaying exponential and sine or cosine factors. Some typical graphs of
x1 versus t are shown in Figure 7.6.2b; each one represents a decaying oscillation in time.

Figure 7.6.2a is typical of all 2 × 2 systems x′ = Ax whose eigenvalues are complex with
negative real part. The origin is called a spiral point and is asymptotically stable because all
trajectories approach it as t increases. For a system whose eigenvalues have a positive real
part, the trajectories are similar to those in Figure 7.6.2a, but the direction of motion is away
from the origin and the trajectories become unbounded. In this case, the origin is unstable. If
the real part of the eigenvalues is zero, then the trajectories neither approach the origin nor
become unbounded but instead traverse repeatedly a closed curve about the origin. Examples
of this behavior can be seen in Figures 7.6.3b and 7.6.4b below. In this case the origin is called
a center and is said to be stable, but not asymptotically stable. In all three cases the direction
of motion may be either clockwise, as in this example, or counterclockwise, depending on the
elements of the coefficient matrix A.

x1 t

x2 x1

u(t)

v(t)

1

2

–1

–2

221–1–2

–1

4

1

(a) (b)
FIGURE 7.6.2 (a) Trajectories of the system (4); the origin is a spiral point.
(b) Plots of x1 versus t for the system (4).
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Returning to the general equation (1)

x′ = Ax,

we can proceed just as in the example. Suppose that there is a pair of complex conju-
gate eigenvalues, r1 = λ + iμ and r2 = λ − iμ. Then the corresponding eigenvectors
ξ (1) and ξ (2) are also complex conjugates. To see that this is so, recall that r1 and ξ (1)

satisfy
(A − r1I)ξ (1) = 0. (12)

On taking the complex conjugate of this equation and noting that A and I are real-
valued, we obtain

(A − r1I)ξ (1) = 0, (13)

where r1 and ξ (1) are the complex conjugates of r1 and ξ (1), respectively. In other
words, r2 = r1 is also an eigenvalue, and ξ (2) = ξ (1) is a corresponding eigenvector.
The corresponding solutions

x(1)(t) = ξ (1)er1t , x(2)(t) = ξ (1)er1t (14)

of the differential equation (1) are then complex conjugates of each other. Therefore,
as in Example 1, we can find two real-valued solutions of Eq. (1) corresponding to
the eigenvalues r1 and r2 by taking the real and imaginary parts of x(1)(t) or x(2)(t)
given by Eq. (14).

Let us write ξ (1) = a + ib, where a and b are real; then we have

x(1)(t) = (a + ib)e(λ+iμ)t

= (a + ib)eλt(cos μt + i sin μt). (15)

Upon separating x(1)(t) into its real and imaginary parts, we obtain

x(1)(t) = eλt(a cos μt − b sin μt) + ieλt(a sin μt + b cos μt). (16)

If we write x(1)(t) = u(t) + iv(t), then the vectors

u(t) = eλt(a cos μt − b sin μt),
(17)

v(t) = eλt(a sin μt + b cos μt)

are real-valued solutions of Eq. (1). It is possible to show that u and v are linearly
independent solutions (see Problem 27).

For example, suppose that the matrix A has two complex eigenvalues r1 = λ + iμ,
r2 = λ − iμ, and that r3, . . . , rn are all real and distinct. Let the corresponding eigen-
vectors be ξ (1) = a + ib, ξ (2) = a − ib, ξ (3), . . . , ξ (n). Then the general solution of
Eq. (1) is

x = c1u(t) + c2v(t) + c3ξ
(3)er3t + · · · + cnξ

(n)ernt , (18)

where u(t) and v(t) are given by Eqs. (17). We emphasize that this analysis applies
only if the coefficient matrix A in Eq. (1) is real, for it is only then that complex
eigenvalues and eigenvectors must occur in conjugate pairs.

For 2 × 2 systems with real coefficients, we have now completed our description
of the three main cases that can occur.

1. Eigenvalues are real and have opposite signs; x = 0 is a saddle point.
2. Eigenvalues are real and have the same sign but are unequal; x = 0 is a node.
3. Eigenvalues are complex with nonzero real part; x = 0 is a spiral point.
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Other possibilities are of less importance and occur as transitions between two
of the cases just listed. For example, a zero eigenvalue occurs during the transition
between a saddle point and a node. Purely imaginary eigenvalues occur during a
transition between asymptotically stable and unstable spiral points. Finally, real and
equal eigenvalues appear during the transition between nodes and spiral points.

E X A M P L E

2

The system

x′ =
(

α 2
−2 0

)
x (19)

contains a parameter α. Describe how the solutions depend qualitatively on α; in particular,
find the critical values of α at which the qualitative behavior of the trajectories in the phase
plane changes markedly.

The behavior of the trajectories is controlled by the eigenvalues of the coefficient matrix.
The characteristic equation is

r2 − αr + 4 = 0, (20)

so the eigenvalues are

r = α ± √
α2 − 16
2

. (21)

From Eq. (21) it follows that the eigenvalues are complex conjugates for −4 < α < 4 and are
real otherwise. Thus two critical values are α = −4 and α = 4, where the eigenvalues change
from real to complex,or vice versa. Forα < −4 both eigenvalues are negative,so all trajectories
approach the origin, which is an asymptotically stable node. For α > 4 both eigenvalues are
positive, so the origin is again a node, this time unstable; all trajectories (except x = 0) become
unbounded. In the intermediate range, −4 < α < 4, the eigenvalues are complex and the
trajectories are spirals. However, for −4 < α < 0 the real part of the eigenvalues is negative,
the spirals are directed inward, and the origin is asymptotically stable, whereas for 0 < α < 4
the real part of the eigenvalues is positive and the origin is unstable. Thus α = 0 is also a critical
value where the direction of the spirals changes from inward to outward. For this value of α,
the origin is a center and the trajectories are closed curves about the origin, corresponding to
solutions that are periodic in time. The other critical values, α = ±4, yield eigenvalues that are
real and equal. In this case the origin is again a node, but the phase portrait differs somewhat
from those in Section 7.5. We take up this case in Section 7.8.

A Multiple Spring–Mass System. Consider the system of two masses and three springs
shown in Figure 7.1.1, whose equations of motion are given by Eqs. (1) in Section
7.1. If we assume that there are no external forces, then F1(t) = 0, F2(t) = 0, and the
resulting equations are

m1
d2x1

dt2
= −(k1 + k2)x1 + k2x2,

(22)

m2
d2x2

dt2
= k2x1 − (k2 + k3)x2.

These equations can be solved as a system of two second order equations (see Prob-
lem 29), but, consistent with our approach in this chapter, we will transform them



September 11, 2008 11:18 boyce-9e-bvp Sheet number 426 Page number 406 cyan black

406 Chapter 7. Systems of First Order Linear Equations

into a system of four first order equations. Let y1 = x1, y2 = x2, y3 = x′
1, and y4 = x′

2.
Then

y′
1 = y3, y′

2 = y4, (23)

and, from Eqs. (22),

m1y′
3 = −(k1 + k2)y1 + k2y2, m2y′

4 = k2y1 − (k2 + k3)y2. (24)

The following example deals with a particular case of this two-mass, three-spring
system.

E X A M P L E

3

Suppose that m1 = 2, m2 = 9/4, k1 = 1, k2 = 3, and k3 = 15/4 in Eqs. (23) and (24) so that
these equations become

y′
1 = y3, y′

2 = y4, y′
3 = −2y1 + 3

2 y2, y′
4 = 4

3 y1 − 3y2. (25)

Analyze the possible motions described by Eqs. (25), and draw graphs showing typical behav-
ior.

We can write the system (25) in matrix form as

y′ =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−2 3/2 0 0

4/3 −3 0 0

⎞
⎟⎟⎟⎟⎠ y = Ay. (26)

Keep in mind that y1 and y2 are the positions of the two masses, relative to their equilibrium
positions, and that y3 and y4 are their velocities. We assume, as usual, that y = ξert , where
r must be an eigenvalue of the matrix A and ξ a corresponding eigenvector. It is possible,
though a bit tedious, to find the eigenvalues and eigenvectors of A by hand, but it is easy with
appropriate computer software. The characteristic polynomial of A is

r4 + 5r2 + 4 = (r2 + 1)(r2 + 4) (27)

so the eigenvalues are r1 = i, r2 = −i, r3 = 2i, and r4 = −2i. The corresponding eigenvectors
are

ξ (1) =

⎛
⎜⎜⎜⎝

3
2

3i

2i

⎞
⎟⎟⎟⎠ , ξ (2) =

⎛
⎜⎜⎜⎝

3
2

−3i

−2i

⎞
⎟⎟⎟⎠ , ξ (3) =

⎛
⎜⎜⎜⎝

3
−4
6i

−8i

⎞
⎟⎟⎟⎠ , ξ (4) =

⎛
⎜⎜⎜⎝

3
−4
−6i

8i

⎞
⎟⎟⎟⎠ . (28)

The complex-valued solutions ξ (1)eit and ξ (2)e−it are complex conjugates, so two real-valued
solutions can be found by finding the real and imaginary parts of either of them. For instance,
we have

ξ (1)eit =

⎛
⎜⎜⎜⎝

3
2

3i

2i

⎞
⎟⎟⎟⎠ (cos t + i sin t)

=

⎛
⎜⎜⎜⎝

3 cos t

2 cos t

−3 sin t

−2 sin t

⎞
⎟⎟⎟⎠ + i

⎛
⎜⎜⎜⎝

3 sin t

2 sin t

3 cos t

2 cos t

⎞
⎟⎟⎟⎠ = u(1)(t) + iv(1)(t). (29)
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In a similar way, we obtain

ξ (3)e2it =

⎛
⎜⎜⎜⎝

3
−4
6i

−8i

⎞
⎟⎟⎟⎠ (cos 2t + i sin 2t)

=

⎛
⎜⎜⎜⎝

3 cos 2t

−4 cos 2t

−6 sin 2t

8 sin 2t

⎞
⎟⎟⎟⎠ + i

⎛
⎜⎜⎜⎝

3 sin 2t

−4 sin 2t

6 cos 2t

−8 cos 2t

⎞
⎟⎟⎟⎠ = u(2)(t) + iv(2)(t). (30)

We leave it to you to verify that u(1), v(1), u(2), and v(2) are linearly independent and therefore
form a fundamental set of solutions. Thus the general solution of Eq. (26) is

y = c1

⎛
⎜⎜⎜⎝

3 cos t

2 cos t

−3 sin t

−2 sin t

⎞
⎟⎟⎟⎠ + c2

⎛
⎜⎜⎜⎝

3 sin t

2 sin t

3 cos t

2 cos t

⎞
⎟⎟⎟⎠ + c3

⎛
⎜⎜⎜⎝

3 cos 2t

−4 cos 2t

−6 sin 2t

8 sin 2t

⎞
⎟⎟⎟⎠ + c4

⎛
⎜⎜⎜⎝

3 sin 2t

−4 sin 2t

6 cos 2t

−8 cos 2t

⎞
⎟⎟⎟⎠ , (31)

where c1, c2, c3, and c4 are arbitrary constants.
The phase space for this system is four-dimensional, and each solution, obtained by a par-

ticular set of values for c1, . . . , c4 in Eq. (31), corresponds to a trajectory in this space. Since
each solution, given by Eq. (31), is periodic with period 2π , each trajectory is a closed curve.
No matter where the trajectory starts at t = 0, it returns to that point at t = 2π , t = 4π , and
so forth, repeatedly traversing the same curve in each time interval of length 2π . We do not
attempt to show any of these four-dimensional trajectories here. Instead, in the figures below
we show projections of certain trajectories in the y1y3- or y2y4-plane, thereby showing the
motion of each mass separately.

The first two terms on the right side of Eq. (31) describe motions with frequency 1 and
period 2π . Note that y2 = (2/3)y1 in these terms and that y4 = (2/3)y3. This means that the
two masses move back and forth together, always going in the same direction, but with the
second mass moving only two-thirds as far as the first mass. If we focus on the solution u(1)(t)
and plot y1 versus t and y2 versus t on the same axes, we obtain the cosine graphs of amplitude
3 and 2, respectively, shown in Figure 7.6.3a. The trajectory of the first mass in the y1y3-plane
lies on the circle of radius 3 shown in Figure 7.6.3b, traversed clockwise starting at the point
(3, 0) and completing a circuit in time 2π . Also shown in this figure is the trajectory of the
second mass in the y2y4-plane, which lies on the circle of radius 2, also traversed clockwise
starting at (2, 0) and also completing a circuit in time 2π . The origin is a center in the respective
y1y3- and y2y4-planes. Similar graphs (with an appropriate shift in time) are obtained from
v(1) or from a linear combination of u(1) and v(1).

The remaining terms on the right side of Eq. (31) describe motions with frequency 2 and
period π . Observe that in this case y2 = −(4/3)y1 and y4 = −(4/3)y3. This means that the two
masses are always moving in opposite directions and that the second mass moves four-thirds
as far as the first mass. If we look only at u(2)(t) and plot y1 versus t and y2 versus t on the
same axes, we obtain Figure 7.6.4a. There is a phase difference of π , and the amplitude of y2

is four-thirds that of y1, confirming the preceding statements about the motions of the masses.
Figure 7.6.4b shows a superposition of the trajectories for the two masses in their respective
phase planes. Both graphs are ellipses, the inner one corresponding to the first mass and the
outer one to the second. The trajectory on the inner ellipse starts at (3, 0), and the trajectory
on the outer ellipse starts at (−4, 0). Both are traversed clockwise, and a circuit is completed
in time π . The origin is a center in the respective y1y3- and y2y4-planes. Once again, similar
graphs are obtained from v(2) or from a linear combination of u(2) and v(2).
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(a) (b)
FIGURE 7.6.3 (a) A plot of y1 versus t and y2 versus t for the solution u(1)(t). (b) Superpo-
sition of projections of trajectories in the y1y3- and y2y4-planes for the solution u(1)(t).
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(a) (b)
FIGURE 7.6.4 (a) A plot of y1 versus t and y2 versus t for the solution u(2)(t). (b) Superpo-
sition of projections of trajectories in the y1y3- and y2y4-planes for the solution u(2)(t).

The types of motion described in the two preceding paragraphs are called fundamental
modes of vibration for the two-mass system. Each of them results from fairly special initial
conditions. For example, to obtain the fundamental mode of frequency 1, both of the con-
stants c3 and c4 in Eq. (31) must be zero. This occurs only for initial conditions in which
3y2(0) = 2y1(0) and 3y4(0) = 2y3(0). Similarly, the mode of frequency 2 is obtained only when
both of the constants c1 and c2 in Eq. (31) are zero—that is, when the initial conditions are
such that 3y2(0) = −4y1(0) and 3y4(0) = −4y3(0).

For more general initial conditions the solution is a combination of the two fundamental
modes. A plot of y1 versus t for a typical case is shown in Figure 7.6.5a, and the projection
of the corresponding trajectory in the y1y3-plane is shown in Figure 7.6.5b. Observe that this
latter figure may be a bit misleading in that it shows the projection of the trajectory crossing
itself. This cannot be the case for the actual trajectory in four dimensions, because it would
violate the general uniqueness theorem: there cannot be two different solutions issuing from
the same initial point.
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(b)
FIGURE 7.6.5 A solution of the system (22) satisfying the initial condition
y(0) = (−1, 4, 1, 1). (a) A plot of y1 versus t. (b) The projection of the trajectory in
the y1y3-plane. As stated in the text, the actual trajectory in four dimensions does not intersect
itself.

PROBLEMS In each of Problems 1 through 6:
(a) Express the general solution of the given system of equations in terms of real-valued
functions.
(b) Also draw a direction field, sketch a few of the trajectories, and describe the behavior of
the solutions as t → ∞.

1. x′ =
(

3 −2
4 −1

)
x 2. x′ =

(
−1 −4

1 −1

)
x

3. x′ =
(

2 −5
1 −2

)
x 4. x′ =

(
2 − 5

2
9
5 −1

)
x

5. x′ =
(

1 −1
5 −3

)
x 6. x′ =

(
1 2

−5 −1

)
x
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In each of Problems 7 and 8 express the general solution of the given system of equations in
terms of real-valued functions.

7. x′ =
⎛
⎜⎝

1 0 0
2 1 −2
3 2 1

⎞
⎟⎠ x 8. x′ =

⎛
⎜⎝

−3 0 2
1 −1 0

−2 −1 0

⎞
⎟⎠ x

In each of Problems 9 and 10 find the solution of the given initial value problem. Describe the
behavior of the solution as t → ∞.

9. x′ =
(

1 −5
1 −3

)
x, x(0) =

(
1
1

)
10. x′ =

(
−3 2
−1 −1

)
x, x(0) =

(
1

−2

)

In each of Problems 11 and 12:
(a) Find the eigenvalues of the given system.
(b) Choose an initial point (other than the origin) and draw the corresponding trajectory in
the x1x2-plane.
(c) For your trajectory in part (b) draw the graphs of x1 versus t and of x2 versus t.
(d) For your trajectory in part (b) draw the corresponding graph in three-dimensional
tx1x2-space.

11. x′ =
(

3
4 −2

1 − 5
4

)
x 12. x′ =

(− 4
5 2

−1 6
5

)
x

In each of Problems 13 through 20 the coefficient matrix contains a parameter α. In each of
these problems:
(a) Determine the eigenvalues in terms of α.
(b) Find the critical value or values of α where the qualitative nature of the phase portrait for
the system changes.
(c) Draw a phase portrait for a value of α slightly below, and for another value slightly above,
each critical value.

13. x′ =
(

α 1
−1 α

)
x 14. x′ =

(
0 −5
1 α

)
x

15. x′ =
(

2 −5
α −2

)
x 16. x′ =

(
5
4

3
4

α 5
4

)
x

17. x′ =
(

−1 α

−1 −1

)
x 18. x′ =

(
3 α

−6 −4

)
x

19. x′ =
(

α 10
−1 −4

)
x 20. x′ =

(
4 α

8 −6

)
x

In each of Problems 21 and 22 solve the given system of equations by the method of Problem
19 of Section 7.5. Assume that t > 0.

21. tx′ =
(

−1 −1
2 −1

)
x 22. tx′ =

(
2 −5
1 −2

)
x

In each of Problems 23 and 24:
(a) Find the eigenvalues of the given system.
(b) Choose an initial point (other than the origin) and draw the corresponding trajectory in
the x1x2-plane. Also draw the trajectories in the x1x3- and x2x3-planes.
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(c) For the initial point in part (b) draw the corresponding trajectory in x1x2x3-space.

23. x′ =
⎛
⎜⎝

− 1
4 1 0

−1 − 1
4 0

0 0 − 1
4

⎞
⎟⎠ x 24. x′ =

⎛
⎜⎝

− 1
4 1 0

−1 − 1
4 0

0 0 1
10

⎞
⎟⎠ x

25. Consider the electric circuit shown in Figure 7.6.6. Suppose that R1 = R2 = 4 �,
C = 1

2 F, and L = 8 H.
(a) Show that this circuit is described by the system of differential equations

d
dt

(
I

V

)
=

(− 1
2 − 1

8

2 − 1
2

)(
I

V

)
, (i)

where I is the current through the inductor and V is the voltage drop across the capacitor.
Hint: See Problem 19 of Section 7.1.
(b) Find the general solution of Eqs. (i) in terms of real-valued functions.
(c) Find I(t) and V(t) if I(0) = 2 A and V(0) = 3 V.
(d) Determine the limiting values of I(t) and V(t) as t → ∞. Do these limiting values
depend on the initial conditions?

R1

R2

L
C

FIGURE 7.6.6 The circuit in Problem 25.

26. The electric circuit shown in Figure 7.6.7 is described by the system of differential equations

d
dt

(
I

V

)
=

⎛
⎜⎜⎝

0
1
L

− 1
C

− 1
RC

⎞
⎟⎟⎠

(
I

V

)
, (i)

C

L

R

FIGURE 7.6.7 The circuit in Problem 26.

where I is the current through the inductor and V is the voltage drop across the capacitor.
These differential equations were derived in Problem 19 of Section 7.1.
(a) Show that the eigenvalues of the coefficient matrix are real and different if L > 4R2C;
show that they are complex conjugates if L < 4R2C.
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(b) Suppose that R = 1 � , C = 1
2 F, and L = 1 H. Find the general solution of the

system (i) in this case.
(c) Find I(t) and V(t) if I(0) = 2 A and V(0) = 1 V.
(d) For the circuit of part (b) determine the limiting values of I(t) and V(t) as t → ∞. Do
these limiting values depend on the initial conditions?

27. In this problem we indicate how to show that u(t) and v(t),as given by Eqs. (17),are linearly
independent. Let r1 = λ + iμ and r1 = λ − iμ be a pair of conjugate eigenvalues of the
coefficient matrix A of Eq. (1); let ξ (1) = a + ib and ξ (1) = a − ib be the corresponding
eigenvectors. Recall that it was stated in Section 7.3 that if r1 �= r1, then ξ (1) and ξ (1) are
linearly independent.
(a) First we show that a and b are linearly independent. Consider the equation
c1a + c2b = 0. Express a and b in terms of ξ (1) and ξ (1), and then show that
(c1 − ic2)ξ

(1) + (c1 + ic2)ξ
(1) = 0.

(b) Show that c1 − ic2 = 0 and c1 + ic2 = 0 and then that c1 = 0 and c2 = 0. Consequently,
a and b are linearly independent.
(c) To show that u(t) and v(t) are linearly independent, consider the equation
c1u(t0) + c2v(t0) = 0, where t0 is an arbitrary point. Rewrite this equation in terms of
a and b, and then proceed as in part (b) to show that c1 = 0 and c2 = 0. Hence u(t)
and v(t) are linearly independent at the arbitrary point t0. Therefore they are linearly
independent at every point and on every interval.

28. A mass m on a spring with constant k satisfies the differential equation (see Section 3.7)

mu′′ + ku = 0,

where u(t) is the displacement at time t of the mass from its equilibrium position.
(a) Let x1 = u, x2 = u′, and show that the resulting system is

x′ =
(

0 1
−k/m 0

)
x.

(b) Find the eigenvalues of the matrix for the system in part (a).
(c) Sketch several trajectories of the system. Choose one of your trajectories, and sketch
the corresponding graphs of x1 versus t and of x2 versus t. Sketch both graphs on one set
of axes.
(d) What is the relation between the eigenvalues of the coefficient matrix and the natural
frequency of the spring–mass system?

29. Consider the two-mass, three-spring system of Example 3 in the text. Instead of converting
the problem into a system of four first order equations, we indicate here how to proceed
directly from Eqs. (22).
(a) Show that Eqs. (22) can be written in the form

x′′ =
(

−2 3/2
4/3 −3

)
x = Ax. (i)

(b) Assume that x = ξ ert and show that

(A − r2I)ξ = 0.

Note that r2 (rather than r) is an eigenvalue of A corresponding to an eigenvector ξ .
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(c) Find the eigenvalues and eigenvectors of A.

(d) Write down expressions for x1 and x2. There should be four arbitrary constants in
these expressions.

(e) By differentiating the results from part (d), write down expressions for x′
1 and x′

2. Your
results from parts (d) and (e) should agree with Eq. (31) in the text.

30. Consider the two-mass, three-spring system whose equations of motion are Eqs. (22) in
the text. Let m1 = 1, m2 = 4/3, k1 = 1, k2 = 3, and k3 = 4/3.

(a) As in the text, convert the system to four first order equations of the form y′ = Ay.
Determine the coefficient matrix A.

(b) Find the eigenvalues and eigenvectors of A.

(c) Write down the general solution of the system.

(d) Describe the fundamental modes of vibration. For each fundamental mode draw
graphs of y1 versus t and y2 versus t. Also draw the corresponding trajectories in the y1y3-
and y2y4-planes.

(e) Consider the initial conditions y(0) = (2, 1, 0, 0)T . Evaluate the arbitrary constants in
the general solution in part (c). What is the period of the motion in this case? Plot graphs
of y1 versus t and y2 versus t. Also plot the corresponding trajectories in the y1y3- and
y2y4-planes. Be sure you understand how the trajectories are traversed for a full period.

(f) Consider other initial conditions of your own choice, and plot graphs similar to those
requested in part (e).

31. Consider the two-mass, three-spring system whose equations of motion are Eqs. (22) in
the text. Let m1 = m2 = 1 and k1 = k2 = k3 = 1.

(a) As in the text, convert the system to four first order equations of the form y′ = Ay.
Determine the coefficient matrix A.

(b) Find the eigenvalues and eigenvectors of A.

(c) Write down the general solution of the system.

(d) Describe the fundamental modes of vibration. For each fundamental mode draw
graphs of y1 versus t and y2 versus t. Also draw the corresponding trajectories in the y1y3-
and y2y4-planes.

(e) Consider the initial conditions y(0) = (−1, 3, 0, 0)T . Evaluate the arbitrary constants
in the general solution in part (c). Plot y1 versus t and y2 versus t. Do you think the
solution is periodic? Also draw the trajectories in the y1y3- and y2y4-planes.

(f) Consider other initial conditions of your own choice, and plot graphs similar to those
requested in part (e).

7.7 Fundamental Matrices
The structure of the solutions of systems of linear differential equations can be fur-
ther illuminated by introducing the idea of a fundamental matrix. Suppose that
x(1)(t), . . . , x(n)(t) form a fundamental set of solutions for the equation

x′ = P(t)x (1)
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on some interval α < t < β. Then the matrix

�(t) =
⎛
⎜⎝

x(1)

1 (t) · · · x(n)

1 (t)
...

...

x(1)
n (t) · · · x(n)

n (t)

⎞
⎟⎠ , (2)

whose columns are the vectors x(1)(t), . . . , x(n)(t), is said to be a fundamental matrix
for the system (1). Note that a fundamental matrix is nonsingular since its columns
are linearly independent vectors.

E X A M P L E

1

Find a fundamental matrix for the system

x′ =
(

1 1
4 1

)
x. (3)

In Example 1 of Section 7.5 we found that

x(1)(t) =
(

e3t

2e3t

)
, x(2)(t) =

(
e−t

−2e−t

)

are linearly independent solutions of Eq. (3). Thus a fundamental matrix for the system (3) is

�(t) =
(

e3t e−t

2e3t −2e−t

)
. (4)

The solution of an initial value problem can be written very compactly in terms of
a fundamental matrix. The general solution of Eq. (1) is

x = c1x(1)(t) + · · · + cnx(n)(t) (5)

or, in terms of �(t),
x = �(t)c, (6)

where c is a constant vector with arbitrary components c1, . . . , cn. For an initial value
problem consisting of the differential equation (1) and the initial condition

x(t0) = x0, (7)

where t0 is a given point in α < t < β and x0 is a given initial vector, it is only necessary
to choose the vector c in Eq. (6) so as to satisfy the initial condition (7). Hence c
must satisfy

�(t0)c = x0. (8)

Therefore, since �(t0) is nonsingular,

c = �−1(t0)x0 (9)

and
x = �(t)�−1(t0)x0 (10)
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is the solution of the initial value problem (1), (7). We emphasize, however, that
to solve a given initial value problem, we would ordinarily solve Eq. (8) by row
reduction and then substitute for c in Eq. (6), rather than compute �−1(t0) and use
Eq. (10).

Recall that each column of the fundamental matrix � is a solution of Eq. (1). It
follows that � satisfies the matrix differential equation

� ′ = P(t)�. (11)

This relation is readily confirmed by comparing the two sides of Eq. (11) column by
column.

Sometimes it is convenient to make use of the special fundamental matrix, denoted
by �(t),whose columns are the vectors x(1)(t), . . . , x(n)(t) designated inTheorem 7.4.4.
Besides the differential equation (1), these vectors satisfy the initial conditions

x(j)(t0) = e(j), (12)

where e(j) is the unit vector, defined in Theorem 7.4.4, with a one in the jth position
and zeros elsewhere. Thus �(t) has the property that

�(t0) =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎞
⎟⎟⎟⎠ = I. (13)

We will always reserve the symbol � to denote the fundamental matrix satisfying the
initial condition (13) and use � when an arbitrary fundamental matrix is intended.
In terms of �(t) the solution of the initial value problem (1), (7) is even simpler in
appearance; since �−1(t0) = I, it follows from Eq. (10) that

x = �(t)x0. (14)

Although the fundamental matrix �(t) is often more complicated than �(t), it is es-
pecially helpful if the same system of differential equations is to be solved repeatedly
subject to many different initial conditions. This corresponds to a given physical sys-
tem that can be started from many different initial states. If the fundamental matrix
�(t) has been determined, then the solution for each set of initial conditions can be
found simply by matrix multiplication, as indicated by Eq. (14). The matrix �(t) thus
represents a transformation of the initial conditions x0 into the solution x(t) at an ar-
bitrary time t. Comparing Eqs. (10) and (14) makes it clear that �(t) = �(t)�−1(t0).

E X A M P L E

2

For the system (3)

x′ =
(

1 1
4 1

)
x

in Example 1, find the fundamental matrix � such that �(0) = I.
The columns of � are solutions of Eq. (3) that satisfy the initial conditions

x(1)(0) =
(

1
0

)
, x(2)(0) =

(
0
1

)
. (15)
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Since the general solution of Eq. (3) is

x = c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t ,

we can find the solution satisfying the first set of these initial conditions by choosing
c1 = c2 = 1

2 ; similarly, we obtain the solution satisfying the second set of initial conditions
by choosing c1 = 1

4 and c2 = − 1
4 . Hence

�(t) =
⎛
⎝ 1

2 e3t + 1
2 e−t 1

4 e3t − 1
4 e−t

e3t − e−t 1
2 e3t + 1

2 e−t

⎞
⎠ . (16)

Note that the elements of �(t) are more complicated than those of the fundamental matrix
�(t) given by Eq. (4); however, it is now easy to determine the solution corresponding to any
set of initial conditions.

The Matrix exp(At). Recall that the solution of the scalar initial value problem

x′ = ax, x(0) = x0, (17)

where a is a constant, is
x = x0 exp(at). (18)

Now consider the corresponding initial value problem for an n × n system, namely,

x′ = Ax, x(0) = x0, (19)

where A is a constant matrix. Applying the results of this section to the problem
(19), we can write its solution as

x = �(t)x0, (20)

where �(0) = I. Comparing the problems (17) and (19), and their solutions, suggests
that the matrix �(t) might have an exponential character. We now explore this
possibility.

The scalar exponential function exp(at) can be represented by the power series

exp(at) = 1 +
∞∑

n=1

antn

n! , (21)

which converges for all t. Let us now replace the scalar a by the n × n constant matrix
A and consider the corresponding series

I +
∞∑

n=1

Antn

n! = I + At + A2t2

2! + · · · + Antn

n! + · · · . (22)

Each term in the series (22) is an n × n matrix. It is possible to show that each
element of this matrix sum converges for all t as n → ∞. Thus the series (22) defines
as its sum a new matrix, which we denote by exp(At); that is,

exp(At) = I +
∞∑

n=1

Antn

n! , (23)

analogous to the expansion (21) of the scalar function exp(at).
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By differentiating the series (23) term by term, we obtain

d
dt

[exp(At)] =
∞∑

n=1

Antn−1

(n − 1)! = A

[
I +

∞∑
n=1

Antn

n!

]
= A exp(At). (24)

Thus exp(At) satisfies the differential equation

d
dt

exp(At) = A exp(At). (25)

Further, when t = 0, exp(At) satisfies the initial condition

exp(At)
∣∣∣
t=0

= I. (26)

The fundamental matrix � satisfies the same initial value problem as exp(At), namely,

�′ = A�, �(0) = I. (27)

Thus, by the uniqueness part of Theorem 7.1.2 (extended to matrix differential equa-
tions), we conclude that exp(At) and the fundamental matrix �(t) are the same. Thus
we can write the solution of the initial value problem (19) in the form

x = exp(At)x0, (28)

which is analogous to the solution (18) of the initial value problem (17).
In order to justify more conclusively the use of exp(At) for the sum of the series (22),

we should demonstrate that this matrix function does indeed have the properties we
associate with the exponential function. One way to do this is outlined in Problem 15.

Diagonalizable Matrices. The basic reason why a system of linear (algebraic or differ-
ential) equations presents some difficulty is that the equations are usually coupled.
In other words, some or all of the equations involve more than one—typically all—of
the unknown variables. Hence the equations in the system must be solved simul-
taneously. In contrast, if each equation involves only a single variable, then each
equation can be solved independently of all the others, which is a much easier task.
This observation suggests that one way to solve a system of equations might be by
transforming it into an equivalent uncoupled system in which each equation contains
only one unknown variable. This corresponds to transforming the coefficient matrix
A into a diagonal matrix.

Eigenvectors are useful in accomplishing such a transformation. Suppose that
the n × n matrix A has a full set of n linearly independent eigenvectors. Recall
that this will certainly be the case if the eigenvalues of A are all different, or if
A is Hermitian. Letting ξ (1), . . . , ξ (n) denote these eigenvectors and λ1, . . . , λn the
corresponding eigenvalues, form the matrix T whose columns are the eigenvectors—
that is,

T =
⎛
⎜⎝

ξ
(1)

1 · · · ξ
(n)

1
...

...

ξ (1)
n · · · ξ (n)

n

⎞
⎟⎠ . (29)
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Since the columns of T are linearly independent vectors, det T �= 0; hence T is non-
singular and T−1 exists. A straightforward calculation shows that the columns of the
matrix AT are just the vectors Aξ (1), . . . , Aξ (n). Since Aξ (k) = λkξ

(k), it follows that

AT =
⎛
⎜⎝

λ1ξ
(1)

1 · · · λnξ
(n)

1
...

...

λ1ξ
(1)
n · · · λnξ

(n)
n

⎞
⎟⎠ = TD, (30)

where

D =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

⎞
⎟⎟⎟⎠ (31)

is a diagonal matrix whose diagonal elements are the eigenvalues of A. From Eq. (30)
it follows that

T−1AT = D. (32)

Thus, if the eigenvalues and eigenvectors of A are known, A can be transformed
into a diagonal matrix by the process shown in Eq. (32). This process is known as
a similarity transformation, and Eq. (32) is summed up in words by saying that A is
similar to the diagonal matrix D. Alternatively, we may say that A is diagonalizable.
Observe that a similarity transformation leaves the eigenvalues of A unchanged and
transforms its eigenvectors into the coordinate vectors e(1), . . . , e(n).

If A is Hermitian, then the determination of T−1 is very simple. The eigenvectors
ξ (1), . . . , ξ (n) of A are known to be mutually orthogonal, so let us choose them so that
they are also normalized by (ξ (i), ξ (i)) = 1 for each i. Then it is easy to verify that
T−1 = T∗; in other words, the inverse of T is the same as its adjoint (the transpose of
its complex conjugate).

Finally, we note that if A has fewer than n linearly independent eigenvectors, then
there is no matrix T such that T−1AT = D. In this case, A is not similar to a diagonal
matrix and is not diagonalizable.

E X A M P L E

3

Consider the matrix

A =
(

1 1
4 1

)
. (33)

Find the similarity transformation matrix T and show that A can be diagonalized.
In Example 1 of Section 7.5 we found that the eigenvalues and eigenvectors of A are

r1 = 3, ξ (1) =
(

1
2

)
; r2 = −1, ξ (2) =

(
1

−2

)
. (34)

Thus the transformation matrix T and its inverse T−1 are

T =
(

1 1
2 −2

)
; T−1 =

(
1
2

1
4

1
2 − 1

4

)
. (35)
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Consequently, you can check that

T−1AT =
(

3 0
0 −1

)
= D. (36)

Now let us turn again to the system

x′ = Ax, (37)

where A is a constant matrix. In Sections 7.5 and 7.6 we described how to solve such
a system by starting from the assumption that x = ξert . Now we provide another
viewpoint, one based on diagonalizing the coefficient matrix A.

According to the results stated just above, it is possible to diagonalizeA wheneverA
has a full set of n linearly independent eigenvectors. Let ξ (1), . . . , ξ (n) be eigenvectors
of A corresponding to the eigenvalues r1, . . . , rn and form the transformation matrix
T whose columns are ξ (1), . . . , ξ (n). Then, defining a new dependent variable y by
the relation

x = Ty, (38)

we have from Eq. (37) that
Ty′ = ATy. (39)

Multiplying by T−1, we then obtain

y′ = (T−1AT)y, (40)

or, using Eq. (32),
y′ = Dy. (41)

Recall that D is the diagonal matrix with the eigenvalues r1, . . . , rn of A along the
diagonal. A fundamental matrix for the system (41) is the diagonal matrix (see
Problem 16)

Q(t) = exp(Dt) =

⎛
⎜⎜⎜⎝

er1t 0 . . . 0
0 er2t . . . 0
...

...
...

0 0 · · · ernt

⎞
⎟⎟⎟⎠ . (42)

A fundamental matrix � for the system (37) is then found from Q by the transfor-
mation (38)

� = TQ; (43)

that is,

�(t) =
⎛
⎜⎝

ξ
(1)

1 er1t · · · ξ
(n)

1 ernt

...
...

ξ (1)
n er1t · · · ξ (n)

n ernt

⎞
⎟⎠ . (44)

Equation (44) is the same result that was obtained in Section 7.5. This diago-
nalization procedure does not offer any computational advantage over the method
of Section 7.5, since in either case it is necessary to calculate the eigenvalues and
eigenvectors of the coefficient matrix in the system of differential equations.
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E X A M P L E

4

Consider again the system of differential equations

x′ = Ax, (45)

where A is given by Eq. (33). Using the transformation x = Ty, where T is given by Eq. (35),
you can reduce the system (45) to the diagonal system

y′ =
(

3 0
0 −1

)
y = Dy. (46)

Obtain a fundamental matrix for the system (46) and then transform it to obtain a fundamental
matrix for the original system (45).

By multiplying D repeatedly with itself, we find that

D2 =
(

9 0
0 1

)
, D3 =

(
27 0
0 −1

)
, . . . . (47)

Therefore it follows from Eq. (23) that exp(Dt) is a diagonal matrix with the entries e3t and
e−t on the diagonal; that is,

eDt =
(

e3t 0
0 e−t

)
. (48)

Finally, we obtain the required fundamental matrix �(t) by multiplying T and exp(Dt):

�(t) =
(

1 1
2 −2

)(
e3t 0

0 e−t

)
=

(
e3t e−t

2e3t −2e−t

)
. (49)

Observe that this fundamental matrix is the same as the one found in Example 1.

PROBLEMS In each of Problems 1 through 10:
(a) Find a fundamental matrix for the given system of equations.
(b) Also find the fundamental matrix �(t) satisfying �(0) = I.

1. x′ =
(

3 −2
2 −2

)
x 2. x′ =

(− 3
4

1
2

1
8 − 3

4

)
x

3. x′ =
(

2 −1
3 −2

)
x 4. x′ =

(
1 1
4 −2

)
x

5. x′ =
(

2 −5
1 −2

)
x 6. x′ =

(
−1 −4

1 −1

)
x

7. x′ =
(

5 −1
3 1

)
x 8. x′ =

(
1 −1
5 −3

)
x

9. x′ =
⎛
⎜⎝

1 1 1
2 1 −1

−8 −5 −3

⎞
⎟⎠ x 10. x′ =

⎛
⎜⎝

1 −1 4
3 2 −1
2 1 −1

⎞
⎟⎠ x
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11. Solve the initial value problem

x′ =
(

2 −1
3 −2

)
x, x(0) =

(
2

−1

)

by using the fundamental matrix �(t) found in Problem 3.

12. Solve the initial value problem

x′ =
(

−1 −4
1 −1

)
x, x(0) =

(
3
1

)

by using the fundamental matrix �(t) found in Problem 6.

13. Show that �(t) = �(t)�−1(t0), where �(t) and �(t) are as defined in this section.

14. The fundamental matrix �(t) for the system (3) was found in Example 2. Show that
�(t)�(s) = �(t + s) by multiplying �(t) and �(s).

15. Let �(t) denote the fundamental matrix satisfying �′ = A�, �(0) = I. In the text we also
denoted this matrix by exp(At). In this problem we show that � does indeed have the
principal algebraic properties associated with the exponential function.
(a) Show that �(t)�(s) = �(t + s); that is, show that exp(At) exp(As) = exp[A(t + s)].
Hint: Show that if s is fixed and t is variable, then both �(t)�(s) and �(t + s) satisfy the
initial value problem Z′ = AZ, Z(0) = �(s).
(b) Show that �(t)�(−t) = I; that is, exp(At) exp[A(−t)] = I. Then show that
�(−t) = �−1(t).

(c) Show that �(t − s) = �(t)�−1(s).

16. Show that if A is a diagonal matrix with diagonal elements a1, a2, . . . , an, then exp(At) is
also a diagonal matrix with diagonal elements exp(a1t), exp(a2t), . . . , exp(ant).

17. Consider an oscillator satisfying the initial value problem

u′′ + ω2u = 0, u(0) = u0, u′(0) = v0. (i)

(a) Let x1 = u, x2 = u′, and transform Eqs. (i) into the form

x′ = Ax, x(0) = x0. (ii)

(b) By using the series (23), show that

exp At = I cos ωt + A
sin ωt

ω
. (iii)

(c) Find the solution of the initial value problem (ii).

18. The method of successive approximations (see Section 2.8) can also be applied to systems
of equations. For example, consider the initial value problem

x′ = Ax, x(0) = x0, (i)

where A is a constant matrix and x0 is a prescribed vector.
(a) Assuming that a solution x = φ(t) exists, show that it must satisfy the integral equation

φ(t) = x0 +
∫ t

0
Aφ(s) ds. (ii)
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(b) Start with the initial approximation φ(0)(t) = x0. Substitute this expression for φ(s) in
the right side of Eq. (ii) and obtain a new approximation φ(1)(t). Show that

φ(1)(t) = (I + At)x0. (iii)

(c) Repeat this process and thereby obtain a sequence of approximations φ(0), φ(1),
φ(2), . . . , φ(n), . . . . Use an inductive argument to show that

φ(n)(t) =
(

I + At + A2 t2

2! + · · · + An tn

n!
)

x0. (iv)

(d) Let n → ∞ and show that the solution of the initial value problem (i) is

φ(t) = exp(At)x0. (v)

7.8 Repeated Eigenvalues
We conclude our consideration of the linear homogeneous system with constant
coefficients

x′ = Ax (1)

with a discussion of the case in which the matrix A has a repeated eigenvalue. Recall
that in Section 7.3 we stated that a repeated eigenvalue with algebraic multiplicity
k ≥ 2 may have a geometric multiplicity less than k. In other words, there may be
fewer than k linearly independent eigenvectors associated with this eigenvalue. The
following example illustrates this possibility.

E X A M P L E

1

Find the eigenvalues and eigenvectors of the matrix

A =
(

1 −1
1 3

)
. (2)

The eigenvalues r and eigenvectors ξ satisfy the equation (A − rI)ξ = 0, or(
1 − r −1

1 3 − r

)(
ξ1

ξ2

)
=

(
0
0

)
. (3)

The eigenvalues are the roots of the equation

det(A − rI) =
∣∣∣∣∣1 − r −1

1 3 − r

∣∣∣∣∣ = r2 − 4r + 4 = 0. (4)

Thus the two eigenvalues are r1 = 2 and r2 = 2; that is, the eigenvalue 2 has algebraic multi-
plicity 2.

To determine the eigenvectors, we must return to Eq. (3) and use for r the value 2. This
gives (

−1 −1
1 1

)(
ξ1

ξ2

)
=

(
0
0

)
. (5)
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Hence we obtain the single condition ξ1 + ξ2 = 0, which determines ξ2 in terms of ξ1, or vice
versa. Thus the eigenvector corresponding to the eigenvalue r = 2 is

ξ (1) =
(

1
−1

)
, (6)

or any nonzero multiple of this vector. Observe that there is only one linearly independent
eigenvector associated with the double eigenvalue.

Returning to the system (1), suppose that r = ρ is a k-fold root of the determinantal
equation

det(A − rI) = 0. (7)

Then ρ is an eigenvalue of algebraic multiplicity k of the matrix A. In this event,
there are two possibilities: either there are k linearly independent eigenvectors cor-
responding to the eigenvalue ρ, or else there are fewer than k such eigenvectors.

In the first case, let ξ (1), . . . , ξ (k) be k linearly independent eigenvectors associ-
ated with the eigenvalue ρ of algebraic multiplicity k. Then x(1)(t) = ξ (1)eρt , . . . ,
x(k)(t) = ξ (k)eρt are k linearly independent solutions of Eq. (1). Thus in this case it

makes no difference that the eigenvalue r = ρ is repeated; there is still a fundamental
set of solutions of Eq. (1) of the form ξert . This case always occurs if the coefficient
matrix A is Hermitian.

However, if the coefficient matrix is not Hermitian, then there may be fewer than k
independent eigenvectors corresponding to an eigenvalue ρ of algebraic multiplicity
k, and if so, there will be fewer than k solutions of Eq. (1) of the form ξeρt associated
with this eigenvalue. Therefore, to construct the general solution of Eq. (1), it is
necessary to find other solutions of a different form. By analogy with previous results
for linear equations of order n, it is natural to seek additional solutions involving
products of polynomials and exponential functions. We first consider an example.

E X A M P L E

2

Find a fundamental set of solutions of

x′ = Ax =
(

1 −1
1 3

)
x (8)

and draw a phase portrait for this system.
A direction field for the system (8) is shown in Figure 7.8.1. From this figure it appears that

all nonzero solutions depart from the origin.
To solve the system, observe that the coefficient matrix A is the same as the matrix in

Example 1. Thus we know that r = 2 is a double eigenvalue and that it has only a single
corresponding eigenvector, which we may take as ξT = (1, −1). Thus one solution of the
system (8) is

x(1)(t) =
(

1
−1

)
e2t , (9)

but there is no second solution of the form x = ξert .
Based on the procedure used for second order linear equations in Section 3.4, it may be

natural to attempt to find a second solution of the system (8) of the form

x = ξ te2t , (10)
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2

1

–1

–2

–2 –1 1 2 x1

x2

FIGURE 7.8.1 A direction field for the system (8).

where ξ is a constant vector to be determined. Substituting for x in Eq. (8) gives

2ξ te2t + ξe2t − Aξ te2t = 0. (11)

For Eq. (11) to be satisfied for all t, it is necessary for the coefficients of te2t and e2t both to be
zero. From the term in e2t we find that

ξ = 0. (12)

Hence there is no nonzero solution of the system (8) of the form (10).
Since Eq. (11) contains terms in both te2t and e2t , it appears that in addition to ξ te2t , the

second solution must contain a term of the form ηe2t ; in other words, we need to assume that

x = ξ te2t + ηe2t , (13)

where ξ and η are constant vectors to be determined. Upon substituting this expression for x
in Eq. (8), we obtain

2ξ te2t + (ξ + 2η)e2t = A(ξ te2t + ηe2t). (14)

Equating coefficients of te2t and e2t on each side of Eq. (14) gives the conditions

(A − 2I)ξ = 0 (15)

and
(A − 2I)η = ξ (16)

for the determination of ξ and η. Equation (15) is satisfied if ξ is an eigenvector of A cor-
responding to the eigenvalue r = 2, that is, ξT = (1, −1). Since det(A − 2I) is zero, we might
expect that Eq. (16) cannot be solved. However, this is not necessarily true, since for some
vectors ξ it is possible to solve Eq. (16). In fact, the augmented matrix for Eq. (16) is(

−1 −1 | 1
1 1 | −1

)
.

The second row of this matrix is proportional to the first, so the system is solvable. We have

−η1 − η2 = 1,

so if η1 = k, where k is arbitrary, then η2 = −k − 1. If we write

η =
(

k

−1 − k

)
=

(
0

−1

)
+ k

(
1

−1

)
, (17)
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x(1)(t)
x(2)(t)

x2

x1–2 –1

–1

–2

1

1

2

2

(a) (b)

x1

t1 2

2

1

–1

–2

FIGURE 7.8.2 (a) Trajectories of the system (8); the origin is an improper node. (b) Plots
of x1 versus t for the system (8).

then by substituting for ξ and η in Eq. (13), we obtain

x =
(

1
−1

)
te2t +

(
0

−1

)
e2t + k

(
1

−1

)
e2t . (18)

The last term in Eq. (18) is merely a multiple of the first solution x(1)(t) and may be ignored,
but the first two terms constitute a new solution:

x(2)(t) =
(

1
−1

)
te2t +

(
0

−1

)
e2t . (19)

An elementary calculation shows that W[x(1), x(2)](t) = −e4t , and therefore x(1) and x(2) form
a fundamental set of solutions of the system (8). The general solution is

x = c1x(1)(t) + c2x(2)(t)

= c1

(
1

−1

)
e2t + c2

[(
1

−1

)
te2t +

(
0

−1

)
e2t

]
. (20)

The graph of the solution (20) is a little more difficult to analyze than in some of the previous
examples. Since every term in Eq. (20) contains the exponential factor e2t , it follows that x
becomes unbounded as t → ∞ and that x → 0 as t → −∞. It is possible to show that as
t → −∞, all solutions approach the origin tangent to the line x2 = −x1 determined by the
eigenvector. Similarly, as t → ∞, each trajectory is asymptotic to a line of slope −1. The
trajectories of the system (8) are shown in Figure 7.8.2a, and some typical plots of x1 versus t
are shown in Figure 7.8.2b. The pattern of trajectories in this figure is typical of 2 × 2 systems
x′ = Ax with equal eigenvalues and only one independent eigenvector. The origin is called an
improper node in this case. If the eigenvalues are negative, then the trajectories are similar but
are traversed in the inward direction. An improper node is asymptotically stable or unstable,
depending on whether the eigenvalues are negative or positive.

One difference between a system of two first order equations and a single second
order equation is evident from the preceding example. Recall that for a second order
linear equation with a repeated root r1 of the characteristic equation, a term cer1t in
the second solution is not required since it is a multiple of the first solution. On the
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other hand, for a system of two first order equations, the term ηer1t of Eq. (13) with
r1 = 2 is not a multiple of the first solution ξer1t , so the term ηer1t must be retained.

Example 2 is entirely typical of the general case when there is a double eigenvalue
and a single associated eigenvector. Consider again the system (1), and suppose
that r = ρ is a double eigenvalue of A, but that there is only one corresponding
eigenvector ξ . Then one solution [similar to Eq. (9)] is

x(1)(t) = ξeρt , (21)

where ξ satisfies
(A − ρI)ξ = 0. (22)

By proceeding as in Example 2, we find that a second solution [similar to Eq. (19)] is

x(2)(t) = ξ teρt + ηeρt , (23)

where ξ satisfies Eq. (22) and η is determined from

(A − ρI)η = ξ . (24)

Even though det(A − ρI) = 0, it can be shown that it is always possible to solve
Eq. (24) for η. The vector η is called a generalized eigenvector corresponding to the
eigenvalue ρ.

Fundamental Matrices. As explained in Section 7.7, fundamental matrices are formed
by arranging linearly independent solutions in columns. Thus, for example, a funda-
mental matrix for the system (8) can be formed from the solutions x(1)(t) and x(2)(t)
from Eqs. (9) and (19), respectively:

�(t) =
(

e2t te2t

−e2t −te2t − e2t

)
= e2t

(
1 t

−1 −1 − t

)
. (25)

The matrix � that satisfies �(0) = I can also be readily found from the relation
�(t) = �(t)�−1(0). For Eq. (8) we have

�(0) =
(

1 0
−1 −1

)
, �−1(0) =

(
1 0

−1 −1

)
, (26)

and then

�(t) = �(t)�−1(0) = e2t
(

1 t
−1 −1 − t

)(
1 0

−1 −1

)

= e2t
(

1 − t −t
t 1 + t

)
. (27)

The latter matrix is also the exponential matrix exp(At).

Jordan Forms. An n × n matrix A can be diagonalized as discussed in Section 7.7 only if
it has a full complement of n linearly independent eigenvectors. If there is a shortage
of eigenvectors (because of repeated eigenvalues), then A can always be transformed
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into a nearly diagonal matrix called its Jordan6 form, which has the eigenvalues of
A on the main diagonal, ones in certain positions on the diagonal above the main
diagonal, and zeros elsewhere.

Consider again the matrix A given by Eq. (2). Form the transformation matrix
T with the single eigenvector ξ from Eq. (6) in its first column and the generalized
eigenvector η from Eq. (17) with k = 0 in the second column. Then T and its inverse
are given by

T =
(

1 0
−1 −1

)
, T−1 =

(
1 0

−1 −1

)
. (28)

As you can verify, it follows that

T−1AT =
(

2 1
0 2

)
= J. (29)

The matrix J in Eq. (29) is the Jordan form of A. It is typical of all Jordan forms in that
it has a 1 above the main diagonal in the column corresponding to the eigenvector
that is lacking (and is replaced in T by the generalized eigenvector).

If we start again from Eq. (1)
x′ = Ax,

the transformation x = Ty, where T is given by Eq. (28), produces the system

y′ = Jy, (30)

where J is given by Eq. (29). In scalar form the system (30) is

y′
1 = 2y1 + y2, y′

2 = 2y2. (31)

These equations can be solved readily in reverse order. In this way we obtain

y2 = c1e2t , y1 = c1te2t + c2e2t . (32)

Thus two independent solutions of the system (30) are

y(1)(t) =
(

1
0

)
e2t , y(2)(t) =

(
t
1

)
e2t , (33)

and the corresponding fundamental matrix is

�̂(t) =
(

e2t te2t

0 e2t

)
. (34)

Since �̂(0) = I, we can also identify the matrix in Eq. (34) as exp(Jt). The same result
can be reached by calculating powers of J and substituting them into the exponential

6Camille Jordan (1838–1921), professor at the École Polytechnique and the Collège de France, made
important contributions to analysis, topology, and especially to algebra. The Jordan form of a matrix
appeared in his influential book Traité des substitutions et des équations algébriques, published in 1870.
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series (see Problems 19 through 21). To obtain a fundamental matrix for the original
system, we now form the product

�(t) = T exp(Jt) =
(

e2t te2t

−e2t −e2t − te2t

)
, (35)

which is the same as the fundamental matrix given in Eq. (25).
We will not discuss the Jordan forms of n × n matrices in more detail here. For

large n it is possible that there may be eigenvalues of high algebraic multiplicity,
perhaps with much lower geometric multiplicity. A full discussion7 of the Jordan
form of a general n × n matrix requires a greater background in linear algebra than
we assume for most readers of this book. Problems 17 through 21 ask you to explore
the use of Jordan forms for systems of three equations.

PROBLEMS In each of Problems 1 through 4:
(a) Draw a direction field and sketch a few trajectories.
(b) Describe how the solutions behave as t → ∞.
(c) Find the general solution of the system of equations.

1. x′ =
(

3 −4
1 −1

)
x 2. x′ =

(
4 −2
8 −4

)
x

3. x′ =
(− 3

2 1

− 1
4 − 1

2

)
x 4. x′ =

(−3 5
2

− 5
2 2

)
x

In each of Problems 5 and 6 find the general solution of the given system of equations.

5. x′ =
⎛
⎜⎝

1 1 1
2 1 −1
0 −1 1

⎞
⎟⎠ x 6. x′ =

⎛
⎜⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎠ x

In each of Problems 7 through 10:
(a) Find the solution of the given initial value problem.
(b) Draw the trajectory of the solution in the x1x2-plane and also draw the graph of x1

versus t.

7. x′ =
(

1 −4
4 −7

)
x, x(0) =

(
3
2

)

8. x′ =
(− 5

2
3
2

− 3
2

1
2

)
x, x(0) =

(
3

−1

)

9. x′ =
(

2 3
2

− 3
2 −1

)
x, x(0) =

(
3

−2

)

7For example, see the books listed in the References at the end of this chapter.
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10. x′ =
(

3 9
−1 −3

)
x, x(0) =

(
2
4

)

In each of Problems 11 and 12:
(a) Find the solution of the given initial value problem.
(b) Draw the corresponding trajectory in x1x2x3-space and also draw the graph of x1 versus t.

11. x′ =
⎛
⎜⎝

1 0 0
−4 1 0

3 6 2

⎞
⎟⎠ x, x(0) =

⎛
⎜⎝

−1
2

−30

⎞
⎟⎠

12. x′ =
⎛
⎜⎝

− 5
2 1 1

1 − 5
2 1

1 1 − 5
2

⎞
⎟⎠ x, x(0) =

⎛
⎜⎝

2
3

−1

⎞
⎟⎠

In each of Problems 13 and 14 solve the given system of equations by the method of Problem
19 of Section 7.5. Assume that t > 0.

13. tx′ =
(

3 −4
1 −1

)
x 14. tx′ =

(
1 −4
4 −7

)
x

15. Show that all solutions of the system

x′ =
(

a b

c d

)
x

approach zero as t → ∞ if and only if a + d < 0 and ad − bc > 0. Compare this result
with that of Problem 38 in Section 3.4.

16. Consider again the electric circuit in Problem 26 of Section 7.6. This circuit is described
by the system of differential equations

d
dt

(
I

V

)
=

⎛
⎜⎜⎝

0
1
L

− 1
C

− 1
RC

⎞
⎟⎟⎠

(
I

V

)
.

(a) Show that the eigenvalues are real and equal if L = 4R2C.
(b) Suppose that R = 1 �, C = 1 F, and L = 4 H. Suppose also that I(0) = 1 A and
V(0) = 2 V. Find I(t) and V(t).

Eigenvalues of Multiplicity 3. If the matrix A has an eigenvalue of algebraic multiplicity 3,
then there may be either one, two, or three corresponding linearly independent eigenvectors.
The general solution of the system x′ = Ax is different, depending on the number of eigenvec-
tors associated with the triple eigenvalue. As noted in the text, there is no difficulty if there
are three eigenvectors, since then there are three independent solutions of the form x = ξert .
The following two problems illustrate the solution procedure for a triple eigenvalue with one
or two eigenvectors, respectively.

17. Consider the system

x′ = Ax =
⎛
⎜⎝

1 1 1
2 1 −1

−3 2 4

⎞
⎟⎠ x. (i)
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(a) Show that r = 2 is an eigenvalue of algebraic multiplicity 3 of the coefficient matrix
A and that there is only one corresponding eigenvector, namely,

ξ (1) =
⎛
⎜⎝

0
1

−1

⎞
⎟⎠ .

(b) Using the information in part (a), write down one solution x(1)(t) of the system (i).
There is no other solution of the purely exponential form x = ξert .
(c) To find a second solution, assume that x = ξ te2t + ηe2t . Show that ξ and η satisfy the
equations

(A − 2I)ξ = 0, (A − 2I)η = ξ .

Since ξ has already been found in part (a), solve the second equation for η. Neglect the
multiple of ξ (1) that appears in η, since it leads only to a multiple of the first solution x(1).
Then write down a second solution x(2)(t) of the system (i).
(d) To find a third solution, assume that x = ξ(t2/2)e2t + ηte2t + ζe2t . Show that ξ , η, and
ζ satisfy the equations

(A − 2I)ξ = 0, (A − 2I)η = ξ , (A − 2I)ζ = η.

The first two equations are the same as in part (c), so solve the third equation for ζ , again
neglecting the multiple of ξ (1) that appears. Then write down a third solution x(3)(t) of the
system (i).
(e) Write down a fundamental matrix �(t) for the system (i).
(f) Form a matrix T with the eigenvector ξ (1) in the first column and the generalized
eigenvectors η and ζ in the second and third columns. Then find T−1 and form the product
J = T−1AT. The matrix J is the Jordan form of A.

18. Consider the system

x′ = Ax =
⎛
⎜⎝

5 −3 −2
8 −5 −4

−4 3 3

⎞
⎟⎠ x. (i)

(a) Show that r = 1 is a triple eigenvalue of the coefficient matrix A and that there are
only two linearly independent eigenvectors, which we may take as

ξ (1) =
⎛
⎜⎝

1
0
2

⎞
⎟⎠ , ξ (2) =

⎛
⎜⎝

0
2

−3

⎞
⎟⎠ . (ii)

Find two linearly independent solutions x(1)(t) and x(2)(t) of Eq. (i).
(b) To find a third solution, assume that x = ξ tet + ηet ; then show that ξ and η must satisfy

(A − I)ξ = 0, (iii)

(A − I)η = ξ . (iv)

(c) Show that ξ = c1ξ
(1) + c2ξ

(2), where c1 and c2 are arbitrary constants, is the most
general solution of Eq. (iii). Show that in order for us to solve Eq. (iv), it is necessary that
c1 = c2.
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(d) It is convenient to choose c1 = c2 = 2. For this choice, show that

ξ =
⎛
⎜⎝

2
4

−2

⎞
⎟⎠ , η =

⎛
⎜⎝

0
0

−1

⎞
⎟⎠ , (v)

where we have dropped the multiples of ξ (1) and ξ (2) that appear in η. Use the results
given in Eqs. (v) to find a third linearly independent solution x(3)(t) of Eq. (i).
(e) Write down a fundamental matrix �(t) for the system (i).
(f) Form a matrix T with the eigenvector ξ (1) in the first column and with the eigenvector
ξ and the generalized eigenvector η from Eqs. (v) in the other two columns. Find T−1 and
form the product J = T−1AT. The matrix J is the Jordan form of A.

19. Let J =
(

λ 1
0 λ

)
, where λ is an arbitrary real number.

(a) Find J2, J3, and J4.

(b) Use an inductive argument to show that Jn =
(

λn nλn−1

0 λn

)
.

(c) Determine exp(Jt).

(d) Use exp(Jt) to solve the initial value problem x′ = Jx, x(0) = x0.

20. Let

J =
⎛
⎜⎝

λ 0 0
0 λ 1
0 0 λ

⎞
⎟⎠ ,

where λ is an arbitrary real number.
(a) Find J2, J3, and J4.
(b) Use an inductive argument to show that

Jn =
⎛
⎜⎝

λn 0 0
0 λn nλn−1

0 0 λn

⎞
⎟⎠ .

(c) Determine exp(Jt).
(d) Observe that if you choose λ = 1, then the matrix J in this problem is the same as
the matrix J in Problem 18(f). Using the matrix T from Problem 18(f), form the product
T exp(Jt) with λ = 1. Is the resulting matrix the same as the fundamental matrix �(t) in
Problem 18(e)? If not, explain the discrepancy.

21. Let

J =
⎛
⎜⎝

λ 1 0
0 λ 1
0 0 λ

⎞
⎟⎠ ,

where λ is an arbitrary real number.
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(a) Find J2, J3, and J4.
(b) Use an inductive argument to show that

Jn =
⎛
⎜⎝

λn nλn−1 [n(n − 1)/2]λn−2

0 λn nλn−1

0 0 λn

⎞
⎟⎠ .

(c) Determine exp(Jt).
(d) Observe that if you choose λ = 2, then the matrix J in this problem is the same as
the matrix J in Problem 17(f). Using the matrix T from Problem 17(f), form the product
T exp(Jt) with λ = 2. Observe that the resulting matrix is the same as the fundamental
matrix �(t) in Problem 17(e).

7.9 Nonhomogeneous Linear Systems
In this section we turn to the nonhomogeneous system

x′ = P(t)x + g(t), (1)

where the n × n matrix P(t) and n × 1 vector g(t) are continuous for α < t < β. By
the same argument as in Section 3.5 (see also Problem 16 in this section), the general
solution of Eq. (1) can be expressed as

x = c1x(1)(t) + · · · + cnx(n)(t) + v(t), (2)

where c1x(1)(t) + · · · + cnx(n)(t) is the general solution of the homogeneous system
x′ = P(t)x, and v(t) is a particular solution of the nonhomogeneous system (1). We
will briefly describe several methods for determining v(t).

Diagonalization. We begin with systems of the form

x′ = Ax + g(t), (3)

where A is an n × n diagonalizable constant matrix. By diagonalizing the coefficient
matrix A, as indicated in Section 7.7, we can transform Eq. (3) into a system of
equations that is readily solvable.

Let T be the matrix whose columns are the eigenvectors ξ (1), . . . , ξ (n) of A, and
define a new dependent variable y by

x = Ty. (4)

Then, substituting for x in Eq. (3), we obtain

Ty′ = ATy + g(t).

When we multiply by T−1, it follows that

y′ = (T−1AT)y + T−1g(t) = Dy + h(t), (5)

where h(t) = T−1g(t) and where D is the diagonal matrix whose diagonal entries
are the eigenvalues r1, . . . , rn of A, arranged in the same order as the corresponding
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eigenvectors ξ (1), . . . , ξ (n) that appear as columns of T. Equation (5) is a system of
n uncoupled equations for y1(t), . . . , yn(t); as a consequence, the equations can be
solved separately. In scalar form Eq. (5) has the form

y′
j(t) = rjyj(t) + hj(t), j = 1, . . . , n, (6)

where hj(t) is a certain linear combination of g1(t), . . . , gn(t). Equation (6) is a first
order linear equation and can be solved by the methods of Section 2.1. In fact, we
have

yj(t) = erj t
∫ t

t0
e−rjshj(s) ds + cjerj t , j = 1, . . . , n, (7)

where the cj are arbitrary constants. Finally, the solution x of Eq. (3) is obtained
from Eq. (4). When multiplied by the transformation matrix T, the second term on
the right side of Eq. (7) produces the general solution of the homogeneous equation
x′ = Ax, while the first term on the right side of Eq. (7) yields a particular solution
of the nonhomogeneous system (3).

E X A M P L E

1

Find the general solution of the system

x′ =
(

−2 1
1 −2

)
x +

(
2e−t

3t

)
= Ax + g(t). (8)

Proceeding as in Section 7.5, we find that the eigenvalues of the coefficient matrix are
r1 = −3 and r2 = −1 and that the corresponding eigenvectors are

ξ (1) =
(

1
−1

)
, ξ (2) =

(
1
1

)
. (9)

Thus the general solution of the homogeneous system is

x = c1

(
1

−1

)
e−3t + c2

(
1
1

)
e−t . (10)

Before writing down the matrix T of eigenvectors, we recall that eventually we must find T−1.
The coefficient matrix A is real and symmetric, so we can use the result stated at the end of
Section 7.3: T−1 is simply the adjoint or (since T is real) the transpose of T, provided that the
eigenvectors of A are normalized so that (ξ , ξ) = 1. Hence, upon normalizing ξ (1) and ξ (2),
we have

T = 1√
2

(
1 1

−1 1

)
, T−1 = 1√

2

(
1 −1
1 1

)
. (11)

Letting x = Ty and substituting for x in Eq. (8), we obtain the following system of equations
for the new dependent variable y:

y′ = Dy + T−1g(t) =
(

−3 0
0 −1

)
y + 1√

2

(
2e−t − 3t

2e−t + 3t

)
. (12)
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Thus

y′
1 + 3y1 = √

2e−t − 3√
2

t,

(13)

y′
2 + y2 = √

2e−t + 3√
2

t.

Each of Eqs. (13) is a first order linear equation and so can be solved by the methods of Section
2.1. In this way we obtain

y1 =
√

2
2

e−t − 3√
2

[(
t
3

)
− 1

9

]
+ c1e−3t ,

(14)

y2 = √
2te−t + 3√

2
(t − 1) + c2e−t .

Finally, we write the solution in terms of the original variables:

x = Ty = 1√
2

(
y1 + y2

−y1 + y2

)

=
⎛
⎜⎝ (c1/

√
2)e−3t +

[
(c2/

√
2) + 1

2

]
e−t + t − 4

3 + te−t

−(c1/
√

2)e−3t +
[
(c2/

√
2) − 1

2

]
e−t + 2t − 5

3 + te−t

⎞
⎟⎠

= k1

(
1

−1

)
e−3t + k2

(
1
1

)
e−t + 1

2

(
1

−1

)
e−t +

(
1
1

)
te−t +

(
1
2

)
t − 1

3

(
4
5

)
, (15)

where k1 = c1/
√

2 and k2 = c2/
√

2. The first two terms on the right side of Eq. (15) form the
general solution of the homogeneous system corresponding to Eq. (8). The remaining terms
are a particular solution of the nonhomogeneous system.

If the coefficient matrix A in Eq. (3) is not diagonalizable (because of repeated
eigenvalues and a shortage of eigenvectors), it can nevertheless be reduced to a
Jordan form J by a suitable transformation matrix T involving both eigenvectors and
generalized eigenvectors. In this case the differential equations for y1, . . . , yn are not
totally uncoupled since some rows of J have two nonzero elements: an eigenvalue
in the diagonal position and a 1 in the adjacent position to the right. However, the
equations for y1, . . . , yn can still be solved consecutively, starting with yn. Then the
solution of the original system (3) can be found by the relation x = Ty.

Undetermined Coefficients. A second way to find a particular solution of the nonhomo-
geneous system (1) is the method of undetermined coefficients. To make use of this
method, we assume the form of the solution with some or all of the coefficients un-
specified, and then seek to determine these coefficients so as to satisfy the differential
equation. As a practical matter, this method is applicable only if the coefficient ma-
trix P is a constant matrix, and if the components of g are polynomial, exponential, or
sinusoidal functions, or sums or products of these. In these cases the correct form of
the solution can be predicted in a simple and systematic manner. The procedure for
choosing the form of the solution is substantially the same as that given in Section 3.5
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for linear second order equations. The main difference is illustrated by the case of a
nonhomogeneous term of the form ueλt , where λ is a simple root of the characteristic
equation. In this situation, rather than assuming a solution of the form ateλt , it is
necessary to use ateλt + beλt , where a and b are determined by substituting into the
differential equation.

E X A M P L E

2

Use the method of undetermined coefficients to find a particular solution of

x′ =
(

−2 1
1 −2

)
x +

(
2e−t

3t

)
= Ax + g(t). (16)

This is the same system of equations as in Example 1. To use the method of undetermined
coefficients, we write g(t) in the form

g(t) =
(

2
0

)
e−t +

(
0
3

)
t. (17)

Then we assume that
x = v(t) = ate−t + be−t + ct + d, (18)

where a, b, c, and d are vectors to be determined. Observe that r = −1 is an eigenvalue of the
coefficient matrix, and therefore we must include both ate−t and be−t in the assumed solution.
By substituting Eq. (18) into Eq. (16) and collecting terms, we obtain the following algebraic
equations for a, b, c, and d:

Aa = −a,

Ab = a − b −
(

2
0

)
,

(19)

Ac = −
(

0
3

)
,

Ad = c.

From the first of Eqs. (19) we see that a is an eigenvector of A corresponding to the eigenvalue
r = −1. Thus aT = (α, α), where α is any nonzero constant. Then we find that the second of
Eqs. (19) can be solved only if α = 1 and that in this case

b = k

(
1
1

)
−

(
0
1

)
(20)

for any constant k. The simplest choice is k = 0, from which bT = (0, −1). Then the third and
fourth of Eqs. (19) yield cT = (1, 2) and dT = (− 4

3 , − 5
3 ), respectively. Finally, from Eq. (18) we

obtain the particular solution

v(t) =
(

1
1

)
te−t −

(
0
1

)
e−t +

(
1
2

)
t − 1

3

(
4
5

)
. (21)

The particular solution (21) is not identical to the one contained in Eq. (15) of Example 1
because the term in e−t is different. However, if we choose k = 1

2 in Eq. (20), then bT = ( 1
2 , − 1

2 )

and the two particular solutions agree.
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Variation of Parameters. Now let us turn to more general problems in which the coef-
ficient matrix is not constant or not diagonalizable. Let

x′ = P(t)x + g(t), (22)

where P(t) and g(t) are continuous on α < t < β. Assume that a fundamental matrix
�(t) for the corresponding homogeneous system

x′ = P(t)x (23)

has been found. We use the method of variation of parameters to construct a partic-
ular solution, and hence the general solution, of the nonhomogeneous system (22).

Since the general solution of the homogeneous system (23) is �(t)c, it is natural to
proceed as in Section 3.6 and to seek a solution of the nonhomogeneous system (22)
by replacing the constant vector c by a vector function u(t). Thus we assume that

x = �(t)u(t), (24)

where u(t) is a vector to be found. Upon differentiating x as given by Eq. (24) and
requiring that Eq. (22) be satisfied, we obtain

� ′(t)u(t) + �(t)u′(t) = P(t)�(t)u(t) + g(t). (25)

Since �(t) is a fundamental matrix, � ′(t) = P(t)�(t); hence Eq. (25) reduces to

�(t)u′(t) = g(t). (26)

Recall that �(t) is nonsingular on any interval where P is continuous. Hence �−1(t)
exists, and therefore

u′(t) = �−1(t)g(t). (27)

Thus for u(t) we can select any vector from the class of vectors that satisfy Eq. (27);
these vectors are determined only up to an arbitrary additive constant vector; there-
fore we denote u(t) by

u(t) =
∫

�−1(t)g(t) dt + c, (28)

where the constant vector c is arbitrary. If the integrals in Eq. (28) can be evaluated,
then the general solution of the system (22) is found by substituting for u(t) from
Eq. (28) in Eq. (24). However, even if the integrals cannot be evaluated, we can still
write the general solution of Eq. (22) in the form

x = �(t)c + �(t)
∫ t

t1
�−1(s)g(s) ds, (29)

where t1 is any point in the interval (α, β). Observe that the first term on the right
side of Eq. (29) is the general solution of the corresponding homogeneous system
(23), and the second term is a particular solution of Eq. (22).

Now let us consider the initial value problem consisting of the differential equation
(22) and the initial condition

x(t0) = x0. (30)
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We can find the solution of this problem most conveniently if we choose the lower
limit of integration in Eq. (29) to be the initial point t0. Then the general solution of
the differential equation is

x = �(t)c + �(t)
∫ t

t0
�−1(s)g(s) ds. (31)

For t = t0 the integral in Eq. (31) is zero, so the initial condition (30) is also satisfied
if we choose

c = �−1(t0)x0. (32)

Therefore

x = �(t)�−1(t0)x0 + �(t)
∫ t

t0
�−1(s)g(s) ds (33)

is the solution of the given initial value problem. Again, although it is helpful to use
�−1 to write the solutions (29) and (33), it is usually better in particular cases to solve
the necessary equations by row reduction than to calculate �−1 and substitute into
Eqs. (29) and (33).

The solution (33) takes a slightly simpler form if we use the fundamental matrix
�(t) satisfying �(t0) = I. In this case we have

x = �(t)x0 + �(t)
∫ t

t0
�−1(s)g(s) ds. (34)

Equation (34) can be simplified further if the coefficient matrix P(t) is a constant
matrix (see Problem 17).

E X A M P L E

3

Use the method of variation of parameters to find the general solution of the system

x′ =
(

−2 1
1 −2

)
x +

(
2e−t

3t

)
= Ax + g(t). (35)

This is the same system of equations as in Examples 1 and 2.
The general solution of the corresponding homogeneous system was given in Eq. (10). Thus

�(t) =
(

e−3t e−t

−e−3t e−t

)
(36)

is a fundamental matrix. Then the solution x of Eq. (35) is given by x = �(t)u(t), where u(t)
satisfies �(t)u′(t) = g(t), or (

e−3t e−t

−e−3t e−t

)(
u′

1

u′
2

)
=

(
2e−t

3t

)
. (37)

Solving Eq. (37) by row reduction, we obtain

u′
1 = e2t − 3

2 te3t ,

u′
2 = 1 + 3

2 tet .
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Hence

u1(t) = 1
2 e2t − 1

2 te3t + 1
6 e3t + c1,

u2(t) = t + 3
2 tet − 3

2 et + c2,

and

x = �(t)u(t)

= c1

(
1

−1

)
e−3t + c2

(
1
1

)
e−t +

(
1
1

)
te−t + 1

2

(
1

−1

)
e−t +

(
1
2

)
t − 1

3

(
4
5

)
, (38)

which is the same as the solution obtained previously.

Laplace Transforms. We used the Laplace transform in Chapter 6 to solve linear equa-
tions of arbitrary order. It can also be used in very much the same way to solve
systems of equations. Since the transform is an integral, the transform of a vector is
computed component by component. Thus L{x(t)} is the vector whose components
are the transforms of the respective components of x(t), and similarly for L{x′(t)}.
We will denote L{x(t)} by X(s). Then, by an extension of Theorem 6.2.1 to vectors,
we also have

L{x′(t)} = sX(s) − x(0). (39)

E X A M P L E

4

Use the method of Laplace transforms to solve the system

x′ =
(

−2 1
1 −2

)
x +

(
2e−t

3t

)
= Ax + g(t). (40)

This is the same system of equations as in Examples 1 through 3.
We take the Laplace transform of each term in Eq. (40), obtaining

sX(s) − x(0) = AX(s) + G(s), (41)

where G(s) is the transform of g(t). The transform G(s) is given by

G(s) =
(

2/(s + 1)

3/s2

)
. (42)

We will simplify the remaining calculations by assuming that x(t) satisfies the initial condition
x(0) = 0. Then Eq. (41) becomes

(sI − A)X(s) = G(s), (43)

where, as usual, I is the identity matrix. Consequently, X(s) is given by

X(s) = (sI − A)−1G(s). (44)

The matrix (sI − A)−1 is called the transfer matrix because multiplying it by the transform of
the input vector g(t) yields the transform of the output vector x(t). In this example we have

sI − A =
(

s + 2 −1
−1 s + 2

)
, (45)
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and by a straightforward calculation we obtain

(sI − A)−1 = 1
(s + 1)(s + 3)

(
s + 2 1

1 s + 2

)
. (46)

Then, substituting from Eqs. (42) and (46) in Eq. (44) and carrying out the indicated multipli-
cation, we find that

X(s) =

⎛
⎜⎜⎜⎝

2(s + 2)

(s + 1)2(s + 3)
+ 3

s2(s + 1)(s + 3)

2
(s + 1)2(s + 3)

+ 3(s + 2)

s2(s + 1)(s + 3)

⎞
⎟⎟⎟⎠ . (47)

Finally, we need to obtain the solution x(t) from its transform X(s). This can be done by
expanding the expressions in Eq. (47) in partial fractions and using Table 6.2.1, or (more
efficiently) by using appropriate computer software. In any case, after some simplification the
result is

x(t) =
(

2
1

)
e−t − 2

3

(
1

−1

)
e−3t +

(
1
1

)
te−t +

(
1
2

)
t − 1

3

(
4
5

)
. (48)

Equation (48) gives the particular solution of the system (40) that satisfies the initial condition
x(0) = 0. As a result, it differs slightly from the particular solutions obtained in the preceding
three examples. To obtain the general solution of Eq. (40), you must add to the expression in
Eq. (48) the general solution (10) of the homogeneous system corresponding to Eq. (40).

Each of the methods for solving nonhomogeneous equations has some advantages
and disadvantages. The method of undetermined coefficients requires no integra-
tion, but it is limited in scope and may entail the solution of several sets of algebraic
equations. The method of diagonalization requires finding the inverse of the trans-
formation matrix and the solution of a set of uncoupled first order linear equations,
followed by a matrix multiplication. Its main advantage is that for Hermitian coeffi-
cient matrices, the inverse of the transformation matrix can be written down without
calculation—a feature that is more important for large systems. The method of
Laplace transforms involves a matrix inversion to find the transfer matrix, followed
by a multiplication, and finally by the determination of the inverse transform of each
term in the resulting expression. It is particularly useful in problems with forcing
functions that involve discontinuous or impulsive terms. Variation of parameters is
the most general method. On the other hand, it involves the solution of a set of
linear algebraic equations with variable coefficients, followed by an integration and
a matrix multiplication, so it may also be the most complicated from a computational
viewpoint. For many small systems with constant coefficients, such as the one in
the examples in this section, all of these methods work well, and there may be little
reason to select one over another.

PROBLEMS In each of Problems 1 through 12 find the general solution of the given system of equations.

1. x′ =
(

2 −1
3 −2

)
x +

(
et

t

)
2. x′ =

(
1

√
3√

3 −1

)
x +

(
et

√
3 e−t

)
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3. x′ =
(

2 −5
1 −2

)
x +

(
− cos t

sin t

)
4. x′ =

(
1 1
4 −2

)
x +

(
e−2t

−2et

)

5. x′ =
(

4 −2
8 −4

)
x +

(
t−3

−t−2

)
, t > 0

6. x′ =
(

−4 2
2 −1

)
x +

(
t−1

2t−1 + 4

)
, t > 0

7. x′ =
(

1 1
4 1

)
x +

(
2

−1

)
et 8. x′ =

(
2 −1
3 −2

)
x +

(
1

−1

)
et

9. x′ =
(− 5

4
3
4

3
4 − 5

4

)
x +

(
2t

et

)
10. x′ =

(
−3

√
2√

2 −2

)
x +

(
1

−1

)
e−t

11. x′ =
(

2 −5
1 −2

)
x +

(
0

cos t

)
, 0 < t < π

12. x′ =
(

2 −5
1 −2

)
x +

(
csc t

sec t

)
,

π

2
< t < π

13. The electric circuit shown in Figure 7.9.1 is described by the system of differential equations

dx
dt

=
(− 1

2 − 1
8

2 − 1
2

)
x +

(
1
2

0

)
I(t), (i)

where x1 is the current through the inductor, x2 is the voltage drop across the capacitor,
and I(t) is the current supplied by the external source.

I(t)

R = 4 ohms R = 4 ohms

L = 8 henrys

C =    farad1
2

FIGURE 7.9.1 The circuit in Problem 13.

(a) Determine a fundamental matrix �(t) for the homogeneous system corresponding to
Eq. (i). Refer to Problem 25 of Section 7.6.

(b) If I(t) = e−t/2, determine the solution of the system (i) that also satisfies the initial
conditions x(0) = 0.

In each of Problems 14 and 15 verify that the given vector is the general solution of the
corresponding homogeneous system, and then solve the nonhomogeneous system. Assume
that t > 0.

14. tx′ =
(

2 −1
3 −2

)
x +

(
1 − t2

2t

)
, x(c) = c1

(
1
1

)
t + c2

(
1
3

)
t−1
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15. tx′ =
(

3 −2
2 −2

)
x +

(
−2t

t4 − 1

)
, x(c) = c1

(
1
2

)
t−1 + c2

(
2
1

)
t2

16. Let x = φ(t) be the general solution of x′ = P(t)x + g(t), and let x = v(t) be some
particular solution of the same system. By considering the difference φ(t) − v(t), show
that φ(t) = u(t) + v(t), where u(t) is the general solution of the homogeneous system
x′ = P(t)x.

17. Consider the initial value problem

x′ = Ax + g(t), x(0) = x0.

(a) By referring to Problem 15(c) in Section 7.7, show that

x = �(t)x0 +
∫ t

0
�(t − s)g(s) ds.

(b) Show also that

x = exp(At)x0 +
∫ t

0
exp[A(t − s)]g(s) ds.

Compare these results with those of Problem 27 in Section 3.6.
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C H A P T E R

8

Numerical
Methods

Up to this point we have discussed methods for solving differential equations by using
analytical techniques such as integration or series expansions. Usually, the emphasis
was on finding an exact expression for the solution. Unfortunately, there are many
important problems in engineering and science, especially nonlinear ones, to which
these methods either do not apply or are very complicated to use. In this chapter
we discuss an alternative approach, the use of numerical approximation methods to
obtain an accurate approximation to the solution of an initial value problem. We
present these methods in the simplest possible context, namely, a single scalar first
order equation. However, they can readily be extended to systems of first order
equations, and this is outlined briefly in Section 8.6. The procedures described here
can be executed easily on personal computers.

8.1 The Euler or Tangent Line Method
To discuss the development and use of numerical approximation procedures, we
will concentrate mainly on the first order initial value problem consisting of the
differential equation

dy
dt

= f (t, y) (1)

and the initial condition
y(t0) = y0. (2)

We assume that the functions f and fy are continuous on some rectangle in the ty-plane
containing the point (t0, y0). Then, by Theorem 2.4.2, there exists a unique solution
y = φ(t) of the given problem in some interval about t0. If Eq. (1) is nonlinear, then
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the interval of existence of the solution may be difficult to determine and may have
no simple relationship to the function f . However, in all our discussions we assume
that there is a unique solution of the initial value problem (1), (2) in the interval of
interest.

In Section 2.7 we described the oldest and simplest numerical approximation
method, namely, the Euler or tangent line method. This method is expressed by
the equation

yn+1 = yn + f (tn, yn)(tn+1 − tn), n = 0, 1, 2, . . . . (3)

If the step size has a uniform value h and if we denote f (tn, yn) by fn, then Eq. (3)
simplifies to

yn+1 = yn + fnh, n = 0, 1, 2, . . . . (4)

Euler’s method consists of repeatedly evaluating Eq. (3) or (4), using the result of
each step to execute the next step. In this way you obtain a sequence of values
y0, y1, y2, . . . , yn, . . . that approximate the values of the solution φ(t) at the points
t0, t1, t2, . . . , tn, . . . .

In Section 2.7 we pointed out that a computer program for Euler’s method has
the structure given below. The specific instructions can be written in any convenient
programming language.

The Euler Method

Step 1. define f (t, y)

Step 2. input initial values t0 and y0
Step 3. input step size h and number of steps n
Step 4. output t0 and y0
Step 5. for j from 1 to n do
Step 6. k1 = f (t, y)

y = y + h ∗ k1
t = t + h

Step 7. output t and y
Step 8. end

Some examples of Euler’s method appear in Section 2.7. As another example,
consider the initial value problem

y′ = 1 − t + 4y, (5)

y(0) = 1. (6)

Equation (5) is a first order linear equation, and it is easily verified that the solution
satisfying the initial condition (6) is

y = φ(t) = 1
4 t − 3

16 + 19
16 e4t . (7)

Since the exact solution is known, we do not need numerical methods to approximate
the solution of the initial value problem (5), (6). On the other hand, the availability of
the exact solution makes it easy to determine the accuracy of any numerical procedure
that we use on this problem. We will use this problem throughout the chapter to
illustrate and compare different numerical methods. The solutions of Eq. (5) diverge
rather rapidly from each other, so we should expect that it will be fairly difficult to
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approximate the solution (7) well over any considerable interval. Indeed, this is the
reason for choosing this particular problem; it will be relatively easy to observe the
benefits of using more efficient methods.

E X A M P L E

1

Using the Euler formula (4) and step sizes h = 0.05, 0.025, 0.01, and 0.001, determine approx-
imate values of the solution y = φ(t) of the problem (5), (6) on the interval 0 ≤ t ≤ 2.

The indicated calculations were carried out on a computer,and some of the results are shown
in Table 8.1.1. Their accuracy is not particularly impressive. For h = 0.01 the percentage error
is 3.85% at t = 0.5, 7.49% at t = 1.0, and 14.4% at t = 2.0. The corresponding percentage
errors for h = 0.001 are 0.40%, 0.79%, and 1.58%, respectively. Observe that if h = 0.001,
then it requires 2000 steps to traverse the interval from t = 0 to t = 2. Thus considerable
computation is needed to obtain even reasonably good accuracy for this problem using the
Euler method. When we discuss other numerical approximation methods later in this chapter,
we will find that it is possible to obtain comparable or better accuracy with much larger step
sizes and many fewer computational steps.

TABLE 8.1.1 A Comparison of Results for the Numerical Approximation of the Solution
of y′ = 1 − t + 4y, y(0) = 1 Using the Euler Method for Different Step Sizes h

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.5475000 1.5761188 1.5952901 1.6076289 1.6090418
0.2 2.3249000 2.4080117 2.4644587 2.5011159 2.5053299
0.3 3.4333560 3.6143837 3.7390345 3.8207130 3.8301388
0.4 5.0185326 5.3690304 5.6137120 5.7754845 5.7942260
0.5 7.2901870 7.9264062 8.3766865 8.6770692 8.7120041
1.0 45.588400 53.807866 60.037126 64.382558 64.897803
1.5 282.07187 361.75945 426.40818 473.55979 479.25919
2.0 1745.6662 2432.7878 3029.3279 3484.1608 3540.2001

To begin to investigate the errors in using numerical approximations, and also to
suggest ways to construct more accurate algorithms, it is helpful to mention some
alternative ways to look at the Euler method.

First, let us write the differential equation (1) at the point t = tn in the form

dφ

dt
(tn) = f [tn, φ(tn)]. (8)

Then we approximate the derivative in Eq. (8) by the corresponding (forward) dif-
ference quotient, obtaining

φ(tn+1) − φ(tn)
tn+1 − tn

∼= f [tn, φ(tn)]. (9)

Finally, if we replace φ(tn+1) and φ(tn) by their approximate values yn+1 and yn,
respectively, and solve for yn+1, we obtain the Euler formula (3).

Another way to proceed is to write the problem as an integral equation. Since
y = φ(t) is a solution of the initial value problem (1), (2), by integrating from tn to
tn+1, we obtain
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∫ tn+1

tn
φ′(t) dt =

∫ tn+1

tn
f [t, φ(t)] dt,

or

φ(tn+1) = φ(tn) +
∫ tn+1

tn
f [t, φ(t)] dt. (10)

The integral in Eq. (10) is represented geometrically as the area under the curve in
Figure 8.1.1 between t = tn and t = tn+1. If we approximate the integral by replacing
f [t, φ(t)] by its value f [tn, φ(tn)] at t = tn, then we are approximating the actual area
by the area of the shaded rectangle. In this way we obtain

φ(tn+1) ∼= φ(tn) + f [tn, φ(tn)](tn+1 − tn)

= φ(tn) + hf [tn, φ(tn)]. (11)

Finally, to obtain an approximation yn+1 for φ(tn+1),we make a second approximation
by replacingφ(tn)by its approximate value yn in Eq. (11). This gives the Euler formula
yn+1 = yn + hf (tn, yn). A more accurate algorithm can be obtained by approximating
the integral more accurately. This is discussed in Section 8.2.

y'

t

f [tn,   (tn)]φ

tn tn+1

y' = f [t,   (t)]φ

FIGURE 8.1.1 Integral derivation of the Euler method.

A third approach is to assume that the solution y = φ(t) has a Taylor series about
the point tn. Then

φ(tn + h) = φ(tn) + φ′(tn)h + φ′′(tn)
h2

2! + · · · ,

or

φ(tn+1) = φ(tn) + f [tn, φ(tn)]h + φ′′(tn)
h2

2! + · · · . (12)

If the series is terminated after the first two terms, and φ(tn+1) and φ(tn) are replaced
by their approximate values yn+1 and yn, we again obtain the Euler formula (4). If
more terms in the series are retained, a more accurate formula is obtained. Further,
by using a Taylor series with a remainder, it is possible to estimate the magnitude of
the error in the formula. This is discussed later in this section.

The Backward Euler Formula. A variation on the Euler formula can be obtained by
approximating the derivative in Eq. (8) by the backward difference quotient
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[φ(tn) − φ(tn−1)]/h instead of the forward difference quotient used in Eq. (9). In
this way we obtain

φ(tn) − φ(tn−1) ∼= hf (tn, yn),

or
yn = yn−1 + hf (tn, yn).

Stepping the index up from n to n + 1, we obtain the backward Euler formula

yn+1 = yn + hf (tn+1, yn+1). (13)

Assuming that yn is known and yn+1 is to be calculated, observe that Eq. (13) does not
provide an explicit formula for yn+1. Rather, it is an equation that implicitly defines
yn+1 and must be solved to determine the value of yn+1. How difficult this is depends
entirely on the nature of the function f .

E X A M P L E

2

Use the backward Euler formula (13) and step sizes h = 0.05, 0.025, 0.01, and 0.001 to find
approximate values of the solution of the initial value problem (5), (6) on the interval 0 ≤ t ≤ 2.

For this problem the backward Euler formula (13) becomes

yn+1 = yn + h(1 − tn+1 + 4yn+1).

We will show the first two steps in detail so that it will be clear how the method works. At the
first step we have

y1 = y0 + h(1 − t1 + 4y1) = 1 + (0.05)(1 − 0.05 + 4y1).

Solving this equation for y1, we obtain

y1 = 1.0475/0.8 = 1.309375.

Observe that because the differential equation is linear, the implicit equation for y1 is also
linear and therefore easy to solve. Next,

y2 = y1 + h(1 − t2 + 4y2) = 1.309375 + (0.05)(1 − 0.1 + 4y2),

which leads to
y2 = 1.354375/0.8 = 1.69296875.

Continuing the computations on a computer, we obtain the results shown in Table 8.1.2. The
values given by the backward Euler method are uniformly too large for this problem, whereas

TABLE 8.1.2 A Comparison of Results for the Numerical Approximation of the Solution of
y′ = 1 − t + 4y, y(0) = 1 Using the Backward Euler Method for Different Step Sizes h

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.6929688 1.6474375 1.6236638 1.6104634 1.6090418
0.2 2.7616699 2.6211306 2.5491368 2.5095731 2.5053299
0.3 4.4174530 4.0920886 3.9285724 3.8396379 3.8301388
0.4 6.9905516 6.3209569 5.9908303 5.8131282 5.7942260
0.5 10.996956 9.7050002 9.0801473 8.7472667 8.7120041
1.0 103.06171 80.402761 70.452395 65.419964 64.897803
1.5 959.44236 661.00731 542.12432 485.05825 479.25919
2.0 8934.0696 5435.7294 4172.7228 3597.4478 3540.2001
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the values obtained from the Euler method were too small. In this problem the errors are
somewhat larger for the backward Euler method than for the Euler method, although for
small values of h the differences are insignificant. Since the backward Euler method appears
to be no more accurate than the Euler method, and is somewhat more complicated, a natural
question is why it should even be mentioned. The answer is that it is the simplest example of a
class of methods known as backward differentiation formulas that are very useful for certain
types of differential equations. We will return to this issue later in this chapter.

Errors in Numerical Approximations. The use of a numerical procedure, such as the Eu-
ler formula, on an initial value problem raises a number of questions that must be
answered before the approximate numerical solution can be accepted as satisfactory.
One of these is the question of convergence. That is, as the step size h tends to zero,
do the values of the numerical approximation y1, y2, . . . , yn, . . . approach the corre-
sponding values of the actual solution? If we assume that the answer is affirmative,
there remains the important practical question of how rapidly the numerical approx-
imation converges to the solution. In other words, how small a step size is needed
in order to guarantee a given level of accuracy? We want to use a step size that is
small enough to ensure the required accuracy, but not too small. An unnecessarily
small step size slows down the calculations and in some cases may even cause a loss
of accuracy.

There are two fundamental sources of error in approximating the solution of an
initial value problem numerically. Let us first assume that our computer is such that
we can carry out all computations with complete accuracy; that is, we can retain an
infinite number of decimal places. The difference En between the solution y = φ(t)
of the initial value problem (1), (2) and its numerical approximation is given by

En = φ(tn) − yn (14)

and is known as the global truncation error. It arises from two causes: first, at each
step we use an approximate formula to determine yn+1; second, the input data at
each step are only approximately correct since in general φ(tn) is not equal to yn. If
we assume that yn = φ(tn), then the only error in going one step is due to the use of
an approximate formula. This error is known as the local truncation error en.

The second fundamental source of error is that we carry out the computations in
arithmetic with only a finite number of digits. This leads to a round-off error Rn

defined by
Rn = yn − Yn, (15)

where Yn is the value actually computed from the given numerical method.
The absolute value of the total error in computing φ(tn) is given by

|φ(tn) − Yn| = |φ(tn) − yn + yn − Yn|. (16)

Making use of the triangle inequality, |a + b| ≤ |a| + |b|, we obtain, from Eq. (16),

|φ(tn) − Yn| ≤ |φ(tn) − yn| + |yn − Yn|
≤ |En| + |Rn|. (17)

Thus the total error is bounded by the sum of the absolute values of the truncation and
round-off errors. For the numerical procedures discussed in this book, it is possible
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to obtain useful estimates of the truncation error. However, we limit our discussion
primarily to the local truncation error, which is somewhat simpler. The round-off
error is clearly more random in nature. It depends on the type of computer used,
the sequence in which the computations are carried out, the method of rounding off,
and so forth. An analysis of round-off error is beyond the scope of this book, but it
is possible to say more about it than one might at first expect (see, for example, the
book by Henrici listed in the references). Some of the dangers from round-off error
are discussed in Problems 25 through 27 and in Section 8.5.

Local Truncation Error for the Euler Method. Let us assume that the solution y = φ(t) of
the initial value problem (1), (2) has a continuous second derivative in the interval
of interest. To ensure this, we can assume that f , ft , and fy are continuous. Observe
that if f has these properties and if φ is a solution of the initial value problem (1), (2),
then

φ′(t) = f [t, φ(t)],
and, by the chain rule,

φ′′(t) = ft[t, φ(t)] + fy[t, φ(t)]φ′(t)

= ft[t, φ(t)] + fy[t, φ(t)]f [t, φ(t)]. (18)

Since the right side of this equation is continuous, φ′′ is also continuous.
Then, making use of a Taylor polynomial with a remainder to expand φ about tn,

we obtain
φ(tn + h) = φ(tn) + φ′(tn)h + 1

2φ′′(tn)h2, (19)

where tn is some point in the interval tn < tn < tn + h. Subtracting Eq. (4) from
Eq. (19), and noting that φ(tn + h) = φ(tn+1) and φ′(tn) = f [tn, φ(tn)], we find that

φ(tn+1) − yn+1 = [φ(tn) − yn] + h{f [tn, φ(tn)] − f (tn, yn)} + 1
2φ′′(tn)h2. (20)

To compute the local truncation error, we apply Eq. (20) to the true solution φ(t);
that is, we take yn to be φ(tn). Then we immediately see from Eq. (20) that the local
truncation error en+1 is

en+1 = φ(tn+1) − yn+1 = 1
2φ′′(tn)h2. (21)

Thus the local truncation error for the Euler method is proportional to the square
of the step size h, and the proportionality factor depends on the second derivative
of the solution φ. The expression given by Eq. (21) depends on n and, in general, is
different for each step. A uniform bound, valid on an interval [a, b], is given by

|en| ≤ Mh2/2, (22)

where M is the maximum of |φ′′(t)| on the interval [a, b]. Since Eq. (22) is based
on a consideration of the worst possible case—that is, the largest possible value of
|φ′′(t)|—it may well be a considerable overestimate of the actual local truncation
error in some parts of the interval [a, b]. One use of Eq. (22) is to choose a step
size that will result in a local truncation error no greater than some given tolerance
level. For example, if the local truncation error must be no greater than ε, then from
Eq. (22) we have

h ≤ √
2ε/M. (23)
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The primary difficulty in using Eq. (21), (22), or (23) lies in estimating |φ′′(t)| or M.
However, the central fact expressed by these equations is that the local truncation
error is proportional to h2. Thus, if h is reduced by a factor of 1

2 , then the error is
reduced by 1

4 , and so on.
More important than the local truncation error is the global truncation error En.

The analysis for estimating En is more difficult than that for en. However, knowing
the local truncation error, we can make an intuitive estimate of the global truncation
error at a fixed T > t0 as follows. Suppose that we take n steps in going from t0 to
T = t0 + nh. In each step the error is at most Mh2/2; thus the error in n steps is at
most nMh2/2. Noting that n = (T − t0)/h, we find that the global truncation error
for the Euler method in going from t0 to T is bounded by

n
Mh2

2
= (T − t0)

Mh
2

. (24)

This argument is not complete since it does not take into account the effect that an
error at one step will have in succeeding steps. Nevertheless, it can be shown that the
global truncation error in using the Euler method on a finite interval is no greater
than a constant times h; see Problem 23 for more details. The Euler method is called
a first order method because its global truncation error is proportional to the first
power of the step size.

Because it is more accessible, we will hereafter use the local truncation error as our
principal measure of the accuracy of a numerical method and for comparing different
methods. If we have a priori information about the solution of the given initial value
problem, we can use the result (21) to obtain more precise information about how the
local truncation error varies with t. As an example, consider the illustrative problem

y′ = 1 − t + 4y, y(0) = 1 (25)

on the interval 0 ≤ t ≤ 2. Let y = φ(t) be the solution of the initial value problem
(25). Then, as noted previously,

φ(t) = (4t − 3 + 19e4t)/16

and therefore
φ′′(t) = 19e4t .

Equation (21) then states that

en+1 = 19e4tn h2

2
, tn < tn < tn + h. (26)

The appearance of the factor 19 and the rapid growth of e4t explain why the results
in Table 8.1.1 are not very accurate.

For instance, for h = 0.05 the error in the first step is

e1 = φ(t1) − y1 = 19e4t0(0.0025)

2
, 0 < t0 < 0.05.

It is clear that e1 is positive, and since e4t0 < e0.2, we have

e1 ≤ 19e0.2(0.0025)

2
∼= 0.02901. (27)
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Note also that e4t0 > 1; hence e1 > 19(0.0025)/2 = 0.02375. The actual error is
0.02542. It follows from Eq. (26) that the error becomes progressively worse with in-
creasing t; this is also clearly shown by the results inTable 8.1.1. Similar computations
for bounds for the local truncation error give

1.0617 ∼= 19e3.8(0.0025)

2
≤ e20 ≤ 19e4(0.0025)

2
∼= 1.2967 (28)

in going from 0.95 to 1.0 and

57.96 ∼= 19e7.8(0.0025)

2
≤ e40 ≤ 19e8(0.0025)

2
∼= 70.80 (29)

in going from 1.95 to 2.0.
These results indicate that, for this problem, the local truncation error is about 2500

times larger near t = 2 than near t = 0. Thus, to reduce the local truncation error to
an acceptable level throughout 0 ≤ t ≤ 2, one must choose a step size h based on an
analysis near t = 2. Of course, this step size will be much smaller than necessary near
t = 0. For example, to achieve a local truncation error of 0.01 for this problem, we
need a step size of about 0.00059 near t = 2 and a step size of about 0.032 near t = 0.
The use of a uniform step size that is smaller than necessary over much of the interval
results in more calculations than necessary, more time consumed, and possibly more
danger of unacceptable round-off errors.

Another approach is to keep the local truncation error approximately constant
throughout the interval by gradually reducing the step size as t increases. In the
example problem we would need to reduce h by a factor of about 50 in going from
t = 0 to t = 2. A method that provides for variations in the step size is called adaptive.
All modern computer codes for solving differential equations have the capability of
adjusting the step size as needed. We will return to this question in the next section.

PROBLEMS In each of Problems 1 through 6 find approximate values of the solution of the given initial
value problem at t = 0.1, 0.2, 0.3, and 0.4.
(a) Use the Euler method with h = 0.05.
(b) Use the Euler method with h = 0.025.
(c) Use the backward Euler method with h = 0.05.
(d) Use the backward Euler method with h = 0.025.

1. y′ = 3 + t − y, y(0) = 1 2. y′ = 5t − 3
√

y, y(0) = 2

3. y′ = 2y − 3t, y(0) = 1 4. y′ = 2t + e−ty, y(0) = 1

5. y′ = y2 + 2ty
3 + t2

, y(0) = 0.5 6. y′ = (t2 − y2) sin y, y(0) = −1

In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0.
(a) Use the Euler method with h = 0.025.
(b) Use the Euler method with h = 0.0125.
(c) Use the backward Euler method with h = 0.025.
(d) Use the backward Euler method with h = 0.0125.
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7. y′ = 0.5 − t + 2y, y(0) = 1 8. y′ = 5t − 3
√

y, y(0) = 2

9. y′ = √
t + y, y(0) = 3 10. y′ = 2t + e−ty, y(0) = 1

11. y′ = (4 − ty)/(1 + y2), y(0) = −2

12. y′ = (y2 + 2ty)/(3 + t2), y(0) = 0.5

13. Complete the calculations leading to the entries in columns three and four of Table 8.1.1.

14. Complete the calculations leading to the entries in columns three and four of Table 8.1.2.

15. Using three terms in the Taylor series given in Eq. (12) and taking h = 0.1, determine
approximate values of the solution of the illustrative example y′ = 1 − t + 4y, y(0) = 1 at
t = 0.1 and 0.2. Compare the results with those using the Euler method and with the exact
values.
Hint: If y′ = f (t, y), what is y′′?

In each of Problems 16 and 17 estimate the local truncation error for the Euler method in
terms of the solution y = φ(t). Obtain a bound for en+1 in terms of t and φ(t) that is valid on
the interval 0 ≤ t ≤ 1. By using a formula for the solution, obtain a more accurate error bound
for en+1. For h = 0.1 compute a bound for e1 and compare it with the actual error at t = 0.1.
Also compute a bound for the error e4 in the fourth step.

16. y′ = 2y − 1, y(0) = 1 17. y′ = 1
2 − t + 2y, y(0) = 1

In each of Problems 18 through 21 obtain a formula for the local truncation error for the Euler
method in terms of t and the solution φ.

18. y′ = t2 + y2, y(0) = 1 19. y′ = 5t − 3
√

y, y(0) = 2

20. y′ = √
t + y, y(1) = 3 21. y′ = 2t + e−ty, y(0) = 1

22. Consider the initial value problem

y′ = cos 5π t, y(0) = 1.

(a) Determine the solution y = φ(t) and draw a graph of y = φ(t) for 0 ≤ t ≤ 1.
(b) Determine approximate values of φ(t) at t = 0.2, 0.4, and 0.6 using the Euler method
with h = 0.2. Draw a broken-line graph for the approximate solution and compare it with
the graph of the exact solution.
(c) Repeat the computation of part (b) for 0 ≤ t ≤ 0.4, but take h = 0.1.
(d) Show by computing the local truncation error that neither of these step sizes is suffi-
ciently small. Determine a value of h to ensure that the local truncation error is less than
0.05 throughout the interval 0 ≤ t ≤ 1. That such a small value of h is required results
from the fact that max |φ′′(t)| is large.

23. In this problem we discuss the global truncation error associated with the Euler method
for the initial value problem y′ = f (t, y), y(t0) = y0. Assuming that the functions f and
fy are continuous in a closed, bounded region R of the ty-plane that includes the point
(t0, y0), it can be shown that there exists a constant L such that |f (t, y) − f (t, ỹ| < L|y − ỹ|,
where (t, y) and (t, ỹ) are any two points in R with the same t coordinate (see Problem 15
of Section 2.8). Further, we assume that ft is continuous, so the solution φ has a continuous
second derivative.
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(a) Using Eq. (20), show that

|En+1| ≤ |En| + h|f [tn, φ(tn)] − f (tn, yn)| + 1
2 h2|φ′′(tn)| ≤ α|En| + βh2, (i)

where α = 1 + hL and β = max |φ′′(t)|/2 on t0 ≤ t ≤ tn.

(b) Accepting without proof that if E0 = 0, and if |En| satisfies Eq. (i), then
|En| ≤ βh2(αn − 1)/(α − 1) for α �= 1, show that

|En| ≤ (1 + hL)n − 1
L

βh. (ii)

Equation (ii) gives a bound for |En| in terms of h, L, n, and β. Notice that for a fixed h, this
error bound increases with increasing n; that is, the error bound increases with distance
from the starting point t0.
(c) Show that (1 + hL)n ≤ enhL; hence

|En| ≤ enhL − 1
L

βh = e(tn−t0)L − 1
L

βh.

For a fixed point T = t0 + nh [that is, nh is constant and h = (T − t0)/n], this error
bound is of the form of a constant times h and approaches zero as h → 0. Also note
that for nhL = (T − t0)L small, the right side of the preceding equation is approximately
nh2β = (T − t0)βh, which was obtained in Eq. (24) by an intuitive argument.

24. Derive an expression analogous to Eq. (21) for the local truncation error for the backward
Euler formula.
Hint: Construct a suitable Taylor approximation to φ(t) about t = tn+1.

25. Using a step size h = 0.05 and the Euler method, but retaining only three digits throughout
the computations, determine approximate values of the solution at t = 0.1, 0.2, 0.3, and
0.4 for each of the following initial value problems:
(a) y′ = 1 − t + 4y, y(0) = 1

(b) y′ = 3 + t − y, y(0) = 1

(c) y′ = 2y − 3t, y(0) = 1
Compare the results with those obtained in Example 1 and in Problems 1 and 3. The
small differences between some of those results rounded to three digits and the present
results are due to round-off error. The round-off error would become important if the
computation required many steps.

26. The following problem illustrates a danger that occurs because of round-off error when
nearly equal numbers are subtracted and the difference is then multiplied by a large
number. Evaluate the quantity

1000 ·
∣∣∣∣6.010 18.04
2.004 6.000

∣∣∣∣
in the following ways:
(a) First round each entry in the determinant to two digits.

(b) First round each entry in the determinant to three digits.

(c) Retain all four digits. Compare this value with the results in parts (a) and (b).

27. The distributive law a(b − c) = ab − ac does not hold, in general, if the products are
rounded off to a smaller number of digits. To show this in a specific case, take a = 0.22,
b = 3.19, and c = 2.17. After each multiplication, round off the last digit.
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8.2 Improvements on the Euler Method
Since for many problems the Euler method requires a very small step size to produce
sufficiently accurate results, much effort has been devoted to the development of
more efficient methods. In the next three sections we will discuss some of these
methods. Consider the initial value problem

y′ = f (t, y), y(t0) = y0 (1)

and let y = φ(t) denote its solution. Recall from Eq. (10) of Section 8.1 that by
integrating the given differential equation from tn to tn+1, we obtain

φ(tn+1) = φ(tn) +
∫ tn+1

tn
f [t, φ(t)] dt. (2)

The Euler formula
yn+1 = yn + hf (tn, yn) (3)

is obtained by replacing f [t, φ(t)] in Eq. (2) by its approximate value f (tn, yn) at the
left endpoint of the interval of integration.

Improved Euler Formula. A better approximate formula can be obtained if the
integrand in Eq. (2) is approximated more accurately. One way to do this is to
replace the integrand by the average of its values at the two endpoints, namely,
{f [tn, φ(tn)] + f [tn+1, φ(tn+1)]}/2. This is equivalent to approximating the area un-
der the curve in Figure 8.2.1 between t = tn and t = tn+1 by the area of the shaded
trapezoid. Further, we replace φ(tn) and φ(tn+1) by their respective approximate
values yn and yn+1. In this way we obtain, from Eq. (2),

yn+1 = yn + f (tn, yn) + f (tn+1, yn+1)

2
h. (4)

Since the unknown yn+1 appears as one of the arguments of f on the right side of
Eq. (4), this equation defines yn+1 implicitly rather than explicitly. Depending on
the nature of the function f , it may be fairly difficult to solve Eq. (4) for yn+1. This
difficulty can be overcome by replacing yn+1 on the right side of Eq. (4) by the value
obtained using the Euler formula (3). Thus

yn+1 = yn + f (tn, yn) + f [tn + h, yn + hf (tn, yn)]
2

h

= yn + fn + f (tn + h, yn + hfn)

2
h, (5)

where tn+1 has been replaced by tn + h.
Equation (5) gives an explicit formula for computing yn+1, the approximate value

of φ(tn+1), in terms of the data at tn. This formula is known as the improved Euler
formula or the Heun1 formula. The improved Euler formula is an example of a
two-stage method; that is, we first calculate yn + hfn from the Euler formula and then
use this result to calculate yn+1 from Eq. (5). The improved Euler formula (5) does

1The formula is named for Karl Heun (1859–1929), a professor at the Technical University of Karlsruhe.
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y'

t

{f [tn,   (tn)] +φ1
2

y' = f [t,   (t)]φ

f [tn,   (tn)]φ

f [tn+1,   (tn+1)]}φ

f [tn+1,   (tn+1)]φ

tn tn+1

FIGURE 8.2.1 Derivation of the improved Euler method.

represent an improvement over the Euler formula (3) because the local truncation
error in using Eq. (5) is proportional to h3, while for the Euler method it is propor-
tional to h2. This error estimate for the improved Euler formula is established in
Problem 14. It can also be shown that for a finite interval the global truncation error
for the improved Euler formula is bounded by a constant times h2, so this method is
a second order method. Note that this greater accuracy is achieved at the expense of
more computational work, since it is now necessary to evaluate f (t, y) twice in order
to go from tn to tn+1.

If f (t, y) depends only on t and not on y, then solving the differential equation
y′ = f (t, y) reduces to integrating f (t). In this case the improved Euler formula (5)
becomes

yn+1 − yn = h
2
[f (tn) + f (tn + h)], (6)

which is just the trapezoid rule for numerical integration.

E X A M P L E

1

Use the improved Euler formula (5) to calculate approximate values of the solution of the
initial value problem

y′ = 1 − t + 4y, y(0) = 1. (7)

To make clear exactly what computations are required, we show a couple of steps in detail.
For this problem f (t, y) = 1 − t + 4y; hence

fn = 1 − tn + 4yn

and
f (tn + h, yn + hfn) = 1 − (tn + h) + 4(yn + hfn).

Further, t0 = 0, y0 = 1, and f0 = 1 − t0 + 4y0 = 5. If h = 0.025, then

f (t0 + h, y0 + hf0) = 1 − 0.025 + 4[1 + (0.025)(5)] = 5.475.

Then, from Eq. (5),

y1 = 1 + (0.5)(5 + 5.475)(0.025) = 1.1309375. (8)

At the second step we must calculate

f1 = 1 − 0.025 + 4(1.1309375) = 5.49875,

y1 + hf1 = 1.1309375 + (0.025)(5.49875) = 1.26840625,
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and

f (t2, y1 + hf1) = 1 − 0.05 + 4(1.26840625) = 6.023625.

Then, from Eq. (5),

y2 = 1.1309375 + (0.5)(5.49875 + 6.023625)(0.025) = 1.2749671875. (9)

Further results for 0 ≤ t ≤ 2 obtained by using the improved Euler method with h = 0.025
and h = 0.01 are given in Table 8.2.1. To compare the results of the improved Euler method
with those of the Euler method, note that the improved Euler method requires two evaluations
of f at each step, while the Euler method requires only one. This is significant because typically
most of the computing time in each step is spent in evaluating f , so counting these evaluations
is a reasonable way to estimate the total computing effort. Thus, for a given step size h, the
improved Euler method requires twice as many evaluations of f as the Euler method. Alter-
natively, the improved Euler method for step size h requires the same number of evaluations
of f as the Euler method with step size h/2.

TABLE 8.2.1 A Comparison of Results Using the Euler and Improved Euler Methods for
the Initial Value Problem y′ = 1 − t + 4y, y(0) = 1

Euler Improved Euler

t h = 0.01 h = 0.001 h = 0.025 h = 0.01 Exact

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.5952901 1.6076289 1.6079462 1.6088585 1.6090418
0.2 2.4644587 2.5011159 2.5020618 2.5047827 2.5053299
0.3 3.7390345 3.8207130 3.8228282 3.8289146 3.8301388
0.4 5.6137120 5.7754845 5.7796888 5.7917911 5.7942260
0.5 8.3766865 8.6770692 8.6849039 8.7074637 8.7120041
1.0 60.037126 64.382558 64.497931 64.830722 64.897803
1.5 426.40818 473.55979 474.83402 478.51588 479.25919
2.0 3029.3279 3484.1608 3496.6702 3532.8789 3540.2001

By referring toTable 8.2.1, you can see that the improved Euler method with h = 0.025 gives
much better results than the Euler method with h = 0.01. Note that to reach t = 2 with these
step sizes, the improved Euler method requires 160 evaluations of f , while the Euler method
requires 200. More noteworthy is that the improved Euler method with h = 0.025 is also
slightly more accurate than the Euler method with h = 0.001 (2000 evaluations of f ). In other
words, with something like one-twelfth of the computing effort, the improved Euler method
yields results for this problem that are comparable to, or a bit better than, those generated by
the Euler method. This illustrates that, compared to the Euler method, the improved Euler
method is clearly more efficient, yielding substantially better results or requiring much less
total computing effort, or both.

The percentage errors at t = 2 for the improved Euler method are 1.23% for h = 0.025 and
0.21% for h = 0.01.

A computer program for the Euler method can be readily modified to implement
the improved Euler method instead. All that is required is to replace Step 6 in the
algorithm in Section 8.1 by the following:
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Step 6. k1 = f (t, y)

k2 = f (t + h, y + h ∗ k1)

y = y + (h/2) ∗ (k1 + k2)

t = t + h

Variation of Step Size. In Section 8.1 we mentioned the possibility of adjusting the step
size as a calculation proceeds so as to maintain the local truncation error at a more
or less constant level. The goal is to use no more steps than necessary and, at the
same time, to keep some control over the accuracy of the approximation. Here we
will describe how this can be done. Suppose that after n steps we have reached the
point (tn, yn). We choose a step size h and calculate yn+1. Next we need to estimate
the error we have made in calculating yn+1. Not knowing the actual solution, the best
that we can do is to use a more accurate method and repeat the calculation starting
from (tn, yn). For example, if we used the Euler method for the original calculation,
we might repeat it with the improved Euler method. Then the difference between the
two calculated values is an estimate eest

n+1 of the error in using the original method.
If the estimated error is different from the error tolerance ε, then we adjust the
step size and repeat the calculation. The key to making this adjustment efficiently is
knowing how the local truncation error en+1 depends on the step size h. For the Euler
method the local truncation error is proportional to h2, so to bring the estimated error
down (or up) to the tolerance level ε, we must multiply the original step size by the
factor

√
ε/eest

n+1.
To illustrate this procedure, consider the example problem (7)

y′ = 1 − t + 4y, y(0) = 1.

You can verify that after one step with h = 0.1 we obtain the values 1.5 and 1.595
from the Euler method and the improved Euler method, respectively. Thus the
estimated error in using the Euler method is 0.095. If we have chosen an error
tolerance of 0.05, for instance, then we need to adjust the step size downward by the
factor

√
0.05/0.095 ∼= 0.73. Rounding downward to be conservative, let us choose

the adjusted step size h = 0.07. Then, from the Euler formula, we obtain

y1 = 1 + (0.07)f (0, 1) = 1.35 ∼= φ(0.07).

Using the improved Euler method, we obtain y1 = 1.39655, so the estimated error in
using the Euler formula is 0.04655, which is slightly less than the specified tolerance.
The actual error, based on a comparison with the solution itself, is somewhat greater,
namely, 0.05122.

We can follow the same procedure at each step of the calculation, thereby keeping
the local truncation error approximately constant throughout the entire numerical
process. Modern adaptive codes for solving differential equations adjust the step
size as they proceed in very much this way, although they usually use more accurate
formulas than the Euler and improved Euler formulas. Consequently, they are able
to achieve both efficiency and accuracy by using very small steps only where they are
really needed.
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PROBLEMS In each of Problems 1 through 6 find approximate values of the solution of the given initial
value problem at t = 0.1, 0.2, 0.3, and 0.4. Compare the results with those obtained by the
Euler method and the backward Euler method in Section 8.1 and with the exact solution (if
available).
(a) Use the improved Euler method with h = 0.05.
(b) Use the improved Euler method with h = 0.025.
(c) Use the improved Euler method with h = 0.0125.

1. y′ = 3 + t − y, y(0) = 1 2. y′ = 5t − 3
√

y, y(0) = 2

3. y′ = 2y − 3t, y(0) = 1 4. y′ = 2t + e−ty, y(0) = 1

5. y′ = y2 + 2ty
3 + t2

, y(0) = 0.5 6. y′ = (t2 − y2) sin y, y(0) = −1

In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0.
(a) Use the improved Euler method with h = 0.025.
(b) Use the improved Euler method with h = 0.0125.

7. y′ = 0.5 − t + 2y, y(0) = 1 8. y′ = 5t − 3
√

y, y(0) = 2

9. y′ = √
t + y, y(0) = 3 10. y′ = 2t + e−ty, y(0) = 1

11. y′ = (4 − ty)/(1 + y2), y(0) = −2

12. y′ = (y2 + 2ty)/(3 + t2), y(0) = 0.5

13. Complete the calculations leading to the entries in columns four and five of Table 8.2.1.

14. In this problem we establish that the local truncation error for the improved Euler for-
mula is proportional to h3. If we assume that the solution φ of the initial value problem
y′ = f (t, y), y(t0) = y0 has derivatives that are continuous through the third order (f has
continuous second partial derivatives), then it follows that

φ(tn + h) = φ(tn) + φ′(tn)h + φ′′(tn)

2! h2 + φ′′′(tn)

3! h3,

where tn < tn < tn + h. Assume that yn = φ(tn).
(a) Show that, for yn+1 as given by Eq. (5),

en+1 = φ(tn+1) − yn+1

= φ′′(tn)h − {f [tn + h, yn + hf (tn, yn)] − f (tn, yn)}
2! h + φ′′′(tn)h3

3! . (i)

(b) Making use of the facts that φ′′(t) = ft[t, φ(t)] + fy[t, φ(t)]φ′(t) and that the Taylor
approximation with a remainder for a function F(t, y) of two variables is

F(a + h, b + k) = F(a, b) + Ft(a, b)h + Fy(a, b)k

+ 1
2! (h

2Ftt + 2hkFty + k2Fyy)

∣∣∣∣
x=ξ ,y=η

where ξ lies between a and a + h and η lies between b and b + k, show that the first term
on the right side of Eq. (i) is proportional to h3 plus higher order terms. This is the desired
result.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 479 Page number 459 cyan black

8.3 The Runge–Kutta Method 459

(c) Show that if f (t, y) is linear in t and y, then en+1 = φ′′′(tn)h3/6, where tn < tn < tn+1.
Hint: What are ftt , fty, and fyy?

15. Consider the improved Euler method for solving the illustrative initial value problem
y′ = 1 − t + 4y, y(0) = 1. Using the result of Problem 14(c) and the exact solution of the
initial value problem, determine en+1 and a bound for the error at any step on 0 ≤ t ≤ 2.
Compare this error with the one obtained in Eq. (26) of Section 8.1 using the Euler method.
Also obtain a bound for e1 for h = 0.05, and compare it with Eq. (27) of Section 8.1.

In each of Problems 16 and 17 use the actual solution φ(t) to determine en+1 and a bound
for en+1 at any step on 0 ≤ t ≤ 1 for the improved Euler method for the given initial value
problem. Also obtain a bound for e1 for h = 0.1, and compare it with the similar estimate for
the Euler method and with the actual error using the improved Euler method.

16. y′ = 2y − 1, y(0) = 1 17. y′ = 0.5 − t + 2y, y(0) = 1

In each of Problems 18 through 21 carry out one step of the Euler method and of the improved
Euler method, using the step size h = 0.1. Suppose that a local truncation error no greater
than 0.0025 is required. Estimate the step size that is needed for the Euler method to satisfy
this requirement at the first step.

18. y′ = 0.5 − t + 2y, y(0) = 1 19. y′ = 5t − 3
√

y, y(0) = 2

20. y′ = √
t + y, y(0) = 3 21. y′ = (y2 + 2ty)/(3 + t2), y(0) = 0.5

22. The modified Euler formula for the initial value problem y′ = f (t, y), y(t0) = y0 is given by

yn+1 = yn + hf [tn + 1
2 h, yn + 1

2 hf (tn, yn)].

Following the procedure outlined in Problem 14, show that the local truncation error in
the modified Euler formula is proportional to h3.

In each of Problems 23 through 26 use the modified Euler formula of Problem 22 with h = 0.05
to compute approximate values of the solution of the given initial value problem at t = 0.1,
0.2, 0.3, and 0.4. Compare the results with those obtained in Problems 1 through 4.

23. y′ = 3 + t − y, y(0) = 1 24. y′ = 5t − 3
√

y, y(0) = 2

25. y′ = 2y − 3t, y(0) = 1 26. y′ = 2t + e−ty, y(0) = 1

27. Show that the modified Euler formula of Problem 22 is identical to the improved Euler
formula of Eq. (5) for y′ = f (t, y) if f is linear in both t and y.

8.3 The Runge–Kutta Method
In preceding sections we have introduced the Euler formula, the backward Euler
formula, and the improved Euler formula as ways to approximate the solution of the
initial value problem

y′ = f (t, y), y(t0) = y0 (1)

numerically. The local truncation errors for these methods are proportional to h2, h2,
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and h3, respectively. The Euler and improved Euler methods belong to what is now
called the Runge–Kutta2 class of methods.

In this section we discuss the method originally developed by Runge and Kutta.
This method is now called the classic fourth order four-stage Runge–Kutta method,
but it is often referred to simply as the Runge–Kutta method, and we will follow this
practice for brevity. This method has a local truncation error that is proportional
to h5. Thus it is two orders of magnitude more accurate than the improved Euler
method and three orders of magnitude better than the Euler method. It is relatively
simple to use and is sufficiently accurate to handle many problems efficiently. This
is especially true of adaptive Runge–Kutta methods, in which provision is made to
vary the step size as needed. We return to this issue at the end of the section.

The Runge–Kutta formula involves a weighted average of values of f (t, y) at dif-
ferent points in the interval tn ≤ t ≤ tn+1. It is given by

yn+1 = yn + h
(

kn1 + 2kn2 + 2kn3 + kn4

6

)
, (2)

where

kn1 = f (tn, yn)

kn2 = f (tn + 1
2 h, yn + 1

2 hkn1),
(3)

kn3 = f (tn + 1
2 h, yn + 1

2 hkn2),

kn4 = f (tn + h, yn + hkn3).

The sum (kn1 + 2kn2 + 2kn3 + kn4)/6 can be interpreted as an average slope. Note
that kn1 is the slope at the left end of the interval, kn2 is the slope at the midpoint
using the Euler formula to go from tn to tn + h/2, kn3 is a second approximation to
the slope at the midpoint, and kn4 is the slope at tn + h using the Euler formula and
the slope kn3 to go from tn to tn + h.

Although in principle it is not difficult to show that Eq. (2) differs from the Taylor
expansion of the solution φ by terms that are proportional to h5, the algebra is rather
lengthy.3 Thus we will simply accept the fact that the local truncation error in using
Eq. (2) is proportional to h5 and that for a finite interval the global truncation error is
at most a constant times h4. The earlier description of this method as a fourth order
four-stage method reflects the facts that the global truncation error is of fourth order
in the step size h and that there are four intermediate stages in the calculation (the
calculation of kn1, . . . , kn4).

Clearly the Runge–Kutta formula, Eqs. (2) and (3), is more complicated than any
of the formulas discussed previously. This is of relatively little significance, however,
since it is not hard to write a computer program to implement this method. Such a

2Carl David Runge (1856–1927), German mathematician and physicist, worked for many years in spec-
troscopy. The analysis of data led him to consider problems in numerical computation, and the Runge–
Kutta method originated in his paper on the numerical solution of differential equations in 1895. The
method was extended to systems of equations in 1901 by M. Wilhelm Kutta (1867–1944). Kutta was a
German mathematician and aerodynamicist who is also well known for his important contributions to
classical airfoil theory.
3See, for example, Chapter 3 of the book by Henrici listed in the references.
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program has the same structure as the algorithm for the Euler method outlined in
Section 8.1. To be specific, the lines in Step 6 in the Euler algorithm must be replaced
by the following:

Step 6. k1 = f (t, y)

k2 = f (t + 0.5 ∗ h, y + 0.5 ∗ h ∗ k1)

k3 = f (t + 0.5 ∗ h, y + 0.5 ∗ h ∗ k2)

k4 = f (t + h, y + h ∗ k3)

y = y + (h/6) ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)

t = t + h

Note that if f does not depend on y, then

kn1 = f (tn), kn2 = kn3 = f (tn + h/2), kn4 = f (tn + h), (4)

and Eq. (2) reduces to

yn+1 − yn = h
6
[f (tn) + 4f (tn + h/2) + f (tn + h)]. (5)

Equation (5) can be identified as Simpson’s4 rule for the approximate evaluation of
the integral of y′ = f (t). The fact that Simpson’s rule has an error proportional to h5

is consistent with the local truncation error in the Runge–Kutta formula.

E X A M P L E

1

Use the Runge–Kutta method to calculate approximate values of the solution y = φ(t) of the
initial value problem

y′ = 1 − t + 4y, y(0) = 1. (6)

Taking h = 0.2, we have

k01 = f (0, 1) = 5; hk01 = 1.0,

k02 = f (0 + 0.1, 1 + 0.5) = 6.9; hk02 = 1.38,

k03 = f (0 + 0.1, 1 + 0.69) = 7.66; hk03 = 1.532,

k04 = f (0 + 0.2, 1 + 1.532) = 10.928.

Thus

y1 = 1 + 0.2
6

[5 + 2(6.9) + 2(7.66) + 10.928]
= 1 + 1.5016 = 2.5016.

Further results using the Runge–Kutta method with h = 0.2, h = 0.1, and h = 0.05 are given
in Table 8.3.1. Note that the Runge–Kutta method yields a value at t = 2 that differs from the
exact solution by only 0.122% if the step size is h = 0.1, and by only 0.00903% if h = 0.05.
In the latter case, the error is less than one part in 10,000, and the calculated value at t = 2 is
correct to four digits.

4Simpson’s rule is named for Thomas Simpson (1710–1761), an English mathematician and textbook
author, who published it in 1743.
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For comparison, note that both the Runge–Kutta method with h = 0.05 and the improved
Euler method with h = 0.025 require 160 evaluations of f to reach t = 2. The improved Euler
method yields a result at t = 2 that is in error by 1.23%. Although this error may be acceptable
for some purposes, it is more than 135 times the error yielded by the Runge–Kutta method
with comparable computing effort. Note also that the Runge–Kutta method with h = 0.2, or
40 evaluations of f , produces a value at t = 2 with an error of 1.40%, which is only slightly
greater than the error in the improved Euler method with h = 0.025, or 160 evaluations of f .
Thus we see again that a more accurate algorithm is more efficient; it produces better results
with similar effort, or similar results with less effort.

TABLE 8.3.1 A Comparison of Results for the Numerical Approximation of the Solution
of the Initial Value Problem y′ = 1 − t + 4y, y(0) = 1

Improved
Euler Runge–Kutta Exact

t h = 0.025 h = 0.2 h = 0.1 h = 0.05

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.6079462 1.6089333 1.6090338 1.6090418
0.2 2.5020618 2.5016000 2.5050062 2.5053060 2.5053299
0.3 3.8228282 3.8294145 3.8300854 3.8301388
0.4 5.7796888 5.7776358 5.7927853 5.7941197 5.7942260
0.5 8.6849039 8.7093175 8.7118060 8.7120041
1.0 64.497931 64.441579 64.858107 64.894875 64.897803
1.5 474.83402 478.81928 479.22674 479.25919
2.0 3496.6702 3490.5574 3535.8667 3539.8804 3540.2001

The classic Runge–Kutta method suffers from the same shortcoming as other meth-
ods with a fixed step size for problems in which the local truncation error varies
widely over the interval of interest. That is, a step size that is small enough to achieve
satisfactory accuracy in some parts of the interval may be much smaller than neces-
sary in other parts of the interval. This has stimulated the development of adaptive
Runge–Kutta methods that provide for modifying the step size automatically as the
computation proceeds, so as to maintain the local truncation error near or below a
specified tolerance level. As explained in Section 8.2, this requires the estimation
of the local truncation error at each step. One way to do this is to repeat the com-
putation with a fifth order method—which has a local truncation error proportional
to h6—and then to use the difference between the two results as an estimate of the
error. If this is done in a straightforward manner, then the use of the fifth order
method requires at least five more evaluations of f at each step, in addition to those
required originally by the fourth order method. However, if we make an appropriate
choice of the intermediate points and the weighting coefficients in the expressions
for kn1, . . . in a certain fourth order Runge–Kutta method, then these expressions
can be used again, together with one additional stage, in a corresponding fifth order
method. This results in a substantial gain in efficiency. It turns out that this can be
done in more than one way.
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The first fourth and fifth order Runge–Kutta pair was developed by Erwin Fehlberg5

in the late 1960’s and is now called the Runge–Kutta–Fehlberg or RKF6 method. The
popularity of the RKF method was considerably enhanced by the appearance in 1977
of its Fortran implementation RKF45 by Lawrence F. Shampine and H.A.Watts. The
RKF method and other adaptive Runge–Kutta methods are very powerful and ef-
ficient means of approximating numerically the solutions of an enormous class of
initial value problems. Specific implementations of one or more of them are widely
available in commercial software packages.

PROBLEMS In each of Problems 1 through 6 find approximate values of the solution of the given initial
value problem at t = 0.1, 0.2, 0.3, and 0.4. Compare the results with those obtained by using
other methods and with the exact solution (if available).
(a) Use the Runge-Kutta method with h = 0.1.
(b) Use the Runge-Kutta method with h = 0.05.

1. y′ = 3 + t − y, y(0) = 1 2. y′ = 5t − 3
√

y, y(0) = 2

3. y′ = 2y − 3t, y(0) = 1 4. y′ = 2t + e−ty, y(0) = 1

5. y′ = y2 + 2ty
3 + t2

, y(0) = 0.5 6. y′ = (t2 − y2) sin y, y(0) = −1

In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0. Compare the results with those obtained by other
methods.
(a) Use the Runge–Kutta method with h = 0.1.
(b) Use the Runge–Kutta method with h = 0.05.

7. y′ = 0.5 − t + 2y, y(0) = 1 8. y′ = 5t − 3
√

y, y(0) = 2

9. y′ = √
t + y, y(0) = 3 10. y′ = 2t + e−ty, y(0) = 1

11. y′ = (4 − ty)/(1 + y2), y(0) = −2

12. y′ = (y2 + 2ty)/(3 + t2), y(0) = 0.5

13. Confirm the results in Table 8.3.1 by executing the indicated computations.

14. Consider the initial value problem

y′ = t2 + y2, y(0) = 1.

(a) Draw a direction field for this equation.
(b) Use the Runge–Kutta method or another method to find approximate values of the
solution at t = 0.8, 0.9, and 0.95. Choose a small enough step size so that you believe your
results are accurate to at least four digits.
(c) Try to extend the calculations in part (b) to obtain an accurate approximation to the
solution at t = 1. If you encounter difficulties in doing this, explain why you think this
happens. The direction field in part (a) may be helpful.

5Fehlberg (1911–1990) was born in Germany, received his doctorate from the Technical University of
Berlin in 1942, emigrated to the United States after World War II, and was employed by NASA for many
years. The Runge–Kutta–Fehlberg method was first published in a NASA Technical Report in 1969.
6The details of the RKF method may be found, for example, in the books by Ascher and Petzold and by
Mattheij and Molenaar that are listed in the references.
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15. Consider the initial value problem

y′ = 3t2/(3y2 − 4), y(0) = 0.

(a) Draw a direction field for this equation.
(b) Estimate how far the solution can be extended to the right. Let tM be the right
endpoint of the interval of existence of this solution. What happens at tM to prevent the
solution from continuing farther?
(c) Use the Runge–Kutta method with various step sizes to determine an approximate
value of tM .
(d) If you continue the computation beyond tM , you can continue to generate values of
y. What significance, if any, do these values have?
(e) Suppose that the initial condition is changed to y(0) = 1. Repeat parts (b) and (c) for
this problem.

8.4 Multistep Methods
In previous sections we have discussed numerical procedures for approximating the
solution of the initial value problem

y′ = f (t, y), y(t0) = y0, (1)

in which data at the point t = tn are used to calculate an approximate value of the
solution φ(tn+1) at the next mesh point t = tn+1. In other words, the calculated value
of φ at any mesh point depends only on the data at the preceding mesh point. Such
methods are called one-step methods. However, once approximate values of the
solution y = φ(t) have been obtained at a few points beyond t0, it is natural to ask
whether we can make use of some of this information, rather than just the value at
the last point, to calculate the value of φ(t) at the next point. Specifically, if y1 at t1,
y2 at t2, . . . , yn at tn are known, how can we use this information to determine yn+1 at
tn+1? Methods that use information at more than the last mesh point are referred to
as multistep methods. In this section we will describe two types of multistep methods:
Adams7 methods and backward differentiation formulas. Within each type, we can
achieve various levels of accuracy, depending on the number of preceding data points
that are used. For simplicity, we will assume throughout our discussion that the step
size h is constant.

Adams Methods. Recall that

φ(tn+1) − φ(tn) =
∫ tn+1

tn
φ′(t) dt, (2)

7John Couch Adams (1819–1892), an English astronomer, is most famous as codiscoverer, with Joseph
Leverrier, of the planet Neptune in 1846. Adams was also extremely skilled at computation; his procedure
for numerical integration of differential equations appeared in 1883 in a book that he wrote with Francis
Bashforth on capillary action.
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where φ(t) is the solution of the initial value problem (1). The basic idea of an
Adams method is to approximate φ′(t) by a polynomial Pk(t) of degree k and to use
the polynomial to evaluate the integral on the right side of Eq. (2). The coefficients in
Pk(t) are determined by using k + 1 previously calculated data points. For example,
suppose that we wish to use a first degree polynomial P1(t) = At + B. Then we need
only the two data points (tn, yn) and (tn−1, yn−1). Since P1 is to be an approximation
to φ′, we require that P1(tn) = f (tn, yn) and that P1(tn−1) = f (tn−1, yn−1). Recall that
we denote f (tj, yj) by fj for an integer j. Then A and B must satisfy the equations

Atn + B = fn,
(3)

Atn−1 + B = fn−1.

Solving for A and B, we obtain

A = fn − fn−1

h
, B = fn−1tn − fntn−1

h
. (4)

Replacing φ′(t) by P1(t) and evaluating the integral in Eq. (2), we find that

φ(tn+1) − φ(tn) = A
2

(t2
n+1 − t2

n) + B(tn+1 − tn).

Finally, we replace φ(tn+1) and φ(tn) by yn+1 and yn, respectively, and carry out some
algebraic simplification. For a constant step size h we obtain

yn+1 = yn + 3
2 hfn − 1

2 hfn−1. (5)

Equation (5) is the second order Adams–Bashforth formula. It is an explicit formula
for yn+1 in terms of yn and yn−1 and has a local truncation error proportional to h3.

We note in passing that the first order Adams–Bashforth formula, based on the
polynomial P0(t) = fn of degree zero, is just the original Euler formula.

More accurate Adams formulas can be obtained by following the procedure out-
lined above, but using a higher degree polynomial and correspondingly more data
points. For example, suppose that a polynomial P3(t) of degree three is used. The
coefficients are determined from the four points (tn, yn), (tn−1, yn−1), (tn−2, yn−2), and
(tn−3, yn−3). Substituting this polynomial for φ′(t) in Eq. (2), evaluating the integral,
and simplifying the result, we eventually obtain the fourth order Adams–Bashforth
formula

yn+1 = yn + (h/24)(55fn − 59fn−1 + 37fn−2 − 9fn−3). (6)

The local truncation error of this fourth order formula is proportional to h5.
A variation on the derivation of the Adams–Bashforth formulas gives another

set of formulas called the Adams–Moulton8 formulas. To see the difference, let
us again consider the second order case. Again we use a first degree polynomial

8Forest Ray Moulton (1872–1952) was an American astronomer and administrator of science. While
calculating ballistics trajectories during World War I, he devised substantial improvements in the Adams
formula.
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Q1(t) = αt + β, but we determine the coefficients by using the points (tn, yn) and
(tn+1, yn+1). Thus α and β must satisfy

αtn + β = fn,
(7)

αtn+1 + β = fn+1,

and it follows that

α = fn+1 − fn

h
, β = fntn+1 − fn+1tn

h
. (8)

Substituting Q1(t) for φ′(t) in Eq. (2) and simplifying, we obtain

yn+1 = yn + 1
2 hfn + 1

2 hf (tn+1, yn+1), (9)

which is the second order Adams–Moulton formula. We have written f (tn+1, yn+1)

in the last term to emphasize that the Adams–Moulton formula is implicit, rather
than explicit, since the unknown yn+1 appears on both sides of the equation. The
local truncation error for the second order Adams–Moulton formula is proportional
to h3.

The first order Adams–Moulton formula is just the backward Euler formula, as
you might anticipate by analogy with the first order Adams–Bashforth formula.

More accurate higher order formulas can be obtained by using an approximating
polynomial of higher degree. The fourth orderAdams–Moulton formula, with a local
truncation error proportional to h5, is

yn+1 = yn + (h/24)(9fn+1 + 19fn − 5fn−1 + fn−2). (10)

Observe that this is also an implicit formula because yn+1 appears in fn+1.
Although both the Adams–Bashforth and Adams–Moulton formulas of the same

order have local truncation errors proportional to the same power of h, the Adams–
Moulton formulas of moderate order are in fact considerably more accurate. For
example, for the fourth order formulas (6) and (10), the proportionality constant
for the Adams–Moulton formula is less than 1/10 of the proportionality constant
for the Adams–Bashforth formula. Thus the question arises: is it better to use the
explicit (and faster) Adams–Bashforth formula or the more accurate but implicit
(and slower) Adams–Moulton formula? The answer depends on whether, by using
the more accurate formula, you can increase the step size, and thereby reduce the
number of steps enough to compensate for the additional computations required at
each step.

In fact, numerical analysts have attempted to achieve both simplicity and accuracy
by combining the two formulas in what is called a predictor–corrector method. Once
yn−3, yn−2, yn−1, and yn are known, we can compute fn−3, fn−2, fn−1, and fn, and then use
the Adams–Bashforth (predictor) formula (6) to obtain a first value for yn+1. Then
we compute fn+1 and use the Adams–Moulton (corrector) formula (10), which is no
longer implicit, to obtain an improved value of yn+1. We can, of course, continue to
use the corrector formula (10) if the change in yn+1 is too large. However, if it is
necessary to use the corrector formula more than once or perhaps twice, it means
that the step size h is too large and should be reduced.

In order to use any of the multistep methods, it is necessary first to calculate a few
yj by some other method. For example, the fourth order Adams–Moulton method
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requires values for y1 and y2, while the fourth order Adams–Bashforth method also
requires a value for y3. One way to proceed is to use a one-step method of comparable
accuracy to calculate the necessary starting values. Thus, for a fourth order multistep
method,one might use the fourth order Runge–Kutta method to calculate the starting
values. This is the method used in the next example.

Another approach is to use a low order method with a very small h to calculate y1,
and then to increase gradually both the order and the step size until enough starting
values have been determined.

E X A M P L E

1

Consider again the initial value problem

y′ = 1 − t + 4y, y(0) = 1. (11)

With a step size of h = 0.1, determine an approximate value of the solution y = φ(t) at t = 0.4
using the fourth order Adams–Bashforth formula, the fourth order Adams–Moulton formula,
and the predictor–corrector method.

For starting data, we use the values of y1, y2, and y3 found by the Runge–Kutta method.
These are tabulated in Table 8.3.1. Next, calculating the corresponding values of f (t, y), we
obtain

y0 = 1, f0 = 5,

y1 = 1.6089333, f1 = 7.3357332,

y2 = 2.5050062, f2 = 10.820025,

y3 = 3.8294145, f3 = 16.017658.

Then, from the Adams–Bashforth formula, Eq. (6), we find that y4 = 5.7836305. The ex-
act value of the solution at t = 0.4, correct through eight digits, is 5.7942260, so the error is
−0.010595.

The Adams–Moulton formula, Eq. (10), leads to the equation

y4 = 4.9251275 + 0.15y4,

from which it follows that y4 = 5.7942676 with an error of only 0.0000416.
Finally, using the result from the Adams–Bashforth formula as a predicted value of φ(0.4),

we can then use Eq. (10) as a corrector. Corresponding to the predicted value of y4, we find
that f4 = 23.734522. Hence, from Eq. (10), the corrected value of y4 is 5.7926721. This result
is in error by −0.0015539.

Observe that the Adams–Bashforth method is the simplest and fastest of these methods,
since it involves only the evaluation of a single explicit formula. It is also the least accurate.
Using the Adams–Moulton formula as a corrector increases the amount of calculation that is
required, but the method is still explicit. In this problem the error in the corrected value of y4

is reduced by approximately a factor of 7 when compared to the error in the predicted value.
The Adams–Moulton method alone yields by far the best result, with an error that is about
1/40 as large as the error from the predictor–corrector method. Remember, however, that
the Adams–Moulton method is implicit, which means that an equation must be solved at each
step. In the problem considered here this equation is linear, so the solution is quickly found,
but in other problems this part of the procedure may be much more time-consuming.

The Runge–Kutta method with h = 0.1 gives y4 = 5.7927853 with an error of −0.0014407;
see Table 8.3.1. Thus, for this problem, the Runge–Kutta method is comparable in accuracy to
the predictor–corrector method.
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Backward Differentiation Formulas. Another type of multistep method uses a polynomial
Pk(t) to approximate the solution φ(t) of the initial value problem (1) rather than
its derivative φ′(t), as in the Adams methods. We then differentiate Pk(t) and set
P′

k(tn+1) equal to f (tn+1, yn+1) to obtain an implicit formula for yn+1. These are called
backward differentiation formulas. These methods became widely used in the 1970s
because of the work of C. William Gear9 on so-called stiff differential equations,
whose solutions are very difficult to approximate by the methods discussed up to
now; see Section 8.5.

The simplest case uses a first degree polynomial P1(t) = At + B. The coefficients
are chosen to match the computed values of the solution yn and yn+1. Thus A and B
must satisfy

Atn + B = yn,
(12)

Atn+1 + B = yn+1.

Since P′
1(t) = A, the requirement that

P′
1(tn+1) = f (tn+1, yn+1)

is just
A = f (tn+1, yn+1). (13)

Another expression for A comes from subtracting the first of Eqs. (12) from the
second, which gives

A = (yn+1 − yn)/h.

Substituting this value of A into Eq. (13) and rearranging terms, we obtain the first
order backward differentiation formula

yn+1 = yn + hf (tn+1, yn+1). (14)

Note that Eq. (14) is just the backward Euler formula that we first saw in Section 8.1.
By using higher order polynomials and correspondingly more data points, we can

obtain backward differentiation formulas of any order. The second order formula is

yn+1 = 1
3 [4yn − yn−1 + 2hf (tn+1, yn+1)] , (15)

and the fourth order formula is

yn+1 = 1
25 [48yn − 36yn−1 + 16yn−2 − 3yn−3 + 12hf (tn+1, yn+1)] . (16)

These formulas have local truncation errors proportional to h3 and h5, respectively.

E X A M P L E

2

Use the fourth order backward differentiation formula with h = 0.1 and the data given in
Example 1 to determine an approximate value of the solution y = φ(t) at t = 0.4 for the initial
value problem (11).

9C. William Gear (1935– ), born in London, England, received his undergraduate education at Cambridge
University and his doctorate in 1960 from the University of Illinois. He was a member of the faculty at the
University of Illinois for most of his career and made significant contributions both to computer design
and numerical analysis. His influential book on numerical methods for differential equations is listed in
the references.
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Using Eq. (16) with n = 3, h = 0.1, and with y0, . . . , y3 given in Example 1, we obtain the
equation

y4 = 4.6837842 + 0.192y4.

Thus

y4 = 5.7967626.

Comparing the calculated value with the exact value φ(0.4) = 5.7942260, we find that the error
is 0.0025366. This is somewhat better than the result using the Adams–Bashforth method, but
not as good as the result using the predictor–corrector method, and not nearly as good as the
result using the Adams–Moulton method.

A comparison between one-step and multistep methods must take several factors
into consideration. The fourth order Runge–Kutta method requires four evalua-
tions of f at each step, while the fourth order Adams–Bashforth method (once past
the starting values) requires only one, and the predictor–corrector method only two.
Thus, for a given step size h, the latter two methods may well be considerably faster
than Runge–Kutta. However, if Runge–Kutta is more accurate and therefore can
use fewer steps, then the difference in speed will be reduced and perhaps eliminated.
The Adams–Moulton and backward differentiation formulas also require that the
difficulty in solving the implicit equation at each step be taken into account. All
multistep methods have the possible disadvantage that errors in earlier steps can
feed back into later calculations with unfavorable consequences. On the other hand,
the underlying polynomial approximations in multistep methods make it easy to ap-
proximate the solution at points between the mesh points, should this be desirable.
Multistep methods have become popular largely because it is relatively easy to esti-
mate the error at each step and to adjust the order or the step size to control it. For
a further discussion of such questions as these, see the books listed at the end of this
chapter; in particular, Shampine (1994) is an authoritative source.

PROBLEMS In each of Problems 1 through 6 determine an approximate value of the solution at t = 0.4
and t = 0.5 using the specified method. For starting values use the values given by the Runge–
Kutta method; see Problems 1 through 6 of Section 8.3. Compare the results of the various
methods with each other and with the actual solution (if available).
(a) Use the fourth order predictor–corrector method with h = 0.1. Use the corrector formula
once at each step.
(b) Use the fourth order Adams–Moulton method with h = 0.1.
(c) Use the fourth order backward differentiation method with h = 0.1.

1. y′ = 3 + t − y, y(0) = 1 2. y′ = 5t − 3
√

y, y(0) = 2

3. y′ = 2y − 3t, y(0) = 1 4. y′ = 2t + e−ty, y(0) = 1

5. y′ = y2 + 2ty
3 + t2

, y(0) = 0.5 6. y′ = (t2 − y2) sin y, y(0) = −1

In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0, using the specified method. For starting values
use the values given by the Runge–Kutta method; see Problems 7 through 12 in Section 8.3.
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Compare the results of the various methods with each other and with the actual solution (if
available).
(a) Use the fourth order predictor–corrector method with h = 0.05. Use the corrector formula
once at each step.
(b) Use the fourth order Adams–Moulton method with h = 0.05.
(c) Use the fourth order backward differentiation method with h = 0.05.

7. y′ = 0.5 − t + 2y, y(0) = 1 8. y′ = 5t − 3
√

y, y(0) = 2

9. y′ = √
t + y, y(0) = 3 10. y′ = 2t + e−ty, y(0) = 1

11. y′ = (4 − ty)/(1 + y2), y(0) = −2

12. y′ = (y2 + 2ty)/(3 + t2), y(0) = 0.5

13. Show that the first order Adams–Bashforth method is the Euler method and that the first
order Adams–Moulton method is the backward Euler method.

14. Show that the third order Adams–Bashforth formula is

yn+1 = yn + (h/12)(23fn − 16fn−1 + 5fn−2).

15. Show that the third order Adams–Moulton formula is

yn+1 = yn + (h/12)(5fn+1 + 8fn − fn−1).

16. Derive the second order backward differentiation formula given by Eq. (15) in this section.

8.5 More on Errors; Stability
In Section 8.1 we discussed some ideas related to the errors that can occur in a
numerical approximation of the solution of the initial value problem

y′ = f (t, y), y(t0) = y0. (1)

In this section we continue that discussion and also point out some other difficulties
that can arise. Some of the points that we wish to make are fairly difficult to treat in
detail, so we will illustrate them by means of examples.

Truncation and Round-off Errors. Recall that for the Euler method we showed that the
local truncation error is proportional to h2 and that for a finite interval the global
truncation error is at most a constant times h. In general, for a method of order p, the
local truncation error is proportional to hp+1 and the global truncation error on a finite
interval is bounded by a constant times hp. To achieve high accuracy, we normally use
a numerical procedure for which p is fairly large, perhaps 4 or higher. As p increases,
the formula used in computing yn+1 normally becomes more complicated, and hence
more calculations are required at each step; however, this is usually not a serious
problem unless f (t, y) is very complicated or the calculation must be repeated very
many times. If the step size h is decreased, the global truncation error is decreased by
the same factor raised to the power p. However, as we mentioned in Section 8.1, if h is
very small, a great many steps will be required to cover a fixed interval, and the global
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round-off error may be larger than the global truncation error. The situation is shown
schematically in Figure 8.5.1. We assume that the round-off error Rn is proportional
to the number of computations performed and therefore is inversely proportional
to the step size h. On the other hand, the truncation error En is proportional to a
positive power of h. From Eq. (17) of Section 8.1 we know that the total error is
bounded by |En| + |Rn|; hence we wish to choose h so as to minimize this quantity.
The optimum value of h occurs when the rate of increase of the truncation error (as
h increases) is balanced by the rate of decrease of the round-off error, as indicated
in Figure 8.5.1.

Error

⏐En⏐ + ⏐Rn⏐

⏐Rn⏐

⏐En⏐

hhopt

FIGURE 8.5.1 The dependence of truncation and round-off errors on the step size h.

E X A M P L E

1

Consider the example problem

y′ = 1 − t + 4y, y(0) = 1. (2)

Using the Euler method with various step sizes, calculate approximate values for the solution
φ(t) at t = 0.5 and t = 1. Try to determine the optimum step size.

Keeping only four digits in order to shorten the calculations, we obtain the data shown in
Table 8.5.1. The first two columns are the step size h and the number of steps N required to
traverse the interval 0 ≤ t ≤ 1. Then yN/2 and yN are approximations to φ(0.5) = 8.712 and
φ(1) = 64.90, respectively. These quantities appear in the third and fifth columns. The fourth

TABLE 8.5.1 Approximations to the Solution of the Initial Value
Problem y′ = 1 − t + 4y, y(0) = 1 Using the Euler Method with
Different Step Sizes

h N yN/2 Error yN Error

0.01 100 8.390 0.322 60.12 4.78
0.005 200 8.551 0.161 62.51 2.39
0.002 500 8.633 0.079 63.75 1.15
0.001 1000 8.656 0.056 63.94 0.96
0.0008 1250 8.636 0.076 63.78 1.12
0.000625 1600 8.616 0.096 64.35 0.55
0.0005 2000 8.772 0.060 64.00 0.90
0.0004 2500 8.507 0.205 63.40 1.50
0.00025 4000 8.231 0.481 56.77 8.13
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and sixth columns display the differences between the calculated values and the actual value
of the solution.

For relatively large step sizes the round-off error is much less than the global truncation
error. Consequently, the total error is approximately the same as the global truncation error,
which for the Euler method is bounded by a constant times h. Thus, as the step size is reduced,
the error is reduced proportionally. The first three lines in Table 8.5.1 show this type of
behavior. For h = 0.001 the error has been further reduced, but much less than proportionally;
this indicates that round-off error is becoming important. As h is reduced still more, the error
begins to fluctuate, and further improvements in accuracy become problematical. For values
of h less than 0.0005 the error is clearly increasing, which indicates that round-off error is now
the dominant part of the total error.

These results can also be expressed in terms of the number of steps N . For N less than
about 1000 accuracy is improved by taking more steps, while for N greater than about 2000
using more steps has an adverse effect. Thus for this problem it is best to use an N somewhere
between 1000 and 2000. For the calculations shown in Table 8.5.1 the best result at t = 0.5
occurs for N = 1000, while at t = 1.0 the best result is for N = 1600.

You should be careful not to read too much into the results shown in Example 1.
The optimum ranges for h and N depend on the differential equation, the numerical
method that is used, and the number of digits that are retained in the calculation.
Nevertheless, it is generally true that if too many steps are required in a calculation,
then eventually round-off error is likely to accumulate to the point where it seriously
degrades the accuracy of the procedure. For many problems this is not a concern:
for them, any of the fourth order methods we have discussed in Sections 8.3 and 8.4
will produce good results with a number of steps far less than the level at which
round-off error becomes important. For some problems, however, round-off error
does become vitally important. For such problems, the choice of method may be
crucial. This is also one reason why modern codes provide a means of adjusting the
step size as they go along, using a larger step size wherever possible and a very small
step size only where necessary.

Vertical Asymptotes. As a second example, consider the problem of determining the
solution y = φ(t) of

y′ = t2 + y2, y(0) = 1. (3)

Since the differential equation is nonlinear, the existence and uniqueness theorem
(Theorem 2.4.2) guarantees only that there is a solution in some interval about t = 0.
Suppose that we try to compute a solution of the initial value problem on the interval
0 ≤ t ≤ 1 using different numerical procedures.

If we use the Euler method with h = 0.1, 0.05, and 0.01, we find the following
approximate values at t = 1: 7.189548, 12.32093, and 90.75551, respectively. The large
differences among the computed values are convincing evidence that we should use a
more accurate numerical procedure—the Runge–Kutta method, for example. Using
the Runge–Kutta method with h = 0.1, we find the approximate value 735.0991 at
t = 1,which is quite different from those obtained using the Euler method. Repeating
the calculations using step sizes of h = 0.05 and h = 0.01, we obtain the interesting
information shown in Table 8.5.2.

The values at t = 0.90 are reasonable and we might well believe that the solution has
a value of about 14.305 at t = 0.90. However, it is not clear what is happening between
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TABLE 8.5.2 Approximations to the Solution
of the Initial Value Problem y′ = t2 + y2,
y(0) = 1 Using the Runge–Kutta Method

h t = 0.90 t = 1.0

0.1 14.02182 735.0991
0.05 14.27117 1.75863 × 105

0.01 14.30478 2.0913 × 102893

0.001 14.30486

t = 0.9 and t = 1.0. To help clarify this, let us turn to some analytical approximations
to the solution of the initial value problem (3). Note that, on 0 ≤ t ≤ 1,

y2 ≤ t2 + y2 ≤ 1 + y2. (4)

This suggests that the solution y = φ1(t) of

y′ = 1 + y2, y(0) = 1 (5)

and the solution y = φ2(t) of

y′ = y2, y(0) = 1 (6)

are upper and lower bounds, respectively, for the solution y = φ(t) of the original
problem,since all these solutions pass through the same initial point. Indeed, it can be
shown (for example, by the iteration method of Section 2.8) that φ2(t) ≤ φ(t) ≤ φ1(t)
as long as these functions exist. The important thing to note is that we can solve
Eqs. (5) and (6) for φ1 and φ2 by separation of variables. We find that

φ1(t) = tan
(

t + π

4

)
, φ2(t) = 1

1 − t
. (7)

Thus φ2(t) → ∞ as t → 1, and φ1(t) → ∞ as t → π/4 ∼= 0.785. These calculations
show that the solution of the original initial value problem exists at least for
0 ≤ t < π/4 and at most for 0 ≤ t < 1. The solution of the problem (3) has a vertical
asymptote for some t in π/4 ≤ t ≤ 1 and thus does not exist on the entire interval
0 ≤ t ≤ 1.

Our numerical calculations, however, suggest that we can go beyond t = π/4, and
probably beyond t = 0.9. Assuming that the solution of the initial value problem
exists at t = 0.9 and has the value 14.305, we can obtain a more accurate appraisal of
what happens for larger t by considering the initial value problems (5) and (6) with
y(0) = 1 replaced by y(0.9) = 14.305. Then we obtain

φ1(t) = tan(t + 0.60100), φ2(t) = 1/(0.96991 − t), (8)

where only five decimal places have been kept. Thus φ1(t) → ∞ as
t → π/2 − 0.60100 ∼= 0.96980 and φ2(t) → ∞ as t → 0.96991. We conclude that the
asymptote of the solution of the initial value problem (3) lies between these two
values. This example illustrates the sort of information that can be obtained by a
judicious combination of analytical and numerical work.

Stability. The concept of stability is associated with the possibility that small errors
that are introduced in the course of a mathematical procedure may die out as the
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procedure continues. Conversely, instability occurs if small errors tend to increase,
perhaps without bound. For example, in Section 2.5 we identified equilibrium so-
lutions of a differential equation as (asymptotically) stable or unstable, depending
on whether solutions that were initially near the equilibrium solution tended to ap-
proach it or to depart from it as t increased. Somewhat more generally, the solution
of an initial value problem is asymptotically stable if initially nearby solutions tend
to approach the given solution, and unstable if they tend to depart from it. Visually,
in an asymptotically stable problem the graphs of solutions will come together, while
in an unstable problem they will separate.

If we are investigating an initial value problem numerically, the best that we can
hope for is that the numerical approximation will mimic the behavior of the actual
solution. We cannot make an unstable problem into a stable one merely by ap-
proximating its solution numerically. However, it may well happen that a numerical
procedure will introduce instabilities that were not part of the original problem, and
this can cause trouble in approximating the solution. Avoidance of such instabilities
may require us to place restrictions on the step size h.

To illustrate what can happen in the simplest possible context, consider the differ-
ential equation

dy/dt = ry, (9)

where r is a constant. Suppose that in solving this equation we have reached the
point (tn, yn). Let us compare the exact solution of Eq. (9) that passes through this
point, namely,

y = yn exp[r(t − tn)], (10)

with numerical approximations obtained from the Euler formula

yn+1 = yn + hf (tn, yn) (11)

and from the backward Euler formula

yn+1 = yn + hf (tn+1, yn+1). (12)

From the Euler formula (11) we obtain

yn+1 = yn + hryn = yn(1 + rh). (13)

Similarly, from the backward Euler formula (12) we have

yn+1 = yn + hryn+1,

or

yn+1 = yn

1 − rh
= yn[1 + rh + (rh)2 + · · ·]. (14)

Finally, evaluating the solution (10) at tn + h, we find that

yn+1 = yn exp(rh) = yn

[
1 + rh + (rh)2

2
+ · · ·

]
. (15)

Comparing Eqs. (13), (14), and (15), we see that the errors in both the Euler formula
and the backward Euler formula are of order h2, as the theory predicts.
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Now suppose that we change the value yn to yn + δ. Think, if you wish, of δ as the
error that has accumulated by the time we reach t = tn. The question is whether this
error increases or decreases in going one more step to tn+1.

For the exact solution (15), the change in yn+1 due to the change δ in yn is just
δ exp(rh). This quantity is less than δ if exp(rh) < 1, that is, if r < 0. This confirms our
conclusion in Chapter 2 that Eq. (9) is asymptotically stable if r < 0, and is unstable
if r > 0.

For the backward Euler method, the change in yn+1 in Eq. (14) due to δ is δ/(1 − rh).
For r ≤ 0 the quantity 1/(1 − rh) is always nonnegative and never greater than 1.
Thus, if the differential equation is stable, then so is the backward Euler method for
an arbitrary step size h.

On the other hand, for the Euler method, the change in yn+1 in Eq. (13) due to δ

is δ(1 + rh). If we recall that r ≤ 0 and require that |1 + rh| ≤ 1, then we find that h
must satisfy h ≤ 2/|r|. Thus the Euler method is not stable for this problem unless h
is sufficiently small.

The restriction on the step size h in using the Euler method in the preceding
example is rather mild unless |r| is quite large. Nonetheless, the example illustrates
that it may be necessary to restrict h in order to achieve stability in the numerical
method, even though the initial value problem itself is stable for all values of h.
Problems for which a much smaller step size is needed for stability than for accuracy
are called stiff. The backward differentiation formulas described in Section 8.4 (of
which the backward Euler formula is the lowest order example) are the most popular
formulas for dealing with stiff problems. The following example illustrates the kind of
instability that can occur when we try to approximate the solution of a stiff problem.

E X A M P L E

2

A Sti f f
Problem

Consider the initial value problem

y′ = −100y + 100t + 1, y(0) = 1. (16)

Find numerical approximations to the solution for 0 ≤ t ≤ 1 using the Euler, backward Euler,
and Runge–Kutta methods. Compare the numerical results with the exact solution.

Since the differential equation is linear, it is easy to solve, and the solution of the initial
value problem (16) is

y = φ(t) = e−100t + t. (17)

Some values of the solution φ(t), correct to six decimal places,are given in the second column of
Table 8.5.3, and a graph of the solution is shown in Figure 8.5.2. There is a thin layer (sometimes
called a boundary layer) to the right of t = 0 in which the exponential term is significant and
the solution varies rapidly. Once past this layer, however,φ(t) ∼= t and the graph of the solution
is essentially a straight line. The width of the boundary layer is somewhat arbitrary, but it is
certainly small. At t = 0.1, for example, exp(−100t) ∼= 0.000045.

If we plan to approximate the solution (17) numerically, we might intuitively expect that a
small step size will be needed only in the boundary layer. To make this expectation a bit more
precise, recall from Section 8.1 that the local truncation errors for the Euler and backward
Euler methods are proportional to φ′′(t). For this problem φ′′(t) = 104e−100t , which varies
from a value of 104 at t = 0 to nearly zero for t > 0.2. Thus a very small step size is needed for
accuracy near t = 0, but a much larger step size is adequate once t is a little larger.

On the other hand, the stability analysis in Eqs. (9) through (15) also applies to this problem.
Since r = −100 for Eq. (16), it follows that for stability we need h < 0.02 for the Euler method,
but there is no corresponding restriction for the backward Euler method.
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TABLE 8.5.3 Numerical Approximations to the Solution of the Initial Value Problem
y′ = −100y + 100t + 1, y(0) = 1

t Exact Euler Euler Runge–Kutta Runge–Kutta Backward Euler
0.025 0.0166 . . . 0.0333 . . . 0.025 0.1

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.05 0.056738 2.300000 −0.246296 0.470471
0.1 0.100045 5.162500 0.187792 10.6527 0.276796 0.190909
0.2 0.200000 25.8289 0.207707 111.559 0.231257 0.208264
0.4 0.400000 657.241 0.400059 1.24 × 104 0.400977 0.400068
0.6 0.600000 1.68 × 104 0.600000 1.38 × 106 0.600031 0.600001
0.8 0.800000 4.31 × 105 0.800000 1.54 × 108 0.800001 0.800000
1.0 1.000000 1.11 × 107 1.000000 1.71 × 1010 1.000000 1.000000

Some results obtained from the Euler method are shown in columns 3 and 4 of Table 8.5.3.
The values for h = 0.025 are worthless because of instability, while those for h = 0.01666 . . . are
reasonably accurate for t ≥ 0.2. However, comparable accuracy for this range of t is obtained
for h = 0.1 by using the backward Euler method, as shown by the results in column 7 of the
table.

The situation is not improved by using, instead of the Euler method, a more accurate one,
such as Runge–Kutta. For this problem the Runge–Kutta method is unstable for h = 0.033 . . .

but stable for h = 0.025, as shown by the results in columns 5 and 6 of Table 8.5.3.
The results given in the table for t = 0.05 and for t = 0.1 show that in the boundary layer a

smaller step size is needed to obtain an accurate approximation. You are invited to explore
this matter further in Problem 3.

1

0.8

0.6

0.4

0.2

t0.8 10.60.40.2

y

FIGURE 8.5.2 The solution of the initial value problem (16).

As a final example, consider the problem of determining two linearly independent
solutions of the second order linear equation

y′′ − 10π2y = 0 (18)

for t > 0. The generalization of numerical techniques for the first order equations
to higher order equations or to systems of equations is discussed in Section 8.6,
but that is not needed for the present discussion. Two linearly independent solu-
tions of Eq. (18) are φ1(t) = cosh

√
10π t and φ2(t) = sinh

√
10π t. The first solution,
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φ1(t) = cosh
√

10π t, is generated by the initial conditions φ1(0) = 1, φ′
1(0) = 0; the

second solution, φ2(t) = sinh
√

10π t, is generated by the initial conditions φ2(0) = 0,
φ′

2(0) = √
10π . Although analytically we can tell the difference between

cosh
√

10π t and sinh
√

10π t, for large t we have cosh
√

10π t ∼ e
√

10π t/2 and
sinh

√
10π t ∼ e

√
10π t/2; numerically these two functions look exactly the same if only

a fixed number of digits are retained. For example, correct to eight significant figures,
we find that for t = 1,

sinh
√

10π = cosh
√

10π = 10,315.894.

If the calculations are performed on a machine that carries only eight digits, the
two solutions φ1 and φ2 are identical at t = 1 and indeed for all t > 1. Thus, even
though the solutions are linearly independent, their numerical tabulation would show
that they are the same because we can retain only a finite number of digits. This
phenomenon is called numerical dependence.

For the present problem we can partially circumvent this difficulty by comput-
ing, instead of sinh

√
10π t and cosh

√
10π t, the linearly independent solutions

φ3(t) = e
√

10π t and φ4(t) = e−√
10π t corresponding to the initial conditions φ3(0) = 1,

φ′
3(0) = √

10π and φ4(0) = 1, φ′
4(0) = −√

10π , respectively. The solution φ3 grows
exponentially while φ4 decays exponentially. Even so, we encounter difficulty in
calculating φ4 correctly on a large interval. The reason is that at each step of the
calculation for φ4 we introduce truncation and round-off errors. Thus, at any point
tn, the data to be used in going to the next point are not precisely the values of φ4(tn)
and φ′

4(tn). The solution of the initial value problem with these data at tn involves
not only e−√

10π t but also e
√

10π t . Because the error in the data at tn is small, the latter
function appears with a very small coefficient. Nevertheless, since e−√

10π t tends to
zero and e

√
10π t grows very rapidly, the latter eventually dominates, and the calculated

solution is simply a multiple of e
√

10π t = φ3(t).
To be specific, suppose that we use the Runge–Kutta method to calculate the so-

lution y = φ4(t) = e−√
10π t of the initial value problem

y′′ − 10π2y = 0, y(0) = 1, y′(0) = −√
10π.

(The Runge–Kutta method for second order systems is described in Section 8.6.)
Using single-precision (eight-digit) arithmetic with a step size h = 0.01, we obtain
the results in Table 8.5.4. It is clear from these results that the numerical approxi-
mation begins to deviate significantly from the exact solution for t > 0.5, and soon
differs from it by many orders of magnitude. The reason is the presence, in the nu-
merical approximation, of a small component of the exponentially growing solution
φ3(t) = e

√
10π t . With eight-digit arithmetic we can expect a round-off error of the

order of 10−8 at each step. Since e
√

10π t grows by a factor of 3.7 × 1021 from t = 0 to
t = 5, an error of order 10−8 near t = 0 can produce an error of order 1013 at t = 5
even if no further errors are introduced in the intervening calculations. The results
given in Table 8.5.4 demonstrate that this is exactly what happens.

You should bear in mind that the numerical values of the entries in the second
column of Table 8.5.4 are extremely sensitive to slight variations in how the calcula-
tions are executed. Regardless of such details, however, the exponential growth of
the approximation will be clearly evident.
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TABLE 8.5.4 Exact Solution of y′′ − 10π 2y = 0,
y(0) = 1, y′(0) = −√

10π and Numerical
Approximation Using the Runge–Kutta Method
with h = 0.01

y

t Numerical Exact

0.0 1.0 1.0
0.25 8.3439 × 10−2 8.3438 × 10−2

0.5 6.9623 × 10−3 6.9620 × 10−3

0.75 5.8409 × 10−4 5.8089 × 10−4

1.0 8.6688 × 10−5 4.8469 × 10−5

1.5 5.4900 × 10−3 3.3744 × 10−7

2.0 7.8852 × 10−1 2.3492 × 10−9

2.5 1.1326 × 102 1.6355 × 10−11

3.0 1.6268 × 104 1.1386 × 10−13

3.5 2.3368 × 106 7.9272 × 10−16

4.0 3.3565 × 108 5.5189 × 10−18

4.5 4.8211 × 1010 3.8422 × 10−20

5.0 6.9249 × 1012 2.6749 × 10−22

Equation (18) is highly unstable, and the behavior shown in this example is typical
of unstable problems. One can track a solution accurately for a while, and the interval
can be extended by using smaller step sizes or more accurate methods, but eventually
the instability in the problem itself takes over and leads to large errors.

Some Comments on Numerical Methods. In this chapter we have introduced several nu-
merical methods for approximating the solution of an initial value problem. We
have tried to emphasize some important ideas while maintaining a reasonable level
of complexity. For one thing, we have always used a uniform step size, whereas
production codes that are currently in use provide for varying the step size as the
calculation proceeds.

There are several considerations that must be taken into account in choosing step
sizes. Of course, one is accuracy; too large a step size leads to an inaccurate result.
Normally, an error tolerance is prescribed in advance, and the step size at each step
must be consistent with this requirement. As we have seen, the step size must also be
chosen so that the method is stable. Otherwise, small errors will grow and soon render
the results worthless. Finally, for implicit methods an equation must be solved at each
step, and the method used to solve the equation may impose additional restrictions
on the step size.

In choosing a method,one must also balance the considerations of accuracy and sta-
bility against the amount of time required to execute each step. An implicit method,
such as the Adams–Moulton method, requires more calculations for each step, but
if its accuracy and stability permit a larger step size (and consequently fewer steps),
then this may more than compensate for the additional calculations. The backward
differentiation formulas of moderate order, say, four, are highly stable and are there-
fore indicated for stiff problems, for which stability is the controlling factor.
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Some current production codes also permit the order of the method to be varied,
as well as the step size, as the calculation proceeds. The error is estimated at each step,
and the order and step size are chosen to satisfy the prescribed error tolerance. In
practice, Adams methods up to order twelve and backward differentiation formulas
up to order five are in use. Higher order backward differentiation formulas are
unsuitable because of a lack of stability.

Finally, we note that the smoothness of the function f —that is, the number of
continuous derivatives that it possesses—is a factor in choosing the order of the
method to be used. High order methods lose some of their accuracy if f is not
smooth to a corresponding order.

PROBLEMS 1. To obtain some idea of the possible dangers of small errors in the initial conditions, such
as those due to round-off, consider the initial value problem

y′ = t + y − 3, y(0) = 2.

(a) Show that the solution is y = φ1(t) = 2 − t.

(b) Suppose that in the initial condition a mistake is made, and 2.001 is used instead of 2.
Determine the solution y = φ2(t) in this case, and compare the difference φ2(t) − φ1(t) at
t = 1 and as t → ∞.

2. Consider the initial value problem

y′ = t2 + ey, y(0) = 0. (i)

Using the Runge–Kutta method with step size h, we obtain the results inTable 8.5.5. These
results suggest that the solution has a vertical asymptote between t = 0.9 and t = 1.0.

TABLE 8.5.5 Approximations to the
Solution of the Initial Value Problem
y′ = t2 + ey, y(0) = 0 Using the
Runge–Kutta Method

h t = 0.90 t = 1.0

0.02 3.42985 > 1038

0.01 3.42982 > 1038

(a) Let y = φ(t) be the solution of problem (i). Further, let y = φ1(t) be the solution of

y′ = 1 + ey, y(0) = 0, (ii)

and let y = φ2(t) be the solution of

y′ = ey, y(0) = 0. (iii)

Show that
φ2(t) ≤ φ(t) ≤ φ1(t) (iv)

on some interval, contained in 0 ≤ t ≤ 1, where all three solutions exist.
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(b) Determine φ1(t) and φ2(t). Then show that φ(t) → ∞ for some t between
t = ln 2 ∼= 0.69315 and t = 1.

(c) Solve the differential equations y′ = ey and y′ = 1 + ey, respectively, with the initial
condition y(0.9) = 3.4298. Use the results to show that φ(t) → ∞ when t ∼= 0.932.

3. Consider again the initial value problem (16) from Example 2. Investigate how small a
step size h must be chosen to ensure that the error at t = 0.05 and at t = 0.1 is less than
0.0005.

(a) Use the Euler method.

(b) Use the backward Euler method.

(c) Use the Runge–Kutta method.

4. Consider the initial value problem

y′ = −10y + 2.5t2 + 0.5t, y(0) = 4.

(a) Find the solution y = φ(t) and draw its graph for 0 ≤ t ≤ 5.
(b) The stability analysis in the text suggests that, for this problem, the Euler method is
stable only for h < 0.2. Confirm that this is true by applying the Euler method to this
problem for 0 ≤ t ≤ 5 with step sizes near 0.2.
(c) Apply the Runge–Kutta method to this problem for 0 ≤ t ≤ 5 with various step sizes.
What can you conclude about the stability of this method?
(d) Apply the backward Euler method to this problem for 0 ≤ t ≤ 5 with various step
sizes. What step size is needed to ensure that the error at t = 5 is less than 0.01?

In each of Problems 5 and 6:
(a) Find a formula for the solution of the initial value problem, and note that it is independent
of λ.
(b) Use the Runge–Kutta method with h = 0.01 to compute approximate values of the solu-
tion for 0 ≤ t ≤ 1 for various values of λ such as λ = 1, 10, 20, and 50.
(c) Explain the differences, if any, between the exact solution and the numerical approxima-
tions.

5. y′ − λy = 1 − λt, y(0) = 0 6. y′ − λy = 2t − λt2, y(0) = 0

8.6 Systems of First Order Equations
In the preceding sections we discussed numerical methods for approximating the
solution of an initial value problem associated with a first order differential equation.
These methods can also be applied to a system of first order equations. Since a
higher order equation can always be reduced to a system of first order equations, it
is sufficient to deal with systems of first order equations alone. For simplicity, we
consider a system of two first order equations

x′ = f (t, x, y), y′ = g(t, x, y), (1)

with the initial conditions

x(t0) = x0, y(t0) = y0. (2)
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The functions f and g are assumed to satisfy the conditions of Theorem 7.1.1 so that
the initial value problem (1), (2) has a unique solution in some interval of the t-axis
containing the point t0. We wish to determine approximate values x1, x2, . . . , xn, . . .
and y1, y2, . . . , yn, . . . of the solution x = φ(t), y = ψ(t) at the points tn = t0 + nh with
n = 1, 2, . . . .

In vector notation the initial value problem (1), (2) can be written as

x′ = f(t, x), x(t0) = x0, (3)

where x is the vector with components x and y, f is the vector function with com-
ponents f and g, and x0 is the vector with components x0 and y0. The methods of
the previous sections can be readily generalized to handle systems of two (or more)
equations. All that is needed (formally) is to replace the scalar variable x by the vec-
tor x and the scalar function f by the vector function f in the appropriate equations.
For example, the Euler formula becomes

xn+1 = xn + hfn, (4)

or, in component form, (
xn+1

yn+1

)
=

(
xn

yn

)
+ h

(
f (tn, xn, yn)

g(tn, xn, yn)

)
. (5)

The initial conditions are used to determine f0, which is the vector tangent to the
graph of the solution x = φ(t) in the xy-plane. We move in the direction of this
tangent vector for a time step h in order to find the next point x1. Then we calculate
a new tangent vector f1, move along it for a time step h to find x2, and so forth.

In a similar way, the Runge–Kutta method can be extended to a system. For the
step from tn to tn+1 we have

xn+1 = xn + (h/6)(kn1 + 2kn2 + 2kn3 + kn4), (6)

where

kn1 = f(tn, xn),

kn2 = f[tn + (h/2), xn + (h/2)kn1],
(7)

kn3 = f[tn + (h/2), xn + (h/2)kn2],
kn4 = f(tn + h, xn + hkn3).

The formulas for the Adams–Moulton predictor–corrector method as it applies to
the initial value problem (1), (2) are given in Problem 9.

The vector equations (3), (4), (6), and (7) are, in fact, valid in any number of
dimensions. All that is needed is to interpret the vectors as having n components
rather than two.

E X A M P L E

1

Determine approximate values of the solution x = φ(t), y = ψ(t) of the initial value problem

x′ = x − 4y, y′ = −x + y, (8)

x(0) = 1, y(0) = 0, (9)
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at the point t = 0.2. Use the Euler method with h = 0.1 and the Runge–Kutta method with
h = 0.2. Compare the results with the values of the exact solution:

φ(t) = e−t + e3t

2
, ψ(t) = e−t − e3t

4
. (10)

Let us first use the Euler method. For this problem fn = xn − 4yn and gn = −xn + yn; hence

f0 = 1 − (4)(0) = 1, g0 = −1 + 0 = −1.

Then, from the Euler formulas (4) and (5), we obtain

x1 = 1 + (0.1)(1) = 1.1, y1 = 0 + (0.1)(−1) = −0.1.

At the next step

f1 = 1.1 − (4)(−0.1) = 1.5, g1 = −1.1 + (−0.1) = −1.2.

Consequently,

x2 = 1.1 + (0.1)(1.5) = 1.25, y2 = −0.1 + (0.1)(−1.2) = −0.22.

The values of the exact solution, correct to eight digits, are φ(0.2) = 1.3204248 and
ψ(0.2) = −0.25084701. Thus the values calculated from the Euler method are in error by
about 0.0704 and 0.0308, respectively, corresponding to percentage errors of about 5.3% and
12.3%.

Now let us use the Runge–Kutta method to approximate φ(0.2) and ψ(0.2). With h = 0.2
we obtain the following values from Eqs. (7):

k01 =
(

f (1, 0)

g(1, 0)

)
=

(
1

−1

)
;

k02 =
(

f (1.1, −0.1)

g(1.1, −0.1)

)
=

(
1.5

−1.2

)
;

k03 =
(

f (1.15, −0.12)

g(1.15, −0.12)

)
=

(
1.63

−1.27

)
;

k04 =
(

f (1.326, −0.254)

g(1.326, −0.254)

)
=

(
2.342

−1.580

)
.

Then, substituting these values in Eq. (6), we obtain

x1 =
(

1
0

)
+ 0.2

6

(
9.602

−7.52

)
=

(
1.3200667

−0.25066667

)
.

These values of x1 and y1 are in error by about 0.000358 and 0.000180, respectively, with
percentage errors much less than one-tenth of 1%.

This example again illustrates the great gains in accuracy that are obtainable by using a more
accurate approximation method, such as the Runge–Kutta method. In the calculations we have
just outlined, the Runge–Kutta method requires only twice as many function evaluations as
the Euler method, but the error in the Runge–Kutta method is about 200 times less than in
the Euler method.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 503 Page number 483 cyan black

8.6 Systems of First Order Equations 483

PROBLEMS In each of Problems 1 through 6 determine approximate values of the solution x = φ(t),
y = ψ(t) of the given initial value problem at t = 0.2, 0.4, 0.6, 0.8, and 1.0. Compare the
results obtained by different methods and different step sizes.
(a) Use the Euler method with h = 0.1.
(b) Use the Runge–Kutta method with h = 0.2.
(c) Use the Runge–Kutta method with h = 0.1.

1. x′ = x + y + t, y′ = 4x − 2y; x(0) = 1, y(0) = 0

2. x′ = 2x + ty, y′ = xy; x(0) = 1, y(0) = 1

3. x′ = −tx − y − 1, y′ = x; x(0) = 1, y(0) = 1

4. x′ = x − y + xy, y′ = 3x − 2y − xy; x(0) = 0, y(0) = 1

5. x′ = x(1 − 0.5x − 0.5y), y′ = y(−0.25 + 0.5x); x(0) = 4, y(0) = 1

6. x′ = exp(−x + y) − cos x, y′ = sin(x − 3y); x(0) = 1, y(0) = 2

7. Consider the example problem x′ = x − 4y, y′ = −x + y with the initial conditions
x(0) = 1 and y(0) = 0. Use the Runge–Kutta method to find approximate values of the
solution of this problem on the interval 0 ≤ t ≤ 1. Start with h = 0.2 and then repeat the
calculation with step sizes h = 0.1, 0.05, . . . , each half as long as in the preceding case.
Continue the process until the first five digits of the solution at t = 1 are unchanged for
successive step sizes. Determine whether these digits are accurate by comparing them
with the exact solution given in Eqs. (10) in the text.

8. Consider the initial value problem

x′′ + t2x′ + 3x = t, x(0) = 1, x′(0) = 2.

Convert this problem to a system of two first order equations, and determine approximate
values of the solution at t = 0.5 and t = 1.0 using the Runge–Kutta method with h = 0.1.

9. Consider the initial value problem x′ = f (t, x, y) and y′ = g(t, x, y) with x(t0) = x0 and
y(t0) = y0. The generalization of the Adams–Moulton predictor–corrector method of Sec-
tion 8.4 is

xn+1 = xn + 1
24 h(55fn − 59fn−1 + 37fn−2 − 9fn−3),

yn+1 = yn + 1
24 h(55gn − 59gn−1 + 37gn−2 − 9gn−3)

and

xn+1 = xn + 1
24 h(9fn+1 + 19fn − 5fn−1 + fn−2),

yn+1 = yn + 1
24 h(9gn+1 + 19gn − 5gn−1 + gn−2).

Determine an approximate value of the solution at t = 0.4 for the example initial value
problem x′ = x − 4y, y′ = −x + y with x(0) = 1, y(0) = 0. Take h = 0.1. Correct the pre-
dicted value once. For the values of x1, . . . , y3 use the values of the exact solution rounded
to six digits: x1 = 1.12735, x2 = 1.32042, x3 = 1.60021, y1 = −0.111255, y2 = −0.250847,
and y3 = −0.429696.
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C H A P T E R

9

Nonlinear
Differential
Equations and
Stability

There are many differential equations,especially nonlinear ones, that are not suscepti-
ble to analytical solution in any reasonably convenient manner. Numerical methods,
such as those discussed in the preceding chapter, provide one means of dealing with
these equations. Another approach, presented in this chapter, is geometrical in char-
acter and leads to a qualitative understanding of the behavior of solutions rather
than to detailed quantitative information.

9.1 The Phase Plane: Linear Systems
Since many differential equations cannot be solved conveniently by analytical meth-
ods, it is important to consider what qualitative1 information can be obtained about
their solutions without actually solving the equations. The questions that we consider
in this chapter are associated with the idea of stability of a solution, and the methods

1The qualitative theory of differential equations was created by Henri Poincaré (1854–1912) in several
major papers between 1880 and 1886. Poincaré was a professor at the University of Paris and is generally
considered the leading mathematician of his time. He made fundamental discoveries in several differ-
ent areas of mathematics, including complex function theory, partial differential equations, and celestial
mechanics. In a series of papers beginning in 1894 he initiated the use of modern methods in topology.
In differential equations he was a pioneer in the use of asymptotic series, one of the most powerful tools
of contemporary applied mathematics. Among other things, he used asymptotic expansions to obtain
solutions about irregular singular points, thereby extending the work of Fuchs and Frobenius discussed in
Chapter 5.
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that we employ are basically geometrical. Both the concept of stability and the use
of geometrical analysis were introduced in Chapter 1 and used in Section 2.5 for first
order autonomous equations

dy/dt = f (y). (1)

In this chapter we refine the ideas and extend the discussion to systems of equations.
We start with a consideration of the simplest system, namely, a second order linear

homogeneous system with constant coefficients. Such a system has the form

dx/dt = Ax, (2)

where A is a 2 × 2 constant matrix and x is a 2 × 1 vector. Systems of this kind
were solved in Sections 7.5 through 7.8. Recall that if we seek solutions of the form
x = ξert , then by substitution for x in Eq. (2) we find that

(A − rI)ξ = 0. (3)

Thus r must be an eigenvalue and ξ a corresponding eigenvector of the coefficient
matrix A. The eigenvalues are the roots of the polynomial equation

det(A − rI) = 0, (4)

and the eigenvectors are determined from Eq. (3) up to an arbitrary multiplicative
constant.

In Section 2.5 we found that points where the right side of Eq. (1) is zero are of
special importance. Such points correspond to constant solutions, or equilibrium
solutions, of Eq. (1) and are often called critical points. Similarly, for the system (2),
points where Ax = 0 correspond to equilibrium (constant) solutions, and again they
are called critical points. We will assume that A is nonsingular, or that det A �= 0. It
follows that x = 0 is the only critical point of the system (2).

Recall that a solution of Eq. (2) is a vector function x = φ(t) that satisfies the differ-
ential equation. Such a function can be viewed as a parametric representation for a
curve in the x1x2-plane. It is often useful to regard this curve as the path, or trajectory,
traversed by a moving particle whose velocity dx/dt is specified by the differential
equation. The x1x2-plane itself is called the phase plane, and a representative set of
trajectories is referred to as a phase portrait.

In analyzing the system (2), we must consider several different cases, depending
on the nature of the eigenvalues of A. These cases also occurred in Sections 7.5
through 7.8, where we were primarily interested in finding a convenient formula for
the general solution. Now our main goal is to characterize the differential equation
according to the geometric pattern formed by its trajectories. In each case we discuss
the behavior of the trajectories in general and illustrate it with an example. It is
important that you become familiar with the types of behavior that the trajectories
have for each case, because these are the basic ingredients of the qualitative theory
of differential equations.

CASE 1 Real Unequal Eigenvalues of the Same Sign. The general solution of Eq. (2) is

x = c1ξ
(1)er1t + c2ξ

(2)er2t , (5)

where r1 and r2 are either both positive or both negative. Suppose first that
r1 < r2 < 0, and that the eigenvectors ξ (1) and ξ (2) are as shown in Figure 9.1.1a.
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It follows from Eq. (5) that x → 0 as t → ∞ regardless of the values of c1 and c2; in
other words, all solutions approach the critical point at the origin as t → ∞. If the
solution starts at an initial point on the line through ξ (1), then c2 = 0. Consequently,
the solution remains on the line through ξ (1) for all t and approaches the origin as
t → ∞. Similarly, if the initial point is on the line through ξ (2), then the solution
approaches the origin along that line. In the general situation, it is helpful to rewrite
Eq. (5) in the form

x = er2t[c1ξ
(1)e(r1−r2)t + c2ξ

(2)]. (6)

Observe that r1 − r2 < 0. Therefore, as long as c2 �= 0, the term c1ξ
(1) exp[(r1 − r2)t]

is negligible compared to c2ξ
(2) for t sufficiently large. Thus, as t → ∞, the trajectory

not only approaches the origin but also tends toward the line through ξ (2). Hence all
solutions are tangent to ξ (2) at the critical point except for those solutions that start
exactly on the line through ξ (1). Several trajectories are sketched in Figure 9.1.1a.
Some typical graphs of x1 versus t are shown in Figure 9.1.1b, illustrating that all
solutions exhibit exponential decay in time. The behavior of x2 versus t is similar.
This type of critical point is called a node or a nodal sink.

Let us now look backward in time and inquire what happens as t → −∞. Still
assuming that r1 < r2 < 0, we note that if c1 �= 0, then the dominant term in Eq. (5)
as t → −∞ is the term involving er1t . Thus, except for the trajectories lying along the
line through ξ (2), for large negative t the trajectories are very nearly parallel to the
eigenvector ξ (1). This is also indicated in Figure 9.1.1a.

x2

x1

(a) (b)

x1

t

ξ(2)

ξ(1)

FIGURE 9.1.1 A node; r1 < r2 < 0. (a) The phase plane. (b) x1 versus t.

If r1 and r2 are both positive, and 0 < r2 < r1, then the trajectories have the same
pattern as in Figure 9.1.1a, but the direction of motion is away from, rather than
toward, the critical point at the origin. In this case x1 and x2 grow exponentially as
functions of t. Again the critical point is called a node or a nodal source.

An example of a node occurs in Example 2 of Section 7.5, and its trajectories are
shown in Figure 7.5.4.

CASE 2 Real Eigenvalues of Opposite Sign. The general solution of Eq. (2) is

x = c1ξ
(1)er1t + c2ξ

(2)er2t , (7)

where r1 > 0 and r2 < 0. Suppose that the eigenvectors ξ (1) and ξ (2) are as shown
in Figure 9.1.2a. If the solution starts at an initial point on the line through ξ (1),
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x2

x1

x1

t

(a) (b)

ξ(2) ξ(1)

FIGURE 9.1.2 A saddle point; r1 > 0, r2 < 0. (a) The phase plane. (b) x1 versus t.

then it follows that c2 = 0. Consequently, the solution remains on the line through
ξ (1) for all t, and since r1 > 0, ‖x‖ → ∞ as t → ∞. If the solution starts at an initial
point on the line through ξ (2), then the situation is similar except that ‖x‖ → 0 as
t → ∞ because r2 < 0. Solutions starting at other initial points follow trajectories
such as those shown in Figure 9.1.2a. The positive exponential is the dominant term
in Eq. (7) for large t, so eventually all these solutions approach infinity asymptotic to
the line determined by the eigenvector ξ (1) corresponding to the positive eigenvalue
r1. The only solutions that approach the critical point at the origin are those that start
precisely on the line determined by ξ (2). Figure 9.1.2b shows some typical graphs of
x1 versus t. For certain initial conditions the positive exponential term is absent
from the solution, so x1 → 0 as t → ∞. For all other initial conditions the positive
exponential term eventually dominates and causes x1 to be unbounded. The behavior
of x2 is similar. The origin is called a saddle point in this case.

An example of a saddle point occurs in Example 1 of Section 7.5, and its trajectories
are shown in Figure 7.5.2.

CASE 3 Equal Eigenvalues. We now suppose that r1 = r2 = r. We consider the case in which
the eigenvalues are negative; if they are positive, the trajectories are similar but the
direction of motion is reversed. There are two subcases, depending on whether the
repeated eigenvalue has two independent eigenvectors or only one.

(a) Two independent eigenvectors. The general solution of Eq. (2) is

x = c1ξ
(1)ert + c2ξ

(2)ert , (8)

where ξ (1) and ξ (2)are the independent eigenvectors. The ratio x2/x1 is independent
of t, but depends on the components of ξ (1) and ξ (2) and on the arbitrary constants
c1 and c2. Thus every trajectory lies on a straight line through the origin, as shown
in Figure 9.1.3a. Typical graphs of x1 or x2 versus t are shown in Figure 9.1.3b. The
critical point is called a proper node, or sometimes a star point.

(b) One independent eigenvector. As shown in Section 7.8, the general solution
of Eq. (2) in this case is

x = c1ξert + c2(ξ tert + ηert), (9)
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x2 x1

t
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x1

ξ(2) ξ(1)

FIGURE 9.1.3 A proper node, two independent eigenvectors; r1 = r2 < 0. (a) The phase
plane. (b) x1 versus t.

where ξ is the eigenvector and η is the generalized eigenvector associated with the
repeated eigenvalue. For large t the dominant term in Eq. (9) is c2ξ tert . Thus, as
t → ∞, every trajectory approaches the origin tangent to the line through the eigen-
vector. This is true even if c2 = 0, for then the solution x = c1ξert lies on this line.
Similarly, for large negative t the term c2ξ tert is again the dominant one, so as t → −∞,
each trajectory is asymptotic to a line parallel to ξ .

The orientation of the trajectories depends on the relative positions of ξ and η.
One possible situation is shown in Figure 9.1.4a. To locate the trajectories, it is helpful
to write the solution (9) in the form

x = [(c1ξ + c2η) + c2ξ t]ert = yert , (10)

where y = (c1ξ + c2η) + c2ξ t. Observe that the vector y determines the direction of
x, whereas the scalar quantity ert affects only the magnitude of x. Also note that, for
fixed values of c1 and c2, the expression for y is a vector equation of the straight line
through the point c1ξ + c2η and parallel to ξ .

To sketch the trajectory corresponding to a given pair of values of c1 and c2, you
can proceed in the following way. First, draw the line given by (c1ξ + c2η) + c2ξ t
and note the direction of increasing t on this line. Two such lines are shown in
Figure 9.1.4a, one for c2 > 0 and the other for c2 < 0. Next, note that the given
trajectory passes through the point c1ξ + c2η when t = 0. Further, as t increases, the
direction of the vector x given by Eq. (10) follows the direction of increasing t on the
line, but the magnitude of x rapidly decreases and approaches zero because of the
decaying exponential factor ert . Finally, as t decreases toward −∞, the direction of x
is determined by points on the corresponding part of the line, and the magnitude of
x approaches infinity. In this way we obtain the heavy trajectories in Figure 9.1.4a.
A few other trajectories are lightly sketched as well to help complete the diagram.
Typical graphs of x1 versus t are shown in Figure 9.1.4b.

The other possible situation is shown in Figure 9.1.4c,where the relative orientation
of ξ and η is reversed. As indicated in the figure, this results in a reversal in the
orientation of the trajectories.

If r1 = r2 > 0, you can sketch the trajectories by following the same procedure. In
this event the trajectories are traversed in the outward direction, and the orientation
of the trajectories with respect to that of ξ and η is also reversed.
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FIGURE 9.1.4 An improper node, one independent eigenvector; r1 = r2 < 0. (a) The phase
plane. (b) x1 versus t. (c) The phase plane.

When a double eigenvalue has only a single independent eigenvector, the critical
point is called an improper or degenerate node. A specific example of this case is
Example 2 in Section 7.8; the trajectories are shown in Figure 7.8.2.

CASE 4 Complex Eigenvalues. Suppose that the eigenvalues are λ ± iμ, where λ and μ are
real, λ �= 0, and μ > 0. It is possible to write down the general solution in terms of
the eigenvalues and eigenvectors, as shown in Section 7.6. However, we proceed in
a different way.

Systems having the eigenvalues λ ± iμ are typified by

x′ =
(

λ μ

−μ λ

)
x (11)

or, in scalar form,

x′
1 = λx1 + μx2, x′

2 = −μx1 + λx2. (12)
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We introduce the polar coordinates r, θ given by

r2 = x2
1 + x2

2, tan θ = x2/x1.

By differentiating these equations, we obtain

rr′ = x1x′
1 + x2x′

2, (sec2 θ)θ ′ = (x1x′
2 − x2x′

1)/x2
1. (13)

Substituting from Eqs. (12) in the first of Eqs. (13), we find that

r′ = λr, (14)

and hence
r = ceλt , (15)

where c is a constant. Similarly, substituting from Eqs. (12) in the second of Eqs. (13),
and using the fact that sec2 θ = r2/x2

1, we have

θ ′ = −μ. (16)

Hence
θ = −μt + θ0, (17)

where θ0 is the value of θ when t = 0.
Equations (15) and (17) are parametric equations in polar coordinates of the tra-

jectories of the system (11). Since μ > 0, it follows from Eq. (17) that θ decreases
as t increases, so the direction of motion on a trajectory is clockwise. As t → ∞, we
see from Eq. (15) that r → 0 if λ < 0 and r → ∞ if λ > 0. Thus the trajectories are
spirals, which approach or recede from the origin depending on the sign of λ. Both
possibilities are shown in Figure 9.1.5, along with some typical graphs of x1 versus t.
The critical point is called a spiral point in this case. Frequently, the terms spiral sink
and spiral source, respectively, are used to refer to spiral points whose trajectories
approach, or depart from, the critical point.

More generally, it is possible to show that for any system with complex eigenvalues
λ ± iμ, where λ �= 0, the trajectories are always spirals. They are directed inward or
outward, respectively, depending on whether λ is negative or positive. They may be
elongated and skewed with respect to the coordinate axes,and the direction of motion
may be either clockwise or counterclockwise. While a detailed analysis is moderately
difficult, it is easy to obtain a general idea of the orientation of the trajectories directly
from the differential equations. Suppose that(

dx/dt
dy/dt

)
=

(
a b
c d

)(
x
y

)
(18)

has complex eigenvalues λ ± iμ, and look at the point (0, 1) on the positive y-axis. At
this point it follows from Eqs. (18) that dx/dt = b and dy/dt = d. Depending on the
signs of b and d, we can infer the direction of motion and the approximate orientation
of the trajectories. For instance, if both b and d are negative, then the trajectories
cross the positive y-axis so as to move down and into the second quadrant. If λ < 0
also, then the trajectories must be inward-pointing spirals resembling the one in
Figure 9.1.6. Another case was given in Example 1 of Section 7.6, whose trajectories
are shown in Figure 7.6.2.
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(c) (d)
FIGURE 9.1.5 A spiral point; r1 = λ + iμ, r2 = λ − iμ. (a) λ < 0, the phase plane. (b) λ < 0,
x1 versus t. (c) λ > 0, the phase plane. (d) λ > 0, x1 versus t.

x2

x1

FIGURE 9.1.6 A spiral point; r = λ ± iμ with λ < 0.

CASE 5 Pure Imaginary Eigenvalues. In this case λ = 0 and the system (11) reduces to

x′ =
(

0 μ

−μ 0

)
x (19)

with eigenvalues ±iμ. Using the same argument as in Case 4, we find that

r′ = 0, θ ′ = −μ, (20)
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and consequently,
r = c, θ = −μt + θ0, (21)

where c and θ0 are constants. Thus the trajectories are circles,with center at the origin,
that are traversed clockwise if μ > 0 and counterclockwise if μ < 0. A complete
circuit about the origin is made in a time interval of length 2π/μ, so all solutions are
periodic with period 2π/μ. The critical point is called a center.

In general, when the eigenvalues are pure imaginary, it is possible to show (see
Problem 19) that the trajectories are ellipses centered at the origin. A typical situation
is shown in Figure 9.1.7, which also includes some typical graphs of x1 versus t. See
also Example 3 in Section 7.6, especially Figures 7.6.3 and 7.6.4.

x2 x1

tx1

(a) (b)
FIGURE 9.1.7 A center; r1 = iμ, r2 = −iμ. (a) The phase plane. (b) x1 versus t.

By reflecting on these five cases and by examining the corresponding figures, we
can make several observations:

1. After a long time, each individual trajectory exhibits one of only three types of behavior.
As t → ∞, each trajectory approaches the critical point x = 0, repeatedly traverses a closed
curve (corresponding to a periodic solution) that surrounds the critical point, or becomes
unbounded.

2. Viewed as a whole, the pattern of trajectories in each case is relatively simple. To be
more specific, through each point (x0, y0) in the phase plane there is only one trajectory;
thus the trajectories do not cross each other. Do not be misled by the figures, in which it
sometimes appears that many trajectories pass through the critical point x = 0. In fact,
the only solution passing through the origin is the equilibrium solution x = 0. The other
solutions that appear to pass through the origin actually only approach this point as t → ∞
or t → −∞.

3. In each case the set of all trajectories is such that one of three situations occurs.

(a) All trajectories approach the critical point x = 0 as t → ∞. This is the case if the
eigenvalues are real and negative or complex with negative real part. The origin is
either a nodal or a spiral sink.

(b) All trajectories remain bounded but do not approach the origin as t → ∞. This is
the case if the eigenvalues are pure imaginary. The origin is a center.

(c) Some trajectories, and possibly all trajectories except x = 0, become unbounded
as t → ∞. This is the case if at least one of the eigenvalues is positive or if the
eigenvalues have positive real part. The origin is a nodal source, a spiral source, or
a saddle point.
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The situations described in 3(a), (b), and (c) above illustrate the concepts of asymp-
totic stability, stability, and instability, respectively, of the equilibrium solution x = 0
of the system (2). The precise definitions of these terms are given in Section 9.2, but
their basic meaning should be clear from the geometrical discussion in this section.
The information that we have obtained about the system (2) is summarized in Table
9.1.1. Also see Problems 20 and 21.

TABLE 9.1.1 Stability Properties of Linear Systems x′ = Ax with
det(A − rI) = 0 and det A �= 0

Eigenvalues Type of Critical Point Stability

r1 > r2 > 0 Node Unstable
r1 < r2 < 0 Node Asymptotically stable
r2 < 0 < r1 Saddle point Unstable
r1 = r2 > 0 Proper or improper node Unstable
r1 = r2 < 0 Proper or improper node Asymptotically stable
r1, r2 = λ ± iμ Spiral point

λ > 0 Unstable
λ < 0 Asymptotically stable

r1 = iμ, r2 = −iμ Center Stable

The analysis in this section applies only to second order systems x′ = Ax whose
solutions are represented geometrically as curves in the phase plane. A similar,
though more complicated, analysis can be carried out for an nth order system, with
an n × n coefficient matrix A, whose solutions are curves in an n-dimensional phase
space. The cases that can occur in higher order systems are essentially combinations
of those we have seen in two dimensions. For instance, in a third order system
with a three-dimensional phase space, one possibility is that solutions in a certain
plane may spiral toward the origin, while other solutions may tend to infinity along
a line transverse to this plane. This would be the case if the coefficient matrix has
two complex eigenvalues with negative real part and one positive real eigenvalue.
However, because of their complexity, we will not discuss systems of higher than
second order.

PROBLEMS For each of the systems in Problems 1 through 12:
(a) Find the eigenvalues and eigenvectors.
(b) Classify the critical point (0, 0) as to type and determine whether it is stable, asymptotically
stable, or unstable.
(c) Sketch several trajectories in the phase plane and also sketch some typical graphs of x1

versus t.
(d) Use a computer to plot accurately the curves requested in part (c).

1.
dx
dt

=
(

3 −2
2 −2

)
x 2.

dx
dt

=
(

5 −1
3 1

)
x
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3.
dx
dt

=
(

2 −1
3 −2

)
x 4.

dx
dt

=
(

1 −4
4 −7

)
x

5.
dx
dt

=
(

1 −5
1 −3

)
x 6.

dx
dt

=
(

2 −5
1 −2

)
x

7.
dx
dt

=
(

3 −2
4 −1

)
x 8.

dx
dt

=
(

−1 −1
0 −0.25

)
x

9.
dx
dt

=
(

3 −4
1 −1

)
x 10.

dx
dt

=
(

1 2
−5 −1

)
x

11.
dx
dt

=
(

−1 0
0 −1

)
x 12.

dx
dt

=
(

2 − 5
2

9
5 −1

)
x

In each of Problems 13 through 16 determine the critical point x = x0, and then classify its
type and examine its stability by making the transformation x = x0 + u.

13.
dx
dt

=
(

1 1
1 −1

)
x −

(
2
0

)
14.

dx
dt

=
(

−2 1
1 −2

)
x +

(
−2

1

)

15.
dx
dt

=
(

−1 −1
2 −1

)
x +

(
−1

5

)

16.
dx
dt

=
(

0 −β

δ 0

)
x +

(
α

−γ

)
; α, β, γ , δ > 0

17. The equation of motion of a spring–mass system with damping (see Section 3.7) is

m
d2u
dt2

+ c
du
dt

+ ku = 0,

where m, c, and k are positive. Write this second order equation as a system of two
first order equations for x = u, y = du/dt. Show that x = 0, y = 0 is a critical point, and
analyze the nature and stability of the critical point as a function of the parameters m, c,
and k. A similar analysis can be applied to the electric circuit equation (see Section 3.7)

L
d2I
dt2

+ R
dI
dt

+ 1
C

I = 0.

18. Consider the system x′ = Ax, and suppose that A has one zero eigenvalue.
(a) Show that x = 0 is a critical point and that, in addition, every point on a certain straight
line through the origin is also a critical point.
(b) Let r1 = 0 and r2 �= 0, and let ξ (1) and ξ (2) be corresponding eigenvectors. Show that
the trajectories are as indicated in Figure 9.1.8. What is the direction of motion on the
trajectories?

19. In this problem we indicate how to show that the trajectories are ellipses when the eigen-
values are pure imaginary. Consider the system(

x

y

)′
=

(
a11 a12

a21 a22

)(
x

y

)
. (i)

(a) Show that the eigenvalues of the coefficient matrix are pure imaginary if and only if

a11 + a22 = 0, a11a22 − a12a21 > 0. (ii)
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x2

x1

ξ(2)

ξ(1)

FIGURE 9.1.8 Nonisolated critical points; r1 = 0, r2 �= 0. Every point on the line through
ξ (1) is a critical point.

(b) The trajectories of the system (i) can be found by converting Eqs. (i) into the single
equation

dy
dx

= dy/dt
dx/dt

= a21x + a22y
a11x + a12y

. (iii)

Use the first of Eqs. (ii) to show that Eq. (iii) is exact.
(c) By integrating Eq. (iii), show that

a21x2 + 2a22xy − a12y2 = k, (iv)

where k is a constant. Use Eqs. (ii) to conclude that the graph of Eq. (iv) is always an
ellipse.
Hint: What is the discriminant of the quadratic form in Eq. (iv)?

20. Consider the linear system

dx/dt = a11x + a12y, dy/dt = a21x + a22y,

where a11, . . . , a22 are real constants. Let p = a11 + a22, q = a11a22 − a12a21, and
� = p2 − 4q. Observe that p and q are the trace and determinant, respectively, of the
coefficient matrix of the given system. Show that the critical point (0, 0) is a
(a) Node if q > 0 and � ≥ 0; (b) Saddle point if q < 0;
(c) Spiral point if p �= 0 and � < 0; (d) Center if p = 0 and q > 0.
Hint: These conclusions can be obtained by studying the eigenvalues r1 and r2. It may also
be helpful to establish, and then to use, the relations r1r2 = q and r1 + r2 = p.

21. Continuing Problem 20, show that the critical point (0, 0) is
(a) Asymptotically stable if q > 0 and p < 0;
(b) Stable if q > 0 and p = 0;
(c) Unstable if q < 0 or p > 0.
The results of Problems 20 and 21 are summarized visually in Figure 9.1.9.
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FIGURE 9.1.9 Stability diagram.

9.2 Autonomous Systems and Stability
In this section we begin to draw together, and to expand on, the geometrical ideas
introduced in Section 2.5 for certain first order equations and in Section 9.1 for
systems of two first order linear homogeneous equations with constant coefficients.
These ideas concern the qualitative study of differential equations and the concept
of stability, an idea that will be defined precisely later in this section.

Autonomous Systems. We are concerned with systems of two simultaneous differential
equations of the form

dx/dt = F(x, y), dy/dt = G(x, y). (1)

We assume that the functions F and G are continuous and have continuous partial
derivatives in some domain D of the xy-plane. If (x0, y0) is a point in this domain,
then by Theorem 7.1.1 there exists a unique solution x = φ(t), y = ψ(t) of the system
(1) satisfying the initial conditions

x(t0) = x0, y(t0) = y0. (2)

The solution is defined in some time interval I that contains the point t0.
Frequently, we will write the initial value problem (1), (2) in the vector form

dx/dt = f(x), x(t0) = x0, (3)

where x = xi + yj, f(x) = F(x, y)i + G(x, y)j, and x0 = x0i + y0 j. In this case the
solution is expressed as x = φ(t), where φ(t) = φ(t)i + ψ(t)j. As usual, we interpret a
solution x = φ(t) as a curve traced by a moving point in the xy-plane, the phase plane.
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Observe that the functions F and G in Eqs. (1) do not depend on the independent
variable t, but only on the dependent variables x and y. A system with this property
is said to be autonomous. The system

x′ = Ax, (4)

where A is a constant 2 × 2 matrix, is a simple example of a two-dimensional au-
tonomous system. On the other hand, if one or more of the elements of the co-
efficient matrix A is a function of the independent variable t, then the system is
nonautonomous. The distinction between autonomous and nonautonomous sys-
tems is important because the geometrical qualitative analysis in Section 9.1 can be
effectively extended to two-dimensional autonomous systems in general, but is not
nearly as useful for nonautonomous systems.

In particular, the autonomous system (1) has an associated direction field that is
independent of time. Consequently, there is only one trajectory passing through each
point (x0, y0) in the phase plane. In other words, all solutions that satisfy an initial
condition of the form (2) lie on the same trajectory, regardless of the time t0 at which
they pass through (x0, y0). Thus, just as for the constant coefficient linear system (4),
a single phase portrait simultaneously displays important qualitative information
about all solutions of the system (1). We will see this fact confirmed repeatedly in
this chapter.

Autonomous systems occur frequently in applications. Physically, an autonomous
system is one whose configuration, including physical parameters and external forces
or effects, is independent of time. The response of the system to given initial condi-
tions is then independent of the time at which the conditions are imposed.

Stability and Instability. The concepts of stability, asymptotic stability, and instability
have already been mentioned several times in this book. It is now time to give a
precise mathematical definition of these concepts, at least for autonomous systems
of the form

x′ = f(x). (5)

In the following definitions, and elsewhere, we use the notation ‖x‖ to designate the
length, or magnitude, of the vector x.

The points, if any, where f(x) = 0 are called critical points of the autonomous
system (5). At such points x′ = 0 also, so critical points correspond to constant, or
equilibrium, solutions of the system of differential equations. A critical point x0 of
the system (5) is said to be stable if, given any ε > 0, there is a δ > 0 such that every
solution x = φ(t) of the system (1), which at t = 0 satisfies

‖φ(0) − x0‖ < δ, (6)

exists for all positive t and satisfies

‖φ(t) − x0‖ < ε (7)

for all t ≥ 0. This is illustrated geometrically in Figures 9.2.1a and 9.2.1b. These
mathematical statements say that all solutions that start “sufficiently close” (that is,
within the distance δ) to x0 stay “close” (within the distance ε) to x0. Note that in
Figure 9.2.1a the trajectory is within the circle ‖x − x0‖ = δ at t = 0 and, although
it soon passes outside of this circle, it remains within the circle ‖x − x0‖ = ε for all
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t ≥ 0. However, the trajectory of the solution does not have to approach the critical
point x0 as t → ∞, as illustrated in Figure 9.2.1b. A critical point that is not stable is
said to be unstable.

y y

x x

δ δ

φ ψ(  (0),   (0))

(a) (b)

φ ψ(  (0),   (0))

FIGURE 9.2.1 (a) Asymptotic stability. (b) Stability.

A critical point x0 is said to be asymptotically stable if it is stable and if there exists
a δ0 (δ0 > 0) such that if a solution x = φ(t) satisfies

‖φ(0) − x0‖ < δ0, (8)

then
lim
t→∞ φ(t) = x0. (9)

Thus trajectories that start “sufficiently close” to x0 not only must stay “close” but
must eventually approach x0 as t → ∞. This is the case for the trajectory in Fig-
ure 9.2.1a but not for the one in Figure 9.2.1b. Note that asymptotic stability is a
stronger property than stability, since a critical point must be stable before we can
even consider whether it might be asymptotically stable. On the other hand, the
limit condition (9), which is an essential feature of asymptotic stability, does not by
itself imply even ordinary stability. Indeed, examples can be constructed in which all
the trajectories approach x0 as t → ∞, but for which x0 is not a stable critical point.
Geometrically, all that is needed is a family of trajectories having members that start
arbitrarily close to x0 and then depart an arbitrarily large distance before eventually
approaching x0 as t → ∞.

In this chapter we are concentrating on systems of two equations,but the definitions
just given are independent of the size of the system. If you interpret the vectors in
Eqs. (5) through (9) as n-dimensional, then the definitions of stability, asymptotic
stability, and instability apply also to systems of n equations. These definitions can
be made more concrete by interpreting them in terms of a specific physical problem.

The Oscillating Pendulum. The concepts of asymptotic stability, stability, and instability
can be easily visualized in terms of an oscillating pendulum. Consider the configu-
ration shown in Figure 9.2.2, in which a mass m is attached to one end of a rigid, but
weightless, rod of length L. The other end of the rod is supported at the origin O,
and the rod is free to rotate in the plane of the paper. The position of the pendulum
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is described by the angle θ between the rod and the downward vertical direction,
with the counterclockwise direction taken as positive. The gravitational force mg
acts downward, while the damping force c|dθ/dt|, where c is positive, is always op-
posite to the direction of motion. We assume that both θ and dθ/dt are positive. The
equation of motion can be quickly derived from the principle of angular momentum,
which states that the time rate of change of angular momentum about any point is
equal to the moment of the resultant force about that point. The angular momentum
about the origin is mL2(dθ/dt), so the governing equation is

mL2 d2θ

dt2
= −cL

dθ

dt
− mgL sin θ. (10)

The factors L and L sin θ on the right side of Eq. (10) are the moment arms of the
resistive force and of the gravitational force, respectively; the minus signs are due
to the fact that the two forces tend to make the pendulum rotate in the clockwise
(negative) direction. You should verify, as an exercise, that the same equation is
obtained for the other three possible sign combinations of θ and dθ/dt.

L

m

mg

O

θ

L sin θ

L(1 – cos   )θ

d  /dtc θ

FIGURE 9.2.2 An oscillating pendulum.

By straightforward algebraic operations, we can write Eq. (10) in the standard
form

d2θ

dt2
+ c

mL
dθ

dt
+ g

L
sin θ = 0, (11)

or
d2θ

dt2
+ γ

dθ

dt
+ ω2 sin θ = 0, (12)

where γ = c/mL and ω2 = g/L. To convert Eq. (12) to a system of two first order
equations, we let x = θ and y = dθ/dt; then

dx
dt

= y,
dy
dt

= −ω2 sin x − γ y. (13)

Since γ and ω2 are constants, the system (13) is an autonomous system of the
form (1).
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The critical points of Eqs. (13) are found by solving the equations

y = 0, −ω2 sin x − γ y = 0.

We obtain y = 0 and x = ±nπ , where n is an integer. These points correspond to two
physical equilibrium positions, one with the mass directly below the point of support
(θ = 0) and the other with the mass directly above the point of support (θ = π). Our
intuition suggests that the first is stable and the second is unstable.

More precisely, if the mass is slightly displaced from the lower equilibrium posi-
tion, it will oscillate back and forth with gradually decreasing amplitude, eventually
approaching the equilibrium position as the initial potential energy is dissipated by
the damping force. This type of motion illustrates asymptotic stability and is shown
in Figure 9.2.3a.

(a) (b) (c)
FIGURE 9.2.3 Qualitative motion of a pendulum. (a) With air resistance. (b) With or
without air resistance. (c) Without air resistance.

On the other hand, if the mass is slightly displaced from the upper equilibrium po-
sition, it will rapidly fall, under the influence of gravity, and will ultimately approach
the lower equilibrium position in this case also. This type of motion illustrates in-
stability. See Figure 9.2.3b. In practice, it is impossible to maintain the pendulum in
its upward equilibrium position for any extended length of time without an external
constraint mechanism, since the slightest perturbation will cause the mass to fall.

Finally, consider the ideal situation in which the damping coefficient c (or γ ) is
zero. In this case, if the mass is displaced slightly from its lower equilibrium position,
it will oscillate indefinitely with constant amplitude about the equilibrium position.
Since there is no dissipation in the system, the mass will remain near the equilibrium
position but will not approach it asymptotically. This type of motion is stable but
not asymptotically stable, as indicated in Figure 9.2.3c. In general, this motion is
impossible to achieve experimentally, because the slightest degree of air resistance
or friction at the point of support will eventually cause the pendulum to approach its
rest position.

Solutions of the pendulum equations are discussed in more detail in the next sec-
tion.

The Importance of Critical Points. Critical points correspond to equilibrium solutions,
that is, solutions for which x(t) and y(t) are constant. For such a solution, the system
described by x and y is not changing; it remains in its initial state forever. It might
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seem reasonable to conclude that such points are not very interesting. Recall, how-
ever, that for linear homogeneous systems with constant coefficients, x′ = Ax, the
nature of the critical point at the origin determines to a large extent the behavior of
trajectories throughout the xy-plane.

For nonlinear autonomous systems this is no longer true, for at least two reasons.
First, there may be several, or many, critical points that are, so to speak, competing
for influence on the trajectories. Second, the nonlinearities in the system are also of
great importance, especially far away from the critical points. Nevertheless, critical
points of nonlinear autonomous systems can be classified just as for linear systems.
We will discuss this in detail in Section 9.3. Here we illustrate how it can be done
graphically, assuming that you have software that can construct direction fields and
perhaps plot good numerical approximations to a few trajectories.

E X A M P L E

1

Consider the system

dx/dt = −(x − y)(1 − x − y), dy/dt = x(2 + y). (14)

Find the critical points for this system and draw direction fields on rectangles containing the
critical points. By inspecting the direction fields, classify each critical point as to type and state
whether it is asymptotically stable, stable, or unstable.

The critical points are found by solving the algebraic equations

(x − y)(1 − x − y) = 0, x(2 + y) = 0. (15)

One way to satisfy the second equation is by choosing x = 0. Then the first equation becomes
y(1 − y) = 0, so y = 0 or y = 1. More solutions can be found by choosing y = −2 in the second
equation. Then the first equation becomes (x + 2)(3 − x) = 0, so x = −2 or x = 3. Thus we
have obtained the four critical points (0, 0), (0, 1), (−2, −2), and (3, −2).

x

y

10.5–0.5–1

2

1

0.5

–0.5

–1

1.5

FIGURE 9.2.4 Direction field containing
(0, 0) and (0, 1).

x

y

4321–1–2–3

–1.6

–1.8

–2

–2.2

–2.4

FIGURE 9.2.5 Direction field containing
(−2, −2) and (3, −2).
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Figure 9.2.4 shows a direction field containing the first two of the critical points. By com-
paring this figure with those in Section 9.1 and in Chapter 7, it should be clear that the origin
is a saddle point and that (0, 1) is a spiral point. Of course, the saddle point is unstable. The
trajectories near the spiral point appear to be approaching this point, so we conclude that it is
asymptotically stable. A direction field for the other two critical points is shown in Figure 9.2.5.
Each of these points is a node. The arrows point toward the point (−2, −2) and away from the
point (3, −2); thus the former is asymptotically stable and the latter is unstable.

For a two-dimensional autonomous system with at least one asymptotically stable
critical point, it is often of interest to determine where in the phase plane the tra-
jectories lie that ultimately approach a given critical point. Let P be a point in the
xy-plane with the property that a trajectory passing through P ultimately approaches
the critical point as t → ∞. Then this trajectory is said to be attracted by the critical
point. Further, the set of all such points P is called the basin of attraction or the
region of asymptotic stability of the critical point. A trajectory that bounds a basin
of attraction is called a separatrix because it separates trajectories that approach a
particular critical point from other trajectories that do not do so. Determination
of basins of attraction is important in understanding the large-scale behavior of the
solutions of an autonomous system.

E X A M P L E

2

Consider again the system (14) from Example 1. Describe the basin of attraction for each of
the asymptotically stable critical points.

Figure 9.2.6 shows a phase portrait for this system with a direction field in the background.
Observe that there are two trajectories that approach the saddle point at the origin as t → ∞,
One of these lies in the fourth quadrant and is almost a straight line from the unstable node
at (3, −2). The other also originates at the unstable node, then passes into the first quadrant,
loops around the spiral point, and ultimately approaches the saddle point through the second

y

x

4

2

–2

42–2–4

FIGURE 9.2.6 Trajectories of the system (14).
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quadrant. These two trajectories are separatrices; the region between them (but not including
the separatrices themselves) is the basin of attraction for the spiral point at (0, 1). This region
is shaded in Figure 9.2.6.

The basin of attraction for the asymptotically stable node at (−2, −2) consists of the rest of
the xy-plane, with only a handful of exceptions. The separatrices approach the saddle point, as
we have noted already, rather than the node. The saddle point itself and the unstable node are
equilibrium solutions, and thus remain fixed for all time. Finally, there is a trajectory lying on
the line y = −2 for x > 3 on which the direction of motion is always to the right; this trajectory
also does not approach the point (−2, −2).

Figures 9.2.4, 9.2.5, and 9.2.6 show that in the immediate vicinity of a critical point
the direction field and pattern of trajectories resemble those for a linear system with
constant coefficients. This becomes even more unmistakable if you use your software
to zoom in closer and closer to a critical point. Thus we have visual evidence that a
nonlinear system behaves very much like a linear system, at least in the neighborhood
of a critical point. We will pursue this idea in the next section.

Determination of Trajectories. The trajectories of a two-dimensional autonomous system

dx/dt = F(x, y), dy/dt = G(x, y) (16)

can sometimes be found by solving a related first order differential equation. From
Eqs. (16) we have

dy
dx

= dy/dt
dx/dt

= G(x, y)

F(x, y)
, (17)

which is a first order equation in the variables x and y. Observe that such a reduction
is not usually possible if F and G depend also on t. If Eq. (17) can be solved by any
of the methods of Chapter 2, and if we write solutions (implicitly) in the form

H(x, y) = c, (18)

then Eq. (18) is an equation for the trajectories of the system (16). In other words, the
trajectories lie on the level curves of H(x, y). Keep in mind that there is no general
way of solving Eq. (17) to obtain the function H , so this approach is applicable only
in special cases.

E X A M P L E

3

Find the trajectories of the system

dx/dt = y, dy/dt = x. (19)

In this case, Eq. (17) becomes
dy
dx

= x
y
. (20)

This equation is separable since it can be written as

y dy = x dx,

and its solutions are given by
H(x, y) = y2 − x2 = c, (21)
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where c is arbitrary. Therefore the trajectories of the system (19) are the hyperbolas shown
in Figure 9.2.7. The direction of motion on the trajectories can be inferred from the fact that
both dx/dt and dy dt are positive in the first quadrant. The only critical point is the saddle
point at the origin.

–2 –1 10 2

2

–1

–2

1

y

x

FIGURE 9.2.7 Trajectories of the system (19).

Another way to obtain the trajectories is to solve the system (19) by the methods of Sec-
tion 7.5. We omit the details, but the result is

x = c1et + c2e−t , y = c1et − c2e−t .

Eliminating t between these two equations again leads to Eq. (21).

E X A M P L E

4

Find the trajectories of the system

dx
dt

= 4 − 2y,
dy
dt

= 12 − 3x2. (22)

From the equations

4 − 2y = 0, 12 − 3x2 = 0

we find that the critical points of the system (22) are the points (−2, 2) and (2, 2). To determine
the trajectories, note that for this system Eq. (17) becomes

dy
dx

= 12 − 3x2

4 − 2y
. (23)
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Separating the variables in Eq. (23) and integrating, we find that solutions satisfy

H(x, y) = 4y − y2 − 12x + x3 = c, (24)

where c is an arbitrary constant. A computer plotting routine is helpful in displaying the level
curves of H(x, y), some of which are shown in Figure 9.2.8. The direction of motion on the
trajectories can be determined by drawing a direction field for the system (22), or by evaluating
dx/dt and dy/dt at one or two selected points. From Figure 9.2.8 you can see that the critical
point (2, 2) is a saddle point and the point (−2, 2) is a center. Observe that one trajectory
leaves the saddle point (as t → −∞), loops around the center, and returns to the saddle point
(as t → +∞).

8

6

4

y

x

2
2–2–4 4

–2

–4

FIGURE 9.2.8 Trajectories of the system (22).

PROBLEMS In each of Problems 1 through 4 sketch the trajectory corresponding to the solution satisfying
the specified initial conditions, and indicate the direction of motion for increasing t.

1. dx/dt = −x, dy/dt = −2y; x(0) = 4, y(0) = 2
2. dx/dt = −x, dy/dt = 2y; x(0) = 4, y(0) = 2 and x(0) = 4, y(0) = 0
3. dx/dt = −y, dy/dt = x; x(0) = 4, y(0) = 0 and x(0) = 0, y(0) = 4
4. dx/dt = ay, dy/dt = −bx, a > 0, b > 0; x(0) = √

a, y(0) = 0

For each of the systems in Problems 5 through 16:
(a) Find all the critical points (equilibrium solutions).
(b) Use a computer to draw a direction field and phase portrait for the system.
(c) From the plot(s) in part (b), determine whether each critical point is asymptotically stable,
stable, or unstable, and classify it as to type.
(d) Describe the basin of attraction for each asymptotically stable critical point.

5. dx/dt = x − xy, dy/dt = y + 2xy

6. dx/dt = 1 + 2y, dy/dt = 1 − 3x2

7. dx/dt = 2x − x2 − xy, dy/dt = 3y − 2y2 − 3xy

8. dx/dt = −(2 + y)(x + y), dy/dt = −y(1 − x)

9. dx/dt = y(2 − x − y), dy/dt = −x − y − 2xy

10. dx/dt = (2 + x)(y − x), dy/dt = y(2 + x − x2)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 527 Page number 507 cyan black

9.2 Autonomous Systems and Stability 507

11. dx/dt = −x + 2xy, dy/dt = y − x2 − y2

12. dx/dt = y, dy/dt = x − 1
6 x3 − 1

5 y

13. dx/dt = (2 + x)(y − x), dy/dt = (4 − x)(y + x)

14. dx/dt = (2 − x)(y − x), dy/dt = y(2 − x − x2)

15. dx/dt = x(2 − x − y), dy/dt = −x + 3y − 2xy

16. dx/dt = x(2 − x − y), dy/dt = (1 − y)(2 + x)

In each of Problems 17 through 24:
(a) Find an equation of the form H(x, y) = c satisfied by the trajectories.
(b) Plot several level curves of the function H . These are trajectories of the given system.
Indicate the direction of motion on each trajectory.

17. dx/dt = 2y, dy/dt = 8x 18. dx/dt = 2y, dy/dt = −8x

19. dx/dt = y, dy/dt = 2x + y 20. dx/dt = −x + y, dy/dt = −x − y

21. dx/dt = −x + y + x2, dy/dt = y − 2xy

22. dx/dt = 2x2y − 3x2 − 4y, dy/dt = −2xy2 + 6xy

23. Undamped pendulum: dx/dt = y, dy/dt = − sin x

24. Duffing’s2 equations: dx/dt = y, dy/dt = −x + (x3/6)

25. Given that x = φ(t), y = ψ(t) is a solution of the autonomous system

dx/dt = F(x, y), dy/dt = G(x, y)

for α < t < β, show that x = �(t) = φ(t − s), y = �(t) = ψ(t − s) is a solution for
α + s < t < β + s for any real number s.

26. Prove that for the system

dx/dt = F(x, y), dy/dt = G(x, y)

there is at most one trajectory passing through a given point (x0, y0).
Hint: Let C0 be the trajectory generated by the solution x = φ0(t), y = ψ0(t), with
φ0(t0) = x0, ψ0(t0) = y0, and let C1 be the trajectory generated by the solution x = φ1(t),
y = ψ1(t), with φ1(t1) = x0, ψ1(t1) = y0. Use the fact that the system is autonomous, and
also the existence and uniqueness theorem, to show that C0 and C1 are the same.

27. Prove that if a trajectory starts at a noncritical point of the system

dx/dt = F(x, y), dy/dt = G(x, y),

then it cannot reach a critical point (x0, y0) in a finite length of time.
Hint: Assume the contrary; that is, assume that the solution x = φ(t), y = ψ(t) satisfies
φ(a) = x0, ψ(a) = y0. Then use the fact that x = x0, y = y0 is a solution of the given system
satisfying the initial condition x = x0, y = y0 at t = a.

28. Assuming that the trajectory corresponding to a solution x = φ(t), y = ψ(t),−∞ < t < ∞,
of an autonomous system is closed, show that the solution is periodic.
Hint: Since the trajectory is closed, there exists at least one point (x0, y0) such that
φ(t0) = x0,ψ(t0) = y0 and a number T > 0 such that φ(t0 + T) = x0,ψ(t0 + T) = y0. Show
that x = �(t) = φ(t + T) and y = �(t) = ψ(t + T) is a solution, and then use the existence
and uniqueness theorem to show that �(t) = φ(t) and �(t) = ψ(t) for all t.

2Georg Duffing (1861–1944), a German experimentalist, was a pioneer in the study of the oscillations of
nonlinear mechanical systems. His most important work was an influential monograph published in 1918.
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9.3 Locally Linear Systems
In Section 9.1 we gave an informal description of the stability properties of the
equilibrium solution x = 0 of the two-dimensional linear system

x′ = Ax. (1)

The results are summarized in Table 9.1.1. Recall that we required that det A �= 0,
so x = 0 is the only critical point of the system (1). Now that we have defined the
concepts of asymptotic stability, stability,and instability more precisely,we can restate
these results in the following theorem.

Theorem 9.3.1 The critical point x = 0 of the linear system (1) is asymptotically stable if the eigen-
values r1, r2 are real and negative or have negative real part; stable, but not asymp-
totically stable, if r1 and r2 are pure imaginary; unstable if r1 and r2 are real and
either is positive, or if they have positive real part.

Effect of Small Perturbations. It is apparent from this theorem or from Table 9.1.1 that
the eigenvalues r1, r2 of the coefficient matrix A determine the type of critical point
at x = 0 and its stability characteristics. In turn, the values of r1 and r2 depend on the
coefficients in the system (1). When such a system arises in some applied field, the
coefficients usually result from the measurements of certain physical quantities. Such
measurements are often subject to small uncertainties, so it is of interest to investigate
whether small changes (perturbations) in the coefficients can affect the stability or
instability of a critical point and/or significantly alter the pattern of trajectories.

Recall that the eigenvalues r1, r2 are the roots of the polynomial equation

det(A − rI) = 0. (2)

It is possible to show that small perturbations in some or all the coefficients are
reflected in small perturbations in the eigenvalues. The most sensitive situation
occurs when r1 = iμ and r2 = −iμ, that is, when the critical point is a center and the
trajectories are closed curves (ellipses) surrounding it. If a slight change is made in
the coefficients, then the eigenvalues r1 and r2 will take on new values r′

1 = λ′ + iμ′
and r′

2 = λ′ − iμ′, where λ′ is small in magnitude and μ′ ∼= μ (see Figure 9.3.1). If
λ′ �= 0, which almost always occurs, then the trajectories of the perturbed system are
spirals rather than ellipses. The system is asymptotically stable if λ′ < 0 but unstable
if λ′ > 0. Thus, in the case of a center, small perturbations in the coefficients may
well change a stable system into an unstable one, and in any case may be expected
to change the trajectories from ellipses to spirals (see Problem 27).

Another slightly less sensitive case occurs if the eigenvalues r1 and r2 are equal;
in this case the critical point is a node. Small perturbations in the coefficients will
normally cause the two equal roots to separate (bifurcate). If the separated roots
are real, then the critical point of the perturbed system remains a node, but if the
separated roots are complex conjugates, then the critical point becomes a spiral
point. These two possibilities are shown schematically in Figure 9.3.2. In this case
the stability or instability of the system is not affected by small perturbations in the
coefficients, but the type of the critical point may be changed (see Problem 28).
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μ

λ

μ

λ

r1 = iμ

r2 = –iμ

r1 = iμ

r2 = –iμ

r2 =    ' – i  'λ μ'

r2 =    ' – i  'λ μ'

r1 =    ' + i  'λ μ'

r1 =    ' + i  'λ μ'

FIGURE 9.3.1 Schematic perturbation of r1 = iμ, r2 = −iμ.

μμ

λ λr1 = r2

r1 = r2

r2'r1'

μr1' =    + iλ

μr2' =    – iλ
FIGURE 9.3.2 Schematic perturbation of r1 = r2.

In all other cases the stability or instability of the system is not changed, nor is the
type of critical point altered, by sufficiently small perturbations in the coefficients of
the system. For example, if r1 and r2 are real, negative, and unequal, then a small
change in the coefficients will neither change the sign of r1 and r2 nor allow them to
coalesce. Thus the critical point remains an asymptotically stable node.

Linear Approximations to Nonlinear Systems. Now let us consider a nonlinear two-dimen-
sional autonomous system

x′ = f(x). (3)

Our main object is to investigate the behavior of trajectories of the system (3) near
a critical point x0. Recall that in Example 1 in Section 9.2 we noted that near each
critical point of that nonlinear system the pattern of trajectories resembles the tra-
jectories of a certain linear system. This suggests that near a critical point we may
be able to approximate the nonlinear system (3) by an appropriate linear system,
whose trajectories are easy to describe. The crucial question is whether and how we
can find an approximating linear system whose trajectories closely match those of
the nonlinear system near the critical point

It is convenient to choose the critical point to be the origin. This involves no loss of
generality, since if x0 �= 0, it is always possible to make the substitution u = x − x0 in
Eq. (3). Then u will satisfy an autonomous system with a critical point at the origin.

First, let us consider what it means for a nonlinear system (3) to be “close” to a
linear system (1). Accordingly, suppose that

x′ = Ax + g(x) (4)

and that x = 0 is an isolated critical point of the system (4). This means that there
is some circle about the origin within which there are no other critical points. In
addition, we assume that det A �= 0, so that x = 0 is also an isolated critical point
of the linear system x′ = Ax. For the nonlinear system (4) to be close to the linear
system x′ = Ax, we must assume that g(x) is small. More precisely, we assume that
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the components of g have continuous first partial derivatives and satisfy the limit
condition

‖g(x)‖/‖x‖ → 0 as x → 0; (5)

that is, ‖g‖ is small in comparison to ‖x‖ itself near the origin. Such a system is called
a locally linear system in the neighborhood of the critical point x = 0.

It may be helpful to express the condition (5) in scalar form. If we let xT = (x, y),
then ‖x‖ = (x2 + y2)1/2 = r. Similarly, if gT (x) = (g1(x, y), g2(x, y)), then
‖g(x)‖ = [g2

1(x, y) + g2
2(x, y)]1/2. Then it follows that condition (5) is satisfied if and

only if
g1(x, y)/r → 0, g2(x, y)/r → 0 as r → 0. (6)

E X A M P L E

1

Determine whether the system(
x

y

)′
=

(
1 0
0 0.5

)(
x

y

)
+

(
−x2 − xy

−0.75xy − 0.25y2

)
(7)

is locally linear in the neighborhood of the origin.
Observe that the system (7) is of the form (4), that (0, 0) is a critical point, and that det A �= 0.

It is not hard to show that the other critical points of Eqs. (7) are
(0, 2), (1, 0), and (0.5, 0.5); consequently, the origin is an isolated critical point. In check-
ing the condition (6), it is convenient to introduce polar coordinates by letting x = r cos θ ,
y = r sin θ . Then

g1(x, y)

r
= −x2 − xy

r
= −r2 cos2 θ − r2 sin θ cos θ

r

= −r(cos2 θ + sin θ cos θ) → 0

as r → 0. In a similar way you can show that g2(x, y)/r → 0 as r → 0. Hence the system (7) is
locally linear near the origin.

E X A M P L E

2

The motion of a pendulum is described by the system [see Eq. (13) of Section 9.2]

dx
dt

= y,
dy
dt

= −ω2 sin x − γ y. (8)

The critical points are (0, 0), (±π , 0), (±2π , 0), . . . , so the origin is an isolated critical point of
this system. Show that the system is locally linear near the origin.

To compare Eqs. (8) with Eq. (4), we must rewrite the former so that the linear and nonlinear
terms are clearly identified. If we write sin x = x + (sin x − x) and substitute this expression
in the second of Eqs. (8), we obtain the equivalent system

(
x
y

)′
=

(
0 1

−ω2 −γ

)(
x

y

)
− ω2

(
0

sin x − x

)
. (9)

On comparing Eq. (9) with Eq. (4), we see that g1(x, y) = 0 and g2(x, y) = −ω2(sin x − x).
From the Taylor series for sin x, we know that sin x − x behaves like −x3/3! = −(r3 cos3 θ)/3!
when x is small. Consequently, (sin x − x)/r → 0 as r → 0. Thus the conditions (6) are satisfied
and the system (9) is locally linear near the origin.
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Let us now return to the general nonlinear system (3), which we write in the scalar
form

x′ = F(x, y), y′ = G(x, y). (10)

The system (10) is locally linear in the neighborhood of a critical point (x0, y0) when-
ever the functions F and G have continuous partial derivatives up to order two.
To show this, we use Taylor expansions about the point (x0, y0) to write F(x, y) and
G(x, y) in the form

F(x, y) = F(x0, y0) + Fx(x0, y0)(x − x0) + Fy(x0, y0)(y − y0) + η1(x, y),

G(x, y) = G(x0, y0) + Gx(x0, y0)(x − x0) + Gy(x0, y0)(y − y0) + η2(x, y),

where η1(x, y)/[(x − x0)
2 + (y − y0)

2]1/2 → 0 as (x, y) → (x0, y0), and similarly for
η2. Note that F(x0, y0) = G(x0, y0) = 0, and that dx/dt = d(x − x0)/dt and
dy/dt = d(y − y0)/dt. Then the system (10) reduces to

d
dt

(
x − x0

y − y0

)
=

(
Fx(x0, y0) Fy(x0, y0)

Gx(x0, y0) Gy(x0, y0)

)(
x − x0

y − y0

)
+

(
η1(x, y)

η2(x, y)

)
, (11)

or, in vector notation,
du
dt

= df
dx

(x0)u + η(x), (12)

where u = (x − x0, y − y0)
T and η = (η1, η2)

T .
The significance of this result is twofold. First, if the functions F and G are twice

differentiable, then the system (10) is locally linear, and it is unnecessary to resort
to the limiting process used in Examples 1 and 2. Second, the linear system that
approximates the nonlinear system (10) near (x0, y0) is given by the linear part of
Eqs. (11) or (12):

d
dt

(
u1

u2

)
=

(
Fx(x0, y0) Fy(x0, y0)

Gx(x0, y0) Gy(x0, y0)

)(
u1

u2

)
, (13)

where u1 = x − x0 and u2 = y − y0. Equation (13) provides a simple and general
method for finding the linear system corresponding to a locally linear system near a
given critical point.

The matrix

J =
(

Fx Fy

Gx Gy

)
, (14)

which appears as the coefficient matrix in Eq. (13), is called the Jacobian3 matrix of
the functions F and G with respect to x and y. We need to assume that det(J) is not
zero at (x0, y0) so that this point is also an isolated critical point of the linear system
(13).

3Carl Gustav Jacob Jacobi (1804–1851), a German analyst who was professor and lecturer at the Uni-
versities of Königsberg and Berlin, made important contributions to the theory of elliptic functions. The
determinant of J and its extension to n functions of n variables is called the Jacobian because of his notable
paper in 1841 on the properties of this determinant. The corresponding matrix is also named for Jacobi
although matrices were not developed until after his death.
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E X A M P L E

3

Use Eq. (13) to find the linear system corresponding to the pendulum equations (8) near the
origin; near the critical point (π , 0).

In this case we have, from Eq. (8),

F(x, y) = y, G(x, y) = −ω2 sin x − γ y; (15)

since these functions are differentiable as many times as necessary, the system (8) is locally
linear near each critical point. The derivatives of F and G are

Fx = 0, Fy = 1, Gx = −ω2 cos x, Gy = −γ. (16)

Thus, at the origin the corresponding linear system is

d
dt

(
x

y

)
=

(
0 1

−ω2 −γ

)(
x

y

)
, (17)

which agrees with Eq. (9).
Similarly, evaluating the partial derivatives in Eq. (16) at (π , 0), we obtain

d
dt

(
u

v

)
=

(
0 1
ω2 −γ

)(
u

v

)
, (18)

where u = x − π , v = y. This is the linear system corresponding to Eqs. (8) near the point
(π , 0).

We now return to the locally linear system (4). Since the nonlinear term g(x) is
small compared to the linear term Ax when x is small, it is reasonable to hope that
the trajectories of the linear system (1) are good approximations to those of the
nonlinear system (4), at least near the origin. This turns out to be true in many (but
not all) cases, as the following theorem states.

Theorem 9.3.2 Let r1 and r2 be the eigenvalues of the linear system (1) corresponding to the locally
linear system (4). Then the type and stability of the critical point (0, 0) of the linear
system (1) and the locally linear system (4) are as shown in Table 9.3.1.

At this stage, the proof of Theorem 9.3.2 is too difficult to give, so we will accept the
results without proof. The statements for asymptotic stability and instability follow as
a consequence of a result discussed in Section 9.6, and a proof is sketched in Problems
10 to 12 of that section. Essentially, Theorem 9.3.2 says that for small x (or x − x0)
the nonlinear terms are also small and do not affect the stability and type of critical
point as determined by the linear terms except in two sensitive cases: r1 and r2 pure
imaginary, and r1 and r2 real and equal. Recall that earlier in this section we stated
that small perturbations in the coefficients of the linear system (1), and hence in the
eigenvalues r1 and r2, can alter the type and stability of the critical point only in these
two cases. It is reasonable to expect that the small nonlinear term in Eq. (4) might
have a similar substantial effect, at least in these two cases. This is so, but the main
significance of Theorem 9.3.2 is that in all other cases the small nonlinear term does
not alter the type or stability of the critical point. Thus, except in the two sensitive
cases, the type and stability of the critical point of the nonlinear system (4) can be
determined from a study of the much simpler linear system (1).
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TABLE 9.3.1 Stability and Instability Properties of Linear and Locally Linear Systems

Linear System Locally Linear System

r1, r2 Type Stability Type Stability

r1 > r2 > 0 N Unstable N Unstable
r1 < r2 < 0 N Asymptotically N Asymptotically

stable stable
r2 < 0 < r1 SP Unstable SP Unstable
r1 = r2 > 0 PN or IN Unstable N or SpP Unstable
r1 = r2 < 0 PN or IN Asymptotically N or SpP Asymptotically

stable stable
r1, r2 = λ ± iμ

λ > 0 SpP Unstable SpP Unstable
λ < 0 SpP Asymptotically SpP Asymptotically

stable stable
r1 = iμ, r2 = −iμ C Stable C or SpP Indeterminate

Note: N, node; IN, improper node; PN, proper node; SP, saddle point; SpP, spiral point;
C, center.

Even if the critical point is of the same type as that of the linear system, the
trajectories of the locally linear system may be considerably different in appearance
from those of the corresponding linear system, except very near the critical point.
However, it can be shown that the slopes at which trajectories “enter” or “leave” the
critical point are given correctly by the linear system.

Damped Pendulum. We continue the discussion of the damped pendulum begun in Ex-
amples 2 and 3. Near the origin the nonlinear equations (8) are approximated by the
linear system (17), whose eigenvalues are

r1, r2 = −γ ± √
γ 2 − 4ω2

2
. (19)

The nature of the solutions of Eqs. (8) and (17) depends on the sign of γ 2 − 4ω2 as
follows:

1. If γ 2 − 4ω2 > 0, then the eigenvalues are real, unequal, and negative. The critical point
(0, 0) is an asymptotically stable node of the linear system (17) and of the locally linear
system (8).

2. If γ 2 − 4ω2 = 0, then the eigenvalues are real, equal, and negative. The critical point (0, 0)

is an asymptotically stable (proper or improper) node of the linear system (17). It may be
either an asymptotically stable node or spiral point of the locally linear system (8).

3. If γ 2 − 4ω2 < 0, then the eigenvalues are complex with negative real part. The critical
point (0, 0) is an asymptotically stable spiral point of the linear system (17) and of the
locally linear system (8).

Thus the critical point (0, 0) is a spiral point of the system (8) if the damping is small
and a node if the damping is large enough. In either case, the origin is asymptotically
stable.

Let us now consider the case γ 2 − 4ω2 < 0, corresponding to small damping, in
more detail. The direction of motion on the spirals near (0, 0) can be obtained
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directly from Eqs. (8). Consider the point at which a spiral intersects the positive
y-axis (x = 0 and y > 0). At such a point it follows from Eqs. (8) that dx/dt > 0. Thus
the point (x, y) on the trajectory is moving to the right, so the direction of motion on
the spirals is clockwise.

The behavior of the pendulum near the critical points (±nπ , 0), with n even, is the
same as its behavior near the origin. We expect this on physical grounds since all these
critical points correspond to the downward equilibrium position of the pendulum.
The conclusion can be confirmed by repeating the analysis carried out above for the
origin. Figure 9.3.3 shows the clockwise spirals at a few of these critical points.

π–2 π2

π– π

y

x

FIGURE 9.3.3 Asymptotically stable spiral points for the damped pendulum.

Now let us consider the critical point (π , 0). Here the nonlinear equations (8) are
approximated by the linear system (18), whose eigenvalues are

r1, r2 = −γ ± √
γ 2 + 4ω2

2
. (20)

One eigenvalue (r1) is positive and the other (r2) is negative. Therefore, regardless
of the amount of damping, the critical point x = π , y = 0 is an unstable saddle point
both of the linear system (18) and of the locally linear system (8).

To examine the behavior of trajectories near the saddle point (π , 0) in more detail,
we write down the general solution of Eqs. (18), namely,(

u
v

)
= C1

(
1
r1

)
er1t + C2

(
1
r2

)
er2t , (21)

where C1 and C2 are arbitrary constants. Since r1 > 0 and r2 < 0, it follows that the
solution that approaches zero as t → ∞ corresponds to C1 = 0. For this solution
v/u = r2, so the slope of the entering trajectories is negative; one lies in the second
quadrant (C2 < 0), and the other lies in the fourth quadrant (C2 > 0). For C2 = 0
we obtain the pair of trajectories “exiting” from the saddle point. These trajectories
have slope r1 > 0; one lies in the first quadrant (C1 > 0), and the other lies in the
third quadrant (C1 < 0).

The situation is the same at other critical points (nπ , 0) with n odd. These all
correspond to the upward equilibrium position of the pendulum, so we expect them
to be unstable. The analysis at (π , 0) can be repeated to show that they are saddle
points oriented in the same way as the one at (π , 0). Diagrams of the trajectories in
the neighborhood of two saddle points are shown in Figure 9.3.4.
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y

xπ– π

FIGURE 9.3.4 Unstable saddle points for the damped pendulum.

E X A M P L E

4

The equations of motion of a certain pendulum are

dx/dt = y, dy/dt = −9 sin x − 1
5 y, (22)

where x = θ and y = dθ/dt. Draw a phase portrait for this system and explain how it shows
the possible motions of the pendulum.

By plotting the trajectories starting at various initial points in the phase plane, we obtain
the phase portrait shown in Figure 9.3.5. As we have seen, the critical points (equilibrium
solutions) are the points (nπ , 0), where n = 0, ±1, ±2, . . . . Even values of n, including zero,
correspond to the downward position of the pendulum, while odd values of n correspond to
the upward position. Near each of the asymptotically stable critical points, the trajectories
are clockwise spirals that represent a decaying oscillation about the downward equilibrium
position. The wavy horizontal portions of the trajectories that occur for larger values of |y|
represent whirling motions of the pendulum. Note that a whirling motion cannot continue
indefinitely, no matter how large |y| is; eventually the angular velocity is so much reduced by
the damping term that the pendulum can no longer go over the top, and instead begins to
oscillate about its downward position.

10

64 8–4–6

–10

x

y

– 8 –2 2

–5

5

FIGURE 9.3.5 Phase portrait for the damped pendulum of Example 4.

The basin of attraction for the origin is the shaded region in Figure 9.3.5. It is bounded by
the trajectories that enter the two adjacent saddle points at (π , 0) and (−π , 0). The bounding
trajectories are separatrices. Each asymptotically stable critical point has its own basin of
attraction, which is bounded by the separatrices entering the two neighboring saddle points.
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All of the basins of attraction are congruent to the shaded one; the only difference is that they
are translated horizontally by appropriate distances. Note that it is mathematically possible
(but physically unrealizable) to choose initial conditions exactly on a separatrix so that the
resulting motion leads to a balanced pendulum in a vertically upward position of unstable
equilibrium.

An important difference between nonlinear autonomous systems and the linear
systems discussed in Section 9.1 is illustrated by the pendulum equations. Recall
that the linear system (1) has only the single critical point x = 0 if det A �= 0. Thus,
if the origin is asymptotically stable, then not only do trajectories that start close to
the origin approach it, but, in fact, every trajectory approaches the origin. In this
case the critical point x = 0 is said to be globally asymptotically stable. This property
of linear systems is not, in general, true for nonlinear systems, even if the nonlinear
system has only one asymptotically stable critical point. Therefore, for nonlinear
systems it is important to determine (or to estimate) the basin of attraction for each
asymptotically stable critical point.

PROBLEMS In each of Problems 1 through 4 verify that (0, 0) is a critical point, show that the system is
locally linear, and discuss the type and stability of the critical point (0, 0) by examining the
corresponding linear system.

1. dx/dt = x − y2, dy/dt = x − 2y + x2

2. dx/dt = −x + y + 2xy, dy/dt = −4x − y + x2 − y2

3. dx/dt = (1 + x) sin y, dy/dt = 1 − x − cos y

4. dx/dt = x + y2, dy/dt = x + y

In each of Problems 5 through 18:
(a) Determine all critical points of the given system of equations.
(b) Find the corresponding linear system near each critical point.
(c) Find the eigenvalues of each linear system. What conclusions can you then draw about
the nonlinear system?
(d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend
them in those cases where the linear system does not provide definite information about the
nonlinear system.

5. dx/dt = (2 + x)(y − x), dy/dt = (4 − x)(y + x)

6. dx/dt = x − x2 − xy, dy/dt = 3y − xy − 2y2

7. dx/dt = 1 − y, dy/dt = x2 − y2

8. dx/dt = x − x2 − xy, dy/dt = 1
2 y − 1

4 y2 − 3
4 xy

9. dx/dt = (2 + y)(y − 0.5x), dy/dt = (2 − x)(y + 0.5x)

10. dx/dt = x + x2 + y2, dy/dt = y − xy

11. dx/dt = 2x + y + xy3, dy/dt = x − 2y − xy

12. dx/dt = (1 + x) sin y, dy/dt = 1 − x − cos y

13. dx/dt = x − y2, dy/dt = y − x2

14. dx/dt = 1 − xy, dy/dt = x − y3

15. dx/dt = −2x − y − x(x2 + y2), dy/dt = x − y + y(x2 + y2)

16. dx/dt = y + x(1 − x2 − y2), dy/dt = −x + y(1 − x2 − y2)
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17. dx/dt = 4 − y2, dy/dt = (1.5 + x)(y − x)

18. dx/dt = (1 − y)(2x − y), dy/dt = (2 + x)(x − 2y)

19. Consider the autonomous system

dx/dt = y, dy/dt = x + 2x3.

(a) Show that the critical point (0, 0) is a saddle point.
(b) Sketch the trajectories for the corresponding linear system by integrating the equation
for dy/dx. Show from the parametric form of the solution that the only trajectory on which
x → 0, y → 0 as t → ∞ is y = −x.
(c) Determine the trajectories for the nonlinear system by integrating the equation for
dy/dx. Sketch the trajectories for the nonlinear system that correspond to y = −x and
y = x for the linear system.

20. Consider the autonomous system

dx/dt = x, dy/dt = −2y + x3.

(a) Show that the critical point (0, 0) is a saddle point.
(b) Sketch the trajectories for the corresponding linear system, and show that the trajec-
tory for which x → 0, y → 0 as t → ∞ is given by x = 0.
(c) Determine the trajectories for the nonlinear system for x �= 0 by integrating the equa-
tion for dy/dx. Show that the trajectory corresponding to x = 0 for the linear system is
unaltered, but that the one corresponding to y = 0 is y = x3/5. Sketch several of the
trajectories for the nonlinear system.

21. The equation of motion of an undamped pendulum is d2θ/dt2 + ω2 sin θ = 0, where
ω2 = g/L. Let x = θ , y = dθ/dt to obtain the system of equations

dx/dt = y, dy/dt = −ω2 sin x.

(a) Show that the critical points are (±nπ , 0), n = 0, 1, 2, . . . , and that the system is locally
linear in the neighborhood of each critical point.
(b) Show that the critical point (0,0) is a (stable) center of the corresponding linear system.
UsingTheorem 9.3.2,what can you say about the nonlinear system? The situation is similar
at the critical points (±2nπ , 0), n = 1, 2, 3, . . . . What is the physical interpretation of these
critical points?
(c) Show that the critical point (π , 0) is an (unstable) saddle point of the corresponding
linear system. What conclusion can you draw about the nonlinear system? The situa-
tion is similar at the critical points [±(2n − 1)π , 0], n = 1, 2, 3, . . . . What is the physical
interpretation of these critical points?
(d) Choose a value for ω2 and plot a few trajectories of the nonlinear system in the
neighborhood of the origin. Can you now draw any further conclusion about the nature
of the critical point at (0, 0) for the nonlinear system?
(e) Using the value of ω2 from part (d), draw a phase portrait for the pendulum. Compare
your plot with Figure 9.3.5 for the damped pendulum.

22. (a) By solving the equation for dy/dx, show that the equation of the trajectories of the
undamped pendulum of Problem 21 can be written as

1
2 y2 + ω2(1 − cos x) = c, (i)

where c is a constant of integration.
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(b) Multiply Eq. (i) by mL2. Then express the result in terms of θ to obtain

1
2

mL2

(
dθ

dt

)2

+ mgL(1 − cos θ) = E, (ii)

where E = mL2c.
(c) Show that the first term in Eq. (ii) is the kinetic energy of the pendulum and that the
second term is the potential energy due to gravity. Thus the total energy E of the pendulum
is constant along any trajectory; its value is determined by the initial conditions.

23. The motion of a certain undamped pendulum is described by the equations

dx/dt = y, dy/dt = −4 sin x.

If the pendulum is set in motion with an angular displacement A and no initial velocity,
then the initial conditions are x(0) = A, y(0) = 0.
(a) Let A = 0.25 and plot x versus t. From the graph, estimate the amplitude R and
period T of the resulting motion of the pendulum.
(b) Repeat part (a) for A = 0.5, 1.0, 1.5, and 2.0.
(c) How do the amplitude and period of the pendulum’s motion depend on the initial
position A? Draw a graph to show each of these relationships. Can you say anything
about the limiting value of the period as A → 0?
(d) Let A = 4 and plot x versus t. Explain why this graph differs from those in parts (a)
and (b). For what value of A does the transition take place?

24. Consider again the pendulum equations (see Problem 23)

dx/dt = y, dy/dt = −4 sin x.

If the pendulum is set in motion from its downward equilibrium position with angular
velocity v, then the initial conditions are x(0) = 0, y(0) = v.
(a) Plot x versus t for v = 2 and also for v = 5. Explain the differing motions of the
pendulum that these two graphs represent.
(b) There is a critical value of v, which we denote by vc, such that one type of motion
occurs for v < vc and the other for v > vc. Estimate the value of vc.

25. This problem extends Problem 24 to a damped pendulum. The equations of motion are

dx/dt = y, dy/dt = −4 sin x − γ y,

where γ is the damping coefficient, with the initial conditions x(0) = 0, y(0) = v.
(a) For γ = 1/4 plot x versus t for v = 2 and for v = 5. Explain these plots in terms of
the motions of the pendulum that they represent. Also explain how they relate to the
corresponding graphs in Problem 24(a).
(b) Estimate the critical value vc of the initial velocity where the transition from one type
of motion to the other occurs.
(c) Repeat part (b) for other values of γ and determine how vc depends on γ .

26. Theorem 9.3.2 provides no information about the stability of a critical point of a locally
linear system if that point is a center of the corresponding linear system. That this must
be the case is illustrated by the systems

dx/dt = y + x(x2 + y2),
(i)

dy/dt = −x + y(x2 + y2)
and
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dx/dt = y − x(x2 + y2),
(ii)

dy/dt = −x − y(x2 + y2).

(a) Show that (0, 0) is a critical point of each system and, furthermore, is a center of the
corresponding linear system.
(b) Show that each system is locally linear.
(c) Let r2 = x2 + y2, and note that x dx/dt + y dy/dt = r dr/dt. For system (ii) show that
dr/dt < 0 and that r → 0 as t → ∞; hence the critical point is asymptotically stable. For
system (i) show that the solution of the initial value problem for r with r = r0 at t = 0
becomes unbounded as t → 1/2r2

0 , and hence the critical point is unstable.

27. In this problem we show how small changes in the coefficients of a system of linear equa-
tions can affect a critical point that is a center. Consider the system

x′ =
(

0 1
−1 0

)
x.

Show that the eigenvalues are ±i so that (0, 0) is a center. Now consider the system

x′ =
(

ε 1
−1 ε

)
x,

where |ε| is arbitrarily small. Show that the eigenvalues are ε ± i. Thus no matter how
small |ε| �= 0 is, the center becomes a spiral point. If ε < 0, the spiral point is asymptotically
stable; if ε > 0, the spiral point is unstable.

28. In this problem we show how small changes in the coefficients of a system of linear equa-
tions can affect the nature of a critical point when the eigenvalues are equal. Consider
the system

x′ =
(

−1 1
0 −1

)
x.

Show that the eigenvalues are r1 = −1, r2 = −1 so that the critical point (0, 0) is an asymp-
totically stable node. Now consider the system

x′ =
(

−1 1
−ε −1

)
x,

where |ε| is arbitrarily small. Show that if ε > 0, then the eigenvalues are −1 ± i
√

ε, so
that the asymptotically stable node becomes an asymptotically stable spiral point. If ε < 0,
then the roots are −1 ± √|ε|, and the critical point remains an asymptotically stable node.

29. In this problem we derive a formula for the natural period of an undamped nonlinear
pendulum [c = 0 in Eq. (10) of Section 9.2]. Suppose that the bob is pulled through a
positive angle α and then released with zero velocity.
(a) We usually think of θ and dθ/dt as functions of t. However, if we reverse the roles of
t and θ , we can regard t as a function of θ and, consequently, can also think of dθ/dt as a
function of θ . Then derive the following sequence of equations:

1
2

mL2 d
dθ

[(
dθ

dt

)2
]

= −mgL sin θ ,

1
2

m
(

L
dθ

dt

)2

= mgL(cos θ − cos α),
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dt = −
√

L
2g

dθ√
cos θ − cos α

.

Why was the negative square root chosen in the last equation?
(b) If T is the natural period of oscillation, derive the formula

T
4

= −
√

L
2g

∫ 0

α

dθ√
cos θ − cos α

.

(c) By using the identities cos θ = 1 − 2 sin2
(θ/2) and cos α = 1 − 2 sin2

(α/2), followed
by the change of variable sin(θ/2) = k sin φ with k = sin(α/2), show that

T = 4

√
L
g

∫ π/2

0

dφ√
1 − k2 sin2

φ

.

The integral is called the elliptic integral of the first kind. Note that the period depends
on the ratio L/g and also on the initial displacement α through k = sin(α/2).
(d) By evaluating the integral in the expression for T , obtain values for T that you can
compare with the graphical estimates you obtained in Problem 23.

30. A generalization of the damped pendulum equation discussed in the text, or a damped
spring–mass system, is the Liénard4 equation

d2x
dt2

+ c(x)
dx
dt

+ g(x) = 0.

If c(x) is a constant and g(x) = kx, then this equation has the form of the linear pendu-
lum equation [replace sin θ with θ in Eq. (12) of Section 9.2]; otherwise, the damping
force c(x) dx/dt and the restoring force g(x) are nonlinear. Assume that c is continuously
differentiable, g is twice continuously differentiable, and g(0) = 0.
(a) Write the Liénard equation as a system of two first order equations by introducing
the variable y = dx/dt.

(b) Show that (0, 0) is a critical point and that the system is locally linear in the neighbor-
hood of (0, 0).
(c) Show that if c(0) > 0 and g′(0) > 0, then the critical point is asymptotically stable, and
that if c(0) < 0 or g′(0) < 0, then the critical point is unstable.
Hint: Use Taylor series to approximate c and g in the neighborhood of x = 0.

9.4 Competing Species
In this section and the next, we explore the application of phase plane analysis to
some problems in population dynamics. These problems involve two interacting
populations and are extensions of those discussed in Section 2.5, which dealt with
a single population. Although the equations discussed here are extremely simple

4Alfred-Marie Liénard (1869–1958), professor at l’École des Mines in Paris, worked in electricity, mechan-
ics, and applied mathematics. The results of his investigation of this differential equation were published
in 1928.
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compared to the very complex relationships that exist in nature, it is still possible to
acquire some insight into ecological principles from a study of these model problems.
The same, or similar, models have also been used to study other types of competitive
situations, for instance, businesses competing in the same market.

Suppose that in some closed environment there are two similar species competing
for a limited food supply—for example, two species of fish in a pond that do not prey
on each other but do compete for the available food. Let x and y be the populations of
the two species at time t. As discussed in Section 2.5, we assume that the population
of each of the species, in the absence of the other, is governed by a logistic equation.
Thus

dx/dt = x(ε1 − σ1x), (1a)

dy/dt = y(ε2 − σ2y), (1b)

respectively, where ε1 and ε2 are the growth rates of the two populations, and ε1/σ1

and ε2/σ2 are their saturation levels. However, when both species are present, each
will tend to diminish the available food supply for the other. In effect, they reduce
each other’s growth rates and saturation populations. The simplest expression for
reducing the growth rate of species x due to the presence of species y is to replace
the growth rate factor ε1 − σ1x in Eq. (1a) by ε1 − σ1x − α1y, where α1 is a measure
of the degree to which species y interferes with species x. Similarly, in Eq. (1b) we
replace ε2 − σ2y by ε2 − σ2y − α2x. Thus we have the system of equations

dx/dt = x(ε1 − σ1x − α1y),
(2)

dy/dt = y(ε2 − σ2y − α2x).

The values of the positive constants ε1, σ1, α1, ε2, σ2, and α2 depend on the particular
species under consideration and in general must be determined from observations.
We are interested in solutions of Eqs. (2) for which x and y are nonnegative. In the
following two examples we discuss two typical problems in some detail. At the end
of the section we return to the general equations (2).

E X A M P L E

1

Discuss the qualitative behavior of solutions of the system

dx/dt = x(1 − x − y),
(3)

dy/dt = y(0.75 − y − 0.5x).

We find the critical points by solving the system of algebraic equations

x(1 − x − y) = 0, y(0.75 − y − 0.5x) = 0. (4)

The first equation can be satisfied by choosing x = 0; then the second equation requires that
y = 0 or y = 0.75. Similarly, the second equation can be satisfied by choosing y = 0, and then
the first equation requires that x = 0 or x = 1. Thus we have found three critical points, namely,
(0, 0), (0, 0.75), and (1, 0). If neither x nor y is zero, then Eqs. (4) are also satisfied by solutions
of the system

1 − x − y = 0, 0.75 − y − 0.5x = 0, (5)

which leads to a fourth critical point (0.5, 0.5). These four critical points correspond to equi-
librium solutions of the system (3). The first three of these points involve the extinction of
one or both species; only the last corresponds to the long-term survival of both species. Other
solutions are represented as curves or trajectories in the xy-plane that describe the evolution
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of the populations in time. To begin to discover their qualitative behavior, we can proceed in
the following way.

First observe that the coordinate axes are themselves trajectories. This follows directly
from Eqs. (3) since dx/dt = 0 on the y-axis (where x = 0) and, similarly, dy/dt = 0 on the
x-axis (where y = 0). Thus no other trajectories can cross the coordinate axes. For a population
problem only nonnegative values of x and y are significant, and we conclude that any trajectory
that starts in the first quadrant remains there for all time.

A direction field for the system (3) in the positive quadrant is shown in Figure 9.4.1; the
black dots in this figure are the critical points or equilibrium solutions. Based on the direction
field, it appears that the point (0.5, 0.5) attracts other solutions and is therefore asymptotically
stable, while the other three critical points are unstable. To confirm these conclusions, we can
look at the linear approximations near each critical point.

1

0.75

0.5

0.25

1.2510.750.50.250

y

x

FIGURE 9.4.1 Critical points and direction field for the system (3).

The system (3) is locally linear in the neighborhood of each critical point. There are two
ways to obtain the linear system near a critical point (X , Y). First, we can use the substitution
x = X + u, y = Y + v in Eqs. (3), retaining only the terms that are linear in u and v. Alter-
natively, we can evaluate the Jacobian matrix J at each critical point to obtain the coefficient
matrix in the approximating linear system; see Eq. (13) in Section 9.3. When several critical
points are to be investigated, it is usually better to use the Jacobian matrix. For the system (3)
we have

F(x, y) = x(1 − x − y), G(x, y) = y(0.75 − y − 0.5x), (6)

so

J =
(

1 − 2x − y −x

−0.5y 0.75 − 2y − 0.5x

)
. (7)

We will now examine each critical point in turn.
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x = 0, y = 0. This critical point corresponds to a state in which both species die as a result of
their competition. By setting x = y = 0 in Eq. (7),we see that near the origin the corresponding
linear system is

d
dt

(
x

y

)
=

(
1 0
0 0.75

)(
x

y

)
. (8)

The eigenvalues and eigenvectors of the system (8) are

r1 = 1, ξ (1) =
(

1
0

)
; r2 = 0.75, ξ (2) =

(
0
1

)
, (9)

so the general solution of the system is(
x

y

)
= c1

(
1
0

)
et + c2

(
0
1

)
e0.75t . (10)

Thus the origin is an unstable node of both the linear system (8) and the nonlinear system
(3). In the neighborhood of the origin, all trajectories are tangent to the y-axis except for one
trajectory that lies along the x-axis.

x = 1, y = 0. This corresponds to a state in which species x survives the competition but
species y does not. By evaluating J from Eq. (7) at (1, 0), we find that the corresponding linear
system is

d
dt

(
u

v

)
=

(
−1 −1

0 0.25

)(
u

v

)
. (11)

Its eigenvalues and eigenvectors are

r1 = −1, ξ (1) =
(

1
0

)
; r2 = 0.25, ξ (2) =

(
4

−5

)
, (12)

and its general solution is (
u

v

)
= c1

(
1
0

)
e−t + c2

(
4

−5

)
e0.25t . (13)

Since the eigenvalues have opposite signs, the point (1, 0) is a saddle point, and hence is an
unstable equilibrium point of the linear system (11) and of the nonlinear system (3). The
behavior of the trajectories near (1, 0) can be seen from Eq. (13). If c2 = 0, then there is one
pair of trajectories that approaches the critical point along the x-axis. All other trajectories
depart from the neighborhood of (1, 0). As t → −∞, one trajectory approaches the saddle
point tangent to the eigenvector ξ (2) whose slope is −1.25.

x = 0, y = 0.75. In this case species y survives but x does not. The analysis is similar to that
for the point (1, 0). The corresponding linear system is

d
dt

(
u

v

)
=

(
0.25 0

−0.375 −0.75

)(
u

v

)
. (14)

The eigenvalues and eigenvectors are

r1 = 0.25, ξ (1) =
(

8
−3

)
; r2 = −0.75, ξ (2) =

(
0
1

)
, (15)
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so the general solution of Eq. (14) is(
u

v

)
= c1

(
8

−3

)
e0.25t + c2

(
0
1

)
e−0.75t . (16)

Thus the point (0, 0.75) is also a saddle point. All trajectories leave the neighborhood of this
point except one pair that approaches along the y-axis. The trajectory that approaches the
saddle point as t → −∞ is tangent to the line with slope −0.375 determined by the eigenvector
ξ (1).

x = 0.5, y = 0.5. This critical point corresponds to a mixed equilibrium state, or coexis-
tence, in the competition between the two species. The eigenvalues and eigenvectors of the
corresponding linear system

d
dt

(
u

v

)
=

(
−0.5 −0.5
−0.25 −0.5

)(
u

v

)
(17)

are

r1 = (−2 + √
2)/4 ∼= −0.146, ξ (1) =

(√
2

−1

)
;

(18)

r2 = (−2 − √
2)/4 ∼= −0.854, ξ (2) =

(√
2

1

)
.

Therefore the general solution of Eq. (17) is(
u

v

)
= c1

(√
2

−1

)
e−0.146t + c2

(√
2

1

)
e−0.854t . (19)

Since both eigenvalues are negative, the critical point (0.5, 0.5) is an asymptotically stable node
of the linear system (17) and of the nonlinear system (3). All trajectories approach the critical
point as t → ∞. One pair of trajectories approaches the critical point along the line with slope

y

x

1

0.75

0.5

0.25

1.2510.750.50.25

FIGURE 9.4.2 A phase portrait of the system (3).
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√
2/2 determined from the eigenvector ξ (2). All other trajectories approach the critical point

tangent to the line with slope −√
2/2 determined from the eigenvector ξ (1).

A phase portrait for the system (3) is shown in Figure 9.4.2. By looking closely at the
trajectories near each critical point, you can see that they behave in the manner predicted by
the linear system near that point. In addition, note that the quadratic terms on the right side
of Eqs. (3) are all negative. Since for x and y large and positive these terms are the dominant
ones, it follows that far from the origin in the first quadrant both x′ and y′ are negative; that
is, the trajectories are directed inward. Thus all trajectories that start at a point (x0, y0) with
x0 > 0 and y0 > 0 eventually approach the point (0.5, 0.5).

E X A M P L E

2

Discuss the qualitative behavior of the solutions of the system

dx/dt = x(1 − x − y),
(20)

dy/dt = y(0.5 − 0.25y − 0.75x),

when x and y are nonnegative. Observe that this system is also a special case of the system (2)
for two competing species.

Once again, there are four critical points, namely, (0, 0), (1, 0), (0, 2), and (0.5, 0.5), corre-
sponding to equilibrium solutions of the system (20). Figure 9.4.3 shows a direction field for
the system (20), together with the four critical points. From the direction field it appears that
the mixed equilibrium solution (0.5, 0.5) is a saddle point, and therefore unstable, while the

2

1.5

1

0.5

0

y

x1.2510.750.50.25

FIGURE 9.4.3 Critical points and direction field for the system (20).
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points (1, 0) and (0, 2) are asymptotically stable. Thus, for competition described by Eqs. (20),
one species will eventually overwhelm the other and drive it to extinction. The surviving
species is determined by the initial state of the system. To confirm these conclusions, we can
look at the linear approximations near each critical point. For later use we record the Jacobian
matrix J for the system (20):

J =
(

Fx(x, y) Fy(x, y)

Gx(x, y) Gy(x, y)

)
=

(
1 − 2x − y −x

−0.75y 0.5 − 0.5y − 0.75x

)
. (21)

x = 0, y = 0. Using the Jacobian matrix J from Eq. (21) evaluated at (0, 0), we obtain the
linear system

d
dt

(
x

y

)
=

(
1 0
0 0.5

)(
x

y

)
, (22)

which is valid near the origin. The eigenvalues and eigenvectors of the system (22) are

r1 = 1, ξ (1) =
(

1
0

)
; r2 = 0.5, ξ (2) =

(
0
1

)
, (23)

so the general solution is (
x

y

)
= c1

(
1
0

)
et + c2

(
0
1

)
e0.5t . (24)

Therefore the origin is an unstable node of the linear system (22) and also of the nonlinear
system (20). All trajectories leave the origin tangent to the y-axis except for one trajectory
that lies along the x-axis.

x = 1, y = 0. The corresponding linear system is

d
dt

(
u

v

)
=

(
−1 −1

0 −0.25

)(
u

v

)
. (25)

Its eigenvalues and eigenvectors are

r1 = −1, ξ (1) =
(

1
0

)
; r2 = −0.25, ξ (2) =

(
4

−3

)
, (26)

and its general solution is

(
u

v

)
= c1

(
1
0

)
e−t + c2

(
4

−3

)
e−0.25t . (27)

The point (1, 0) is an asymptotically stable node of the linear system (25) and of the nonlinear
system (20). If the initial values of x and y are sufficiently close to (1, 0), then the interaction
process will lead ultimately to that state; that is, to the survival of species x and the extinction
of species y. There is one pair of trajectories that approaches the critical point along the x-axis.
All other trajectories approach (1, 0) tangent to the line with slope −3/4 that is determined
by the eigenvector ξ (2).
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x = 0, y = 2. The analysis in this case is similar to that for the point (1, 0). The appropriate
linear system is

d
dt

(
u

v

)
=

(
−1 0
−1.5 −0.5

)(
u

v

)
. (28)

The eigenvalues and eigenvectors of this system are

r1 = −1, ξ (1) =
(

1
3

)
; r2 = −0.5, ξ (2) =

(
0
1

)
, (29)

and its general solution is (
u

v

)
= c1

(
1
3

)
e−t + c2

(
0
1

)
e−0.5t . (30)

Thus the critical point (0, 2) is an asymptotically stable node of both the linear system (28) and
the nonlinear system (20). All trajectories approach the critical point tangent to the y-axis
except for one trajectory that approaches along the line with slope 3.

x = 0.5, y = 0.5. The corresponding linear system is

d
dt

(
u

v

)
=

(
−0.5 −0.5
−0.375 −0.125

)(
u

v

)
. (31)

The eigenvalues and eigenvectors are

r1 = −5 + √
57

16
∼= 0.1594, ξ (1) =

(
1

(−3 − √
57)/8

)
∼=

(
1

−1.3187

)
,

(32)

r2 = −5 − √
57

16
∼= −0.7844, ξ (2) =

(
1

(−3 + √
57)/8

)
∼=

(
1

0.5687

)
,

so the general solution is(
u

v

)
= c1

(
1

−1.3187

)
e0.1594t + c2

(
1

0.5687

)
e−0.7844t . (33)

Since the eigenvalues are of opposite sign, the critical point (0.5, 0.5) is a saddle point and
therefore is unstable, as we had surmised earlier. All trajectories depart from the neighbor-
hood of the critical point except for one pair that approaches the saddle point as t → ∞. As
they approach the critical point, the entering trajectories are tangent to the line with slope
(
√

57 − 3)/8 ∼= 0.5687 determined from the eigenvector ξ (2).There is also a pair of trajectories
that approach the saddle point as t → −∞. These trajectories are tangent to the line with
slope −1.3187 corresponding to ξ (1)

A phase portrait for the system (20) is shown in Figure 9.4.4. Near each of the critical
points the trajectories of the nonlinear system behave as predicted by the corresponding
linear approximation. Of particular interest is the pair of trajectories that enter the saddle
point. These trajectories form a separatrix that divides the first quadrant into two basins of
attraction. Trajectories starting above the separatrix ultimately approach the node at (0, 2),
while trajectories starting below the separatrix approach the node at (1, 0). If the initial state
lies precisely on the separatrix, then the solution (x, y) will approach the saddle point as t → ∞.
However, the slightest perturbation of the point (x, y) as it follows this trajectory will dislodge
the point from the separatrix and cause it to approach one of the nodes instead. Thus, in
practice, one species will survive the competition and the other will not.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 548 Page number 528 cyan black

528 Chapter 9. Nonlinear Differential Equations and Stability

y

2

1.5

1

0.5

x

Separatrix

1.2510.750.50.25

FIGURE 9.4.4 A phase portrait of the system (20).

Examples 1 and 2 show that in some cases the competition between two species
leads to an equilibrium state of coexistence, while in other cases the competition
results in the eventual extinction of one of the species. To understand more clearly
how and why this happens, and to learn how to predict which situation will occur, it is
useful to look again at the general system (2). There are four cases to be considered,
depending on the relative orientation of the lines

ε1 − σ1x − α1y = 0 and ε2 − σ2y − α2x = 0, (34)

as shown in Figure 9.4.5. These lines are called the x- and y-nullclines, respectively,
because x′ is zero on the first and y′ is zero on the second. In each part of Figure 9.4.5
the x-nullcline is the solid line and the y-nullcline is the dashed line.

Let (X , Y) denote any critical point in any one of the four cases. As in Examples
1 and 2, the system (2) is locally linear in the neighborhood of this point because the
right side of each differential equation is a quadratic polynomial. To study the system
(2) in the neighborhood of this critical point, we can look at the corresponding linear
system obtained from Eq. (13) of Section 9.3

d
dt

(
u
v

)
=

(
ε1 − 2σ1X − α1Y −α1X

−α2Y ε2 − 2σ2Y − α2X

)(
u
v

)
. (35)
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2/  2σ
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FIGURE 9.4.5 The various cases for the competing-species system (2). The x-nullcline is
the solid line and the y-nullcline is the dashed line.

We now use Eq. (35) to determine the conditions under which the model described
by Eqs. (2) permits the coexistence of the two species x and y. Of the four possible
cases shown in Figure 9.4.5, coexistence is possible only in cases (c) and (d). In these
cases the nonzero values of X and Y are obtained by solving the algebraic equations
(34); the result is

X = ε1σ2 − ε2α1

σ1σ2 − α1α2
, Y = ε2σ1 − ε1α2

σ1σ2 − α1α2
. (36)

Further, since ε1 − σ1X − α1Y = 0 and ε2 − σ2Y − α2X = 0, Eq. (35) immediately
reduces to

d
dt

(
u
v

)
=

(−σ1X −α1X
−α2Y −σ2Y

)(
u
v

)
. (37)

The eigenvalues of the system (37) are found from the equation

r2 + (σ1X + σ2Y)r + (σ1σ2 − α1α2)XY = 0. (38)

Thus

r1,2 = −(σ1X + σ2Y) ± √
(σ1X + σ2Y)2 − 4(σ1σ2 − α1α2)XY

2
. (39)

If σ1σ2 − α1α2 < 0, then the radicand of Eq. (39) is positive and greater than
(σ1X + σ2Y)2. Thus the eigenvalues are real and of opposite sign. Consequently,
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the critical point (X , Y) is an (unstable) saddle point, and coexistence is not possi-
ble. This is the case in Example 2, where σ1 = 1, α1 = 1, σ2 = 0.25, α2 = 0.75, and
σ1σ2 − α1α2 = −0.5.

On the other hand, if σ1σ2 − α1α2 > 0, then the radicand of Eq. (39) is less than
(σ1X + σ2Y)2. Thus the eigenvalues are real, negative, and unequal, or complex with
negative real part. A straightforward analysis of the radicand of Eq. (39) shows that
the eigenvalues cannot be complex (see Problem 7). Thus the critical point is an
asymptotically stable node, and sustained coexistence is possible. This is illustrated
by Example 1, where σ1 = 1, α1 = 1, σ2 = 1, α2 = 0.5, and σ1σ2 − α1α2 = 0.5.

Let us relate this result to Figures 9.4.5c and 9.4.5d. In Figure 9.4.5c we have

ε1

σ1
>

ε2

α2
or ε1α2 > ε2σ1 and

ε2

σ2
>

ε1

α1
or ε2α1 > ε1σ2. (40)

These inequalities, coupled with the condition that X and Y given by Eqs. (36) be
positive, yield the inequality σ1σ2 < α1α2. Hence in this case the critical point is a
saddle point. On the other hand, in Figure 9.4.5d we have

ε1

σ1
<

ε2

α2
or ε1α2 < ε2σ1 and

ε2

σ2
<

ε1

α1
or ε2α1 < ε1σ2. (41)

Now the condition that X and Y be positive yields σ1σ2 > α1α2. Hence the critical
point is asymptotically stable. For this case we can also show that the other critical
points (0, 0), (ε1/σ1, 0), and (0, ε2/σ2) are unstable. Thus for any positive initial values
of x and y, the two populations approach the equilibrium state of coexistence given
by Eqs. (36).

Equations (2) provide the biological interpretation of the result that whether co-
existence occurs depends on whether σ1σ2 − α1α2 is positive or negative. The σ ’s are
a measure of the inhibitory effect that the growth of each population has on itself,
while the α’s are a measure of the inhibiting effect that the growth of each popula-
tion has on the other species. Thus, when σ1σ2 > α1α2, interaction (competition) is
“weak” and the species can coexist; when σ1σ2 < α1α2, interaction (competition) is
“strong” and the species cannot coexist—one must die out.

PROBLEMS Each of Problems 1 through 6 can be interpreted as describing the interaction of two species
with populations x and y. In each of these problems carry out the following steps.
(a) Draw a direction field and describe how solutions seem to behave.
(b) Find the critical points.
(c) For each critical point find the corresponding linear system. Find the eigenvalues and
eigenvectors of the linear system; classify each critical point as to type, and determine whether
it is asymptotically stable, stable, or unstable.
(d) Sketch the trajectories in the neighborhood of each critical point.
(e) Compute and plot enough trajectories of the given system to show clearly the behavior of
the solutions.
(f) Determine the limiting behavior of x and y as t → ∞, and interpret the results in terms
of the populations of the two species.

1. dx/dt = x(1.5 − x − 0.5y)

dy/dt = y(2 − y − 0.75x)

2. dx/dt = x(1.5 − x − 0.5y)

dy/dt = y(2 − 0.5y − 1.5x)
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3. dx/dt = x(1.5 − 0.5x − y)

dy/dt = y(2 − y − 1.125x)

4. dx/dt = x(1.5 − 0.5x − y)

dy/dt = y(0.75 − y − 0.125x)

5. dx/dt = x(1 − x − y)

dy/dt = y(1.5 − y − x)

6. dx/dt = x(1 − x + 0.5y)

dy/dt = y(2.5 − 1.5y + 0.25x)

7. Consider the eigenvalues given by Eq. (39) in the text. Show that

(σ1X + σ2Y)2 − 4(σ1σ2 − α1α2)XY = (σ1X − σ2Y)2 + 4α1α2XY .

Hence conclude that the eigenvalues can never be complex.
8. Two species of fish that compete with each other for food, but do not prey on each other,

are bluegill and redear. Suppose that a pond is stocked with bluegill and redear, and let
x and y be the populations of bluegill and redear, respectively, at time t. Suppose further
that the competition is modeled by the equations

dx/dt = x(ε1 − σ1x − α1y),

dy/dt = y(ε2 − σ2y − α2x).

(a) If ε2/α2 > ε1/σ1 and ε2/σ2 > ε1/α1, show that the only equilibrium populations in the
pond are no fish, no redear, or no bluegill. What will happen for large t?
(b) If ε1/σ1 > ε2/α2 and ε1/α1 > ε2/σ2, show that the only equilibrium populations in the
pond are no fish, no redear, or no bluegill. What will happen for large t?

9. Consider the competition between bluegill and redear mentioned in Problem 8. Suppose
that ε2/α2 > ε1/σ1 and ε1/α1 > ε2/σ2, so, as shown in the text, there is a stable equilibrium
point at which both species can coexist. It is convenient to rewrite the equations of
Problem 8 in terms of the carrying capacities of the pond for bluegill (B = ε1/σ1) in the
absence of redear and for redear (R = ε2/σ2) in the absence of bluegill.
(a) Show that the equations of Problem 8 take the form

dx
dt

= ε1x
(

1 − 1
B

x − γ1

B
y
)

,
dy
dt

= ε2y
(

1 − 1
R

y − γ2

R
x
)

,

where γ1 = α1/σ1 and γ2 = α2/σ2. Determine the coexistence equilibrium point (X , Y) in
terms of B, R, γ1, and γ2.
(b) Now suppose that a fisherman fishes only for bluegill with the effect that B is reduced.
What effect does this have on the equilibrium populations? Is it possible, by fishing, to
reduce the population of bluegill to such a level that they will die out?

10. Consider the system (2) in the text, and assume that σ1σ2 − α1α2 = 0.
(a) Find all the critical points of the system. Observe that the result depends on whether
σ1ε2 − α2ε1 is zero.
(b) If σ1ε2 − α2ε1 > 0, classify each critical point and determine whether it is asymptoti-
cally stable, stable, or unstable. Note that Problem 5 is of this type. Then do the same if
σ1ε2 − α2ε1 < 0.
(c) Analyze the nature of the trajectories when σ1ε2 − α2ε1 = 0.

11. Consider the system (3) in Example 1 of the text. Recall that this system has an asymptot-
ically stable critical point at (0.5, 0.5), corresponding to the stable coexistence of the two
population species. Now suppose that immigration or emigration occurs at the constant
rates of δa and δb for the species x and y, respectively. In this case Eqs. (3) are replaced by

dx/dt = x(1 − x − y) + δa,
(i)

dy/dt = y(0.75 − y − 0.5x) + δb.

The question is what effect this has on the location of the stable equilibrium point.
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(a) To find the new critical point, we must solve the equations

x(1 − x − y) + δa = 0,
(ii)

y(0.75 − y − 0.5x) + δb = 0.

One way to proceed is to assume that x and y are given by power series in the parameter
δ; thus

x = x0 + x1δ + · · · , y = y0 + y1δ + · · · . (iii)

Substitute Eqs. (iii) into Eqs. (ii) and collect terms according to powers of δ.
(b) From the constant terms (the terms not involving δ), show that x0 = 0.5 and y0 = 0.5,
thus confirming that, in the absence of immigration or emigration, the critical point is
(0.5, 0.5).
(c) From the terms that are linear in δ, show that

x1 = 4a − 4b, y1 = −2a + 4b. (iv)

(d) Suppose that a > 0 and b > 0 so that immigration occurs for both species. Show that
the resulting equilibrium solution may represent an increase in both populations, or an in-
crease in one but a decrease in the other. Explain intuitively why this is a reasonable result.

12. The system
x′ = −y, y′ = −γ y − x(x − 0.15)(x − 2)

results from an approximation to the Hodgkin–Huxley5 equations, which model the trans-
mission of neural impulses along an axon.
(a) Find the critical points and classify them by investigating the approximate linear sys-
tem near each one.
(b) Draw phase portraits for γ = 0.8 and for γ = 1.5.
(c) Consider the trajectory that leaves the critical point (2, 0). Find the value of γ for
which this trajectory ultimately approaches the origin as t → ∞. Draw a phase portrait
for this value of γ .

Bifurcation Points. Consider the system

x′ = F(x, y, α), y′ = G(x, y, α), (i)

where α is a parameter. The equations

F(x, y, α) = 0, G(x, y, α) = 0 (ii)

determine the x- and y-nullclines, respectively; any point where an x-nullcline and a y-nullcline
intersect is a critical point. As α varies and the configuration of the nullclines changes, it may
well happen that, at a certain value of α, two critical points coalesce into one. For further
variation in α, the critical point may once again separate into two critical points, or it may
disappear altogether. Or the process may occur in reverse: For a certain value of α, two
formerly nonintersecting nullclines may come together, creating a critical point, which, for
further changes in α, may split into two. A value of α at which such phenomena occur is a
bifurcation point. It is also common for a critical point to experience a change in its type and
stability properties at a bifurcation point. Thus both the number and kind of critical points

5Alan L. Hodgkin (1914–1998) and Andrew F. Huxley (1917– ) were awarded the Nobel Prize in phys-
iology and medicine in 1963 for their work on the excitation and transmission of neural impulses. This
work was done at Cambridge University; its results were first published in 1952.
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may change abruptly as α passes through a bifurcation point. Since a phase portrait of a
system is very dependent on the location and nature of the critical points, an understanding of
bifurcations is essential to an understanding of the global behavior of the system’s solutions.

In each of Problems 13 through 16:
(a) Sketch the nullclines and describe how the critical points move as α increases.
(b) Find the critical points.
(c) Let α = 2. Classify each critical point by investigating the corresponding approximate
linear system. Draw a phase portrait in a rectangle containing the critical points.
(d) Find the bifurcation point α0 at which the critical points coincide. Locate this critical point
and find the eigenvalues of the approximate linear system. Draw a phase portrait.
(e) For α > α0 there are no critical points. Choose such a value of α and draw a phase portrait.

13. x′ = −4x + y + x2, y′ = 3
2 α − y

14. x′ = 3
2 α − y, y′ = −4x + y + x2

15. x′ = −4x + y + x2, y′ = −α − x + y

16. x′ = −α − x + y, y′ = −4x + y + x2

Problems 17 through 19 deal with competitive systems much like those in Examples 1 and 2,
except that some coefficients depend on a parameter α. In each of these problems assume
that x, y, and α are always nonnegative. In each of Problems 17 through 19:
(a) Sketch the nullclines in the first quadrant, as in Figure 9.4.5. For different ranges of α your
sketch may resemble different parts of Figure 9.4.5.
(b) Find the critical points.
(c) Determine the bifurcation points.
(d) Find the Jacobian matrix J and evaluate it for each of the critical points.
(e) Determine the type and stability property of each critical point. Pay particular attention
to what happens as α passes through a bifurcation point
(f) Draw phase portraits for the system for selected values of α to confirm your conclusions.

17. dx/dt = x(1 − x − y), dy/dt = y(α − y − 0.5x)

18. dx/dt = x(1 − x − y), dy/dt = y(0.75 − αy − 0.5x)

19. dx/dt = x(1 − x − y), dy/dt = y[α − y − (2α − 1)x]

9.5 Predator–Prey Equations
In the preceding section we discussed a model of two species that interact by
competing for a common food supply or other natural resource. In this section
we investigate the situation in which one species (the predator) preys on the other
species (the prey), while the prey lives on a different source of food. For example,
consider foxes and rabbits in a closed forest: The foxes prey on the rabbits, the rabbits
live on the vegetation in the forest. Other examples are bass in a lake as predators
and redear as prey, or ladybugs as predators and aphids as prey. We emphasize
again that a model involving only two species cannot fully describe the complex re-
lationships among species that actually occur in nature. Nevertheless, the study of
simple models is the first step toward an understanding of more complicated phe-
nomena.
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We will denote by x and y the populations of the prey and predator, respectively,
at time t. In constructing a model of the interaction of the two species, we make the
following assumptions:

1. In the absence of the predator, the prey grows at a rate proportional to the current popu-
lation; thus dx/dt = ax, a > 0, when y = 0.

2. In the absence of the prey, the predator dies out; thus dy/dt = −cy, c > 0, when x = 0.
3. The number of encounters between predator and prey is proportional to the product of

their populations. Each such encounter tends to promote the growth of the predator and
to inhibit the growth of the prey. Thus the growth rate of the predator is increased by
a term of the form γ xy, while the growth rate of the prey is decreased by a term −αxy,
where γ and α are positive constants.

As a consequence of these assumptions, we are led to the equations

dx/dt = ax − αxy = x(a − αy),
(1)

dy/dt = −cy + γ xy = y(−c + γ x).

The constants a, c, α, and γ are all positive; a and c are the growth rate of the prey
and the death rate of the predator, respectively, and α and γ are measures of the
effect of the interaction between the two species. Equations (1) are known as the
Lotka–Volterra equations. They were developed in papers by Lotka6 in 1925 and by
Volterra7 in 1926. Although these are rather simple equations, they do characterize
a wide class of problems. Ways of making them more realistic are discussed at the
end of this section and in the problems. Our goal here is to determine the qualitative
behavior of the solutions (trajectories) of the system (1) for arbitrary positive initial
values of x and y. We first do this for a specific example and then return to the general
equations (1) at the end of the section.

E X A M P L E

1

Discuss the solutions of the system

dx/dt = x(1 − 0.5y) = x − 0.5xy = F(x, y),
(2)

dy/dt = y(−0.75 + 0.25x) = −0.75y + 0.25xy = G(x, y)

for x and y positive.
The critical points of this system are the solutions of the algebraic equations

x(1 − 0.5y) = 0, y(−0.75 + 0.25x) = 0, (3)

namely, the points (0, 0) and (3, 2). Figure 9.5.1 shows the critical points and a direction field
for the system (2). From this figure it appears that trajectories in the first quadrant encircle the

6Alfred J. Lotka (1880–1949),anAmerican biophysicist,was born in what is now Ukraine and was educated
mainly in Europe. He is remembered chiefly for his formulation of the Lotka–Volterra equations. He
was also the author, in 1924, of the first book on mathematical biology; it is now available as Elements of
Mathematical Biology (New York: Dover, 1956).
7Vito Volterra (1860–1940), a distinguished Italian mathematician, held professorships at Pisa, Turin, and
Rome. He is particularly famous for his work in integral equations and functional analysis. Indeed, one
of the major classes of integral equations is named for him; see Problem 21 of Section 6.6. His theory
of interacting species was motivated by data collected by a friend, D’Ancona, concerning fish catches in
the Adriatic Sea. A translation of his 1926 paper can be found in an appendix to R. N. Chapman, Animal
Ecology with Special Reference to Insects (New York: McGraw-Hill, 1931).
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critical point (3, 2). Whether the trajectories are actually closed curves, or whether they slowly
spiral in or out, cannot be definitely determined from the direction field. The origin appears
to be a saddle point. Just as for the competition equations in Section 9.4, the coordinate axes
are trajectories of Eqs. (1) or (2). Consequently, no other trajectory can cross a coordinate
axis, which means that every solution starting in the first quadrant remains there for all time.

5

4

3

2

1

76543210

y

x

FIGURE 9.5.1 Critical points and direction field for the predator–prey system (2).

Next we examine the local behavior of solutions near each critical point. Near the origin
we can neglect the nonlinear terms in Eqs. (2) to obtain the corresponding linear system

d
dt

(
x

y

)
=

(
1 0
0 −0.75

)(
x

y

)
. (4)

The eigenvalues and eigenvectors of Eq. (4) are

r1 = 1, ξ (1) =
(

1
0

)
; r2 = −0.75, ξ (2) =

(
0
1

)
, (5)

so its general solution is (
x

y

)
= c1

(
1
0

)
et + c2

(
0
1

)
e−0.75t . (6)

Thus the origin is a saddle point both of the linear system (4) and of the nonlinear system (2),
and therefore is unstable. One pair of trajectories enters the origin along the y-axis; all other
trajectories depart from the neighborhood of the origin.

To examine the critical point (3, 2), we can use the Jacobian matrix

J =
(

Fx(x, y) Fy(x, y)

Gx(x, y) Gy(x, y)

)
=

(
1 − 0.5y −0.5x

0.25y −0.75 + 0.25x

)
. (7)
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Evaluating J at the point (3, 2), we obtain the linear system

d
dt

(
u

v

)
=

(
0 −1.5
0.5 0

)(
u

v

)
, (8)

where u = x − 3 and v = y − 2. The eigenvalues and eigenvectors of this system are

r1 =
√

3 i
2

, ξ (1) =
(

1
−i/

√
3

)
; r2 = −

√
3 i
2

, ξ (2) =
(

1

i/
√

3

)
. (9)

Since the eigenvalues are imaginary, the critical point (3, 2) is a center of the linear system
(8) and is therefore a stable critical point for that system. Recall from Section 9.3 that this
is one of the cases in which the behavior of the linear system may or may not carry over to
the nonlinear system, so the nature of the point (3, 2) for the nonlinear system (2) cannot be
determined from this information.

The simplest way to find the trajectories of the linear system (8) is to divide the second of
Eqs. (8) by the first so as to obtain the differential equation

dv

du
= dv/dt

du/dt
= 0.5u

−1.5v
= − u

3v
,

or
u du + 3v dv = 0. (10)

Consequently,
u2 + 3v2 = k, (11)

where k is an arbitrary nonnegative constant of integration. Thus the trajectories of the linear
system (8) are ellipses centered at the critical point and elongated somewhat in the horizontal
direction.

Now let us return to the nonlinear system (2). Dividing the second of Eqs. (2) by the first,
we obtain

dy
dx

= y(−0.75 + 0.25x)

x(1 − 0.5y)
. (12)

Equation (12) is a separable equation and can be put in the form

1 − 0.5y
y

dy = −0.75 + 0.25x
x

dx,

from which it follows that

0.75 ln x + ln y − 0.5y − 0.25x = c, (13)

where c is a constant of integration. Although by using only elementary functions we cannot
solve Eq. (13) explicitly for either variable in terms of the other, it is possible to show that
the graph of the equation for a fixed value of c is a closed curve surrounding the critical point
(3, 2). Thus the critical point is also a center of the nonlinear system (2), and the predator and
prey populations exhibit a cyclic variation.

Figure 9.5.2 shows a phase portrait of the system (2). For some initial conditions the tra-
jectory represents small variations in x and y about the critical point, and is almost elliptical
in shape, as the linear analysis suggests. For other initial conditions the oscillations in x and y
are more pronounced, and the shape of the trajectory is significantly different from an ellipse.
Observe that the trajectories are traversed in the counterclockwise direction. The dependence
of x and y on t for a typical set of initial conditions is shown in Figure 9.5.3. Note that x and
y are periodic functions of t, as they must be since the trajectories are closed curves. Further,
the oscillation of the predator population lags behind that of the prey. Starting from a state in
which both predator and prey populations are relatively small, the prey first increase because



September 11, 2008 11:18 boyce-9e-bvp Sheet number 557 Page number 537 cyan black

9.5 Predator–Prey Equations 537

y

4

3

2

1

2 4 6 71 3 5 x

FIGURE 9.5.2 A phase portrait of the system (2).

there is little predation. Then the predators, with abundant food, increase in population also.
This causes heavier predation, and the prey tend to decrease. Finally, with a diminished food
supply, the predator population also decreases, and the system returns to the original state.

x, y

4

6

2

5 10 15 20 25 t

Prey
x(t)

Predator
y(t)

FIGURE 9.5.3 Variations of the prey and predator populations with time for the system (2).

The general system (1) can be analyzed in exactly the same way as in the example.
The critical points of the system (1) are the solutions of

x(a − αy) = 0, y(−c + γ x) = 0,

that is, the points (0, 0) and (c/γ , a/α). We first examine the solutions of the corre-
sponding linear system near each critical point.

In the neighborhood of the origin the corresponding linear system is

d
dt

(
x
y

)
=

(
a 0
0 −c

)(
x
y

)
. (14)
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The eigenvalues and eigenvectors are

r1 = a, ξ (1) =
(

1
0

)
; r2 = −c, ξ (2) =

(
0
1

)
, (15)

so the general solution is (
x
y

)
= c1

(
1
0

)
eat + c2

(
0
1

)
e−ct . (16)

Thus the origin is a saddle point and hence unstable. Entrance to the saddle point is
along the y-axis; all other trajectories depart from the neighborhood of the critical
point.

Next consider the critical point (c/γ , a/α). The Jacobian matrix is

J =
(

a − αy −αx

γ y −c + γ x

)
.

Evaluating J at (c/γ , a/α), we obtain the approximate linear system

d
dt

(
u
v

)
=

(
0 −αc/γ

γ a/α 0

)(
u
v

)
, (17)

where u = x − (c/γ ) and v = y − (a/α). The eigenvalues of the system (17) are
r = ±i

√
ac, so the critical point is a (stable) center of the linear system. To find the

trajectories of the system (17), we can divide the second equation by the first to obtain

dv

du
= dv/dt

du/dt
= − (γ a/α)u

(αc/γ )v
, (18)

or

γ 2au du + α2cv dv = 0. (19)

Consequently,

γ 2au2 + α2cv2 = k, (20)

where k is a nonnegative constant of integration. Thus the trajectories of the linear
system (17) are ellipses, just as in the example.

Returning briefly to the nonlinear system (1), observe that it can be reduced to the
single equation

dy
dx

= dy/dt
dx/dt

= y(−c + γ x)

x(a − αy)
. (21)

Equation (21) is separable and has the solution

a ln y − αy + c ln x − γ x = C, (22)

where C is a constant of integration. Again it is possible to show that, for fixed C,
the graph of Eq. (22) is a closed curve surrounding the critical point (c/γ , a/α). Thus
this critical point is also a center for the general nonlinear system (1).
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The cyclic variation of the predator and prey populations can be analyzed in more
detail when the deviations from the point (c/γ , a/α) are small and the linear system
(17) can be used. The solution of the system (17) can be written in the form

u = c
γ

K cos(
√

ac t + φ), v = a
α

√
c
a

K sin(
√

ac t + φ), (23)

where the constants K and φ are determined by the initial conditions. Thus

x = c
γ

+ c
γ

K cos(
√

ac t + φ),

(24)

y = a
α

+ a
α

√
c
a

K sin(
√

ac t + φ).

These equations are good approximations for the nearly elliptical trajectories close
to the critical point (c/γ , a/α). We can use them to draw several conclusions about
the cyclic variation of the predator and prey on such trajectories.

1. The sizes of the predator and prey populations vary sinusoidally with period 2π/
√

ac. This
period of oscillation is independent of the initial conditions.

2. The predator and prey populations are out of phase by one-quarter of a cycle. The prey
leads and the predator lags, as explained in the example.

3. The amplitudes of the oscillations are Kc/γ for the prey and a
√

cK/α
√

a for the predator
and hence depend on the initial conditions as well as on the parameters of the problem.

4. The average populations of predator and prey over one complete cycle are c/γ and a/α,
respectively. These are the same as the equilibrium populations; see Problem 10.

Cyclic variations of predator and prey as predicted by Eqs. (1) have been observed
in nature. One striking example is described by Odum (pp. 191–192); based on the
records of the Hudson Bay Company of Canada, the abundance of lynx and snowshoe
hare, as indicated by the number of pelts turned in over the period 1845–1935, shows
a distinct periodic variation with period of 9 to 10 years. The peaks of abundance are
followed by very rapid declines, and the peaks of abundance of the lynx and hare are
out of phase, with that of the hare preceding that of the lynx by a year or more.

Since the critical point (c/γ , a/α) is a center, we expect that small perturbations of
the Lotka–Volterra equations may well lead to solutions that are not periodic. Put
another way, unless the Lotka–Volterra equations exactly describe a given predator–
prey relationship, the actual fluctuations of the populations may differ substantially
from those predicted by the Lotka-Volterra equations, due to small inaccuracies in
the model equations. This has led to many attempts8 to replace the Lotka–Volterra
equations by other systems that are less susceptible to the effects of small perturba-
tions. Problem 13 introduces one such alternative model.

Another criticism of the Lotka–Volterra equations is that in the absence of the
predator, the prey will grow without bound. This can be corrected by allowing for
the natural inhibiting effect that an increasing population has on the growth rate of
the population. For example, the first of Eqs. (1) can be modified so that when y = 0,
it reduces to a logistic equation for x. The effects of this modification are explored in

8See the book by Brauer and Castillo-Chávez listed in the references for an extensive discussion of
alternative models for predator–prey relationships.
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Problems 11 and 12. Problems 14 through 16 deal with harvesting in a predator–prey
relationship. The results may seem rather counterintuitive.

Finally, we repeat a warning stated earlier: relationships among species in the
natural world are often complex and subtle. You should not expect too much of a
simple system of two differential equations in describing such relationships. Even if
you are convinced that the general form of the equations is sound, the determination
of numerical values for the coefficients may present serious difficulties.

PROBLEMS Each of Problems 1 through 5 can be interpreted as describing the interaction of two species
with population densities x and y. In each of these problems carry out the following steps.
(a) Draw a direction field and describe how solutions seem to behave.
(b) Find the critical points.
(c) For each critical point find the corresponding linear system. Find the eigenvalues and
eigenvectors of the linear system; classify each critical point as to type, and determine whether
it is asymptotically stable, stable, or unstable.
(d) Sketch the trajectories in the neighborhood of each critical point.
(e) Draw a phase portrait for the system.
(f) Determine the limiting behavior of x and y as t → ∞ and interpret the results in terms of
the populations of the two species.

1. dx/dt = x(1.5 − 0.5y)

dy/dt = y(−0.5 + x)

2. dx/dt = x(1 − 0.5y)

dy/dt = y(−0.25 + 0.5x)

3. dx/dt = x(1 − 0.5x − 0.5y)

dy/dt = y(−0.25 + 0.5x)

4. dx/dt = x(1.125 − x − 0.5y)

dy/dt = y(−1 + x)

5. dx/dt = x(−1 + 2.5x − 0.3y − x2)

dy/dt = y(−1.5 + x)

6. In this problem we examine the phase difference between the cyclic variations of the
predator and prey populations as given by Eqs. (24) of this section. Suppose we assume
that K > 0 and that t is measured from the time that the prey population x is a maximum;
then φ = 0.
(a) Show that the predator population y is a maximum at t = π/2

√
ac = T/4, where T is

the period of the oscillation.
(b) When is the prey population increasing most rapidly? decreasing most rapidly? a
minimum?
(c) Answer the questions in part (b) for the predator population.
(d) Draw a typical elliptic trajectory enclosing the point (c/γ , a/α), and mark the points
found in parts (a), (b), and (c) on it.

7. (a) Find the ratio of the amplitudes of the oscillations of the prey and predator populations
about the critical point (c/γ , a/α), using the approximation (24), which is valid for small
oscillations. Observe that the ratio is independent of the initial conditions.
(b) Evaluate the ratio found in part (a) for the system (2).
(c) Estimate the amplitude ratio for the solution of the nonlinear system (2) shown in
Figure 9.5.3. Does the result agree with that obtained from the linear approximation?
(d) Determine the prey–predator amplitude ratio for other solutions of the system (2),
that is, for solutions satisfying other initial conditions. Is the ratio independent of the
initial conditions?
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8. (a) Find the period of the oscillations of the prey and predator populations, using the ap-
proximation (24), which is valid for small oscillations. Note that the period is independent
of the amplitude of the oscillations.
(b) For the solution of the nonlinear system (2) shown in Figure 9.5.3, estimate the period
as well as possible. Is the result the same as for the linear approximation?
(c) Calculate other solutions of the system (2), that is, solutions satisfying other initial
conditions, and determine their periods. Is the period the same for all initial conditions?

9. Consider the system

dx/dt = ax[1 − (y/2)], dy/dt = by[−1 + (x/3)],
where a and b are positive constants. Observe that this system is the same as in the example
in the text if a = 1 and b = 0.75. Suppose the initial conditions are x(0) = 5 and y(0) = 2.
(a) Let a = 1 and b = 1. Plot the trajectory in the phase plane and determine (or estimate)
the period of the oscillation.
(b) Repeat part (a) for a = 3 and a = 1/3, with b = 1.
(c) Repeat part (a) for b = 3 and b = 1/3, with a = 1.
(d) Describe how the period and the shape of the trajectory depend on a and b.

10. The average sizes of the prey and predator populations are defined as

x = 1
T

∫ A+T

A
x(t) dt, y = 1

T

∫ A+T

A
y(t) dt,

respectively, where T is the period of a full cycle, and A is any nonnegative constant.
(a) Using the approximation (24), which is valid near the critical point, show that x = c/γ
and y = a/α.
(b) For the solution of the nonlinear system (2) shown in Figure 9.5.3, estimate x and y as
well as you can. Try to determine whether x and y are given by c/γ and a/α, respectively,
in this case.
Hint: Consider how you might estimate the value of an integral even though you do not
have a formula for the integrand.
(c) Calculate other solutions of the system (2), that is, solutions satisfying other initial
conditions, and determine x and y for these solutions. Are the values of x and y the same
for all solutions?

In Problems 11 and 12 we consider the effect of modifying the equation for the prey x by
including a term −σx2 so that this equation reduces to a logistic equation in the absence of
the predator y. Problem 11 deals with a specific system of this kind and Problem 12 takes
up this modification to the general Lotka–Volterra system. The systems in Problems 3
and 4 are other examples of this type.

11. Consider the system

x′ = x(1 − σx − 0.5y), y′ = y(−0.75 + 0.25x), (25)

where σ > 0. Observe that this system is a modification of the system (2) in Example 1.
(a) Find all of the critical points. How does their location change as σ increases from
zero? Observe that there is a critical point in the interior of the first quadrant only if
σ < 1/3.
(b) Determine the type and stability property of each critical point. Find the value
σ1 < 1/3 where the nature of the critical point in the interior of the first quadrant changes.
Describe the change that takes place in this critical point as σ passes through σ1.
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(c) Draw a direction field and phase portrait for a value of σ between zero and σ1; for a
value of σ between σ1 and 1/3.
(d) Describe the effect on the two populations as σ increases from zero to 1/3.

12. Consider the system

dx/dt = x(a − σx − αy), dy/dt = y(−c + γ x),

where a, σ , α, c, and γ are positive constants.
(a) Find all critical points of the given system. How does their location change as σ

increases from zero? Assume that a/σ > c/γ , that is, σ < aγ /c. Why is this assumption
necessary?
(b) Determine the nature and stability characteristics of each critical point.
(c) Show that there is a value of σ between zero and aγ /c where the critical point in the
interior of the first quadrant changes from a spiral point to a node.
(d) Describe the effect on the two populations as σ increases from zero to aγ /c.

13. In the Lotka–Volterra equations the interaction between the two species is modeled by
terms proportional to the product xy of the respective populations. If the prey popula-
tion is much larger than the predator population, this may overstate the interaction; for
example, a predator may hunt only when it is hungry, and ignore the prey at other times.
In this problem we consider an alternative model of a type proposed by Rosenzweig and
MacArthur.9

(a) Consider the system

x′ = x
(

1 − 0.2x − 2y
x + 6

)
, y′ = y

(
−0.25 + x

x + 6

)
.

Find all of the critical points of this system.
(b) Determine the type and stability characteristics of each critical point.
(c) Draw a direction field and phase portrait for this system.

Harvesting in a Predator–Prey Relationship. In a predator–prey situation it may happen
that one or perhaps both species are valuable sources of food (for example). Or, the prey
may be regarded as a pest, leading to efforts to reduce their number. In a constant-effort
model of harvesting we introduce a term −E1x in the prey equation and a term −E2y in
the predator equation, where E1 and E2 are measures of the effort invested in harvesting
the respective species. A constant-yield model of harvesting is obtained by including the
term −H1 in the prey equation and the term −H2 in the predator equation. The constants
E1, E2, H1, and H2 are always nonnegative. Problems 14 and 15 deal with constant-effort
harvesting, and Problem 16 with constant-yield harvesting.

14. Applying a constant-effort model of harvesting to the Lotka–Volterra equations (1), we
obtain the system

x′ = x(a − αy − E1), y′ = y(−c + γ x − E2).

When there is no harvesting the equilibrium solution is (c/γ , a/α).
(a) Before doing any mathematical analysis, think about the situation intuitively. How
do you think the populations will change if the prey alone is harvested? if the predator
alone is harvested? if both are harvested?

9See the book by Brauer and Castillo-Chávez for further details.
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(b) How does the equilibrium solution change if the prey is harvested,but not the predator
(E1 > 0, E2 = 0)?
(c) How does the equilibrium solution change if the predator is harvested, but not the
prey (E1 = 0, E2 > 0)?
(d) How does the equilibrium solution change if both are harvested (E1 > 0, E2 > 0)?

15. If we modify the Lotka–Volterra equations by including a self-limiting term −σx2 in the
prey equation, and then assume constant-effort harvesting, we obtain the equations

x′ = x(a − σx − αy − E1), y′ = y(−c + γ x − E2).

In the absence of harvesting the equilibrium solution of interest is x = c/γ ,
y = (a/α) − (σc)/(αγ ).
(a) How does the equilibrium solution change if the prey is harvested,but not the predator
(E1 > 0, E2 = 0)?
(b) How does the equilibrium solution change if the predator is harvested, but not the
prey (E1 = 0, E2 > 0)?
(c) How does the equilibrium solution change if both are harvested (E1 > 0, E2 > 0)?

16. In this problem we apply a constant-yield model of harvesting to the situation in Example 1.
Consider the system

x′ = x(1 − 0.5y) − H1, y′ = y(−0.75 + 0.25x) − H2,

where H1 and H2 are nonnegative constants. Recall that if H1 = H2 = 0, then (3, 2) is an
equilibrium solution for this system.
(a) Before doing any mathematical analysis, think about the situation intuitively. How
do you think the populations will change if the prey alone is harvested? if the predator
alone is harvested? if both are harvested?
(b) How does the equilibrium solution change if the prey is harvested,but not the predator
(H1 > 0, H2 = 0)?
(c) How does the equilibrium solution change if the predator is harvested, but not the
prey (H1 = 0, H2 > 0)?
(d) How does the equilibrium solution change if both are harvested (H1 > 0, H2 > 0)?

9.6 Liapunov’s Second Method
In Section 9.3 we showed how the stability of a critical point of a locally linear
system can usually be determined from a study of the corresponding linear system.
However, no conclusion can be drawn when the critical point is a center of the
corresponding linear system. Examples of this situation are the undamped pendulum,
Eqs. (1) and (2) below, and the predator–prey problem discussed in Section 9.5. Also,
for an asymptotically stable critical point, it may be important to investigate the
basin of attraction—that is, the domain such that all solutions starting within that
domain approach the critical point. The theory of locally linear systems provides no
information about this question.
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In this section we discuss another approach, known as Liapunov’s10 second method
or direct method. The method is referred to as a direct method because no knowledge
of the solution of the system of differential equations is required. Rather, conclusions
about the stability or instability of a critical point are obtained by constructing a
suitable auxiliary function. The technique is a very powerful one that provides a
more global type of information, for example, an estimate of the extent of the basin
of attraction of a critical point. Liapunov’s second method can also be used to study
systems of equations that are not locally linear; however, we will not discuss such
problems.

Basically, Liapunov’s second method is a generalization of two physical principles
for conservative systems, namely, (i) a rest position is stable if the potential energy is
a local minimum, otherwise it is unstable, and (ii) the total energy is a constant during
any motion. To illustrate these concepts, again consider the undamped pendulum (a
conservative mechanical system), which is governed by the equation

d2θ

dt2
+ g

L
sin θ = 0. (1)

The corresponding system of first order equations is

dx
dt

= y,
dy
dt

= − g
L

sin x, (2)

where x = θ and y = dθ/dt. If we omit an arbitrary constant, the potential energy U
is the work done in lifting the pendulum above its lowest position, namely,

U(x, y) = mgL(1 − cos x); (3)

see Figure 9.2.2. The critical points of the system (2) are x = ±nπ , y = 0, n = 0, 1, 2,
3, . . . , corresponding to θ = ±nπ , dθ/dt = 0. Physically, we expect the points x = 0,
y = 0; x = ±2π , y = 0; . . ., corresponding to θ = 0, ±2π , . . . , to be stable, since for
them the pendulum bob is vertical with the weight down; further, we expect the
points x = ±π , y = 0; x = ±3π , y = 0; . . . , corresponding to θ = ±π , ±3π , . . . , to be
unstable, since for them the pendulum bob is vertical with the weight up. This agrees
with statement (i), for at the former points U is a minimum equal to zero, and at the
latter points U is a maximum equal to 2mgL.

Next consider the total energy V , which is the sum of the potential energy U and
the kinetic energy 1

2 mL2(dθ/dt)2. In terms of x and y,

V(x, y) = mgL(1 − cos x) + 1
2 mL2y2. (4)

On a trajectory corresponding to a solution x = φ(t), y = ψ(t) of Eqs. (2), V can be
considered a function of t. The derivative of V[φ(t), ψ(t)] with respect to t is called

10Alexandr M. Liapunov (1857–1918), a student of Chebyshev at St. Petersburg, taught at the University of
Kharkov from 1885 to 1901, when he became an academician in applied mathematics at the St. Petersburg
Academy of Sciences. In 1917 he moved to Odessa because of his wife’s frail health. His research in
stability encompassed both theoretical analysis and applications to various physical problems. His second
method formed part of his most influential work, General Problem of Stability of Motion, published in
1892.
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the rate of change of V following the trajectory. By the chain rule,

dV[φ(t), ψ(t)]
dt

= Vx[φ(t), ψ(t)] dφ(t)
dt

+ Vy[φ(t), ψ(t)] dψ(t)
dt

= (mgL sin x)
dx
dt

+ mL2y
dy
dt

, (5)

where it is understood that x = φ(t), y = ψ(t). Finally, substituting in Eq. (5) for
dx/dt and dy/dt from Eqs. (2), we find that dV/dt = 0. Hence V is a constant along
any trajectory of the system (2), which is statement (ii).

It is important to note that, at any point (x, y), the rate of change of V along the
trajectory through that point was computed without actually solving the system (2).
It is precisely this fact that enables us to use Liapunov’s second method for systems
whose solution we do not know, which is the main reason for its importance.

At the stable critical points,x = ±2nπ ,y = 0,n = 0, 1, 2, . . . , the energy V is zero. If
the initial state, say, (x1, y1), of the pendulum is sufficiently near a stable critical point,
then the energy V(x1, y1) is small, and the motion (trajectory) associated with this
energy stays close to the critical point. It can be shown that if V(x1, y1) is sufficiently
small, then the trajectory is closed and contains the critical point. For example,
suppose that (x1, y1) is near (0, 0) and that V(x1, y1) is very small. The equation of
the trajectory with energy V(x1, y1) is

V(x, y) = mgL(1 − cos x) + 1
2 mL2y2 = V(x1, y1).

For x small we have 1 − cos x = 1 − (1 − x2/2! + · · ·) ∼= x2/2. Thus the equation of
the trajectory is approximately

1
2 mgLx2 + 1

2 mL2y2 = V(x1, y1),

or

x2

2V(x1, y1)/mgL
+ y2

2V(x1, y1)/mL2
= 1.

This is an ellipse enclosing the critical point (0, 0); the smaller V(x1, y1) is, the smaller
are the major and minor axes of the ellipse. Physically, the closed trajectory corre-
sponds to a solution that is periodic in time—the motion is a small oscillation about
the equilibrium point.

If damping is present, however, it is natural to expect that the amplitude of the
motion decays in time and that the stable critical point (center) becomes an asymp-
totically stable critical point (spiral point). See the phase portrait for the damped
pendulum in Figure 9.3.5. This can almost be argued from a consideration of dV/dt.
For the damped pendulum, the total energy is still given by Eq. (4), but now, from
Eqs. (13) of Section 9.2, dx/dt = y and dy/dt = −(g/L) sin x − (c/mL)y. Substitut-
ing for dx/dt and dy/dt in Eq. (5) gives dV/dt = −cLy2 ≤ 0. Thus the energy is
nonincreasing along any trajectory, and except for the line y = 0, the motion is such
that the energy decreases. Hence each trajectory must approach a point of minimum
energy—a stable equilibrium point. If dV/dt < 0 instead of dV/dt ≤ 0, it is reason-
able to expect that this would be true for all trajectories that start sufficiently close
to the origin.
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To pursue these ideas further, consider the autonomous system

dx/dt = F(x, y), dy/dt = G(x, y), (6)

and suppose that the point x = 0, y = 0 is an asymptotically stable critical point. Then
there exists some domain D containing (0, 0) such that every trajectory that starts in
D must approach the origin as t → ∞. Suppose that there exists an“energy”function
V such that V ≥ 0 for (x, y) in D with V = 0 only at the origin. Since each trajectory
in D approaches the origin as t → ∞, then following any particular trajectory, V
decreases to zero as t approaches infinity. The type of result we want to prove is
essentially the converse: if, on every trajectory, V decreases to zero as t increases,
then the trajectories must approach the origin as t → ∞, and hence the origin is
asymptotically stable. First, however, it is necessary to make several definitions.

Let V be defined on some domain D containing the origin. Then V is said to
be positive definite on D if V(0, 0) = 0 and V(x, y) > 0 for all other points in D.
Similarly, V is said to be negative definite on D if V(0, 0) = 0 and V(x, y) < 0 for all
other points in D. If the inequalities > and < are replaced by ≥ and ≤, then V is said to
be positive semidefinite and negative semidefinite, respectively. We emphasize that
when we speak of a positive definite (negative definite, …) function on a domain D
containing the origin, the function must be zero at the origin in addition to satisfying
the proper inequality at all other points in D.

E X A M P L E

1

The function
V(x, y) = sin(x2 + y2)

is positive definite on x2 + y2 < π/2 since V(0, 0) = 0 and V(x, y) > 0 for 0 < x2 + y2 < π/2.
However, the function

V(x, y) = (x + y)2

is only positive semidefinite since V(x, y) = 0 on the line y = −x.

We also want to consider the function

V̇(x, y) = Vx(x, y)F(x, y) + Vy(x, y)G(x, y), (7)

where F and G are the same functions as in Eqs. (6). We choose this notation because
V̇(x, y) can be identified as the rate of change of V along the trajectory of the system
(6) that passes through the point (x, y). That is, if x = φ(t), y = ψ(t) is a solution of
the system (6), then

dV[φ(t), ψ(t)]
dt

= Vx[φ(t), ψ(t)] dφ(t)
dt

+ Vy[φ(t), ψ(t)] dψ(t)
dt

= Vx(x, y)F(x, y) + Vy(x, y)G(x, y)

= V̇(x, y). (8)

The function V̇ is sometimes referred to as the derivative of V with respect to the
system (6).

We now state two Liapunov theorems, the first dealing with stability, the second
with instability.
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Theorem 9.6.1 Suppose that the autonomous system (6) has an isolated critical point at the origin.
If there exists a function V that is continuous and has continuous first partial deriva-
tives, is positive definite, and for which the function V̇ given by Eq. (7) is negative
definite on some domain D in the xy-plane containing (0, 0), then the origin is an
asymptotically stable critical point. If V̇ is negative semidefinite, then the origin is
a stable critical point.

Theorem 9.6.2 Let the origin be an isolated critical point of the autonomous system (6). Let V be a
function that is continuous and has continuous first partial derivatives. Suppose that
V(0, 0) = 0 and that in every neighborhood of the origin there is at least one point
at which V is positive (negative). If there exists a domain D containing the origin
such that the function V̇ given by Eq. (7) is positive definite (negative definite) on
D, then the origin is an unstable critical point.

The function V is called a Liapunov function. Before sketching geometrical argu-
ments forTheorems 9.6.1 and 9.6.2, we note that the difficulty in using these theorems
is that they tell us nothing about how to construct a Liapunov function, assuming that
one exists. In cases where the autonomous system (6) represents a physical prob-
lem, it is natural to consider first the actual total energy function of the system as
a possible Liapunov function. However, Theorems 9.6.1 and 9.6.2 are applicable in
cases where the concept of physical energy is not pertinent. In such cases a judicious
trial-and-error approach may be necessary.

Now consider the second part of Theorem 9.6.1, that is, the case V̇ ≤ 0. Let c ≥ 0
be a constant and consider the curve in the xy-plane given by V(x, y) = c. For c = 0
the curve reduces to the single point x = 0, y = 0. We assume that if 0 < c1 < c2,
then the curve V(x, y) = c1 contains the origin and lies within the curve V(x, y) = c2,
as illustrated in Figure 9.6.1a. We show that a trajectory starting inside a closed
curve V(x, y) = c cannot cross to the outside. Thus, given a circle of radius ε about
the origin, by taking c sufficiently small, we can ensure that every trajectory starting
inside the closed curve V(x, y) = c stays within the circle of radius ε; indeed, it stays
within the closed curve V(x, y) = c itself. Thus the origin is a stable critical point.

(a) (b)

x

y

x

y

c = 0
c1

0 < c1 < c2

c2 x =   (t)φ
y =    (t)ψ

V(x, y) = c

(x1, y1)

Vx(x1, y1) i + Vy(x1, y1) j =    V(x1, y1)

d   (t1)φ
dt

d   (t1)ψ
dti + j = T(t1)

FIGURE 9.6.1 Geometrical interpretation of Liapunov’s method.
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To show this, recall from calculus that the vector

∇V(x, y) = Vx(x, y)i + Vy(x, y)j, (9)

known as the gradient of V , is normal to the curve V(x, y) = c and points in the direc-
tion of increasing V . In the present case, V increases outward from the origin, so ∇V
points away from the origin, as indicated in Figure 9.6.1b. Next, consider a trajectory
x = φ(t), y = ψ(t) of the system (6), and recall that the vector T(t) = φ′(t)i + ψ ′(t)j
is tangent to the trajectory at each point; see Figure 9.6.1b. Let x1 = φ(t1), y1 = ψ(t1)
be a point of intersection of the trajectory and a closed curve V(x, y) = c. At this
point φ′(t1) = F(x1, y1), ψ ′(t1) = G(x1, y1), so from Eq. (7) we obtain

V̇(x1, y1) = Vx(x1, y1)φ
′(t1) + Vy(x1, y1)ψ

′(t1)

= [Vx(x1, y1)i + Vy(x1, y1)j] · [φ′(t1)i + ψ ′(t1)j]
= ∇V(x1, y1) · T(t1). (10)

Thus V̇(x1, y1) is the scalar product of the vector ∇V(x1, y1) and the vector T(t1).
Since V̇(x1, y1) ≤ 0, it follows that the cosine of the angle between ∇V(x1, y1) and
T(t1) is also less than or equal to zero; hence the angle itself is in the range [π/2, 3π/2].
Thus the direction of motion on the trajectory is inward with respect to V(x1, y1) = c
or, at worst, tangent to this curve. Trajectories starting inside a closed curve
V(x1, y1) = c (no matter how small c is) cannot escape, so the origin is a stable point.
If V̇(x1, y1) < 0, then the trajectories passing through points on the curve are actually
pointed inward. As a consequence, it can be shown that trajectories starting suffi-
ciently close to the origin must approach the origin; hence the origin is asymptotically
stable.

A geometric argument for Theorem 9.6.2 follows in a somewhat similar manner.
Briefly, suppose that V̇ is positive definite, and suppose that given any circle about the
origin, there is an interior point (x1, y1) at which V(x1, y1) > 0. Consider a trajectory
that starts at (x1, y1). Along this trajectory it follows from Eq. (8) that V must increase
since V̇(x1, y1) > 0; furthermore, since V(x1, y1) > 0, the trajectory cannot approach
the origin because V(0, 0) = 0. This shows that the origin cannot be asymptotically
stable. By further exploiting the fact that V̇(x, y) > 0, it is possible to show that the
origin is an unstable point; however, we will not pursue this argument.

E X A M P L E

2

Use Theorem 9.6.1 to show that (0, 0) is a stable critical point for the undamped pendulum
equations (2). Also use Theorem 9.6.2 to show that (π , 0) is an unstable critical point.

Let V be the total energy given by Eq. (4):

V(x, y) = mgL(1 − cos x) + 1
2 mL2y2. (4)

If we take D to be the domain −π/2 < x < π/2, −∞ < y < ∞, then V is positive there except
at the origin, where it is zero. Thus V is positive definite on D. Further, as we have already
seen,

V̇ = (mgL sin x)(y) + (mL2y)(−g sin x)/L = 0

for all x and y. Thus V̇ is negative semidefinite on D. Consequently, by the last statement
in Theorem 9.6.1, the origin is a stable critical point for the undamped pendulum. Observe
that this conclusion cannot be obtained from Theorem 9.3.2 because (0, 0) is a center for the
corresponding linear system.
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Now consider the critical point (π , 0). The Liapunov function given by Eq. (4) is no longer
suitable because Theorem 9.6.2 calls for a function V for which V̇ is either positive or negative
definite. To analyze the point (π , 0), it is convenient to move this point to the origin by the
change of variables x = π + u, y = v. Then the differential equations (2) become

du/dt = v, dv/dt = g
L

sin u, (11)

and the critical point is (0, 0) in the uv-plane. Consider the function

V(u, v) = v sin u (12)

and let D be the domain −π/4 < u < π/4, −∞ < v < ∞. Then

V̇ = (v cos u)(v) + (sin u)[(g/L) sin u] = v2 cos u + (g/L) sin2 u (13)

is positive definite in D. The only remaining question is whether there are points in every
neighborhood of the origin where V itself is positive. From Eq. (12) we see that V(u, v) > 0
in the first quadrant (where both sin u and v are positive) and in the third quadrant (where
both are negative). Thus the conditions of Theorem 9.6.2 are satisfied, and the point (0, 0) in
the uv-plane, corresponding to the point (π , 0) in the xy-plane, is unstable.

The damped pendulum equations are discussed in Problem 7.

From a practical point of view, we are often interested in the basin of attraction.
The following theorem provides some information on this subject.

Theorem 9.6.3 Let the origin be an isolated critical point of the autonomous system (6). Let the
function V be continuous and have continuous first partial derivatives. If there is a
bounded domain DK containing the origin where V(x, y) < K for some positive K,
V is positive definite, and V̇ is negative definite, then every solution of Eqs. (6) that
starts at a point in DK approaches the origin as t approaches infinity.

In other words, Theorem 9.6.3 says that if x = φ(t), y = ψ(t) is the solution of
Eqs. (6) for initial data lying in DK , then (x, y) approaches the critical point (0, 0) as
t → ∞. Thus DK gives a region of asymptotic stability; of course, it may not be the
entire basin of attraction. This theorem is proved by showing that (i) there are no
periodic solutions of the system (6) in DK , and (ii) there are no other critical points
in DK . It then follows that trajectories starting in DK cannot escape and therefore
must tend to the origin as t tends to infinity.

Theorems 9.6.1 and 9.6.2 give sufficient conditions for stability and instability, re-
spectively, but these conditions are not necessary. Also, our failure to find a suitable
Liapunov function does not mean that there is no such function. Unfortunately, there
are no general methods for the construction of Liapunov functions; however, there
has been extensive work on the construction of Liapunov functions for special classes
of equations. An elementary algebraic result that is often useful in constructing pos-
itive definite or negative definite functions is stated without proof in the following
theorem.
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Theorem 9.6.4 The function

V(x, y) = ax2 + bxy + cy2 (14)

is positive definite if, and only if,

a > 0 and 4ac − b2 > 0, (15)

and is negative definite if, and only if,

a < 0 and 4ac − b2 > 0. (16)

The use of Theorem 9.6.4 is illustrated in the following example.

E X A M P L E

3

Show that the critical point (0, 0) of the autonomous system

dx/dt = −x − xy2, dy/dt = −y − x2y (17)

is asymptotically stable.
We try to construct a Liapunov function of the form (14). Then Vx(x, y) = 2ax + by,

Vy(x, y) = bx + 2cy, so

V̇(x, y) = (2ax + by)(−x − xy2) + (bx + 2cy)(−y − x2y)

= − [
2a(x2 + x2y2) + b(2xy + xy3 + x3y) + 2c(y2 + x2y2)

]
.

If we choose b = 0, and a and c to be any positive numbers, then V̇ is negative definite and V
is positive definite by Theorem 9.6.4. Thus, by Theorem 9.6.1, the origin is an asymptotically
stable critical point.

E X A M P L E

4

Consider the system

dx/dt = x(1 − x − y),
(18)

dy/dt = y(0.75 − y − 0.5x).

In Example 1 of Section 9.4 we found that this system models a certain pair of competing
species, and that the critical point (0.5, 0.5) is asymptotically stable. Confirm this conclusion
by finding a suitable Liapunov function.

It is helpful to transform the point (0.5, 0.5) to the origin. To this end, let

x = 0.5 + u, y = 0.5 + v. (19)

Then, substituting for x and y in Eqs. (18), we obtain the new system

du/dt = −0.5u − 0.5v − u2 − uv,
(20)

dv/dt = −0.25u − 0.5v − 0.5uv − v2.

To keep the calculations relatively simple, consider the function V(u, v) = u2 + v2 as a possible
Liapunov function. This function is clearly positive definite, so we need only to determine
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whether there is a region containing the origin in the uv-plane where the derivative V̇ with
respect to the system (20) is negative definite. We compute V̇(u, v) and find that

V̇(u, v) = Vu
du
dt

+ Vv

dv

dt
= 2u(−0.5u − 0.5v − u2 − uv) + 2v(−0.25u − 0.5v − 0.5uv − v2),

or
V̇(u, v) = − [

(u2 + 1.5uv + v2) + (2u3 + 2u2v + uv2 + 2v3)
]

, (21)

where we have collected together the quadratic and cubic terms. We want to show that the
expression in square brackets in Eq. (21) is positive definite, at least for u and v sufficiently
small. Observe that the quadratic terms can be written as

u2 + 1.5uv + v2 = 0.25(u2 + v2) + 0.75(u + v)2, (22)

so these terms are positive definite. On the other hand, the cubic terms in Eq. (21) may be of
either sign. Thus we must show that, in some neighborhood of u = 0, v = 0, the cubic terms
are smaller in magnitude than the quadratic terms; that is,∣∣2u3 + 2u2v + uv2 + 2v3

∣∣ < 0.25(u2 + v2) + 0.75(u + v)2. (23)

To estimate the left side of Eq. (23), we introduce polar coordinates u = r cos θ , v = r sin θ .
Then∣∣2u3 + 2u2v + uv2 + 2v3

∣∣ = r3
∣∣2 cos3 θ + 2 cos2 θ sin θ + cos θ sin2

θ + 2 sin3
θ
∣∣

≤ r3 [2| cos3 θ | + 2 cos2 θ | sin θ | + | cos θ | sin2
θ + 2| sin3

θ |]
≤ 7r3,

since | sin θ |, | cos θ | ≤ 1. To satisfy Eq. (23), it is now certainly sufficient to satisfy the more
stringent requirement

7r3 < 0.25(u2 + v2) = 0.25r2,

which yields r < 1/28. Thus, at least in this disk, the hypotheses of Theorem 9.6.1 are satisfied,
so the origin is an asymptotically stable critical point of the system (20). The same is then true
of the critical point (0.5, 0.5) of the original system (18).

If we refer to Theorem 9.6.3, the preceding argument also shows that the disk with center
(0.5, 0.5) and radius 1/28 is a region of asymptotic stability for the system (18). This is a
severe underestimate of the full basin of attraction, as the discussion in Section 9.4 shows.
To obtain a better estimate of the actual basin of attraction from Theorem 9.6.3, we would
have to estimate the terms in Eq. (23) more accurately, use a better (and presumably more
complicated) Liapunov function, or both.

PROBLEMS In each of Problems 1 through 4 construct a suitable Liapunov function of the form ax2 + cy2,
where a and c are to be determined. Then show that the critical point at the origin is of the
indicated type.

1. dx/dt = −x3 + xy2, dy/dt = −2x2y − y3; asymptotically stable
2. dx/dt = − 1

2 x3 + 2xy2, dy/dt = −y3; asymptotically stable
3. dx/dt = −x3 + 2y3, dy/dt = −2xy2; stable (at least)
4. dx/dt = x3 − y3, dy/dt = 2xy2 + 4x2y + 2y3; unstable
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5. Consider the system of equations

dx/dt = y − xf (x, y), dy/dt = −x − yf (x, y),

where f is continuous and has continuous first partial derivatives. Show that if f (x, y) > 0
in some neighborhood of the origin, then the origin is an asymptotically stable critical
point, and if f (x, y) < 0 in some neighborhood of the origin, then the origin is an unstable
critical point.
Hint: Construct a Liapunov function of the form c(x2 + y2).

6. A generalization of the undamped pendulum equation is

d2u/dt2 + g(u) = 0, (i)

where g(0) = 0, g(u) > 0 for 0 < u < k, and g(u) < 0 for −k < u < 0; that is, ug(u) > 0
for u �= 0, −k < u < k. Notice that g(u) = sin u has this property on (−π/2, π/2).
(a) Letting x = u, y = du/dt, write Eq. (i) as a system of two equations, and show that
x = 0, y = 0 is a critical point.
(b) Show that

V(x, y) = 1
2 y2 +

∫ x

0
g(s) ds, −k < x < k (ii)

is positive definite, and use this result to show that the critical point (0, 0) is stable.
Note that the Liapunov function V given by Eq. (ii) corresponds to the energy function
V(x, y) = 1

2 y2 + (1 − cos x) for the case g(u) = sin u.

7. By introducing suitable dimensionless variables, we can write the system of nonlinear
equations for the damped pendulum [Eqs. (8) of Section 9.3] as

dx/dt = y, dy/dt = −y − sin x.

(a) Show that the origin is a critical point.
(b) Show that while V(x, y) = x2 + y2 is positive definite, V̇(x, y) takes on both positive
and negative values in any domain containing the origin, so that V is not a Liapunov
function.
Hint: x − sin x > 0 for x > 0 and x − sin x < 0 for x < 0. Consider these cases with y
positive but y so small that y2 can be ignored compared to y.
(c) Using the energy function V(x, y) = 1

2 y2 + (1 − cos x) mentioned in Problem 6(b),
show that the origin is a stable critical point. Since there is damping in the system, we
can expect that the origin is asymptotically stable. However, it is not possible to draw this
conclusion using this Liapunov function.
(d) To show asymptotic stability, it is necessary to construct a better Liapunov function
than the one used in part (c). Show that V(x, y) = 1

2 (x + y)2 + x2 + 1
2 y2 is such a Liapunov

function, and conclude that the origin is an asymptotically stable critical point.
Hint: From Taylor’s formula with a remainder it follows that sin x = x − αx3/3!, where
α depends on x but 0 < α < 1 for −π/2 < x < π/2. Then, letting x = r cos θ , y = r sin θ ,
show that V̇(r cos θ , r sin θ) = −r2[1 + h(r, θ)], where |h(r, θ)| < 1 if r is sufficiently small.

8. The Liénard equation (Problem 30 of Section 9.3) is

d2u
dt2

+ c(u)
du
dt

+ g(u) = 0,

where g satisfies the conditions of Problem 6 and c(u) ≥ 0. Show that the point u = 0,
du/dt = 0 is a stable critical point.
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9. (a) A special case of the Liénard equation of Problem 8 is

d2u
dt2

+ du
dt

+ g(u) = 0,

where g satisfies the conditions of Problem 6. Letting x = u, y = du/dt, show that the
origin is a critical point of the resulting system. This equation can be interpreted as
describing the motion of a spring–mass system with damping proportional to the velocity
and a nonlinear restoring force. Using the Liapunov function of Problem 6, show that
the origin is a stable critical point, but note that even with damping, we cannot conclude
asymptotic stability using this Liapunov function.
(b) Asymptotic stability of the critical point (0, 0) can be shown by constructing a better
Liapunov function, as was done in part (d) of Problem 7. However, the analysis for a
general function g is somewhat sophisticated, and we mention only that an appropriate
form for V is

V(x, y) = 1
2 y2 + Ayg(x) +

∫ x

0
g(s) ds,

where A is a positive constant to be chosen so that V is positive definite and V̇ is negative
definite. For the pendulum problem g(x) = sin x; use V as given by the preceding equation
with A = 1

2 to show that the origin is asymptotically stable.
Hint: Use sin x = x − αx3/3! and cos x = 1 − βx2/2!, where α and β depend on x, and
0 < α < 1 and 0 < β < 1 for −π/2 < x < π/2; let x = r cos θ , y = r sin θ , and show
that V̇(r cos θ , r sin θ) = − 1

2 r2[1 + 1
2 sin 2θ + h(r, θ)], where |h(r, θ)| < 1

2 if r is sufficiently
small. To show that V is positive definite, use cos x = 1 − x2/2 + γ x4/4!, where γ depends
on x, and 0 < γ < 1 for −π/2 < x < π/2.

In Problems 10 and 11 we will prove part of Theorem 9.3.2: if the critical point (0, 0) of the
locally linear system

dx/dt = a11x + a12y + F1(x, y), dy/dt = a21x + a22y + G1(x, y) (i)

is an asymptotically stable critical point of the corresponding linear system

dx/dt = a11x + a12y, dy/dt = a21x + a22y, (ii)

then it is an asymptotically stable critical point of the locally linear system (i). Problem 12
deals with the corresponding result for instability.
10. Consider the linear system (ii).

(a) Since (0, 0) is an asymptotically stable critical point, show that a11 + a22 < 0 and
a11a22 − a12a21 > 0. (See Problem 21 of Section 9.1.)
(b) Construct a Liapunov function V(x, y) = Ax2 + Bxy + Cy2 such that V is positive
definite and V̇ is negative definite. One way to ensure that V̇ is negative definite is to
choose A, B, and C so that V̇(x, y) = −x2 − y2. Show that this leads to the result

A = −a2
21 + a2

22 + (a11a22 − a12a21)

2�
, B = a12a22 + a11a21

�
,

C = −a2
11 + a2

12 + (a11a22 − a12a21)

2�
,

where � = (a11 + a22)(a11a22 − a12a21).
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(c) Using the result of part (a), show that A > 0 and then show (several steps of algebra
are required) that

4AC − B2 = (a2
11 + a2

12 + a2
21 + a2

22)(a11a22 − a12a21) + 2(a11a22 − a12a21)
2

�2
> 0.

Thus, by Theorem 9.6.4, V is positive definite.

11. In this problem we show that the Liapunov function constructed in the preceding problem
is also a Liapunov function for the locally linear system (i). We must show that there is
some region containing the origin for which V̇ is negative definite.
(a) Show that

V̇(x, y) = −(x2 + y2) + (2Ax + By)F1(x, y) + (Bx + 2Cy)G1(x, y).

(b) Recall that F1(x, y)/r → 0 and G1(x, y)/r → 0 as r = (x2 + y2)1/2 → 0. This means
that, given any ε > 0, there exists a circle r = R about the origin such that for 0 < r < R,
|F1(x, y)| < εr and |G1(x, y)| < εr. Letting M be the maximum of |2A|, |B|, and |2C|, show
by introducing polar coordinates that R can be chosen so that V̇(x, y) < 0 for r < R.
Hint: Choose ε sufficiently small in terms of M.

12. In this problem we prove a part of Theorem 9.3.2 related to instability.
(a) Show that if a11 + a22 > 0 and a11a22 − a12a21 > 0, then the critical point (0, 0) of the
linear system (ii) is unstable.
(b) The same result holds for the locally linear system (i). As in Problems 10 and 11,
construct a positive definite function V such that V̇(x, y) = x2 + y2 and hence is positive
definite, and then invoke Theorem 9.6.2.

9.7 Periodic Solutions and Limit Cycles
In this section we discuss further the possible existence of periodic solutions of two-
dimensional autonomous systems

x′ = f(x). (1)

Such solutions satisfy the relation

x(t + T) = x(t) (2)

for all t and for some nonnegative constant T called the period. The corresponding
trajectories are closed curves in the phase plane. Periodic solutions often play an
important role in physical problems because they represent phenomena that occur
repeatedly. In many situations a periodic solution represents a “final state” that is ap-
proached by all “neighboring” solutions as the transients due to the initial conditions
die out.

A special case of a periodic solution is a constant solution x = x0,which corresponds
to a critical point of the autonomous system. Such a solution is clearly periodic
with any period. In this section, when we speak of a periodic solution, we mean a
nonconstant periodic solution. In this case the period T is positive and is usually
chosen as the smallest positive number for which Eq. (2) is valid.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 575 Page number 555 cyan black

9.7 Periodic Solutions and Limit Cycles 555

Recall that the solutions of the linear autonomous system

x′ = Ax (3)

are periodic if and only if the eigenvalues of A are pure imaginary. In this case the
critical point at the origin is a center, as discussed in Section 9.1. We emphasize
that if the eigenvalues of A are pure imaginary, then every solution of the linear
system (3) is periodic, while if the eigenvalues are not pure imaginary, then there
are no (nonconstant) periodic solutions. The predator–prey equations discussed in
Section 9.5, although nonlinear, behave similarly: all solutions in the first quadrant
are periodic. The following example illustrates a different way in which periodic
solutions of nonlinear autonomous systems can occur.

E X A M P L E

1

Discuss the solutions of the system(
x

y

)′
=

(
x + y − x(x2 + y2)

−x + y − y(x2 + y2)

)
. (4)

It is not difficult to show that (0, 0) is the only critical point of the system (4), and also that
the system is locally linear in the neighborhood of the origin. The corresponding linear system(

x

y

)′
=

(
1 1

−1 1

)(
x

y

)
(5)

has eigenvalues 1 ± i. Therefore the origin is an unstable spiral point for both the linear system
(5) and the nonlinear system (4). Thus any solution that starts near the origin in the phase
plane will spiral away from the origin. Since there are no other critical points, we might think
that all solutions of Eqs. (4) correspond to trajectories that spiral out to infinity. However, we
now show that this is incorrect, because far away from the origin the trajectories are directed
inward.

It is convenient to introduce polar coordinates r and θ , where

x = r cos θ , y = r sin θ , (6)

and r ≥ 0. If we multiply the first of Eqs. (4) by x, the second by y, and add, we then obtain

x
dx
dt

+ y
dy
dt

= (x2 + y2) − (x2 + y2)2. (7)

Since r2 = x2 + y2 and r(dr/dt) = x(dx/dt) + y(dy/dt), it follows from Eq. (7) that

r
dr
dt

= r2(1 − r2). (8)

This equation is similar to the equations discussed in Section 2.5. The critical points (for r ≥ 0)

are the origin and the point r = 1, which corresponds to the unit circle in the phase plane. From
Eq. (8) it follows that dr/dt > 0 if r < 1 and dr/dt < 0 if r > 1. Thus, inside the unit circle
the trajectories are directed outward, while outside the unit circle they are directed inward.
Apparently, the circle r = 1 is a limiting trajectory for this system.

To determine an equation for θ , we multiply the first of Eqs. (4) by y, the second by x, and
subtract, obtaining

y
dx
dt

− x
dy
dt

= x2 + y2. (9)
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Upon calculating dx/dt and dy/dt from Eqs. (6), we find that the left side of Eq. (9) is
−r2(dθ/dt), so Eq. (9) reduces to

dθ

dt
= −1. (10)

The system of equations (8), (10) for r and θ is equivalent to the original system (4). One
solution of the system (8), (10) is

r = 1, θ = −t + t0, (11)

where t0 is an arbitrary constant. As t increases, a point satisfying Eqs. (11) moves clockwise
around the unit circle. Thus the autonomous system (4) has a periodic solution. Other solutions
can be obtained by solving Eq. (8) by separation of variables; if r �= 0 and r �= 1, then

dr
r(1 − r2)

= dt. (12)

Equation (12) can be solved by using partial fractions to rewrite the left side and then in-
tegrating. By performing these calculations, we find that the solution of Eqs. (10) and (12)
is

r = 1√
1 + c0e−2t

, θ = −t + t0, (13)

where c0 and t0 are arbitrary constants. The solution (13) also contains the solution (11), which
is obtained by setting c0 = 0 in the first of Eqs. (13).

The solution satisfying the initial conditions r = ρ, θ = α at t = 0 is given by

r = 1√
1 + [(1/ρ2) − 1]e−2t

, θ = −(t − α). (14)

If ρ < 1, then r → 1 from the inside as t → ∞; if ρ > 1, then r → 1 from the outside as t → ∞.
Thus in all cases the trajectories spiral toward the circle r = 1 as t → ∞. Several trajectories
are shown in Figure 9.7.1.

x

y

1

–1 1

–1

FIGURE 9.7.1 Trajectories of the system (4); a limit cycle.
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In this example, the circle r = 1 not only corresponds to periodic solutions of the
system (4), but it also attracts other nonclosed trajectories that spiral toward it as
t → ∞. In general, a closed trajectory in the phase plane such that other nonclosed
trajectories spiral toward it, either from the inside or the outside, as t → ∞, is called
a limit cycle. Thus the circle r = 1 is a limit cycle for the system (4). If all trajectories
that start near a closed trajectory (both inside and outside) spiral toward the closed
trajectory as t → ∞, then the limit cycle is asymptotically stable. Since the limiting
trajectory is itself a periodic orbit rather than an equilibrium point, this type of
stability is often called orbital stability. If the trajectories on one side spiral toward
the closed trajectory,while those on the other side spiral away as t → ∞, then the limit
cycle is said to be semistable. If the trajectories on both sides of the closed trajectory
spiral away as t → ∞, then the closed trajectory is unstable. It is also possible to
have closed trajectories that other trajectories neither approach nor depart from—
for example, the periodic solutions of the predator–prey equations in Section 9.5. In
this case the closed trajectory is stable.

In Example 1 the existence of an asymptotically stable limit cycle was established
by solving the equations explicitly. Unfortunately, this is usually not possible, so it
is worthwhile to know general theorems concerning the existence or nonexistence
of limit cycles of nonlinear autonomous systems. In discussing these theorems, it is
convenient to rewrite the system (1) in the scalar form

dx/dt = F(x, y), dy/dt = G(x, y). (15)

Theorem 9.7.1 Let the functions F and G have continuous first partial derivatives in a domain D
of the xy-plane. A closed trajectory of the system (15) must necessarily enclose
at least one critical (equilibrium) point. If it encloses only one critical point, the
critical point cannot be a saddle point.

Although we omit the proof of this theorem, it is easy to show examples of it.
One is given by Example 1 and Figure 9.7.1 in which the closed trajectory encloses
the critical point (0, 0), a spiral point. Another example is the system of predator–
prey equations in Section 9.5; see Figure 9.5.2. Each closed trajectory surrounds the
critical point (3, 2); in this case the critical point is a center.

Theorem 9.7.1 is also useful in a negative sense. If a given region contains no
critical points, then there can be no closed trajectory lying entirely in the region. The
same conclusion is true if the region contains only one critical point, and this point is
a saddle point. For instance, in Example 2 of Section 9.4, an example of competing
species, the only critical point in the interior of the first quadrant is the saddle point
(0.5, 0.5). Therefore this system has no closed trajectory lying in the first quadrant.

A second result about the nonexistence of closed trajectories is given in the fol-
lowing theorem.

Theorem 9.7.2 Let the functions F and G have continuous first partial derivatives in a simply
connected domain D of the xy-plane. If Fx + Gy has the same sign throughout D,
then there is no closed trajectory of the system (15) lying entirely in D.
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A simply connected two-dimensional domain is one with no holes. Theorem 9.7.2
is a straightforward consequence of Green’s theorem in the plane; see Problem 13.
Note that if Fx + Gy changes sign in the domain, then no conclusion can be drawn;
there may or may not be closed trajectories in D.

To illustrate Theorem 9.7.2, consider the system (4). A routine calculation shows
that

Fx(x, y) + Gy(x, y) = 2 − 4(x2 + y2) = 2(1 − 2r2), (16)

where, as usual, r2 = x2 + y2. Hence Fx + Gy is positive for 0 ≤ r < 1/
√

2, so there
is no closed trajectory in this circular disk. Of course, we showed in Example 1 that
there is no closed trajectory in the larger region r < 1. This illustrates that the infor-
mation given by Theorem 9.7.2 may not be the best possible result. Again referring
to Eq. (16), note that Fx + Gy < 0 for r > 1/

√
2. However, the theorem is not ap-

plicable in this case because this annular region is not simply connected. Indeed, as
shown in Example 1, it does contain a limit cycle.

The following theorem gives conditions that guarantee the existence of a closed
trajectory.

Theorem 9.7.3 (Poincaré–Bendixson11 Theorem) Let the functions F and G have continuous first
partial derivatives in a domain D of the xy-plane. Let D1 be a bounded subdomain
in D, and let R be the region that consists of D1 plus its boundary (all points of R are
in D). Suppose that R contains no critical point of the system (15). If there exists a
constant t0 such that x = φ(t), y = ψ(t) is a solution of the system (15) that exists and
stays in R for all t ≥ t0, then either x = φ(t), y = ψ(t) is a periodic solution (closed
trajectory), or x = φ(t), y = ψ(t) spirals toward a closed trajectory as t → ∞. In
either case, the system (15) has a periodic solution in R.

Note that if R does contain a closed trajectory, then necessarily, by Theorem 9.7.1,
this trajectory must enclose a critical point. However, this critical point cannot be in
R. Thus R cannot be simply connected; it must have a hole.

As an application of the Poincaré–Bendixson theorem, consider again the system
(4). Since the origin is a critical point, it must be excluded. For instance, we can
consider the region R defined by 0.5 ≤ r ≤ 2. Next, we must show that there is a
solution whose trajectory stays in R for all t greater than or equal to some t0. This
follows immediately from Eq. (8). For r = 0.5, dr/dt > 0, so r increases, while for
r = 2, dr/dt < 0, so r decreases. Thus any trajectory that crosses the boundary of R
is entering R. Consequently, any solution of Eqs. (4) that starts in R at t = t0 cannot
leave but must stay in R for t > t0. Of course, other numbers could be used instead
of 0.5 and 2; all that is important is that r = 1 is included.

One should not infer from this discussion of the preceding theorems that it is easy
to determine whether a given nonlinear autonomous system has periodic solutions;
often it is not a simple matter at all. Theorems 9.7.1 and 9.7.2 are frequently inconclu-
sive, and for Theorem 9.7.3 it is often difficult to determine a region R and a solution
that always remains within it.

11Ivar Otto Bendixson (1861–1935) a Swedish mathematician, received his doctorate from Uppsala Uni-
versity and was professor and for many years rector of Stockholm University. This theorem improved on
an earlier result of Poincaré and was published in a paper by Bendixson in Acta Mathematica in 1901.
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We close this section with another example of a nonlinear system that has a limit
cycle.

E X A M P L E

2

The van der Pol12 equation
u′′ − μ(1 − u2)u′ + u = 0, (17)

where μ is a nonnegative constant, describes the current u in a triode oscillator. Discuss the
solutions of this equation.

If μ = 0, Eq. (17) reduces to u′′ + u = 0, whose solutions are sine or cosine waves of period
2π . For μ > 0, the second term on the left side of Eq. (17) must also be considered. This is the
resistance term, proportional to u′, with a coefficient −μ(1 − u2) that depends on u. For large
u, this term is positive and acts as usual to reduce the amplitude of the response. However, for
small u, the resistance term is negative and so causes the response to grow. This suggests that
perhaps there is a solution of intermediate size that other solutions approach as t increases.

To analyze Eq. (17) more carefully, we write it as a system of two equations by introducing
the variables x = u, y = u′. Then it follows that

x′ = y, y′ = −x + μ(1 − x2)y. (18)

The only critical point of the system (18) is the origin. Near the origin the corresponding linear
system is (

x

y

)′
=

(
0 1

−1 μ

)(
x

y

)
, (19)

whose eigenvalues are (μ ± √
μ2 − 4)/2. Thus the origin is an unstable spiral point for

0 < μ < 2 and an unstable node for μ ≥ 2. In all cases, a solution that starts near the ori-
gin grows as t increases.

With regard to periodic solutions,Theorems 9.7.1 and 9.7.2 provide only partial information.
From Theorem 9.7.1 we conclude that if there are closed trajectories, they must enclose the
origin. Next we calculate Fx(x, y) + Gy(x, y), with the result that

Fx(x, y) + Gy(x, y) = μ(1 − x2). (20)

Then it follows from Theorem 9.7.2 that closed trajectories, if there are any, are not contained
in the strip |x| < 1 where Fx + Gy > 0.

The application of the Poincaré–Bendixson theorem to this problem is not nearly as simple
as for Example 1. If we introduce polar coordinates, we find that the equation for the radial
variable r is

r′ = μ(1 − r2 cos2 θ)r sin2
θ. (21)

Again, consider an annular region R given by r1 ≤ r ≤ r2, where r1 is small and r2 is large.
When r = r1, the linear term on the right side of Eq. (21) dominates, and r′ > 0 except on
the x-axis, where sin θ = 0 and consequently r′ = 0 also. Thus trajectories are entering R at
every point on the circle r = r1, except possibly for those on the x-axis, where the trajectories
are tangent to the circle. When r = r2, the cubic term on the right side of Eq. (21) is the
dominant one. Thus r′ < 0, except for points on the x-axis where r′ = 0 and for points near
the y-axis where r2 cos2 θ < 1 and the linear term makes r′ > 0. Thus, no matter how large
a circle is chosen, there will be points on it (namely, the points on or near the y-axis) where

12Balthasar van der Pol (1889–1959) was a Dutch physicist and electrical engineer who worked at the
Philips Research Laboratory in Eindhoven. He was a pioneer in the experimental study of nonlinear
phenomena and investigated the equation that bears his name in a paper published in 1926.
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trajectories are leaving R. Therefore, the Poincaré–Bendixson theorem is not applicable unless
we consider more complicated regions.

It is possible to show, by a more intricate analysis, that the van der Pol equation does have a
unique limit cycle. However, we will not follow this line of argument further. We turn instead
to a different approach in which we plot numerically computed approximations to solutions.
Experimental observations indicate that the van der Pol equation has an asymptotically stable
periodic solution whose period and amplitude depend on the parameter μ. By looking at
graphs of trajectories in the phase plane and of u versus t, we can gain some understanding of
this periodic behavior.

Figure 9.7.2 shows two trajectories of the van der Pol equation in the phase plane for
μ = 0.2. The trajectory starting near the origin spirals outward in the clockwise direction; this
is consistent with the behavior of the linear approximation near the origin. The other trajectory
passes through (−3, 2) and spirals inward, again in the clockwise direction. Both trajectories
approach a closed curve that corresponds to a stable periodic solution. In Figure 9.7.3 we
show the plots of u versus t for the solutions corresponding to the trajectories in Figure 9.7.2.
The solution that is initially smaller gradually increases in amplitude, while the larger solution
gradually decays. Both solutions approach a stable periodic motion that corresponds to the

x
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2

–2 2

(–3, 2)

FIGURE 9.7.2 Trajectories of the van der Pol equation (17) for μ = 0.2.
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FIGURE 9.7.3 Plots of u versus t for the trajectories in Figure 9.7.2.
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limit cycle. Figure 9.7.3 also shows that there is a phase difference between the two solutions as
they approach the limit cycle. The plots of u versus t are nearly sinusoidal in shape, consistent
with the nearly circular limit cycle in this case.

Figures 9.7.4 and 9.7.5 show similar plots for the case μ = 1. Trajectories again move
clockwise in the phase plane,but the limit cycle is considerably different from a circle. The plots
of u versus t tend more rapidly to the limiting oscillation, and again show a phase difference.
The oscillations are somewhat less symmetric in this case, rising somewhat more steeply than
they fall.

y

x1–1

2

1

–1

–2

2–2

FIGURE 9.7.4 Trajectories of the van der Pol equation (17) for μ = 1.
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–2

u

t10 20 30 40 50

FIGURE 9.7.5 Plots of u versus t for the trajectories in Figure 9.7.4.

Figure 9.7.6 shows the phase plane for μ = 5. The motion remains clockwise, and the limit
cycle is even more elongated, especially in the y direction. Figure 9.7.7 is a plot of u versus t.
Although the solution starts far from the limit cycle, the limiting oscillation is virtually reached
in a fraction of a period. Starting from one of its extreme values on the x-axis in the phase
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plane, the solution moves toward the other extreme position slowly at first, but once a certain
point on the trajectory is reached, the remainder of the transition is completed very swiftly.
The process is then repeated in the opposite direction. The waveform of the limit cycle, as
shown in Figure 9.7.7, is quite different from a sine wave.
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FIGURE 9.7.6 Trajectories of the van der Pol equation (17) for μ = 5.
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FIGURE 9.7.7 Plot of u versus t for the outward spiralling trajectory in Figure 9.7.6.

These graphs clearly show that, in the absence of external excitation, the van der Pol os-
cillator has a certain characteristic mode of vibration for each value of μ. The graphs of u
versus t show that the amplitude of this oscillation changes very little with μ, but the period
increases as μ increases. At the same time, the waveform changes from one that is very nearly
sinusoidal to one that is much less smooth.

The presence of a single periodic motion that attracts all (nearby) solutions, that is,an asymp-
totically stable limit cycle, is one of the characteristic phenomena associated with nonlinear
differential equations.
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PROBLEMS In each of Problems 1 through 6 an autonomous system is expressed in polar coordinates.
Determine all periodic solutions, all limit cycles, and determine their stability characteristics.

1. dr/dt = r2(1 − r2), dθ/dt = 1 2. dr/dt = r(1 − r)2, dθ/dt = −1

3. dr/dt = r(r − 1)(r − 3), dθ/dt = 1 4. dr/dt = r(1 − r)(r − 2), dθ/dt = −1

5. dr/dt = sin πr, dθ/dt = 1

6. dr/dt = r|r − 2|(r − 3), dθ/dt = −1

7. If x = r cos θ , y = r sin θ , show that y(dx/dt) − x(dy/dt) = −r2(dθ/dt).

8. (a) Show that the system

dx/dt = −y + xf (r)/r, dy/dt = x + yf (r)/r

has periodic solutions corresponding to the zeros of f (r). What is the direction of motion
on the closed trajectories in the phase plane?
(b) Let f (r) = r(r − 2)2(r2 − 4r + 3). Determine all periodic solutions and determine
their stability characteristics.

9. Determine the periodic solutions, if any, of the system

dx
dt

= y + x√
x2 + y2

(x2 + y2 − 2),
dy
dt

= −x + y√
x2 + y2

(x2 + y2 − 2).

10. Using Theorem 9.7.2, show that the linear autonomous system

dx/dt = a11x + a12y, dy/dt = a21x + a22y

does not have a periodic solution (other than x = 0, y = 0) if a11 + a22 �= 0.

In each of Problems 11 and 12 show that the given system has no periodic solutions other than
constant solutions.
11. dx/dt = x + y + x3 − y2, dy/dt = −x + 2y + x2y + y3/3
12. dx/dt = −2x − 3y − xy2, dy/dt = y + x3 − x2y

13. Prove Theorem 9.7.2 by completing the following argument. According to Green’s the-
orem in the plane, if C is a sufficiently smooth simple closed curve, and if F and G are
continuous and have continuous first partial derivatives, then

∫
C

[
F(x, y) dy − G(x, y) dx

] =
∫∫

R

[
Fx(x, y) + Gy(x, y)

]
dA,

where C is traversed counterclockwise and R is the region enclosed by C. Assume that
x = φ(t), y = ψ(t) is a solution of the system (15) that is periodic with period T . Let C be
the closed curve given by x = φ(t), y = ψ(t) for 0 ≤ t ≤ T . Show that for this curve the
line integral is zero. Then show that the conclusion of Theorem 9.7.2 must follow.

14. (a) By examining the graphs of u versus t in Figures 9.7.3, 9.7.5, and 9.7.7, estimate the
period T of the van der Pol oscillator in these cases.
(b) Calculate and plot the graphs of solutions of the van der Pol equation for other values
of the parameter μ. Estimate the period T in these cases also.
(c) Plot the estimated values of T versus μ. Describe how T depends on μ.
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15. The equation

u′′ − μ(1 − 1
3 u′2)u′ + u = 0

is often called the Rayleigh13 equation.
(a) Write the Rayleigh equation as a system of two first order equations.
(b) Show that the origin is the only critical point of this system. Determine its type and
whether it is asymptotically stable, stable, or unstable.
(c) Let μ = 1. Choose initial conditions and compute the corresponding solution of the
system on an interval such as 0 ≤ t ≤ 20 or longer. Plot u versus t and also plot the
trajectory in the phase plane. Observe that the trajectory approaches a closed curve (limit
cycle). Estimate the amplitude A and the period T of the limit cycle.
(d) Repeat part (c) for other values of μ, such as μ = 0.2, 0.5, 2, and 5. In each case
estimate the amplitude A and the period T .
(e) Describe how the limit cycle changes as μ increases. For example, make a table of
values and/or plot A and T as functions of μ.

16. Consider the system of equations

x′ = μx + y − x(x2 + y2), y′ = −x + μy − y(x2 + y2), (i)

where μ is a parameter. Observe that this system is the same as the one in Example 1,
except for the introduction of μ.
(a) Show that the origin is the only critical point.
(b) Find the linear system that approximates Eqs. (i) near the origin and find its eigen-
values. Determine the type and stability of the critical point at the origin. How does this
classification depend on μ?
(c) Referring to Example 1 if necessary, rewrite Eqs. (i) in polar coordinates.
(d) Show that when μ > 0, there is a periodic solution r = √

μ. By solving the system
found in part (c), or by plotting numerically computed approximate solutions, conclude
that this periodic solution attracts all other nonzero solutions.
Note: As the parameter μ increases through the value zero, the previously asymptotically
stable critical point at the origin loses its stability, and simultaneously a new asymptotically
stable solution (the limit cycle) emerges. Thus the point μ = 0 is a bifurcation point; this
type of bifurcation is called a Hopf 14 bifurcation.

17. Consider the van der Pol system

x′ = y, y′ = −x + μ(1 − x2)y,

where now we allow the parameter μ to be any real number.
(a) Show that the origin is the only critical point. Determine its type and stability property,
and how these depend on μ.

13JohnWilliam Strutt (1842–1919), the third Lord Rayleigh, made notable contributions in several areas of
mathematical physics. Apart from five years as Cavendish Professor of Physics at Cambridge, he worked
primarily in his private laboratory at home. He was awarded the Nobel Prize in 1904 for the discovery of
argon.
14Eberhard Hopf (1902–1983) was born in Austria and educated at the University of Berlin but spent
much of his life in the United States, mainly at Indiana University. Hopf bifurcations are named for him
in honor of his rigorous treatment of them in a 1942 paper.
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(b) Let μ = −1; draw a phase portrait and conclude that there is a periodic solution that
surrounds the origin. Observe that this periodic solution is unstable. Compare your plot
with Figure 9.7.4.
(c) Draw a phase portrait for a few other negative values of μ. Describe how the shape
of the periodic solution changes with μ.
(d) Consider small positive or negative values of μ. By drawing phase portraits,determine
how the periodic solution changes as μ → 0. Compare the behavior of the van der Pol
system as μ increases through zero with the behavior of the system in Problem 16.

Problems 18 and 19 extend the consideration of the Rosenzweig–MacArthur predator–
prey model introduced in Problem 13 of Section 9.5.

18. Consider the system

x′ = x
(

2.4 − 0.2x − 2y
x + 6

)
, y′ = y

(
−0.25 + x

x + 6

)
.

Observe that this system differs from that in Problem 13 of Section 9.5 only in the growth
rate for the prey.
(a) Find all of the critical points.
(b) Determine the type and stability of each critical point.
(c) Draw a phase portrait in the first quadrant and conclude that there is an asymptotically
stable limit cycle. Thus this model predicts a stable long-term oscillation of the prey and
predator populations.

19. Consider the system

x′ = x
(

a − 0.2x − 2y
x + 6

)
, y′ = y

(
−0.25 + x

x + 6

)
,

where a is a positive parameter. Observe that this system includes the one in Problem 18
above and also the one in Problem 13 in Section 9.5.
(a) Find all of the critical points.
(b) Consider the critical point in the interior of the first quadrant. Find the eigenvalues of
the approximate linear system. Determine the value a0 where this critical point changes
from asymptotically stable to unstable.
(c) Draw a phase portrait for a value of a slightly greater than a0. Observe that a limit
cycle has appeared. How does the limit cycle change as a increases further?

20. There are certain chemical reactions in which the constituent concentrations oscillate
periodically over time. The system

x′ = 1 − (b + 1)x + x2y/4, y′ = bx − x2y/4

is a special case of a model, known as the Brusselator, of this kind of reaction. Assume
that b is a positive parameter, and consider solutions in the first quadrant of the xy-plane.
(a) Show that the only critical point is (1, 4b).
(b) Find the eigenvalues of the approximate linear system at the critical point.
(c) Classify the critical point as to type and stability. How does the classification depend
on b?
(d) As b increases through a certain value b0, the critical point changes from asymptoti-
cally stable to unstable. What is that value b0?
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(e) Plot trajectories in the phase plane for values of b slightly less than and slightly greater
than b0. Observe the limit cycle when b > b0; the Brusselator has a Hopf bifurcation point
at b0.
(f) Plot trajectories for several values of b > b0 and observe how the limit cycle deforms
as b increases.

21. The system
x′ = 3(x + y − 1

3 x3 − k), y′ = − 1
3 (x + 0.8y − 0.7)

is a special case of the Fitzhugh–Nagumo15 equations, which model the transmission of
neural impulses along an axon. The parameter k is the external stimulus.
(a) Show that the system has one critical point regardless of the value of k.
(b) Find the critical point for k = 0 and show that it is an asymptotically stable spiral
point. Repeat the analysis for k = 0.5 and show that the critical point is now an unstable
spiral point. Draw a phase portrait for the system in each case.
(c) Find the value k0 where the critical point changes from asymptotically stable to un-
stable. Find the critical point and draw a phase portrait for the system for k = k0.
(d) For k > k0 the system exhibits an asymptotically stable limit cycle; the system has a
Hopf bifurcation point at k0. Draw a phase portrait for k = 0.4, 0.5, and 0.6; observe that
the limit cycle is not small when k is near k0. Also plot x versus t and estimate the period
T in each case.
(e) As k increases further, there is a value k1 at which the critical point again becomes
asymptotically stable and the limit cycle vanishes. Find k1.

9.8 Chaos and Strange Attractors: The Lorenz Equations
In principle, the methods described in this chapter for second order autonomous sys-
tems can be applied to higher order systems as well. In practice, several difficulties
arise when we try to do this. One problem is that there is simply a greater num-
ber of possible cases that can occur, and the number increases with the number of
equations in the system (and the dimension of the phase space). Another problem
is the difficulty of graphing trajectories accurately in a phase space of more than two
dimensions; even in three dimensions it may not be easy to construct a clear and
understandable plot of the trajectories, and it becomes more difficult as the number
of variables increases. Finally, and this has been clearly realized only fairly recently,
there are different and very complex phenomena that can occur, and frequently do
occur, in systems of third and higher order that are not present in second order sys-
tems. Our goal in this section is to provide a brief introduction to some of these
phenomena by discussing one particular three-dimensional autonomous system that
has been intensively studied. In some respects, the presentation here is similar to the
treatment of the logistic difference equation in Section 2.9.

15Richard Fitzhugh (1922–2007) of the United States Public Health Service and Jin-Ichi Nagumo (1926–
1999) of the University of Tokyo independently proposed a simplification of the Hodgkin–Huxley model
of neural transmission around 1961.
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An important problem in meteorology, and in other applications of fluid dynamics,
concerns the motion of a layer of fluid, such as the earth’s atmosphere, that is warmer
at the bottom than at the top; see Figure 9.8.1. If the vertical temperature difference
�T is small, then there is a linear variation of temperature with altitude but no
significant motion of the fluid layer. However, if �T is large enough, then the warmer
air rises, displacing the cooler air above it, and a steady convective motion results. If
the temperature difference increases further, then eventually the steady convective
flow breaks up and a more complex and turbulent motion ensues.

Cooler

Warmer

Temperature
difference ΔT

FIGURE 9.8.1 A layer of fluid heated from below.

While investigating this phenomenon, Edward N. Lorenz16 was led (by a process
too involved to describe here) to the nonlinear autonomous three-dimensional sys-
tem

dx/dt = σ(−x + y),

dy/dt = rx − y − xz, (1)

dz/dt = −bz + xy.

Equations (1) are now commonly referred to as the Lorenz equations.17 Observe that
the second and third equations involve quadratic nonlinearities. However, except
for being a system of three equations, superficially the Lorenz equations appear no
more complicated than the competing species or predator–prey equations discussed
in Sections 9.4 and 9.5. The variable x in Eqs. (1) is related to the intensity of the
fluid motion, while the variables y and z are related to the temperature variations
in the horizontal and vertical directions. The Lorenz equations also involve three
parameters σ , r, and b, all of which are real and positive. The parameters σ and b
depend on the material and geometrical properties of the fluid layer. For the earth’s
atmosphere, reasonable values of these parameters are σ = 10 and b = 8/3; they will
be assigned these values in much of what follows in this section. The parameter r, on
the other hand, is proportional to the temperature difference �T , and our purpose
is to investigate how the nature of the solutions of Eqs. (1) changes with r.

16Edward N. Lorenz (1917–2008), American meteorologist, received his Ph.D. from the Massachusetts
Institute of Technology in 1948 and has been associated with that institution throughout his scientific
career. His first studies of the system (1) appeared in a famous 1963 paper dealing with the stability of
fluid flows in the atmosphere.
17A very thorough treatment of the Lorenz equations appears in the book by Sparrow listed in the
references at the end of this chapter.
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Before proceeding further, we note that for an autonomous system of three first
order equations

dx/dt = F(x, y, z), dy/dt = G(x, y, z), dz/dt = H(x, y, z), (2)

the Jacobian matrix J is defined by

J =
⎛
⎜⎝

Fx Fy Fz

Gx Gy Gz

Hx Hy Hz

⎞
⎟⎠ . (3)

Thus, for the Lorenz equations (1), the Jacobian matrix is

J =
⎛
⎜⎝

−σ σ 0
r − z −1 −x

y x −b

⎞
⎟⎠ . (4)

The first step in analyzing the Lorenz equations is to locate the critical points by
solving the algebraic system

σx − σy = 0,

rx − y − xz = 0, (5)

−bz + xy = 0.

From the first equation we have y = x. Then, eliminating y from the second and third
equations, we obtain

x(r − 1 − z) = 0, (6)

−bz + x2 = 0. (7)

One way to satisfy Eq. (6) is to choose x = 0. Then it follows that y = 0 and, from
Eq. (7), z = 0. Alternatively, we can satisfy Eq. (6) by choosing z = r − 1. Then
Eq. (7) requires that x = ±√

b(r − 1) and then y = ±√
b(r − 1) also. Observe that

these expressions for x and y are real only when r ≥ 1. Thus (0,0,0), which we will
denote by P1, is a critical point for all values of r, and it is the only critical point
for r < 1. However, when r > 1, there are also two other critical points, namely,
(
√

b(r − 1),
√

b(r − 1), r − 1) and (−√
b(r − 1), −√

b(r − 1), r − 1). We will denote
the latter two points by P2 and P3, respectively. Note that all three critical points
coincide when r = 1. As r increases through the value 1, the critical point P1 at the
origin bifurcates, and the critical points P2 and P3 come into existence.

Next we will determine the local behavior of solutions in the neighborhood of
each critical point. Although much of the following analysis can be carried out for
arbitrary values of σ and b, we will simplify our work by using the values σ = 10 and
b = 8/3. Near the origin (the critical point P1) the approximating linear system is

⎛
⎜⎝

x
y
z

⎞
⎟⎠

′

=
⎛
⎜⎝

−10 10 0
r −1 0
0 0 −8/3

⎞
⎟⎠

⎛
⎜⎝

x
y
z

⎞
⎟⎠ . (8)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 589 Page number 569 cyan black

9.8 Chaos and Strange Attractors: The Lorenz Equations 569

The eigenvalues18 are determined from the equation∣∣∣∣∣∣∣
−10 − λ 10 0

r −1 − λ 0
0 0 −8/3 − λ

∣∣∣∣∣∣∣ = −(8/3 + λ)[λ2 + 11λ − 10(r − 1)] = 0. (9)

Therefore

λ1 = −8
3

, λ2 = −11 − √
81 + 40r

2
, λ3 = −11 + √

81 + 40r
2

. (10)

Note that all three eigenvalues are negative for r < 1; for example, when r = 1/2,
the eigenvalues are λ1 = −8/3, λ2 = −10.52494, λ3 = −0.47506. Hence the origin is
asymptotically stable for this range of r both for the linear approximation (8) and
for the original system (1). However, λ3 changes sign when r = 1 and is positive for
r > 1. The value r = 1 corresponds to the initiation of convective flow in the physical
problem described earlier. The origin is unstable for r > 1; all solutions starting near
the origin tend to grow, except for those lying precisely in the plane determined by the
eigenvectors associated with λ1 and λ2 [or, for the nonlinear system (1), in a certain
surface tangent to this plane at the origin].

Next let us consider the neighborhood of the critical point P2(
√

8(r − 1)/3,√
8(r − 1)/3, r − 1) for r > 1. If u, v, and w are the perturbations from the criti-

cal point in the x, y, and z directions, respectively, then the approximating linear
system is⎛

⎜⎝
u
v

w

⎞
⎟⎠

′

=
⎛
⎜⎝

−10 10 0
1 − 1 −√

8(r − 1)/3√
8(r − 1)/3

√
8(r − 1)/3 −8/3

⎞
⎟⎠

⎛
⎜⎝

u
v

w

⎞
⎟⎠ . (11)

The eigenvalues of the coefficient matrix of Eq. (11) are determined from the equa-
tion

3λ3 + 41λ2 + 8(r + 10)λ + 160(r − 1) = 0, (12)

which is obtained by straightforward algebraic steps that are omitted here. The
solutions of Eq. (12) depend on r in the following way:

For 1 < r < r1
∼= 1.3456 there are three negative real eigenvalues.

For r1 < r < r2
∼= 24.737 there are one negative real eigenvalue and two complex

eigenvalues with negative real part.

For r2 < r there are one negative real eigenvalue and two complex eigenvalues
with positive real part.

The same results are obtained for the critical point P3. Thus there are several
different situations.

For 0 < r < 1 the only critical point is P1 and it is asymptotically stable. All solu-
tions approach this point (the origin) as t → ∞.

For 1 < r < r1 the critical points P2 and P3 are asymptotically stable and P1 is
unstable. All nearby solutions approach one or the other of the points P2 and P3

exponentially.

18Since r appears as a parameter in the Lorenz equations, we will use λ to denote the eigenvalues.
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For r1 < r < r2 the critical points P2 and P3 are asymptotically stable and P1 is
unstable. All nearby solutions approach one or the other of the points P2 and P3;
most of them spiral inward to the critical point.

For r2 < r all three critical points are unstable. Most solutions near P2 or P3 spiral
away from the critical point.

However, this is by no means the end of the story. Let us consider solutions for
r somewhat greater than r2. In this case P1 has one positive eigenvalue and each
of P2 and P3 has a pair of complex eigenvalues with positive real part. A trajectory
can approach any one of the critical points only on certain highly restricted paths.
The slightest deviation from these paths causes the trajectory to depart from the
critical point. Since none of the critical points is stable, one might expect that most
trajectories would approach infinity for large t. However, it can be shown that all
solutions remain bounded as t → ∞; see Problem 5. In fact, it can be shown that all
solutions ultimately approach a certain limiting set of points that has zero volume.
Indeed, this is true not only for r > r2 but for all positive values of r.

A plot of computed values of x versus t for a typical solution with r > r2 is shown
in Figure 9.8.2. Note that the solution oscillates back and forth between positive and
negative values in a rather erratic manner. Indeed, the graph of x versus t resembles
a random vibration, although the Lorenz equations are entirely deterministic and
the solution is completely determined by the initial conditions. Nevertheless, the
solution also exhibits a certain regularity in that the frequency and amplitude of the
oscillations are essentially constant in time.

16

8

–8

–16

x

t10 20

FIGURE 9.8.2 A plot of x versus t for the Lorenz equations (1) with r = 28; the initial point
is (5, 5, 5).

The solutions of the Lorenz equations are also extremely sensitive to perturbations
in the initial conditions. Figure 9.8.3 shows the graphs of computed values of x versus
t for the two solutions whose initial points are (5, 5, 5) and (5.01, 5, 5). The dashed
graph is the same as the one in Figure 9.8.2, while the solid graph starts at a nearby
point. The two solutions remain close until t is near 10, after which they are quite
different and, indeed, seem to have no relation to each other. It was this property that
particularly attracted the attention of Lorenz in his original study of these equations,
and caused him to conclude that accurate detailed long-range weather predictions
are probably not possible.
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16
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x
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FIGURE 9.8.3 Plots of x versus t for two initially nearby solutions of Lorenz equations with
r = 28; the initial point is (5, 5, 5) for the dashed curve and is (5.01, 5, 5) for the solid curve.

The attracting set in this case, although of zero volume, has a rather complicated
structure and is called a strange attractor. The term chaotic has come into general
use to describe solutions such as those shown in Figures 9.8.2 and 9.8.3.

To determine how and when the strange attractor is created, it is illuminating to
investigate solutions for smaller values of r. For r = 21, solutions starting at three dif-
ferent initial points are shown in Figure 9.8.4. For the initial point (3, 8, 0) the solution
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FIGURE 9.8.4 Plots of x versus t for three solutions of Lorenz equations with r = 21.
(a) Initial point is (3, 8, 0). (b) Initial point is (5, 5, 5). (c) Initial point is (5, 5, 10).
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begins to converge to the point P3 almost at once; see Figure 9.8.4a. For the second
initial point (5, 5, 5) there is a fairly short interval of transient behavior, after which
the solution converges to P2; see Figure 9.8.4b. However, as shown in Figure 9.8.4c,
for the third initial point (5, 5, 10) there is a much longer interval of transient chaotic
behavior before the solution eventually converges to P2. As r increases, the dura-
tion of the chaotic transient behavior also increases. When r = r3

∼= 24.06, the chaotic
transients appear to continue indefinitely, and the strange attractor comes into being.

We can also show the trajectories of the Lorenz equations in the three-
dimensional phase space, or at least projections of them in various planes. Fig-
ures 9.8.5 and 9.8.6 show projections in the xy- and xz-planes, respectively, of the
trajectory starting at (5, 5, 5). Observe that the graphs in these figures appear to
cross over themselves repeatedly, but this cannot be true for the actual trajectories in
three-dimensional space because of the general uniqueness theorem. The apparent
crossings are due wholly to the two-dimensional character of the figures.
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FIGURE 9.8.5 Projections of a trajectory of the Lorenz equations (with r = 28) in the
xy-plane.
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FIGURE 9.8.6 Projections of a trajectory of the Lorenz equations (with r = 28) in the
xz-plane.
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The sensitivity of solutions to perturbations of the initial data also has implications
for numerical computations, such as those reported here. Different step sizes, differ-
ent numerical algorithms, or even the execution of the same algorithm on different
machines will introduce small differences in the computed solution, which eventually
lead to large deviations. For example, the exact sequence of positive and negative
loops in the calculated solution depends strongly on the precise numerical algorithm
and its implementation, as well as on the initial conditions. However, the general
appearance of the solution and the structure of the attracting set are independent of
all these factors.

Solutions of the Lorenz equations for other parameter ranges exhibit other in-
teresting types of behavior. For example, for certain values of r greater than r2,
intermittent bursts of chaotic behavior separate long intervals of apparently steady
periodic oscillation. For other ranges of r, solutions show the period-doubling prop-
erty that we saw in Section 2.9 for the logistic difference equation. Some of these
features are taken up in the problems.

Since about 1975 the Lorenz equations and other higher dimensional autonomous
systems have been studied intensively, and this is one of the most active areas of cur-
rent mathematical research. Chaotic behavior of solutions appears to be much more
common than was suspected at first, and many questions remain unanswered. Some
of these are mathematical in nature, while others relate to the physical applications
or interpretations of solutions.

PROBLEMS Problems 1 through 3 ask you to fill in some of the details of the analysis of the Lorenz equations
in this section.

1. (a) Show that the eigenvalues of the linear system (8), valid near the origin, are given by
Eq. (10).
(b) Determine the corresponding eigenvectors.
(c) Determine the eigenvalues and eigenvectors of the system (8) in the case where r = 28.

2. (a) Show that the linear approximation valid near the critical point P2 is given by Eq. (11).
(b) Show that the eigenvalues of the system (11) satisfy Eq. (12).
(c) For r = 28, solve Eq. (12) and thereby determine the eigenvalues of the system (11).

3. (a) By solving Eq. (12) numerically, show that the real part of the complex roots changes
sign when r ∼= 24.737.
(b) Show that a cubic polynomial x3 + Ax2 + Bx + C has one real zero and two pure
imaginary zeros only if AB = C.
(c) By applying the result of part (b) to Eq. (12), show that the real part of the complex
roots changes sign when r = 470/19.

4. Use the Liapunov function V(x, y, z) = x2 + σy2 + σz2 to show that the origin is a globally
asymptotically stable critical point for the Lorenz equations (1) if r < 1.

5. Consider the ellipsoid

V(x, y, z) = rx2 + σy2 + σ(z − 2r)2 = c > 0.

(a) Calculate dV/dt along trajectories of the Lorenz equations (1).
(b) Determine a sufficient condition on c so that every trajectory crossing V(x, y, z) = c
is directed inward.
(c) Evaluate the condition found in part (b) for the case σ = 10, b = 8/3, r = 28.
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In each of Problems 6 through 10 carry out the indicated investigations of the Lorenz equations.

6. For r = 28 plot x versus t for the cases shown in Figures 9.8.2 and 9.8.3. Do your graphs
agree with those shown in the figures? Recall the discussion of numerical computation in
the text.

7. For r = 28 plot the projections in the xy- and xz-planes, respectively, of the trajectory
starting at the point (5, 5, 5). Do the graphs agree with those in Figures 9.8.5 and 9.8.6?

8. (a) For r = 21 plot x versus t for the solutions starting at the initial points (3, 8, 0), (5, 5, 5),
and (5, 5, 10). Use a t interval of at least 0 ≤ t ≤ 30. Compare your graphs with those in
Figure 9.8.4.
(b) Repeat the calculation in part (a) for r = 22, r = 23, and r = 24. Increase the t interval
as necessary so that you can determine when each solution begins to converge to one of
the critical points. Record the approximate duration of the chaotic transient in each case.
Describe how this quantity depends on the value of r.
(c) Repeat the calculations in parts (a) and (b) for values of r slightly greater than 24.
Try to estimate the value of r for which the duration of the chaotic transient approaches
infinity.

9. For certain r intervals, or windows, the Lorenz equations exhibit a period-doubling prop-
erty similar to that of the logistic difference equation discussed in Section 2.9. Careful
calculations may reveal this phenomenon.
(a) One period-doubling window contains the value r = 100. Let r = 100 and plot the
trajectory starting at (5, 5, 5) or some other initial point of your choice. Does the solution
appear to be periodic? What is the period?
(b) Repeat the calculation in part (a) for slightly smaller values of r. When r ∼= 99.98, you
may be able to observe that the period of the solution doubles. Try to observe this result
by performing calculations with nearby values of r.
(c) As r decreases further, the period of the solution doubles repeatedly. The next period
doubling occurs at about r = 99.629. Try to observe this by plotting trajectories for nearby
values of r.

10. Now consider values of r slightly larger than those in Problem 9.
(a) Plot trajectories of the Lorenz equations for values of r between 100 and 100.78. You
should observe a steady periodic solution for this range of r values.
(b) Plot trajectories for values of r between 100.78 and 100.8. Determine as best you can
how and when the periodic trajectory breaks up.

The Rössler19 System. The system

x′ = −y − z, y′ = x + ay, z′ = b + z(x − c), (i)

where a, b, and c are positive parameters, is known as the Rössler20 system. It is a relatively
simple system, consisting of two linear equations and a third equation with a single quadratic
nonlinearity. In Problems 11 through 15 we ask you to carry out some numerical investigations
of this system, with the goal of exploring its period-doubling property. To simplify matters set
a = 0.25, b = 0.5, and let c > 0 remain arbitrary.

19Otto E. Rössler (1940– ), German medical doctor and biochemist, was a student and later became a
faculty member at the University of Tübingen. The equations named for him first appeared in a paper he
published in 1976.
20See the book by Strogatz for a more extensive discussion and further references.
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11. (a) Show that there are no critical points when c <
√

0.5, one critical point for c = √
0.5,

and two critical points when c >
√

0.5.
(b) Find the critical point(s) and determine the eigenvalues of the associated Jacobian
matrix when c = √

0.5 and when c = 1.
(c) How do you think trajectories of the system will behave for c = 1? Plot the trajectory
starting at the origin. Does it behave the way that you expected?
(d) Choose one or two other initial points and plot the corresponding trajectories. Do
these plots agree with your expectations?

12. (a) Let c = 1.3. Find the critical points and the corresponding eigenvalues. What conclu-
sions, if any, can you draw from this information?
(b) Plot the trajectory starting at the origin. What is the limiting behavior of this trajec-
tory? To see the limiting behavior clearly you may wish to choose a t-interval for your
plot so that the initial transients are eliminated.
(c) Choose one or two other initial points and plot the corresponding trajectories. Are
the limiting behavior(s) the same as in part (b)?
(d) Observe that there is a limit cycle whose basin of attraction is fairly large (although
not all of xyz-space). Draw a plot of x, y, or z versus t and estimate the period T1 of motion
around the limit cycle.

13. The limit cycle found in Problem 12 comes into existence as a result of a Hopf bifurcation
at a value c1 of c between 1 and 1.3. Determine, or at least estimate more precisely, the
value of c1. There are several ways in which you might do this.
(a) Draw plots of trajectories for different values of c.
(b) Calculate eigenvalues at critical points for different values of c.
(c) Use the result of Problem 3(b) above.

14. (a) Let c = 3. Find the critical points and the corresponding eigenvalues.
(b) Plot the trajectory starting at the point (1, 0, −2). Observe that the limit cycle now
consists of two loops before it closes; it is often called a 2-cycle.
(c) Plot x, y, or z versus t and show that the period T2 of motion on the 2-cycle is very
nearly double the period T1 of the simple limit cycle in Problem 12. There has been a
period-doubling bifurcation of cycles for a certain value of c between 1.3 and 3.

15. (a) Let c = 3.8. Find the critical points and the corresponding eigenvalues.
(b) Plot the trajectory starting at the point (1, 0, −2). Observe that the limit cycle is now a
4-cycle. Find the period T4 of motion. Another period-doubling bifurcation has occurred
for c between 3 and 3.8.
(c) For c = 3.85 show that the limit cycle is an 8-cycle. Verify that its period is very close
to eight times the period of the simple limit cycle in Problem 12.
Note: As c increases further there is an accelerating cascade of period-doubling bifurca-
tions. The bifurcation values of c converge to a limit, which marks the onset of chaos.
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C H A P T E R

10

Partial
Differential
Equations and
Fourier Series

In many important physical problems there are two or more independent variables,
so the corresponding mathematical models involve partial, rather than ordinary, dif-
ferential equations. This chapter treats one important method for solving partial dif-
ferential equations, a method known as separation of variables. Its essential feature
is the replacement of the partial differential equation by a set of ordinary differen-
tial equations, which must be solved subject to given initial or boundary conditions.
The first section of this chapter deals with some basic properties of boundary value
problems for ordinary differential equations. The desired solution of the partial dif-
ferential equation is then expressed as a sum, usually an infinite series, formed from
solutions of the ordinary differential equations. In many cases we ultimately need
to deal with a series of sines and/or cosines, so part of the chapter is devoted to a
discussion of such series, which are known as Fourier series. With the necessary math-
ematical background in place, we then illustrate the use of separation of variables in
a variety of problems arising from heat conduction, wave propagation, and potential
theory.

10.1 Two-Point Boundary Value Problems
Up to this point in the book we have dealt with initial value problems, consisting
of a differential equation together with suitable initial conditions at a given point.
A typical example, which was discussed at length in Chapter 3, is the differential
equation

y′′ + p(t)y′ + q(t)y = g(t), (1)
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with the initial conditions

y(t0) = y0, y′(t0) = y′
0. (2)

Physical applications often lead to another type of problem, one in which the value
of the dependent variable y or its derivative is specified at two different points. Such
conditions are called boundary conditions to distinguish them from initial conditions
that specify the value of y and y′ at the same point. A differential equation and
suitable boundary conditions form a two-point boundary value problem. A typical
example is the differential equation

y′′ + p(x)y′ + q(x)y = g(x) (3)

with the boundary conditions

y(α) = y0, y(β) = y1. (4)

The natural occurrence of boundary value problems usually involves a space coordi-
nate as the independent variable, so we have used x rather than t in Eqs. (3) and (4).
To solve the boundary value problem (3), (4), we need to find a function y = φ(x) that
satisfies the differential equation (3) in the interval α < x < β and that takes on the
specified values y0 and y1 at the endpoints of the interval. Usually, we first seek the
general solution of the differential equation and then use the boundary conditions
to determine the values of the arbitrary constants.

Boundary value problems can also be posed for nonlinear differential equations,
but we will restrict ourselves to a consideration of linear equations only. An important
classification of linear boundary value problems is whether they are homogeneous or
nonhomogeneous. If the function g has the value zero for each x, and if the boundary
values y0 and y1 are also zero, then the problem (3), (4) is called homogeneous.
Otherwise, the problem is nonhomogeneous.

Although the initial value problem (1), (2) and the boundary value problem (3),
(4) may superficially appear to be quite similar, their solutions differ in some very
important ways. Under mild conditions on the coefficients initial value problems
are certain to have a unique solution. On the other hand, boundary value problems
under similar conditions may have a unique solution, but they may also have no
solution or, in some cases, infinitely many solutions. In this respect, linear boundary
value problems resemble systems of linear algebraic equations.

Let us recall some facts (see Section 7.3) about the system

Ax = b, (5)

where A is a given n × n matrix, b is a given n × 1 vector, and x is an n × 1 vector to
be determined. If A is nonsingular, then the system (5) has a unique solution for any
b. However, if A is singular, then the system (5) has no solution unless b satisfies a
certain additional condition, in which case the system has infinitely many solutions.
Now consider the corresponding homogeneous system

Ax = 0, (6)

obtained from the system (5) when b = 0. The homogeneous system (6) always has
the solution x = 0,which is often referred to as the trivial solution. IfA is nonsingular,
then this is the only solution, but if A is singular, then there are infinitely many
nonzero, or nontrivial, solutions. Note that it is impossible for the homogeneous
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system to have no solution. These results can also be stated in the following way: the
nonhomogeneous system (5) has a unique solution if and only if the homogeneous
system (6) has only the solution x = 0, and the nonhomogeneous system (5) has
either no solution or infinitely many solutions if and only if the homogeneous system
(6) has nonzero solutions.

We now turn to some examples of linear boundary value problems that illustrate
very similar behavior. A more general discussion of linear boundary value problems
appears in Chapter 11.

E X A M P L E

1

Solve the boundary value problem

y′′ + 2y = 0, y(0) = 1, y(π) = 0. (7)

The general solution of the differential equation (7) is

y = c1 cos
√

2 x + c2 sin
√

2 x. (8)

The first boundary condition requires that c1 = 1. The second boundary condition implies
that c1 cos

√
2 π + c2 sin

√
2 π = 0, so c2 = − cot

√
2 π ∼= −0.2762. Thus the solution of the

boundary value problem (7) is

y = cos
√

2 x − cot
√

2 π sin
√

2 x. (9)

This example illustrates the case of a nonhomogeneous boundary value problem with a unique
solution.

E X A M P L E

2

Solve the boundary value problem

y′′ + y = 0, y(0) = 1, y(π) = a, (10)

where a is a given number.
The general solution of this differential equation is

y = c1 cos x + c2 sin x, (11)

and from the first boundary condition we find that c1 = 1. The second boundary condition
now requires that −c1 = a. These two conditions on c1 are incompatible if a �= −1, so the
problem has no solution in that case. However, if a = −1, then both boundary conditions are
satisfied provided that c1 = 1, regardless of the value of c2. In this case there are infinitely
many solutions of the form

y = cos x + c2 sin x, (12)

where c2 remains arbitrary. This example illustrates that a nonhomogeneous boundary value
problem may have no solution, and also that under special circumstances it may have infinitely
many solutions.

Corresponding to the nonhomogeneous boundary value problem (3), (4) is the
homogeneous problem consisting of the differential equation

y′′ + p(x)y′ + q(x)y = 0 (13)
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and the boundary conditions

y(α) = 0, y(β) = 0. (14)

Observe that this problem has the solution y = 0 for all x, regardless of the coefficients
p(x) and q(x). This (trivial) solution is rarely of interest. What we usually want to
know is whether the problem has other, nonzero, solutions. Consider the following
two examples.

E X A M P L E

3

Solve the boundary value problem

y′′ + 2y = 0, y(0) = 0, y(π) = 0. (15)

The general solution of the differential equation is again given by Eq. (8),

y = c1 cos
√

2 x + c2 sin
√

2 x.

The first boundary condition requires that c1 = 0, and the second boundary condition leads to
c2 sin

√
2 π = 0. Since sin

√
2 π �= 0, it follows that c2 = 0 also. Consequently, y = 0 for all x is

the only solution of the problem (15). This example illustrates that a homogeneous boundary
value problem may have only the trivial solution y = 0.

E X A M P L E

4

Solve the boundary value problem

y′′ + y = 0, y(0) = 0, y(π) = 0. (16)

The general solution is given by Eq. (11),

y = c1 cos x + c2 sin x,

and the first boundary condition requires that c1 = 0. Since sin π = 0, the second boundary
condition is also satisfied when c1 = 0, regardless of the value of c2. Thus the solution of
the problem (16) is y = c2 sin x, where c2 remains arbitrary. This example illustrates that a
homogeneous boundary value problem may have infinitely many solutions.

Examples 1 through 4 illustrate (but of course do not prove) that there is the same
relationship between homogeneous and nonhomogeneous linear boundary value
problems as there is between homogeneous and nonhomogeneous linear algebraic
systems. A nonhomogeneous boundary value problem (Example 1) has a unique
solution, and the corresponding homogeneous problem (Example 3) has only the
trivial solution. Further, a nonhomogeneous problem (Example 2) has either no
solution or infinitely many, and the corresponding homogeneous problem (Example
4) has nontrivial solutions.

Eigenvalue Problems. Recall the matrix equation

Ax = λx (17)

that we discussed in Section 7.3. Equation (17) has the solution x = 0 for every value
of λ, but for certain values of λ, called eigenvalues, there are also nonzero solutions,
called eigenvectors. The situation is similar for boundary value problems.
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Consider the problem consisting of the differential equation

y′′ + λy = 0, (18)

together with the boundary conditions

y(0) = 0, y(π) = 0. (19)

Observe that the problem (18), (19) is the same as the problems in Examples 3
and 4 if λ = 2 and λ = 1, respectively. Recalling the results of these examples, we
note that for λ = 2, Eqs. (18), (19) have only the trivial solution y = 0, while for
λ = 1, the problem (18), (19) has other, nontrivial, solutions. By extension of the
terminology associated with Eq. (17), the values of λ for which nontrivial solutions
of (18), (19) occur are called eigenvalues, and the nontrivial solutions themselves are
called eigenfunctions. Restating the results of Examples 3 and 4, we have found that
λ = 1 is an eigenvalue of the problem (18), (19) and that λ = 2 is not. Further, any
nonzero multiple of sin x is an eigenfunction corresponding to the eigenvalue λ = 1.

Let us now turn to the problem of finding other eigenvalues and eigenfunctions
of the problem (18), (19). We need to consider separately the cases λ > 0, λ = 0,
and λ < 0, since the form of the solution of Eq. (18) is different in each of these
cases. Suppose first that λ > 0. To avoid the frequent appearance of radical signs, it
is convenient to let λ = μ2 and to rewrite Eq. (18) as

y′′ + μ2y = 0. (20)

The characteristic polynomial equation for Eq. (20) is r2 + μ2 = 0 with roots r = ±iμ,
so the general solution is

y = c1 cos μx + c2 sin μx. (21)

Note that μ is nonzero (since λ > 0) and there is no loss of generality if we also
assume that μ is positive. The first boundary condition requires that c1 = 0, and then
the second boundary condition reduces to

c2 sin μπ = 0. (22)

We are seeking nontrivial solutions so we must require that c2 �= 0. Consequently,
sin μπ must be zero, and our task is to choose μ so that this will occur. We know that
the sine function has the value zero at every integer multiple of π , so we can choose
μ to be any (positive) integer. The corresponding values of λ are the squares of the
positive integers, so we have determined that

λ1 = 1, λ2 = 4, λ3 = 9, . . . , λn = n2, . . . (23)

are eigenvalues of the problem (18), (19). The eigenfunctions are given by Eq. (21)
with c1 = 0, so they are just multiples of the functions sin nx for n = 1, 2, 3, . . . .
Observe that the constant c2 in Eq. (21) is never determined, so eigenfunctions are
determined only up to an arbitrary multiplicative constant [just as are the eigenvec-
tors of the matrix problem (17)]. We will usually choose the multiplicative constant
to be 1 and write the eigenfunctions as

y1(x) = sin x, y2(x) = sin 2x, . . . , yn(x) = sin nx, . . . , (24)

remembering that multiples of these functions are also eigenfunctions.
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Now let us suppose that λ < 0. If we let λ = −μ2, then Eq. (18) becomes

y′′ − μ2y = 0. (25)

The characteristic equation for Eq. (25) is r2 − μ2 = 0 with roots r = ±μ, so its gen-
eral solution can be written as

y = c1 cosh μx + c2 sinh μx. (26)

We have chosen the hyperbolic functions cosh μx and sinh μx, rather than the ex-
ponential functions exp(μx) and exp(−μx), as a fundamental set of solutions for
convenience in applying the boundary conditions. The first boundary condition re-
quires that c1 = 0, and then the second boundary condition gives c2 sinh μπ = 0.
Since μ �= 0, it follows that sinh μπ �= 0, and therefore we must have c2 = 0. Con-
sequently, y = 0 and there are no nontrivial solutions for λ < 0. In other words, the
problem (18), (19) has no negative eigenvalues.

Finally, consider the possibility that λ = 0. Then Eq. (18) becomes

y′′ = 0, (27)

and its general solution is

y = c1x + c2. (28)

The boundary conditions (19) can be satisfied only by choosing c1 = 0 and c2 = 0,
so there is only the trivial solution y = 0 in this case as well. That is, λ = 0 is not an
eigenvalue.

To summarize our results: we have shown that the problem (18), (19) has an infinite
sequence of positive eigenvalues λn = n2 for n = 1, 2, 3, . . . and that the correspond-
ing eigenfunctions are proportional to sin nx. Further, there are no other real eigen-
values. There remains the possibility that there might be some complex eigenvalues;
recall that a matrix with real elements may very well have complex eigenvalues. In
Problem 23 we outline an argument showing that the particular problem (18), (19)
cannot have complex eigenvalues. Later, in Section 11.2, we discuss an important
class of boundary value problems that includes (18), (19). One of the useful proper-
ties of this class of problems is that all their eigenvalues are real.

In later sections of this chapter we will often encounter the problem

y′′ + λy = 0, y(0) = 0, y(L) = 0, (29)

which differs from the problem (18), (19) only in that the second boundary condition
is imposed at an arbitrary point x = L rather than at x = π . The solution process
for λ > 0 is exactly the same as before up to the step where the second boundary
condition is applied. For the problem (29) this condition requires that

c2 sin μL = 0 (30)

rather than Eq. (22), as in the former case. Consequently, μL must be an integer
multiple of π , so μ = nπ/L, where n is a positive integer. Hence the eigenvalues and
eigenfunctions of the problem (29) are given by

λn = n2π2/L2, yn(x) = sin(nπx/L), n = 1, 2, 3, . . . . (31)
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As usual, the eigenfunctions yn(x) are determined only up to an arbitrary multiplica-
tive constant. In the same way as for the problem (18), (19), you can show that the
problem (29) has no eigenvalues or eigenfunctions other than those in Eq. (31).

The problems following this section explore to some extent the effect of different
boundary conditions on the eigenvalues and eigenfunctions. A more systematic
discussion of two-point boundary and eigenvalue problems appears in Chapter 11.

PROBLEMS In each of Problems 1 through 13 either solve the given boundary value problem or else show
that it has no solution.

1. y′′ + y = 0, y(0) = 0, y′(π) = 1 2. y′′ + 2y = 0, y′(0) = 1, y′(π) = 0
3. y′′ + y = 0, y(0) = 0, y(L) = 0 4. y′′ + y = 0, y′(0) = 1, y(L) = 0
5. y′′ + y = x, y(0) = 0, y(π) = 0 6. y′′ + 2y = x, y(0) = 0, y(π) = 0
7. y′′ + 4y = cos x, y(0) = 0, y(π) = 0
8. y′′ + 4y = sin x, y(0) = 0, y(π) = 0
9. y′′ + 4y = cos x, y′(0) = 0, y′(π) = 0

10. y′′ + 3y = cos x, y′(0) = 0, y′(π) = 0
11. x2y′′ − 2xy′ + 2y = 0, y(1) = −1, y(2) = 1
12. x2y′′ + 3xy′ + y = x2, y(1) = 0, y(e) = 0
13. x2y′′ + 5xy′ + (4 + π 2)y = ln x, y(1) = 0, y(e) = 0

In each of Problems 14 through 20 find the eigenvalues and eigenfunctions of the given bound-
ary value problem. Assume that all eigenvalues are real.
14. y′′ + λy = 0, y(0) = 0, y′(π) = 0 15. y′′ + λy = 0, y′(0) = 0, y(π) = 0
16. y′′ + λy = 0, y′(0) = 0, y′(π) = 0 17. y′′ + λy = 0, y′(0) = 0, y(L) = 0
18. y′′ + λy = 0, y′(0) = 0, y′(L) = 0 19. y′′ − λy = 0, y(0) = 0, y′(L) = 0
20. x2y′′ − xy′ + λy = 0, y(1) = 0, y(L) = 0, L > 1
21. The axially symmetric laminar flow of a viscous incompressible fluid through a long

straight tube of circular cross section under a constant axial pressure gradient is known as
Poiseuille1 flow. The axial velocity w is a function of the radial variable r only and satisfies
the boundary value problem

w′′ + 1
r
w′ = −G

μ
, w(R) = 0, w(r) bounded for 0 < r < R,

where R is the radius of the tube, G is the pressure gradient, and μ is the coefficient of
viscosity of the fluid.
(a) Find the velocity profile w(r).
(b) By integrating w(r) over a cross section, show that the total flow rate Q is given by

Q = πR4G/8μ.

Since Q, R, and G can be measured, this result provides a practical way to determine the
viscosity μ.

1Jean Louis Marie Poiseuille (1797–1869) was a French physician who was also trained in mathematics
and physics. He was particularly interested in the flow of blood and published his first paper on the subject
in 1840.
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(c) Suppose that R is reduced to 3/4 of its original value. What is the corresponding
reduction in Q? This result has implications for blood flow through arteries constricted
by plaque.

22. Consider a horizontal metal beam of length L subject to a vertical load f (x) per unit length.
The resulting vertical displacement in the beam y(x) satisfies the differential equation

EI
d4y
dx4

= f (x),

where E is Young’s modulus and I is the moment of inertia of the cross section about
an axis through the centroid perpendicular to the xy-plane. Suppose that f (x)/EI is a
constant k. For each of the boundary conditions given below solve for the displacement
y(x), and plot y versus x in the case that L = 1 and k = −1.
(a) Simply supported at both ends: y(0) = y′′(0) = y(L) = y′′(L) = 0
(b) Clamped at both ends: y(0) = y′(0) = y(L) = y′(L) = 0
(c) Clamped at x = 0, free at x = L: y(0) = y′(0) = y′′(L) = y′′′(L) = 0

23. In this problem we outline a proof that the eigenvalues of the boundary value problem
(18), (19) are real.
(a) Write the solution of Eq. (18) as y = k1 exp(iμx) + k2 exp(−iμx), where λ = μ2, and
impose the boundary conditions (19). Show that nontrivial solutions exist if and only if

exp(iμπ) − exp(−iμπ) = 0. (i)

(b) Let μ = ν + iσ and use Euler’s relation exp(iνπ) = cos(νπ) + i sin(νπ) to determine
the real and imaginary parts of Eq. (i).
(c) By considering the equations found in part (b), show that ν is an integer and that
σ = 0. Consequently, μ is real and so is λ.

10.2 Fourier Series
Later in this chapter you will find that you can solve many important problems in-
volving partial differential equations, provided that you can express a given function
as an infinite sum of sines and/or cosines. In this and the following two sections we
explain in detail how this can be done. These trigonometric series are called Fourier
series2; they are somewhat analogous to Taylor series in that both types of series pro-
vide a means of expressing quite complicated functions in terms of certain familiar
elementary functions.

2Fourier series are named for Joseph Fourier, who made the first systematic use, although not a completely
rigorous investigation, of them in 1807 and 1811 in his papers on heat conduction. According to Riemann,
when Fourier presented his first paper to the Paris Academy in 1807, stating that an arbitrary function
could be expressed as a series of the form (1), the mathematician Lagrange was so surprised that he denied
the possibility in the most definite terms. Although it turned out that Fourier’s claim of generality was
somewhat too strong, his results inspired a flood of important research that has continued to the present
day. See Grattan-Guinness or Carslaw (Historical Introduction) for a detailed history of Fourier series.
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We begin with a series of the form

a0

2
+

∞∑
m=1

(
am cos

mπx
L

+ bm sin
mπx

L

)
. (1)

On the set of points where the series (1) converges, it defines a function f , whose
value at each point is the sum of the series for that value of x. In this case the series
(1) is said to be the Fourier series for f . Our immediate goals are to determine what
functions can be represented as a sum of a Fourier series and to find some means of
computing the coefficients in the series corresponding to a given function. The first
term in the series (1) is written as a0/2 rather than simply as a0 to simplify a formula
for the coefficients that we derive below. Besides their association with the method
of separation of variables and partial differential equations, Fourier series are also
useful in various other ways, such as in the analysis of mechanical or electrical systems
acted on by periodic external forces.

Periodicity of the Sine and Cosine Functions. To discuss Fourier series, it is necessary to de-
velop certain properties of the trigonometric functions sin(mπx/L) and cos(mπx/L),
where m is a positive integer. The first property is their periodic character. A function
f is said to be periodic with period T > 0 if the domain of f contains x + T whenever
it contains x, and if

f (x + T) = f (x) (2)

for every value of x. An example of a periodic function is shown in Figure 10.2.1. It
follows immediately from the definition that if T is a period of f , then 2T is also a
period, and so indeed is any integral multiple of T . The smallest value of T for which
Eq. (2) holds is called the fundamental period of f . A constant function is a periodic
function with an arbitrary period but no fundamental period.

x

y

T

2T

FIGURE 10.2.1 A periodic function.

If f and g are any two periodic functions with common period T , then their product
fg and any linear combination c1f + c2g are also periodic with period T . To prove
the latter statement, let F(x) = c1f (x) + c2g(x); then for any x

F(x + T) = c1f (x + T) + c2g(x + T) = c1f (x) + c2g(x) = F(x). (3)
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Moreover, it can be shown that the sum of any finite number, or even the sum of a
convergent infinite series, of functions of period T is also periodic with period T .

In particular, the functions sin(mπx/L) and cos(mπx/L), m = 1, 2, 3, . . . , are peri-
odic with fundamental period T = 2L/m. To see this, recall that sin x and cos x have
fundamental period 2π and that sin αx and cos αx have fundamental period 2π/α. If
we choose α = mπ/L, then the period T of sin(mπx/L) and cos(mπx/L) is given by
T = 2πL/mπ = 2L/m.

Note also that, since every positive integral multiple of a period is also a period,
each of the functions sin(mπx/L) and cos(mπx/L) has the common period 2L.

Orthogonality of the Sine and Cosine Functions. To describe a second essential property of
the functions sin(mπx/L) and cos(mπx/L), we generalize the concept of orthogonal-
ity of vectors (see Section 7.2). The standard inner product (u, v) of two real-valued
functions u and v on the interval α ≤ x ≤ β is defined by

(u, v) =
∫ β

α

u(x)v(x) dx. (4)

The functions u and v are said to be orthogonal on α ≤ x ≤ β if their inner product
is zero—that is, if ∫ β

α

u(x)v(x) dx = 0. (5)

A set of functions is said to be mutually orthogonal if each distinct pair of functions
in the set is orthogonal.

The functions sin(mπx/L) and cos(mπx/L), m = 1, 2, . . . form a mutually orthog-
onal set of functions on the interval −L ≤ x ≤ L. In fact, they satisfy the following
orthogonality relations:∫ L

−L
cos

mπx
L

cos
nπx

L
dx =

{
0, m �= n,
L, m = n;

(6)

∫ L

−L
cos

mπx
L

sin
nπx

L
dx = 0, all m, n; (7)

∫ L

−L
sin

mπx
L

sin
nπx

L
dx =

{
0, m �= n,
L, m = n.

(8)

These results can be obtained by direct integration. For example, to derive Eq. (8),
note that∫ L

−L
sin

mπx
L

sin
nπx

L
dx = 1

2

∫ L

−L

[
cos

(m − n)πx
L

− cos
(m + n)πx

L

]
dx

= 1
2

L
π

{
sin[(m − n)πx/L]

m − n
− sin[(m + n)πx/L]

m + n

} ∣∣∣∣∣
L

−L

= 0

as long as m + n and m − n are not zero. Since m and n are positive, m + n �= 0. On
the other hand, if m − n = 0, then m = n, and the integral must be evaluated in a
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different way. In this case∫ L

−L
sin

mπx
L

sin
nπx

L
dx =

∫ L

−L

(
sin

mπx
L

)2
dx

= 1
2

∫ L

−L

[
1 − cos

2mπx
L

]
dx

= 1
2

{
x − sin(2mπx/L)

2mπ/L

} ∣∣∣∣∣
L

−L

= L.

This establishes Eq. (8); Eqs. (6) and (7) can be verified by similar computations.

The Euler–Fourier Formulas. Now let us suppose that a series of the form (1) converges,
and let us call its sum f (x):

f (x) = a0

2
+

∞∑
m=1

(
am cos

mπx
L

+ bm sin
mπx

L

)
. (9)

The coefficients am and bm can be related to f (x) as a consequence of the orthogonality
conditions (6), (7), and (8). First multiply Eq. (9) by cos(nπx/L), where n is a fixed
positive integer (n > 0), and integrate with respect to x from −L to L. Assuming
that the integration can be legitimately carried out term by term,3 we obtain∫ L

−L
f (x) cos

nπx
L

dx = a0

2

∫ L

−L
cos

nπx
L

dx +
∞∑

m=1

am

∫ L

−L
cos

mπx
L

cos
nπx

L
dx

+
∞∑

m=1

bm

∫ L

−L
sin

mπx
L

cos
nπx

L
dx. (10)

Keeping in mind that n is fixed whereas m ranges over the positive integers, it follows
from the orthogonality relations (6) and (7) that the only nonzero term on the right
side of Eq. (10) is the one for which m = n in the first summation. Hence∫ L

−L
f (x) cos

nπx
L

dx = Lan, n = 1, 2, . . . . (11)

To determine a0, we can integrate Eq. (9) from −L to L, obtaining∫ L

−L
f (x) dx = a0

2

∫ L

−L
dx +

∞∑
m=1

am

∫ L

−L
cos

mπx
L

dx +
∞∑

m=1

bm

∫ L

−L
sin

mπx
L

dx

= La0, (12)

3This is a nontrivial assumption, since not all convergent series with variable terms can be so integrated.
For the special case of Fourier series, however, term-by-term integration can always be justified.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 608 Page number 588 cyan black

588 Chapter 10. Partial Differential Equations and Fourier Series

since each integral involving a trigonometric function is zero. Thus

an = 1
L

∫ L

−L
f (x) cos

nπx
L

dx, n = 0, 1, 2, . . . . (13)

By writing the constant term in Eq. (9) as a0/2, it is possible to compute all the an

from Eq. (13). Otherwise, a separate formula would have to be used for a0.
A similar expression for bn may be obtained by multiplying Eq. (9) by sin(nπx/L),

integrating termwise from −L to L, and using the orthogonality relations (7) and (8);
thus

bn = 1
L

∫ L

−L
f (x) sin

nπx
L

dx, n = 1, 2, 3, . . . . (14)

Equations (13) and (14) are known as the Euler–Fourier formulas for the coefficients
in a Fourier series. Hence, if the series (9) converges to f (x), and if the series can be
integrated term by term, then the coefficients must be given by Eqs. (13) and (14).

Note that Eqs. (13) and (14) are explicit formulas for an and bn in terms of f , and
that the determination of any particular coefficient is independent of all the other
coefficients. Of course, the difficulty in evaluating the integrals in Eqs. (13) and (14)
depends very much on the particular function f involved.

Note also that the formulas (13) and (14) depend only on the values of f (x) in the
interval −L ≤ x ≤ L. Since each of the terms in the Fourier series (9) is periodic
with period 2L, the series converges for all x whenever it converges in −L ≤ x ≤ L,
and its sum is also a periodic function with period 2L. Hence f (x) is determined for
all x by its values in the interval −L ≤ x ≤ L.

It is possible to show (see Problem 27) that if g is periodic with period T , then every
integral of g over an interval of length T has the same value. If we apply this result to
the Euler–Fourier formulas (13) and (14), it follows that the interval of integration,
−L ≤ x ≤ L, can be replaced, if it is more convenient to do so, by any other interval
of length 2L.

E X A M P L E

1

Assume that there is a Fourier series converging to the function f defined by

f (x) =
{

−x, −2 ≤ x < 0,
x, 0 ≤ x < 2;

(15)
f (x + 4) = f (x).

Determine the coefficients in this Fourier series.
This function represents a triangular wave (see Figure 10.2.2) and is periodic with period 4.

Thus in this case L = 2, and the Fourier series has the form

f (x) = a0

2
+

∞∑
m=1

(
am cos

mπx
2

+ bm sin
mπx

2

)
, (16)

where the coefficients are computed from Eqs. (13) and (14) with L = 2. Substituting for f (x)

in Eq. (13) with m = 0, we have

a0 = 1
2

∫ 0

−2
(−x) dx + 1

2

∫ 2

0
x dx = 1 + 1 = 2. (17)
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x

y

–6 –4 –2 2

2

4 6

FIGURE 10.2.2 Triangular wave.

For m > 0, Eq. (13) yields

am = 1
2

∫ 0

−2
(−x) cos

mπx
2

dx + 1
2

∫ 2

0
x cos

mπx
2

dx.

These integrals can be evaluated through integration by parts, with the result that

am = 1
2

[
− 2

mπ
x sin

mπx
2

−
(

2
mπ

)2

cos
mπx

2

] ∣∣∣∣∣∣
0

−2

+ 1
2

[
2

mπ
x sin

mπx
2

+
(

2
mπ

)2

cos
mπx

2

] ∣∣∣∣∣∣
2

0

= 1
2

[
−
(

2
mπ

)2

+
(

2
mπ

)2

cos mπ +
(

2
mπ

)2

cos mπ −
(

2
mπ

)2
]

= 4
(mπ)2

(cos mπ − 1), m = 1, 2, . . .

=
{−8/(mπ)2, m odd,

0, m even.
(18)

Finally, from Eq. (14) it follows in a similar way that

bm = 0, m = 1, 2, . . . . (19)

By substituting the coefficients from Eqs. (17), (18), and (19) in the series (16), we obtain the
Fourier series for f :

f (x) = 1 − 8
π2

(
cos

πx
2

+ 1
32

cos
3πx

2
+ 1

52
cos

5πx
2

+ · · ·
)

= 1 − 8
π2

∞∑
m=1,3,5,...

cos(mπx/2)

m2

= 1 − 8
π2

∞∑
n=1

cos(2n − 1)πx/2
(2n − 1)2

. (20)
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E X A M P L E

2

Let

f (x) =

⎧⎪⎨
⎪⎩

0, −3 < x < −1,
1, −1 < x < 1,
0, 1 < x < 3

(21)

and suppose that f (x + 6) = f (x); see Figure 10.2.3. Find the coefficients in the Fourier series
for f .

y

t–7 –5 –3 –1 1

1

3 5 7

FIGURE 10.2.3 Graph of f (x) in Example 2.

Note that f (x) is not assigned a value at the points of discontinuity, such as x = −1 and
x = 1. This has no effect on the values of the Fourier coefficients, because they result from the
evaluation of integrals, and the value of an integral is not affected by the value of the integrand
at a single point, or at a finite number of points. Thus the coefficients are the same regardless
of what value, if any, f (x) is assigned at a point of discontinuity.

Since f has period 6, it follows that L = 3 in this problem. Consequently, the Fourier series
for f has the form

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx
3

+ bn sin
nπx

3

)
, (22)

where the coefficients an and bn are given by Eqs. (13) and (14) with L = 3. We have

a0 = 1
3

∫ 3

−3
f (x) dx = 1

3

∫ 1

−1
dx = 2

3
. (23)

Similarly,

an = 1
3

∫ 1

−1
cos

nπx
3

dx = 1
nπ

sin
nπx

3

∣∣∣∣∣∣
1

−1

= 2
nπ

sin
nπ

3
, n = 1, 2, . . . , (24)

and

bn = 1
3

∫ 1

−1
sin

nπx
3

dx = − 1
nπ

cos
nπx

3

∣∣∣∣∣∣
1

−1

= 0, n = 1, 2, . . . . (25)

Thus the Fourier series for f is

f (x) = 1
3

+
∞∑

n=1

2
nπ

sin
nπ

3
cos

nπx
3

= 1
3

+
√

3
π

[
cos(πx/3) + cos(2πx/3)

2
− cos(4πx/3)

4
− cos(5πx/3)

5
+ · · ·

]
. (26)
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E X A M P L E

3

Consider again the function in Example 1 and its Fourier series (20). Investigate the speed
with which the series converges. In particular, determine how many terms are needed so that
the error is no greater than 0.01 for all x.

The mth partial sum in this series

sm(x) = 1 − 8
π2

m∑
n=1

cos(2n − 1)πx/2
(2n − 1)2

(27)

can be used to approximate the function f . The coefficients diminish as (2n − 1)−2, so the series
converges fairly rapidly. This is borne out by Figure 10.2.4, where the partial sums for m = 1
and m = 2 are plotted. To investigate the convergence in more detail, we can consider the error
em(x) = f (x) − sm(x). Figure 10.2.5 shows a plot of |e6(x)| versus x for 0 ≤ x ≤ 2. Observe that
|e6(x)| is greatest at the points x = 0 and x = 2 where the graph of f (x) has corners. It is more
difficult for the series to approximate the function near these points, resulting in a larger error
there for a given m. Similar graphs are obtained for other values of m.

y

2

m = 2

m = 1

–4 –2

2

4 x
FIGURE 10.2.4 Partial sums in the Fourier series, Eq. (20), for the triangular wave.

x

0.025

0.020

0.015

0.010

0.005

e6(x)

0.030

0.035

1.51 20.5

FIGURE 10.2.5 Plot of |e6(x)| versus x for the triangular wave.

Once you realize that the maximum error always occurs at x = 0 or x = 2, you can obtain
a uniform error bound for each m simply by evaluating |em(x)| at one of these points. For
example, for m = 6 we have e6(2) = 0.03370, so |e6(x)| < 0.034 for 0 ≤ x ≤ 2 and consequently
for all x. Table 10.2.1 shows corresponding data for other values of m; these data are plotted
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in Figure 10.2.6. From this information you can begin to estimate the number of terms that
are needed in the series in order to achieve a given level of accuracy in the approximation.
For example, to guarantee that |em(x)| ≤ 0.01, we need to choose m = 21.

TABLE 10.2.1 Values of the error
em(2) for the triangular wave

m em(2)

2 0.09937
4 0.05040
6 0.03370

10 0.02025
15 0.01350
20 0.01013
25 0.00810

m

0.08

0.06

0.04

0.02

em(2)

0.10

1510 20 255

FIGURE 10.2.6 Plot of em(2) versus m for the triangular wave.

In this book Fourier series appear mainly as a means of solving certain problems
in partial differential equations. However, such series have much wider application
in science and engineering and, in general, are valuable tools in the investigation of
periodic phenomena. A basic problem is to resolve an incoming signal into its har-
monic components, which amounts to constructing its Fourier series representation.
In some frequency ranges the separate terms correspond to different colors or to
different audible tones. The magnitude of the coefficient determines the amplitude
of each component. This process is referred to as spectral analysis.

PROBLEMS In each of Problems 1 through 8 determine whether the given function is periodic. If so, find
its fundamental period.

1. sin 5x 2. cos 2πx 3. sinh 2x 4. sin πx/L 5. tan πx 6. x2

7. f (x) =
{

0, 2n − 1 ≤ x < 2n,
1, 2n ≤ x < 2n + 1;

n = 0, ±1, ±2, . . .
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8. f (x) =
{

(−1)n, 2n − 1 ≤ x < 2n,
1, 2n ≤ x < 2n + 1;

n = 0, ±1, ±2, . . .

9. If f (x) = −x for −L < x < L, and if f (x + 2L) = f (x), find a formula for f (x) in the interval
L < x < 2L; in the interval −3L < x < −2L.

10. If f (x) =
{

x + 1, −1 < x < 0,
x, 0 < x < 1,

and if f (x + 2) = f (x), find a formula for f (x) in the

interval 1 < x < 2; in the interval 8 < x < 9.

11. If f (x) = L − x for 0 < x < 2L, and if f (x + 2L) = f (x), find a formula for f (x) in the
interval −L < x < 0.

12. Verify Eqs. (6) and (7) in this section by direct integration.

In each of Problems 13 through 18:

(a) Sketch the graph of the given function for three periods.

(b) Find the Fourier series for the given function.

13. f (x) = −x, −L ≤ x < L; f (x + 2L) = f (x)

14. f (x) =
{

1, −L ≤ x < 0,
0, 0 ≤ x < L;

f (x + 2L) = f (x)

15. f (x) =
{

x, −π ≤ x < 0,
0, 0 ≤ x < π ;

f (x + 2π) = f (x)

16. f (x) =
{

x + 1, −1 ≤ x < 0,
1 − x, 0 ≤ x < 1;

f (x + 2) = f (x)

17. f (x) =
{

x + L, −L ≤ x ≤ 0,
L, 0 < x < L;

f (x + 2L) = f (x)

18. f (x) =

⎧⎪⎨
⎪⎩

0, −2 ≤ x ≤ −1,
x, −1 < x < 1,
0, 1 ≤ x < 2;

f (x + 4) = f (x)

In each of Problems 19 through 24:

(a) Sketch the graph of the given function for three periods.

(b) Find the Fourier series for the given function.

(c) Plot sm(x) versus x for m = 5, 10, and 20.

(d) Describe how the Fourier series seems to be converging.

19. f (x) =
{

−1, −2 ≤ x < 0,
1, 0 ≤ x < 2;

f (x + 4) = f (x)

20. f (x) = x, −1 ≤ x < 1; f (x + 2) = f (x)

21. f (x) = x2/2, −2 ≤ x ≤ 2; f (x + 4) = f (x)

22. f (x) =
{

x + 2, −2 ≤ x < 0,
2 − 2x, 0 ≤ x < 2;

f (x + 4) = f (x)

23. f (x) =
{

− 1
2 x, −2 ≤ x < 0,

2x − 1
2 x2, 0 ≤ x < 2;

f (x + 4) = f (x)
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24. f (x) =
{

0, −3 ≤ x ≤ 0,
x2(3 − x), 0 < x < 3;

f (x + 6) = f (x)

25. Consider the function f defined in Problem 21 and let em(x) = f (x) − sm(x).
(a) Plot |em(x)| versus x for 0 ≤ x ≤ 2 for several values of m.
(b) Find the smallest value of m for which |em(x)| ≤ 0.01 for all x.

26. Consider the function f defined in Problem 24 and let em(x) = f (x) − sm(x).
(a) Plot |em(x)| versus x for 0 ≤ x ≤ 3 for several values of m.
(b) Find the smallest value of m for which |em(x)| ≤ 0.1 for all x.

27. Suppose that g is an integrable periodic function with period T .
(a) If 0 ≤ a ≤ T , show that ∫ T

0
g(x) dx =

∫ a+T

a
g(x) dx.

Hint: Show first that
∫ a

0
g(x) dx =

∫ a+T

T
g(x) dx. Consider the change of variable

s = x − T in the second integral.
(b) Show that for any value of a, not necessarily in 0 ≤ a ≤ T ,∫ T

0
g(x) dx =

∫ a+T

a
g(x) dx.

(c) Show that for any values of a and b,

∫ a+T

a
g(x) dx =

∫ b+T

b
g(x) dx.

28. If f is differentiable and is periodic with period T , show that f ′ is also periodic with period
T . Determine whether

F(x) =
∫ x

0
f (t) dt

is always periodic.

29. In this problem we indicate certain similarities between three-dimensional geometric vec-
tors and Fourier series.
(a) Let v1, v2, and v3 be a set of mutually orthogonal vectors in three dimensions, and let
u be any three-dimensional vector. Show that

u = a1v1 + a2v2 + a3v3, (i)

where

ai = u · vi

vi · vi
, i = 1, 2, 3. (ii)

Show that ai can be interpreted as the projection of u in the direction of vi divided by the
length of vi.
(b) Define the inner product (u, v) by

(u, v) =
∫ L

−L
u(x)v(x) dx. (iii)
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Also let

φn(x) = cos(nπx/L), n = 0, 1, 2, . . . ;
(iv)

ψn(x) = sin(nπx/L), n = 1, 2, . . . .

Show that Eq. (10) can be written in the form

(f , φn) = a0

2
(φ0, φn) +

∞∑
m=1

am(φm, φn) +
∞∑

m=1

bm(ψm, φn). (v)

(c) Use Eq. (v) and the corresponding equation for (f , ψn), together with the orthogo-
nality relations, to show that

an = (f , φn)

(φn, φn)
, n = 0, 1, 2, . . . ; bn = (f , ψn)

(ψn, ψn)
, n = 1, 2, . . . . (vi)

Note the resemblance between Eqs. (vi) and Eq. (ii). The functions φn and ψn play a role
for functions similar to that of the orthogonal vectors v1, v2, and v3 in three-dimensional
space. The coefficients an and bn can be interpreted as projections of the function f onto
the base functions φn and ψn.

Observe also that any vector in three dimensions can be expressed as a linear combi-
nation of three mutually orthogonal vectors. In a somewhat similar way, any sufficiently
smooth function defined on −L ≤ x ≤ L can be expressed as a linear combination of the
mutually orthogonal functions cos(nπx/L) and sin(nπx/L), that is, as a Fourier series.

10.3 The Fourier Convergence Theorem
In the preceding section we showed that if the Fourier series

a0

2
+

∞∑
m=1

(
am cos

mπx
L

+ bm sin
mπx

L

)
(1)

converges and thereby defines a function f , then f is periodic with period 2L, and
the coefficients am and bm are related to f (x) by the Euler–Fourier formulas:

am = 1
L

∫ L

−L
f (x) cos

mπx
L

dx, m = 0, 1, 2, . . . ; (2)

bm = 1
L

∫ L

−L
f (x) sin

mπx
L

dx, m = 1, 2, . . . . (3)

In this section we suppose that a function f is given. If this function is periodic
with period 2L and integrable on the interval [−L, L], then a set of coefficients am

and bm can be computed from Eqs. (2) and (3), and a series of the form (1) can
be formally constructed. The question is whether this series converges for each
value of x and, if so, whether its sum is f (x). Examples have been discovered
showing that the Fourier series corresponding to a function f may not converge
to f (x) or may even diverge. Functions whose Fourier series do not converge to
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the value of the function at isolated points are easily constructed, and examples
will be presented later in this section. Functions whose Fourier series diverge at
one or more points are more pathological, and we will not consider them in this
book.

To guarantee convergence of a Fourier series to the function from which its coef-
ficients were computed, it is essential to place additional conditions on the function.
From a practical point of view, such conditions should be broad enough to cover
all situations of interest, yet simple enough to be easily checked for particular func-
tions. Through the years several sets of conditions have been devised to serve this
purpose.

Before stating a convergence theorem for Fourier series, we define a term that
appears in the theorem. A function f is said to be piecewise continuous on an
interval a ≤ x ≤ b if the interval can be partitioned by a finite number of points
a = x0 < x1 < · · · < xn = b so that

1. f is continuous on each open subinterval xi−1 < x < xi.
2. f approaches a finite limit as the endpoints of each subinterval are approached from within

the subinterval.

The graph of a piecewise continuous function is shown in Figure 10.3.1.

y

xba

FIGURE 10.3.1 A piecewise continuous function.

The notation f (c+) is used to denote the limit of f (x) as x → c from the right;
similarly, f (c−) denotes the limit of f (x) as x approaches c from the left.

Note that it is not essential that the function even be defined at the partition points
xi. For example, in the following theorem we assume that f ′ is piecewise continuous;
but certainly f ′ does not exist at those points where f itself is discontinuous. It is also
not essential that the interval be closed; it may also be open, or open at one end and
closed at the other.

Theorem 10.3.1 Suppose that f and f ′ are piecewise continuous on the interval −L ≤ x < L. Fur-
ther, suppose that f is defined outside the interval −L ≤ x < L so that it is periodic
with period 2L. Then f has a Fourier series

f (x) = a0

2
+

∞∑
m=1

(
am cos

mπx
L

+ bm sin
mπx

L

)
, (4)

whose coefficients are given by Eqs. (2) and (3). The Fourier series converges to
f (x) at all points where f is continuous, and to [f (x+) + f (x−)]/2 at all points where
f is discontinuous.
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Note that [f (x+) + f (x−)]/2 is the mean value of the right- and left-hand limits
at the point x. At any point where f is continuous, f (x+) = f (x−) = f (x). Thus it
is correct to say that the Fourier series converges to [f (x+) + f (x−)]/2 at all points.
Whenever we say that a Fourier series converges to a function f , we always mean
that it converges in this sense.

It should be emphasized that the conditions given in this theorem are only sufficient
for the convergence of a Fourier series; they are by no means necessary. Nor are they
the most general sufficient conditions that have been discovered. In spite of this, the
proof of the theorem is fairly difficult and we do not discuss it here.4 Under more
restrictive conditions a much simpler convergence proof is possible; see Problem 18.

To obtain a better understanding of the content of the theorem, it is helpful to con-
sider some classes of functions that fail to satisfy the assumed conditions. Functions
that are not included in the theorem are primarily those with infinite discontinuities
in the interval [−L, L], such as 1/x2 as x → 0, or ln |x − L| as x → L. Functions
having an infinite number of jump discontinuities in this interval are also excluded;
however, such functions are rarely encountered.

It is noteworthy that a Fourier series may converge to a sum that is not differ-
entiable, or even continuous, in spite of the fact that each term in the series (4) is
continuous, and even differentiable infinitely many times. The example below is an
illustration of this, as is Example 2 in Section 10.2.

E X A M P L E

1

Let

f (x) =
{

0, −L < x < 0,
L, 0 < x < L,

(5)

and let f be defined outside this interval so that f (x + 2L) = f (x) for all x. We will temporarily
leave open the definition of f at the points x = 0, ±L. Find the Fourier series for this function
and determine where it converges.

y

x3L2LL

L

–L–2L–3L

FIGURE 10.3.2 Square wave.

The equation y = f (x) has the graph shown in Figure 10.3.2, extended to infinity in both
directions. It can be thought of as representing a square wave. The interval [−L, L] can
be partitioned to give the two open subintervals (−L, 0) and (0, L). In (0, L), f (x) = L and
f ′(x) = 0. Clearly, both f and f ′ are continuous and furthermore have limits as x → 0 from the
right and as x → L from the left. The situation in (−L, 0) is similar. Consequently, both f and

4Proofs of the convergence of a Fourier series can be found in most books on advanced calculus. See, for
example, Kaplan (Chapter 7) or Buck (Chapter 6).



September 11, 2008 11:18 boyce-9e-bvp Sheet number 618 Page number 598 cyan black

598 Chapter 10. Partial Differential Equations and Fourier Series

f ′ are piecewise continuous on [−L, L), so f satisfies the conditions of Theorem 10.3.1. If the
coefficients am and bm are computed from Eqs. (2) and (3), the convergence of the resulting
Fourier series to f (x) is ensured at all points where f is continuous. Note that the values of
am and bm are the same regardless of the definition of f at its points of discontinuity. This is
true because the value of an integral is unaffected by changing the value of the integrand at a
finite number of points. From Eq. (2),

a0 = 1
L

∫ L

−L
f (x) dx =

∫ L

0
dx = L;

am = 1
L

∫ L

−L
f (x) cos

mπx
L

dx =
∫ L

0
cos

mπx
L

dx

= 0, m �= 0.

Similarly, from Eq. (3),

bm = 1
L

∫ L

−L
f (x) sin

mπx
L

dx =
∫ L

0
sin

mπx
L

dx

= L
mπ

(1 − cos mπ)

=
{

0, m even;
2L/mπ , m odd.

Hence

f (x) = L
2

+ 2L
π

(
sin

πx
L

+ 1
3

sin
3πx
L

+ 1
5

sin
5πx
L

+ · · ·
)

= L
2

+ 2L
π

∞∑
m=1,3,5,...

sin(mπx/L)

m

= L
2

+ 2L
π

∞∑
n=1

sin(2n − 1)πx/L
2n − 1

. (6)

At the points x = 0, ±nL, where the function f in the example is not continuous, all terms in
the series after the first vanish and the sum is L/2. This is the mean value of the limits from the
right and left, as it should be. Thus we might as well define f at these points to have the value
L/2. If we choose to define it otherwise, the series still gives the value L/2 at these points,
since all of the preceding calculations remain valid. The series simply does not converge to
the function at those points unless f is defined to have the value L/2. This illustrates the
possibility that the Fourier series corresponding to a function may not converge to it at points
of discontinuity unless the function is suitably defined at such points.

The manner in which the partial sums

sn(x) = L
2

+ 2L
π

(
sin

πx
L

+ · · · + 1
2n − 1

sin
(2n − 1)πx

L

)
, n = 1, 2, . . .

of the Fourier series (6) converge to f (x) is indicated in Figure 10.3.3, where L has been chosen
to be 1 and the graph of s8(x) is plotted. The figure suggests that at points where f is continu-
ous the partial sums do approach f (x) as n increases. However, in the neighborhood of points of
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discontinuity, such as x = 0 and x = L, the partial sums do not converge smoothly to the mean
value. Instead they tend to overshoot the mark at each end of the jump, as though they cannot
quite accommodate themselves to the sharp turn required at this point. This behavior is typical
of Fourier series at points of discontinuity and is known as the Gibbs5 phenomenon.

y

x–2 2–1 1

1 n = 8

FIGURE 10.3.3 The partial sum s8(x) in the Fourier series, Eq. (6), for the square wave.

10.4 0.60.2 0.8

0.4

0.3

0.2

0.1

x

e8(x)

0.5

FIGURE 10.3.4 A plot of the error |e8(x)| versus x for the square wave.

Additional insight is attained by considering the error en(x) = f (x) − sn(x). Figure 10.3.4
shows a plot of |en(x)| versus x for n = 8 and for L = 1. The least upper bound of |e8(x)| is 0.5
and is approached as x → 0 and as x → 1. As n increases, the error decreases in the interior
of the interval [where f (x) is continuous], but the least upper bound does not diminish with
increasing n. Thus we cannot uniformly reduce the error throughout the interval by increasing
the number of terms.

Figures 10.3.3 and 10.3.4 also show that the series in this example converges more slowly
than the one in Example 1 in Section 10.2. This is due to the fact that the coefficients in the
series (6) are proportional only to 1/(2n − 1).

5The Gibbs phenomenon is named after Josiah Willard Gibbs (1839–1903), who is better known for his
work on vector analysis and statistical mechanics. Gibbs was professor of mathematical physics at Yale
and one of the first American scientists to achieve an international reputation. The Gibbs phenomenon
is discussed in more detail by Carslaw (Chapter 9).
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PROBLEMS In each of Problems 1 through 6 assume that the given function is periodically extended outside
the original interval.
(a) Find the Fourier series for the extended function.
(b) Sketch the graph of the function to which the series converges for three periods.

1. f (x) =
{

−1, −1 ≤ x < 0,
1, 0 ≤ x < 1

2. f (x) =
{

0, −π ≤ x < 0,
x, 0 ≤ x < π

3. f (x) =
{

L + x, −L ≤ x < 0,
L − x, 0 ≤ x < L

4. f (x) = 1 − x2, −1 ≤ x < 1

5. f (x) =

⎧⎪⎨
⎪⎩

0, −π ≤ x < −π/2,
1, −π/2 ≤ x < π/2,
0, π/2 ≤ x < π

6. f (x) =
{

0, −1 ≤ x < 0,
x2, 0 ≤ x < 1

In each of Problems 7 through 12 assume that the given function is periodically extended
outside the original interval.
(a) Find the Fourier series for the given function.
(b) Let en(x) = f (x) − sn(x). Find the least upper bound or the maximum value (if it exists)
of |en(x)| for n = 10, 20, and 40.
(c) If possible, find the smallest n for which |en(x)| ≤ 0.01 for all x.

7. f (x) =
{

x, −π ≤ x < 0,
0, 0 ≤ x < π ;

f (x + 2π) = f (x) (see Section 10.2, Problem 15)

8. f (x) =
{

x + 1, −1 ≤ x < 0,
1 − x, 0 ≤ x < 1;

f (x + 2) = f (x) (see Section 10.2, Problem 16)

9. f (x) = x, −1 ≤ x < 1; f (x + 2) = f (x) (see Section 10.2, Problem 20)

10. f (x) =
{

x + 2, −2 ≤ x < 0,
2 − 2x, 0 ≤ x < 2;

f (x + 4) = f (x) (see Section 10.2, Problem 22)

11. f (x) =
{

0, −1 ≤ x < 0,
x2, 0 ≤ x < 1;

f (x + 2) = f (x) (see Problem 6)

12. f (x) = x − x3, −1 ≤ x < 1; f (x + 2) = f (x)

Periodic ForcingTerms. In this chapter we are concerned mainly with the use of Fourier series
to solve boundary value problems for certain partial differential equations. However, Fourier
series are also useful in many other situations where periodic phenomena occur. Problems 13
through 16 indicate how they can be employed to solve initial value problems with periodic
forcing terms.

13. Find the solution of the initial value problem

y′′ + ω2y = sin nt, y(0) = 0, y′(0) = 0,

where n is a positive integer and ω2 �= n2. What happens if ω2 = n2?
14. Find the formal solution of the initial value problem

y′′ + ω2y =
∞∑

n=1

bn sin nt, y(0) = 0, y′(0) = 0,
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where ω > 0 is not equal to a positive integer. How is the solution altered if ω = m, where
m is a positive integer?

15. Find the formal solution of the initial value problem

y′′ + ω2y = f (t), y(0) = 0, y′(0) = 0,

where f is periodic with period 2π and

f (t) =

⎧⎪⎨
⎪⎩

1, 0 < t < π ;
0, t = 0, π , 2π ;

−1, π < t < 2π.

See Problem 1.
16. Find the formal solution of the initial value problem

y′′ + ω2y = f (t), y(0) = 1, y′(0) = 0,

where f is periodic with period 2 and

f (t) =
{

1 − t, 0 ≤ t < 1;
−1 + t, 1 ≤ t < 2.

See Problem 8.
17. Assuming that

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
, (i)

show formally that

1
L

∫ L

−L
[f (x)]2 dx = a2

0

2
+

∞∑
n=1

(a2
n + b2

n).

This relation between a function f and its Fourier coefficients is known as Parseval’s6

equation. This relation is very important in the theory of Fourier series; see Problem 9 in
Section 11.6.
Hint: Multiply Eq. (i) by f (x), integrate from −L to L, and use the Euler–Fourier formulas.

6Marc-Antoine Parseval (1755–1836) was a relatively obscure French mathematician for whom an impor-
tant result has been named. He presented a forerunner of this result in 1799, though not in the context of
Fourier series.
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18. This problem indicates a proof of convergence of a Fourier series under conditions more
restrictive than those in Theorem 10.3.1.

(a) If f and f ′ are piecewise continuous on −L ≤ x < L, and if f is periodic with period
2L, show that nan and nbn are bounded as n → ∞.
Hint: Use integration by parts.

(b) If f is continuous on −L ≤ x ≤ L and periodic with period 2L, and if f ′ and f ′′ are
piecewise continuous on −L ≤ x < L, show that n2an and n2bn are bounded as n → ∞. If
f is continuous on the closed interval, then it is continuous for all x. Why is this important?
Hint: Again, use integration by parts.

(c) Using the result of part (b), show that
∞∑

n=1

|an| and
∞∑

n=1

|bn| converge.

(d) From the result in part (c), show that the Fourier series (4) converges absolutely7 for
all x.

Acceleration of Convergence. In the next problem we show how it is sometimes possible to
improve the speed of convergence of a Fourier series.

19. Suppose that we wish to calculate values of the function g, where

g(x) =
∞∑

n=1

(2n − 1)

1 + (2n − 1)2
sin(2n − 1)πx. (i)

It is possible to show that this series converges, albeit rather slowly. However, observe that
for large n the terms in the series (i) are approximately equal to [sin(2n − 1)πx]/(2n − 1)

and that the latter terms are similar to those in the example in the text, Eq. (6).

(a) Show that
∞∑

n=1

[sin(2n − 1)πx]/(2n − 1) = (π/2)
[
f (x) − 1

2

]
, (ii)

where f is the square wave in the example with L = 1.

(b) Subtract Eq. (ii) from Eq. (i) and show that

g(x) = π

2

[
f (x) − 1

2

] −
∞∑

n=1

sin(2n − 1)πx
(2n − 1)[1 + (2n − 1)2] . (iii)

The series (iii) converges much faster than the series (i) and thus provides a better way to
calculate values of g(x).

10.4 Even and Odd Functions
Before looking at further examples of Fourier series, it is useful to distinguish two
classes of functions for which the Euler–Fourier formulas can be simplified. These
are even and odd functions, which are characterized geometrically by the property of
symmetry with respect to the y-axis and the origin, respectively (see Figure 10.4.1).

7It also converges uniformly; for an explanation of what this means, see a book on advanced calculus or
analysis.
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y y

xx

(a) (b)
FIGURE 10.4.1 (a) An even function. (b) An odd function.

Analytically, f is an even function if its domain contains the point −x whenever it
contains the point x, and if

f (−x) = f (x) (1)

for each x in the domain of f . Similarly, f is an odd function if its domain contains
−x whenever it contains x, and if

f (−x) = −f (x) (2)

for each x in the domain of f . Examples of even functions are 1, x2, cos nx, |x|,
and x2n. The functions x, x3, sin nx, and x2n+1 are examples of odd functions. Note
that according to Eq. (2), f (0) must be zero if f is an odd function whose domain
contains the origin. Most functions are neither even nor odd, for instance, ex. Only
one function, f identically zero, is both even and odd.

Elementary properties of even and odd functions include the following:

1. The sum (difference) and product (quotient) of two even functions are even.
2. The sum (difference) of two odd functions is odd; the product (quotient) of two odd

functions is even.
3. The sum (difference) of an odd function and an even function is neither even nor odd; the

product (quotient) of two such functions is odd.8

The proofs of all these assertions are simple and follow directly from the definitions.
For example, if both f1 and f2 are odd, and if g(x) = f1(x) + f2(x), then

g(−x) = f1(−x) + f2(−x) = −f1(x) − f2(x)

= −[f1(x) + f2(x)] = −g(x), (3)

so f1 + f2 is an odd function also. Similarly, if h(x) = f1(x)f2(x), then

h(−x) = f1(−x)f2(−x) = [−f1(x)][−f2(x)] = f1(x)f2(x) = h(x), (4)

so that f1f2 is even.
Also of importance are the following two integral properties of even and odd

functions:

8These statements may need to be modified if either function vanishes identically.
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4. If f is an even function, then

∫ L

−L
f (x) dx = 2

∫ L

0
f (x) dx. (5)

5. If f is an odd function, then ∫ L

−L
f (x) dx = 0. (6)

These properties are intuitively clear from the interpretation of an integral in terms
of area under a curve, and they also follow immediately from the definitions. For
example, if f is even, then∫ L

−L
f (x) dx =

∫ 0

−L
f (x) dx +

∫ L

0
f (x) dx.

Letting x = −s in the first term on the right side and using Eq. (1), we obtain∫ L

−L
f (x) dx = −

∫ 0

L
f (s) ds +

∫ L

0
f (x) dx = 2

∫ L

0
f (x) dx.

The proof of the corresponding property for odd functions is similar.
Even and odd functions are particularly important in applications of Fourier se-

ries since their Fourier series have special forms, which occur frequently in physical
problems.

Cosine Series. Suppose that f and f ′ are piecewise continuous on −L ≤ x < L and
that f is an even periodic function with period 2L. Then it follows from properties 1
and 3 that f (x) cos(nπx/L) is even and f (x) sin(nπx/L) is odd. As a consequence of
Eqs. (5) and (6), the Fourier coefficients of f are then given by

an = 2
L

∫ L

0
f (x) cos

nπx
L

dx, n = 0, 1, 2, . . . ;
(7)

bn = 0, n = 1, 2, . . . .

Thus f has the Fourier series

f (x) = a0

2
+

∞∑
n=1

an cos
nπx

L
.

In other words, the Fourier series of any even function consists only of the even
trigonometric functions cos(nπx/L) and the constant term; it is natural to call such a
series a Fourier cosine series. From a computational point of view, observe that only
the coefficients an, for n = 0, 1, 2, . . . , need to be calculated from the integral formula
(7). Each of the bn, for n = 1, 2, . . . , is automatically zero for any even function and
so does not need to be calculated by integration.

Sine Series. Suppose that f and f ′ are piecewise continuous on −L ≤ x < L and that
f is an odd periodic function of period 2L. Then it follows from properties 2 and 3
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that f (x) cos(nπx/L) is odd and f (x) sin(nπx/L) is even. In this case the Fourier
coefficients of f are

an = 0, n = 0, 1, 2, . . . ,
(8)

bn = 2
L

∫ L

0
f (x) sin

nπx
L

dx, n = 1, 2, . . . ,

and the Fourier series for f is of the form

f (x) =
∞∑

n=1

bn sin
nπx

L
.

Thus the Fourier series for any odd function consists only of the odd trigonometric
functions sin(nπx/L); such a series is called a Fourier sine series. Again observe that
only half of the coefficients need to be calculated by integration, since each an, for
n = 0, 1, 2, . . . , is zero for any odd function.

E X A M P L E

1

Let f (x) = x, −L < x < L, and let f (−L) = f (L) = 0. Let f be defined elsewhere so that it is
periodic of period 2L (see Figure 10.4.2). The function defined in this manner is known as a
sawtooth wave. Find the Fourier series for this function.

x

y

L

–3L –2L

–L

–L L 2L 3L

FIGURE 10.4.2 Sawtooth wave.

Since f is an odd function, its Fourier coefficients are, according to Eq. (8),

an = 0, n = 0, 1, 2, . . . ;

bn = 2
L

∫ L

0
x sin

nπx
L

dx

= 2
L

(
L

nπ

)2
{

sin
nπx

L
− nπx

L
cos

nπx
L

}∣∣∣∣∣∣
L

0

= 2L
nπ

(−1)n+1, n = 1, 2, . . . .

Hence the Fourier series for f , the sawtooth wave, is

f (x) = 2L
π

∞∑
n=1

(−1)n+1

n
sin

nπx
L

. (9)
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Observe that the periodic function f is discontinuous at the points ±L, ±3L, . . . , as shown in
Figure 10.4.2. At these points the series (9) converges to the mean value of the left and right
limits, namely, zero. The partial sum of the series (9) for n = 9 is shown in Figure 10.4.3. The
Gibbs phenomenon (mentioned in Section 10.3) again occurs near the points of discontinuity.

y

x–2L –L L

–L

L

2L

n = 9

FIGURE 10.4.3 A partial sum in the Fourier series, Eq. (9), for the sawtooth wave.

Note that in this example f (−L) = f (L) = 0, as well as f (0) = 0. This is required
if the function f is to be both odd and periodic with period 2L. When we speak of
constructing a sine series for a function defined on 0 ≤ x ≤ L, it is understood that,
if necessary, we must first redefine the function to be zero at x = 0 and x = L.

It is worthwhile to observe that the triangular wave function (Example 1 of Section
10.2) and the sawtooth wave function just considered are identical on the interval
0 ≤ x < L. Therefore, their Fourier series converge to the same function, f (x) = x,
on this interval. Thus, if it is required to represent the function f (x) = x on 0 ≤ x < L
by a Fourier series, it is possible to do this by either a cosine series or a sine series. In
the former case f is extended as an even function into the interval −L < x < 0 and
elsewhere periodically (the triangular wave). In the latter case f is extended into
−L < x < 0 as an odd function and elsewhere periodically (the sawtooth wave). If
f is extended in any other way, the resulting Fourier series will still converge to x in
0 ≤ x < L but will involve both sine and cosine terms.

In solving problems in differential equations, it is often useful to expand in a
Fourier series of period 2L a function f originally defined only on the interval [0, L].
As indicated previously for the function f (x) = x, several alternatives are available.
Explicitly, we can

1. Define a function g of period 2L so that

g(x) =
{

f (x), 0 ≤ x ≤ L,
f (−x), −L < x < 0.

(10)

The function g is thus the even periodic extension of f . Its Fourier series, which is a cosine
series, represents f on [0, L].
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2. Define a function h of period 2L so that

h(x) =

⎧⎪⎨
⎪⎩

f (x), 0 < x < L,
0, x = 0, L,

−f (−x), −L < x < 0.

(11)

The function h is thus the odd periodic extension of f . Its Fourier series, which is a sine
series, also represents f on (0, L).

3. Define a function k of period 2L so that

k(x) = f (x), 0 ≤ x ≤ L, (12)

and let k(x) be defined for (−L, 0) in any way consistent with the conditions of Theorem
10.3.1. Sometimes it is convenient to define k(x) to be zero for −L < x < 0. The Fourier
series for k,which involves both sine and cosine terms,also represents f on [0, L], regardless
of the manner in which k(x) is defined in (−L, 0). Thus there are infinitely many such series,
all of which converge to f (x) in the original interval.

Usually, the form of the expansion to be used will be dictated (or at least suggested)
by the purpose for which it is needed. However, if there is a choice as to the kind
of Fourier series to be used, the selection can sometimes be based on the rapidity
of convergence. For example, the cosine series for the triangular wave [Eq. (20)
of Section 10.2] converges more rapidly than the sine series for the sawtooth wave
[Eq. (9) in this section], although both converge to the same function for 0 ≤ x < L.
This is because the triangular wave is a smoother function than the sawtooth wave
and is therefore easier to approximate. In general, the more continuous derivatives
possessed by a function over the entire interval −∞ < x < ∞, the faster its Fourier
series will converge. See Problem 18 of Section 10.3.

E X A M P L E

2

Suppose that

f (x) =
{

1 − x, 0 < x ≤ 1,
0, 1 < x ≤ 2.

(13)

As indicated previously, we can represent f either by a cosine series or by a sine series. Sketch
the graph of the sum of each of these series for −6 ≤ x ≤ 6.

In this example L = 2, so the cosine series for f converges to the even periodic extension
of f of period 4, whose graph is sketched in Figure 10.4.4.

x

y

–6 –4 –2
–1

1

2 4 6

FIGURE 10.4.4 Even periodic extension of f (x) given by Eq. (13).

Similarly, the sine series for f converges to the odd periodic extension of f of period 4. The
graph of this function is shown in Figure 10.4.5.
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x

y

–6 –4 –2
–1

1

2 4 6

FIGURE 10.4.5 Odd periodic extension of f (x) given by Eq. (13).

PROBLEMS In each of Problems 1 through 6 determine whether the given function is even, odd, or neither.

1. x3 − 2x 2. x3 − 2x + 1

3. tan 2x 4. sec x

5. |x|3 6. e−x

In each of Problems 7 through 12 a function f is given on an interval of length L. In each case
sketch the graphs of the even and odd extensions of f of period 2L.

7. f (x) =
{

x, 0 ≤ x < 2,
1, 2 ≤ x < 3

8. f (x) =
{

0, 0 ≤ x < 1,
x − 1, 1 ≤ x < 2

9. f (x) = 2 − x, 0 < x < 2 10. f (x) = x − 3, 0 < x < 4

11. f (x) =
{

0, 0 ≤ x < 1,
1, 1 ≤ x < 2

12. f (x) = 4 − x2, 0 < x < 1

13. Prove that any function can be expressed as the sum of two other functions, one of which is
even and the other odd. That is, for any function f , whose domain contains −x whenever
it contains x, show that there are an even function g and an odd function h such that
f (x) = g(x) + h(x).
Hint: What can you say about f (x) + f (−x)?

14. Find the coefficients in the cosine and sine series described in Example 2.

In each of Problems 15 through 22:
(a) Find the required Fourier series for the given function.
(b) Sketch the graph of the function to which the series converges over three periods.

15. f (x) =
{

1, 0 < x < 1,
0, 1 < x < 2;

cosine series, period 4

Compare with Example 1 and Problem 5 of Section 10.3.

16. f (x) =
{

x, 0 ≤ x < 1,
1, 1 ≤ x < 2;

sine series, period 4

17. f (x) = 1, 0 ≤ x ≤ π ; cosine series, period 2π

18. f (x) = 1, 0 < x < π ; sine series, period 2π

19. f (x) =

⎧⎪⎨
⎪⎩

0, 0 < x < π ,
1, π < x < 2π ,
2, 2π < x < 3π ;

sine series, period 6π
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20. f (x) = x, 0 ≤ x < 1; series of period 1

21. f (x) = L − x, 0 ≤ x ≤ L; cosine series, period 2L
Compare with Example 1 of Section 10.2.

22. f (x) = L − x, 0 < x < L; sine series, period 2L

In each of Problems 23 through 26:
(a) Find the required Fourier series for the given function.
(b) Sketch the graph of the function to which the series converges for three periods.
(c) Plot one or more partial sums of the series.

23. f (x) =
{

x, 0 < x < π ,
0, π < x < 2π ;

cosine series, period 4π

24. f (x) = −x, −π < x < 0; sine series, period 2π

25. f (x) = 2 − x2, 0 < x < 2; sine series, period 4

26. f (x) = x2 − 2x, 0 < x < 4; cosine series, period 8

In each of Problems 27 through 30 a function is given on an interval 0 < x < L.
(a) Sketch the graphs of the even extension g(x) and the odd extension h(x) of the given
function of period 2L over three periods.
(b) Find the Fourier cosine and sine series for the given function.
(c) Plot a few partial sums of each series.
(d) For each series investigate the dependence on n of the maximum error on [0, L].
27. f (x) = 3 − x, 0 < x < 3

28. f (x) =
{

x, 0 < x < 1,
0, 1 < x < 2

29. f (x) = (4x2 − 4x − 3)/4, 0 < x < 2

30. f (x) = x3 − 5x2 + 5x + 1, 0 < x < 3

31. Prove that if f is an odd function, then∫ L

−L
f (x) dx = 0.

32. Prove properties 2 and 3 of even and odd functions, as stated in the text.

33. Prove that the derivative of an even function is odd and that the derivative of an odd
function is even.

34. Let F(x) =
∫ x

0
f (t) dt. Show that if f is even, then F is odd, and that if f is odd, then F is

even.

35. From the Fourier series for the square wave in Example 1 of Section 10.3, show that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · =

∞∑
n=0

(−1)n

2n + 1
.

This relation between π and the odd positive integers was discovered by Leibniz in 1674.
36. From the Fourier series for the triangular wave (Example 1 of Section 10.2), show that

π 2

8
= 1 + 1

32
+ 1

52
+ · · · =

∞∑
n=0

1
(2n + 1)2

.
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37. Assume that f has a Fourier sine series

f (x) =
∞∑

n=1

bn sin(nπx/L), 0 ≤ x ≤ L.

(a) Show formally that

2
L

∫ L

0
[f (x)]2 dx =

∞∑
n=1

b2
n.

Compare this result (Parseval’s equation) with that of Problem 17 in Section 10.3. What
is the corresponding result if f has a cosine series?
(b) Apply the result of part (a) to the series for the sawtooth wave given in Eq. (9), and
thereby show that

π 2

6
= 1 + 1

22
+ 1

32
+ · · · =

∞∑
n=1

1
n2

.

This relation was discovered by Euler about 1735.

More Specialized Fourier Series. Let f be a function originally defined on 0 ≤ x ≤ L and
satisfying there the continuity conditions of Theorem 10.3.1. In this section we have shown
that it is possible to represent f by either a sine series or a cosine series by constructing odd
or even periodic extensions of f , respectively. Problems 38 through 40 concern some other,
more specialized Fourier series that converge to the given function f on (0, L).

38. Let f be extended into (L, 2L] in an arbitrary manner. Then extend the resulting function
into (−2L, 0) as an odd function and elsewhere as a periodic function of period 4L (see
Figure 10.4.6). Show that this function has a Fourier sine series in terms of the functions
sin(nπx/2L), n = 1, 2, 3, . . . ; that is,

f (x) =
∞∑

n=1

bn sin(nπx/2L),

where

bn = 1
L

∫ 2L

0
f (x) sin(nπx/2L) dx.

This series converges to the original function on (0, L).

39. Let f first be extended into (L, 2L) so that it is symmetric about x = L; that is, so as
to satisfy f (2L − x) = f (x) for 0 ≤ x < L. Let the resulting function be extended into
(−2L, 0) as an odd function and elsewhere as a periodic function of period 4L (see Figure
10.4.7). Show that this function has a Fourier series in terms of the functions sin(πx/2L),
sin(3πx/2L), sin(5πx/2L), . . . ; that is,

f (x) =
∞∑

n=1

bn sin
(2n − 1)πx

2L
,

where

bn = 2
L

∫ L

0
f (x) sin

(2n − 1)πx
2L

dx.

This series converges to the original function on (0, L].
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y

x2LL

–L–2L

FIGURE 10.4.6 Graph of the
function in Problem 38.

y

x2LL– L–2L

FIGURE 10.4.7 Graph of the
function in Problem 39.

40. (a) How should f , originally defined on [0, L], be extended so as to obtain a Fourier
series involving only the functions cos(πx/2L), cos(3πx/2L), cos(5πx/2L), . . .? Refer to
Problems 38 and 39.
(b) If f (x) = x for 0 ≤ x ≤ L, sketch the function to which the Fourier series converges
for −4L ≤ x ≤ 4L.

10.5 Separation of Variables; Heat Conduction in a Rod
The basic partial differential equations of heat conduction, wave propagation, and
potential theory that we discuss in this chapter are associated with three distinct
types of physical phenomena: diffusive processes, oscillatory processes, and time-
independent or steady processes. Consequently, they are of fundamental impor-
tance in many branches of physics. They are also of considerable significance from
a mathematical point of view. The partial differential equations whose theory is
best developed and whose applications are most significant and varied are the linear
equations of second order. All such equations can be classified into one of three cate-
gories: the heat conduction equation, the wave equation, and the potential equation,
respectively, are prototypes of each of these categories. Thus a study of these three
equations yields much information about more general second order linear partial
differential equations.

During the last two centuries several methods have been developed for solving
partial differential equations. The method of separation of variables is the oldest
systematic method, having been used by D’Alembert, Daniel Bernoulli, and Euler
about 1750 in their investigations of waves and vibrations. It has been considerably
refined and generalized in the meantime,and it remains a method of great importance
and frequent use today. To show how the method of separation of variables works, we
consider first a basic problem of heat conduction in a solid body. The mathematical
study of heat conduction originated9 about 1800, and it continues to command the

9The first important investigation of heat conduction was carried out by Joseph Fourier (1768–1830) while
he was serving as prefect of the department of Isère (Grenoble) from 1801 to 1815. He presented basic
papers on the subject to the Academy of Sciences of Paris in 1807 and 1811. However, these papers were
criticized by the referees (principally Lagrange) for lack of rigor and so were not published. Fourier
continued to develop his ideas and eventually wrote one of the classics of applied mathematics, Théorie
analytique de la chaleur, published in 1822.
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attention of modern scientists. For example, analysis of the dissipation and transfer
of heat away from its sources in high-speed machinery is frequently an important
technological problem.

Let us now consider a heat conduction problem for a straight bar of uniform cross
section and homogeneous material. Let the x-axis be chosen to lie along the axis
of the bar, and let x = 0 and x = L denote the ends of the bar (see Figure 10.5.1).
Suppose further that the sides of the bar are perfectly insulated so that no heat passes
through them. We also assume that the cross-sectional dimensions are so small that
the temperature u can be considered constant on any given cross section. Then u is
a function only of the axial coordinate x and the time t.

x

u(x, t)

x = 0 x = L
FIGURE 10.5.1 A heat-conducting solid bar.

The variation of temperature in the bar is governed by a partial differential equa-
tion whose derivation appears inAppendixA at the end of this chapter. The equation
is called the heat conduction equation and has the form

α2uxx = ut , 0 < x < L, t > 0, (1)

where α2 is a constant known as the thermal diffusivity. The parameter α2 depends
only on the material from which the bar is made and is defined by

α2 = κ/ρs, (2)

where κ is the thermal conductivity, ρ is the density, and s is the specific heat of the
material in the bar. The units of α2 are (length)2/time. Typical values of α2 are given
in Table 10.5.1.

TABLE 10.5.1 Values of the Thermal
Diffusivity for Some Common
Materials

Material α2 (cm2/s)

Silver 1.71
Copper 1.14
Aluminum 0.86
Cast iron 0.12
Granite 0.011
Brick 0.0038
Water 0.00144
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In addition, we assume that the initial temperature distribution in the bar is given;
thus

u(x, 0) = f (x), 0 ≤ x ≤ L, (3)

where f is a given function. Finally,we assume that the ends of the bar are held at fixed
temperatures: the temperature T1 at x = 0 and the temperature T2 at x = L. How-
ever, it turns out that we need only consider the case where T1 = T2 = 0. We show
in Section 10.6 how to reduce the more general problem to this special case. Thus in
this section we will assume that u is always zero when x = 0 or x = L:

u(0, t) = 0, u(L, t) = 0, t > 0. (4)

The fundamental problem of heat conduction is to find u(x, t) that satisfies the differ-
ential equation (1) for 0 < x < L and for t > 0, the initial condition (3) when t = 0,
and the boundary conditions (4) at x = 0 and x = L.

The problem described by Eqs. (1), (3), and (4) is an initial value problem in the
time variable t; an initial condition is given and the differential equation governs
what happens later. However, with respect to the space variable x, the problem
is a boundary value problem; boundary conditions are imposed at each end of the
bar and the differential equation describes the evolution of the temperature in the
interval between them. Alternatively, we can consider the problem as a boundary
value problem in the xt-plane (see Figure 10.5.2). The solution u(x, t) of Eq. (1)
is sought in the semi-infinite strip 0 < x < L, t > 0, subject to the requirement that
u(x, t) must assume a prescribed value at each point on the boundary of this strip.

x

t
x = L

u(0, t) = 0

u(x,0) = f (x)

u(L, t) = 02uxx = utα

FIGURE 10.5.2 Boundary value problem for the heat conduction equation.

The heat conduction problem (1), (3), (4) is linear since u appears only to the first
power throughout. The differential equation and boundary conditions are also ho-
mogeneous. This suggests that we might approach the problem by seeking solutions
of the differential equation and boundary conditions, and then superposing them to
satisfy the initial condition. The remainder of this section describes how this plan
can be implemented.

One solution of the differential equation (1) that satisfies the boundary conditions
(4) is the function u(x, t) = 0, but this solution does not satisfy the initial condition
(3) except in the trivial case in which f (x) is also zero. Thus our goal is to find
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other, nonzero solutions of the differential equation and boundary conditions. To
find the needed solutions, we start by making a basic assumption about the form
of the solutions that has far-reaching, and perhaps unforeseen, consequences. The
assumption is that u(x, t) is a product of two functions, one depending only on x and
the other depending only on t; thus

u(x, t) = X(x)T(t). (5)

Substituting from Eq. (5) for u in the differential equation (1) yields

α2X ′′T = XT ′, (6)

where primes refer to ordinary differentiation with respect to the independent vari-
able, whether x or t. Equation (6) is equivalent to

X ′′

X
= 1

α2

T ′

T
, (7)

in which the variables are separated; that is, the left side depends only on x and the
right side only on t.

It is now crucial to realize that for Eq. (7) to be valid for 0 < x < L, t > 0, it is
necessary that both sides of Eq. (7) must be equal to the same constant. Otherwise,
if one independent variable (say, x) were kept fixed and the other were allowed to
vary, one side (the left in this case) of Eq. (7) would remain unchanged while the
other varied, thus violating the equality. If we call this separation constant −λ, then
Eq. (7) becomes

X ′′

X
= 1

α2

T ′

T
= −λ. (8)

Hence we obtain the following two ordinary differential equations for X(x) and T(t):

X ′′ + λX = 0, (9)

T ′ + α2λT = 0. (10)

We denote the separation constant by −λ (rather than λ) because it turns out that it
must be negative, and it is convenient to exhibit the minus sign explicitly.

The assumption (5) has led to the replacement of the partial differential equation
(1) by the two ordinary differential equations (9) and (10). Each of these equations is
linear and homogeneous, with constant coefficients, and so can be readily solved for
any value of λ. The product of two solutions of Eq. (9) and (10), respectively, provides
a solution of the partial differential equation (1). However, we are interested only
in those solutions of Eq. (1) that also satisfy the boundary conditions (4). As we now
show, this severely restricts the possible values of λ.

Substituting for u(x, t) from Eq. (5) in the boundary condition at x = 0, we obtain

u(0, t) = X(0)T(t) = 0. (11)
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If Eq. (11) is satisfied by choosing T(t) to be zero for all t, then u(x, t) is zero for all
x and t, and we have already rejected this possibility. Therefore Eq. (11) must be
satisfied by requiring that

X(0) = 0. (12)

Similarly, the boundary condition at x = L requires that

X(L) = 0. (13)

We now want to consider Eq. (9) subject to the boundary conditions (12) and (13).
This is an eigenvalue problem and, in fact, is the same problem that we discussed in
detail at the end of Section 10.1; see especially the paragraph following Eq. (29) in
that section. The only difference is that the dependent variable there was called y
rather than X . If we refer to the results obtained earlier [Eq. (31) of Section 10.1],
the only nontrivial solutions of Eqs. (9), (12), and (13) are the eigenfunctions

Xn(x) = sin(nπx/L), n = 1, 2, 3, . . . (14)

associated with the eigenvalues

λn = n2π2/L2, n = 1, 2, 3, . . . . (15)

Turning now to Eq. (10) for T(t) and substituting n2π2/L2 for λ, we have

T ′ + (n2π2α2/L2)T = 0. (16)

Thus T(t) is proportional to exp(−n2π2α2t/L2). Hence multiplying solutions of
Eqs. (9) and (10) together, and neglecting arbitrary constants of proportionality, we
conclude that the functions

un(x, t) = e−n2π2α2t/L2
sin(nπx/L), n = 1, 2, 3, . . . (17)

satisfy the partial differential equation (1) and the boundary conditions (4) for each
positive integer value of n. The functions un are sometimes called fundamental
solutions of the heat conduction problem (1), (3), and (4).

It remains only to satisfy the initial condition (3)

u(x, 0) = f (x), 0 ≤ x ≤ L. (18)

Recall that we have often solved initial value problems by forming linear combina-
tions of a set of fundamental solutions and then choosing the coefficients to satisfy
the initial conditions. The analogous step in the present problem is to form a lin-
ear combination of the functions (17) and then to choose the coefficients to satisfy
Eq. (18). The main difference from earlier problems is that there are infinitely many
functions (17), so a general linear combination of them is an infinite series. Thus we
assume that

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cne−n2π2α2t/L2
sin

nπx
L

, (19)

where the coefficients cn are as yet undetermined. The individual terms in the series
(19) satisfy the differential equation (1) and boundary conditions (4). We will assume
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that the infinite series of Eq. (19) converges and also satisfies Eqs. (1) and (4). To
satisfy the initial condition (3), we must have

u(x, 0) =
∞∑

n=1

cn sin
nπx

L
= f (x). (20)

In other words,we need to choose the coefficients cn so that the series of sine functions
in Eq. (20) converges to the initial temperature distribution f (x) for 0 ≤ x ≤ L. The
series in Eq. (20) is just the Fourier sine series for f ; according to Eq. (8) of Section
10.4, its coefficients are given by

cn = 2
L

∫ L

0
f (x) sin

nπx
L

dx. (21)

Hence the solution of the heat conduction problem of Eqs. (1), (3), and (4) is given
by the series in Eq. (19) with the coefficients computed from Eq. (21).

E X A M P L E

1

Find the temperature u(x, t) at any time in a metal rod 50 cm long, insulated on the sides, which
initially has a uniform temperature of 20◦C throughout and whose ends are maintained at 0◦C
for all t > 0.

The temperature in the rod satisfies the heat conduction problem (1), (3), (4) with L = 50
and f (x) = 20 for 0 < x < 50. Thus, from Eq. (19), the solution is

u(x, t) =
∞∑

n=1

cne−n2π2α2 t/2500 sin
nπx
50

, (22)

where, from Eq. (21),

cn = 4
5

∫ 50

0
sin

nπx
50

dx

= 40
nπ

(1 − cos nπ) =
{

80/nπ , n odd;

0, n even.
(23)

Finally, by substituting for cn in Eq. (22), we obtain

u(x, t) = 80
π

∞∑
n=1,3,5,...

1
n

e−n2π2α2 t/2500 sin
nπx
50

. (24)

The expression (24) for the temperature is moderately complicated, but the negative expo-
nential factor in each term of the series causes the series to converge quite rapidly, except for
small values of t or α2. Therefore accurate results can usually be obtained by using only a few
terms of the series.

In order to display quantitative results, let us measure t in seconds; then α2 has the units
of cm2/s. If we choose α2 = 1 for convenience, this corresponds to a rod of a material whose
thermal properties are somewhere between copper and aluminum. The behavior of the solu-
tion can be seen from the graphs in Figures 10.5.3 through 10.5.5. In Figure 10.5.3 we show the
temperature distribution in the bar at several different times. Observe that the temperature
diminishes steadily as heat in the bar is lost through the end points. The way in which the
temperature decays at a given point in the bar is indicated in Figure 10.5.4, where temperature
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is plotted against time for a few selected points in the bar. Finally, Figure 10.5.5 is a three-
dimensional plot of u versus both x and t. Observe that we obtain the graphs in Figures 10.5.3
and 10.5.4 by intersecting the surface in Figure 10.5.5 by planes on which either t or x is con-
stant. The slight waviness in Figure 10.5.5 at t = 0 results from using only a finite number of
terms in the series for u(x, t) and from the slow convergence of the series for t = 0.
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u

x

t = 0

t = 20

t = 50

t = 150

t = 300

FIGURE 10.5.3 Temperature distributions at several times for the heat conduction problem
of Example 1.
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FIGURE 10.5.4 Dependence of temperature on time at several locations for the heat con-
duction problem of Example 1.

A problem with possible practical implications is to determine the time τ at which the entire
bar has cooled to a specified temperature. For example, when is the temperature in the entire
bar no greater than 1◦C? Because of the symmetry of the initial temperature distribution and
the boundary conditions, the warmest point in the bar is always the center. Thus τ is found by
solving u(25, t) = 1 for t. Using one term in the series expansion (24), we obtain

τ = 2500
π2

ln(80/π) ∼= 820 s.
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FIGURE 10.5.5 Plot of temperature u versus x and t for the heat conduction problem of
Example 1.

PROBLEMS In each of Problems 1 through 6 determine whether the method of separation of variables
can be used to replace the given partial differential equation by a pair of ordinary differential
equations. If so, find the equations.

1. xuxx + ut = 0 2. tuxx + xut = 0

3. uxx + uxt + ut = 0 4. [p(x)ux]x − r(x)utt = 0

5. uxx + (x + y)uyy = 0 6. uxx + uyy + xu = 0

7. Find the solution of the heat conduction problem

100uxx = ut , 0 < x < 1, t > 0;

u(0, t) = 0, u(1, t) = 0, t > 0;

u(x, 0) = sin 2πx − sin 5πx, 0 ≤ x ≤ 1.

8. Find the solution of the heat conduction problem

uxx = 4ut , 0 < x < 2, t > 0;

u(0, t) = 0, u(2, t) = 0, t > 0;

u(x, 0) = 2 sin(πx/2) − sin πx + 4 sin 2πx, 0 ≤ x ≤ 2.

Consider the conduction of heat in a rod 40 cm in length whose ends are maintained at 0◦C
for all t > 0. In each of Problems 9 through 12 find an expression for the temperature u(x, t)
if the initial temperature distribution in the rod is the given function. Suppose that α2 = 1.

9. u(x, 0) = 50, 0 < x < 40

10. u(x, 0) =
{

x, 0 ≤ x < 20,
40 − x, 20 ≤ x ≤ 40
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11. u(x, 0) =

⎧⎪⎨
⎪⎩

0, 0 ≤ x < 10,
50, 10 ≤ x ≤ 30,

0, 30 < x ≤ 40

12. u(x, 0) = x, 0 < x < 40

13. Consider again the rod in Problem 9. For t = 5 and x = 20 determine how many terms
are needed to find the solution correct to three decimal places. A reasonable way to do
this is to find n so that including one more term does not change the first three decimal
places of u(20, 5). Repeat for t = 20 and t = 80. Form a conclusion about the speed of
convergence of the series for u(x, t).

14. For the rod in Problem 9:
(a) Plot u versus x for t = 5, 10, 20, 40, 100, and 200. Put all of the graphs on the same
set of axes and thereby obtain a picture of the way in which the temperature distribution
changes with time.
(b) Plot u versus t for x = 5, 10, 15, and 20.
(c) Draw a three-dimensional plot of u versus x and t.
(d) How long does it take for the entire rod to cool off to a temperature of no more than
1◦C?

15. Follow the instructions in Problem 14 for the rod in Problem 10.

16. Follow the instructions in Problem 14 for the rod in Problem 11.

17. For the rod in Problem 12:
(a) Plot u versus x for t = 5, 10, 20, 40, 100, and 200.
(b) For each value of t used in part (a) estimate the value of x for which the temperature
is greatest. Plot these values versus t to see how the location of the warmest point in the
rod changes with time.
(c) Plot u versus t for x = 10, 20, and 30.
(d) Draw a three-dimensional plot of u versus x and t.
(e) How long does it take for the entire rod to cool off to a temperature of no more than
1◦C?

18. Let a metallic rod 20 cm long be heated to a uniform temperature of 100◦C. Suppose that
at t = 0 the ends of the bar are plunged into an ice bath at 0◦C, and thereafter maintained
at this temperature, but that no heat is allowed to escape through the lateral surface. Find
an expression for the temperature at any point in the bar at any later time. Determine
the temperature at the center of the bar at time t = 30 s if the bar is made of (a) silver,
(b) aluminum, or (c) cast iron.

19. For the rod of Problem 18 find the time that will elapse before the center of the bar cools
to a temperature of 5◦C if the bar is made of (a) silver, (b) aluminum, or (c) cast iron.

20. In solving differential equations, the computations can almost always be simplified by the
use of dimensionless variables.
(a) Show that if the dimensionless variable ξ = x/L is introduced, the heat conduction
equation becomes

∂2u
∂ξ 2

= L2

α2

∂u
∂t

, 0 < ξ < 1, t > 0.

(b) Since L2/α2 has the units of time, it is convenient to use this quantity to define a
dimensionless time variable τ = (α2/L2)t. Then show that the heat conduction equation
reduces to
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∂2u
∂ξ 2

= ∂u
∂τ

, 0 < ξ < 1, τ > 0.

21. Consider the equation

auxx − but + cu = 0, (i)

where a, b, and c are constants.
(a) Let u(x, t) = eδtw(x, t), where δ is constant, and find the corresponding partial differ-
ential equation for w.
(b) If b �= 0, show that δ can be chosen so that the partial differential equation found in
part (a) has no term in w. Thus, by a change of dependent variable, it is possible to reduce
Eq. (i) to the heat conduction equation.

22. The heat conduction equation in two space dimensions is

α2(uxx + uyy) = ut .

Assuming that u(x, y, t) = X(x)Y(y)T(t), find ordinary differential equations that are sat-
isfied by X(x), Y(y), and T(t).

23. The heat conduction equation in two space dimensions may be expressed in terms of polar
coordinates as

α2[urr + (1/r)ur + (1/r2)uθθ ] = ut .

Assuming that u(r, θ , t) = R(r)�(θ)T(t), find ordinary differential equations that are sat-
isfied by R(r), �(θ), and T(t).

10.6 Other Heat Conduction Problems
In Section 10.5 we considered the problem consisting of the heat conduction equation

α2uxx = ut , 0 < x < L, t > 0, (1)

the boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0, (2)

and the initial condition

u(x, 0) = f (x), 0 ≤ x ≤ L. (3)

We found the solution to be

u(x, t) =
∞∑

n=1

cne−n2π2α2t/L2
sin

nπx
L

, (4)

where the coefficients cn are the same as in the series

f (x) =
∞∑

n=1

cn sin
nπx

L
. (5)
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The series in Eq. (5) is just the Fourier sine series for f ; according to Section 10.4, its
coefficients are given by

cn = 2
L

∫ L

0
f (x) sin

nπx
L

dx. (6)

Hence the solution of the heat conduction problem, Eqs. (1) to (3), is given by the
series in Eq. (4) with the coefficients computed from Eq. (6).

We emphasize that at this stage the solution (4) must be regarded as a formal
solution; that is, we obtained it without rigorous justification of the limiting processes
involved. Such a justification is beyond the scope of this book. However, once
the series (4) has been obtained, it is possible to show that in 0 < x < L, t > 0 it
converges to a continuous function, that the derivatives uxx and ut can be computed
by differentiating the series (4) term by term, and that the heat conduction equation
(1) is indeed satisfied. The argument relies heavily on the fact that each term of
the series (4) contains a negative exponential factor, and this results in relatively
rapid convergence of the series. A further argument establishes that the function u
given by Eq. (4) also satisfies the boundary and initial conditions; this completes the
justification of the formal solution.

It is interesting to note that although f satisfies the conditions of the Fourier con-
vergence theorem (Theorem 10.3.1), it may have points of discontinuity. In this case
the initial temperature distribution u(x, 0) = f (x) is discontinuous at one or more
points. Nevertheless, the solution u(x, t) is continuous for arbitrarily small values of
t > 0. This illustrates the fact that heat conduction is a diffusive process that instantly
smooths out any discontinuities that may be present in the initial temperature dis-
tribution. Finally, since f is bounded, it follows from Eq. (6) that the coefficients cn

are also bounded. Consequently, the presence of the negative exponential factor in
each term of the series (4) guarantees that

lim
t→∞ u(x, t) = 0 (7)

for all x regardless of the initial condition. This is in accord with the result expected
from physical intuition.

We now consider two other problems of one-dimensional heat conduction that can
be handled by the method developed in Section 10.5.

Nonhomogeneous Boundary Conditions. Suppose now that one end of the bar is held at a
constant temperature T1 and the other is maintained at a constant temperature T2.
Then the boundary conditions are

u(0, t) = T1, u(L, t) = T2, t > 0. (8)

The differential equation (1) and the initial condition (3) remain unchanged.
This problem is only slightly more difficult,because of the nonhomogeneous bound-

ary conditions, than the one in Section 10.5. We can solve it by reducing it to a problem
having homogeneous boundary conditions, which can then be solved as in Section
10.5. The technique for doing this is suggested by the following physical argument.

After a long time—that is, as t → ∞—we anticipate that a steady temperature
distribution v(x) will be reached, which is independent of the time t and the initial
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conditions. Since v(x) must satisfy the equation of heat conduction (1), we have

v′′(x) = 0, 0 < x < L. (9)

Hence the steady state temperature distribution is a linear function of x. Further,
v(x) must satisfy the boundary conditions

v(0) = T1, v(L) = T2, (10)

which are valid even as t → ∞. The solution of Eq. (9) satisfying Eqs. (10) is

v(x) = (T2 − T1)
x
L

+ T1. (11)

Returning to the original problem, Eqs. (1), (3), and (8), we will try to express u(x, t)
as the sum of the steady state temperature distribution v(x) and another (transient)
temperature distribution w(x, t); thus we write

u(x, t) = v(x) + w(x, t). (12)

Since v(x) is given by Eq. (11), the problem will be solved, provided that we can
determine w(x, t). The boundary value problem for w(x, t) is found by substituting
the expression in Eq. (12) for u(x, t) in Eqs. (1), (3), and (8).

From Eq. (1) we have
α2(v + w)xx = (v + w)t ;

it follows that
α2wxx = wt , (13)

since vxx = 0 and vt = 0. Similarly, from Eqs. (12), (8), and (10),

w(0, t) = u(0, t) − v(0) = T1 − T1 = 0,
(14)

w(L, t) = u(L, t) − v(L) = T2 − T2 = 0.

Finally, from Eqs. (12) and (3),

w(x, 0) = u(x, 0) − v(x) = f (x) − v(x), (15)

where v(x) is given by Eq. (11). Thus the transient part of the solution to the original
problem is found by solving the problem consisting of Eqs. (13), (14), and (15). This
latter problem is precisely the one solved in Section 10.5, provided that f (x) − v(x)

is now regarded as the initial temperature distribution. Hence

u(x, t) = (T2 − T1)
x
L

+ T1 +
∞∑

n=1

cne−n2π2α2t/L2
sin

nπx
L

, (16)

where

cn = 2
L

∫ L

0

[
f (x) − (T2 − T1)

x
L

− T1

]
sin

nπx
L

dx. (17)

This is another case in which a more difficult problem is solved by reducing it to a
simpler problem that has already been solved. The technique of reducing a problem
with nonhomogeneous boundary conditions to one with homogeneous boundary
conditions by subtracting the steady state solution has wide application.
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E X A M P L E

1

Consider the heat conduction problem

uxx = ut , 0 < x < 30, t > 0, (18)

u(0, t) = 20, u(30, t) = 50, t > 0, (19)

u(x, 0) = 60 − 2x, 0 < x < 30. (20)

Find the steady state temperature distribution and the boundary value problem that deter-
mines the transient distribution.

The steady state temperature satisfies v′′(x) = 0 and the boundary conditions v(0) = 20 and
v(30) = 50. Thus v(x) = 20 + x. The transient distribution w(x, t) satisfies the heat conduction
equation

wxx = wt , (21)

the homogeneous boundary conditions

w(0, t) = 0, w(30, t) = 0, (22)

and the modified initial condition

w(x, 0) = 60 − 2x − (20 + x) = 40 − 3x. (23)

Note that this problem is of the form (1), (2), (3) with f (x) = 40 − 3x,α2 = 1, and L = 30. Thus
the solution is given by Eqs. (4) and (6).

Figure 10.6.1 shows a plot of the initial temperature distribution 60 − 2x, the final temper-
ature distribution 20 + x, and the temperature at three intermediate times found by solving
Eqs. (21) through (23). Note that the intermediate temperature satisfies the boundary condi-
tions (19) for any t > 0. As t increases, the effect of the boundary conditions gradually moves
from the ends of the bar toward its center.
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t = 30

t = 10
t = 2

t → ∞

FIGURE 10.6.1 Temperature distributions at several times for the heat conduction problem
of Example 1.

Bar with Insulated Ends. A slightly different problem occurs if the ends of the bar are
insulated so that there is no passage of heat through them. According to Eq. (2) in
Appendix A, the rate of flow of heat across a cross section is proportional to the rate
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of change of temperature in the x direction. Thus, in the case of no heat flow, the
boundary conditions are

ux(0, t) = 0, ux(L, t) = 0, t > 0. (24)

The problem posed by Eqs. (1), (3), and (24) can also be solved by the method of
separation of variables. If we let

u(x, t) = X(x)T(t), (25)

and substitute for u in Eq. (1), then it follows, as in Section 10.5, that

X ′′

X
= 1

α2

T ′

T
= −λ, (26)

where λ is a constant. Thus we obtain again the two ordinary differential equations

X ′′ + λX = 0, (27)

T ′ + α2λT = 0. (28)

For any value of λ a product of solutions of Eqs. (27) and (28) is a solution of the
partial differential equation (1). However, we are interested only in those solutions
that also satisfy the boundary conditions (24).

If we substitute for u(x, t) from Eq. (25) in the boundary condition at x = 0, we
obtain X ′(0)T(t) = 0. We cannot permit T(t) to be zero for all t, since then u(x, t)
would also be zero for all t. Hence we must have

X ′(0) = 0. (29)

Proceeding in the same way with the boundary condition at x = L, we find that

X ′(L) = 0. (30)

Thus we wish to solve Eq. (27) subject to the boundary conditions (29) and (30). It
is possible to show that nontrivial solutions of this problem can exist only if λ is real.
One way to show this is indicated in Problem 18; alternatively, we can appeal to a
more general theory to be discussed in Section 11.2. We will assume that λ is real
and will consider in turn the three cases λ < 0, λ = 0, and λ > 0.

If λ < 0, it is convenient to let λ = −μ2, where μ is real and positive. Then Eq. (27)
becomes X ′′ − μ2X = 0, and its general solution is

X(x) = k1 sinh μx + k2 cosh μx. (31)

In this case the boundary conditions can be satisfied only by choosing k1 = k2 = 0.
Since this is unacceptable, it follows that λ cannot be negative; in other words, the
problem (27), (29), (30) has no negative eigenvalues.

If λ = 0, then Eq. (27) is X ′′ = 0, and therefore

X(x) = k1x + k2. (32)

The boundary conditions (29) and (30) require that k1 = 0 but do not determine k2.
Thus λ = 0 is an eigenvalue, corresponding to the eigenfunction X(x) = 1. For λ = 0
it follows from Eq. (28) that T(t) is also a constant, which can be combined with k2.
Hence, for λ = 0, we obtain the constant solution u(x, t) = k2.
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Finally, if λ > 0, let λ = μ2, where μ is real and positive. Then Eq. (27) becomes
X ′′ + μ2X = 0, and consequently,

X(x) = k1 sin μx + k2 cos μx. (33)

The boundary condition (29) requires that k1 = 0, and the boundary condition (30)
requires that μ = nπ/L for n = 1, 2, 3, . . . but leaves k2 arbitrary. Thus the problem
(27), (29), (30) has an infinite sequence of positive eigenvalues λ = n2π2/L2 with
the corresponding eigenfunctions X(x) = cos(nπx/L). For these values of λ the
solutions T(t) of Eq. (28) are proportional to exp(−n2π2α2t/L2).

Combining all these results, we have the following fundamental solutions for the
problem (1), (3), and (24):

u0(x, t) = 1,
(34)

un(x, t) = e−n2π2α2t/L2
cos

nπx
L

, n = 1, 2, . . . ,

where arbitrary constants of proportionality have been dropped. Each of these
functions satisfies the differential equation (1) and the boundary conditions (24).
Because both the differential equation and the boundary conditions are linear and
homogeneous, any finite linear combination of the fundamental solutions satisfies
them. We will assume that this is true for convergent infinite linear combinations of
fundamental solutions as well. Thus, to satisfy the initial condition (3), we assume
that u(x, t) has the form

u(x, t) = c0

2
u0(x, t) +

∞∑
n=1

cnun(x, t)

= c0

2
+

∞∑
n=1

cne−n2π2α2t/L2
cos

nπx
L

. (35)

The coefficients cn are determined by the requirement that

u(x, 0) = c0

2
+

∞∑
n=1

cn cos
nπx

L
= f (x). (36)

Thus the unknown coefficients in Eq. (35) must be the coefficients in the Fourier
cosine series of period 2L for f . Hence

cn = 2
L

∫ L

0
f (x) cos

nπx
L

dx, n = 0, 1, 2, . . . . (37)

With this choice of the coefficients c0, c1, c2, . . . , the series (35) provides the solution
to the heat conduction problem for a rod with insulated ends, Eqs. (1), (3), and (24).

It is worth observing that the solution (35) can also be thought of as the sum
of a steady state temperature distribution (given by the constant c0/2), which is
independent of time t, and a transient distribution (given by the rest of the infinite
series) that vanishes in the limit as t approaches infinity. That the steady state is a
constant is consistent with the expectation that the process of heat conduction will
gradually smooth out the initial temperature distribution in the bar as long as no heat
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is allowed to enter from, or to escape to, the outside. The physical interpretation of
the term

c0

2
= 1

L

∫ L

0
f (x) dx (38)

is that it is the mean value of the original temperature distribution.

E X A M P L E

2

Find the temperature u(x, t) in a metal rod of length 25 cm that is insulated on the ends as well
as on the sides and whose initial temperature distribution is u(x, 0) = x for 0 < x < 25.

The temperature in the rod satisfies the heat conduction problem (1), (3), (24) with L = 25.
Thus, from Eq. (35), the solution is

u(x, t) = c0

2
+

∞∑
n=1

cne−n2π2α2 t/625 cos
nπx
25

, (39)

where the coefficients are determined from Eq. (37). We have

c0 = 2
25

∫ 25

0
x dx = 25 (40)

and, for n ≥ 1,

cn = 2
25

∫ 25

0
x cos

nπx
25

dx

= 50(cos nπ − 1)/(nπ)2 =
{

−100/(nπ)2, n odd;
0, n even.

(41)

Thus

u(x, t) = 25
2

− 100
π2

∞∑
n=1,3,5,...

1
n2

e−n2π2α2 t/625 cos(nπx/25) (42)

is the solution of the given problem.
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FIGURE 10.6.2 Temperature distributions at several times for the heat conduction problem
of Example 2.
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For α2 = 1, Figure 10.6.2 shows plots of the temperature distribution in the bar at several
times. Again the convergence of the series is rapid so that only a relatively few terms are
needed to generate the graphs.

More General Problems. The method of separation of variables can also be used to
solve heat conduction problems with other boundary conditions than those given
by Eqs. (8) and Eqs. (24). For example, the left end of the bar might be held at a fixed
temperature T while the other end is insulated. In this case the boundary conditions
are

u(0, t) = T , ux(L, t) = 0, t > 0. (43)

The first step in solving this problem is to reduce the given boundary conditions to
homogeneous ones by subtracting the steady state solution. The resulting problem
is solved by essentially the same procedure as in the problems previously consid-
ered. However, the extension of the initial function f outside of the interval [0, L] is
somewhat different from that in any case considered so far (see Problem 15).

A more general type of boundary condition occurs when the rate of heat flow
through the end of the bar is proportional to the temperature. It is shown inAppendix
A that the boundary conditions in this case are of the form

ux(0, t) − h1u(0, t) = 0, ux(L, t) + h2u(L, t) = 0, t > 0, (44)

where h1 and h2 are nonnegative constants. If we apply the method of separation of
variables to the problem consisting of Eqs. (1), (3), and (44), we find that X(x) must
be a solution of

X ′′ + λX = 0, X ′(0) − h1X(0) = 0, X ′(L) + h2X(L) = 0, (45)

where λ is the separation constant. Once again it is possible to show that nontrivial
solutions can exist only for certain nonnegative real values of λ, the eigenvalues, but
these values are not given by a simple formula (see Problem 20). It is also possible
to show that the corresponding solutions of Eqs. (45), the eigenfunctions, satisfy an
orthogonality relation and that we can satisfy the initial condition (3) by superposing
solutions of Eqs. (45). However, the resulting series is not included in the discussion
of this chapter. There is more general theory that covers such problems, and it is
outlined in Chapter 11.

PROBLEMS In each of Problems 1 through 8 find the steady-state solution of the heat conduction equation
α2uxx = ut that satisfies the given set of boundary conditions.

1. u(0, t) = 10, u(50, t) = 40 2. u(0, t) = 30, u(40, t) = −20

3. ux(0, t) = 0, u(L, t) = 0 4. ux(0, t) = 0, u(L, t) = T

5. u(0, t) = 0, ux(L, t) = 0 6. u(0, t) = T , ux(L, t) = 0

7. ux(0, t) − u(0, t) = 0, u(L, t) = T 8. u(0, t) = T , ux(L, t) + u(L, t) = 0

9. Let an aluminum rod of length 20 cm be initially at the uniform temperature of 25◦C.
Suppose that at time t = 0 the end x = 0 is cooled to 0◦C while the end x = 20 is heated
to 60◦C, and both are thereafter maintained at those temperatures.
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(a) Find the temperature distribution in the rod at any time t.
(b) Plot the initial temperature distribution, the final (steady-state) temperature distri-
bution, and the temperature distributions at two representative intermediate times on the
same set of axes.
(c) Plot u versus t for x = 5, 10, and 15.
(d) Determine how much time must elapse before the temperature at x = 5 cm comes
(and remains) within 1% of its steady-state value.

10. (a) Let the ends of a copper rod 100 cm long be maintained at 0◦C. Suppose that the
center of the bar is heated to 100◦C by an external heat source and that this situation is
maintained until a steady state results. Find this steady-state temperature distribution.
(b) At a time t = 0 [after the steady state of part (a) has been reached], let the heat source
be removed. At the same instant let the end x = 0 be placed in thermal contact with a
reservoir at 20◦C, while the other end remains at 0◦C. Find the temperature as a function
of position and time.
(c) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(d) What limiting value does the temperature at the center of the rod approach after a
long time? How much time must elapse before the center of the rod cools to within 1◦ of
its limiting value?

11. Consider a rod of length 30 for which α2 = 1. Suppose the initial temperature distribution
is given by u(x, 0) = x(60 − x)/30 and that the boundary conditions are u(0, t) = 30 and
u(30, t) = 0.

(a) Find the temperature in the rod as a function of position and time.
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) Plot u versus t for x = 12. Observe that u initially decreases, then increases for a
while, and finally decreases to approach its steady-state value. Explain physically why this
behavior occurs at this point.

12. Consider a uniform rod of length L with an initial temperature given by
u(x, 0) = sin(πx/L), 0 ≤ x ≤ L. Assume that both ends of the bar are insulated.

(a) Find the temperature u(x, t).
(b) What is the steady-state temperature as t → ∞?
(c) Let α2 = 1 and L = 40. Plot u versus x for several values of t. Also plot u versus t for
several values of x.
(d) Describe briefly how the temperature in the rod changes as time progresses.

13. Consider a bar of length 40 cm whose initial temperature is given by u(x, 0) = x(60 − x)/30.
Suppose that α2 = 1/4 cm2/s and that both ends of the bar are insulated.
(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) Determine the steady-state temperature in the bar.
(d) Determine how much time must elapse before the temperature at x = 40 comes within
1◦ of its steady-state value.

14. Consider a bar 30 cm long that is made of a material for which α2 = 1 and whose ends are
insulated. Suppose that the initial temperature is zero except for the interval 5 < x < 10,
where the initial temperature is 25◦C.

(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) Plot u(4, t) and u(11, t) versus t. Observe that the points x = 4 and x = 11 are sym-
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metrically located with respect to the initial temperature pulse, yet their temperature plots
are significantly different. Explain physically why this is so.

15. Consider a uniform bar of length L having an initial temperature distribution given by
f (x), 0 ≤ x ≤ L. Assume that the temperature at the end x = 0 is held at 0◦C, while the
end x = L is insulated so that no heat passes through it.

(a) Show that the fundamental solutions of the partial differential equation and boundary
conditions are

un(x, t) = e−(2n−1)2π2α2 t/4L2
sin[(2n − 1)πx/2L], n = 1, 2, 3, . . . .

(b) Find a formal series expansion for the temperature u(x, t)

u(x, t) =
∞∑

n=1

cnun(x, t)

that also satisfies the initial condition u(x, 0) = f (x).
Hint: Even though the fundamental solutions involve only the odd sines, it is still possible
to represent f by a Fourier series involving only these functions. See Problem 39 of Section
10.4.

16. In the bar of Problem 15 suppose that L = 30, α2 = 1, and the initial temperature distri-
bution is f (x) = 30 − x for 0 < x < 30.

(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) How does the location xm of the warmest point in the bar change as t increases? Draw
a graph of xm versus t.
(d) Plot the maximum temperature in the bar versus t.

17. Suppose that the conditions are as in Problems 15 and 16 except that the boundary con-
dition at x = 0 is u(0, t) = 40.

(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) Compare the plots you obtained in this problem with those from Problem 16. Explain
how the change in the boundary condition at x = 0 causes the observed differences in the
behavior of the temperature in the bar.

18. Consider the problem

X ′′ + λX = 0, X ′(0) = 0, X ′(L) = 0. (i)

Let λ = μ2, where μ = ν + iσ with ν and σ real. Show that if σ �= 0, then the only solution
of Eqs. (i) is the trivial solution X(x) = 0.
Hint: Use an argument similar to that in Problem 23 of Section 10.1.

19. The right end of a bar of length a with thermal conductivity κ1 and cross-sectional area A1

is joined to the left end of a bar of thermal conductivity κ2 and cross-sectional area A2.
The composite bar has a total length L. Suppose that the end x = 0 is held at temperature
zero, while the end x = L is held at temperature T . Find the steady-state temperature in
the composite bar, assuming that the temperature and rate of heat flow are continuous at
x = a.
Hint: See Eq. (2) of Appendix A.
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20. Consider the problem

α2uxx = ut , 0 < x < L, t > 0;

u(0, t) = 0, ux(L, t) + γ u(L, t) = 0, t > 0; (i)

u(x, 0) = f (x), 0 ≤ x ≤ L.

(a) Let u(x, t) = X(x)T(t) and show that

X ′′ + λX = 0, X(0) = 0, X ′(L) + γ X(L) = 0, (ii)

and

T ′ + λα2T = 0,

where λ is the separation constant.
(b) Assume that λ is real, and show that problem (ii) has no nontrivial solutions if λ ≤ 0.
(c) If λ > 0, let λ = μ2 with μ > 0. Show that problem (ii) has nontrivial solutions only
if μ is a solution of the equation

μ cos μL + γ sin μL = 0. (iii)

(d) Rewrite Eq. (iii) as tan μL = −μ/γ . Then, by drawing the graphs of y = tan μL and
y = −μL/γ L for μ > 0 on the same set of axes, show that Eq. (iii) is satisfied by infinitely
many positive values of μ; denote these by μ1, μ2, . . . , μn, . . . , ordered in increasing size.
(e) Determine the set of fundamental solutions un(x, t) corresponding to the values μn

found in part (d).

An External Heat Source. Consider the heat conduction problem in a bar that is in thermal
contact with an external heat source or sink. Then the modified heat conduction equation is

ut = α2uxx + s(x), (i)

where the term s(x) describes the effect of the external agency; s(x) is positive for a source and
negative for a sink. Suppose that the boundary conditions are

u(0, t) = T1, u(L, t) = T2 (ii)

and the initial condition is

u(x, 0) = f (x). (iii)

Problems 21 through 23 deal with this kind of problem.

21. Write u(x, t) = v(x) + w(x, t), where v and w are the steady state and transient parts of
the solution, respectively. State the boundary value problems that v(x) and w(x, t), re-
spectively, satisfy. Observe that the problem for w is the fundamental heat conduction
problem discussed in Section 10.5, with a modified initial temperature distribution.
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22. (a) Suppose that α2 = 1 and s(x) = k, a constant, in Eq. (i). Find v(x).
(b) Assume that T1 = 0, T2 = 0, L = 20, k = 1/5, and that f (x) = 0 for 0 < x < L. Deter-
mine w(x, t). Then plot u(x, t) versus x for several values of t; on the same axes also plot
the steady-state part of the solution v(x).

23. (a) Let α2 = 1 and s(x) = kx/L, where k is a constant, in Eq. (i). Find v(x).
(b) Assume that T1 = 10, T2 = 30, L = 20, k = 1/2, and that f (x) = 0 for 0 < x < L. De-
termine w(x, t). Then plot u(x, t) versus x for several values of t; on the same axes also
plot the steady-state part of the solution v(x).

10.7 The Wave Equation: Vibrations of an Elastic String
A second partial differential equation that occurs frequently in applied mathematics
is the wave10 equation. Some form of this equation, or a generalization of it, almost
inevitably arises in any mathematical analysis of phenomena involving the propaga-
tion of waves in a continuous medium. For example, the studies of acoustic waves,
water waves, electromagnetic waves, and seismic waves are all based on this equation.

Perhaps the easiest situation to visualize occurs in the investigation of mechanical
vibrations. Suppose that an elastic string of length L is tightly stretched between
two supports at the same horizontal level, so that the x-axis lies along the string (see
Figure 10.7.1).

The elastic string may be thought of as a violin string, a guy wire, or possibly an
electric power line. Suppose that the string is set in motion (by plucking, for example)
so that it vibrates in a vertical plane, and let u(x, t) denote the vertical displacement
experienced by the string at the point x at time t. If damping effects, such as air
resistance, are neglected, and if the amplitude of the motion is not too large, then
u(x, t) satisfies the partial differential equation

a2uxx = utt (1)

in the domain 0 < x < L, t > 0. Equation (1) is known as the one-dimensional wave
equation and is derived in Appendix B at the end of the chapter. The constant

x

u(x, t)
x = 0 x = L

FIGURE 10.7.1 A vibrating string.

10The solution of the wave equation was one of the major mathematical problems of the mid-eighteenth
century. The wave equation was first derived and studied by D’Alembert in 1746. It also attracted the
attention of Euler (1748), Daniel Bernoulli (1753), and Lagrange (1759). Solutions were obtained in
several different forms, and the merits of, and relations among, these solutions were argued, sometimes
heatedly, in a series of papers extending over more than 25 years. The major points at issue concerned
the nature of a function and the kinds of functions that can be represented by trigonometric series. These
questions were not resolved until the nineteenth century.
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coefficient a2 appearing in Eq. (1) is given by

a2 = T/ρ, (2)

where T is the tension (force) in the string, and ρ is the mass per unit length of the
string material. It follows that a has the units of length/time—that is, of velocity. In
Problem 14 it is shown that a is the velocity of propagation of waves along the string.

To describe the motion of the string completely, it is necessary also to specify
suitable initial and boundary conditions for the displacement u(x, t). The ends are
assumed to remain fixed, and therefore the boundary conditions are

u(0, t) = 0, u(L, t) = 0, t ≥ 0. (3)

Since the differential equation (1) is of second order with respect to t, it is plausible
to prescribe two initial conditions. These are the initial position of the string

u(x, 0) = f (x), 0 ≤ x ≤ L (4)

and its initial velocity

ut(x, 0) = g(x), 0 ≤ x ≤ L, (5)

where f and g are given functions. In order for Eqs. (3), (4), and (5) to be consistent,
it is also necessary to require that

f (0) = f (L) = 0, g(0) = g(L) = 0. (6)

The mathematical problem then is to determine the solution of the wave equation
(1) that also satisfies the boundary conditions (3) and the initial conditions (4) and
(5). Like the heat conduction problem of Sections 10.5 and 10.6, this problem is
an initial value problem in the time variable t and a boundary value problem in the
space variable x. Alternatively, it can be considered as a boundary value problem
in the semi-infinite strip 0 < x < L, t > 0 of the xt-plane (see Figure 10.7.2). One
condition is imposed at each point on the semi-infinite sides, and two are imposed at
each point on the finite base.

t

x

x = L

u(0, t) = 0 u(L, t) = 0

u(x, 0) = f (x)
ut(x, 0) = g(x)

a2uxx = utt

FIGURE 10.7.2 Boundary value problem for the wave equation.
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It is important to realize that Eq. (1) governs a large number of other wave prob-
lems besides the transverse vibrations of an elastic string. For example, it is only
necessary to interpret the function u and the constant a appropriately to have prob-
lems dealing with water waves in an ocean, acoustic or electromagnetic waves in
the atmosphere, or elastic waves in a solid body. If more than one space dimension
is significant, then Eq. (1) must be slightly generalized. The two-dimensional wave
equation is

a2(uxx + uyy) = utt . (7)

This equation would arise, for example, if we considered the motion of a thin elastic
sheet, such as a drumhead. Similarly, in three dimensions the wave equation is

a2(uxx + uyy + uzz) = utt . (8)

In connection with the latter two equations, the boundary and initial conditions must
also be suitably generalized.

We now solve some typical boundary value problems involving the one-dimensional
wave equation.

Elastic String with Nonzero Initial Displacement. First suppose that the string is disturbed
from its equilibrium position and then released at time t = 0 with zero velocity to vi-
brate freely. Then the vertical displacement u(x, t) must satisfy the wave equation (1)

a2uxx = utt , 0 < x < L, t > 0;

the boundary conditions (3)

u(0, t) = 0, u(L, t) = 0, t ≥ 0;

and the initial conditions

u(x, 0) = f (x), ut(x, 0) = 0, 0 ≤ x ≤ L, (9)

where f is a given function describing the configuration of the string at t = 0.
The method of separation of variables can be used to obtain the solution of Eqs. (1),

(3), and (9). Assuming that
u(x, t) = X(x)T(t) (10)

and substituting for u in Eq. (1), we obtain

X ′′

X
= 1

a2

T ′′

T
= −λ, (11)

where λ is a separation constant. Thus we find that X(x) and T(t) satisfy the ordinary
differential equations

X ′′ + λX = 0, (12)

T ′′ + a2λT = 0. (13)

Further, by substituting from Eq. (10) for u(x, t) in the boundary conditions (3), we
find that X(x) must satisfy the boundary conditions

X(0) = 0, X(L) = 0. (14)
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Finally, by substituting from Eq. (10) into the second of the initial conditions (9), we
also find that T(t) must satisfy the initial condition

T ′(0) = 0. (15)

Our next task is to determine X(x), T(t), and λ by solving Eq. (12) subject to the
boundary conditions (14) and Eq. (13) subject to the initial condition (15).

The problem of solving the differential equation (12) subject to the boundary
conditions (14) is precisely the same problem that arose in Section 10.5 in connection
with the heat conduction equation. Thus we can use the results obtained there and
at the end of Section 10.1: the problem (12), (14) has nontrivial solutions if and only
if λ is an eigenvalue

λ = n2π2/L2, n = 1, 2, . . . , (16)

and X(x) is proportional to the corresponding eigenfunction sin(nπx/L).
Using the values of λ given by Eq. (16) in Eq. (13), we obtain

T ′′ + n2π2a2

L2
T = 0. (17)

Therefore

T(t) = k1 cos
nπat

L
+ k2 sin

nπat
L

, (18)

where k1 and k2 are arbitrary constants. The initial condition (15) requires that
k2 = 0, so T(t) must be proportional to cos(nπat/L).

Thus the functions

un(x, t) = sin
nπx

L
cos

nπat
L

, n = 1, 2, . . . (19)

satisfy the partial differential equation (1), the boundary conditions (3), and the
second initial condition (9). These functions are the fundamental solutions for the
given problem.

To satisfy the remaining (nonhomogeneous) initial condition (9), we will consider
a superposition of the fundamental solutions (19) with properly chosen coefficients.
Thus we assume that u(x, t) has the form

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cn sin
nπx

L
cos

nπat
L

, (20)

where the constants cn remain to be chosen. The initial condition u(x, 0) = f (x)

requires that

u(x, 0) =
∞∑

n=1

cn sin
nπx

L
= f (x). (21)

Consequently, the coefficients cn must be the coefficients in the Fourier sine series of
period 2L for f ; hence

cn = 2
L

∫ L

0
f (x) sin

nπx
L

dx, n = 1, 2, . . . . (22)
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Thus the formal solution of the problem of Eqs. (1), (3), and (9) is given by Eq. (20)
with the coefficients calculated from Eq. (22).

For a fixed value of n the expression sin(nπx/L) cos(nπat/L) in Eq. (19) is peri-
odic in time t with the period 2L/na; it therefore represents a vibratory motion of the
string having this period, or having the frequency nπa/L. The quantities nπa/L for
n = 1, 2, . . . are the natural frequencies of the string—that is, the frequencies at which
the string will freely vibrate. The factor sin(nπx/L) represents the displacement pat-
tern occurring in the string when it is executing vibrations of the given frequency.
Each displacement pattern is called a natural mode of vibration and is periodic in
the space variable x; the spatial period 2L/n is called the wavelength of the mode of
frequency nπa/L. Thus the eigenvalues n2π2/L2 of the problem (12), (14) are pro-
portional to the squares of the natural frequencies,and the eigenfunctions sin(nπx/L)

give the natural modes. The first three natural modes are sketched in Figure 10.7.3.
The total motion of the string, given by the function u(x, t) of Eq. (20), is thus a com-
bination of the natural modes of vibration and is also a periodic function of time with
period 2L/a.

u

x

u

x

u

x
L

L L

1 11

–1–1 –1

(a) (b) (c)
FIGURE 10.7.3 First three fundamental modes of vibration of an elastic string.
(a) Frequency = πa/L, wavelength = 2L; (b) frequency = 2πa/L, wavelength = L;
(c) frequency = 3πa/L, wavelength = 2L/3.

E X A M P L E

1

Consider a vibrating string of length L = 30 that satisfies the wave equation

4uxx = utt , 0 < x < 30, t > 0. (23)

Assume that the ends of the string are fixed and that the string is set in motion with no initial
velocity from the initial position

u(x, 0) = f (x) =
{

x/10, 0 ≤ x ≤ 10,
(30 − x)/20, 10 < x ≤ 30.

(24)

Find the displacement u(x, t) of the string and describe its motion through one period.
The solution is given by Eq. (20) with a = 2 and L = 30; that is,

u(x, t) =
∞∑

n=1

cn sin
nπx
30

cos
2nπ t

30
, (25)

where cn is calculated from Eq. (22). Substituting from Eq. (24) into Eq. (22), we obtain

cn = 2
30

∫ 10

0

x
10

sin
nπx
30

dx + 2
30

∫ 30

10

30 − x
20

sin
nπx
30

dx. (26)
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By evaluating the integrals in Eq. (26), we find that

cn = 9
n2π2

sin
nπ

3
, n = 1, 2, . . . . (27)

The solution (25), (27) gives the displacement of the string at any point x at any time t. The
motion is periodic in time with period 30, so it is sufficient to analyze the solution for 0 ≤ t ≤ 30.

The best way to visualize the solution is by a computer animation showing the dynamic
behavior of the vibrating string. Here we indicate the motion of the string in Figures 10.7.4,
10.7.5, and 10.7.6. Plots of u versus x for t = 0, 4, 7.5, 11, and 15 are shown in Figure 10.7.4.
Observe that the maximum initial displacement is positive and occurs at x = 10, while at t = 15,
a half-period later, the maximum displacement is negative and occurs at x = 20. The string
then retraces its motion and returns to its original configuration at t = 30. Figure 10.7.5 shows
the behavior of the points x = 10, 15, and 20 by plots of u versus t for these fixed values of x.
The plots confirm that the motion is indeed periodic with period 30. Observe also that each
interior point on the string is motionless for one-third of each period. Figure 10.7.6 shows a
three-dimensional plot of u versus both x and t, from which the overall nature of the solution
is apparent. Of course, the curves in Figures 10.7.4 and 10.7.5 lie on the surface shown in
Figure 10.7.6.

x2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
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t = 7.5

t = 11
t = 15

FIGURE 10.7.4 Plots of u versus x for fixed values of t for the string in Example 1.
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FIGURE 10.7.5 Plots of u versus t for fixed values of x for the string in Example 1.
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FIGURE 10.7.6 Plot of u versus x and t for the string in Example 1.

Justification of the Solution. As in the heat conduction problem considered earlier,
Eq. (20) with the coefficients cn given by Eq. (22) is only a formal solution of
Eqs. (1), (3), and (9). To ascertain whether Eq. (20) actually represents the solution
of the given problem requires some further investigation. As in the heat conduction
problem, it is tempting to try to show this directly by substituting Eq. (20) for u(x, t)
in Eqs. (1), (3), and (9). However, upon formally computing uxx, for example, we
obtain

uxx(x, t) = −
∞∑

n=1

cn

(nπ

L

)2
sin

nπx
L

cos
nπat

L
;

due to the presence of the n2 factor in the numerator, this series may not converge.
This would not necessarily mean that the series (20) for u(x, t) is incorrect, but only
that the series (20) cannot be used to calculate uxx and utt . A basic difference between
solutions of the wave equation and those of the heat conduction equation is that
the latter contain negative exponential terms that approach zero very rapidly with
increasing n, which ensures the convergence of the series solution and its derivatives.
In contrast, series solutions of the wave equation contain only oscillatory terms that
do not decay with increasing n.

However, there is an alternative way to establish the validity of Eq. (20) indirectly.
At the same time, we will gain additional information about the structure of the
solution. First we will show that Eq. (20) is equivalent to

u(x, t) = 1
2

[
h(x − at) + h(x + at)

]
, (28)

where h is the function obtained by extending the initial data f into (−L, 0) as an
odd function, and to other values of x as a periodic function of period 2L. That is,

h(x) =
{

f (x), 0 ≤ x ≤ L,
−f (−x), −L < x < 0;

(29)

h(x + 2L) = h(x).
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To establish Eq. (28), note that h has the Fourier series

h(x) =
∞∑

n=1

cn sin
nπx

L
, (30)

where cn is given by Eq. (22). Then, using the trigonometric identities for the sine of
a sum or difference, we obtain

h(x − at) =
∞∑

n=1

cn

(
sin

nπx
L

cos
nπat

L
− cos

nπx
L

sin
nπat

L

)
,

h(x + at) =
∞∑

n=1

cn

(
sin

nπx
L

cos
nπat

L
+ cos

nπx
L

sin
nπat

L

)
,

and Eq. (28) follows immediately upon adding the last two equations. From Eq. (28)
we see that u(x, t) is continuous for 0 < x < L, t > 0, provided that h is continuous
on the interval (−∞, ∞). This requires f to be continuous on the original interval
[0, L]. Similarly, u is twice continuously differentiable with respect to either variable
in 0 < x < L, t > 0, provided that h is twice continuously differentiable on (−∞, ∞).
This requires f ′ and f ′′ to be continuous on [0, L]. Furthermore, since h′′ is the
odd extension of f ′′, we must also have f ′′(0) = f ′′(L) = 0. However, since h′ is the
even extension of f ′, no further conditions are required on f ′. Provided that these
conditions are met, uxx and utt can be computed from Eq. (28), and it is an elementary
exercise to show that these derivatives satisfy the wave equation. Some of the details
of the argument just indicated are given in Problems 19 and 20.

If some of the continuity requirements stated in the last paragraph are not met,
then u is not differentiable at some points in the semi-infinite strip 0 < x < L, t > 0,
and thus is a solution of the wave equation only in a somewhat restricted sense. An
important physical consequence of this observation is that if there are any disconti-
nuities present in the initial data f , then they will be preserved in the solution u(x, t)
for all time. In contrast, in heat conduction problems, initial discontinuities are in-
stantly smoothed out (Section 10.6). Suppose that the initial displacement f has a
jump discontinuity at x = x0, 0 ≤ x0 ≤ L. Since h is a periodic extension of f , the
same discontinuity is present in h(ξ) at ξ = x0 + 2nL and at ξ = −x0 + 2nL, where
n is any integer. Thus h(x − at) is discontinuous when x − at = x0 + 2nL, or when
x − at = −x0 + 2nL. For a fixed x in [0, L] the discontinuity that was originally at
x0 will reappear in h(x − at) at the times t = (x ± x0 − 2nL)/a. Similarly, h(x + at)
is discontinuous at the point x at the times t = (−x ± x0 + 2mL)/a, where m is any
integer. If we refer to Eq. (28), it then follows that the solution u(x, t) is also discon-
tinuous at the given point x at these times. Since the physical problem is posed for
t > 0, only those values of m and n that yield positive values of t are of interest.

General Problem for the Elastic String. Let us modify the problem just considered by sup-
posing that the string is set in motion from its equilibrium position with a given
velocity. Then the vertical displacement u(x, t) must satisfy the wave equation (1)

a2uxx = utt , 0 < x < L, t > 0;

the boundary conditions (3)

u(0, t) = 0, u(L, t) = 0, t ≥ 0;
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and the initial conditions

u(x, 0) = 0, ut(x, 0) = g(x), 0 ≤ x ≤ L, (31)

where g(x) is the initial velocity at the point x of the string.
The solution of this new problem can be obtained by following the procedure

described above for the problem (1), (3), and (9). Upon separating variables, we
find that the problem for X(x) is exactly the same as before. Thus, once again,
λ = n2π2/L2 and X(x) is proportional to sin(nπx/L). The differential equation for
T(t) is again Eq. (17), but the associated initial condition is now

T(0) = 0, (32)

corresponding to the first of the initial conditions (31). The general solution of
Eq. (17) is given by Eq. (18), but now the initial condition (32) requires that k1 = 0.
Therefore T(t) is now proportional to sin(nπat/L) and the fundamental solutions
for the problem (1), (3), and (31) are

un(x, t) = sin
nπx

L
sin

nπat
L

, n = 1, 2, 3, . . . . (33)

Each of the functions un(x, t) satisfies the wave equation (1), the boundary conditions
(3), and the first of the initial conditions (31). The main consequence of using the
initial conditions (31) rather than (9) is that the time-dependent factor in un(x, t)
involves a sine rather than a cosine.

To satisfy the remaining (nonhomogeneous) initial condition,we assume that u(x, t)
can be expressed as a linear combination of the fundamental solutions (33); that is,

u(x, t) =
∞∑

n=1

knun(x, t) =
∞∑

n=1

kn sin
nπx

L
sin

nπat
L

. (34)

To determine the values of the coefficients kn, we differentiate Eq. (34) with respect
to t, set t = 0, and use the second initial condition (31); this gives the equation

ut(x, 0) =
∞∑

n=1

nπa
L

kn sin
nπx

L
= g(x). (35)

Hence the quantities (nπa/L)kn are the coefficients in the Fourier sine series of
period 2L for g. Therefore

nπa
L

kn = 2
L

∫ L

0
g(x) sin

nπx
L

dx, n = 1, 2, . . . . (36)

Thus Eq. (34), with the coefficients given by Eq. (36), constitutes a formal solution
to the problem of Eqs. (1), (3), and (31). The validity of this formal solution can
be established by arguments similar to those previously outlined for the solution of
Eqs. (1), (3), and (9).

Finally, we turn to the problem consisting of the wave equation (1), the boundary
conditions (3), and the general initial conditions (4), (5):

u(x, 0) = f (x), ut(x, 0) = g(x), 0 < x < L, (37)

where f (x) and g(x) are the given initial position and velocity, respectively, of the
string. Although this problem can be solved by separating variables, as in the cases
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discussed previously, it is important to note that it can also be solved simply by adding
together the two solutions that we obtained above. To show that this is true, let v(x, t)
be the solution of the problem (1), (3), and (9), and let w(x, t) be the solution of the
problem (1), (3), and (31). Thus v(x, t) is given by Eqs. (20) and (22), and w(x, t) is
given by Eqs. (34) and (36). Now let u(x, t) = v(x, t) + w(x, t); what problem does
u(x, t) satisfy? First, observe that

a2uxx − utt = (a2vxx − vtt) + (a2wxx − wtt) = 0 + 0 = 0, (38)

so u(x, t) satisfies the wave equation (1). Next, we have

u(0, t) = v(0, t) + w(0, t) = 0 + 0 = 0, u(L, t) = v(L, t) + w(L, t) = 0 + 0 = 0,
(39)

so u(x, t) also satisfies the boundary conditions (3). Finally, we have

u(x, 0) = v(x, 0) + w(x, 0) = f (x) + 0 = f (x) (40)

and
ut(x, 0) = vt(x, 0) + wt(x, 0) = 0 + g(x) = g(x). (41)

Thus u(x, t) satisfies the general initial conditions (37).
We can restate the result we have just obtained in the following way. To solve

the wave equation with the general initial conditions (37), you can solve instead
the somewhat simpler problems with the initial conditions (9) and (31), respectively,
and then add together the two solutions. This is another use of the principle of
superposition.

PROBLEMS Consider an elastic string of length L whose ends are held fixed. The string is set in motion
with no initial velocity from an initial position u(x, 0) = f (x). In each of Problems 1 through
4 carry out the following steps. Let L = 10 and a = 1 in parts (b) through (d).
(a) Find the displacement u(x, t) for the given initial position f (x).
(b) Plot u(x, t) versus x for 0 ≤ x ≤ 10 and for several values of t between t = 0 and t = 20.
(c) Plot u(x, t) versus t for 0 ≤ t ≤ 20 and for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

1. f (x) =
{

2x/L, 0 ≤ x ≤ L/2,
2(L − x)/L, L/2 < x ≤ L

2. f (x) =

⎧⎪⎨
⎪⎩

4x/L, 0 ≤ x ≤ L/4,
1, L/4 < x < 3L/4,
4(L − x)/L, 3L/4 ≤ x ≤ L

3. f (x) = 8x(L − x)2/L3

4. f (x) =
{

1, L/2 − 1 < x < L/2 + 1 (L > 2),
0, otherwise

Consider an elastic string of length L whose ends are held fixed. The string is set in motion
from its equilibrium position with an initial velocity ut(x, 0) = g(x). In each of Problems 5
through 8 carry out the following steps. Let L = 10 and a = 1 in parts (b) through (d).



September 11, 2008 11:18 boyce-9e-bvp Sheet number 661 Page number 641 cyan black

10.7 The Wave Equation: Vibrations of an Elastic String 641

(a) Find the displacement u(x, t) for the given g(x).
(b) Plot u(x, t) versus x for 0 ≤ x ≤ 10 and for several values of t between t = 0 and t = 20.
(c) Plot u(x, t) versus t for 0 ≤ t ≤ 20 and for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

5. g(x) =
{

2x/L, 0 ≤ x ≤ L/2,
2(L − x)/L, L/2 < x ≤ L

6. g(x) =

⎧⎪⎨
⎪⎩

4x/L, 0 ≤ x ≤ L/4,
1, L/4 < x < 3L/4,
4(L − x)/L, 3L/4 ≤ x ≤ L

7. g(x) = 8x(L − x)2/L3

8. g(x) =
{

1, L/2 − 1 < x < L/2 + 1 (L > 2),
0, otherwise

9. If an elastic string is free at one end, the boundary condition to be satisfied there is that
ux = 0. Find the displacement u(x, t) in an elastic string of length L, fixed at x = 0 and
free at x = L, set in motion with no initial velocity from the initial position u(x, 0) = f (x),
where f is a given function.
Hint: Show that the fundamental solutions for this problem,satisfying all conditions except
the nonhomogeneous initial condition, are

un(x, t) = sin λnx cos λnat,

where λn = (2n − 1)π/2L, n = 1, 2, . . . . Compare this problem with Problem 15 of Section
10.6; pay particular attention to the extension of the initial data out of the original interval
[0, L].

10. Consider an elastic string of length L. The end x = 0 is held fixed, while the end x = L
is free; thus the boundary conditions are u(0, t) = 0 and ux(L, t) = 0. The string is set in
motion with no initial velocity from the initial position u(x, 0) = f (x), where

f (x) =
{

1, L/2 − 1 < x < L/2 + 1 (L > 2),
0, otherwise.

(a) Find the displacement u(x, t).
(b) With L = 10 and a = 1, plot u versus x for 0 ≤ x ≤ 10 and for several values of t. Pay
particular attention to values of t between 3 and 7. Observe how the initial disturbance is
reflected at each end of the string.
(c) With L = 10 and a = 1, plot u versus t for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

11. Suppose that the string in Problem 10 is started instead from the initial position
f (x) = 8x(L − x)2/L3. Follow the instructions in Problem 10 for this new problem.

12. Dimensionless variables can be introduced into the wave equation a2uxx = utt in the fol-
lowing manner:
(a) Let s = x/L and show that the wave equation becomes

a2uss = L2utt .
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(b) Show that L/a has the dimensions of time and thus can be used as the unit on the
time scale. Thus, let τ = at/L and show that the wave equation then reduces to

uss = uττ .

Problems 13 and 14 indicate the form of the general solution of the wave equation and the
physical significance of the constant a.

13. (a) Show that the wave equation
a2uxx = utt

can be reduced to the form uξη = 0 by the change of variables ξ = x − at, η = x + at.
(b) Show that u(x, t) can be written as

u(x, t) = φ(x − at) + ψ(x + at),

where φ and ψ are arbitrary functions.

14. (a) Plot the value of φ(x − at) for t = 0, 1/a, 2/a, and t0/a if φ(s) = sin s. Note that for any
t �= 0 the graph of y = φ(x − at) is the same as that of y = φ(x) when t = 0, but displaced a
distance at in the positive x direction. Thus a represents the velocity at which a disturbance
moves along the string.
(b) What is the interpretation of φ(x + at)?

15. A steel wire 5 ft in length is stretched by a tensile force of 50 lb. The wire has a weight per
unit length of 0.026 lb/ft.
(a) Find the velocity of propagation of transverse waves in the wire.
(b) Find the natural frequencies of vibration.
(c) If the tension in the wire is increased, how are the natural frequencies changed? Are
the natural modes also changed?

16. Consider the wave equation
a2uxx = utt

in an infinite one-dimensional medium subject to the initial conditions

u(x, 0) = f (x), ut(x, 0) = 0, −∞ < x < ∞.

(a) Using the form of the solution obtained in Problem 13, show that φ and ψ must satisfy

φ(x) + ψ(x) = f (x),

−φ′(x) + ψ ′(x) = 0.

(b) Solve the equations of part (a) for φ and ψ , and thereby show that

u(x, t) = 1
2

[
f (x − at) + f (x + at)

]
.

This form of the solution was obtained by D’Alembert in 1746.
Hint: Note that the equation ψ ′(x) = φ′(x) is solved by choosing ψ(x) = φ(x) + c.

(c) Let

f (x) =
{

2, −1 < x < 1,
0, otherwise.
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Show that

f (x − at) =
{

2, −1 + at < x < 1 + at,
0, otherwise.

Also determine f (x + at).

(d) Sketch the solution found in part (b) at t = 0, t = 1/2a, t = 1/a, and t = 2/a, obtain-
ing the results shown in Figure 10.7.7. Observe that an initial displacement produces two
waves moving in opposite directions away from the original location; each wave consists
of one-half of the initial displacement.

x

u

x

x

x

u

u

u

2

1–1

1

–2–3

1

1

2

–1

–2 –1 1

1 2

2

3

–1

1

1

t = 0

t = 1
2a

– 3
2

1
2

3
2

– 1
2

t = 1
a

t = 2
a

FIGURE 10.7.7 Propagation of initial disturbance in an infinite one-dimensional medium.

17. Consider the wave equation

a2uxx = utt

in an infinite one-dimensional medium subject to the initial conditions

u(x, 0) = 0, ut(x, 0) = g(x), −∞ < x < ∞.
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(a) Using the form of the solution obtained in Problem 13, show that

φ(x) + ψ(x) = 0,

−aφ′(x) + aψ ′(x) = g(x).

(b) Use the first equation of part (a) to show that ψ ′(x) = −φ′(x). Then use the second
equation to show that −2aφ′(x) = g(x) and therefore that

φ(x) = − 1
2a

∫ x

x0

g(ξ) dξ + φ(x0),

where x0 is arbitrary. Finally, determine ψ(x).
(c) Show that

u(x, t) = 1
2a

∫ x+at

x−at
g(ξ) dξ.

18. By combining the results of Problems 16 and 17, show that the solution of the problem

a2uxx = utt ,

u(x, 0) = f (x), ut(x, 0) = g(x), −∞ < x < ∞
is given by

u(x, t) = 1
2

[
f (x − at) + f (x + at)

] + 1
2a

∫ x+at

x−at
g(ξ) dξ.

Problems 19 and 20 indicate how the formal solution (20), (22) of Eqs. (1), (3), and (9) can be
shown to constitute the actual solution of that problem.

19. By using the trigonometric identity sin A cos B = 1
2

[
sin(A + B) + sin(A − B)

]
, show that

the solution (20) of the problem of Eqs. (1), (3), and (9) can be written in the form (28).

20. Let h(ξ) represent the initial displacement in [0, L], extended into (−L, 0) as an odd
function and extended elsewhere as a periodic function of period 2L. Assuming that h, h′,
and h′′ are continuous, show by direct differentiation that u(x, t) as given in Eq. (28) satisfies
the wave equation (1) and also the initial conditions (9). Note also that since Eq. (20)
clearly satisfies the boundary conditions (3), the same is true of Eq. (28). Comparing
Eq. (28) with the solution of the corresponding problem for the infinite string (Problem
16), we see that they have the same form, provided that the initial data for the finite string,
defined originally only on the interval 0 ≤ x ≤ L, are extended in the given manner over
the entire x-axis. If this is done, the solution for the infinite string is also applicable to the
finite one.

21. The motion of a circular elastic membrane, such as a drumhead, is governed by the two-
dimensional wave equation in polar coordinates

urr + (1/r)ur + (1/r2)uθθ = a−2utt .

Assuming that u(r, θ , t) = R(r)�(θ)T(t), find ordinary differential equations satisfied by
R(r), �(θ), and T(t).

22. The total energy E(t) of the vibrating string is given as a function of time by

E(t) =
∫ L

0

[
1
2 ρu2

t (x, t) + 1
2 Tu2

x(x, t)
]

dx; (i)
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the first term is the kinetic energy due to the motion of the string, and the second term is
the potential energy created by the displacement of the string away from its equilibrium
position.

For the displacement u(x, t) given by Eq. (20)—that is, for the solution of the string
problem with zero initial velocity—show that

E(t) = π2T
4L

∞∑
n=1

n2c2
n. (ii)

Note that the right side of Eq. (ii) does not depend on t. Thus the total energy E is a
constant and therefore is conserved during the motion of the string.
Hint: Use Parseval’s equation (Problem 37 of Section 10.4 and Problem 17 of Section
10.3), and recall that a2 = T/ρ.

23. Dispersive Waves. Consider the modified wave equation

a−2utt + γ 2u = uxx, 0 < x < L, t > 0 (i)

with the boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0 (ii)

and the initial conditions

u(x, 0) = f (x), ut(x, 0) = 0, 0 < x < L. (iii)

(a) Show that the solution can be written as

u(x, t) =
∞∑

n=1

cn cos

(√
n2π2

L2
+ γ 2 at

)
sin

nπx
L

,

where

cn = 2
L

∫ L

0
f (x) sin

nπx
L

dx.

(b) By using trigonometric identities, rewrite the solution as

u(x, t) = 1
2

∞∑
n=1

cn

[
sin

nπ

L
(x + ant) + sin

nπ

L
(x − ant)

]
.

Determine an, the speed of wave propagation.
(c) Observe that an, found in part (b), depends on n. This means that components of
different wave lengths (or frequencies) are propagated at different speeds, resulting in
a distortion of the original wave form over time. This phenomenon is called dispersion.
Find the condition under which an is independent of n—that is, there is no dispersion.

24. Consider the situation in Problem 23 with a2 = 1, L = 10, and

f (x) =

⎧⎪⎨
⎪⎩

x − 4, 4 ≤ x ≤ 5,
6 − x, 5 ≤ x ≤ 6,
0, otherwise.

(a) Determine the coefficients cn in the solution of Problem 23(a).
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(b) Plot
N∑

n=1

cn sin
nπx
10

for 0 ≤ x ≤ 10,

choosing N large enough so that the plot accurately displays the graph of f (x). Use this
value of N for the remaining plots called for in this problem.
(c) Let γ = 0. Plot u(x, t) versus x for t = 60.
(d) Let γ = 1/8. Plot u(x, t) versus x for t = 20, 40, and 60.
(e) Let γ = 1/4. Plot u(x, t) versus x for t = 20, 40, and 60.

10.8 Laplace’s Equation
One of the most important of all partial differential equations occurring in applied
mathematics is that associated with the name of Laplace11: in two dimensions

uxx + uyy = 0, (1)

and in three dimensions
uxx + uyy + uzz = 0. (2)

For example, in a two-dimensional heat conduction problem, the temperature
u(x, y, t) must satisfy the differential equation

α2(uxx + uyy) = ut , (3)

whereα2 is the thermal diffusivity. If a steady state exists,u is a function of x and y only,
and the time derivative vanishes; in this case Eq. (3) reduces to Eq. (1). Similarly, for
the steady-state heat conduction problem in three dimensions, the temperature must
satisfy the three-dimensional form of Laplace’s equation. Equations (1) and (2) also
occur in other branches of mathematical physics. In the consideration of electrostatic
fields, the electric potential function in a dielectric medium containing no electric
charges must satisfy either Eq. (1) or Eq. (2), depending on the number of space
dimensions involved. Similarly, the potential function of a particle in free space acted
on only by gravitational forces satisfies the same equations. Consequently, Laplace’s
equation is often referred to as the potential equation. Another example arises in
the study of the steady (time-independent), two-dimensional, inviscid, irrotational
motion of an incompressible fluid. This study centers on two functions, known as
the velocity potential function and the stream function, both of which satisfy Eq. (1).
In elasticity, the displacements that occur when a perfectly elastic bar is twisted are
described in terms of the so-called warping function, which also satisfies Eq. (1).

11Laplace’s equation is named for Pierre-Simon de Laplace, who, beginning in 1782, studied its solutions
extensively while investigating the gravitational attraction of arbitrary bodies in space. However, the
equation first appeared in 1752 in a paper by Euler on hydrodynamics.
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Since there is no time dependence in any of the problems mentioned previously,
there are no initial conditions to be satisfied by the solutions of Eq. (1) or (2). They
must, however, satisfy certain boundary conditions on the bounding curve or surface
of the region in which the differential equation is to be solved. Since Laplace’s equa-
tion is of second order, it might be plausible to expect that two boundary conditions
would be required to determine the solution completely. This, however, is not the
case. Recall that in the heat conduction problem for the finite bar (Sections 10.5
and 10.6) it was necessary to prescribe one condition at each end of the bar—that
is, one condition at each point of the boundary. If we generalize this observation
to multidimensional problems, it is then natural to prescribe one condition on the
function u at each point on the boundary of the region in which a solution of Eq. (1)
or (2) is sought. The most common boundary condition occurs when the value of
u is specified at each boundary point; in terms of the heat conduction problem, this
corresponds to prescribing the temperature on the boundary. In some problems the
value of the derivative, or rate of change, of u in the direction normal to the bound-
ary is specified instead; the condition on the boundary of a thermally insulated body,
for example, is of this type. It is entirely possible for more complicated boundary
conditions to occur; for example, u might be prescribed on part of the boundary and
its normal derivative specified on the remainder. The problem of finding a solution
of Laplace’s equation that takes on given boundary values is known as a Dirichlet
problem, in honor of P. G. L. Dirichlet.12 In contrast, if the values of the normal
derivative are prescribed on the boundary, the problem is said to be a Neumann
problem, in honor of K. G. Neumann.13 The Dirichlet and Neumann problems are
also known as the first and second boundary value problems of potential theory,
respectively.

Physically, it is plausible to expect that the types of boundary conditions just men-
tioned will be sufficient to determine the solution completely. Indeed, it is possible
to establish the existence and uniqueness of the solution of Laplace’s equation under
the boundary conditions mentioned, provided that the shape of the boundary and
the functions appearing in the boundary conditions satisfy certain very mild require-
ments. However, the proofs of these theorems, and even their accurate statement,
are beyond the scope of the present book. Our only concern will be solving some
typical problems by means of separation of variables and Fourier series.

While the problems chosen as examples have interesting physical interpretations
(in terms of electrostatic potentials or steady state temperature distributions, for
instance), our purpose here is primarily to point out some of the features that may
occur during their mathematical solution. It is also worth noting again that more
complicated problems can sometimes be solved by expressing the solution as the
sum of solutions of several simpler problems (see Problems 3 and 4).

12Peter Gustav Lejeune Dirichlet (1805–1859) was a professor at Berlin and, after the death of Gauss, at
Göttingen. In 1829 he provided the first set of conditions sufficient to guarantee the convergence of a
Fourier series. The definition of function that is usually used today in elementary calculus is essentially
the one given by Dirichlet in 1837. Although he is best known for his work in analysis and differential
equations, Dirichlet was also one of the leading number theorists of the nineteenth century.
13Karl Gottfried Neumann (1832–1925), professor at Leipzig, made contributions to differential equations,
integral equations, and complex variables.
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Dirichlet Problem for a Rectangle. Consider the mathematical problem of finding the
function u satisfying Laplace’s equation (1)

uxx + uyy = 0,

in the rectangle 0 < x < a, 0 < y < b, and also satisfying the boundary conditions

u(x, 0) = 0, u(x, b) = 0, 0 < x < a,
(4)

u(0, y) = 0, u(a, y) = f (y), 0 ≤ y ≤ b,

where f is a given function on 0 ≤ y ≤ b (see Figure 10.8.1).

y

x

b

a

u(0, y) = 0

u(x, b) = 0

u(a, y) = f (y)

u(x, 0) = 0

(a, b)

uxx + uyy = 0

FIGURE 10.8.1 Dirichlet problem for a rectangle.

To solve this problem, we wish to construct a fundamental set of solutions satisfying
the partial differential equation and the homogeneous boundary conditions; then we
will superpose these solutions so as to satisfy the remaining boundary condition. Let
us assume that

u(x, y) = X(x)Y(y) (5)

and substitute for u in Eq. (1). This yields

X ′′

X
= −Y ′′

Y
= λ,

where λ is the separation constant. Thus we obtain the two ordinary differential
equations

X ′′ − λX = 0, (6)

Y ′′ + λY = 0. (7)

If we now substitute for u from Eq. (5) in each of the homogeneous boundary con-
ditions, we find that

X(0) = 0 (8)
and

Y(0) = 0, Y(b) = 0. (9)

We will first determine the solution of the differential equation (7) subject to
the boundary conditions (9). However, this problem is essentially identical to one
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encountered previously in Sections 10.1, 10.5, and 10.7. We conclude that there are
nontrivial solutions if and only if λ is an eigenvalue, namely,

λ = (nπ/b)2, n = 1, 2, . . . , (10)

and Y(y) is proportional to the corresponding eigenfunction sin(nπy/b). Next, we
substitute from Eq. (10) for λ in Eq. (6) and solve this equation subject to the bound-
ary condition (8). It is convenient to write the general solution of Eq. (6) as

X(x) = k1 cosh(nπx/b) + k2 sinh(nπx/b), (11)

and the boundary condition (8) then requires that k1 = 0. Therefore X(x) must be
proportional to sinh(nπx/b). Thus we obtain the fundamental solutions

un(x, y) = sinh
nπx

b
sin

nπy
b

, n = 1, 2, . . . . (12)

These functions satisfy the differential equation (1) and all the homogeneous bound-
ary conditions for each value of n.

To satisfy the remaining nonhomogeneous boundary condition at x = a,we assume,
as usual, that we can represent the solution u(x, y) in the form

u(x, y) =
∞∑

n=1

cnun(x, y) =
∞∑

n=1

cn sinh
nπx

b
sin

nπy
b

. (13)

The coefficients cn are determined by the boundary condition

u(a, y) =
∞∑

n=1

cn sinh
nπa

b
sin

nπy
b

= f (y). (14)

Therefore the quantities cn sinh(nπa/b) must be the coefficients in the Fourier sine
series of period 2b for f and are given by

cn sinh
nπa

b
= 2

b

∫ b

0
f (y) sin

nπy
b

dy. (15)

Thus the solution of the partial differential equation (1) satisfying the boundary
conditions (4) is given by Eq. (13) with the coefficients cn computed from Eq. (15).

From Eqs. (13) and (15) we see that the solution contains the factor
sinh(nπx/b)/ sinh(nπa/b). To estimate this quantity for large n, we can use the
approximation sinh ξ ∼= eξ /2, and thereby obtain

sinh(nπx/b)

sinh(nπa/b)
∼=

1
2 exp(nπx/b)

1
2 exp(nπa/b)

= exp[−nπ(a − x)/b].

Thus this factor has the character of a negative exponential; consequently, the series
(13) converges quite rapidly unless a − x is very small.
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E X A M P L E

1

To illustrate these results, let a = 3, b = 2, and

f (y) =
{

y, 0 ≤ y ≤ 1,
2 − y, 1 ≤ y ≤ 2.

(16)

By evaluating cn from Eq. (15), we find that

cn = 8 sin(nπ/2)

n2π2 sinh(3nπ/2)
. (17)

Then u(x, y) is given by Eq. (13). Keeping 20 terms in the series, we can plot u versus x and y,
as shown in Figure 10.8.2. Alternatively, we can construct a contour plot showing level curves
of u(x, y); Figure 10.8.3 is such a plot, with an increment of 0.1 between adjacent curves.

3
y x

u

2

1
0.21

2 0.4

0.6

0.8

1.0

FIGURE 10.8.2 Plot of u versus x and y for Example 1.
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u = 0

u = 0
u = 0.9

u = 0.7

u = 0.5

u = 0.4
u = 0.2

u = 0.6

u = 0.8

u = 0.3

u = 0.1

321

FIGURE 10.8.3 Level curves of u(x, y) for Example 1.
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Dirichlet Problem for a Circle. Consider the problem of solving Laplace’s equation in a
circular region r < a subject to the boundary condition

u(a, θ) = f (θ), (18)

where f is a given function on 0 ≤ θ < 2π (see Figure 10.8.4). In polar coordinates
Laplace’s equation has the form

urr + 1
r

ur + 1
r2

uθθ = 0. (19)

To complete the statement of the problem, we note that for u(r, θ) to be single-valued,
it is necessary that u be periodic in θ with period 2π . Moreover, we state explicitly
that u(r, θ) must be bounded for r ≤ a, since this will become important later.

y

x

a

θ

u(a,   ) = f ( )θ θ

urr +   ur +    u   = 01
r

1
r2 θθ

FIGURE 10.8.4 Dirichlet problem for a circle.

To apply the method of separation of variables to this problem, we assume that

u(r, θ) = R(r)�(θ), (20)

and substitute for u in the differential equation (19). This yields

R′′� + 1
r

R′� + 1
r2

R�′′ = 0,

or

r2 R′′

R
+ r

R′

R
= −�′′

�
= λ, (21)

where λ is the separation constant. Thus we obtain the two ordinary differential
equations

r2R′′ + rR′ − λR = 0, (22)

�′′ + λ� = 0. (23)

In this problem there are no homogeneous boundary conditions; recall, however,
that solutions must be bounded and also periodic in θ with period 2π . It is possible



September 11, 2008 11:18 boyce-9e-bvp Sheet number 672 Page number 652 cyan black

652 Chapter 10. Partial Differential Equations and Fourier Series

to show (Problem 9) that the periodicity condition requires λ to be real. We will
consider in turn the cases in which λ is negative, zero, and positive.

If λ < 0, let λ = −μ2, where μ > 0. Then Eq. (23) becomes �′′ − μ2� = 0, and
consequently,

�(θ) = c1eμθ + c2e−μθ . (24)

Thus �(θ) can be periodic only if c1 = c2 = 0, and we conclude that λ cannot be
negative.

If λ = 0, then Eq. (23) becomes �′′ = 0, and thus

�(θ) = c1 + c2θ. (25)

For �(θ) to be periodic we must have c2 = 0, so that �(θ) is a constant. Further, for
λ = 0, Eq. (22) becomes

r2R′′ + rR′ = 0. (26)

This equation is of the Euler type and has the solution

R(r) = k1 + k2 ln r. (27)

The logarithmic term cannot be accepted if u(r, θ) is to remain bounded as r → 0;
hence k2 = 0. Thus, corresponding to λ = 0, we conclude that u(r, θ) must be a
constant—that is, proportional to the solution

u0(r, θ) = 1. (28)

Finally, if λ > 0, we let λ = μ2, where μ > 0. Then Eqs. (22) and (23) become

r2R′′ + rR′ − μ2R = 0 (29)

and
�′′ + μ2� = 0, (30)

respectively. Equation (29) is an Euler equation and has the solution

R(r) = k1rμ + k2r−μ, (31)

while Eq. (30) has the solution

�(θ) = c1 sin μθ + c2 cos μθ. (32)

In order for � to be periodic with period 2π , it is necessary for μ to be a positive
integer n. With μ = n it follows that the solution r−μ in Eq. (31) must be discarded
since it becomes unbounded as r → 0. Consequently, k2 = 0 and the appropriate
solutions of Eq. (19) are

un(r, θ) = rn cos nθ , vn(r, θ) = rn sin nθ , n = 1, 2, . . . . (33)

These functions, together with u0(r, θ) = 1, form a set of fundamental solutions for
the present problem.

In the usual way we now assume that u can be expressed as a linear combination
of the fundamental solutions; that is,

u(r, θ) = c0

2
+

∞∑
n=1

rn(cn cos nθ + kn sin nθ). (34)
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The boundary condition (18) then requires that

u(a, θ) = c0

2
+

∞∑
n=1

an(cn cos nθ + kn sin nθ) = f (θ) (35)

for 0 ≤ θ < 2π . The function f may be extended outside this interval so that it is
periodic with period 2π and therefore has a Fourier series of the form (35). Since
the extended function has period 2π , we may compute its Fourier coefficients by
integrating over any period of the function. In particular, it is convenient to use the
original interval (0, 2π); then

ancn = 1
π

∫ 2π

0
f (θ) cos nθ dθ , n = 0, 1, 2, . . . ; (36)

ankn = 1
π

∫ 2π

0
f (θ) sin nθ dθ , n = 1, 2, . . . . (37)

With this choice of the coefficients, Eq. (34) represents the solution of the boundary
value problem of Eqs. (18) and (19). Note that in this problem we needed both sine
and cosine terms in the solution. This is because the boundary data were given on
0 ≤ θ < 2π and have period 2π . As a consequence, the full Fourier series is required,
rather than sine or cosine terms alone.

PROBLEMS
1. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,

that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,

u(x, 0) = 0, u(x, b) = g(x), 0 ≤ x ≤ a.

(b) Find the solution if

g(x) =
{

x, 0 ≤ x ≤ a/2,
a − x, a/2 ≤ x ≤ a.

(c) For a = 3 and b = 1 plot u versus x for several values of y and also plot u versus y for
several values of x.
(d) Plot u versus both x and y in three dimensions. Also draw a contour plot showing
several level curves of u(x, y) in the xy-plane.

2. Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b, that
satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,

u(x, 0) = h(x), u(x, b) = 0, 0 ≤ x ≤ a.
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3. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,
that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = f (y), 0 < y < b,

u(x, 0) = h(x), u(x, b) = 0, 0 ≤ x ≤ a.

Hint: Consider the possibility of adding the solutions of two problems, one with homo-
geneous boundary conditions except for u(a, y) = f (y), and the other with homogeneous
boundary conditions except for u(x, 0) = h(x).
(b) Find the solution if h(x) = (x/a)2 and f (y) = 1 − (y/b).
(c) Let a = 2 and b = 2. Plot the solution in several ways: u versus x, u versus y, u versus
both x and y, and a contour plot.

4. Show how to find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a,
0 < y < b, that satisfies the boundary conditions

u(0, y) = k(y), u(a, y) = f (y), 0 < y < b,

u(x, 0) = h(x), u(x, b) = g(x), 0 ≤ x ≤ a.

Hint: See Problem 3.

5. Find the solution u(r, θ) of Laplace’s equation

urr + (1/r)ur + (1/r2)uθθ = 0

outside the circle r = a, that satisfies the boundary condition

u(a, θ) = f (θ), 0 ≤ θ < 2π ,

on the circle. Assume that u(r, θ) is single-valued and bounded for r > a.
6. (a) Find the solution u(r, θ) of Laplace’s equation in the semicircular region r < a,

0 < θ < π , that satisfies the boundary conditions

u(r, 0) = 0, u(r, π) = 0, 0 ≤ r < a,

u(a, θ) = f (θ), 0 ≤ θ ≤ π.

Assume that u is single-valued and bounded in the given region.
(b) Find the solution if f (θ) = θ(π − θ).
(c) Let a = 2 and plot the solution in several ways: u versus r, u versus θ , u versus both r
and θ , and a contour plot.

7. Find the solution u(r, θ) of Laplace’s equation in the circular sector 0 < r < a,
0 < θ < α, that satisfies the boundary conditions

u(r, 0) = 0, u(r, α) = 0, 0 ≤ r < a,

u(a, θ) = f (θ), 0 ≤ θ ≤ α.

Assume that u is single-valued and bounded in the sector.
8. (a) Find the solution u(x, y) of Laplace’s equation in the semi-infinite strip 0 < x < a,

y > 0, that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, y > 0,

u(x, 0) = f (x), 0 ≤ x ≤ a

and the additional condition that u(x, y) → 0 as y → ∞.
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(b) Find the solution if f (x) = x(a − x).
(c) Let a = 5. Find the smallest value of y0 for which u(x, y) ≤ 0.1 for all y ≥ y0.

9. Show that Eq. (23) has periodic solutions only if λ is real.
Hint: Let λ = −μ2, where μ = ν + iσ with ν and σ real.

10. Consider the problem of finding a solution u(x, y) of Laplace’s equation in the rectangle
0 < x < a, 0 < y < b, that satisfies the boundary conditions

ux(0, y) = 0, ux(a, y) = f (y), 0 < y < b,

uy(x, 0) = 0, uy(x, b) = 0, 0 ≤ x ≤ a.

This is an example of a Neumann problem.
(a) Show that Laplace’s equation and the homogeneous boundary conditions determine
the fundamental set of solutions

u0(x, y) = c0,

un(x, y) = cn cosh(nπx/b) cos(nπy/b), n = 1, 2, 3, . . . .

(b) By superposing the fundamental solutions of part (a), formally determine a function
u satisfying the nonhomogeneous boundary condition ux(a, y) = f (y). Note that when
ux(a, y) is calculated, the constant term in u(x, y) is eliminated, and there is no condition
from which to determine c0. Furthermore, it must be possible to express f by means of a
Fourier cosine series of period 2b, which does not have a constant term. This means that∫ b

0
f (y) dy = 0

is a necessary condition for the given problem to be solvable. Finally, note that c0 remains
arbitrary, and hence the solution is determined only up to this additive constant. This is a
property of all Neumann problems.

11. Find a solution u(r, θ) of Laplace’s equation inside the circle r = a that satisfies the bound-
ary condition on the circle

ur(a, θ) = g(θ), 0 ≤ θ < 2π.

Note that this is a Neumann problem and that its solution is determined only up to an
arbitrary additive constant. State a necessary condition on g(θ) for this problem to be
solvable by the method of separation of variables (see Problem 10).

12. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a,
0 < y < b, that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,

uy(x, 0) = 0, u(x, b) = g(x), 0 ≤ x ≤ a.

Note that this is neither a Dirichlet nor a Neumann problem, but a mixed problem in
which u is prescribed on part of the boundary and its normal derivative on the rest.
(b) Find the solution if

g(x) =
{

x, 0 ≤ x ≤ a/2,
a − x, a/2 ≤ x ≤ a.

(c) Let a = 3 and b = 1. By drawing suitable plots, compare this solution with the solution
of Problem 1.
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13. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a,
0 < y < b, that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = f (y), 0 < y < b,

u(x, 0) = 0, uy(x, b) = 0, 0 ≤ x ≤ a.

Hint: Eventually, it will be necessary to expand f (y) in a series that makes use of the
functions sin(πy/2b), sin(3πy/2b), sin(5πy/2b), . . . (see Problem 39 of Section 10.4).
(b) Find the solution if f (y) = y(2b − y).
(c) Let a = 3 and b = 2; plot the solution in several ways.

14. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a,
0 < y < b, that satisfies the boundary conditions

ux(0, y) = 0, ux(a, y) = 0, 0 < y < b,

u(x, 0) = 0, u(x, b) = g(x), 0 ≤ x ≤ a.

(b) Find the solution if g(x) = 1 + x2(x − a)2.
(c) Let a = 3 and b = 2; plot the solution in several ways.

15. By writing Laplace’s equation in cylindrical coordinates r, θ , and z and then assuming that
the solution is axially symmetric (no dependence on θ), we obtain the equation

urr + (1/r)ur + uzz = 0.

Assuming that u(r, z) = R(r)Z(z), show that R and Z satisfy the equations

rR′′ + R′ + λ2rR = 0, Z′′ − λ2Z = 0.

The equation for R is Bessel’s equation of order zero with independent variable λr.

16. Flow in an Aquifer. Consider the flow of water in a porous medium, such as sand, in
an aquifer. The flow is driven by the hydraulic head, a measure of the potential energy
of the water above the aquifer. Let R : 0 < x < a, 0 < z < b be a vertical section of an
aquifer. In a uniform, homogeneous medium the hydraulic head u(x, z) satisfies Laplace’s
equation

uxx + uzz = 0 in R. (i)

If water cannot flow through the sides and bottom of R, then the boundary conditions
there are

ux(0, z) = 0, ux(a, z) = 0, 0 ≤ z ≤ b (ii)

uz(x, 0) = 0, 0 ≤ x ≤ a. (iii)

Finally, suppose that the boundary condition at z = b is

u(x, b) = b + αx, 0 ≤ x ≤ a, (iv)

where α is the slope of the water table.
(a) Solve the given boundary value problem for u(x, z).
(b) Let a = 1000, b = 500, and α = 0.1. Draw a contour plot of the solution in R; that is,
plot some level curves of u(x, z).
(c) Water flows along paths in R that are orthogonal to the level curves of u(x, z) in the
direction of decreasing u. Plot some of the flow paths.
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A P P E N D I X

A

Derivation of the Heat Conduction Equation. In this section we derive the differ-
ential equation that, to a first approximation at least, governs the conduction of heat
in solids. It is important to understand that the mathematical analysis of a physical
situation or process such as this ultimately rests on a foundation of empirical knowl-
edge of the phenomenon involved. The mathematician must have a place to start, so
to speak, and this place is furnished by experience. Consider a uniform rod insulated
on the lateral surfaces so that heat can flow only in the axial direction. It has been
demonstrated many times that if two parallel cross sections of the same area A and
different temperatures T1 and T2, respectively, are separated by a small distance d,
an amount of heat per unit time will pass from the warmer section to the cooler one.
Moreover, this amount of heat is proportional to the area A and to the temperature
difference | T2 − T1|, and is inversely proportional to the separation distance d. Thus

Amount of heat per unit time = κA| T2 − T1|/d, (1)

where the positive proportionality factor κ is called the thermal conductivity and de-
pends primarily on the material14 of the rod. The relation (1) is often called Fourier’s
law of heat conduction. We repeat that Eq. (1) is an empirical, not a theoretical,
result and that it can be, and has often been, verified by careful experiment. It is the
basis of the mathematical theory of heat conduction.

Now consider a straight rod of uniform cross section and homogeneous material,
oriented so that the x-axis lies along the axis of the rod (see Figure 10.A.1). Let x = 0
and x = L designate the ends of the bar.

x = x0 x = x0 + Δx

H = –  Auxκ H =   Auxκ

x

FIGURE 10.A.1 Conduction of heat in an element of a rod.

We will assume that the sides of the bar are perfectly insulated so that there is no
passage of heat through them. We will also assume that the temperature u depends
only on the axial position x and the time t, and not on the lateral coordinates y and
z. In other words, we assume that the temperature remains constant on any cross
section of the bar. This assumption is usually satisfactory when the lateral dimensions
of the rod are small compared to its length.

The differential equation governing the temperature in the bar is an expression of
a fundamental physical balance; the rate at which heat flows into any portion of the
bar is equal to the rate at which heat is absorbed in that portion of the bar. The terms
in the equation are called the flux (flow) term and the absorption term, respectively.

We will first calculate the flux term. Consider an element of the bar lying between
the cross sections x = x0 and x = x0 + �x, where x0 is arbitrary and �x is small. The

14Actually,κ also depends on the temperature,but if the temperature range is not too great, it is satisfactory
to assume that κ is independent of temperature.
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instantaneous rate of heat transfer H(x0, t) from left to right across the cross section
x = x0 is given by

H(x0, t) = − lim
d→0

κA
u(x0 + d/2, t) − u(x0 − d/2, t)

d

= −κAux(x0, t). (2)

The minus sign appears in this equation because there will be a positive flow of heat
from left to right only if the temperature is greater to the left of x = x0 than to the
right; in this case ux(x0, t) is negative. In a similar manner, the rate at which heat
passes from left to right through the cross section x = x0 + �x is given by

H(x0 + �x, t) = −κAux(x0 + �x, t). (3)

The net rate at which heat flows into the segment of the bar between x = x0 and
x = x0 + �x is thus given by

Q = H(x0, t) − H(x0 + �x, t) = κA[ux(x0 + �x, t) − ux(x0, t)], (4)

and the amount of heat entering this bar element in time �t is

Q�t = κA[ux(x0 + �x, t) − ux(x0, t)] �t. (5)

Let us now calculate the absorption term. The average change in temperature �u,
in the time interval �t, is proportional to the amount of heat Q�t introduced and
inversely proportional to the mass �m of the element. Thus

�u = 1
s

Q�t
�m

= Q�t
sρA�x

, (6)

where the constant of proportionality s is known as the specific heat of the material
of the bar, and ρ is its density.15 The average temperature change �u in the bar
element under consideration is the actual temperature change at some intermediate
point x = x0 + θ�x, where 0 < θ < 1. Thus Eq. (6) can be written as

u(x0 + θ�x, t + �t) − u(x0 + θ�x, t) = Q�t
sρA�x

, (7)

or as
Q�t = [u(x0 + θ�x, t + �t) − u(x0 + θ�x, t)]sρA�x. (8)

To balance the flux and absorption terms, we equate the two expressions for Q�t:

κA[ux(x0 + �x, t) − ux(x0, t)]�t

= sρA[u(x0 + θ�x, t + �t) − u(x0 + θ�x, t)]�x. (9)

Upon dividing Eq. (9) by �x �t and then letting �x → 0 and �t → 0, we obtain the
heat conduction or diffusion equation

α2uxx = ut . (10)

15The dependence of the density and specific heat on temperature is relatively small and will be neglected.
Thus both ρ and s will be considered as constants.
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The quantity α2 defined by

α2 = κ/ρs (11)

is called the thermal diffusivity and is a parameter that depends only on the material
of the bar. The units of α2 are (length)2/time. Typical values of α2 are given in
Table 10.5.1.

Several relatively simple conditions may be imposed at the ends of the bar. For
example, the temperature at an end may be maintained at some constant value T .
This might be accomplished by placing the end of the bar in thermal contact with
some reservoir of sufficient size so that any heat that flows between the bar and the
reservoir does not appreciably alter the temperature of the reservoir. At an end
where this is done the boundary condition is

u = T . (12)

Another simple boundary condition occurs if the end is insulated so that no heat
passes through it. Recalling the expression (2) for the amount of heat crossing any
cross section of the bar, we conclude that the condition of insulation is that this
quantity vanish. Thus

ux = 0 (13)

is the boundary condition at an insulated end.
A more general type of boundary condition occurs if the rate of flow of heat through

an end of the bar is proportional to the temperature there. Let us consider the end
x = 0, where the rate of flow of heat from left to right is given by −κAux(0, t); see
Eq. (2). Hence the rate of heat flow out of the bar (from right to left) at x = 0 is
κAux(0, t). If this quantity is proportional to the temperature u(0, t), then we obtain
the boundary condition

ux(0, t) − h1u(0, t) = 0, t > 0, (14)

where h1 is a nonnegative constant of proportionality. Note that h1 = 0 corresponds
to an insulated end and that h1 → ∞ corresponds to an end held at zero temperature.

If heat flow is taking place at the right end of the bar (x = L), then in a similar way
we obtain the boundary condition

ux(L, t) + h2u(L, t) = 0, t > 0, (15)

where again h2 is a nonnegative constant of proportionality.
Finally, to determine completely the flow of heat in the bar, it is necessary to state

the temperature distribution at one fixed instant, usually taken as the initial time
t = 0. This initial condition is of the form

u(x, 0) = f (x), 0 ≤ x ≤ L. (16)

The problem then is to determine the solution of the differential equation (10)
subject to one of the boundary conditions (12) to (15) at each end and to the initial
condition (16) at t = 0.
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Several generalizations of the heat equation (10) also occur in practice. First, the
bar material may be nonuniform and the cross section may not be constant along the
length of the bar. In this case, the parameters κ , ρ, s, and A may depend on the axial
variable x. Going back to Eq. (2), we see that the rate of heat transfer from left to
right across the cross section at x = x0 is now given by

H(x0, t) = −κ(x0)A(x0)ux(x0, t) (17)

with a similar expression for H(x0 + �x, t). If we introduce these quantities into
Eq. (4) and eventually into Eq. (9), and proceed as before, we obtain the partial
differential equation

(κAux)x = sρAut . (18)

We will usually write Eq. (18) in the form

r(x)ut = [p(x)ux]x, (19)

where p(x) = κ(x)A(x) and r(x) = s(x)ρ(x)A(x). Note that both of these quantities
are intrinsically positive.

A second generalization occurs if there are other ways in which heat enters or
leaves the bar. Suppose that there is a source that adds heat to the bar at a rate
G(x, t, u) per unit time per unit length, where G(x, t, u) > 0. In this case we must add
the term G(x, t, u) �x �t to the left side of Eq. (9), and this leads to the differential
equation

r(x)ut = [p(x)ux]x + G(x, t, u). (20)

If G(x, t, u) < 0, then we speak of a sink that removes heat from the bar at the rate
G(x, t, u) per unit time per unit length. To make the problem tractable, we must
restrict the form of the function G. In particular, we assume that G is linear in u and
that the coefficient of u does not depend on t. Thus we write

G(x, t, u) = F(x, t) − q(x)u. (21)

The minus sign in Eq. (21) has been introduced so that certain equations that appear
later will have their customary forms. Substituting from Eq. (21) into Eq. (20), we
obtain

r(x)ut = [p(x)ux]x − q(x)u + F(x, t). (22)

This equation is sometimes called the generalized heat conduction equation. Bound-
ary value problems for Eq. (22) will be discussed to some extent in Chapter 11.

Finally, if instead of a one-dimensional bar, we consider a body with more than
one significant space dimension, then the temperature is a function of two or three
space coordinates rather than of x alone. Considerations similar to those leading to
Eq. (10) can be employed to derive the heat conduction equation in two dimensions

α2(uxx + uyy) = ut , (23)

or in three dimensions
α2(uxx + uyy + uzz) = ut . (24)

The boundary conditions corresponding to Eqs. (12) and (13) for multidimensional
problems correspond to a prescribed temperature distribution on the boundary, or to
an insulated boundary. Similarly, the initial temperature distribution will in general
be a function of x and y for Eq. (23) and a function of x, y, and z for Eq. (24).
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A P P E N D I X

B

Derivation of the Wave Equation. In this appendix we derive the wave equation in
one space dimension as it applies to the transverse vibrations of an elastic string, or
cable; the elastic string may be thought of as a violin string, a guy wire, or possibly
an electric power line. The same equation, however, with the variables properly
interpreted, occurs in many other wave problems having only one significant space
variable.

Consider a perfectly flexible elastic string stretched tightly between supports fixed
at the same horizontal level (see Figure 10.B.1a). Let the x-axis lie along the string
with the endpoints located at x = 0 and x = L. If the string is set in motion at some
initial time t = 0 (by plucking, for example) and is thereafter left undisturbed, it will
vibrate freely in a vertical plane, provided that damping effects, such as air resistance,
are neglected. To determine the differential equation governing this motion, we will
consider the forces acting on a small element of the string of length �x lying between
the points x and x + �x (see Figure 10.B.1b). We assume that the motion of the string
is small and that, as a consequence, each point on the string moves solely in a vertical
line. We denote by u(x, t) the vertical displacement of the point x at the time t. Let
the tension in the string, which always acts in the tangential direction, be denoted by
T(x, t), and let ρ denote the mass per unit length of the string.

u

x

TT

θ
θ

T

x ⎯x x + Δx

(a)

(b) (c)

T (x + Δx, t)
θ θ+ Δ

V = T sinθ

H = T cos θ
T(x, t)

x = 0 x = L

FIGURE 10.B.1 (a) An elastic string under tension. (b) An element of the displaced string.
(c) Resolution of the tension T into components.

Newton’s law, as it applies to the element �x of the string, states that the net
external force, due to the tension at the ends of the element, must be equal to the
product of the mass of the element and the acceleration of its mass center. Since
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there is no horizontal acceleration, the horizontal components must satisfy

T(x + �x, t) cos(θ + �θ) − T(x, t) cos θ = 0. (1)

If we denote the horizontal component of the tension (see Figure 10.B.1c) by H , then
Eq. (1) states that H is independent of x.

On the other hand, the vertical components satisfy

T(x + �x, t) sin(θ + �θ) − T(x, t) sin θ = ρ �x utt(x, t), (2)

where x is the coordinate of the center of mass of the element of the string under
consideration. Clearly, x lies in the interval x < x < x + �x. The weight of the string,
which acts vertically downward, is assumed to be negligible and has been neglected
in Eq. (2).

If the vertical component of T is denoted by V , then Eq. (2) can be written as

V(x + �x, t) − V(x, t)
�x

= ρutt(x, t).

Passing to the limit as �x → 0 gives

Vx(x, t) = ρutt(x, t). (3)

To express Eq. (3) entirely in terms of u, we note that

V(x, t) = H(t) tan θ = H(t)ux(x, t).

Hence Eq. (3) becomes
(Hux)x = ρutt ,

or, since H is independent of x,

Huxx = ρutt . (4)

For small motions of the string it is permissible to replace H = T cos θ by T . Then
Eq. (4) takes its customary form

a2uxx = utt , (5)

where
a2 = T/ρ. (6)

We will assume further that a2 is a constant, although this is not required in our
derivation, even for small motions. Equation (5) is called the wave equation for one
space dimension. Since T has the dimension of force, and ρ that of mass/length, it
follows that the constant a has the dimension of velocity. It is possible to identify
a as the velocity with which a small disturbance (wave) moves along the string.
According to Eq. (6), the wave velocity a varies directly with the tension in the string,
but inversely with the density of the string material. These facts are in agreement
with experience.

As in the case of the heat conduction equation, there are various generalizations of
the wave equation (5). One important equation is known as the telegraph equation
and has the form

utt + cut + ku = a2uxx + F(x, t), (7)

where c and k are nonnegative constants. The terms cut , ku, and F(x, t) arise from a
viscous damping force, an elastic restoring force, and an external force, respectively.
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Note the similarity of Eq. (7), except for the term a2uxx, with the equation for the
spring–mass system derived in Section 3.7; the additional term a2uxx arises from a
consideration of internal elastic forces.

The telegraph equation also governs the flow of voltage, or current, in a trans-
mission line (hence its name); in this case the coefficients are related to electrical
parameters in the line.

For a vibrating system with more than one significant space coordinate, it may be
necessary to consider the wave equation in two dimensions

a2(uxx + uyy) = utt , (8)

or in three dimensions

a2(uxx + uyy + uzz) = utt . (9)
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C H A P T E R

11

Boundary Value
Problems and
Sturm–Liouville
Theory
As a result of separating variables in a partial differential equation in Chapter 10, we
repeatedly encountered the differential equation

X ′′ + λX = 0, 0 < x < L

with the boundary conditions

X(0) = 0, X(L) = 0.

This boundary value problem is the prototype of a large class of problems that are
important in applied mathematics. These problems are known as Sturm–Liouville
boundary value problems. In this chapter we discuss the major properties of Sturm–
Liouville problems and their solutions; in the process we are able to generalize some-
what the method of separation of variables for partial differential equations.

11.1 The Occurrence of Two-Point Boundary Value Problems
In Chapter 10 we described the method of separation of variables as a means of

solving certain problems involving partial differential equations. The heat conduction
problem consisting of the partial differential equation

α2uxx = ut , 0 < x < L, t > 0, (1)

subject to the boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0 (2)
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and the initial condition

u(x, 0) = f (x), 0 ≤ x ≤ L (3)

is typical of the problems considered there. A crucial part of the process of solv-
ing such problems is to find the eigenvalues and eigenfunctions of the differential
equation

X ′′ + λX = 0, 0 < x < L (4)

with the boundary conditions

X(0) = 0, X(L) = 0 (5)

or perhaps

X ′(0) = 0, X ′(L) = 0. (6)

The sine or cosine functions that result from solving Eq. (4) subject to the boundary
conditions (5) or (6) are used to expand the initial temperature distribution f (x) in a
Fourier series.

In this chapter we extend and generalize the results of Chapter 10. Our main goal
is to show how the method of separation of variables can be used to solve problems
somewhat more general than that of Eqs. (1), (2), and (3). We are interested in three
types of generalizations.

First,we wish to consider more general partial differential equations—for example,
the equation

r(x)ut = [p(x)ux]x − q(x)u + F(x, t). (7)

This equation can arise, as indicated inAppendixA of Chapter 10, in the study of heat
conduction in a bar of variable material properties in the presence of heat sources. If
p and r are constants, and if the source terms qu and F are zero, then Eq. (7) reduces
to Eq. (1). The partial differential equation (7) also occurs in the investigation of
other phenomena of a diffusive character.

A second generalization is to allow more general boundary conditions. In partic-
ular, we wish to consider boundary conditions of the form

ux(0, t) − h1u(0, t) = 0, ux(L, t) + h2u(L, t) = 0. (8)

Such conditions occur when the rate of heat flow through an end of the bar is pro-
portional to the temperature there. Usually, h1 and h2 are nonnegative constants,
but in some cases they may be negative or depend on t. The boundary conditions (2)
are obtained in the limit as h1 → ∞ and h2 → ∞. The other important limiting case,
h1 = h2 = 0, gives the boundary conditions for insulated ends.

The final generalization that we discuss in this chapter concerns the geometry of
the region in which the problem is posed. The results of Chapter 10 are adequate
only for a rather restricted class of problems, chiefly those in which the region of
interest is rectangular or, in a few cases, circular. Later in this chapter we consider
certain problems posed in a few other geometrical regions.

Let us consider the equation

r(x)ut = [p(x)ux]x − q(x)u (9)
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obtained by setting the term F(x, t) in Eq. (7) equal to zero. To separate the variables,
we assume that

u(x, t) = X(x)T(t), (10)

and substitute for u in Eq. (9). We obtain

r(x)XT ′ = [p(x)X ′]′T − q(x)XT (11)

or, upon dividing by r(x)XT ,

T ′

T
= [p(x)X ′]′

r(x)X
− q(x)

r(x)
= −λ. (12)

We have denoted the separation constant by −λ in anticipation of the fact that usually
it will turn out to be real and negative. From Eq. (12) we obtain the following two
ordinary differential equations for X and T :

[p(x)X ′]′ − q(x)X + λr(x)X = 0, (13)

T ′ + λT = 0. (14)

If we substitute from Eq. (10) for u in Eqs. (8) and assume that h1 and h2 are constants,
then we obtain the boundary conditions

X ′(0) − h1X(0) = 0, X ′(L) + h2X(L) = 0. (15)

To proceed further, we need to solve Eq. (13) subject to the boundary conditions
(15). Although this is a more general linear homogeneous two-point boundary value
problem than the problem consisting of the differential equation (4) and the bound-
ary conditions (5) or (6), the solutions behave in very much the same way. For every
value of λ, the problem (13), (15) has the trivial solution X(x) = 0. For certain values
of λ, called eigenvalues, there are also other, nontrivial, solutions called eigenfunc-
tions. These eigenfunctions form the basis for series solutions of a variety of problems
in partial differential equations, such as the generalized heat conduction equation (9)
subject to the boundary conditions (8) and the initial condition (3).

In this chapter we discuss some of the properties of solutions of two-point boundary
value problems for second order linear equations. Sometimes we consider the general
linear homogeneous equation

P(x)y′′ + Q(x)y′ + R(x)y = 0, (16)

investigated in Chapter 3. However, for most purposes it is better to discuss equations
in which the first and second derivative terms are related as in Eq. (13). It is always
possible to transform the general equation (16) so that the derivative terms appear
as in Eq. (13) (see Problem 11).

Boundary value problems with higher order differential equations can also occur;
in them the number of boundary conditions must equal the order of the differential
equation. As a rule, the order of the differential equation is even, and half the
boundary conditions are given at each end of the interval. It is also possible for a
single boundary condition to involve values of the solution and/or its derivatives at
both boundary points; for example,

y(0) − y(L) = 0. (17)
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The following example involves one boundary condition of the form (15) and is
therefore more complicated than the problems in Section 10.1.

E X A M P L E

1

Find the eigenvalues and the corresponding eigenfunctions of the boundary value problem

y′′ + λy = 0, (18)

y(0) = 0, y′(1) + y(1) = 0. (19)

One place where this problem occurs is in the heat conduction problem in a bar of unit length.
The boundary condition at x = 0 corresponds to a zero temperature there. The boundary
condition at x = 1 corresponds to a rate of heat flow that is proportional to the temperature
there, and units are chosen so that the constant of proportionality is 1 (see Appendix A of
Chapter 10).

The solution of the differential equation may have one of several forms, depending on λ, so
it is necessary to consider several cases. First, if λ = 0, the general solution of the differential
equation is

y = c1x + c2. (20)

The two boundary conditions require that

c2 = 0, 2c1 + c2 = 0, (21)

respectively. The only solution of Eqs. (21) is c1 = c2 = 0, so the boundary value problem has
no nontrivial solution in this case. Hence λ = 0 is not an eigenvalue.

If λ > 0, then the general solution of the differential equation (18) is

y = c1 sin
√

λ x + c2 cos
√

λ x, (22)

where
√

λ > 0. The boundary condition at x = 0 requires that c2 = 0; from the boundary
condition at x = 1 we then obtain the equation

c1(sin
√

λ + √
λ cos

√
λ) = 0.

For a nontrivial solution y we must have c1 �= 0, and thus λ must satisfy

sin
√

λ + √
λ cos

√
λ = 0. (23)

Note that if λ is such that cos
√

λ = 0, then sin
√

λ �= 0, and Eq. (23) is not satisfied. Hence we
may assume that cos

√
λ �= 0; dividing Eq. (23) by cos

√
λ, we obtain

√
λ = − tan

√
λ. (24)

The solutions of Eq. (24) can be determined numerically. They can also be found approximately
by sketching the graphs of f (

√
λ) = √

λ and g(
√

λ) = − tan
√

λ for
√

λ > 0 on the same set of
axes, and identifying the points of intersection of the two curves (see Figure 11.1.1). The point√

λ = 0 is specifically excluded from this argument because the solution (22) is valid only for√
λ �= 0. Despite the fact that the curves intersect there, λ = 0 is not an eigenvalue, as we have

already shown. The first three positive solutions of Eq. (24) are
√

λ1
∼= 2.029,

√
λ2

∼= 4.913,
and

√
λ3

∼= 7.979. As can be seen from Figure 11.1.1, the other roots are given with reasonable
accuracy by

√
λn

∼= (2n − 1)π/2 for n = 4, 5, . . . , the precision of this estimate improving as n
increases. Hence the eigenvalues are

λ1
∼= 4.116, λ2

∼= 24.14,
(25)

λ3
∼= 63.66, λn

∼= (2n − 1)2π2/4 for n = 4, 5, . . . .
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Finally, since c2 = 0, the eigenfunction corresponding to the eigenvalue λn is

φn(x, λn) = kn sin
√

λn x; n = 1, 2, . . . , (26)

where the constant kn remains arbitrary.

u

3  /2π

3  /2π 5  /2π 7  /2π

π

  /2π

5  /2π

π

  /2π

  /2–π

–π

3  /2π–

√  1λ √  2λ √  3λ √λ

u = g(√  )λ
= – tan √  λ

u = f (√  )λ
= √  λ

2

FIGURE 11.1.1 Graphical solution of
√

λ = − tan
√

λ.

Next consider λ < 0. In this case it is convenient to let λ = −μ so that μ > 0. Then Eq. (14)
becomes

y′′ − μy = 0, (27)

and its general solution is
y = c1 sinh

√
μ x + c2 cosh

√
μ x, (28)

where
√

μ > 0. Proceeding as in the previous case, we find that μ must satisfy the equation
√

μ = − tanh
√

μ. (29)

From Figure 11.1.2 it is clear that the graphs of f (
√

μ) = √
μ and g(

√
μ) = − tanh

√
μ intersect

only at the origin. Hence there are no positive values of
√

μ that satisfy Eq. (29), and hence
the boundary value problem (18), (19) has no negative eigenvalues.

Finally, it is necessary to consider the possibility that λ may be complex. It is possible to
show by direct calculation that the problem (18), (19) has no complex eigenvalues. However,
in Section 11.2 we consider in more detail a large class of problems that includes this example.
One of the things we show there is that every problem in this class has only real eigenvalues.
Therefore we omit the discussion of the nonexistence of complex eigenvalues here. Thus we
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u = f (√  )μ μ= √  

μ√  

u = g(√  )μ = –tanh√  

u

1

–1

μ

1 2

FIGURE 11.1.2 Graphical solution of
√

μ = − tanh
√

μ.

conclude that all the eigenvalues and eigenfunctions of the problem (18), (19) are given by
Eqs. (25) and (26).

PROBLEMS In each of Problems 1 through 6 state whether the given boundary value problem is homoge-
neous or nonhomogeneous.

1. y′′ + 4y = 0, y(−1) = 0, y(1) = 0

2. [(1 + x2)y′]′ + 4y = 0, y(0) = 0, y(1) = 1

3. y′′ + 4y = sin x, y(0) = 0, y(1) = 0

4. −y′′ + x2y = λy, y′(0) − y(0) = 0, y′(1) + y(1) = 0

5. −[(1 + x2)y′]′ = λy + 1, y(−1) = 0, y(1) = 0

6. −y′′ = λ(1 + x2)y, y(0) = 0, y′(1) + 3y(1) = 0

In each of Problems 7 through 10 assume that all eigenvalues are real.
(a) Determine the form of the eigenfunctions and the determinantal equation satisfied by the
nonzero eigenvalues.
(b) Determine whether λ = 0 is an eigenvalue.
(c) Find approximate values for λ1 and λ2, the nonzero eigenvalues of smallest absolute value.
(d) Estimate λn for large values of n.

7. y′′ + λy = 0, y(0) = 0, y(π) + y′(π) = 0

8. y′′ + λy = 0, y′(0) = 0, y(1) + y′(1) = 0

9. y′′ + λy = 0, y(0) − y′(0) = 0, y(1) + y′(1) = 0

10. y′′ − λy = 0, y(0) + y′(0) = 0, y(1) = 0

11. Consider the general linear homogeneous second order equation

P(x)y′′ + Q(x)y′ + R(x)y = 0. (i)

We seek an integrating factor μ(x) such that, upon multiplying Eq. (i) by μ(x), we can
write the resulting equation in the form

[μ(x)P(x)y′]′ + μ(x)R(x)y = 0. (ii)
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(a) By equating coefficients of y′ in Eqs. (i) and (ii), show that μ must be a solution of

Pμ′ = (Q − P′)μ. (iii)

(b) Solve Eq. (iii) and thereby show that

μ(x) = 1
P(x)

exp
∫ x

x0

Q(s)
P(s)

ds. (iv)

Compare this result with that of Problem 41 in Section 3.2.

In each of Problems 12 through 15 use the method of Problem 11 to transform the given
equation into the form [p(x)y′]′ + q(x)y = 0.

12. y′′ − 2xy′ + λy = 0, Hermite equation

13. x2y′′ + xy′ + (x2 − ν2)y = 0, Bessel equation

14. xy′′ + (1 − x)y′ + λy = 0, Laguerre equation

15. (1 − x2)y′′ − xy′ + α2y = 0, Chebyshev equation

16. The equation
utt + cut + ku = a2uxx + F(x, t), (i)

where a2 > 0, c ≥ 0, and k ≥ 0 are constants, is known as the telegraph equation. It arises
in the study of an elastic string under tension (see Appendix B of Chapter 10). Equation
(i) also occurs in other applications. Assuming that F(x, t) = 0, let u(x, t) = X(x)T(t),
separate the variables in Eq. (i), and derive ordinary differential equations for X and T .

17. Consider the boundary value problem

y′′ − 2y′ + (1 + λ)y = 0, y(0) = 0, y(1) = 0.

(a) Introduce a new dependent variable u by the relation y = s(x)u. Determine s(x) so
that the differential equation for u has no u′ term.

(b) Solve the boundary value problem for u and thereby determine the eigenvalues and
eigenfunctions of the original problem. Assume that all eigenvalues are real.

(c) Also solve the given problem directly (without introducing u).

18. Consider the boundary value problem

y′′ + 4y′ + (4 + 9λ)y = 0, y(0) = 0, y′(L) = 0.

(a) Determine, at least approximately, the real eigenvalues and the corresponding eigen-
functions by proceeding as in Problem 17(a, b).

(b) Also solve the given problem directly (without introducing a new variable).
Hint: In part (a) be sure to pay attention to the boundary conditions as well as the differ-
ential equation.

The differential equations in Problems 19 and 20 differ from those in previous problems in
that the parameter λ multiplies the y′ term as well as the y term. In each of these problems
determine the real eigenvalues and the corresponding eigenfunctions.

19. y′′ + y′ + λ(y′ + y) = 0, y′(0) = 0, y(1) = 0

20. x2y′′ − λ(xy′ − y) = 0, y(1) = 0, y(2) − y′(2) = 0
21. Consider the problem

y′′ + λy = 0, 2y(0) + y′(0) = 0, y(1) = 0.
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(a) Find the determinantal equation satisfied by the positive eigenvalues.
(b) Show that there is an infinite sequence of such eigenvalues.
(c) Find λ1 and λ2. Then show that λn

∼= [(2n + 1)π/2]2 for large n.

(d) Find the determinantal equation satisfied by the negative eigenvalues.
(e) Show that there is exactly one negative eigenvalue and find its value.

22. Consider the problem

y′′ + λy = 0, αy(0) + y′(0) = 0, y(1) = 0,

where α is a given constant.
(a) Show that for all values of α there is an infinite sequence of positive eigenvalues.

(b) If α < 1, show that all (real) eigenvalues are positive. Show that the smallest eigen-
value approaches zero as α approaches 1 from below.

(c) Show that λ = 0 is an eigenvalue only if α = 1.

(d) If α > 1, show that there is exactly one negative eigenvalue and that this eigenvalue
decreases as α increases.

23. Consider the problem

y′′ + λy = 0, y(0) = 0, y′(L) = 0.

Show that if φm and φn are eigenfunctions corresponding to the eigenvalues λm and λn,
respectively, with λm �= λn, then ∫ L

0
φm(x)φn(x) dx = 0.

Hint: Note that
φ′′

m + λmφm = 0, φ′′
n + λnφn = 0.

Multiply the first of these equations by φn, the second by φm, and integrate from 0 to L,
using integration by parts. Finally, subtract one equation from the other.

24. In this problem we consider a higher order eigenvalue problem. The analysis of transverse
vibrations of a uniform elastic bar is based on the differential equation

y(4) − λy = 0,

where y is the transverse displacement and λ = mω2/EI ; m is the mass per unit length of
the rod, E is Young’s modulus, I is the moment of inertia of the cross section about an
axis through the centroid perpendicular to the plane of vibration, and ω is the frequency
of vibration. Thus for a bar whose material and geometrical properties are given, the
eigenvalues determine the natural frequencies of vibration. Boundary conditions at each
end are usually one of the following types:

y = y′ = 0, clamped end,

y = y′′ = 0, simply supported or hinged end,

y′′ = y′′′ = 0, free end.

For each of the following three cases find the form of the eigenfunctions and the equation
satisfied by the eigenvalues of this fourth order boundary value problem. Determine λ1

and λ2, the two eigenvalues of smallest magnitude. Assume that the eigenvalues are real
and positive.
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(a) y(0) = y′′(0) = 0, y(L) = y′′(L) = 0

(b) y(0) = y′′(0) = 0, y(L) = y′(L) = 0

(c) y(0) = y′(0) = 0, y′′(L) = y′′′(L) = 0 (cantilevered bar)

25. This problem illustrates that the eigenvalue parameter sometimes appears in the boundary
conditions as well as in the differential equation. Consider the longitudinal vibrations of
a uniform straight elastic bar of length L. It can be shown that the axial displacement
u(x, t) satisfies the partial differential equation

(E/ρ)uxx = utt ; 0 < x < L, t > 0, (i)

where E is Young’s modulus and ρ is the mass per unit volume. If the end x = 0 is fixed,
then the boundary condition there is

u(0, t) = 0, t > 0. (ii)

Suppose that the end x = L is rigidly attached to a mass m but is otherwise unrestrained.
We can obtain the boundary condition here by writing Newton’s law for the mass. From
the theory of elasticity it can be shown that the force exerted by the bar on the mass is
given by −EAux(L, t). Hence the boundary condition is

EAux(L, t) + mutt(L, t) = 0, t > 0. (iii)

(a) Assume that u(x, t) = X(x)T(t), and show that X(x) and T(t) satisfy the differential
equations

X ′′ + λX = 0, (iv)

T ′′ + λ(E/ρ)T = 0. (v)

(b) Show that the boundary conditions are

X(0) = 0, X ′(L) − γ λLX(L) = 0, (vi)

where γ = m/ρAL is a dimensionless parameter that gives the ratio of the end mass to
the mass of the bar.
Hint: Use the differential equation for T(t) in simplifying the boundary condition at x = L.
(c) Determine the form of the eigenfunctions and the equation satisfied by the real eigen-
values of Eqs. (iv) and (vi).
(d) Find the first two eigenvalues λ1 and λ2 if γ = 0.5.

11.2 Sturm–Liouville Boundary Value Problems
We now consider two-point boundary value problems of the type obtained in Section
11.1 by separating the variables in a heat conduction problem for a bar of variable
material properties and with a source term proportional to the temperature. This
kind of problem also occurs in many other applications.
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These boundary value problems are commonly associated with the names of Sturm
and Liouville.1 They consist of a differential equation of the form

[p(x)y′]′ − q(x)y + λr(x)y = 0 (1)

on the interval 0 < x < 1, together with the boundary conditions

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0 (2)

at the endpoints. It is often convenient to introduce the linear homogeneous differ-
ential operator L defined by

L[y] = −[p(x)y′]′ + q(x)y. (3)

Then the differential equation (1) can be written as

L[y] = λr(x)y. (4)

We assume that the functions p, p′, q, and r are continuous on the interval 0 ≤ x ≤ 1
and, further, that p(x) > 0 and r(x) > 0 at all points in 0 ≤ x ≤ 1. These assumptions
are necessary to render the theory as simple as possible while retaining considerable
generality. It turns out that these conditions are satisfied in many significant prob-
lems in mathematical physics. For example, the equation y′′ + λy = 0, which arose
repeatedly in the preceding chapter, is of the form (1) with p(x) = 1, q(x) = 0, and
r(x) = 1. The boundary conditions (2) are said to be separated; that is, each involves
only one of the boundary points. These are the most general separated boundary
conditions that are possible for a second order differential equation.

Before proceeding to establish some of the properties of the Sturm–Liouville prob-
lem (1), (2), it is necessary to derive an identity, known as Lagrange’s identity, which
is basic to the study of linear boundary value problems. Let u and v be functions
having continuous second derivatives on the interval 0 ≤ x ≤ 1. Then2

∫ 1

0
L[u]v dx =

∫ 1

0
[−(pu′)′v + quv] dx.

Integrating the first term on the right side twice by parts, we obtain∫ 1

0
L[u]v dx = −p(x)u′(x)v(x)

∣∣∣1
0
+ p(x)u(x)v′(x)

∣∣∣1
0
+

∫ 1

0
[−u(pv′)′ + uqv] dx

= −p(x)[u′(x)v(x) − u(x)v′(x)]
∣∣∣1
0
+

∫ 1

0
uL[v] dx.

1Charles-François Sturm (1803–1855) and Joseph Liouville (1809–1882), in a series of papers in 1836
and 1837, set forth many properties of the class of boundary value problems associated with their names,
including the results stated inTheorems 11.2.1 to 11.2.4. Sturm is also famous for a theorem on the number
of real zeros of a polynomial and, in addition, did extensive work in physics and mechanics. Besides his
own research in analysis, algebra, and number theory, Liouville was the founder, and for 39 years the
editor, of the influential Journal de mathématiques pures et appliquées. One of his most important results
was the proof (in 1844) of the existence of transcendental numbers.
2For brevity we sometimes use the notation

∫ 1
0 f dx rather than

∫ 1
0 f (x) dx in this chapter.
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Hence, upon transposing the integral on the right side, we have∫ 1

0

{
L[u]v − uL[v]} dx = − p(x)

[
u′(x)v(x) − u(x)v′(x)

]∣∣∣1
0

, (5)

which is Lagrange’s identity.
Now let us suppose that the functions u and v in Eq. (5) also satisfy the boundary

conditions (2). Then, if we assume that α2 �= 0 and β2 �= 0, the right side of Eq. (5)
becomes

−p(x)
[
u′(x)v(x) − u(x)v′(x)

] ∣∣∣1
0

= −p(1)
[
u′(1)v(1) − u(1)v′(1)

] + p(0)
[
u′(0)v(0) − u(0)v′(0)

]
= −p(1)

[
−β1

β2
u(1)v(1) + β1

β2
u(1)v(1)

]
+ p(0)

[
−α1

α2
u(0)v(0) + α1

α2
u(0)v(0)

]

= 0.

The same result holds if either α2 or β2 is zero; the proof in this case is even simpler
and is left for you. Thus, if the differential operator L is defined by Eq. (3), and if
the functions u and v satisfy the boundary conditions (2), then Lagrange’s identity
reduces to ∫ 1

0

{
L[u]v − uL[v]} dx = 0. (6)

Let us now write Eq. (6) in a slightly different way. In Eq. (4) of Section 10.2 we
introduced the inner product (u, v) of two real-valued functions u and v on a given
interval; using the interval 0 ≤ x ≤ 1, we have

(u, v) =
∫ 1

0
u(x)v(x) dx. (7)

In this notation Eq. (6) becomes

(L[u], v) − (u, L[v]) = 0. (8)

In proving Theorem 11.2.1 below, it is necessary to deal with complex-valued func-
tions. By analogy with the definition in Section 7.2 for vectors, we define the inner
product of two complex-valued functions on 0 ≤ x ≤ 1 as

(u, v) =
∫ 1

0
u(x)v(x) dx, (9)

where v is the complex conjugate of v. Clearly, Eq. (9) coincides with Eq. (7) if u(x)

and v(x) are real. It is important to know that Eq. (8) remains valid under the stated
conditions if u and v are complex-valued functions and if the inner product (9) is

used. To see this, one can start with the quantity
∫ 1

0
L[u]v dx and retrace the steps

leading to Eq. (6), making use of the fact that p(x), q(x), α1, α2, β1, and β2 are all real
quantities (see Problem 22).
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We now consider some of the implications of Eq. (8) for the Sturm–Liouville
boundary value problem (1), (2). We assume without proof 3 that this problem ac-
tually has eigenvalues and eigenfunctions. In Theorems 11.2.1 to 11.2.4 below, we
state several of their important, but relatively elementary, properties. Each of these
properties is illustrated by the basic Sturm–Liouville problem

y′′ + λy = 0, y(0) = 0, y(1) = 0, (10)

whose eigenvalues are λn = n2π2, with the corresponding eigenfunctions
φn(x) = sin nπx.

Theorem 11.2.1 All the eigenvalues of the Sturm–Liouville problem (1), (2) are real.

To prove this theorem, let us suppose that λ is a (possibly complex) eigenvalue
of the problem (1), (2) and that φ is a corresponding eigenfunction, also possibly
complex-valued. Let us write λ = μ + iν and φ(x) = U(x) + iV(x), where μ, ν, U(x),
and V(x) are real. Then, if we let u = φ and also v = φ in Eq. (8), we have

(L[φ], φ) = (φ, L[φ]). (11)

However, we know that L[φ] = λrφ, so Eq. (11) becomes

(λrφ, φ) = (φ, λrφ). (12)

Writing out Eq. (12) in full, using the definition (9) of the inner product, we obtain∫ 1

0
λr(x)φ(x)φ(x) dx =

∫ 1

0
φ(x)λr(x)φ(x) dx. (13)

Since r(x) is real, Eq. (13) reduces to

(λ − λ)

∫ 1

0
r(x)φ(x)φ(x) dx = 0,

or

(λ − λ)

∫ 1

0
r(x)[U2(x) + V2(x)] dx = 0. (14)

The integrand in Eq. (14) is nonnegative and not identically zero. Since the inte-
grand is also continuous, it follows that the integral is positive. Therefore the factor
λ − λ = 2iν must be zero. Hence ν = 0 and λ is real, so the theorem is proved.

An important consequence of Theorem 11.2.1 is that in finding eigenvalues and
eigenfunctions of a Sturm–Liouville boundary value problem, we need look only for
real eigenvalues. Recall that this is what we did in Chapter 10. It is also possible to
show that the eigenfunctions of the boundary value problem (1), (2) are real. A proof
is sketched in Problem 23.

3The proof may be found, for example, in the references by Sagan (Chapter 5) or Birkhoff and Rota
(Chapter 10).
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Theorem 11.2.2 If φ1 and φ2 are two eigenfunctions of the Sturm–Liouville problem (1), (2) corre-
sponding to eigenvalues λ1 and λ2, respectively, and if λ1 �= λ2, then∫ 1

0
r(x)φ1(x)φ2(x) dx = 0. (15)

This theorem expresses the property of orthogonality of the eigenfunctions with
respect to the weight function r. To prove the theorem, we note that φ1 and φ2 satisfy
the differential equations

L[φ1] = λ1rφ1 (16)

and
L[φ2] = λ2rφ2, (17)

respectively. If we let u = φ1, v = φ2, and substitute for L[u] and L[v] in Eq. (8), we
obtain

(λ1rφ1, φ2) − (φ1, λ2rφ2) = 0,

or, using Eq. (9),

λ1

∫ 1

0
r(x)φ1(x)φ2(x) dx − λ2

∫ 1

0
φ1(x)r(x)φ2(x) dx = 0.

Because λ2, r(x), and φ2(x) are real, this equation becomes

(λ1 − λ2)

∫ 1

0
r(x)φ1(x)φ2(x) dx = 0. (18)

Since by hypothesis λ1 �= λ2, it follows that φ1 and φ2 must satisfy Eq. (15), and the
theorem is proved.

Theorem 11.2.3 The eigenvalues of the Sturm–Liouville problem (1), (2) are all simple; that is, to
each eigenvalue there corresponds only one linearly independent eigenfunction.
Further, the eigenvalues form an infinite sequence and can be ordered according
to increasing magnitude so that

λ1 < λ2 < λ3 < · · · < λn < · · · .
Moreover, λn → ∞ as n → ∞.

The proof of this theorem is somewhat more advanced than those of the two
previous theorems and will be omitted. However, a proof that the eigenvalues are
simple is outlined in Problem 20.

Again we note that all the properties stated in Theorems 11.2.1 to 11.2.3 are ex-
emplified by the eigenvalues λn = n2π2 and eigenfunctions φn(x) = sin nπx of the
example problem (10). Clearly, the eigenvalues are real. The eigenfunctions satisfy
the orthogonality relation∫ 1

0
φm(x)φn(x) dx =

∫ 1

0
sin mπx sin nπx dx = 0, m �= n, (19)
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which was established in Section 10.2 by direct integration. Further, the eigenval-
ues can be ordered so that λ1 < λ2 < · · · , and λn → ∞ as n → ∞. Finally, to each
eigenvalue there corresponds a single linearly independent eigenfunction.

We will now assume that the eigenvalues of the Sturm–Liouville problem (1), (2)
are ordered as indicated in Theorem 11.2.3. Associated with the eigenvalue λn is
a corresponding eigenfunction φn, determined up to a multiplicative constant. It is
often convenient to choose the arbitrary constant multiplying each eigenfunction so
as to satisfy the condition∫ 1

0
r(x)φ2

n(x) dx = 1, n = 1, 2, . . . . (20)

Equation (20) is called a normalization condition, and eigenfunctions satisfying this
condition are said to be normalized. Indeed, in this case, the eigenfunctions are said
to form an orthonormal set (with respect to the weight function r) since they already
satisfy the orthogonality relation (15). It is sometimes useful to combine Eqs. (15)
and (20) into a single equation. To this end we introduce the symbol δmn, known as
the Kronecker4 delta and defined by

δmn =
{

0, if m �= n,
1, if m = n.

(21)

Making use of the Kronecker delta, we can write Eqs. (15) and (20) as∫ 1

0
r(x)φm(x)φn(x) dx = δmn. (22)

E X A M P L E

1

Determine the normalized eigenfunctions of the problem (10):

y′′ + λy = 0, y(0) = 0, y(1) = 0.

The eigenvalues of this problem are λ1 = π2, λ2 = 4π2, . . . , λn = n2π2, . . . , and the corre-
sponding eigenfunctions are k1 sin πx, k2 sin 2πx, . . . , kn sin nπx, . . . , respectively. In this case
the weight function is r(x) = 1. To satisfy Eq. (20), we must choose kn so that∫ 1

0
(kn sin nπx)2 dx = 1 (23)

for each value of n. Since

k2
n

∫ 1

0
sin2 nπx dx = k2

n

∫ 1

0

(
1
2 − 1

2 cos 2nπx
)

dx = 1
2 k2

n,

Eq. (23) is satisfied if kn is chosen to be
√

2 for each value of n. Hence the normalized
eigenfunctions of the given boundary value problem are

φn(x) = √
2 sin nπx, n = 1, 2, 3, . . . . (24)

4Leopold Kronecker (1823–1891), a student of Dirichlet, was associated with the University of Berlin for
most of his life, although (since he was independently wealthy) he held a faculty position only from 1883
onward. He worked in number theory, elliptic functions, algebra, and their interconnections.
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E X A M P L E

2

Determine the normalized eigenfunctions of the problem

y′′ + λy = 0, y(0) = 0, y′(1) + y(1) = 0. (25)

In Example 1 of Section 11.1 we found that the eigenvalues λn satisfy the equation

sin
√

λn + √
λn cos

√
λn = 0 (26)

and that the corresponding eigenfunctions are

φn(x) = kn sin
√

λn x, (27)

where kn is arbitrary. We can determine kn from the normalization condition (20). Since
r(x) = 1 in this problem, we have∫ 1

0
φ2

n(x) dx = k2
n

∫ 1

0
sin2

√
λn x dx

= k2
n

∫ 1

0

(
1
2 − 1

2 cos 2
√

λn x
)

dx = k2
n

(
x
2

− sin 2
√

λn x

4
√

λn

) ∣∣∣∣∣
1

0

= k2
n

2
√

λn − sin 2
√

λn

4
√

λn
= k2

n

√
λn − sin

√
λn cos

√
λn

2
√

λn

= k2
n

1 + cos2
√

λn

2
,

where in the last step we have used Eq. (26). Hence, to normalize the eigenfunctions φn, we
must choose

kn =
(

2
1 + cos2

√
λn

)1/2

. (28)

The normalized eigenfunctions of the given problem are

φn(x) =
√

2 sin
√

λn x

(1 + cos2
√

λn)1/2
; n = 1, 2, . . . . (29)

We now turn to the question of expressing a given function f as a series of eigen-
functions of the Sturm–Liouville problem (1), (2). We have already seen examples
of such expansions in Sections 10.2 to 10.4. For example, it was shown there that if
f is continuous and has a piecewise continuous derivative on 0 ≤ x ≤ 1, and satisfies
the boundary conditions f (0) = f (1) = 0, then f can be expanded in a Fourier sine
series of the form

f (x) =
∞∑

n=1

bn sin nπx. (30)

The functions sin nπx, n = 1, 2, . . . , are precisely the eigenfunctions of the boundary
value problem (10). The coefficients bn are given by

bn = 2
∫ 1

0
f (x) sin nπx dx (31)
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and the series (30) converges for each x in 0 ≤ x ≤ 1. In a similar way f can be
expanded in a Fourier cosine series using the eigenfunctions cos nπx, n = 0, 1, 2, . . . ,
of the boundary value problem y′′ + λy = 0, y′(0) = 0, y′(1) = 0.

Now suppose that a given function f , satisfying suitable conditions, can be ex-
panded in an infinite series of eigenfunctions of the more general Sturm–Liouville
problem (1), (2). If this can be done, then we have

f (x) =
∞∑

n=1

cnφn(x), (32)

where the functions φn(x) satisfy Eqs. (1), (2) and also the orthogonality condition
(22). To compute the coefficients in the series (32), we multiply Eq. (32) by r(x)φm(x),
where m is a fixed positive integer, and integrate from x = 0 to x = 1. Assuming that
the series can be integrated term by term, we obtain

∫ 1

0
r(x)f (x)φm(x) dx =

∞∑
n=1

cn

∫ 1

0
r(x)φm(x)φn(x) dx =

∞∑
n=1

cnδmn. (33)

Hence, using the definition of δmn, we have

cm =
∫ 1

0
r(x)f (x)φm(x) dx = (f , rφm), m = 1, 2, . . . . (34)

The coefficients in the series (32) have thus been formally determined. Equation (34)
has the same structure as the Euler–Fourier formulas for the coefficients in a Fourier
series, and the eigenfunction series (32) also has convergence properties similar to
those of Fourier series. The following theorem is analogous to Theorem 10.3.1.

Theorem 11.2.4 Let φ1, φ2, . . . , φn, . . . be the normalized eigenfunctions of the Sturm–Liouville prob-
lem (1), (2):

[p(x)y′]′ − q(x)y + λr(x)y = 0,

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0.

Let f and f ′ be piecewise continuous on 0 ≤ x ≤ 1. Then the series (32) whose
coefficients cm are given by Eq. (34) converges to [f (x+) + f (x−)]/2 at each point
in the open interval 0 < x < 1.

If f satisfies further conditions, then a stronger conclusion can be established.
Suppose that, in addition to the hypotheses of Theorem 11.2.4, the function f is
continuous on 0 ≤ x ≤ 1. If α2 = 0 in the first of Eqs. (2) [so that φn(0) = 0], then
assume that f (0) = 0. Similarly, if β2 = 0 in the second of Eqs. (2), assume that
f (1) = 0. Otherwise no boundary conditions need be prescribed for f . Then the
series (32) converges to f (x) at each point in the closed interval 0 ≤ x ≤ 1.
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E X A M P L E

3

Expand the function
f (x) = x, 0 ≤ x ≤ 1 (35)

in terms of the normalized eigenfunctions φn(x) of the problem (25).
In Example 2 we found the normalized eigenfunctions to be

φn(x) = kn sin
√

λn x, (36)

where kn is given by Eq. (28) and λn satisfies Eq. (26). To find the expansion for f in terms of
the eigenfunctions φn, we write

f (x) =
∞∑

n=1

cnφn(x), (37)

where the coefficients are given by Eq. (34). Thus

cn =
∫ 1

0
f (x)φn(x) dx = kn

∫ 1

0
x sin

√
λn x dx.

Integrating by parts, we obtain

cn = kn

(
sin

√
λn

λn
− cos

√
λn√

λn

)
= kn

2 sin
√

λn

λn
,

where we have used Eq. (26) in the last step. Upon substituting for kn from Eq. (28), we obtain

cn = 2
√

2 sin
√

λn

λn(1 + cos2
√

λn)1/2
. (38)

Thus

f (x) = 4
∞∑

n=1

sin
√

λn sin
√

λn x

λn(1 + cos2
√

λn)
. (39)

Observe that although the right side of Eq. (39) is a series of sines, it is not included in the
discussion of Fourier sine series in Section 10.4.

Self-Adjoint Problems. Sturm–Liouville boundary value problems are of great impor-
tance in their own right, but they can also be viewed as belonging to a much more
extensive class of problems that have many of the same properties. For example,
there are many similarities between Sturm–Liouville problems and the algebraic
system

Ax = λx, (40)

where the n × n matrix A is real symmetric or Hermitian. Comparing the results
mentioned in Section 7.3 with those of this section, we note that in both cases the
eigenvalues are real and the eigenfunctions or eigenvectors form an orthogonal set.
Further, the eigenfunctions or eigenvectors can be used as the basis for expressing an
essentially arbitrary function or vector, respectively, as a sum. The most important
difference is that a matrix has only a finite number of eigenvalues and eigenvec-
tors, while a Sturm–Liouville problem has infinitely many. It is interesting and of
fundamental importance in mathematics that these seemingly different problems—
the matrix problem (40) and the Sturm–Liouville problem (1), (2)—which arise in dif-
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ferent ways, are actually parts of a single underlying theory. This theory is usually
referred to as linear operator theory and is part of the subject of functional analysis.

We now point out some ways in which Sturm–Liouville problems can be gen-
eralized, while still preserving the main results of Theorems 11.2.1 to 11.2.4—the
existence of a sequence of real eigenvalues tending to infinity, the orthogonality of
the eigenfunctions, and the possibility of expressing an arbitrary function as a series
of eigenfunctions. These generalizations depend on the continued validity of the
crucial relation (8).

Let us consider the boundary value problem consisting of the differential equation

L[y] = λr(x)y, 0 < x < 1, (41)

where

L[y] = Pn(x)
dny
dxn

+ · · · + P1(x)
dy
dx

+ P0(x)y, (42)

and n linear homogeneous boundary conditions at the endpoints. If Eq. (8) is valid for
every pair of sufficiently differentiable functions that satisfy the boundary conditions,
then the given problem is said to be self-adjoint. It is important to observe that Eq. (8)
involves restrictions on both the differential equation and the boundary conditions.
The differential operator L must be such that the same operator appears in both terms
of Eq (8). This requires L to be of even order. Further, a second order operator must
have the form (3), a fourth order operator must have the form

L[y] = [p(x)y′′]′′ − [q(x)y′]′ + s(x)y, (43)

and higher order operators must have an analogous structure. In addition, the bound-
ary conditions must be such as to eliminate the boundary terms that arise during the
integration by parts used in deriving Eq. (8). For example, in a second order problem
this is true for the separated boundary conditions (2) and also in certain other cases,
one of which is given in Example 4 below.

Let us suppose that we have a self-adjoint boundary value problem for Eq. (41),
where L[y] is given now by Eq. (43). We assume that p, q, r, and s are continuous on
0 ≤ x ≤ 1 and that the derivatives of p and q indicated in Eq. (43) are also continuous.
If in addition p(x) > 0 and r(x) > 0 for 0 ≤ x ≤ 1, then there is an infinite sequence
of real eigenvalues tending to +∞, the eigenfunctions are orthogonal with respect
to the weight function r, and an arbitrary function can be expressed as a series of
eigenfunctions. However, the eigenvalues may not be simple in these more general
problems.

We turn now to the relation between Sturm–Liouville problems and Fourier series.
We have noted previously that Fourier sine and cosine series can be obtained by using
the eigenfunctions of certain Sturm–Liouville problems involving the differential
equation y′′ + λy = 0. This raises the question of whether we can obtain a full Fourier
series, including both sine and cosine terms, by choosing a suitable set of boundary
conditions. The answer is provided by the following example, which also serves to
illustrate the occurrence of nonseparated boundary conditions.
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E X A M P L E

4

Find the eigenvalues and eigenfunctions of the boundary value problem

y′′ + λy = 0, (44)

y(−L) − y(L) = 0, y′(−L) − y′(L) = 0. (45)

This is not a Sturm–Liouville problem because the boundary conditions are not separated.
The boundary conditions (45) are called periodic boundary conditions since they require that
y and y′ assume the same values at x = L as at x = −L. Nevertheless, it is straightforward to
show that the problem (44), (45) is self-adjoint. A simple calculation establishes that λ0 = 0 is
an eigenvalue and that the corresponding eigenfunction is φ0(x) = 1. Further, there are addi-
tional eigenvalues λ1 = (π/L)2,λ2 = (2π/L)2, . . . , λn = (nπ/L)2, . . . .To each of these nonzero
eigenvalues there correspond two linearly independent eigenfunctions; for example, corre-
sponding to λn are the two eigenfunctions φn(x) = cos(nπx/L) and ψn(x) = sin(nπx/L). This
illustrates that the eigenvalues may not be simple when the boundary conditions are not sepa-
rated. Further, if we seek to expand a given function f of period 2L in a series of eigenfunctions
of the problem (44), (45), we obtain the series

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
,

which is just the Fourier series for f .

We will not give further consideration to problems that have nonseparated bound-
ary conditions, nor will we deal with problems of higher than second order, except
in a few problems. There is, however, one other kind of generalization that we do
wish to discuss. That is the case in which the coefficients p, q, and r in Eq. (1) do
not quite satisfy the rather strict continuity and positivity requirements laid down
at the beginning of this section. Such problems are called singular Sturm–Liouville
problems and are the subject of Section 11.4.

PROBLEMS In each of Problems 1 through 5 determine the normalized eigenfunctions of the given problem.

1. y′′ + λy = 0, y(0) = 0, y′(1) = 0

2. y′′ + λy = 0, y′(0) = 0, y(1) = 0

3. y′′ + λy = 0, y′(0) = 0, y′(1) = 0

4. y′′ + λy = 0, y′(0) = 0, y′(1) + y(1) = 0; see Section 11.1, Problem 8.

5. y′′ − 2y′ + (1 + λ)y = 0, y(0) = 0, y(1) = 0; see Section 11.1, Problem 17.

In each of Problems 6 through 9 find the coefficients in the eigenfunction expansion
∞∑

n=1
anφn(x) of the given function, using the normalized eigenfunctions of Problem 1.

6. f (x) = 1, 0 ≤ x ≤ 1 7. f (x) = x, 0 ≤ x ≤ 1

8. f (x) =
{

1, 0 ≤ x < 1
2

0, 1
2 ≤ x ≤ 1

9. f (x) =
{

2x, 0 ≤ x < 1
2

1, 1
2 ≤ x ≤ 1
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In each of Problems 10 through 13 find the coefficients in the eigenfunction expansion
∞∑

n=1
anφn(x) of the given function, using the normalized eigenfunctions of Problem 4.

10. f (x) = 1, 0 ≤ x ≤ 1 11. f (x) = x, 0 ≤ x ≤ 1

12. f (x) = 1 − x, 0 ≤ x ≤ 1 13. f (x) =
{

1, 0 ≤ x < 1
2

0, 1
2 ≤ x ≤ 1

In each of Problems 14 through 18 determine whether the given boundary value problem is
self-adjoint.

14. y′′ + y′ + 2y = 0, y(0) = 0, y(1) = 0

15. (1 + x2)y′′ + 2xy′ + y = 0, y′(0) = 0, y(1) + 2y′(1) = 0

16. y′′ + y = λy, y(0) − y′(1) = 0, y′(0) − y(1) = 0

17. (1 + x2)y′′ + 2xy′ + y = λ(1 + x2)y, y(0) − y′(1) = 0, y′(0) + 2y(1) = 0

18. y′′ + λy = 0, y(0) = 0, y(π) + y′(π) = 0

19. Show that if the functions u and v satisfy Eqs. (2), and either α2 = 0 or β2 = 0, or both,
then

p(x)
[
u′(x)v(x) − u(x)v′(x)

] ∣∣∣1
0

= 0.

20. In this problem we outline a proof of the first part of Theorem 11.2.3: that the eigenvalues
of the Sturm–Liouville problem (1), (2) are simple. The proof is by contradiction.
(a) Suppose that a given eigenvalue λ is not simple. Then there exist two corresponding
eigenfunctions φ1 and φ2 that are linearly independent, that is, not multiples of each other.
(b) Compute the Wronskian W(φ1, φ2)(x) and use the boundary conditions (2) to show
that W(φ1, φ2)(0) = 0.
(c) Use Theorem 3.2.6 to reach a contradiction, which establishes that the eigenvalues
must be simple, as asserted in Theorem 11.2.3.

21. Consider the Sturm–Liouville problem

−[p(x)y′]′ + q(x)y = λr(x)y,

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0,

where p, q, and r satisfy the conditions stated in the text.

(a) Show that if λ is an eigenvalue and φ a corresponding eigenfunction, then

λ

∫ 1

0
rφ2 dx =

∫ 1

0
(pφ′2 + qφ2) dx + β1

β2
p(1)φ2(1) − α1

α2
p(0)φ2(0),

provided that α2 �= 0 and β2 �= 0. How must this result be modified if α2 = 0 or β2 = 0?

(b) Show that if q(x) ≥ 0 and if β1/β2 and −α1/α2 are nonnegative, then the eigenvalue λ

is nonnegative.

(c) Under the conditions of part (b) show that the eigenvalue λ is strictly positive unless
α1 = β1 = 0 and q(x) = 0 for each x in 0 ≤ x ≤ 1.

22. Derive Eq. (8) using the inner product (9) and assuming that u and v are complex-valued
functions.

Hint: Consider the quantity
∫ 1

0
L[u]v dx, split u and v into real and imaginary parts, and

proceed as in the text.



September 11, 2008 11:18 boyce-9e-bvp Sheet number 705 Page number 685 cyan black

11.2 Sturm–Liouville Boundary Value Problems 685

23. In this problem we outline a proof that the eigenfunctions of the Sturm–Liouville problem
(1), (2) are real.

(a) Letλbe an eigenvalue andφ a corresponding eigenfunction. Letφ(x) = U(x) + iV(x),
and show that U and V are also eigenfunctions corresponding to λ.

(b) Using Theorem 11.2.3, or the result of Problem 20, show that U and V are linearly
dependent.

(c) Show that φ must be real, apart from an arbitrary multiplicative constant that may be
complex.

24. Consider the problem

x2y′′ = λ(xy′ − y), y(1) = 0, y(2) = 0.

Note that λ appears as a coefficient of y′ as well as of y itself. It is possible to extend
the definition of self-adjointness to this type of problem and to show that this particular
problem is not self-adjoint. Show that the problem has eigenvalues but that none of them
is real. This illustrates that in general nonself-adjoint problems may have eigenvalues that
are not real.

Buckling of an Elastic Column. An investigation of the buckling of a uniform elastic column
of length L by an axial load P (Figure 11.2.1a) leads to the differential equation

y(4) + λy′′ = 0, 0 < x < L. (i)

The parameter λ is equal to P/EI , where E is Young’s modulus and I is the moment of inertia
of the cross section about an axis through the centroid perpendicular to the xy-plane. The
boundary conditions at x = 0 and x = L depend on how the ends of the column are supported.
Typical boundary conditions are

y = y′ = 0, clamped end;

y = y′′ = 0, simply supported (hinged) end.

The bar shown in Figure 11.2.1a is simply supported at x = 0 and clamped at x = L. It is
desired to determine the eigenvalues and eigenfunctions of Eq. (i) subject to suitable boundary
conditions. In particular, the smallest eigenvalue λ1 gives the load at which the column buckles,
or can assume a curved equilibrium position, as shown in Figure 11.2.1b. The corresponding
eigenfunction describes the configuration of the buckled column. Note that the differential
equation (i) does not fall within the theory discussed in this section. It is possible to show,
however, that in each of the cases given here all the eigenvalues are real and positive. Problems
25 and 26 deal with column buckling problems.

y

x

y

P

x = 0 x = L

L

(a) (b)

x

FIGURE 11.2.1 (a) A column under compression. (b) Shape of the buckled column.
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25. For each of the following boundary conditions find the smallest eigenvalue (the buckling
load) of y(4) + λy′′ = 0, and also find the corresponding eigenfunction (the shape of the
buckled column).

(a) y(0) = y′′(0) = 0, y(L) = y′′(L) = 0

(b) y(0) = y′′(0) = 0, y(L) = y′(L) = 0

(c) y(0) = y′(0) = 0, y(L) = y′(L) = 0

26. In some buckling problems the eigenvalue parameter appears in the boundary conditions
as well as in the differential equation. One such case occurs when one end of the column
is clamped and the other end is free. In this case the differential equation y(4) + λy′′ = 0
must be solved subject to the boundary conditions

y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) + λy′(L) = 0.

Find the smallest eigenvalue and the corresponding eigenfunction.

27. Solutes in an aquifer are transported by two separate mechanisms. The process by which
a solute is transported by the bulk motion of the flowing groundwater is called advection.
In addition, the solute is spread by small-scale fluctuations in the groundwater velocity
along the tortuous flow paths within individual pores, a process called mechanical disper-
sion. The one-dimensional form of the advection-dispersion equation for a nonreactive
dissolved solute in a saturated, homogeneous, isotropic porous medium under steady,
uniform flow is

ct + vcx = Dcxx, 0 < x < L, t > 0, (i)

where c(x, t) is the concentration of the solute,v is the average linear groundwater velocity,
D is the coefficient of hydrodynamic dispersion, and L is the length of the aquifer. Suppose
that the boundary conditions are

c(0, t) = 0, cx(L, t) = 0, t > 0 (ii)

and that the initial condition is

c(x, 0) = f (x), 0 < x < L, (iii)

where f (x) is the given initial concentration of the solute.

(a) Assume that c(x, t) = X(x)T(t), use the method of separation of variables, and find
the equations satisfied by X(x) and T(t), respectively. Show that the problem for X(x)

can be written in the Sturm-Liouville form

[p(x)X ′]′ + λr(x)X = 0, 0 < x < L, (iv)

X(0) = 0, X ′(L) = 0, (v)

where p(x) = r(x) = exp(−vx/D). Hence the eigenvalues are real and the eigenfunctions
are orthogonal with respect to the weight function r(x).

(b) Let μ2 = λ − (v2/4D2). Show that the eigenfunctions are

Xn(x) = evx/2D sin μnx, (vi)

where μn satisfies the equation

tan μL = −2Dμ/v. (vii)

(c) Show graphically that Eq. (vii) has an infinite sequence of positive roots and that
μn

∼= (2n − 1)π/2L for large n.
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(d) Show that ∫ L

0
r(x)X 2

n (x) dx = L
2

+ v

4Dμ2
n

sin2
μnL.

(e) Find a formal solution of the problem (i), (ii), (iii) in terms of a series of the eigen-
functions Xn(x).

(f) Let v = 1, D = 0.5, L = 10, and f (x) = δ(x − 3), where δ is the Dirac delta5 function.
Using the solution found in part (e), plot c(x, t) versus x for several values of t, such as
t = 0.5,1,3,6,and 10. Also plot c(x, t) versus t for several values of x. Note that the number
of terms that are needed to obtain an accurate plot depends strongly on the values of t
and x.

(g) Describe in a few words how the solution evolves as time advances.

28. A nonreactive tracer at concentration c0 is continuously introduced into a steady flow at
the upstream end of a column of length L packed with a homogeneous granular medium.
Assuming that the tracer concentration in the column is initially zero, the boundary value
problem that models this process is

ct + vcx = Dcxx, 0 < x < L, t > 0,

c(0, t) = c0, cx(L, t) = 0, t > 0,

c(x, 0) = 0, 0 < x < L,

where c(x, t), v, and D are as in Problem 27.

(a) Assume that c(x, t) = c0 + u(x, t) and find the boundary value problem satisfied by
u(x, t).

(b) Proceeding as in Problem 27, find u(x, t) in terms of an eigenfunction expansion.

(c) Let v = 1, D = 0.5, c0 = 1, and L = 10. Plot c(x, t) versus x for several values of t, and
also plot c(x, t) versus t for several values of x.

(d) Describe in a few words how the solution evolves with time. For example, about how
long does it take for the steady-state solution to be essentially attained?

11.3 Nonhomogeneous Boundary Value Problems
In this section we discuss how to solve nonhomogeneous boundary value problems
for both ordinary and partial differential equations. Most of our attention is directed
toward problems in which the differential equation alone is nonhomogeneous, while
the boundary conditions are homogeneous. We assume that the solution can be
expanded in a series of eigenfunctions of a related homogeneous problem, and then
we determine the coefficients in this series so that the nonhomogeneous problem
is satisfied. We first describe this method as it applies to boundary value problems
for second order linear ordinary differential equations. Later we illustrate its use
for partial differential equations by solving a heat conduction problem in a bar with
variable material properties and in the presence of source terms.

5See Section 6.5, especially Eq. (16) of that section.
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Nonhomogeneous Sturm–Liouville Problems. Consider the boundary value problem con-
sisting of the nonhomogeneous differential equation

L[y] = −[p(x)y′]′ + q(x)y = μr(x)y + f (x), (1)

where μ is a given constant and f is a given function on 0 ≤ x ≤ 1, and the boundary
conditions

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0. (2)

As in Section 11.2, we assume that p, p′, q, and r are continuous on 0 ≤ x ≤ 1 and
that p(x) > 0 and r(x) > 0 there. We will solve the problem (1), (2) by making use
of the eigenfunctions of the corresponding homogeneous problem consisting of the
differential equation

L[y] = λr(x)y (3)

and the boundary conditions (2). Let λ1 < λ2 < · · · < λn < · · · be the eigenvalues of
this problem, and let φ1, φ2, . . . , φn, . . . be the corresponding normalized eigenfunc-
tions.

We now assume that the solution y = φ(x) of the nonhomogeneous problem (1),
(2) can be expressed as a series of the form

φ(x) =
∞∑

n=1

bnφn(x). (4)

From Eq. (34) of Section 11.2 we know that

bn =
∫ 1

0
r(x)φ(x)φn(x) dx, n = 1, 2, . . . . (5)

However, since we do not know φ(x), we cannot use Eq. (5) to calculate bn. Instead,
we will try to determine bn so that the problem (1), (2) is satisfied and then use
Eq. (4) to find φ(x). Note first that φ as given by Eq. (4) always satisfies the boundary
conditions (2) since each φn does.

Now consider the differential equation that φ must satisfy. This is just Eq. (1) with
y replaced by φ:

L[φ](x) = μr(x)φ(x) + f (x). (6)

We substitute the series (4) into the differential equation (6) and attempt to determine
bn so that the differential equation is satisfied. The term on the left side of Eq. (6)
becomes

L[φ](x) = L

[ ∞∑
n=1

bnφn

]
(x) =

∞∑
n=1

bnL[φn](x)

=
∞∑

n=1

bnλnr(x)φn(x), (7)

where we have assumed that we can interchange the operations of summation and
differentiation.

Note that the function r appears in Eq. (7) and also in the term μr(x)φ(x) in Eq. (6).
This suggests that we rewrite the nonhomogeneous term in Eq. (6) as r(x)[f (x)/r(x)]
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so that r(x) also appears as a multiplier in this term. If the function f /r satisfies the
conditions of Theorem 11.2.4, then

f (x)

r(x)
=

∞∑
n=1

cnφn(x), (8)

where, using Eq. (5) with φ replaced by f /r,

cn =
∫ 1

0
r(x)

f (x)

r(x)
φn(x) dx =

∫ 1

0
f (x)φn(x) dx, n = 1, 2, . . . . (9)

Upon substituting for φ(x), L[φ](x), and f (x) in Eq. (6) from Eqs. (4), (7), and (8),
respectively, we find that

∞∑
n=1

bnλnr(x)φn(x) = μr(x)

∞∑
n=1

bnφn(x) + r(x)

∞∑
n=1

cnφn(x).

After collecting terms and canceling the common nonzero factor r(x), we have
∞∑

n=1

[
(λn − μ)bn − cn

]
φn(x) = 0. (10)

If Eq. (10) is to hold for each x in the interval 0 ≤ x ≤ 1, then the coefficient of φn(x)

must be zero for each n; see Problem 14 for a proof of this fact. Hence

(λn − μ)bn − cn = 0, n = 1, 2, . . . . (11)

We must now distinguish two main cases, one of which also has two subcases.
First suppose that μ �= λn for n = 1, 2, 3, . . . ; that is,μ is not equal to any eigenvalue

of the corresponding homogeneous problem. Then

bn = cn

λn − μ
, n = 1, 2, 3, . . . , (12)

and

y = φ(x) =
∞∑

n=1

cn

λn − μ
φn(x). (13)

Equation (13), with cn given by Eq. (9), is a formal solution of the nonhomogeneous
boundary value problem (1), (2). Our argument does not prove that the series (13)
converges. However, any solution of the boundary value problem (1), (2) clearly
satisfies the conditions of Theorem 11.2.4; indeed, it satisfies the more stringent con-
ditions given in the paragraph following that theorem. Thus it is reasonable to expect
that the series (13) does converge at each point, and this fact can be established, pro-
vided, for example, that f is continuous.

Now suppose that μ is equal to one of the eigenvalues of the corresponding ho-
mogeneous problem, say, μ = λm; then the situation is quite different. In this event,
for n = m, Eq. (11) has the form 0 · bm − cm = 0. Again we must consider two cases.

If μ = λm and cm �= 0, then there is no value of bm that satisfies Eq, (11), and
therefore the nonhomogeneous problem (1), (2) has no solution.

If μ = λm and cm = 0, then Eq. (11) is satisfied regardless of the value of bm; in
other words, bm remains arbitrary. In this case the boundary value problem (1), (2)
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does have a solution, but it is not unique, since it contains an arbitrary multiple of
the eigenfunction φm.

Since cm is given by Eq. (9), the condition cm = 0 means that∫ 1

0
f (x)φm(x) dx = 0. (14)

Thus, if μ = λm, the nonhomogeneous boundary value problem (1), (2) can be solved
only if f is orthogonal to the eigenfunction corresponding to the eigenvalue λm.

The results we have formally obtained are summarized in the following theorem.

Theorem 11.3.1 The nonhomogeneous boundary value problem (1), (2) has a unique solution for
each continuous f whenever μ is different from all the eigenvalues of the corre-
sponding homogeneous problem; the solution is given by Eq. (13), and the series
converges for each x in 0 ≤ x ≤ 1. If μ is equal to an eigenvalue λm of the corre-
sponding homogeneous problem, then the nonhomogeneous boundary value prob-
lem has no solution unless f is orthogonal to φm, that is, unless the condition (14)
holds. In that case, the solution is not unique and contains an arbitrary multiple of
φm(x).

The main part of Theorem 11.3.1 is sometimes stated in the following way:

Theorem 11.3.2 For a given value of μ, either the nonhomogeneous problem (1), (2) has a unique
solution for each continuous f (if μ is not equal to any eigenvalue λm of the corre-
sponding homogeneous problem), or else the homogeneous problem (3), (2) has a
nontrivial solution (the eigenfunction corresponding to λm).

This latter form of the theorem is known as the Fredholm6 alternative theorem.
This is one of the basic theorems of mathematical analysis and occurs in many differ-
ent contexts. You may be familiar with it in connection with sets of linear algebraic
equations where the vanishing or nonvanishing of the determinant of coefficients
replaces the statements about μ and λm. See the discussion in Section 7.3.

E X A M P L E

1

Solve the boundary value problem

y′′ + 2y = −x, (15)

y(0) = 0, y(1) + y′(1) = 0. (16)

6The Swedish mathematician Erik Ivar Fredholm (1866–1927), professor at the University of Stockholm,
established the modern theory of integral equations in a fundamental paper in 1903. Fredholm’s work
emphasized the similarities between integral equations and systems of linear algebraic equations. There
are also many interrelations between differential and integral equations; for example, see Section 2.8 and
Problem 22 of Section 6.6.
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This particular problem can be solved directly in an elementary way and has the solution

y = sin
√

2 x

sin
√

2 + √
2 cos

√
2

− x
2
. (17)

The method of solution described below illustrates the use of eigenfunction expansions, a
method that can be employed in many problems not accessible by elementary procedures.

We begin by rewriting Eq. (15) as

−y′′ = 2y + x (18)

so that it will have the same form as Eq. (1). We seek the solution of the given problem as a
series of normalized eigenfunctions φn of the corresponding homogeneous problem

y′′ + λy = 0, y(0) = 0, y(1) + y′(1) = 0. (19)

These eigenfunctions were found in Example 2 of Section 11.2 and are

φn(x) = kn sin
√

λn x, (20)

where

kn =
(

2
1 + cos2

√
λn

)1/2

(21)

and λn satisfies

sin
√

λn + √
λn cos

√
λn = 0. (22)

Recall that in Example 1 of Section 11.1 we found that

λ1
∼= 4.116, λ2

∼= 24.14,

λ3
∼= 63.66, λn

∼= (2n − 1)2π2/4 for n = 4, 5, . . . .

We assume that y is given by Eq. (4)

y =
∞∑

n=1

bnφn(x),

and it follows that the coefficients bn are found from Eq. (12)

bn = cn

λn − 2
,

where the cn are the expansion coefficients of the nonhomogeneous term f (x) = x in Eq. (18)
in terms of the eigenfunctions φn. These coefficients were found in Example 3 of Section 11.2
and are

cn = 2
√

2 sin
√

λn

λn(1 + cos2
√

λn)1/2
. (23)

Putting everything together, we finally obtain the solution

y = 4
∞∑

n=1

sin
√

λn

λn(λn − 2)(1 + cos2
√

λn)
sin

√
λn x. (24)

Although Eqs. (17) and (24) are quite different in appearance, they are actually two different
expressions for the same function. This follows from the uniqueness part of Theorem 11.3.1
or 11.3.2 since λ = 2 is not an eigenvalue of the homogeneous problem (19). Alternatively,
you can show the equivalence of Eqs. (17) and (24) by expanding the right side of Eq. (17)
in terms of the eigenfunctions φn(x). For this problem it is fairly obvious that Eq. (17) is a
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more convenient expression for the solution than Eq. (24). However, we emphasize again that
in other problems we may not be able to obtain the solution except by series (or numerical)
methods.

Nonhomogeneous Heat Conduction Problems. To show how eigenfunction expansions can
be used to solve nonhomogeneous problems for partial differential equations, let us
consider the generalized heat conduction equation

r(x)ut = [p(x)ux]x − q(x)u + F(x, t) (25)

with the boundary conditions

ux(0, t) − h1u(0, t) = 0, ux(1, t) + h2u(1, t) = 0 (26)

and the initial condition
u(x, 0) = f (x). (27)

This problem was previously discussed in Appendix A of Chapter 10 and in Section
11.1. In the latter section we let u(x, t) = X(x)T(t) in the homogeneous equation
obtained by setting F(x, t) = 0, and showed that X(x) must be a solution of the
boundary value problem

−[p(x)X ′]′ + q(x)X = λr(x)X , (28)

X ′(0) − h1X(0) = 0, X ′(1) + h2X(1) = 0. (29)

If we assume that p, q, and r satisfy the proper continuity requirements and that p(x)

and r(x) are always positive, the problem (28), (29) is a Sturm–Liouville problem as
discussed in Section 11.2. Thus we obtain a sequence of eigenvalues λ1 < λ2 < · · · <

λn < · · · and corresponding normalized eigenfunctions φ1(x), φ2(x), . . . , φn(x), . . . .
We will solve the given nonhomogeneous boundary value problem (25) to (27) by

assuming that u(x, t) can be expressed as a series of eigenfunctions

u(x, t) =
∞∑

n=1

bn(t)φn(x), (30)

and then showing how to determine the coefficients bn(t). The procedure is basically
the same as that used in the problem (1), (2) considered earlier, although it is more
complicated in certain respects. For instance, the coefficients bn must now depend
on t, because otherwise u would be a function of x only. Note that the boundary
conditions (26) are automatically satisfied by an expression of the form (30) because
each φn(x) satisfies the boundary conditions (29).

Next we substitute from Eq. (30) for u in Eq. (25). From the first two terms on the
right side of Eq. (25) we formally obtain

[p(x)ux]x − q(x)u = ∂

∂x

[
p(x)

∞∑
n=1

bn(t)φ′
n(x)

]
− q(x)

∞∑
n=1

bn(t)φn(x)

=
∞∑

n=1

bn(t){[p(x)φ′
n(x)]′ − q(x)φn(x)}. (31)
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Since [p(x)φ′
n(x)]′ − q(x)φn(x) = −λnr(x)φn(x), we obtain finally

[p(x)ux]x − q(x)u = −r(x)

∞∑
n=1

bn(t)λnφn(x). (32)

Now consider the term on the left side of Eq. (25). We have

r(x)ut = r(x)
∂

∂t

∞∑
n=1

bn(t)φn(x)

= r(x)

∞∑
n=1

b′
n(t)φn(x). (33)

We must also express the nonhomogeneous term in Eq. (25) as a series of eigen-
functions. Once again, it is convenient to look at the ratio F(x, t)/r(x) and to write

F(x, t)
r(x)

=
∞∑

n=1

γn(t)φn(x), (34)

where the coefficients are given by

γn(t) =
∫ 1

0
r(x)

F(x, t)
r(x)

φn(x) dx

=
∫ 1

0
F(x, t)φn(x) dx, n = 1, 2, . . . . (35)

Since F(x, t) is given, we can consider the functions γn(t) to be known.
Gathering all these results together, we substitute from Eqs. (32), (33), and (34) in

Eq. (25), and find that

r(x)

∞∑
n=1

b′
n(t)φn(x) = −r(x)

∞∑
n=1

bn(t)λnφn(x) + r(x)

∞∑
n=1

γn(t)φn(x). (36)

To simplify Eq. (36), we cancel the common nonzero factor r(x) from all terms and
write everything in one summation:

∞∑
n=1

[
b′

n(t) + λnbn(t) − γn(t)
]
φn(x) = 0. (37)

Once again, if Eq. (37) is to hold for all x in 0 < x < 1, it is necessary for the quantity
in square brackets to be zero for each n (again see Problem 14). Hence bn(t) is a
solution of the first order linear ordinary differential equation

b′
n(t) + λnbn(t) = γn(t), n = 1, 2, . . . , (38)

where γn(t) is given by Eq. (35). To determine bn(t) completely, we must have an
initial condition

bn(0) = Bn, n = 1, 2, . . . (39)
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for Eq. (38). This we obtain from the initial condition (27). Setting t = 0 in Eq. (30)
and using Eq. (27), we have

u(x, 0) =
∞∑

n=1

bn(0)φn(x) =
∞∑

n=1

Bnφn(x) = f (x). (40)

Thus the initial values Bn are the coefficients in the eigenfunction expansion for f (x).
Therefore

Bn =
∫ 1

0
r(x)f (x)φn(x) dx, n = 1, 2, . . . . (41)

Note that everything on the right side of Eq. (41) is known, so we can consider Bn as
known.

The initial value problem (38), (39) is solved by the methods of Section 2.1. The
integrating factor is μ(t) = exp(λnt), and it follows that

bn(t) = Bne−λnt +
∫ t

0
e−λn(t−s)γn(s) ds, n = 1, 2, . . . . (42)

The details of this calculation are left to you. Note that the first term on the right side
of Eq. (42) depends on the function f through the coefficients Bn, while the second
depends on the nonhomogeneous term F through the coefficients γn(s).

Thus an explicit solution of the boundary value problem (25) to (27) is given by
Eq. (30)

u(x, t) =
∞∑

n=1

bn(t)φn(x),

where the coefficients bn(t) are determined from Eq. (42). The quantities Bn and
γn(s) in Eq. (42) are found in turn from Eqs. (41) and (35), respectively.

Summarizing, to use this method to solve a boundary value problem such as that
given by Eqs. (25) to (27), we must

1. Find the eigenvalues λn and the normalized eigenfunctions φn of the homogeneous prob-
lem (28), (29).

2. Calculate the coefficients Bn and γn(t) from Eqs. (41) and (35), respectively.
3. Evaluate the integral in Eq. (42) to determine bn(t).
4. Sum the infinite series (30).

Since any or all of these steps may be difficult, the entire process can be quite
formidable. One redeeming feature is that often the series (30) converges rapidly, in
which case only a very few terms may be needed to obtain an adequate approximation
to the solution.

E X A M P L E

2

Find the solution of the heat conduction problem

ut = uxx + xe−t , (43)

u(0, t) = 0, ux(1, t) + u(1, t) = 0, (44)

u(x, 0) = 0. (45)
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Again we use the normalized eigenfunctions φn of the problem (19) and assume that u is given
by Eq. (30)

u(x, t) =
∞∑

n=1

bn(t)φn(x).

The coefficients bn are determined from the differential equation

b′
n + λnbn = γn(t), (46)

where λn is the nth eigenvalue of problem (19) and γn(t) is the nth expansion coefficient of the
nonhomogeneous term xe−t in terms of the eigenfunctions φn. Thus we have

γn(t) =
∫ 1

0
xe−tφn(x) dx = e−t

∫ 1

0
xφn(x) dx

= cne−t , (47)

where cn =
∫ 1

0
xφn(x) dx is given by Eq. (23). The initial condition for Eq. (46) is

bn(0) = 0 (48)

since the initial temperature distribution (45) is zero everywhere. The solution of the initial
value problem (46), (48) is

bn(t) = e−λnt
∫ t

0
eλnscne−s ds = cne−λnt e(λn−1)t − 1

λn − 1

= cn

λn − 1
(e−t − e−λnt). (49)

Thus the solution of the heat conduction problem (43) to (45) is given by

u(x, t) = 4
∞∑

n=1

(sin
√

λn) (e−t − e−λnt) sin
√

λn x

λn(λn − 1)(1 + cos2
√

λn)
. (50)

The solution given by Eq. (50) is exact but complicated. To judge whether a satisfactory
approximation to the solution can be obtained by using only a few terms in this series, we must
estimate its speed of convergence. First we split the right side of Eq. (50) into two parts:

u(x, t) = 4e−t
∞∑

n=1

sin
√

λn sin
√

λn x

λn(λn − 1)(1 + cos2
√

λn)
− 4

∞∑
n=1

e−λnt sin
√

λn sin
√

λn x

λn(λn − 1)(1 + cos2
√

λn)
. (51)

Recall from Example 1 in Section 11.1 that the eigenvalues λn are very nearly proportional to
n2. In the first series on the right side of Eq. (51) the trigonometric factors are all bounded

as n → ∞; therefore this series converges similarly to the series
∞∑

n=1
λ−2

n or
∞∑

n=1
n−4. Hence at

most two or three terms are required for us to obtain an excellent approximation to this part
of the solution. The second series contains the additional factor e−λnt , so its convergence is
even more rapid for t > 0; all terms after the first are almost surely negligible.

Further Discussion. Eigenfunction expansions can be used to solve a much greater va-
riety of problems than the preceding discussion and examples may suggest. For
example, time-independent nonhomogeneus boundary conditions can be handled
much as in Section 10.6. To reduce the problem to one with homogeneous boundary
conditions, subtract from u a function v that is chosen to satisfy the given boundary
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conditions. Then the difference w = u − v satisfies a problem with homogeneous
boundary conditions, but with a modified forcing term and initial condition. This
problem can be solved by the procedure described in this section.

One potential difficulty in using eigenfunction expansions is that the normalized
eigenfunctions of the corresponding homogeneous problem must be found. For a
differential equation with variable coefficients this may be difficult, if not impossible.
In such a case it is sometimes possible to use other functions, such as eigenfunctions
of a simpler problem, that satisfy the same boundary conditions. For instance, if the
boundary conditions are

u(0, t) = 0, u(1, t) = 0, (52)

then it may be convenient to replace the functions φn(x) in Eq. (30) by sin nπx. These
functions at least satisfy the correct boundary conditions, although in general they
are not solutions of the corresponding homogeneous differential equation. Next we
expand the nonhomogeneous term F(x, t) in a series of the form (34), again with
φn(x) replaced by sin nπx, and then substitute for both u and F in Eq. (25). Upon
collecting the coefficients of sin nπx for each n, we have an infinite set of linear first
order differential equations from which to determine b1(t), b2(t), . . . . The essential
difference between this case and the one considered earlier is that now the equations
for the functions bn(t) are coupled. Thus they cannot be solved one by one, as before,
but must be dealt with simultaneously. In practice, the infinite system is replaced
by an approximating finite system, from which approximations to a finite number of
coefficients are calculated.

Boundary value problems for equations of higher than second order can also often
be solved by eigenfunction expansions. In some cases the procedure parallels almost
exactly that for second order problems. However, a variety of complications can also
arise.

Finally, we emphasize that the discussion in this section has been purely formal.
Separate and sometimes elaborate arguments must be used to establish convergence
of eigenfunction expansions or to justify some of the steps used, such as term-by-term
differentiation of eigenfunction series.

There are also other, altogether different, methods for solving nonhomogeneous
boundary value problems. One of these leads to a solution expressed as a definite
integral rather than as an infinite series. This approach involves certain functions
known as Green’s functions and, for ordinary differential equations, is the subject of
Problems 28 through 36.

PROBLEMS In each of Problems 1 through 5 solve the given problem by means of an eigenfunction ex-
pansion.

1. y′′ + 2y = −x, y(0) = 0, y(1) = 0

2. y′′ + 2y = −x, y(0) = 0, y′(1) = 0; see Section 11.2, Problem 7.

3. y′′ + 2y = −x, y′(0) = 0, y′(1) = 0; see Section 11.2, Problem 3.

4. y′′ + 2y = −x, y′(0) = 0, y′(1) + y(1) = 0; see Section 11.2, Problem 11.

5. y′′ + 2y = −1 + |1 − 2x|, y(0) = 0, y(1) = 0
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In each of Problems 6 through 9 determine a formal eigenfunction series expansion for the
solution of the given problem. Assume that f satisfies the conditions of Theorem 11.3.1. State
the values of μ for which the solution exists.

6. y′′ + μy = −f (x), y(0) = 0, y′(1) = 0

7. y′′ + μy = −f (x), y′(0) = 0, y(1) = 0

8. y′′ + μy = −f (x), y′(0) = 0, y′(1) = 0

9. y′′ + μy = −f (x), y′(0) = 0, y′(1) + y(1) = 0

In each of Problems 10 through 13 determine whether there is any value of the constant a for
which the problem has a solution. Find the solution for each such value.

10. y′′ + π 2y = a + x, y(0) = 0, y(1) = 0

11. y′′ + 4π 2y = a + x, y(0) = 0, y(1) = 0

12. y′′ + π 2y = a, y′(0) = 0, y′(1) = 0

13. y′′ + π 2y = a − cos πx, y(0) = 0, y(1) = 0

14. Let φ1, . . . , φn, . . . be the normalized eigenfunctions of the differential equation (3) subject

to the boundary conditions (2). If
∞∑

n=1
cnφn(x) converges to f (x), where f (x) = 0 for each x

in 0 ≤ x ≤ 1, show that cn = 0 for each n.
Hint: Multiply by r(x)φm(x), integrate, and use the orthogonality property of the eigen-
functions.

15. Let L be a second order linear differential operator. Show that the solution y = φ(x) of
the problem

L[y] = f (x),

α1y(0) + α2y′(0) = a, β1y(1) + β2y′(1) = b

can be written as y = u + v, where u = φ1(x) and v = φ2(x) are solutions of the problems

L[u] = 0,

α1u(0) + α2u′(0) = a, β1u(1) + β2u′(1) = b

and

L[v] = f (x),

α1v(0) + α2v
′(0) = 0, β1v(1) + β2v

′(1) = 0,

respectively.

16. Show that the problem

y′′ + π 2y = π2x, y(0) = 1, y(1) = 0

has the solution

y = c1 sin πx + cos πx + x.

Also show that this solution cannot be obtained by splitting the problem as suggested in
Problem 15, since neither of the two subsidiary problems can be solved in this case.

17. Consider the problem

y′′ + p(x)y′ + q(x)y = 0, y(0) = a, y(1) = b.
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Let y = u + v, where v is any twice differentiable function satisfying the boundary con-
ditions (but not necessarily the differential equation). Show that u is a solution of the
problem

u′′ + p(x)u′ + q(x)u = g(x), u(0) = 0, u(1) = 0,

where g(x) = −[v′′ + p(x)v′ + q(x)v] and is known once v is chosen. Thus nonhomo-
geneities can be transferred from the boundary conditions to the differential equation.
Find a function v for this problem.

18. Using the method of Problem 17, transform the problem

y′′ + 2y = 2 − 4x, y(0) = 1, y(1) + y′(1) = −2

into a new problem in which the boundary conditions are homogeneous. Solve the latter
problem by reference to Example 1 of the text.

In each of Problems 19 through 22 use eigenfunction expansions to find the solution of the
given boundary value problem.

19. ut = uxx − x, u(0, t) = 0, ux(1, t) = 0, u(x, 0) = sin(πx/2);
see Problem 2.

20. ut = uxx + e−t , ux(0, t) = 0, ux(1, t) + u(1, t) = 0, u(x, 0) = 1 − x;
see Section 11.2, Problems 10 and 12.

21. ut = uxx + 1 − |1 − 2x|, u(0, t) = 0, u(1, t) = 0, u(x, 0) = 0;
see Problem 5.

22. ut = uxx + e−t(1 − x), u(0, t) = 0, ux(1, t) = 0, u(x, 0) = 0;
see Section 11.2, Problems 6 and 7.

23. Consider the boundary value problem

r(x)ut = [p(x)ux]x − q(x)u + F(x),

u(0, t) = T1, u(1, t) = T2, u(x, 0) = f (x).

(a) Let v(x) be a solution of the problem

[p(x)v′]′ − q(x)v = −F(x), v(0) = T1, v(1) = T2.

If w(x, t) = u(x, t) − v(x), find the boundary value problem satisfied by w. Note that this
problem can be solved by the method of this section.
(b) Generalize the procedure of part (a) to the case where u satisfies the boundary con-
ditions

ux(0, t) − h1u(0, t) = T1, ux(1, t) + h2u(1, t) = T2.

In each of Problems 24 and 25 use the method indicated in Problem 23 to solve the given
boundary value problem.

24. ut = uxx − 2,
u(0, t) = 1, u(1, t) = 0,
u(x, 0) = x2 − 2x + 2

25. ut = uxx − π 2 cos πx,
ux(0, t) = 0, u(1, t) = 1,
u(x, 0) = cos(3πx/2) − cos πx

26. The method of eigenfunction expansions is often useful for nonhomogeneous problems
related to the wave equation or its generalizations. Consider the problem

r(x)utt = [p(x)ux]x − q(x)u + F(x, t), (i)

ux(0, t) − h1u(0, t) = 0, ux(1, t) + h2u(1, t) = 0, (ii)

u(x, 0) = f (x), ut(x, 0) = g(x). (iii)



September 11, 2008 11:18 boyce-9e-bvp Sheet number 719 Page number 699 cyan black

11.3 Nonhomogeneous Boundary Value Problems 699

This problem can arise in connection with generalizations of the telegraph equation (Prob-
lem 16 in Section 11.1) or the longitudinal vibrations of an elastic bar (Problem 25 in
Section 11.1).

(a) Let u(x, t) = X(x)T(t) in the homogeneous equation corresponding to Eq. (i), and
show that X(x) satisfies Eqs. (28) and (29) of the text. Let λn and φn(x) denote the
eigenvalues and normalized eigenfunctions of this problem.

(b) Assume that u(x, t) =
∞∑

n=1
bn(t)φn(x), and show that bn(t) must satisfy the initial value

problem

b′′
n(t) + λnbn(t) = γn(t), bn(0) = αn, b′

n(0) = βn,

where αn, βn, and γn(t) are the expansion coefficients for f (x), g(x), and F(x, t)/r(x) in
terms of the eigenfunctions φ1(x), . . . , φn(x), . . . .

27. In this problem we explore a little further the analogy between Sturm–Liouville bound-
ary value problems and Hermitian matrices. Let A be an n × n Hermitian matrix with
eigenvalues λ1, . . . , λn and corresponding orthogonal eigenvectors ξ (1), . . . , ξ (n).

Consider the nonhomogeneous system of equations

Ax − μx = b, (i)

where μ is a given real number and b is a given vector. We will point out a way of solving
Eq. (i) that is analogous to the method presented in the text for solving Eqs. (1) and (2).

(a) Show that b =
n∑

i=1
biξ

(i), where bi = (b, ξ (i)
).

(b) Assume that x =
n∑

i=1
aiξ

(i) and show that for Eq. (i) to be satisfied, it is necessary that

ai = bi/(λi − μ). Thus

x =
n∑

i=1

(b, ξ (i)
)

λi − μ
ξ (i), (ii)

provided that μ is not one of the eigenvalues of A, μ �= λi for i = 1, . . . , n. Compare this
result with Eq. (13).

Green’s7 Functions. Consider the nonhomogeneous system of algebraic equations

Ax − μx = b, (i)

where A is an n × n Hermitian matrix,μ is a given real number, and b is a given vector. Instead
of using an eigenvector expansion as in Problem 27, we can solve Eq. (i) by computing the
inverse matrix (A −μI)−1, which exists if μ is not an eigenvalue of A. Then

x = (A − μI)−1b. (ii)

7Green’s functions are named after George Green (1793–1841) of England. He was almost entirely self-
taught in mathematics and made significant contributions to electricity and magnetism, fluid mechanics,
and partial differential equations. His most important work was an essay on electricity and magnetism
that was published privately in 1828. In this paper Green was the first to recognize the importance of
potential functions. He introduced the functions now known as Green’s functions as a means of solving
boundary value problems and developed the integral transformation theorems, of which Green’s theorem
in the plane is a particular case. However, these results did not become widely known until Green’s essay
was republished in the 1850s through the efforts of William Thomson (Lord Kelvin).
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Problems 28 through 36 indicate a way of solving nonhomogeneous boundary value problems
that is analogous to using the inverse matrix for a system of linear algebraic equations. The
Green’s function plays a part similar to the inverse of the matrix of coefficients. This method
leads to solutions expressed as definite integrals rather than as infinite series. Except in
Problem 35, we will assume that μ = 0 for simplicity.

28. (a) Show by the method of variation of parameters that the general solution of the dif-
ferential equation

−y′′ = f (x)

can be written in the form

y = φ(x) = c1 + c2x −
∫ x

0
(x − s)f (s) ds,

where c1 and c2 are arbitrary constants.

(b) Let y = φ(x) also be required to satisfy the boundary conditions y(0) = 0, y(1) = 0.
Show that in this case

c1 = 0, c2 =
∫ 1

0
(1 − s)f (s) ds.

(c) Show that, under the conditions of parts (a) and (b), φ(x) can be written in the form

φ(x) =
∫ x

0
s(1 − x)f (s) ds +

∫ 1

x
x(1 − s)f (s) ds.

(d) Defining

G(x, s) =
{

s(1 − x), 0 ≤ s ≤ x,
x(1 − s), x ≤ s ≤ 1,

show that the solution can be written as

φ(x) =
∫ 1

0
G(x, s)f (s) ds.

The function G(x, s) appearing under the integral sign is a Green’s function. The usefulness
of a Green’s function solution rests on the fact that the Green’s function is independent of
the nonhomogeneous term in the differential equation. Thus, once the Green’s function
is determined, the solution of the boundary value problem for any nonhomogeneous
term f (x) is obtained by a single integration. Note further that no determination of
arbitrary constants is required, since φ(x) as given by the Green’s function integral formula
automatically satisfies the boundary conditions.

29. By a procedure similar to that in Problem 28 show that the solution of the boundary value
problem

−(y′′ + y) = f (x), y(0) = 0, y(1) = 0

is

y = φ(x) =
∫ 1

0
G(x, s)f (s) ds,

where

G(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

sin s sin(1 − x)

sin 1
, 0 ≤ s ≤ x,

sin x sin(1 − s)
sin 1

, x ≤ s ≤ 1.
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30. It is possible to show that the Sturm–Liouville problem

L[y] = −[p(x)y′]′ + q(x)y = f (x), (i)

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0 (ii)

has a Green’s function solution

y = φ(x) =
∫ 1

0
G(x, s)f (s) ds, (iii)

provided that λ = 0 is not an eigenvalue of L[y] = λy subject to the boundary conditions
(ii). Further, G(x, s) is given by

G(x, s) =
{−y1(s)y2(x)/p(x)W(y1, y2)(x), 0 ≤ s ≤ x,

−y1(x)y2(s)/p(x)W(y1, y2)(x), x ≤ s ≤ 1,
(iv)

where y1 is a solution of L[y] = 0 satisfying the boundary condition at x = 0, y2 is a solution
of L[y] = 0 satisfying the boundary condition at x = 1, and W(y1, y2) is the Wronskian of
y1 and y2.

(a) Verify that the Green’s function obtained in Problem 28 is given by formula (iv).

(b) Verify that the Green’s function obtained in Problem 29 is given by formula (iv).

(c) Show that p(x)W(y1, y2)(x) is a constant by showing that its derivative is zero.

(d) Using Eq. (iv) and the result of part (c), show that G(x, s) = G(s, x).
(e) Verify that y = φ(x) from Eq. (iii) with G(x, s) given by Eq. (iv) satisfies the differential
equation (i) and the boundary conditions (ii).

In each of Problems 31 through 34 solve the given boundary value problem by determining the
appropriate Green’s function and expressing the solution as a definite integral. Use Eqs. (i)
to (iv) of Problem 30.

31. −y′′ = f (x), y′(0) = 0, y(1) = 0

32. −y′′ = f (x), y(0) = 0, y(1) + y′(1) = 0

33. −(y′′ + y) = f (x), y′(0) = 0, y(1) = 0

34. −y′′ = f (x), y(0) = 0, y′(1) = 0

35. Consider the boundary value problem

L[y] = −[p(x)y′]′ + q(x)y = μr(x)y + f (x), (i)

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0. (ii)

According to the text, the solution y = φ(x) is given by Eq. (13), where cn is defined by
Eq. (9), provided that μ is not an eigenvalue of the corresponding homogeneous problem.
In this case it can also be shown that the solution is given by a Green’s function integral
of the form

y = φ(x) =
∫ 1

0
G(x, s, μ)f (s) ds. (iii)

Note that in this problem the Green’s function also depends on the parameter μ.
(a) Show that if these two expressions for φ(x) are to be equivalent, then

G(x, s, μ) =
∞∑

i=1

φi(x)φi(s)
λi − μ

, (iv)
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where λi and φi are the eigenvalues and eigenfunctions, respectively, of Eqs. (3), (2) of the
text. Again we see from Eq. (iv) that μ cannot be equal to any eigenvalue λi.

(b) Derive Eq. (iv) directly by assuming that G(x, s, μ) has the eigenfunction expansion

G(x, s, μ) =
∞∑

i=1

ai(x, μ)φi(s). (v)

Determine ai(x, μ) by multiplying Eq. (v) by r(s)φj(s) and integrating with respect to s
from s = 0 to s = 1.
Hint: Show first that λi and φi satisfy the equation

φi(x) = (λi − μ)

∫ 1

0
G(x, s, μ)r(s)φi(s) ds. (vi)

36. Consider the boundary value problem

−d2y/ds2 = δ(s − x), y(0) = 0, y(1) = 0,

where s is the independent variable, s = x is a definite point in the interval 0 < s < 1, and
δ is the Dirac delta function (see Section 6.5). Show that the solution of this problem is
the Green’s function G(x, s) obtained in Problem 28.

In solving the given problem, note that δ(s − x) = 0 in the intervals 0 ≤ s < x and
x < s ≤ 1. Note further that −dy/ds experiences a jump of magnitude 1 as s passes through
the value x.

This problem illustrates a general property,namely, that the Green’s function G(x, s) can
be identified as the response at the point s to a unit impulse at the point x. A more general
nonhomogeneous term f on 0 ≤ x ≤ 1 can be regarded as a continuous distribution of
impulses with magnitude f (x) at the point x. The solution of a nonhomogeneous boundary
value problem in terms of a Green’s function integral can then be interpreted as the result
of superposing the responses to the set of impulses represented by the nonhomogeneous
term f (x).

11.4 Singular Sturm–Liouville Problems
In the preceding sections of this chapter we considered Sturm–Liouville boundary
value problems: the differential equation

L[y] = −[p(x)y′]′ + q(x)y = λr(x)y, 0 < x < 1, (1)

together with boundary conditions of the form

α1y(0) + α2y′(0) = 0, (2)

β1y(1) + β2y′(1) = 0. (3)

Until now, we have always assumed that the problem is regular; that is, p is differen-
tiable, q and r are continuous, and p(x) > 0 and r(x) > 0 at all points in the closed
interval. However, there are also equations of physical interest in which some of
these conditions are not satisfied.
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For example, suppose that we wish to study Bessel’s equation of order ν on the
interval 0 < x < 1. This equation is sometimes written in the form8

−(xy′)′ + ν2

x
y = λxy (4)

so that p(x) = x, q(x) = ν2/x, and r(x) = x. Thus p(0) = 0, r(0) = 0, and q(x) is un-
bounded and hence discontinuous as x → 0. However, the conditions imposed on
regular Sturm–Liouville problems are met elsewhere in the interval.

Similarly, for Legendre’s equation we have

−[(1 − x2)y′]′ = λy, −1 < x < 1, (5)

where λ = α(α + 1), p(x) = 1 − x2, q(x) = 0, and r(x) = 1. Here the required condi-
tions on p, q, and r are satisfied in the interval 0 ≤ x ≤ 1 except at x = 1, where p is
zero.

We use the term singular Sturm–Liouville problem to refer to a certain class of
boundary value problems for the differential equation (1) in which the functions p, q,
and r satisfy the conditions stated earlier on the open interval 0 < x < 1, but at least
one of these functions fails to satisfy them at one or both of the boundary points.
We also prescribe suitable separated boundary conditions of a kind to be described
in more detail later in this section. Singular problems also occur if the interval is
unbounded, for example, 0 ≤ x < ∞. We do not consider this latter kind of singular
problem in this book.

As an example of a singular problem on a finite interval, consider the equation

xy′′ + y′ + λxy = 0, (6)

or
−(xy′)′ = λxy, (7)

on the interval 0 < x < 1, and suppose that λ > 0. This equation arises in the study of
free vibrations of a circular elastic membrane and is discussed further in Section 11.5.
If we introduce the new independent variable t defined by t = √

λ x, then

dy
dx

= √
λ

dy
dt

,
d2y
dx2

= λ
d2y
dt2

.

Hence Eq. (6) becomes

t√
λ

λ
d2y
dt2

+ √
λ

dy
dt

+ λ
t√
λ

y = 0,

or, if we cancel the common factor
√

λ in each term,

t
d2y
dt2

+ dy
dt

+ ty = 0. (8)

Equation (8) is Bessel’s equation of order zero (see Section 5.7). The general solution
of Eq. (8) for t > 0 is

y = c1J0(t) + c2Y0(t);

8The substitution t = √
λ x reduces Eq. (4) to the standard form t2y′′ + ty′ + (t2 − ν2)y = 0.
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hence the general solution of Eq. (7) for x > 0 is

y = c1J0(
√

λ x) + c2Y0(
√

λ x), (9)

where J0 and Y0 denote the Bessel functions of the first and second kinds of order
zero. From Eqs. (7) and (13) of Section 5.7 we have

J0(
√

λ x) = 1 +
∞∑

m=1

(−1)mλmx2m

22m(m!)2
, x > 0, (10)

Y0(
√

λ x) = 2
π

[(
γ + ln

√
λ x
2

)
J0(

√
λ x) +

∞∑
m=1

(−1)m+1Hmλmx2m

22m(m!)2

]
, x > 0,

(11)

where Hm = 1 + (1/2) + · · · + (1/m) and γ = lim
m→∞(Hm − ln m). The graphs of

y = J0(x) and y = Y0(x) are given in Figure 5.7.2.
Suppose that we seek a solution of Eq. (7) that also satisfies the boundary condi-

tions

y(0) = 0, (12)

y(1) = 0, (13)

which are typical of those we have met in other problems in this chapter. Since
J0(0) = 1 and Y0(x) → −∞ as x → 0, the condition y(0) = 0 can be satisfied only by
choosing c1 = c2 = 0 in Eq. (9). Thus the boundary value problem (7), (12), (13) has
only the trivial solution.

One interpretation of this result is that the boundary condition (12) at x = 0 is
too restrictive for the differential equation (7). This illustrates the general situation,
namely, that at a singular boundary point it is necessary to consider a modified type
of boundary condition. In the present problem, suppose that we require only that
the solution (9) and its derivative remain bounded. In other words, we take as the
boundary condition at x = 0 the requirement

y, y′ bounded as x → 0. (14)

This condition can be satisfied by choosing c2 = 0 in Eq. (9), so as to eliminate the
unbounded solution Y0. The second boundary condition, y(1) = 0, then yields

J0(
√

λ) = 0. (15)

It is possible to show9 that Eq. (15) has an infinite set of discrete positive roots,
which yield the eigenvalues 0 < λ1 < λ2 < · · · < λn < · · · of the given problem. The
corresponding eigenfunctions are

φn(x) = J0

(√
λn x

)
, (16)

9The function J0 is well tabulated; the roots of Eq. (15) can be found in various tables, for example, those
in Jahnke and Emde or Abramowitz and Stegun. You can also use a computer algebra system to compute
them quickly. The first three roots of Eq. (15) are

√
λ = 2.405, 5.520, and 8.654, respectively, to four

significant figures;
√

λn ∼= (n − 1/4)π for large n.
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determined only up to a multiplicative constant. The boundary value problem (7),
(13), and (14) is an example of a singular Sturm–Liouville problem. This example
illustrates that if the boundary conditions are relaxed in an appropriate way, then a
singular Sturm–Liouville problem may have an infinite sequence of eigenvalues and
eigenfunctions, just as a regular Sturm–Liouville problem does.

Because of their importance in applications, it is worthwhile to investigate singular
boundary value problems a little further. There are two main questions that are of
concern:

1. Precisely what type of boundary conditions can be allowed in a singular Sturm–Liouville
problem?

2. To what extent do the eigenvalues and eigenfunctions of a singular problem share the
properties of eigenvalues and eigenfunctions of regular Sturm–Liouville problems? In
particular, are the eigenvalues real, are the eigenfunctions orthogonal, and can a given
function be expanded as a series of eigenfunctions?

Both these questions can be answered by a study of the identity∫ 1

0
{L[u]v − uL[v]} dx = 0, (17)

which played an essential part in the development of the theory of regular Sturm–
Liouville problems. We therefore investigate the conditions under which this relation
holds for singular problems, where the integral in Eq. (17) may now have to be ex-
amined as an improper integral. To be definite, we consider the differential equation
(1) and assume that x = 0 is a singular boundary point but that x = 1 is not. The
boundary condition (3) is imposed at the nonsingular boundary point x = 1, but we
leave unspecified, for the moment, the boundary condition at x = 0. Indeed, our
principal objective is to determine what kinds of boundary conditions are allowable
at a singular boundary point if Eq. (17) is to hold.

Since the boundary value problem under investigation is singular at x = 0, we

choose ε > 0 and consider the integral
∫ 1

ε

L[u]v dx, instead of
∫ 1

0
L[u]v dx, as in

Section 11.2. Afterwards we let ε approach zero. Assuming that u and v have at least
two continuous derivatives on ε ≤ x ≤ 1, and integrating twice by parts, we find that∫ 1

ε

{
L[u]v − uL[v]} dx = −p(x)

[
u′(x)v(x) − u(x)v′(x)

] ∣∣∣1
ε
. (18)

The boundary term at x = 1 is again eliminated if both u and v satisfy the boundary
condition (3), and thus∫ 1

ε

{
L[u]v − uL[v]} dx = p(ε)

[
u′(ε)v(ε) − u(ε)v′(ε)

]
. (19)

Taking the limit as ε → 0 yields∫ 1

0

{
L[u]v − uL[v]} dx = lim

ε→0
p(ε)

[
u′(ε)v(ε) − u(ε)v′(ε)

]
. (20)

Hence Eq. (17) holds if and only if, in addition to the assumptions stated previously,

lim
ε→0

p(ε)
[
u′(ε)v(ε) − u(ε)v′(ε)

] = 0 (21)
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for every pair of functions u and v in the class under consideration. Equation (21)
is therefore the criterion that determines what boundary conditions are allowable at
x = 0 if that point is a singular boundary point. A similar condition applies at x = 1
if that boundary point is singular, namely,

lim
ε→0

p(1 − ε)
[
u′(1 − ε)v(1 − ε) − u(1 − ε)v′(1 − ε)

] = 0. (22)

In summary, as in Section 11.2, a singular boundary value problem for Eq. (1) is
said to be self-adjoint if Eq. (17) is valid, possibly as an improper integral, for each
pair of functions u and v with the following properties: they are twice continuously
differentiable on the open interval 0 < x < 1, they satisfy a boundary condition of
the form (2) at each regular boundary point, and they satisfy a boundary condition
sufficient to ensure Eq. (21) if x = 0 is a singular boundary point, or Eq. (22) if
x = 1 is a singular boundary point. If at least one boundary point is singular, then
the differential equation (1), together with two boundary conditions of the type just
described, are said to form a singular Sturm–Liouville problem.

For example, for Eq. (7) we have p(x) = x. If both u and v satisfy the boundary
condition (14) at x = 0, it is clear that Eq. (21) will hold. Hence the singular boundary
value problem,consisting of the differential equation (7), the boundary condition (14)
at x = 0, and any boundary condition of the form (3) at x = 1, is self-adjoint.

The most striking difference between regular and singular Sturm–Liouville prob-
lems is that in a singular problem the eigenvalues may not be discrete. That is, the
problem may have nontrivial solutions for every value of λ, or for every value of λ in
some interval. In such a case the problem is said to have a continuous spectrum. It
may happen that a singular problem has a mixture of discrete eigenvalues and also
a continuous spectrum. Finally, it is possible that only a discrete set of eigenvalues
exists, just as in the regular case discussed in Section 11.2. For example, this is true
of the problem consisting of Eqs. (7), (13), and (14). In general, it may be difficult to
determine which case actually occurs in a given problem.

A systematic discussion of singular Sturm–Liouville problems is quite sophisti-
cated10 indeed, requiring a substantial extension of the methods presented in this
book. We restrict ourselves to some examples related to physical applications; in
each of these examples it is known that there is an infinite set of discrete eigenvalues.

If a singular Sturm–Liouville problem does have only a discrete set of eigenvalues
and eigenfunctions, then Eq. (17) can be used, just as in Section 11.2, to prove that the
eigenvalues of such a problem are real and that the eigenfunctions are orthogonal
with respect to the weight function r. The expansion of a given function in terms of
a series of eigenfunctions then follows as in Section 11.2.

Such expansions are useful, as in the regular case, for solving nonhomogeneous
boundary value problems. The procedure is very similar to that described in Sec-
tion 11.3. Some examples for ordinary differential equations are indicated in Prob-
lems 1 to 4, and some problems for partial differential equations appear in Sec-
tion 11.5.

10See, for example, Chapter 5 of the book by Yosida listed in the references at the end of this chapter.
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For instance, the eigenfunctions φn(x) = J0(
√

λn x) of the singular Sturm–Liouville
problem

−(xy′)′ = λxy, 0 < x < 1,

y, y′ bounded as x → 0, y(1) = 0

satisfy the orthogonality relation∫ 1

0
xφm(x)φn(x) dx = 0, m �= n (23)

with respect to the weight function r(x) = x. Then, if f is a given function, we assume
that

f (x) =
∞∑

n=1

cnJ0(
√

λn x). (24)

Multiplying Eq. (24) by xJ0(
√

λm x) and integrating term by term from x = 0 to x = 1
yield ∫ 1

0
xf (x)J0(

√
λm x) dx =

∞∑
n=1

cn

∫ 1

0
xJ0(

√
λm x) J0(

√
λn x) dx. (25)

Because of the orthogonality condition (23), the right side of Eq. (25) collapses to a
single term; hence

cm =

∫ 1

0
xf (x)J0(

√
λm x) dx∫ 1

0
xJ2

0 (
√

λm x) dx

, (26)

which determines the coefficients in the series (24).
The convergence of the series (24) is established by an extension of Theorem 11.2.4

to cover this case. This theorem can also be shown to hold for other sets of Bessel
functions, which are solutions of appropriate boundary value problems, for Legen-
dre polynomials, and for solutions of a number of other singular Sturm–Liouville
problems of considerable interest.

It must be emphasized that the singular problems mentioned here are not nec-
essarily typical. In general, singular boundary value problems are characterized by
continuous spectra, rather than by discrete sets of eigenvalues. The corresponding
sets of eigenfunctions are therefore not denumerable, and series expansions of the
type described in Theorem 11.2.4 do not exist. They are replaced by appropriate
integral representations.

PROBLEMS 1. Find a formal solution of the nonhomogeneous boundary value problem

−(xy′)′ = μxy + f (x),

y, y′ bounded as x → 0, y(1) = 0,
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where f is a given continuous function on 0 ≤ x ≤ 1, and μ is not an eigenvalue of the
corresponding homogeneous problem.
Hint: Use a series expansion similar to those in Section 11.3.

2. Consider the boundary value problem

−(xy′)′ = λxy,

y, y′ bounded as x → 0, y′(1) = 0.

(a) Show that λ0 = 0 is an eigenvalue of this problem corresponding to the eigenfunction
φ0(x) = 1. If λ > 0, show formally that the eigenfunctions are given by φn(x) = J0(

√
λn x),

where
√

λn is the nth positive root (in increasing order) of the equation J ′
0(

√
λ) = 0. It is

possible to show that there is an infinite sequence of such roots.

(b) Show that if m, n = 0, 1, 2, . . . , then∫ 1

0
xφm(x)φn(x) dx = 0, m �= n.

(c) Find a formal solution to the nonhomogeneous problem

−(xy′)′ = μxy + f (x),

y, y′ bounded as x → 0, y′(1) = 0,

where f is a given continuous function on 0 ≤ x ≤ 1, and μ is not an eigenvalue of the
corresponding homogeneous problem.

3. Consider the problem
−(xy′)′ + (k2/x)y = λxy,

y, y′ bounded as x → 0, y(1) = 0,

where k is a positive integer.

(a) Using the substitution t = √
λ x, show that the given differential equation reduces to

Bessel’s equation of order k (see Problem 9 of Section 5.7). One solution is Jk(t); a second
linearly independent solution, denoted by Yk(t), is unbounded as t → 0.

(b) Show formally that the eigenvalues λ1, λ2, . . . of the given problem are the squares of
the positive zeros of Jk(

√
λ) and that the corresponding eigenfunctions are

φn(x) = Jk(
√

λn x). It is possible to show that there is an infinite sequence of such zeros.

(c) Show that the eigenfunctions φn(x) satisfy the orthogonality relation∫ 1

0
xφm(x)φn(x) dx = 0, m �= n.

(d) Determine the coefficients in the formal series expansion

f (x) =
∞∑

n=1

anφn(x).

(e) Find a formal solution of the nonhomogeneous problem

−(xy′)′ + (k2/x)y = μxy + f (x),

y, y′ bounded as x → 0, y(1) = 0,

where f is a given continuous function on 0 ≤ x ≤ 1, and μ is not an eigenvalue of the
corresponding homogeneous problem.
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4. Consider Legendre’s equation (see Problems 22 through 24 of Section 5.3)

−[(1 − x2)y′]′ = λy

subject to the boundary conditions

y(0) = 0, y, y′ bounded as x → 1.

The eigenfunctions of this problem are the odd Legendre polynomials φ1(x) = P1(x) = x,
φ2(x) = P3(x) = (5x3 − 3x)/2, . . . , φn(x) = P2n−1(x), . . . corresponding to the eigenvalues
λ1 = 2, λ2 = 4 · 3, . . . , λn = 2n(2n − 1), . . . .

(a) Show that ∫ 1

0
φm(x)φn(x) dx = 0, m �= n.

(b) Find a formal solution of the nonhomogeneous problem

−[(1 − x2)y′]′ = μy + f (x),
y(0) = 0, y, y′ bounded as x → 1,

where f is a given continuous function on 0 ≤ x ≤ 1, and μ is not an eigenvalue of the
corresponding homogeneous problem.

5. The equation

(1 − x2)y′′ − xy′ + λy = 0 (i)

is Chebyshev’s equation; see Problem 10 of Section 5.3.

(a) Show that Eq. (i) can be written in the form

−[(1 − x2)1/2y′]′ = λ(1 − x2)−1/2y, −1 < x < 1. (ii)

(b) Consider the boundary conditions

y, y′ bounded as x → −1, y, y′ bounded as x → 1. (iii)

Show that the boundary value problem (ii), (iii) is self-adjoint.

(c) It can be shown that the boundary value problem (ii), (iii) has the eigenvalues
λ0 = 0, λ1 = 1, λ2 = 4, . . . , λn = n2, . . . . The corresponding eigenfunctions are the Cheby-
shev polynomials Tn(x): T0(x) = 1, T1(x) = x, T2(x) = 1 − 2x2, . . . . Show that

∫ 1

−1

Tm(x)Tn(x)

(1 − x2)1/2
dx = 0, m �= n. (iv)

Note that this is a convergent improper integral.

11.5 Further Remarks on the Method of Separation
of Variables: A Bessel Series Expansion

In this chapter we are interested in extending the method of separation of vari-
ables developed in Chapter 10 to a larger class of problems—to problems involving
more general differential equations, more general boundary conditions, or different
geometrical regions. We indicated in Section 11.3 how to deal with a class of more
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general differential equations or boundary conditions. Here we concentrate on prob-
lems posed in various geometrical regions, with emphasis on those leading to singular
Sturm–Liouville problems when the variables are separated.

Because of its relative simplicity, as well as the considerable physical significance of
many problems to which it is applicable, the method of separation of variables merits
its important place in the theory and application of partial differential equations.
However, this method does have certain limitations that should not be forgotten. In
the first place, the problem must be linear so that the principle of superposition can
be invoked to construct additional solutions by forming linear combinations of the
fundamental solutions of an appropriate homogeneous problem.

As a practical matter, we must also be able to solve the ordinary differential equa-
tions, obtained after separating the variables, in a reasonably convenient manner.
In some problems to which the method of separation of variables can be applied in
principle, it is of very limited practical value due to a lack of information about the
solutions of the ordinary differential equations that appear.

Furthermore, the geometry of the region involved in the problem is subject to
rather severe restrictions. On the one hand, a coordinate system must be employed
in which the variables can be separated, and the partial differential equation replaced
by a set of ordinary differential equations. For Laplace’s equation there are about
a dozen such coordinate systems; only rectangular, circular cylindrical, and spherical
coordinates are likely to be familiar to most readers of this book. On the other
hand, the boundary of the region of interest must consist of coordinate curves or
surfaces—that is, curves or surfaces on which one variable remains constant. Thus,
at an elementary level, one is limited to regions bounded by straight lines or circular
arcs in two dimensions, or by planes, circular cylinders, circular cones, or spheres in
three dimensions.

In three-dimensional problems the separation of variables in Laplace’s operator
uxx + uyy + uzz leads to the equation X ′′ + λX = 0 in rectangular coordinates, to
Bessel’s equation in cylindrical coordinates, and to Legendre’s equation in spherical
coordinates. It is this fact that is largely responsible for the intensive study that
has been made of these equations and the functions defined by them. It is also
noteworthy that two of the three most important situations lead to singular, rather
than regular, Sturm–Liouville problems. Thus singular problems are by no means
exceptional and may be of even greater interest than regular ones. The remainder
of this section is devoted to an example involving an expansion of a given function
as a series of Bessel functions.

The Vibrations of a Circular Elastic Membrane. In Section 10.7 [Eq. (7)] we noted that the
transverse vibrations of a thin elastic membrane are governed by the two-dimensional
wave equation

a2(uxx + uyy) = utt . (1)

To study the motion of a circular membrane, it is convenient to write Eq. (1) in polar
coordinates:

a2
(

urr + 1
r

ur + 1
r2

uθθ

)
= utt . (2)

We will assume that the membrane has unit radius, that it is fixed securely around its
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circumference, and that initially it occupies a displaced position independent of the
angular variable θ , from which it is released at time t = 0. Because of the circular
symmetry of the initial and boundary conditions, it is natural to assume also that u is
independent of θ ; that is, u is a function of r and t only. In this event the differential
equation (2) becomes

a2
(

urr + 1
r

ur

)
= utt , 0 < r < 1, t > 0. (3)

The boundary condition at r = 1 is

u(1, t) = 0, t ≥ 0, (4)

and the initial conditions are

u(r, 0) = f (r), 0 ≤ r ≤ 1, (5)

ut(r, 0) = 0, 0 ≤ r ≤ 1, (6)

where f (r) describes the initial configuration of the membrane. For consistency we
also require that f (1) = 0. Finally, we state explicitly the requirement that u(r, t) be
bounded for 0 ≤ r ≤ 1.

Assuming that u(r, t) = R(r)T(t), and substituting for u(r, t) in Eq. (3), we obtain

R′′ + (1/r)R′

R
= 1

a2

T ′′

T
= −λ2. (7)

We have anticipated that the separation constant must be negative by writing it as −λ2

with λ > 0.11 Then Eq. (7) yields the following two ordinary differential equations:

r2R′′ + rR′ + λ2r2R = 0, (8)

T ′′ + λ2a2T = 0. (9)

Thus, from Eq. (9),
T(t) = k1 sin λat + k2 cos λat. (10)

Introducing the new independent variable ξ = λr into Eq. (8), we obtain

ξ 2 d2R
dξ 2

+ ξ
dR
dξ

+ ξ 2R = 0, (11)

which is Bessel’s equation of order zero. Thus

R = c1J0(ξ) + c2Y0(ξ), (12)

where J0 and Y0 are Bessel functions of the first and second kinds, respectively, of
order zero (see Section 11.4). In terms of r we have

R = c1J0(λr) + c2Y0(λr). (13)

11By denoting the separation constant by −λ2, rather than simply by −λ, we avoid the appearance of
numerous radical signs in the following discussion.
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The boundedness condition on u(r, t) requires that R remain bounded as r → 0. Since
Y0(λr) → −∞ as r → 0, we must choose c2 = 0. The boundary condition (4) then
requires that

J0(λ) = 0. (14)

Consequently, the allowable values of the separation constant are obtained from the
roots of the transcendental equation (14). Recall from Section 11.4 that J0(λ) has
an infinite set of discrete positive zeros, which we denote by λ1, λ2, λ3, . . . , λn, . . . ,
ordered in increasing magnitude. Further, the functions J0(λnr) are the eigenfunc-
tions of a singular Sturm–Liouville problem and can be used as the basis of a series
expansion for the given function f . The fundamental solutions of this problem, sat-
isfying the partial differential equation (3), the boundary condition (4), and bound-
edness condition, are

un(r, t) = J0(λnr) sin λnat, n = 1, 2, . . . , (15)

vn(r, t) = J0(λnr) cos λnat, n = 1, 2, . . . . (16)

Next we assume that u(r, t) can be expressed as an infinite linear combination of the
fundamental solutions (15), (16):

u(r, t) =
∞∑

n=1

[
knun(r, t) + cnvn(r, t)

]

=
∞∑

n=1

[knJ0(λnr) sin λnat + cnJ0(λnr) cos λnat]. (17)

The initial conditions require that

u(r, 0) =
∞∑

n=1

cnJ0(λnr) = f (r) (18)

and

ut(r, 0) =
∞∑

n=1

λnaknJ0(λnr) = 0. (19)

From Eq. (26) of Section 11.4 we obtain

kn = 0, cn =

∫ 1

0
rf (r)J0(λnr) dr∫ 1

0
r[J0(λnr)]2 dr

; n = 1, 2, . . . . (20)

Thus the solution of the partial differential equation (3) satisfying the boundary
condition (4) and the initial conditions (5) and (6) is given by

u(r, t) =
∞∑

n=1

cnJ0(λnr) cos λnat (21)

with the coefficients cn defined by Eq. (20).
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PROBLEMS 1. Consider Laplace’s equation uxx + uyy = 0 in the parallelogram whose vertices are (0, 0),
(2, 0), (3, 2), and (1, 2). Suppose that on the side y = 2 the boundary condition is
u(x, 2) = f (x) for 1 ≤ x ≤ 3, and that on the other three sides u = 0 (see Figure 11.5.1).

y

x

(a) (b)

η

ξ

D
(1, 2)

C
(3, 2)

B (2, 0)A   (0, 0)

D'
(0, 2)

C'
(2, 2)

B' (2, 0)A'   (0, 0)

FIGURE 11.5.1 The region in Problem 1.

(a) Show that there are no nontrivial solutions of the partial differential equation of the
form u(x, y) = X(x)Y(y) that also satisfy the homogeneous boundary conditions.

(b) Let ξ = x − 1
2 y, η = y. Show that the given parallelogram in the xy-plane transforms

into the square 0 ≤ ξ ≤ 2, 0 ≤ η ≤ 2 in the ξη-plane. Show that the differential equation
transforms into

5
4 uξξ − uξη + uηη = 0.

How are the boundary conditions transformed?
(c) Show that in the ξη-plane the differential equation possesses no solution of the form

u(ξ , η) = U(ξ)V(η).

Thus in the xy-plane the shape of the boundary precludes a solution by the method of the
separation of variables, while in the ξη-plane the region is acceptable but the variables in
the differential equation can no longer be separated.

2. Find the displacement u(r, t) in a vibrating circular elastic membrane of radius 1 that
satisfies the boundary condition

u(1, t) = 0, t ≥ 0,

and the initial conditions

u(r, 0) = 0, ut(r, 0) = g(r), 0 ≤ r ≤ 1,

where g(1) = 0.
Hint: The differential equation to be satisfied is Eq. (3) of this section.
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3. Find the displacement u(r, t) in a vibrating circular elastic membrane of radius 1 that
satisfies the boundary condition

u(1, t) = 0, t ≥ 0,

and the initial conditions

u(r, 0) = f (r), ut(r, 0) = g(r), 0 ≤ r ≤ 1,

where f (1) = g(1) = 0.

4. The wave equation in polar coordinates is

urr + (1/r)ur + (1/r2)uθθ = a−2utt .

Show that if u(r, θ , t) = R(r)�(θ)T(t), then R, �, and T satisfy the ordinary differential
equations

r2R′′ + rR′ + (λ2r2 − n2)R = 0,

�′′ + n2� = 0,

T ′′ + λ2a2T = 0.

5. In the circular cylindrical coordinates r, θ , z defined by

x = r cos θ , y = r sin θ , z = z,

Laplace’s equation is

urr + (1/r)ur + (1/r2)uθθ + uzz = 0.

(a) Show that if u(r, θ , z) = R(r)�(θ)Z(z), then R, �, and Z satisfy the ordinary differen-
tial equations

r2R′′ + rR′ + (λ2r2 − n2)R = 0,

�′′ + n2� = 0,

Z′′ − λ2Z = 0.

(b) Show that if u(r, θ , z) is independent of θ , then the first equation in part (a) becomes

r2R′′ + rR′ + λ2r2R = 0,

the second is omitted altogether, and the third is unchanged.

6. Find the steady-state temperature in a semi-infinite rod 0 < z < ∞, 0 ≤ r < 1, if the tem-
perature is independent of θ and approaches zero as z → ∞. Assume that the temperature
u(r, z) satisfies the boundary conditions

u(1, z) = 0, z > 0,

u(r, 0) = f (r), 0 ≤ r ≤ 1.

Hint: Refer to Problem 5.
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7. The equation
vxx + vyy + k2v = 0

is a generalization of Laplace’s equation and is sometimes called the Helmholtz12 equation.

(a) In polar coordinates the Helmholtz equation is

vrr + (1/r)vr + (1/r2)vθθ + k2v = 0.

If v(r, θ) = R(r)�(θ), show that R and � satisfy the ordinary differential equations

r2R′′ + rR′ + (k2r2 − λ2)R = 0, �′′ + λ2� = 0.

(b) Consider the Helmholtz equation in the disk r < c. Find the solution that remains
bounded at all points in the disk, that is periodic in θ with period 2π , and that satisfies the
boundary condition v(c, θ) = f (θ), where f is a given function on 0 ≤ θ < 2π .
Hint: The equation for R is a Bessel equation. See Problem 3 of Section 11.4.

8. Consider the flow of heat in an infinitely long cylinder of radius 1: 0 ≤ r < 1, 0 ≤ θ < 2π ,
−∞ < z < ∞. Let the surface of the cylinder be held at temperature zero,and let the initial
temperature distribution be a function of the radial variable r only. Then the temperature
u is a function of r and t only, and satisfies the heat conduction equation

α2[urr + (1/r)ur] = ut , 0 < r < 1, t > 0,

and the following initial and boundary conditions:

u(r, 0) = f (r), 0 ≤ r ≤ 1,

u(1, t) = 0, t > 0.

Show that

u(r, t) =
∞∑

n=1

cnJ0(λnr)e−α2λ2
nt ,

where J0(λn) = 0. Find a formula for cn.

9. In the spherical coordinatesρ,θ ,φ (ρ > 0,0 ≤ θ < 2π ,0 ≤ φ ≤ π)defined by the equations

x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ,

Laplace’s equation is

ρ2uρρ + 2ρuρ + (csc2 φ)uθθ + uφφ + (cot φ)uφ = 0.

(a) Show that if u(ρ, θ , φ) = P(ρ)�(θ)�(φ), then P, �, and � satisfy ordinary differential
equations of the form

ρ2P′′ + 2ρP′ − μ2P = 0,

�′′ + λ2� = 0,

(sin2
φ)�′′ + (sin φ cos φ)�′ + (μ2 sin2

φ − λ2)� = 0.

12Hermann von Helmholtz (1821–1894) was trained in medicine and physiology; early in his career he
made important contributions to physiological optics and acoustics, including the invention of the oph-
thalmoscope in 1851. Later his interests turned to physics, especially fluid mechanics and electrodynamics.
During his lifetime he held chairs in physiology or physics at several German universities.
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The first of these equations is of the Euler type, while the third is related to Legendre’s
equation.

(b) Show that if u(ρ, θ , φ) is independent of θ , then the first equation in part (a) is un-
changed, the second is omitted, and the third becomes

(sin2
φ)�′′ + (sin φ cos φ)�′ + (μ2 sin2

φ)� = 0.

(c) Show that if a new independent variable is defined by s = cos φ, then the equation for
� in part (b) becomes

(1 − s2)
d2�

ds2
− 2s

d�

ds
+ μ2� = 0, −1 ≤ s ≤ 1.

Note that this is Legendre’s equation.

10. Find the steady-state temperature u(ρ, φ) in a sphere of unit radius if the temperature is
independent of θ and satisfies the boundary condition

u(1, φ) = f (φ), 0 ≤ φ ≤ π.

Hint: Refer to Problem 9 and to Problems 22 through 29 of Section 5.3. Use the fact
that the only solutions of Legendre’s equation that are finite at both ±1 are the Legendre
polynomials.

11.6 Series of Orthogonal Functions: Mean Convergence
In Section 11.2 we stated that, under certain restrictions, a given function f can be
expanded in a series of eigenfunctions of a Sturm–Liouville boundary value problem,
the series converging to [f (x+) + f (x−)]/2 at each point in the open interval. Under
somewhat more restrictive conditions the series converges to f (x) at each point in
the closed interval. This type of convergence is referred to as pointwise convergence.
In this section we describe a different kind of convergence that is especially useful
for series of orthogonal functions, such as eigenfunctions.

Suppose that we are given the set of functions φ1, φ2, . . . , φn, that are continuous
on the interval 0 ≤ x ≤ 1 and satisfy the orthonormality condition∫ 1

0
r(x)φi(x)φj(x) dx =

{
0, i �= j,
1, i = j,

(1)

where r is a nonnegative weight function. Suppose also that we wish to approximate
a given function f , defined on 0 ≤ x ≤ 1, by a linear combination of φ1, . . . , φn. That
is, if

Sn(x) =
n∑

i=1

aiφi(x), (2)

we wish to choose the coefficients a1, . . . , an so that the function Sn will best approx-
imate f on 0 ≤ x ≤ 1. The first problem that we must face in doing this is to state
precisely what we mean by “best approximate f on 0 ≤ x ≤ 1.” There are several
reasonable meanings that can be attached to this phrase.
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1. We can choose n points x1, . . . , xn in the interval 0 ≤ x ≤ 1 and require that Sn(x) have the
same value as f (x) at each of these points. The coefficients a1, . . . , an are found by solving
the set of linear algebraic equations

n∑
i=1

aiφi(xj) = f (xj), j = 1, . . . , n. (3)

This procedure is known as the method of collocation. It has the advantage that it is very
easy to write down Eqs. (3); one needs only to evaluate the functions involved at the points
x1, . . . , xn. If these points are well chosen, and if n is fairly large, then presumably Sn(x)

will not only be equal to f (x) at the chosen points but will be reasonably close to it at other
points as well. However, collocation has several deficiencies. One is that if one more
base function φn+1 is added, then one more point xn+1 is required, and all the coefficients
must be recomputed. Thus it is inconvenient to improve the accuracy of a collocation
approximation by including additional terms. Further, the coefficients ai depend on the
location of the points x1, . . . , xn, and it is not obvious how best to select these points.

2. Alternatively, we can consider the difference |f (x) − Sn(x)| and try to make it as small
as possible. The trouble here is that |f (x) − Sn(x)| is a function of x as well as of the
coefficients a1, . . . , an, and it is not clear how to calculate ai. The choice of ai that makes
|f (x) − Sn(x)| small at one point may make it large at another. One way to proceed is to
consider instead the least upper bound13 of |f (x) − Sn(x)| for x in 0 ≤ x ≤ 1, and then to
choose a1, . . . , an so as to make this quantity as small as possible. That is, if

En(a1, . . . , an) = lub
0≤x≤1

|f (x) − Sn(x)|, (4)

then choose a1, . . . , an so as to minimize En. This approach is intuitively appealing and is
often used in theoretical calculations. In practice, however, it is usually very hard, if not
impossible, to write down an explicit formula for En(a1, . . . , an). Further, this procedure
also shares one of the disadvantages of collocation: upon adding an additional term to
Sn(x), one must recompute all the preceding coefficients. Thus it is not often useful in
practical problems.

3. Another way to proceed is to consider

In(a1, . . . , an) =
∫ 1

0
r(x)|f (x) − Sn(x)| dx. (5)

If r(x) = 1, then In is the area between the graphs of y = f (x) and y = Sn(x) (see
Figure 11.6.1). We can then determine the coefficients ai so as to minimize In. To avoid
the complications resulting from calculations with absolute values, it is more convenient
to consider instead

Rn(a1, . . . , an) =
∫ 1

0
r(x)[f (x) − Sn(x)]2 dx (6)

as our measure of the quality of approximation of the linear combination Sn(x) to f (x).
Although Rn is clearly similar in some ways to In, it lacks the simple geometric interpre-
tation of the latter. Nevertheless, it is much easier mathematically to deal with Rn than
with In. The quantity Rn is called the mean square error of the approximation Sn to f . If
a1, . . . , an are chosen so as to minimize Rn, then Sn is said to approximate f in the mean
square sense.

13The least upper bound (lub) is an upper bound that is smaller than any other upper bound. The lub of
a bounded function always exists and is equal to the function’s maximum if it has one.
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y

x1

y = Sn(x)

y = f (x)

FIGURE 11.6.1 Approximation of f (x) by Sn(x).

To choose a1, . . . , an so as to minimize Rn, we must satisfy the necessary conditions

∂Rn/∂ai = 0, i = 1, . . . , n. (7)

Writing out Eq. (7), and noting that ∂Sn(x; a1, . . . , an)/∂ai is equal to φi(x), we obtain

− ∂Rn

∂ai
= 2

∫ 1

0
r(x)[f (x) − Sn(x)]φi(x) dx = 0. (8)

Substituting for Sn(x) from Eq. (2) and making use of the orthogonality relation (1),
we find that

ai =
∫ 1

0
r(x)f (x)φi(x) dx, i = 1, . . . , n. (9)

The coefficients defined by Eq. (9) are called the Fourier coefficients of f with respect
to the orthonormal set φ1, φ2, . . . , φn and the weight function r. Since the conditions
(7) are only necessary and not sufficient for Rn to be a minimum, a separate argument
is required to show that Rn is actually minimized if the ai are chosen by Eq. (9). This
argument is outlined in Problem 5.

Note that the coefficients (9) are the same as those in the eigenfunction series whose
convergence, under certain conditions, was stated in Theorem 11.2.4. Thus Sn(x) is
the nth partial sum in this series and constitutes the best mean square approximation
to f (x) that is possible with the functions φ1, . . . , φn. We will assume hereafter that
the coefficients ai in Sn(x) are given by Eq. (9).

Equation (9) is noteworthy in two other important respects. In the first place, it
gives a formula for each ai separately, rather than a set of linear algebraic equations for
a1, . . . , an as in the method of collocation, for example. This is due to the orthogonality
of the base functions φ1, . . . , φn. Further, the formula for ai is independent of n, the
number of terms in Sn(x). The practical significance of this is as follows. Suppose
that, to obtain a better approximation to f , we desire to use an approximation with
more terms—say, k terms, where k > n. It is then unnecessary to recompute the first
n coefficients in Sk(x). All that is required is to compute, from Eq. (9), the coefficients
an+1, . . . , ak arising from the additional base functions φn+1, . . . , φk. Of course, if f , r,
and the φn are complicated functions, it may be necessary to evaluate the integrals
numerically.

Now let us suppose that there is an infinite sequence of functions φ1, . . . , φn, . . . ,
that are continuous and orthonormal on the interval 0 ≤ x ≤ 1. Suppose further that
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as n increases without bound, the mean square error Rn approaches zero. In this
event the infinite series

∞∑
i=1

aiφi(x)

is said to converge in the mean square sense (or, more simply, in the mean) to f (x).
Mean convergence is an essentially different type of convergence from the pointwise
convergence considered up to now. A series may converge in the mean without
converging at each point. This is plausible geometrically because the area between
two curves, which behaves in the same way as the mean square error, may be zero
even though the functions are not the same at every point. They may differ on
any finite set of points, for example, without affecting the mean square error. It is
less obvious, but also true, that even if an infinite series converges at every point, it
may not converge in the mean. Indeed, the mean square error may even become
unbounded. An example of this phenomenon is given in Problem 4.

Now suppose that we wish to know what class of functions, defined on 0 ≤ x ≤ 1,
can be represented as an infinite series of the orthonormal set φi, i = 1, 2, . . . . The
answer depends on what kind of convergence we require. We say that the set
φ1, . . . , φn, . . . is complete with respect to mean square convergence for a set of func-
tions F, if for each function f in F, the series

f (x) =
∞∑

i=1

aiφi(x), (10)

with coefficients given by Eq. (9), converges in the mean. There is a similar definition
for completeness with respect to pointwise convergence.

Theorems having to do with the convergence of series such as that in Eq. (10) can
now be restated in terms of the idea of completeness. For example, Theorem 11.2.4
can be restated as follows: the eigenfunctions of the Sturm–Liouville problem

−[p(x)y′]′ + q(x)y = λr(x)y, 0 < x < 1, (11)

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0 (12)

are complete with respect to ordinary pointwise convergence for the set of functions
that are continuous on 0 ≤ x ≤ 1 and that have piecewise continuous derivatives
there.

If pointwise convergence is replaced by mean convergence,Theorem 11.2.4 can be
considerably generalized. Before we state such a companion theorem to Theorem
11.2.4, we first define what is meant by a square integrable function. A function f is
said to be square integrable on the interval 0 ≤ x ≤ 1 if both f and f 2 are integrable14

on that interval. The following theorem is similar to Theorem 11.2.4 except that it
involves mean convergence.

14For the Riemann integral used in elementary calculus the hypotheses that f and f 2 are integrable
are independent; that is, there are functions such that f is integrable but f 2 is not, and conversely (see
Problem 6). A generalized integral, known as the Lebesgue integral, has the property (among others) that
if f 2 is integrable, then f is also necessarily integrable. The term square integrable came into common use
in connection with this type of integration.
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Theorem 11.6.1 The eigenfunctions φi of the Sturm–Liouville problem (11), (12) are complete with
respect to mean convergence for the set of functions that are square integrable on
0 ≤ x ≤ 1. In other words, given any square integrable function f , the series (10),
whose coefficients are given by Eq. (9), converges to f (x) in the mean square sense.

It is significant that the class of functions specified in Theorem 11.6.1 is very large
indeed. The class of square integrable functions contains some functions with many
discontinuities, including some kinds of infinite discontinuities, as well as some func-
tions that are not differentiable at any point. All these functions have mean con-
vergent expansions in the eigenfunctions of the boundary value problem (11), (12).
However, in many cases these series do not converge pointwise, at least not at every
point. Thus mean convergence is more naturally associated with series of orthogonal
functions, such as eigenfunctions, than ordinary pointwise convergence.

The theory of Fourier series discussed in Chapter 10 is just a special case of the
general theory of Sturm–Liouville problems. For instance, the functions

φn(x) = √
2 sin nπx (13)

are the normalized eigenfunctions of the Sturm–Liouville problem

y′′ + λy = 0, y(0) = 0, y(1) = 0. (14)

Thus, if f is a given square integrable function on 0 ≤ x ≤ 1, then according to Theo-
rem 11.6.1, the series

f (x) =
∞∑

m=1

bmφm(x) = √
2

∞∑
m=1

bm sin mπx, (15)

where

bm =
∫ 1

0
f (x)φm(x) dx = √

2
∫ 1

0
f (x) sin mπx dx, (16)

converges in the mean. The series (15) is precisely the Fourier sine series discussed
in Section 10.4. If f satisfies the further conditions stated in Theorem 11.2.4, then this
series converges pointwise, as well as in the mean. Similarly, a Fourier cosine series
is associated with the Sturm–Liouville problem

y′′ + λy = 0, y′(0) = 0, y′(1) = 0. (17)

E X A M P L E

1

Let f (x) = 1 for 0 < x < 1. Expand f (x) using the eigenfunctions (13) and discuss the pointwise
and mean square convergence of the resulting series.

The series has the form (15) and its coefficients bm are given by Eq. (16). Thus

bm = √
2
∫ 1

0
sin mπx dx =

√
2

mπ
(1 − cos mπ), (18)
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and the nth partial sum of the series is

Sn(x) = 2
n∑

m=1

1 − cos mπ

mπ
sin mπx. (19)

The mean square error is then

Rn =
∫ 1

0
[f (x) − Sn(x)]2 dx. (20)

By calculating Rn for several values of n and plotting the results, we obtain Figure 11.6.2. This
figure indicates that Rn steadily decreases as n increases. Of course, Theorem 11.6.1 asserts
that Rn → 0 as n → ∞. Pointwise, we know that Sn(x) → f (x) = 1 as n → ∞ for 0 < x < 1;
further, Sn(x) has the value zero for x = 0 or x = 1 for every n. Although the series converges
pointwise for each value of x, the least upper bound of the error does not diminish as n
increases. For each n there are points close to x = 0 and x = 1 where the error is arbitrarily
close to 1.

n

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Rn

1614121086420

FIGURE 11.6.2 Dependence of the mean square error Rn on n in Example 1.

Theorem 11.6.1 can be extended to cover self-adjoint boundary value problems
having periodic boundary conditions, such as the problem

y′′ + λy = 0, (21)

y(−L) − y(L) = 0, y′(−L) − y′(L) = 0 (22)

considered in Example 4 of Section 11.2. The eigenfunctions of the problem (21), (22)
are φn(x) = cos(nπx/L) for n = 0, 1, 2, . . . and ψn(x) = sin(nπx/L) for n = 1, 2, . . . .
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If f is a given square integrable function on −L ≤ x ≤ L, then its expansion in terms
of the eigenfunctions φn and ψn is of the form

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
, (23)

where

an = 1
L

∫ L

−L
f (x) cos

nπx
L

dx, n = 0, 1, 2, . . . , (24)

bn = 1
L

∫ L

−L
f (x) sin

nπx
L

dx, n = 1, 2, . . . . (25)

This expansion is exactly the Fourier series for f discussed in Sections 10.2 and 10.3.
According to the generalization of Theorem 11.6.1, the series (23) converges in the
mean for any square integrable function f , even though f may not satisfy the condi-
tions of Theorem 10.3.1, which ensure pointwise convergence.

PROBLEMS 1. Extend the results of Example 1 by finding the smallest value of n for which Rn < 0.02,
where Rn is given by Eq. (20).

2. Let f (x) = x for 0 < x < 1 and let φm(x) = √
2 sin mπx.

(a) Find the coefficients bm in the expansion of f (x) in terms of φ1(x), φ2(x), . . . .

(b) Calculate the mean square error Rn for several values of n and plot the results.

(c) Find the smallest value of n for which Rn < 0.01.

3. Follow the instructions for Problem 2 using f (x) = x(1 − x) for 0 < x < 1.

4. In this problem we show that pointwise convergence of a sequence Sn(x) does not imply
mean convergence, and conversely.

(a) Let Sn(x) = n
√

xe−nx2/2, 0 ≤ x ≤ 1. Show that Sn(x) → 0 as n → ∞ for each x in
0 ≤ x ≤ 1. Show also that

Rn =
∫ 1

0
[0 − Sn(x)]2 dx = n

2
(1 − e−n)

and hence Rn → ∞ as n → ∞. Thus pointwise convergence does not imply mean conver-
gence.

(b) Let Sn(x) = xn for 0 ≤ x ≤ 1 and let f (x) = 0 for 0 ≤ x ≤ 1. Show that

Rn =
∫ 1

0
[f (x) − Sn(x)]2 dx = 1

2n + 1
,

and hence Sn(x) converges to f (x) in the mean. Also show that Sn(x) does not converge to
f (x) pointwise throughout 0 ≤ x ≤ 1. Thus mean convergence does not imply pointwise
convergence.
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5. Suppose that the functions φ1, . . . , φn satisfy the orthonormality relation (1) and that a
given function f is to be approximated by Sn(x) = c1φ1(x) + · · · + cnφn(x), where the coef-
ficients ci are not necessarily those of Eq. (9). Show that the mean square error Rn given
by Eq. (6) may be written in the form

Rn =
∫ 1

0
r(x)f 2(x) dx −

n∑
i=1

a2
i +

n∑
i=1

(ci − ai)
2,

where the ai are the Fourier coefficients given by Eq. (9). Show that Rn is minimized if
ci = ai for each i.

6. In this problem we show by examples that the (Riemann) integrability of f and f 2 are
independent.

(a) Let f (x) =
{

x−1/2, 0 < x ≤ 1,
0, x = 0.

Show that
∫ 1

0
f (x) dx exists as an improper integral, but

∫ 1

0
f 2(x) dx does not.

(b) Let f (x) =
{

1, x rational,
−1, x irrational.

Show that
∫ 1

0
f 2(x) dx exists, but

∫ 1

0
f (x) dx does not.

7. Suppose that it is desired to construct a set of polynomials f0(x), f1(x), f2(x), . . . , fk(x), . . . ,
where fk(x) is of degree k, that are orthonormal on the interval 0 ≤ x ≤ 1. That is, the set
of polynomials must satisfy

(fj , fk) =
∫ 1

0
fj(x)fk(x) dx = δjk.

(a) Find f0(x) by choosing the polynomial of degree zero such that (f0, f0) = 1.

(b) Find f1(x) by determining the polynomial of degree one such that (f0, f1) = 0 and
(f1, f1) = 1.

(c) Find f2(x).

(d) The normalization condition (fk, fk) = 1 is somewhat awkward to apply. Let g0(x),
g1(x), . . . , gk(x), . . . be the sequence of polynomials that are orthogonal on 0 ≤ x ≤ 1 and
that are normalized by the condition gk(1) = 1. Find g0(x), g1(x), and g2(x) and compare
them with f0(x), f1(x), and f2(x).

8. Suppose that it is desired to construct a set of polynomials P0(x), P1(x), . . . , Pk(x), . . . ,
where Pk(x) is of degree k, that are orthogonal on the interval −1 ≤ x ≤ 1; see Problem
7. Suppose further that Pk(x) is normalized by the condition Pk(1) = 1. Find P0(x), P1(x),
P2(x), and P3(x). Note that these are the first four Legendre polynomials (see Problem
24 of Section 5.3).

9. This problem develops some further results associated with mean convergence. Let
Rn(a1, . . . , an), Sn(x), and ai be defined by Eqs. (6), (2), and (9), respectively.

(a) Show that

Rn =
∫ 1

0
r(x)f 2(x) dx −

n∑
i=1

a2
i .

Hint: Substitute for Sn(x) in Eq. (6) and integrate, using the orthogonality relation (1).
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(b) Show that
n∑

i=1
a2

i ≤
∫ 1

0
r(x)f 2(x) dx. This result is known as Bessel’s inequality.

(c) Show that
∞∑

i=1
a2

i converges.

(d) Show that lim
n→∞ Rn =

∫ 1

0
r(x)f 2(x) dx −

∞∑
i=1

a2
i .

(e) Show that
∞∑

i=1
aiφi(x) converges to f (x) in the mean if and only if

∫ 1

0
r(x)f 2(x) dx =

∞∑
i=1

a2
i .

This result is known as Parseval’s equation.

In Problems 10 through 12 let φ1, φ2, . . . , φn, . . . be the normalized eigenfunctions of the Sturm–
Liouville problem (11), (12).

10. Show that if an is the nth Fourier coefficient of a square integrable function f , then
lim

n→∞ an = 0.

Hint: Use Bessel’s inequality, Problem 9(b).

11. Show that the series

φ1(x) + φ2(x) + · · · + φn(x) + · · ·
cannot be the eigenfunction series for any square integrable function.
Hint: See Problem 10.

12. Show that the series

φ1(x) + φ2(x)√
2

+ · · · + φn(x)√
n

+ · · ·

is not the eigenfunction series for any square integrable function.
Hint: Use Bessel’s inequality, Problem 9(b).

13. Show that Parseval’s equation in Problem 9(e) is obtained formally by squaring the series
(10) corresponding to f , multiplying by the weight function r, and integrating term by
term.
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Answers to
Problems

C H A P T E R 1 Section 1.1, page 7

1. y → 3/2 as t → ∞ 2. y diverges from 3/2 as t → ∞
3. y diverges from −3/2 as t → ∞ 4. y → −1/2 as t → ∞
5. y diverges from −1/2 as t → ∞ 6. y diverges from −2 as t → ∞
7. y′ = 3 − y 8. y′ = 2 − 3y
9. y′ = y − 2 10. y′ = 3y − 1

11. y = 0 and y = 4 are equilibrium solutions; y → 4 if initial value is positive; y diverges from
0 if initial value is negative.

12. y = 0 and y = 5 are equilibrium solutions; y diverges from 5 if initial value is greater than
5; y → 0 if initial value is less than 5.

13. y = 0 is equilibrium solution; y → 0 if initial value is negative; y diverges from 0 if initial
value is positive.

14. y = 0 and y = 2 are equilibrium solutions; y diverges from 0 if initial value is negative;
y → 2 if initial value is between 0 and 2; y diverges from 2 if initial value is greater than 2.

15. (j) 16. (c) 17. (g) 18. (b) 19. (h) 20. (e)
21. (a) dq/dt = 300(10−2 − q10−6); q in g, t in h

(b) q → 104 g; no
22. dV/dt = −kV2/3 for some k > 0.
23. du/dt = −0.05(u − 70); u in ◦F, t in min
24. (a) dq/dt = 500 − 0.4q; q in mg, t in h (b) q → 1250 mg
25. (a) mv′ = mg − kv2 (b) v → √

mg/k
(c) k = 2/49

26. y is asymptotic to t − 3 as t → ∞ 27. y → 0 as t → ∞
28. y → ∞, 0, or −∞ depending on the initial value of y
29. y → ∞ or −∞ depending on the initial value of y
30. y → ∞ or −∞ or y oscillates depending on the initial value of y
31. y → −∞ or is asymptotic to

√
2t − 1 depending on the initial value of y

32. y → 0 and then fails to exist after some tf ≥ 0
33. y → ∞ or −∞ depending on the initial value of y
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Section 1.2, page 15

1. (a) y = 5 + (y0 − 5)e−t (b) y = (5/2) + [y0 − (5/2)]e−2t

(c) y = 5 + (y0 − 5)e−2t

Equilibrium solution is y = 5 in (a) and (c),y = 5/2 in (b); solution approaches equilibrium
faster in (b) and (c) than in (a).

2. (a) y = 5 + (y0 − 5)et (b) y = (5/2) + [y0 − (5/2)]e2t

(c) y = 5 + (y0 − 5)e2t

Equilibrium solution is y = 5 in (a) and (c), y = 5/2 in (b); solution diverges from equi-
librium faster in (b) and (c) than in (a).

3. (a) y = ce−at + (b/a)

(c) (i) Equilibrium is lower and is approached more rapidly. (ii) Equilibrium is higher.
(iii) Equilibrium remains the same and is approached more rapidly.

4. (a) ye = b/a (b) Y ′ = aY
5. (a) y1(t) = ceat (b) y = ceat + (b/a)

6. y = ce−at + (b/a)

7. (a) T = 2 ln 18 ∼= 5.78 months (b) T = 2 ln[900/(900 − p0)] months
(c) p0 = 900(1 − e−6) ∼= 897.8

8. (a) r = (ln 2)/30 day−1 (b) r = (ln 2)/N day−1

9. (a) T = 5 ln 50 ∼= 19.56 s (b) 718.34 m
10. (a) dv/dt = 9.8, v(0) = 0 (b) T = √

300/4.9 ∼= 7.82 s
(c) v ∼= 76.68 m/s

11. (b) v = 49 tanh(t/5) m/s (e) x = 245 ln cosh(t/5) m
(f) T ∼= 9.48 s

12. (a) r ∼= 0.02828 day−1 (b) Q(t) = 100e−0.02828t

(c) T ∼= 24.5 d
14. 1620 ln(4/3)/ ln 2 ∼= 672.4 yr
15. (a) u = T + (u0 − T)e−kt (b) kτ = ln 2
16. 6.69 h
17. (a) Q(t) = CV(1 − e−t/RC) (b) Q(t) → CV = QL

(c) Q(t) = CV exp[−(t − t1)/RC]
18. (a) Q′ = 3(1 − 10−4Q), Q(0) = 0

(b) Q(t) = 104(1 − e−3t/104
), t in h; after 1 year Q ∼= 9277.77 g

(c) Q′ = −3Q/104, Q(0) = 9277.77
(d) Q(t) = 9277.77e−3t/104

, t in h; after 1 year Q ∼= 670.07 g
(e) T ∼= 2.60 yr

19. (a) q′ = −q/300, q(0) = 5000 g (b) q(t) = 5000e−t/300

(c) no (d) T = 300 ln(25/6) ∼= 428.13 min ∼= 7.136 h
(e) r = 250 ln(25/6) ∼= 356.78 gal/min

Section 1.3, page 24

1. Second order, linear 2. Second order, nonlinear
3. Fourth order, linear 4. First order, nonlinear
5. Second order, nonlinear 6. Third order, linear

15. r = −2 16. r = ±1
17. r = 2, −3 18. r = 0, 1, 2
19. r = −1, −2 20. r = 1, 4
21. Second order, linear 22. Second order, nonlinear
23. Fourth order, linear 24. Second order, nonlinear
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C H A P T E R 2 Section 2.1, page 39

1. (c) y = ce−3t + (t/3) − (1/9) + e−2t ; y is asymptotic to t/3 − 1/9 as t → ∞
2. (c) y = ce2t + t3e2t/3; y → ∞ as t → ∞
3. (c) y = ce−t + 1 + t2e−t/2; y → 1 as t → ∞
4. (c) y = (c/t) + (3 cos 2t)/4t + (3 sin 2t)/2; y is asymptotic to (3 sin 2t)/2 as t → ∞
5. (c) y = ce2t − 3et ; y → ∞ or −∞ as t → ∞
6. (c) y = (c − t cos t + sin t)/t2; y → 0 as t → ∞
7. (c) y = t2e−t2 + ce−t2

; y → 0 as t → ∞
8. (c) y = (arctan t + c)/(1 + t2)2; y → 0 as t → ∞
9. (c) y = ce−t/2 + 3t − 6; y is asymptotic to 3t − 6 as t → ∞

10. (c) y = −te−t + ct; y → ∞, 0, or −∞ as t → ∞
11. (c) y = ce−t + sin 2t − 2 cos 2t; y is asymptotic to sin 2t − 2 cos 2t as t → ∞
12. (c) y = ce−t/2 + 3t2 − 12t + 24; y is asymptotic to 3t2 − 12t + 24 as t → ∞
13. y = 3et + 2(t − 1)e2t 14. y = (t2 − 1)e−2t/2
15. y = (3t4 − 4t3 + 6t2 + 1)/12t2 16. y = (sin t)/t2

17. y = (t + 2)e2t 18. y = t−2[(π2/4) − 1 − t cos t + sin t]
19. y = −(1 + t)e−t/t4, t �= 0 20. y = (t − 1 + 2e−t)/t, t �= 0
21. (b) y = − 4

5 cos t + 8
5 sin t + (a + 4

5 )et/2; a0 = − 4
5

(c) y oscillates for a = a0

22. (b) y = −3et/3 + (a + 3)et/2; a0 = −3
(c) y → −∞ for a = a0

23. (b) y = [2 + a(3π + 4)e2t/3 − 2e−π t/2]/(3π + 4); a0 = −2/(3π + 4)

(c) y → 0 for a = a0

24. (b) y = te−t + (ea − 1)e−t/t; a0 = 1/e
(c) y → 0 as t → 0 for a = a0

25. (b) y = −(cos t)/t2 + π 2a/4t2; a0 = 4/π2

(c) y → 1
2 as t → 0 for a = a0

26. (b) y = (et − e + a sin 1)/ sin t; a0 = (e − 1)/ sin 1
(c) y → 1 for a = a0

27. (t, y) = (1.364312, 0.820082) 28. y0 = −1.642876
29. (b) y = 12 + 8

65 cos 2t + 64
65 sin 2t − 788

65 e−t/4; y oscillates about 12 as t → ∞
(c) t = 10.065778

30. y0 = −5/2
31. y0 = −16/3; y → −∞ as t → ∞ for y0 = −16/3
39. See Problem 2. 40. See Problem 4.
41. See Problem 6. 42. See Problem 12.

Section 2.2, page 47

1. 3y2 − 2x3 = c; y �= 0 2. 3y2 − 2 ln |1 + x3| = c; x �= −1, y �= 0
3. y−1 + cos x = c if y �= 0; also y = 0; everywhere
4. 3y + y2 − x3 + x = c; y �= −3/2
5. 2 tan 2y − 2x − sin 2x = c if cos 2y �= 0; also y = ±(2n + 1)π/4 for any integer n; every-

where
6. y = sin[ln |x| + c] if x �= 0 and |y| < 1; also y = ±1
7. y2 − x2 + 2(ey − e−x) = c; y + ey �= 0 8. 3y + y3 − x3 = c; everywhere
9. (a) y = 1/(x2 − x − 6) (c) −2 < x < 3

10. (a) y = −√
2x − 2x2 + 4 (c) −1 < x < 2

11. (a) y = [2(1 − x)ex − 1]1/2 (c) −1.68 < x < 0.77 approximately
12. (a) r = 2/(1 − 2 ln θ) (c) 0 < θ <

√
e

13. (a) y = −[2 ln(1 + x2) + 4]1/2 (c) −∞ < x < ∞
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14. (a) y =
[
3 − 2

√
1 + x2

]−1/2
(c) |x| < 1

2

√
5

15. (a) y = − 1
2 + 1

2

√
4x2 − 15 (c) x > 1

2

√
15

16. (a) y = −√
(x2 + 1)/2 (c) −∞ < x < ∞

17. (a) y = 5/2 − √
x3 − ex + 13/4 (c) −1.4445 < x < 4.6297 approximately

18. (a) y = − 3
4 + 1

4

√
65 − 8ex − 8e−x (c) |x| < 2.0794 approximately

19. (a) y = [π − arcsin (3 cos2 x)]/3 (c) |x − π/2| < 0.6155

20. (a) y =
[

3
2 (arcsin x)2 + 1

]1/3
(c) −1 < x < 1

21. y3 − 3y2 − x − x3 + 2 = 0, |x| < 1
22. y3 − 4y − x3 = −1, |x3 − 1| < 16/3

√
3 or −1.28 < x < 1.60

23. y = −1/(x2/2 + 2x − 1); x = −2
24. y = −3/2 + √

2x − ex + 13/4; x = ln 2
25. y = −3/2 + √

sin 2x + 1/4; x = π/4 26. y = tan(x2 + 2x); x = −1
27. (a) y → 4 if y0 > 0; y = 0 if y0 = 0; y → −∞ if y0 < 0

(b) T = 3.29527
28. (a) y → 4 as t → ∞ (b) T = 2.84367

(c) 3.6622 < y0 < 4.4042

29. x = c
a

y + ad − bc
a2

ln |ay + b| + k; a �= 0, ay + b �= 0

30. (e) |y + 2x|3|y − 2x| = c 31. (b) arctan (y/x) − ln |x| = c
32. (b) x2 + y2 − cx3 = 0 33. (b) |y − x| = c|y + 3x|5; also y = x
34. (b) |y + x| |y + 4x|2 = c
35. (b) 2x/(x + y) + ln |x + y| = c; also y = −x
36. (b) x/(x + y) + ln |x| = c; also y = −x 37. (b) |x|3|x2 − 5y2| = c
38. (b) c|x|3 = |y2 − x2|

Section 2.3, page 59

1. t = 100 ln 100 min ∼= 460.5 min 2. Q(t) = 120γ [1 − exp(−t/60)]; 120γ

3. Q = 50e−0.2(1 − e−0.2) lb ∼= 7.42 lb
4. Q(t) = 200 + t − [100(200)2/(200 + t)2] lb, t < 300; c = 121/125 lb/gal;

lim
t→∞ c = 1 lb/gal

5. (a) Q(t) = 63,150
2501 e−t/50 + 25 − 625

2501 cos t + 25
5002 sin t

(c) level = 25; amplitude = 25
√

2501/5002 ∼= 0.24995
6. (c) 130.41 s
7. (a) (ln 2)/r yr (b) 9.90 yr (c) 8.66%
8. (a) k(ert − 1)/r (b) k ∼= $3930 (c) 9.77%
9. k = $3086.64/yr; $1259.92 10. (a) $89,034.79 (b) $102,965.21

11. (a) t ∼= 135.36 months (b) $152,698.56
12. (a) 0.00012097 yr−1 (b) Q0 exp(−0.00012097t), t in yr

(c) 13,305 yr
13. P = 201,977.31 − 1977.31e(ln 2)t , 0 ≤ t ≤ tf

∼= 6.6745 (weeks)
14. (a) τ ∼= 2.9632; no (b) τ = 10 ln 2 ∼= 6.9315

(c) τ = 6.3805
15. (b) yc

∼= 0.83 16. t = ln 13
8 / ln 13

12 min ∼= 6.07 min
17. (a) u(t) = 2000/(1 + 0.048t)1/3 (c) τ ∼= 750.77 s
18. (a) u(t) = ce−kt + T0 + kT1(k cos ωt + ω sin ωt)/(k2 + ω2)

(b) R ∼= 9.11◦F; τ ∼= 3.51 h
(c) R = kT1/

√
k2 + ω2; τ = (1/ω) arctan (ω/k)
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19. (a) c = k + (P/r) + [c0 − k − (P/r)]e−rt/V ; lim
t→∞ c = k + (P/r)

(b) T = (V ln 2)/r; T = (V ln 10)/r
(c) Superior, T = 431 yr; Michigan, T = 71.4 yr; Erie, T = 6.05 yr; Ontario, T = 17.6 yr

20. (a) 50.408 m (b) 5.248 s 21. (a) 45.783 m (b) 5.129 s
22. (a) 48.562 m (b) 5.194 s
23. (a) 176.7 ft/s (b) 1074.5 ft (c) 15 ft/s (d) 256.6 s
24. (a) dv/dx = −μv (b) μ = (66/25) ln 10 mi−1 ∼= 6.0788 mi−1

(c) τ = 900/(11 ln 10) s ∼= 35.533 s

25. (a) xm = −m2g
k2

ln
(

1 + kv0

mg

)
+ mv0

k
; tm = m

k
ln

(
1 + kv0

mg

)
26. (a) v = −(mg/k) + [v0 + (mg/k)] exp(−kt/m) (b) v = v0 − gt; yes

(c) v = 0 for t > 0
27. (a) vL = 2a2g(ρ − ρ ′)/9μ (b) e = 4πa3g(ρ − ρ ′)/3E
28. (a) 11.58 m/s (b) 13.45 m (c) k ≥ 0.2394 kg/s
29. (a) v = R

√
2g/(R + x) (b) 50.6 h

30. (b) x = ut cos A, y = −gt2/2 + ut sin A + h
(d) −16L2/(u2 cos2 A) + L tan A + 3 ≥ H
(e) 0.63 rad ≤ A ≤ 0.96 rad (f) u = 106.89 ft/s, A = 0.7954 rad

31. (a) v = (u cos A)e−rt , w = −g/r + (u sin A + g/r)e−rt

(b) x = u cos A(1 − e−rt)/r, y = −gt/r + (u sin A + g/r)(1 − e−rt)/r + h
(d) u = 145.3 ft/s, A = 0.644 rad

32. (d) k = 2.193

Section 2.4, page 75

1. 0 < t < 3 2. 0 < t < 4
3. π/2 < t < 3π/2 4. −∞ < t < −2
5. −2 < t < 2 6. 1 < t < π

7. 2t + 5y > 0 or 2t + 5y < 0 8. t2 + y2 < 1
9. 1 − t2 + y2 > 0 or 1 − t2 + y2 < 0, t �= 0, y �= 0

10. Everywhere 11. y �= 0, y �= 3

12. t �= nπ for n = 0, ±1, ±2, . . . ; y �= −1 13. y = ±
√

y2
0 − 4t2 if y0 �= 0; |t| < |y0|/2

14. y = [(1/y0) − t2]−1 if y0 �= 0; y = 0 if y0 = 0;
interval is |t| < 1/

√
y0 if y0 > 0; −∞ < t < ∞ if y0 ≤ 0

15. y = y0/

√
2ty2

0 + 1 if y0 �= 0; y = 0 if y0 = 0;

interval is −1/2y2
0 < t < ∞ if y0 �= 0; −∞ < t < ∞ if y0 = 0

16. y = ±
√

2
3 ln(1 + t3) + y2

0; −[1 − exp(−3y2
0/2)]1/3 < t < ∞

17. y → 3 if y0 > 0; y = 0 if y0 = 0; y → −∞ if y0 < 0
18. y → −∞ if y0 < 0; y → 0 if y0 ≥ 0 19. y → 0 if y0 ≤ 9; y → ∞ if y0 > 9
20. y → −∞ if y0 < yc ≈ −0.019; otherwise y is asymptotic to

√
t − 1

21. (a) No (b) Yes; set t0 = 1/2 in Eq. (19) in text.
(c) |y| ≤ (4/3)3/2 ∼= 1.5396

22. (a) y1(t) is a solution for t ≥ 2; y2(t) is a solution for all t
(b) fy is not continuous at (2, −1)

26. (a) y1(t) = 1
μ(t)

; y2(t) = 1
μ(t)

∫ t

t0

μ(s)g(s) ds

28. y = ±[5t/(2 + 5ct5)]1/2 29. y = r/(k + cre−rt)

30. y = ±[ε/(σ + cεe−2εt)]1/2

31. y = ±
{
μ(t)

/[
2
∫ t

t0

μ(s) ds + c
]}1/2

, where μ(t) = exp(2� sin t + 2Tt)
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32. y = 1
2 (1 − e−2t) for 0 ≤ t ≤ 1; y = 1

2 (e2 − 1)e−2t for t > 1
33. y = e−2t for 0 ≤ t ≤ 1; y = e−(t+1) for t > 1

Section 2.5, page 88

1. y = 0 is unstable
2. y = −a/b is asymptotically stable, y = 0 is unstable
3. y = 1 is asymptotically stable, y = 0 and y = 2 are unstable
4. y = 0 is unstable 5. y = 0 is asymptotically stable
6. y = 0 is asymptotically stable 7. (c) y = [y0 + (1 − y0)kt]/[1 + (1 − y0)kt]
8. y = 1 is semistable
9. y = −1 is asymptotically stable, y = 0 is semistable, y = 1 is unstable

10. y = −1 and y = 1 are asymptotically stable, y = 0 is unstable
11. y = 0 is asymptotically stable, y = b2/a2 is unstable
12. y = 2 is asymptotically stable, y = 0 is semistable, y = −2 is unstable
13. y = 0 and y = 1 are semistable
15. (a) τ = (1/r) ln 4; 55.452 yr

(b) T = (1/r) ln[β(1 − α)/(1 − β)α]; 175.78 yr
16. (a) y = 0 is unstable, y = K is asymptotically stable

(b) Concave up for 0 < y ≤ K/e, concave down for K/e ≤ y < K
17. (a) y = K exp{[ln(y0/K)]e−rt} (b) y(2) ∼= 0.7153K ∼= 57.6 × 106 kg

(c) τ ∼= 2.215 yr
18. (b) (h/a)

√
k/απ ; yes (c) k/α ≤ πa2

19. (b k2/2g(αa)2

20. (c) Y = Ey2 = KE[1 − (E/r)] (d) Ym = Kr/4 for E = r/2
21. (a) y1,2 = K[1 ∓ √

1 − (4h/rK)]/2
22. (a) y = 0 is unstable, y = 1 is asymptotically stable

(b) y = y0/[y0 + (1 − y0)e−αt]
23. (a) y = y0e−βt (b) x = x0 exp[−αy0(1 − e−βt)/β] (c) x0 exp(−αy0/β)

24. (b) z = 1/[ν + (1 − ν)eβt] (c) 0.0927
25. (a,b) a = 0: y = 0 is semistable.

a > 0: y = √
a is asymptotically stable and y = −√

a is unstable.
26. (a) a ≤ 0: y = 0 is asymptotically stable.

a > 0: y = 0 is unstable; y = √
a and y = −√

a are asymptotically stable.
27. (a) a < 0: y = 0 is asymptotically stable and y = a is unstable.

a = 0: y = 0 is semistable.
a > 0: y = 0 is unstable and y = a is asymptotically stable.

28. (a) lim
t→∞ x(t) = min(p, q); x(t) = pq[eα(q−p)t − 1]

qeα(q−p)t − p

(b) lim
t→∞ x(t) = p; x(t) = p2αt

pαt + 1

Section 2.6, page 99

1. x2 + 3x + y2 − 2y = c 2. Not exact
3. x3 − x2y + 2x + 2y3 + 3y = c 4. x2y2 + 2xy = c
5. ax2 + 2bxy + cy2 = k 6. Not exact
7. ex sin y + 2y cos x = c; also y = 0 8. Not exact
9. exy cos 2x + x2 − 3y = c 10. y ln x + 3x2 − 2y = c

11. Not exact 12. x2 + y2 = c

13. y =
[
x + √

28 − 3x2
]
/2, |x| <

√
28/3

14. y = [x − (24x3 + x2 − 8x − 16)1/2]/4, x > 0.9846
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15. b = 3; x2y2 + 2x3y = c 16. b = 1; e2xy + x2 = c
19. x2 + 2 ln |y| − y−2 = c; also y = 0 20. ex sin y + 2y cos x = c
21. xy2 − (y2 − 2y + 2)ey = c 22. x2ex sin y = c

24. μ(t) = exp
∫

R(t) dt, where t = xy 25. μ(x) = e3x; (3x2y + y3)e3x = c

26. μ(x) = e−x; y = cex + 1 + e2x 27. μ(y) = y; xy + y cos y − sin y = c
28. μ(y) = e2y/y; xe2y − ln |y| = c; also y = 0
29. μ(y) = sin y; ex sin y + y2 = c 30. μ(y) = y2; x4 + 3xy + y4 = c
31. μ(x, y) = xy; x3y + 3x2 + y3 = c

Section 2.7, page 109

1. (a) 1.2, 1.39, 1.571, 1.7439 (b) 1.1975, 1.38549, 1.56491, 1.73658
(c) 1.19631, 1.38335, 1.56200, 1.73308 (d) 1.19516, 1.38127, 1.55918, 1.72968

2. (a) 1.1, 1.22, 1.364, 1.5368 (b) 1.105, 1.23205, 1.38578, 1.57179
(c) 1.10775, 1.23873, 1.39793, 1.59144 (d) 1.1107, 1.24591, 1.41106, 1.61277

3. (a) 1.25, 1.54, 1.878, 2.2736 (b) 1.26, 1.5641, 1.92156, 2.34359
(c) 1.26551, 1.57746, 1.94586, 2.38287 (d) 1.2714, 1.59182, 1.97212, 2.42554

4. (a) 0.3, 0.538501, 0.724821, 0.866458
(b) 0.284813, 0.513339, 0.693451, 0.831571
(c) 0.277920, 0.501813, 0.678949, 0.815302
(d) 0.271428, 0.490897, 0.665142, 0.799729

5. Converge for y ≥ 0; undefined for y < 0 6. Converge for y ≥ 0; diverge for y < 0
7. Converge
8. Converge for |y(0)| < 2.37 (approximately); diverge otherwise
9. Diverge 10. Diverge

11. (a) 2.30800, 2.49006, 2.60023, 2.66773, 2.70939, 2.73521
(b) 2.30167, 2.48263, 2.59352, 2.66227, 2.70519, 2.73209
(c) 2.29864, 2.47903, 2.59024, 2.65958, 2.70310, 2.73053
(d) 2.29686, 2.47691, 2.58830, 2.65798, 2.70185, 2.72959

12. (a) 1.70308, 3.06605, 2.44030, 1.77204, 1.37348, 1.11925
(b) 1.79548, 3.06051, 2.43292, 1.77807, 1.37795, 1.12191
(c) 1.84579, 3.05769, 2.42905, 1.78074, 1.38017, 1.12328
(d) 1.87734, 3.05607, 2.42672, 1.78224, 1.38150, 1.12411

13. (a) −1.48849, −0.412339, 1.04687, 1.43176, 1.54438, 1.51971
(b) −1.46909, −0.287883, 1.05351, 1.42003, 1.53000, 1.50549
(c) −1.45865, −0.217545, 1.05715, 1.41486, 1.52334, 1.49879
(d) −1.45212, −0.173376, 1.05941, 1.41197, 1.51949, 1.49490

14. (a) 0.950517, 0.687550, 0.369188, 0.145990, 0.0421429, 0.00872877
(b) 0.938298, 0.672145, 0.362640, 0.147659, 0.0454100, 0.0104931
(c) 0.932253, 0.664778, 0.359567, 0.148416, 0.0469514, 0.0113722
(d) 0.928649, 0.660463, 0.357783, 0.148848, 0.0478492, 0.0118978

15. (a) −0.166134, −0.410872, −0.804660, 4.15867
(b) −0.174652, −0.434238, −0.889140, −3.09810

16. A reasonable estimate for y at t = 0.8 is between 5.5 and 6. No reliable estimate is possible
at t = 1 from the specified data.

17. A reasonable estimate for y at t = 2.5 is between 18 and 19. No reliable estimate is possible
at t = 3 from the specified data.

18. (b) 2.37 < α0 < 2.38 19. (b) 0.67 < α0 < 0.68
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Section 2.8, page 118

1. dw/ds = (s + 1)2 + (w + 2)2, w(0) = 0 2. dw/ds = 1 − (w + 3)3, w(0) = 0

3. (a) φn(t) =
n∑

k=1

2ktk

k! (c) limn→∞ φn(t) = e2t − 1

4. (a) φn(t) =
n∑

k=1

(−1)ktk

k! (c) limn→∞ φn(t) = e−t − 1

5. (a) φn(t) =
n∑

k=1

(−1)k+1tk+1/(k + 1)!2k−1 (c) limn→∞ φn(t) = 4e−t/2 + 2t − 4

6. (a) φn(t) = t − tn+1

(n + 1)! (c) limn→∞ φn(t) = t

7. (a) φn(t) =
n∑

k=1

t2k−1

1 · 3 · 5 · · · (2k − 1)
8. (a) φn(t) = −

n∑
k=1

t3k−1

2 · 5 · 8 · · · (3k − 1)

9. (a) φ1(t) = t3

3
; φ2(t) = t3

3
+ t7

7 · 9
; φ3(t) = t3

3
+ t7

7 · 9
+ 2t11

3 · 7 · 9 · 11
+ t15

(7 · 9)2 · 15

10. (a) φ1(t) = t; φ2(t) = t − t4

4
; φ3(t) = t − t4

4
+ 3t7

4 · 7
− 3t10

16 · 10
+ t13

64 · 13

11. (a) φ1(t) = t, φ2(t) = t − t2

2! + t4

4! − t6

6! + O(t8),

φ3(t) = t − t2

2! + t3

3! + t4

4! − 7t5

5! + 14t6

6! + O(t7),

φ4(t) = t − t2

2! + t3

3! − 7t5

5! + 31t6

6! + O(t7)

12. (a) φ1(t) = −t − t2 − t3

2
,

φ2(t) = −t − t2

2
+ t3

6
+ t4

4
− t5

5
− t6

24
+ O(t7),

φ3(t) = −t − t2

2
+ t4

12
− 3t5

20
+ 4t6

45
+ O(t7),

φ4(t) = −t − t2

2
+ t4

8
− 7t5

60
+ t6

15
+ O(t7)

Section 2.9, page 130

1. yn = (−1)n(0.9)ny0; yn → 0 as n → ∞
2. yn = y0/(n + 1); yn → 0 as n → ∞
3. yn = y0

√
(n + 2)(n + 1)/2; yn → ∞ as n → ∞

4. yn =
{

y0, if n = 4k or n = 4k − 1;
−y0, if n = 4k − 2 or n = 4k − 3;

yn has no limit as n → ∞
5. yn = (0.5)n(y0 − 12) + 12; yn → 12 as n → ∞
6. yn = (−1)n(0.5)n(y0 − 4) + 4; yn → 4 as n → ∞
7. 7.25% 8. $2283.63
9. $258.14

10. (a) $804.62 (b) $877.57 (c) $1028.61
11. 30 years: $804.62/month; $289,663.20 total 20 years: $899.73/month;

$215,935.20 total
12. $103,624.62 13. 9.73%
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16. (b) un → −∞ as n → ∞
19. (a) 4.7263 (b) 1.223% (c) 3.5643 (e) 3.5699

Miscellaneous Problems, page 132

1. y = (c/x2) + (x3/5) 2. 2y + cos y − x − sin x = c
3. x2 + xy − 3y − y3 = 0 4. y = −3 + cex−x2

5. x2y + xy2 + x = c 6. y = x−1(1 − e1−x)

7. x4 + x − y2 − y3 = c 8. y = (4 + cos 2 − cos x)/x2

9. x2y + x + y2 = c 10. x + ln |x| + x−1 + y − 2 ln |y| = c; also y = 0
11. (x3/3) + xy + ey = c 12. y = ce−x + e−x ln(1 + ex)

13. y = tan(x + x2 + c) 14. x2 + 2xy + 2y2 = 34
15. y = c/cosh2

(x/2) 16. e−x cos y + e2y sin x = c

17. y = ce3x − e2x 18. y = e−2x

∫ x

0
e−s2

ds + 3e−2x

19. 2xy + xy3 − x3 = c 20. ex + e−y = c
21. 2xy2 + 3x2y − 4x + y3 = c 22. y3 + 3y − x3 + 3x = 2

23. y = e2t

3t
+ c

e−t

t
24. sin y sin2 x = c

25. (x2/y) + arctan(y/x) = c 26. e−y/x + ln |x| = c
27. (x2 + y2 + 1)e−y2 = c 28. x3 + x2y = c
29. arctan(y/x) − ln

√
x2 + y2 = c 30. (y2/x3) + (y/x2) = c

31. x3y2 + xy3 = −4 32.
1
y

= −x
∫ x

1

e2s

s2
ds + x

2
34. (a) y = t + (c − t)−1 (b) y = t−1 + 2t(c − t2)−1

(c) y = sin t + (c cos t − 1
2 sin t)−1

35. (a) v′ − [x(t) + b]v = b

(b) v =
[
b
∫

μ(t) dt + c
]
/μ(t), μ(t) = exp[−(at2/2) − bt]

36. y = c1t−1 + c2 + ln t 37. y = c1 ln t + c2 + t
38. y = (1/k) ln |(k − t)/(k + t)| + c2 if c1 = k2 > 0; y = (2/k) arctan(t/k) + c2 if

c1 = −k2 < 0; y = −2t−1 + c2 if c1 = 0; also y = c
39. y = ± 2

3 (t − 2c1)
√

t + c1 + c2; also y = c Hint: μ(v) = v−3 is an integrating factor.
40. y = c1e−t + c2 − te−t

41. c2
1y = c1t − ln |1 + c1t| + c2 if c1 �= 0; y = 1

2 t2 + c2 if c1 = 0; also y = c
42. y2 = c1t + c2 43. y = c1 sin(t + c2) = k1 sin t + k2 cos t
44. 1

3 y3 − 2c1y + c2 = 2t; also y = c 45. t + c2 = ± 2
3 (y − 2c1)(y + c1)

1/2

46. y ln |y| − y + c1y + t = c2; also y = c 47. ey = (t + c2)
2 + c1

48. y = 4
3 (t + 1)3/2 − 1

3 49. y = 2(1 − t)−2

50. y = 3 ln t − 3
2 ln(t2 + 1) − 5 arctan t + 2 + 3

2 ln 2 + 5
4 π

51. y = 1
2 t2 + 3

2

C H A P T E R 3 Section 3.1, page 144

1. y = c1et + c2e−3t 2. y = c1e−t + c2e−2t

3. y = c1et/2 + c2e−t/3 4. y = c1et/2 + c2et

5. y = c1 + c2e−5t 6. y = c1e3t/2 + c2e−3t/2

7. y = c1 exp[(9 + 3
√

5)t/2] + c2 exp[(9 − 3
√

5)t/2]
8. y = c1 exp[(1 + √

3)t] + c2 exp[(1 − √
3)t] 9. y = et ; y → ∞ as t → ∞

10. y = 5
2 e−t − 1

2 e−3t ; y → 0 as t → ∞ 11. y = 12et/3 − 8et/2; y → −∞ as t → ∞
12. y = −1 − e−3t ; y → −1 as t → ∞
13. y = 1

26 (13 + 5
√

13) exp[(−5 + √
13)t/2] + 1

26 (13 − 5
√

13) exp[(−5 − √
13)t/2]; y → 0 as

t → ∞
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14. y = (2/
√

33) exp[(−1 + √
33)t/4] − (2/

√
33) exp[(−1 − √

33)t/4]; y → ∞ as t → ∞
15. y = 1

10 e−9(t−1) + 9
10 et−1; y → ∞ as t → ∞

16. y = − 1
2 e(t+2)/2 + 3

2 e−(t+2)/2; y → −∞ as t → ∞
17. y′′ + y′ − 6y = 0 18. 2y′′ + 5y′ + 2y = 0
19. y = 1

4 et + e−t ; minimum is y = 1 at t = ln 2
20. y = −et + 3et/2; maximum is y = 9

4 at t = ln(9/4), y = 0 at t = ln 9
21. α = −2 22. β = −1
23. y → 0 for α < 0; y becomes unbounded for α > 1
24. y → 0 for α < 1; there is no α for which all nonzero solutions become unbounded
25. (a) y = 1

5 (1 + 2β)e−2t + 1
5 (4 − 2β)et/2

(b) y ∼= 0.71548 when t = 2
5 ln 6 ∼= 0.71670 (c) β = 2

26. (a) y = (6 + β)e−2t − (4 + β)e−3t

(b) tm = ln[(12 + 3β)/(12 + 2β)], ym = 4
27 (6 + β)3/(4 + β)2

(c) β = 6(1 + √
3) ∼= 16.3923 (d) tm → ln(3/2), ym → ∞

27. (a ) y = d/c (b) aY ′′ + bY ′ + cY = 0
28. (a) b > 0 and 0 < c < b2/4a (b) c < 0 (c) b < 0 and 0 < c < b2/4a

Section 3.2, page 155

1. − 7
2 et/2 2. 1

3. e−4t 4. x2ex

5. −e2t 6. 0
7. 0 < t < ∞ 8. −∞ < t < 1
9. 0 < t < 4 10. 0 < t < ∞

11. 0 < x < 3 12. 2 < x < 3π/2
14. The equation is nonlinear. 15. The equation is nonhomogeneous.
16. No 17. 3te2t + ce2t

18. tet + ct 19. 5W(f , g)

20. −4(t cos t − sin t)
21. y3 and y4 are a fundamental set of solutions if and only if a1b2 − a2b1 �= 0.
22. y1(t) = 1

3 e−2t + 2
3 et , y2(t) = − 1

3 e−2t + 1
3 et

23. y1(t) = − 1
2 e−3(t−1) + 3

2 e−(t−1), y2(t) = − 1
2 e−3(t−1) + 1

2 e−(t−1)

24. Yes 25. Yes
26. Yes 27. Yes
28. (b) Yes (c) [y1(t), y3(t)] and [y1(t), y4(t)] are fundamental sets of solutions; [y2(t), y3(t)]

and [y4(t), y5(t)] are not
29. ct2et 30. c cos t
31. c/x 32. c/(1 − x2)

34. 2/25 35. 3
√

e ∼= 4.946
36. p(t) = 0 for all t
40. If t0 is an inflection point, and y = φ(t) is a solution, then from the differential equation

p(t0)φ
′(t0) + q(t0)φ(t0) = 0.

42. Yes, y = c1e−x2/2

∫ x

x0

et2/2 dt + c2e−x2/2

43. No

44. Yes, y = 1
μ(x)

[
c1

∫ x

x0

μ(t)
t

dt + c2

]
, μ(x) = exp

[
−
∫ (

1
x

+ cos x
x

)
dx

]
45. Yes, y = c1x−1 + c2x 47. x2μ′′ + 3xμ′ + (1 + x2 − ν2)μ = 0
48. (1 − x2)μ′′ − 2xμ′ + α(α + 1)μ = 0 49. μ′′ − xμ = 0
51. The Legendre and Airy equations are self-adjoint.
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Section 3.3, page 163

1. e cos 2 + ie sin 2 ∼= −1.1312 + 2.4717i 2. e2 cos 3 − ie2 sin 3 ∼= −7.3151 − 1.0427i
3. −1
4. e2 cos(π/2) − ie2 sin(π/2) = −e2i ∼= −7.3891i
5. 2 cos(ln 2) − 2i sin(ln 2) ∼= 1.5385 − 1.2779i
6. π−1 cos(2 ln π) + iπ−1 sin(2 ln π) ∼= −0.20957 + 0.23959i
7. y = c1et cos t + c2et sin t 8. y = c1et cos

√
5 t + c2et sin

√
5 t

9. y = c1e2t + c2e−4t 10. y = c1e−t cos t + c2e−t sin t
11. y = c1e−3t cos 2t + c2e−3t sin 2t 12. y = c1 cos(3t/2) + c2 sin(3t/2)

13. y = c1e−t cos(t/2) + c2e−t sin(t/2) 14. y = c1et/3 + c2e−4t/3

15. y = c1e−t/2 cos t + c2e−t/2 sin t 16. y = c1e−2t cos(3t/2) + c2e−2t sin(3t/2)

17. y = 1
2 sin 2t; steady oscillation

18. y = e−2t cos t + 2e−2t sin t; decaying oscillation
19. y = −et−π/2 sin 2t; growing oscillation
20. y = (1 + 2

√
3) cos t − (2 − √

3) sin t; steady oscillation
21. y = 3e−t/2 cos t + 5

2 e−t/2 sin t; decaying oscillation
22. y = √

2 e−(t−π/4) cos t + √
2 e−(t−π/4) sin t; decaying oscillation

23. (a) u = 2et/6 cos(
√

23 t/6) − (2/
√

23)et/6 sin(
√

23 t/6)

(b) t = 10.7598
24. (a) u = 2e−t/5 cos(

√
34 t/5) + (7/

√
34) e−t/5 sin(

√
34 t/5)

(b) T = 14.5115
25. (a) y = 2e−t cos

√
5 t + [(α + 2)/

√
5] e−t sin

√
5 t (b) α = 1.50878

(c) t = {π − arctan[2√
5/(2 + α)]}/√5 (d) π/

√
5

26. (a) y = e−at cos t + ae−at sin t (b) T = 1.8763
(c) α = 1

4 , T = 7.4284; α = 1
2 , T = 4.3003; α = 2, T = 1.5116

35. y = c1 cos(ln t) + c2 sin(ln t) 36. y = c1t−1 + c2t−2

37. y = c1t−1 cos( 1
2 ln t) + c2t−1 sin( 1

2 ln t) 38. y = c1t6 + c2t−1

39. y = c1t2 + c2t3 40. y = c1t cos(2 ln t) + c2t sin(2 ln t)
41. y = c1t + c2t−3 42. y = c1t−3 cos(ln t) + c2t−3 sin(ln t)

44. Yes, y = c1 cos x + c2 sin x, x =
∫

e−t2/2 dt

45. No
46. Yes, y = c1e−t2/4 cos(

√
3 t2/4) + c2e−t2/4 sin(

√
3 t2/4)

Section 3.4, page 171

1. y = c1et + c2tet 2. y = c1e−t/3 + c2te−t/3

3. y = c1e−t/2 + c2e3t/2 4. y = c1e−3t/2 + c2te−3t/2

5. y = c1et cos 3t + c2et sin 3t 6. y = c1e3t + c2te3t

7. y = c1e−t/4 + c2e−4t 8. y = c1e−3t/4 + c2te−3t/4

9. y = c1e2t/5 + c2te2t/5 10. y = e−t/2 cos(t/2) + c2e−t/2 sin(t/2)

11. y = 2e2t/3 − 7
3 te2t/3, y → −∞ as t → ∞

12. y = 2te3t , y → ∞ as t → ∞
13. y = −e−t/3 cos 3t + 5

9 e−t/3 sin 3t, y → 0 as t → ∞
14. y = 7e−2(t+1) + 5te−2(t+1), y → 0 as t → ∞
15. (a) y = e−3t/2 − 5

2 te−3t/2 (b) t = 2
5

(c) t0 = 16/15, y0 = − 5
3 e−8/5 ∼= −0.33649

(d) y = e−3t/2 + (b + 3
2 )te−3t/2; b = − 3

2
16. y = 2et/2 + (b − 1)tet/2; b = 1
17. (a) y = e−t/2 + 5

2 te−t/2 (b) tM = 8
5 , yM = 5e−4/5 ∼= 2.24664

(c) y = e−t/2 + (b + 1
2 )te−t/2

(d) tM = 4b/(1 + 2b) → 2 as b → ∞; yM = (1 + 2b) exp[−2b/(1 + 2b)] → ∞
as b → ∞
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18. (a) y = ae−2t/3 + ( 2
3 a − 1)te−2t/3 (b) a = 3

2
23. y2(t) = t3 24. y2(t) = t−2

25. y2(t) = t−1 ln t 26. y2(t) = tet

27. y2(x) = cos x2 28. y2(x) = x
29. y2(x) = x1/4e−2

√
x 30. y2(x) = x−1/2 cos x

32. y = c1e−δx2/2

∫ x

0
eδs2/2 ds + c2e−δx2/2 33. y2(t) = y1(t)

∫ t

t0

y−2
1 (s) exp

[
−
∫ s

s0

p(r) dr
]

ds

34. y2(t) = t−1 ln t 35. y2(t) = cos t2

36. y2(x) = x 37. y2(x) = x−1/2 cos x
39. (b) y0 + (a/b)y′

0 41. y = c1t2 + c2t2 ln t
42. y = c1t−1/2 + c2t−1/2 ln t 43. y = c1t + c2t5/2

44. y = c1t−1 + c2t−1 ln t 45. y = c1t3/2 + c2t3/2 ln t
46. y = c1t−2 cos(3 ln t) + c2t−2 sin(3 ln t)

Section 3.5, page 183

1. y = c1e3t + c2e−t − e2t

2. y = c1e−t cos 2t + c2e−t sin 2t + 3
17 sin 2t − 12

17 cos 2t
3. y = c1e3t + c2e−t + 3

16 te−t + 3
8 t2e−t 4. y = c1 + c2e−2t + 3

2 t − 1
2 sin 2t − 1

2 cos 2t
5. y = c1 cos 3t + c2 sin 3t + 1

162 (9t2 − 6t + 1)e3t + 2
3

6. y = c1e−t + c2te−t + t2e−t

7. y = c1e−t + c2e−t/2 + t2 − 6t + 14 − 3
10 sin t − 9

10 cos t
8. y = c1 cos t + c2 sin t − 1

3 t cos 2t − 5
9 sin 2t

9. u = c1 cos ω0t + c2 sin ω0t + (ω2
0 − ω2)−1 cos ωt

10. u = c1 cos ω0t + c2 sin ω0t + (1/2ω0)t sin ω0t
11. y = c1e−t/2 cos(

√
15 t/2) + c2e−t/2 sin(

√
15 t/2) + 1

6 et − 1
4 e−t

12. y = c1e−t + c2e2t + 1
6 te2t + 1

8 e−2t 13. y = et − 1
2 e−2t − t − 1

2
14. y = 7

10 sin 2t − 19
40 cos 2t + 1

4 t2 − 1
8 + 3

5 et 15. y = 4tet − 3et + 1
6 t3et + 4

16. y = e3t + 2
3 e−t − 2

3 e2t − te2t 17. y = 2 cos 2t − 1
8 sin 2t − 3

4 t cos 2t
18. y = e−t cos 2t + 1

2 e−t sin 2t + te−t sin 2t
19. (a) Y(t) = t(A0t4 + A1t3 + A2t2 + A3t + A4) + t(B0t2 + B1t + B2)e−3t

+ D sin 3t + E cos 3t
(b) A0 = 2/15, A1 = −2/9, A2 = 8/27, A3 = −8/27, A4 = 16/81, B0 = −1/9,
B1 = −1/9, B2 = −2/27, D = −1/18, E = −1/18

20. (a) Y(t) = A0t + A1 + t(B0t + B1) sin t + t(D0t + D1) cos t
(b) A0 = 1, A1 = 0, B0 = 0, B1 = 1/4, D0 = −1/4, D1 = 0

21. (a) Y(t) = et(A cos 2t + B sin 2t) + (D0t + D1)e2t sin t + (E0t + E1)e2t cos t
(b) A = −1/20, B = −3/20, D0 = −3/2, D1 = −5, E0 = 3/2, E1 = 1/2

22. (a) Y(t) = Ae−t + t(B0t2 + B1t + B2)e−t cos t + t(D0t2 + D1t + D2)e−t sin t
(b) A = 3, B0 = −2/3, B1 = 0, B2 = 1, D0 = 0, D1 = 1, D2 = 1

23. (a) Y(t) = A0t2 + A1t + A2 + t2(B0t + B1)e2t + (D0t + D1) sin 2t + (E0t + E1) cos 2t
(b) A0 = 1/2, A1 = 1, A2 = 3/4, B0 = 2/3, B1 = 0, D0 = 0, D1 = −1/16,
E0 = 1/8, E1 = 1/16

24. (a) Y(t) = t(A0t2 + A1t + A2) sin 2t + t(B0t2 + B1t + B2) cos 2t
(b) A0 = 0, A1 = 13/16, A2 = 7/4, B0 = −1/12, B1 = 0, B2 = 13/32

25. (a) Y(t) = (A0t2 + A1t + A2)et sin 2t + (B0t2 + B1t + B2)et cos 2t +
e−t(D cos t + E sin t) + Fet

(b) A0 = 1/52, A1 = 10/169, A2 = −1233/35,152, B0 = −5/52, B1 = 73/676,
B2 = −4105/35,152, D = −3/2, E = 3/2, F = 2/3

26. (a) Y(t) = t(A0t + A1)e−t cos 2t + t(B0t + B1)e−t sin 2t + (D0t + D1)e−2t cos t +
(E0t + E1)e−2t sin t
(b) A0 = 0, A1 = 3/16, B0 = 3/8, B1 = 0, D0 = −2/5, D1 = −7/25, E0 = 1/5,
E1 = 1/25
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27. (b) w = − 2
5 + c1e5t

28. y = c1 cos λt + c2 sin λt +
N∑

m=1
[am/(λ2 − m2π2)] sin mπ t

29. y =
{

t, 0 ≤ t ≤ π

−(1 + π/2) sin t − (π/2) cos t + (π/2)eπ−t , t > π

30. y =
{

1
5 − 1

10 e−t sin 2t − 1
5 e−t cos 2t, 0 ≤ t ≤ π/2

− 1
5 (1 + eπ/2)e−t cos 2t − 1

10 (1 + eπ/2)e−t sin 2t, t > π/2

31. No 34. y = c1e4t + c2e−t − 1
2 e2t

Section 3.6, page 189

1. Y(t) = et 2. Y(t) = − 2
3 te−t

3. Y(t) = 3
2 t2e−t 4. Y(t) = 2t2et/2

5. y = c1 cos t + c2 sin t − (cos t) ln(tan t + sec t)
6. y = c1 cos 3t + c2 sin 3t + (sin 3t) ln(tan 3t + sec 3t) − 1
7. y = c1e−2t + c2te−2t − e−2t ln t
8. y = c1 cos 2t + c2 sin 2t + 3

4 (sin 2t) ln sin 2t − 3
2 t cos 2t

9. y = c1 cos(t/2) + c2 sin(t/2) + t sin(t/2) + 2[ln cos(t/2)] cos(t/2)

10. y = c1et + c2tet − 1
2 et ln(1 + t2) + tet arctan t

11. y = c1e2t + c2e3t +
∫

[e3(t−s) − e2(t−s)]g(s) ds

12. y = c1 cos 2t + c2 sin 2t + 1
2

∫
[sin 2(t − s)]g(s) ds

13. Y(t) = 1
2 + t2 ln t 14. Y(t) = −2t2

15. Y(t) = 1
2 (t − 1)e2t 16. Y(t) = − 1

2 (2t − 1)e−t

17. Y(x) = 1
6 x2(ln x)3 18. Y(x) = − 3

2 x1/2 cos x

19. Y(x) =
∫

xet − tex

(1 − t)2et
g(t) dt 20. Y(x) = x−1/2

∫
t−3/2 sin(x − t)g(t) dt

23. (b) y = y0 cos t + y′
0 sin t +

∫ t

t0

sin(t − s)g(s) ds

24. y = (b − a)−1

∫ t

t0

[eb(t−s) − ea(t−s)] g(s) ds 25. y = μ−1

∫ t

t0

eλ(t−s) sin μ(t − s)g(s) ds

26. y =
∫ t

t0

(t − s)ea(t−s)g(s) ds 29. y = c1t + c2t2 + 4t2 ln t

30. y = c1t−1 + c2t−5 + 1
12 t 31. y = c1(1 + t) + c2et + 1

2 (t − 1)e2t

32. y = c1et + c2t − 1
2 (2t − 1)e−t

Section 3.7, page 202

1. u = 5 cos(2t − δ), δ = arctan(4/3) ∼= 0.9273
2. u = 2 cos(t − 2π/3)

3. u = 2
√

5 cos(3t − δ), δ = − arctan(1/2) ∼= −0.4636
4. u = √

13 cos(π t − δ), δ = π + arctan(3/2) ∼= 4.1244
5. u = 1

4 cos 8t ft, t in s; ω = 8 rad/s, T = π/4 s, R = 1/4 ft
6. u = 5

7 sin 14t cm, t in s; t = π/14 s
7. u = (1/4

√
2) sin(8

√
2 t) − 1

12 cos(8
√

2 t) ft, t in s; ω = 8
√

2 rad/s,
T = π/4

√
2 s, R = √

11/288 ∼= 0.1954 ft, δ = π − arctan(3/
√

2) ∼= 2.0113
8. Q = 10−6 cos 2000t C, t in s
9. u = e−10t[2 cos(4

√
6 t) + (5/

√
6) sin(4

√
6 t)] cm, t in s;

μ = 4
√

6 rad/s, Td = π/2
√

6 s, Td/T = 7/2
√

6 ∼= 1.4289, τ ∼= 0.4045 s
10. u = (1/8

√
31)e−2t sin(2

√
31 t) ft, t in s; t = π/2

√
31 s , τ ∼= 1.5927 s



September 11, 2008 11:18 boyce-9e-bvp Sheet number 760 Page number 740 cyan black

740 Answers to Problems

11. u ∼= 0.057198e−0.15t cos(3.87008 t − 0.50709) m, t in s; μ = 3.87008 rad/s,
μ/ω0 = 3.87008/

√
15 ∼= 0.99925

12. Q = 10−6(2e−500t − e−1000t) C; t in s

13. γ = √
20/9 ∼= 1.4907

16. r = √
A2 + B2, r cos θ = B, r sin θ = −A; R = r; δ = θ + (4n + 1)π/2,

n = 0, 1, 2, . . .

17. γ = 8 lb·s/ft 18. R = 103 �

20. v0 < −γ u0/2m 22. 2π/
√

31

23. γ = 5 lb·s/ft 24. k = 6, v = ±2
√

5

25. (a) τ ∼= 41.715 (d) γ0
∼= 1.73, min τ ∼= 4.87

(e) τ = (2/γ ) ln(400/
√

4 − γ 2)

26. (a) u(t) = e−γ t/2m
[
u0

√
4km − γ 2 cos μt + (2mv0 + γ u0) sin μt

]
/
√

4km − γ 2

(b) R2 = 4m(ku2
0 + γ u0v0 + mv2

0)/(4km − γ 2)

27. ρlu′′ + ρ0gu = 0, T = 2π
√

ρl/ρ0g

28. (a) u = √
2 sin

√
2 t (c) clockwise

29. (a) u = (16/
√

127)e−t/8 sin(
√

127 t/8) (c) clockwise

30. (b) u = a cos(
√

k/m t) + b
√

m/k sin(
√

k/m t)

32. (b) u = sin t, A = 1, T = 2π (c) A = 0.98, T = 6.07
(d) ε = 0.2, A = 0.96, T = 5.90; ε = 0.3, A = 0.94, T = 5.74
(f) ε = −0.1, A = 1.03, T = 6.55; ε = −0.2, A = 1.06, T = 6.90; ε = −0.3,
A = 1.11, T = 7.41

Section 3.8, page 215

1. −2 sin 8t sin t 2. 2 sin(t/2) cos(13t/2)

3. 2 cos(3π t/2) cos(π t/2) 4. 2 sin(7t/2) cos(t/2)

5. u′′ + 256u = 16 cos 3t, u(0) = 1
6 , u′(0) = 0, u in ft, t in s

6. u′′ + 10u′ + 98u = 2 sin(t/2), u(0) = 0, u′(0) = 0.03, u in m, t in s

7. (a) u = 151
1482 cos 16t + 16

247 cos 3t (c) ω = 16 rad/s

8. (a) u = 1
153,281 [160e−5t cos(

√
73 t) + 383,443

7300 e−5t sin(
√

73 t) − 160 cos(t/2) +
3128 sin(t/2)]
(b) The first two terms are the transient. (d) ω = 4

√
3 rad/s

9. u = 64
45 (cos 7t − cos 8t) = 128

45 sin(t/2) sin(15t/2) ft, t in s

10. u = (cos 8t + sin 8t − 8t cos 8t)/4 ft, t in sec; 1/8, π/8, π/4, 3π/8 s

11. (a) 8
901 (30 cos 2t + sin 2t) ft, t in s (b) m = 4 slugs

12. u = (
√

2/6) cos(3t − 3π/4) m, t in s

15. u =
⎧⎨
⎩

F0(t − sin t), 0 ≤ t ≤ π

F0[(2π − t) − 3 sin t], π < t ≤ 2π

−4F0 sin t, 2π < t < ∞
16. Q(t) = 10−6(e−4000t − 4e−1000t + 3) C, t in s, Q(0.001) ∼= 1.5468 × 10−6;

Q(0.01) ∼= 2.9998 × 10−6; Q(t) → 3 × 10−6 as t → ∞
17. (a) u = [32(2 − ω2) cos ωt + 8ω sin ωt]/(64 − 63ω2 + 16ω4)

(b) A = 8/
√

64 − 63ω2 + 16ω4 (d) ω = 3
√

14/8 ∼= 1.4031, A = 64/
√

127 ∼= 5.6791

18. (a) u = 3(cos t − cos ωt)/(ω2 − 1)

19. (a) u = [(ω2 + 2) cos t − 3 cos ωt]/(ω2 − 1) + sin t
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C H A P T E R 4 Section 4.1, page 224

1. −∞ < t < ∞ 2. t > 0 or t < 0
3. t > 1, or 0 < t < 1, or t < 0 4. t > 0
5. . . . , −3π/2 < x < −π/2, −π/2 < x < 1, 1 < x < π/2, π/2 < x < 3π/2, . . .
6. −∞ < x < −2, −2 < x < 2, 2 < x < ∞
7. Linearly independent
8. Linearly dependent; f1(t) + 3f2(t) − 2f3(t) = 0
9. Linearly dependent; 2f1(t) + 13f2(t) − 3f3(t) − 7f4(t) = 0

10. Linearly independent 11. 1
12. 1 13. −6e−2t

14. e−2t 15. 6x
16. 6/x 17. sin2 t = 1

10 (5) − 1
2 cos 2t

19. (a) a0[n(n − 1)(n − 2) · · · 1] + a1[n(n − 1) · · · 2]t + · · · + antn

(b) (a0rn + a1rn−1 + · · · + an)ert

(c) et , e−t , e2t , e−2t ; yes, W(et , e−t , e2t , e−2t) �= 0, −∞ < t < ∞
21. W(t) = ce−2t 22. W(t) = c
23. W(t) = c/t2 24. W(t) = c/t
27. y = c1et + c2t + c3tet 28. y = c1t2 + c2t3 + c3(t + 1)

Section 4.2, page 231

1.
√

2 ei[(π/4)+2mπ ] 2. 2ei[(2π/3)+2mπ ]

3. 3ei(π+2mπ) 4. ei[(3π/2)+2mπ ]

5. 2ei[(11π/6)+2mπ ] 6.
√

2ei[(5π/4)+2mπ ]

7. 1, 1
2 (−1 + i

√
3), 1

2 (−1 − i
√

3) 8. 21/4e−π i/8, 21/4e7π i/8

9. 1, i, −1, −i 10.
(√

3 + i
)

/
√

2, −
(√

3 + i
)

/
√

2

11. y = c1et + c2tet + c3e−t 12. y = c1et + c2tet + c3t2et

13. y = c1et + c2e2t + c3e−t 14. y = c1 + c2t + c3e2t + c4te2t

15. y = c1 cos t + c2 sin t + e
√

3t/2(c3 cos 1
2 t + c4 sin 1

2 t) + e−√
3t/2(c5 cos 1

2 t + c6 sin 1
2 t)

16. y = c1et + c2e−t + c3e2t + c4e−2t

17. y = c1et + c2tet + c3t2et + c4e−t + c5te−t + c6t2e−t

18. y = c1 + c2t + c3et + c4e−t + c5 cos t + c6 sin t
19. y = c1 + c2et + c3e2t + c4 cos t + c5 sin t
20. y = c1 + c2e2t + e−t(c3 cos

√
3 t + c4 sin

√
3 t)

21. y = et[(c1 + c2t) cos t + (c3 + c4t) sin t] + e−t[(c5 + c6t) cos t + (c7 + c8t) sin t]
22. y = (c1 + c2t) cos t + (c3 + c4t) sin t 23. y = c1et + c2e(2+√

5)t + c3e(2−√
5)t

24. y = c1e−t + c2e(−2+√
2)t + c3e(−2−√

2)t

25. y = c1e−t/2 + c2e−t/3 cos(t/
√

3) + c3e−t/3 sin(t/
√

3)

26. y = c1e3t + c2e−2t + c3e(3+√
3)t + c4e(3−√

3)t

27. y = c1e−t/3 + c2e−t/4 + c3e−t cos 2t + c4e−t sin 2t
28. y = c1e−t cos t + c2e−t sin t + c3e−2t cos(

√
3 t) + c4e−2t sin(

√
3 t)

29. y = 2 − 2 cos t + sin t 30. y = 1
2 e−t/

√
2 sin(t/

√
2) − 1

2 et/
√

2 sin(t/
√

2)

31. y = 2t − 3 32. y = 2 cos t − sin t
33. y = − 2

3 et − 1
10 e2t − 1

6 e−2t − 16
15 e−t/2 34. y = 2

13 e−t + 24
13 et/2 cos t + 3

13 et/2 sin t
35. y = 8 − 18e−t/3 + 8e−t/2

36. y = 21
13 e−t cos t − 38

13 e−t sin t − 8
13 e−2t cos(

√
3 t) + 17

√
3

39
e−2t sin(

√
3 t)

37. y = 1
2 (cosh t − cos t) + 1

2 (sinh t − sin t)
38. (a) W(t) = c, a constant (b) W(t) = −8 (c) W(t) = 4
39. (b) u1 = c1 cos t + c2 sin t + c3 cos

√
6 t + c4 sin

√
6 t
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Section 4.3, page 237

1. y = c1et + c2tet + c3e−t + 1
2 te−t + 3

2. y = c1et + c2e−t + c3 cos t + c4 sin t − 3t − 1
4 t sin t

3. y = c1e−t + c2 cos t + c3 sin t + 1
2 te−t + 4(t − 1)

4. y = c1 + c2et + c3e−t + cos t
5. y = c1 + c2t + c3e−2t + c4e2t − 1

3 et − 1
48 t4 − 1

16 t2

6. y = c1 cos t + c2 sin t + c3t cos t + c4t sin t + 3 + 1
9 cos 2t

7. y = c1 + c2t + c3t2 + c4e−t + et/2[c5 cos(
√

3 t/2) + c6 sin(
√

3 t/2)] + 1
24 t4

8. y = c1 + c2t + c3t2 + c4e−t + 1
20 sin 2t + 1

40 cos 2t
9. y = 3

16 (1 − cos 2t) + 1
8 t2

10. y = (t − 4) cos t − ( 3
2 t + 4) sin t + 3t + 4

11. y = 1 + 1
4 (t2 + 3t) − tet

12. y = − 2
5 cos t − 4

5 sin t + 1
20 e−t + 81

40 et + 73
520 e−3t + 77

65 cos 2t − 49
130 sin 2t

13. Y(t) = t(A0t3 + A1t2 + A2t + A3) + Bt2et

14. Y(t) = t(A0t + A1)e−t + B cos t + C sin t
15. Y(t) = At2et + B cos t + C sin t
16. Y(t) = At2 + (B0t + B1)et + t(C cos 2t + D sin 2t)
17. Y(t) = t(A0t2 + A1t + A2) + (B0t + B1) cos t + (C0t + C1) sin t
18. Y(t) = Aet + (B0t + B1)e−t + te−t(C cos t + D sin t)
19. k0 = a0, kn = a0α

n + a1α
n−1 + · · · + an−1α + an

Section 4.4, page 242

1. y = c1 + c2 cos t + c3 sin t − ln cos t − (sin t) ln(sec t + tan t)
2. y = c1 + c2et + c3e−t − 1

2 t2 3. y = c1et + c2e−t + c3e2t + 1
30 e4t

4. y = c1 + c2 cos t + c3 sin t + ln(sec t + tan t) − t cos t + (sin t) ln cos t
5. y = c1et + c2 cos t + c3 sin t − 1

5 e−t cos t
6. y = c1 cos t + c2 sin t + c3t cos t + c4t sin t − 1

8 t2 sin t
7. y = c1et + c2 cos t + c3 sin t − 1

2 (cos t) ln cos t + 1
2 (sin t) ln cos t − 1

2 t cos t

− 1
2 t sin t + 1

2 et

∫ t

t0

(
e−s/ cos s

)
ds

8. y = c1 + c2et + c3e−t − ln sin t + ln(cos t + 1) + 1
2 et

∫ t

t0

(
e−s/ sin s

)
ds

+ 1
2 e−t

∫ t

t0

(
es/ sin s

)
ds

9. c1 = 0, c2 = 2, c3 = 1 in answer to Problem 4
10. c1 = 2, c2 = 7

8 , c3 = − 7
8 , c4 = 1

2 in answer to Problem 6
11. c1 = 3

2 , c2 = 1
2 , c3 = − 5

2 , t0 = 0 in answer to Problem 7
12. c1 = 3, c2 = 0, c3 = −eπ/2, t0 = π/2 in answer to Problem 8
13. Y(x) = x4/15

14. Y(t) = 1
2

∫ t

t0

[et−s − sin(t − s) − cos(t − s)]g(s) ds

15. Y(t) = 1
2

∫ t

t0

[sinh(t − s) − sin(t − s)]g(s) ds

16. Y(t) = 1
2

∫ t

t0

e(t−s)(t − s)2g(s) ds; Y(t) = −tet ln |t|

17. Y(x) = 1
2

∫ x

x0

[(x/t2) − 2(x2/t3) + (x3/t4)]g(t) dt
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C H A P T E R 5 Section 5.1, page 249

1. ρ = 1 2. ρ = 2
3. ρ = ∞ 4. ρ = 1

2

5. ρ = 1
2 6. ρ = 1

7. ρ = 3 8. ρ = e

9.
∞∑

n=0

(−1)nx2n+1

(2n + 1)! , ρ = ∞ 10.
∞∑

n=0

xn

n! , ρ = ∞

11. 1 + (x − 1), ρ = ∞ 12. 1 − 2(x + 1) + (x + 1)2, ρ = ∞
13.

∞∑
n=1

(−1)n+1 (x − 1)n

n
, ρ = 1 14.

∞∑
n=0

(−1)nxn, ρ = 1

15.
∞∑

n=0

xn, ρ = 1 16.
∞∑

n=0

(−1)n+1(x − 2)n, ρ = 1

17. y′ = 1 + 22x + 32x2 + 42x3 + · · · + (n + 1)2xn + · · ·
y′′ = 22 + 32 · 2x + 42 · 3x2 + 52 · 4x3 + · · · + (n + 2)2(n + 1)xn + · · ·

18. y′ = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · + (n + 1)an+1xn + · · ·
=

∞∑
n=1

nanxn−1 =
∞∑

n=0

(n + 1)an+1xn

y′′ = 2a2 + 6a3x + 12a4x2 + 20a5x3 + · · · + (n + 2)(n + 1)an+2xn + · · ·
=

∞∑
n=2

n(n − 1)anxn−2 =
∞∑

n=0

(n + 2)(n + 1)an+2xn

21.
∞∑

n=0

(n + 2)(n + 1)an+2xn 22.
∞∑

n=2

an−2xn

23.
∞∑

n=0

(n + 1)anxn 24.
∞∑

n=0

[(n + 2)(n + 1)an+2 − n(n − 1)an]xn

25.
∞∑

n=0

[(n + 2)(n + 1)an+2 + nan]xn 26. a1 +
∞∑

n=1

[(n + 1)an+1 + an−1]xn

27.
∞∑

n=0

[(n + 1)nan+1 + an]xn 28. an = (−2)na0/n!, n = 1, 2, . . . ; a0e−2x

Section 5.2, page 259

1. (a) an+2 = an/(n + 2)(n + 1)

(b,d) y1(x) = 1 + x2

2! + x4

4! + x6

6! + · · · =
∞∑

n=0

x2n

(2n)! = cosh x

y2(x) = x + x3

3! + x5

5! + x7

7! + · · · =
∞∑

n=0

x2n+1

(2n + 1)! = sinh x

2. (a) an+2 = an/(n + 2)

(b,d) y1(x) = 1 + x2

2
+ x4

2 · 4
+ x6

2 · 4 · 6
+ · · · =

∞∑
n=0

x2n

2nn!

y2(x) = x + x3

3
+ x5

3 · 5
+ x7

3 · 5 · 7
+ · · · =

∞∑
n=0

2nn!x2n+1

(2n + 1)!
3. (a) (n + 2)an+2 − an+1 − an = 0

(b) y1(x) = 1 + 1
2 (x − 1)2 + 1

6 (x − 1)3 + 1
6 (x − 1)4 + · · ·

y2(x) = (x − 1) + 1
2 (x − 1)2 + 1

2 (x − 1)3 + 1
4 (x − 1)4 + · · ·
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4. (a) an+4 = −k2an/(n + 4)(n + 3); a2 = a3 = 0

(b,d) y1(x) = 1 − k2x4

3 · 4
+ k4x8

3 · 4 · 7 · 8
− k6x12

3 · 4 · 7 · 8 · 11 · 12
+ · · ·

= 1 +
∞∑

m=0

(−1)m+1(k2x4)m+1

3 · 4 · 7 · 8 · · · (4m + 3)(4m + 4)

y2(x) = x − k2x5

4 · 5
+ k4x9

4 · 5 · 8 · 9
− k6x13

4 · 5 · 8 · 9 · 12 · 13
+ · · ·

= x

[
1 +

∞∑
m=0

(−1)m+1(k2x4)m+1

4 · 5 · 8 · 9 · · · (4m + 4)(4m + 5)

]

Hint: Let n = 4m in the recurrence relation, m = 1, 2, 3, . . . .

5. (a) (n + 2)(n + 1)an+2 − n(n + 1)an+1 + an = 0, n ≥ 1; a2 = − 1
2 a0

(b) y1(x) = 1 − 1
2 x2 − 1

6 x3 − 1
24 x4 + · · · , y2(x) = x − 1

6 x3 − 1
12 x4 − 1

24 x5 + · · ·
6. (a) an+2 = −(n2 − 2n + 4)an/[2(n + 1)(n + 2)], n ≥ 2; a2 = −a0, a3 = − 1

4 a1

(b) y1(x) = 1 − x2 + 1
6 x4 − 1

30 x6 + · · · ,

y2(x) = x − 1
4 x3 + 7

160 x5 − 19
1920 x7 + · · ·

7. (a) an+2 = −an/(n + 1), n = 0, 1, 2, . . .

(b,d) y1(x) = 1 − x2

1
+ x4

1 · 3
− x6

1 · 3 · 5
+ · · · = 1 +

∞∑
n=1

(−1)nx2n

1 · 3 · 5 · · · (2n − 1)

y2(x) = x − x3

2
+ x5

2 · 4
− x7

2 · 4 · 6
+ · · · = x +

∞∑
n=1

(−1)nx2n+1

2 · 4 · 6 · · · (2n)

8. (a) an+2 = −[(n + 1)2an+1 + an + an−1]/(n + 1)(n + 2), n = 1, 2, . . .
a2 = −(a0 + a1)/2

(b) y1(x) = 1 − 1
2 (x − 1)2 + 1

6 (x − 1)3 − 1
12 (x − 1)4 + · · ·

y2(x) = (x − 1) − 1
2 (x − 1)2 + 1

6 (x − 1)3 − 1
6 (x − 1)4 + · · ·

9. (a) (n + 2)(n + 1)an+2 + (n − 2)(n − 3)an = 0; n = 0, 1, 2, . . .

(b) y1(x) = 1 − 3x2, y2(x) = x − x3/3
10. (a) 4(n + 2)an+2 − (n − 2)an = 0; n = 0, 1, 2, . . .

(b,d) y1(x) = 1 − x2

4
, y2(x) = x − x3

12
− x5

240
− x7

2240
− · · · − x2n+1

4n(2n − 1)(2n + 1)
− · · ·

11. (a) 3(n + 2)an+2 − (n + 1)an = 0; n = 0, 1, 2, . . .

(b,d) y1(x) = 1 + x2

6
+ x4

24
+ 5

432
x6 + · · · + 3 · 5 · · · (2n − 1)

3n · 2 · 4 · · · (2n)
x2n + · · ·

y2(x) = x + 2
9

x3 + 8
135

x5 + 16
945

x7 + · · · + 2 · 4 · · · (2n)

3n · 3 · 5 · · · (2n + 1)
x2n+1 + · · ·

12. (a) (n + 2)(n + 1)an+2 − (n + 1)nan+1 + (n − 1)an = 0; n = 0, 1, 2, . . .

(b,d) y1(x) = 1 + x2

2
+ x3

6
+ x4

24
+ · · · + xn

n! + · · · , y2(x) = x

13. (a) 2(n + 2)(n + 1)an+2 + (n + 3)an = 0; n = 0, 1, 2, . . .

(b,d) y1(x) = 1 − 3
4

x2 + 5
32

x4 − 7
384

x6 + · · · + (−1)n 3 · 5 · · · (2n + 1)

2n(2n)! x2n + · · ·

y2(x) = x − x3

3
+ x5

20
− x7

210
+ · · · + (−1)n 4 · 6 · · · (2n + 2)

2n(2n + 1)! x2n+1 + · · ·
14. (a) 2(n + 2)(n + 1)an+2 + 3(n + 1)an+1 + (n + 3)an = 0; n = 0, 1, 2, . . .

(b) y1(x) = 1 − 3
4 (x − 2)2 + 3

8 (x − 2)3 + 1
64 (x − 2)4 + · · ·

y2(x) = (x − 2) − 3
4 (x − 2)2 + 1

24 (x − 2)3 + 9
64 (x − 2)4 + · · ·
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15. (a) y = 2 + x + x2 + 1
3 x3 + 1

4 x4 + · · · (c) about |x| < 0.7
16. (a) y = −1 + 3x + x2 − 3

4 x3 − 1
6 x4 + · · · (c) about |x| < 0.7

17. (a) y = 4 − x − 4x2 + 1
2 x3 + 4

3 x4 + · · · (c) about |x| < 0.5
18. (a) y = −3 + 2x − 3

2 x2 − 1
2 x3 − 1

8 x4 + · · · (c) about |x| < 0.9
19. (a) y1(x) = 1 − 1

3 (x − 1)3 − 1
12 (x − 1)4 + 1

18 (x − 1)6 + · · ·
y2(x) = (x − 1) − 1

4 (x − 1)4 − 1
20 (x − 1)5 + 1

28 (x − 1)7 + · · ·
21. (a) y1(x) = 1 − λ

2!x2 + λ(λ − 4)

4! x4 − λ(λ − 4)(λ − 8)

6! x6 + · · ·

y2(x) = x − λ − 2
3! x3 + (λ − 2)(λ − 6)

5! x5 − (λ − 2)(λ − 6)(λ − 10)

7! x7 + · · ·
(b) 1, x, 1 − 2x2, x − 2

3 x3, 1 − 4x2 + 4
3 x4, x − 4

3 x3 + 4
15 x5

(c) 1, 2x, 4x2 − 2, 8x3 − 12x, 16x4 − 48x2 + 12, 32x5 − 160x3 + 120x
22. (b) y = x − x3/6 + · · ·

Section 5.3, page 265

1. φ′′(0) = −1, φ′′′(0) = 0, φ(4)(0) = 3
2. φ′′(0) = 0, φ′′′(0) = −2, φ(4)(0) = 0
3. φ′′(1) = 0, φ′′′(1) = −6, φ(4)(1) = 42
4. φ′′(0) = 0, φ′′′(0) = −a0, φ(4)(0) = −4a1

5. ρ = ∞, ρ = ∞ 6. ρ = 1, ρ = 3, ρ = 1
7. ρ = 1, ρ = √

3 8. ρ = 1
9. (a) ρ = ∞ (b) ρ = ∞ (c) ρ = ∞ (d) ρ = ∞ (e) ρ = 1

(f) ρ = √
2 (g) ρ = ∞ (h) ρ = 1 (i) ρ = 1 (j) ρ = 2

(k) ρ = √
3 (l) ρ = 1 (m) ρ = ∞ (n) ρ = ∞

10. (a) y1(x) = 1 − α2

2! x2 − (22 − α2)α2

4! x4 − (42 − α2)(22 − α2)α2

6! x6 − · · ·

− [(2m − 2)2 − α2] · · · (22 − α2)α2

(2m)! x2m − · · ·

y2(x) = x + 1 − α2

3! x3 + (32 − α2)(1 − α2)

5! x5 + · · ·

+ [(2m − 1)2 − α2] · · · (1 − α2)

(2m + 1)! x2m+1 + · · ·
(b) y1(x) or y2(x) terminates with xn as α = n is even or odd
(c) n = 0, y = 1; n = 1, y = x; n = 2, y = 1 − 2x2; n = 3, y = x − 4

3 x3

11. y1(x) = 1 − 1
6 x3 + 1

120 x5 + 1
180 x6 + · · · , y2(x) = x − 1

12 x4 + 1
180 x6 + 1

504 x7 + · · · ,
ρ = ∞

12. y1(x) = 1 − 1
6 x3 + 1

12 x4 − 1
40 x5 + · · · , y2(x) = x − 1

12 x4 + 1
20 x5 − 1

60 x6 + · · · ,
ρ = ∞

13. y1(x) = 1 + x2 + 1
12 x4 + 1

120 x6 + · · · , y2(x) = x + 1
6 x3 + 1

60 x5 + 1
560 x7 + · · · ,

ρ = π/2
14. y1(x) = 1 + 1

6 x3 + 1
12 x4 − 1

120 x6 + · · · , y2(x) = x − 1
6 x3 + 1

24 x4 + 7
120 x5 + · · · ,

ρ = 1
15. Cannot specify arbitrary initial conditions at x = 0; hence x = 0 is a singular point.

16. y = 1 + x + x2

2! + · · · + xn

n! + · · · = ex

17. y = 1 + x2

2
+ x4

2 · 4
+ x6

2 · 4 · 6
+ · · · + x2n

2n · n! + · · ·
18. y = 1 + x + 1

2 x2 + 1
2 x3 + · · ·

19. y = 1 + x + x2 + · · · + xn + · · · = 1
1 − x
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20. y = a0

(
1 + x + x2

2! + · · · + xn

n! + · · ·
)

+ 2
(

x3

3! + x4

4! + · · · + xn

n! + · · ·
)

= a0ex + 2
(

ex − 1 − x − x2

2

)
= cex − 2 − 2x − x2

21. y = a0

(
1 − x2

2
+ x4

222! − x6

233! + · · · + (−1)nx2n

2nn! + · · ·
)

+
(

x + x2

2
− x3

3
− x4

2 · 4
+ x5

3 · 5
+ · · ·

)

= a0e−x2/2 +
(

x + x2

2
− x3

3
− x4

2 · 4
+ x5

3 · 5
+ · · ·

)
23. 1, 1 − 3x2, 1 − 10x2 + 35

3 x4; x, x − 5
3 x3, x − 14

3 x3 + 21
5 x5

24. (a) 1, x, (3x2 − 1)/2, (5x3 − 3x)/2, (35x4 − 30x2 + 3)/8, (63x5 − 70x3 + 15x)/8
(c) P1, 0; P2, ±0.57735; P3, 0, ±0.77460; P4, ±0.33998, ±0.86114;
P5, 0, ±0.53847, ±0.90618

Section 5.4, page 276

1. y = c1x−1 + c2x−2 2. y = c1|x + 1|−1/2 + c2|x + 1|−3/2

3. y = c1x2 + c2x2 ln |x| 4. y = c1x−1 cos(2 ln |x|) + c2x−1 sin(2 ln |x|)
5. y = c1x + c2x ln |x| 6. y = c1(x − 1)−3 + c2(x − 1)−4

7. y = c1|x|(−5+√
29)/2 + c2|x|(−5−√

29)/2

8. y = c1|x|3/2 cos( 1
2

√
3 ln |x|) + c2|x|3/2 sin( 1

2

√
3 ln |x|)

9. y = c1x3 + c2x3 ln |x|
10. y = c1(x − 2)−2 cos(2 ln |x − 2|) + c2(x − 2)−2 sin(2 ln |x − 2|)
11. y = c1|x|−1/2 cos( 1

2

√
15 ln |x|) + c2|x|−1/2 sin( 1

2

√
15 ln |x|)

12. y = c1x + c2x4 13. y = 2x3/2 − x−1

14. y = 2x−1/2 cos(2 ln x) − x−1/2 sin(2 ln x) 15. y = 2x2 − 7x2 ln |x|
16. y = x−1 cos(2 ln x) 17. x = 0, regular
18. x = 0, regular; x = 1, irregular 19. x = 0, irregular; x = 1, regular
20. x = 0, irregular; x = ±1, regular 21. x = 1, regular; x = −1, irregular
22. x = 0, regular 23. x = −3, regular
24. x = 0, −1, regular; x = 1, irregular 25. x = 1, regular; x = −2, irregular
26. x = 0, 3, regular 27. x = 1, −2, regular
28. x = 0, regular 29. x = 0, irregular
30. x = 0, regular 31. x = 0, regular
32. x = 0, ±nπ , regular 33. x = 0, ±nπ , regular
34. x = 0, irregular; x = ±nπ , regular 35. α < 1
36. β > 0 37. γ = 2
38. α > 1
39. (a) α < 1 and β > 0

(b) α < 1 and β ≥ 0, or α = 1 and β > 0
(c) α > 1 and β > 0
(d) α > 1 and β ≥ 0, or α = 1 and β > 0
(e) α = 1 and β > 0

41. y = a0

(
1 − x2

2 · 5
+ x4

2 · 4 · 5 · 9
− · · ·

)
44. Irregular singular point

45. Regular singular point 46. Regular singular point
47. Irregular singular point 48. Irregular singular point
49. Irregular singular point
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Section 5.5, page 282

1. (b) r(2r − 1) = 0; an = − an−2

(n + r)[2(n + r) − 1] ; r1 = 1
2 , r2 = 0

(c) y1(x) = x1/2

[
1 − x2

2 · 5
+ x4

2 · 4 · 5 · 9
− x6

2 · 4 · 6 · 5 · 9 · 13
+ · · ·

+ (−1)nx2n

2nn!5 · 9 · 13 · · · (4n + 1)
+ · · ·

]

(d) y2(x) = 1 − x2

2 · 3
+ x4

2 · 4 · 3 · 7
− x6

2 · 4 · 6 · 3 · 7 · 11
+ · · ·

+ (−1)nx2n

2nn!3 · 7 · 11 · · · (4n − 1)
+ · · ·

2. (b) r2 − 1
9 = 0; an = − an−2

(n + r)2 − 1
9

; r1 = 1
3 , r2 = − 1

3

(c) y1(x) = x1/3

[
1 − 1

1!(1 + 1
3 )

(x
2

)2 + 1

2!(1 + 1
3 )(2 + 1

3 )

(x
2

)4 + · · ·

+ (−1)m

m!(1 + 1
3 )(2 + 1

3 ) · · · (m + 1
3 )

(x
2

)2m + · · ·
]

(d) y2(x) = x−1/3

[
1 − 1

1!(1 − 1
3 )

(x
2

)2 + 1

2!(1 − 1
3 )(2 − 1

3 )

(x
2

)4 + · · ·

+ (−1)m

m!(1 − 1
3 )(2 − 1

3 ) · · · (m − 1
3 )

(x
2

)2m + · · ·
]

Hint: Let n = 2m in the recurrence relation, m = 1, 2, 3, . . . .
3. (b) r(r − 1) = 0; an = − an−1

(n + r)(n + r − 1)
; r1 = 1, r2 = 0

(c) y1(x) = x
[

1 − x
1!2! + x2

2!3! + · · · + (−1)n

n!(n + 1)!xn + · · ·
]

4. (b) r2 = 0; an = an−1

(n + r)2
; r1 = r2 = 0

(c) y1(x) = 1 + x
(1!)2

+ x2

(2!)2
+ · · · + xn

(n!)2
+ · · ·

5. (b) r(3r − 1) = 0; an = − an−2

(n + r)[3(n + r) − 1] ; r1 = 1
3 , r2 = 0

(c) y1(x) = x1/3

[
1 − 1

1!7
(

x2

2

)
+ 1

2!7 · 13

(
x2

2

)2

+ · · ·

+ (−1)m

m!7 · 13 · · · (6m + 1)

(
x2

2

)m

+ · · ·
]

(d) y2(x) = 1 − 1
1!5

(
x2

2

)
+ 1

2!5 · 11

(
x2

2

)2

+ · · · + (−1)m

m!5 · 11 · · · (6m − 1)

(
x2

2

)m

+ · · ·

Hint: Let n = 2m in the recurrence relation, m = 1, 2, 3, . . . .
6. (b) r2 − 2 = 0; an = − an−1

(n + r)2 − 2
; r1 = √

2, r2 = −√
2

(c) y1(x) = x
√

2

[
1 − x

1(1 + 2
√

2)
+ x2

2!(1 + 2
√

2)(2 + 2
√

2)
+ · · ·

+ (−1)n

n!(1 + 2
√

2)(2 + 2
√

2) · · · (n + 2
√

2)
xn + · · ·

]
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(d) y2(x) = x−√
2

[
1 − x

1(1 − 2
√

2)
+ x2

2!(1 − 2
√

2)(2 − 2
√

2)
+ · · ·

+ (−1)n

n!(1 − 2
√

2)(2 − 2
√

2) · · · (n − 2
√

2)
xn + · · ·

]
7. (b) r2 = 0; (n + r)an = an−1; r1 = r2 = 0

(c) y1(x) = 1 + x + x2

2! + x3

3! + · · · + xn

n! + · · · = ex

8. (b) 2r2 + r − 1 = 0; (2n + 2r − 1)(n + r + 1)an + 2an−2 = 0;

r1 = 1
2 , r2 = −1

(c) y1(x) = x1/2

(
1 − x2

7
+ x4

2!7 · 11
− · · · + (−1)mx2m

m!7 · 11 · · · (4m + 3)
+ · · ·

)

(d) y2(x) = x−1

(
1 − x2 + x4

2!5 − · · · + (−1)mx2m

m!5 · 9 · · · (4m − 3)
+ · · ·

)
9. (b) r2 − 4r + 3 = 0; (n + r − 3)(n + r − 1)an − (n + r − 2)an−1 = 0; r1 = 3, r2 = 1

(c) y1(x) = x3

(
1 + 2

3
x + x2

4
+ · · · + 2xn

n!(n + 2)
+ · · ·

)
10. (b) r2 − r + 1

4 = 0; (n + r − 1
2 )2an + an−2 = 0; r1 = r2 = 1/2

(c) y1(x) = x1/2

(
1 − x2

22
+ x4

2242
− · · · + (−1)mx2m

22m(m!)2
+ · · ·

)
11. (a) r2 = 0; r1 = 0, r2 = 0

(b) y1(x) = 1 + α(α + 1)

2 · 12
(x − 1) − α(α + 1)[1 · 2 − α(α + 1)]

(2 · 12)(2 · 22)
(x − 1)2 + · · ·

+(−1)n+1 α(α + 1)[1 · 2 − α(α + 1)] · · · [n(n − 1) − α(α + 1)]
2n(n!)2

(x − 1)n

+ · · ·
12. (a) r1 = 1

2 , r2 = 0 at both x = ±1
(b) y1(x) = |x − 1|1/2

×
[

1 +
∞∑

n=1

(−1)n(1 + 2α) · · · (2n − 1 + 2α)(1 − 2α) · · · (2n − 1 − 2α)

2n(2n + 1)! (x − 1)n

]

y2(x) = 1

+
∞∑

n=1

(−1)nα(1 + α) · · · (n − 1 + α)(−α)(1 − α) · · · (n − 1 − α)

n!1 · 3 · 5 · · · (2n − 1)
(x − 1)n

13. (b) r2 = 0; r1 = 0, r2 = 0; an = (n − 1 − λ)an−1

n2

(c) y1(x) = 1 + −λ

(1!)2
x + (−λ)(1 − λ)

(2!)2
x2 + · · · + (−λ)(1 − λ) · · · (n − 1 − λ)

(n!)2
xn

+ · · ·
For λ = n, the coefficients of all terms past xn are zero.

16. (e) [(n − 1)2 − 1]bn = −bn−2, and it is impossible to determine b2.

Section 5.6, page 290

1. (a) x = 0; (b) r(r − 1) = 0; r1 = 1, r2 = 0
2. (a) x = 0; (b) r2 − 3r + 2 = 0; r1 = 2, r2 = 1
3. (a) x = 0; (b) r(r − 1) = 0; r1 = 1, r2 = 0

(a) x = 1; (b) r(r + 5) = 0; r1 = 0, r2 = −5
4. None
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5. (a) x = 0;
(b) r2 + 2r − 2 = 0; r1 = −1 + √

3 ∼= 0.732, r2 = −1 − √
3 ∼= −2.73

6. (a ) x = 0; (b) r(r − 3
4 ) = 0; r1 = 3

4 , r2 = 0
(a) x = −2; (b) r(r − 5

4 ) = 0; r1 = 5
4 , r2 = 0

7. (a) x = 0; (b) r2 + 1 = 0; r1 = i, r2 = −i
8. (a) x = −1;

(b) r2 − 7r + 3 = 0; r1 = (7 + √
37)/2 ∼= 6.54, r2 = (7 − √

37)/2 ∼= 0.459
9. (a) x = 1; (b) r2 + r = 0; r1 = 0, r2 = −1

10. (a) x = −2; (b) r2 − (5/4)r = 0; r1 = 5/4, r2 = 0
11. (a) x = 2; (b) r2 − 2r = 0; r1 = 2, r2 = 0

(a) x = −2; (b) r2 − 2r = 0; r1 = 2, r2 = 0
12. (a) x = 0; (b) r2 − (5/3)r = 0; r1 = 5/3, r2 = 0

(a) x = −3; (b) r2 − (r/3) − 1 = 0; r1 = (1 + √
37)/6 ∼= 1.18,

r2 = (1 − √
37)/6 ∼= −0.847

13. (b) r1 = 0, r2 = 0
(c) y1(x) = 1 + x + 1

4 x2 + 1
36 x3 + · · ·

y2(x) = y1(x) ln x − 2x − 3
4 x2 − 11

108 x3 + · · ·
14. (b) r1 = 1, r2 = 0

(c) y1(x) = x − 4x2 + 17
3 x3 − 47

12 x4 + · · ·
y2(x) = −6y1(x) ln x + 1 − 33x2 + 449

6 x3 + · · ·
15. (b) r1 = 1, r2 = 0

(c) y1(x) = x + 3
2 x2 + 9

4 x3 + 51
16 x4 + · · ·

y2(x) = 3y1(x) ln x + 1 − 21
4 x2 − 19

4 x3 + · · ·
16. (b) r1 = 1, r2 = 0

(c) y1(x) = x − 1
2 x2 + 1

12 x3 − 1
144 x4 + · · ·

y2(x) = −y1(x) ln x + 1 − 3
4 x2 + 7

36 x3 − 35
1728 x4 + · · ·

17. (b) r1 = 1, r2 = −1
(c) y1(x) = x − 1

24 x3 + 1
720 x5 + · · ·

y2(x) = − 1
3 y1(x) ln x + x−1 − 1

90 x3 + · · ·
18. (b) r1 = 1

2 , r2 = 0
(c) y1(x) = (x − 1)1/2[1 − 3

4 (x − 1) + 53
480 (x − 1)2 + · · ·], (d) ρ = 1

19. (c) Hint: (n − 1)(n − 2) + (1 + α + β)(n − 1) + αβ = (n − 1 + α)(n − 1 + β)

(d) Hint: (n − γ )(n − 1 − γ ) + (1 + α + β)(n − γ ) + αβ = (n − γ + α)(n − γ + β)

Section 5.7, page 301

1. y1(x) =
∞∑

n=0

(−1)nxn

n!(n + 1)!

y2(x) = −y1(x) ln x + 1
x

[
1 −

∞∑
n=1

Hn + Hn−1

n!(n − 1)! (−1)nxn

]

2. y1(x) = 1
x

∞∑
n=0

(−1)nxn

(n!)2
, y2(x) = y1(x) ln x − 2

x

∞∑
n=1

(−1)nHn

(n!)2
xn

3. y1(x) =
∞∑

n=0

(−1)n2n

(n!)2
xn, y2(x) = y1(x) ln x − 2

∞∑
n=1

(−1)n2nHn

(n!)2
xn

4. y1(x) = 1
x

∞∑
n=0

(−1)n

n!(n + 1)!xn

y2(x) = −y1(x) ln x + 1
x2

[
1 −

∞∑
n=1

Hn + Hn−1

n!(n − 1)! (−1)nxn

]
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5. y1(x) = x3/2

[
1 +

∞∑
m=1

(−1)m

m!(1 + 3
2 )(2 + 3

2 ) · · · (m + 3
2 )

(x
2

)2m
]

y2(x) = x−3/2

[
1 +

∞∑
m=1

(−1)m

m!(1 − 3
2 )(2 − 3

2 ) · · · (m − 3
2 )

(x
2

)2m
]

Hint: Let n = 2m in the recurrence relation, m = 1, 2, 3, . . . .
For r = − 3

2 , a1 = 0 and a3 is arbitrary.

C H A P T E R 6 Section 6.1, page 311

1. Piecewise continuous 2. Neither
3. Continuous 4. Piecewise continuous
5. (a) F(s) = 1/s2, s > 0 (b) F(s) = 2/s3, s > 0

(c) F(s) = n!/sn+1, s > 0

6. F(s) = s/(s2 + a2), s > 0 7. F(s) = s
s2 − b2

, s > |b|

8. F(s) = b
s2 − b2

, s > |b| 9. F(s) = s − a
(s − a)2 − b2

, s − a > |b|

10. F(s) = b
(s − a)2 − b2

, s − a > |b| 11. F(s) = b
s2 + b2

, s > 0

12. F(s) = s
s2 + b2

, s > 0 13. F(s) = b
(s − a)2 + b2

, s > a

14. F(s) = s − a
(s − a)2 + b2

, s > a 15. F(s) = 1
(s − a)2

, s > a

16. F(s) = 2as
(s2 + a2)2

, s > 0 17. F(s) = s2 + a2

(s − a)2(s + a)2
, s > |a|

18. F(s) = n!
(s − a)n+1

, s > a 19. F(s) = 2a(3s2 − a2)

(s2 + a2)3
, s > 0

20. F(s) = 2a(3s2 + a2)

(s2 − a2)3
, s > |a| 21. Converges

22. Converges 23. Diverges
24. Converges
26. (d) �(3/2) = √

π/2; �(11/2) = 945
√

π/32

Section 6.2, page 320

1. f (t) = 3
2 sin 2t 2. f (t) = 2t2et

3. f (t) = 2
5 et − 2

5 e−4t 4. f (t) = 9
5 e3t + 6

5 e−2t

5. f (t) = 2e−t cos 2t 6. f (t) = 2 cosh 2t − 3
2 sinh 2t

7. f (t) = 2et cos t + 3et sin t 8. f (t) = 3 − 2 sin 2t + 5 cos 2t
9. f (t) = −2e−2t cos t + 5e−2t sin t 10. f (t) = 2e−t cos 3t − 5

3 e−t sin 3t
11. y = 1

5 (e3t + 4e−2t) 12. y = 2e−t − e−2t

13. y = et sin t 14. y = e2t − te2t

15. y = 2et cos
√

3 t − (2/
√

3)et sin
√

3 t 16. y = 2e−t cos 2t + 1
2 e−t sin 2t

17. y = tet − t2et + 2
3 t3et 18. y = cosh t

19. y = cos
√

2 t 20. y = (ω2 − 4)−1[(ω2 − 5) cos ωt + cos 2t]
21. y = 1

5 (cos t − 2 sin t + 4et cos t − 2et sin t) 22. y = 1
5 (e−t − et cos t + 7et sin t)

23. y = 2e−t + te−t + 2t2e−t 24. Y(s) = s
s2 + 4

+ 1 − e−πs

s(s2 + 4)

25. Y(s) = 1
s2(s2 + 1)

− e−s(s + 1)

s2(s2 + 1)
26. Y(s) = (1 − e−s)/s2(s2 + 4)

29. F(s) = 1/(s − a)2 30. F(s) = 2b(3s2 − b2)/(s2 + b2)3
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31. F(s) = n!/sn+1 32. F(s) = n!/(s − a)n+1

33. F(s) = 2b(s − a)/[(s − a)2 + b2]2 34. F(s) = [(s − a)2 − b2]/[(s − a)2 + b2]2

36. (a) Y ′ + s2Y = s (b) s2Y ′′ + 2sY ′ − [s2 + α(α + 1)]Y = −1

Section 6.3, page 328

7. (b) f (t) = −2u3(t) + 4u5(t) − u7(t)
8. (b) f (t) = 1 − 2u1(t) + 2u2(t) − 2u3(t) + u4(t)
9. (b) f (t) = 1 + u2(t)[e−(t−2) − 1] 10. (b) f (t) = t2 + u2(t)(1 − t2)

11. (b) f (t) = t − u1(t) − u2(t) − u3(t)(t − 2)

12. (b) f (t) = t + u2(t)(2 − t) + u5(t)(5 − t) − u7(t)(7 − t)
13. F(s) = 2e−s/s3 14. F(s) = e−s(s2 + 2)/s3

15. F(s) = e−πs

s2
− e−2πs

s2
(1 + πs) 16. F(s) = 1

s
(e−s + 2e−3s − 6e−4s)

17. F(s) = s−2[(1 − s)e−2s − (1 + s)e−3s] 18. F(s) = (1 − e−s)/s2

19. f (t) = t3e2t 20. f (t) = 1
3 u2(t)[et−2 − e−2(t−2)]

21. f (t) = 2u2(t)et−2 cos(t − 2) 22. f (t) = u2(t) sinh 2(t − 2)

23. f (t) = u1(t)e2(t−1) cosh(t − 1) 24. f (t) = u1(t) + u2(t) − u3(t) − u4(t)
26. f (t) = 2(2t)n 27. f (t) = 1

2 e−t/2 cos t
28. f (t) = 1

6 et/3(e2t/3 − 1) 29. f (t) = 1
2 et/2u2(t/2)

30. F(s) = s−1(1 − e−s), s > 0 31. F(s) = s−1(1 − e−s + e−2s − e−3s), s > 0

32. F(s) = 1
s
[1 − e−s + · · · + e−2ns − e−(2n+1)s] = 1 − e−(2n+2)s

s(1 + e−s)
, s > 0

33. F(s) = 1
s

∞∑
n=0

(−1)ne−ns = 1/s
1 + e−s

, s > 0

35. L{f (t)} = 1/s
1 + e−s

, s > 0 36. L{f (t)} = 1 − e−s

s(1 + e−s)
, s > 0

37. L{f (t)} = 1 − (1 + s)e−s

s2(1 − e−s)
, s > 0 38. L{f (t)} = 1 + e−πs

(1 + s2)(1 − e−πs)
, s > 0

39. (a) L{f (t)} = s−1(1 − e−s), s > 0
(b) L{g(t)} = s−2(1 − e−s), s > 0
(c) L{h(t)} = s−2(1 − e−s)2, s > 0

40. (b) L{p(t)} = 1 − e−s

s2(1 + e−s)
, s > 0

Section 6.4, page 336

1. (a) y = 1 − cos t + sin t − u3π (t)(1 + cos t)
2. (a) y = e−t sin t + 1

2 uπ (t)[1 + e−(t−π) cos t + e−(t−π) sin t]
− 1

2 u2π (t)[1 − e−(t−2π) cos t − e−(t−2π) sin t]
3. (a) y = 1

6 [1 − u2π (t)](2 sin t − sin 2t)
4. (a) y = 1

6 (2 sin t − sin 2t) − 1
6 uπ (t)(2 sin t + sin 2t)

5. (a) y = 1
2 + 1

2 e−2t − e−t − u10(t)[ 1
2 + 1

2 e−2(t−10) − e−(t−10)]
6. (a) y = e−t − e−2t + u2(t)[ 1

2 − e−(t−2) + 1
2 e−2(t−2)]

7. (a) y = cos t + u3π (t)[1 − cos(t − 3π)]
8. (a) y = h(t) − uπ/2(t)h(t − π/2), h(t) = 4

25 (−4 + 5t + 4e−t/2 cos t − 3e−t/2 sin t)
9. (a) y = 1

2 sin t + 1
2 t − 1

2 u6(t)[t − 6 − sin(t − 6)]
10. (a) y = h(t) + uπ (t)h(t − π), h(t) = 4

17 [−4 cos t + sin t + 4e−t/2 cos t + e−t/2 sin t]
11. (a) y = uπ (t)[ 1

4 − 1
4 cos(2t − 2π)] − u3π (t)[ 1

4 − 1
4 cos(2t − 6π)]

12. (a) y = u1(t)h(t − 1) − u2(t)h(t − 2), h(t) = −1 + (cos t + cosh t)/2
13. (a) y = h(t) − uπ (t)h(t − π), h(t) = (3 − 4 cos t + cos 2t)/12
14. f (t) = [ut0 (t)(t − t0) − ut0+k(t)(t − t0 − k)](h/k)
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15. g(t) = [ut0 (t)(t − t0) − 2ut0+k(t)(t − t0 − k) + ut0+2k(t)(t − t0 − 2k)](h/k)

16. (b) u(t) = 4ku3/2(t)h(t − 3
2 ) − 4ku5/2(t)h(t − 5

2 ),
h(t) = 1

4 − (
√

7/84) e−t/8 sin(3
√

7 t/8) − 1
4 e−t/8 cos(3

√
7 t/8)

(d) k = 2.51 (e) τ = 25.6773
17. (a) k = 5

(b) y = [u5(t)h(t − 5) − u5+k(t)h(t − 5 − k)]/k, h(t) = 1
4 t − 1

8 sin 2t
18. (b) fk(t) = [u4−k(t) − u4+k(t)]/2k;

y = [u4−k(t)h(t − 4 + k) − u4+k(t)h(t − 4 − k)]/2k,
h(t) = 1

4 − 1
4 e−t/6 cos(

√
143 t/6) − (

√
143/572) e−t/6 sin(

√
143 t/6)

19. (b) y = 1 − cos t + 2
n∑

k=1
(−1)kukπ (t)[1 − cos(t − kπ)]

21. (b) y = 1 − cos t +
n∑

k=1
(−1)kukπ (t)[1 − cos(t − kπ)]

23. (a) y = 1 − cos t + 2
n∑

k=1
(−1)ku11k/4(t)[1 − cos(t − 11k/4)]

Section 6.5, page 343

1. (a) y = e−t cos t + e−t sin t + uπ (t)e−(t−π) sin(t − π)

2. (a) y = 1
2 uπ (t) sin 2(t − π) − 1

2 u2π (t) sin 2(t − 2π)

3. (a) y = − 1
2 e−2t + 1

2 e−t + u5(t)[−e−2(t−5) + e−(t−5)] + u10(t)[ 1
2 + 1

2 e−2(t−10) − e−(t−10)]
4. (a) y = cosh(t) − 20u3(t) sinh(t − 3)

5. (a) y = 1
4 sin t − 1

4 cos t + 1
4 e−t cos

√
2 t + (1/

√
2) u3π (t)e−(t−3π) sin

√
2(t − 3π)

6. (a) y = 1
2 cos 2t + 1

2 u4π (t) sin 2(t − 4π)

7. (a) y = sin t + u2π (t) sin(t − 2π)

8. (a) y = uπ/4(t) sin 2(t − π/4)

9. (a) y = uπ/2(t)[1 − cos(t − π/2)] + 3u3π/2(t) sin(t − 3π/2) − u2π (t)[1 − cos(t − 2π)]
10. (a) y = (1/

√
31) uπ/6(t) exp[− 1

4 (t − π/6)] sin(
√

31/4)(t − π/6)

11. (a) y = 1
5 cos t + 2

5 sin t − 1
5 e−t cos t − 3

5 e−t sin t + uπ/2(t)e−(t−π/2) sin(t − π/2)

12. (a) y = u1(t)[sinh(t − 1) − sin(t − 1)]/2
13. (a) −e−T/4δ(t − 5 − T), T = 8π/

√
15

14. (a) y = (4/
√

15) u1(t)e−(t−1)/4 sin(
√

15/4)(t − 1)

(b) t1
∼= 2.3613, y1

∼= 0.71153
(c) y = (8

√
7/21) u1(t)e−(t−1)/8 sin(3

√
7/8) (t − 1); t1

∼= 2.4569, y1
∼= 0.83351

(d) t1 = 1 + π/2 ∼= 2.5708, y1 = 1
15. (a) k1

∼= 2.8108 (b) k1
∼= 2.3995 (c) k1 = 2

16. (a) φ(t, k) = [u4−k(t)h(t − 4 + k) − u4+k(t)h(t − 4 − k)]/2k, h(t) = 1 − cos t
(b) φ0(t) = u4(t) sin(t − 4) (c) Yes

17. (b) y =
20∑

k=1
ukπ (t) sin(t − kπ) 18. (b) y =

20∑
k=1

(−1)k+1ukπ (t) sin(t − kπ)

19. (b) y =
20∑

k=1
ukπ/2(t) sin(t − kπ/2) 20. (b) y =

20∑
k=1

(−1)k+1ukπ/2(t) sin(t − kπ/2)

21. (b) y =
15∑

k=1
u(2k−1)π (t) sin[t − (2k − 1)π ] 22. (b) y =

40∑
k=1

(−1)k+1u11k/4(t) sin(t − 11k/4)

23. (b) y = 20√
399

20∑
k=1

(−1)k+1ukπ (t)e−(t−kπ)/20 sin[√399(t − kπ)/20]

24. (b) y = 20√
399

15∑
k=1

u(2k−1)π (t)e−[t−(2k−1)π ]/20 sin{√399[t − (2k − 1)π ]/20}
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Section 6.6, page 350

3. sin t ∗ sin t = 1
2 (sin t − t cos t) is negative when t = 2π , for example.

4. F(s) = 2/s2(s2 + 4) 5. F(s) = 1/(s + 1)(s2 + 1)

6. F(s) = 1/s2(s − 1) 7. F(s) = s/(s2 + 1)2

8. f (t) = 1
6

∫ t

0
(t − τ)3 sin τ dτ 9. f (t) =

∫ t

0
e−(t−τ) cos 2τ dτ

10. f (t) = 1
2

∫ t

0
(t − τ)e−(t−τ) sin 2τ dτ 11. f (t) =

∫ t

0
sin(t − τ)g(τ ) dτ

12. (c)
∫ 1

0
um(1 − u)n du = �(m + 1) �(n + 1)

�(m + n + 2)

13. y = 1
ω

sin ωt + 1
ω

∫ t

0
sin ω(t − τ)g(τ ) dτ 14. y =

∫ t

0
e−(t−τ) sin(t − τ) sin ατ dτ

15. y = 1
8

∫ t

0
e−(t−τ)/2 sin 2(t − τ)g(τ ) dτ

16. y = e−t/2 cos t − 1
2 e−t/2 sin t +

∫ t

0
e−(t−τ)/2 sin(t − τ)[1 − uπ (τ )] dτ

17. y = 2e−2t + te−2t +
∫ t

0
(t − τ)e−2(t−τ)g(τ ) dτ

18. y = 2e−t − e−2t +
∫ t

0
[e−(t−τ) − e−2(t−τ)] cos ατ dτ

19. y = 1
2

∫ t

0
[sinh(t − τ) − sin(t − τ)]g(τ ) dτ

20. y = 4
3 cos t − 1

3 cos 2t + 1
6

∫ t

0
[2 sin(t − τ) − sin 2(t − τ)]g(τ ) dτ

21. �(s) = F(s)
1 + K(s)

22. (a) φ(t) = 1
3 (4 sin 2t − 2 sin t)

23. (a) φ(t) = cos t

(b) φ′′(t) + φ(t) = 0, φ(0) = 1, φ′(0) = 0
24. (a) φ(t) = cosh(t)

(b) φ′′(t) − φ(t) = 0, φ(0) = 1, φ′(0) = 0
25. (a) φ(t) = (1 − 2t + t2)e−t

(b) φ′′(t) + 2φ′(t) + φ(t) = 2e−t , φ(0) = 1, φ′(0) = −3
26. (a) φ(t) = 1

3 e−t − 1
3 et/2 cos(

√
3t/2) + 1√

3
et/2 sin(

√
3t/2)

(b) φ′′′(t) + φ(t) = 0, φ(0) = 0, φ′(0) = 0, φ′′(0) = 1
27. (a) φ(t) = cos t

(b) φ(4)(t) − φ(t) = 0, φ(0) = 1, φ′(0) = 0, φ′′(0) = −1, φ′′′(0) = 0
28. (a) φ(t) = 1 − 2√

3
e−t/2 sin(

√
3t/2)

(b) φ′′′(t) + φ′′(t) + φ′(t) = 0, φ(0) = 1, φ′(0) = −1, φ′′(0) = 1

C H A P T E R 7 Section 7.1, page 359

1. x′
1 = x2, x′

2 = −2x1 − 0.5x2 2. x′
1 = x2, x′

2 = −2x1 − 0.5x2 + 3 sin t

3. x′
1 = x2, x′

2 = −(1 − 0.25t−2)x1 − t−1x2 4. x′
1 = x2, x′

2 = x3, x′
3 = x4, x′

4 = x1

5. x′
1 = x2, x′

2 = −4x1 − 0.25x2 + 2 cos 3t, x1(0) = 1, x2(0) = −2
6. x′

1 = x2, x′
2 = −q(t)x1 − p(t)x2 + g(t); x1(0) = u0, x2(0) = u′

0
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7. (a) x1 = c1e−t + c2e−3t , x2 = c1e−t − c2e−3t

(b) c1 = 5/2, c2 = −1/2 in solution in (a)
(c) Graph approaches origin in the first quadrant tangent to the line x1 = x2.

8. (a) x′′
1 − x′

1 − 2x1 = 0
(b) x1 = 11

3 e2t − 2
3 e−t , x2 = 11

6 e2t − 4
3 e−t

(c) Graph is asymptotic to the line x1 = 2x2 in the first quadrant.
9. (a) 2x′′

1 − 5x′
1 + 2x1 = 0

(b) x1 = − 3
2 et/2 − 1

2 e2t , x2 = 3
2 et/2 − 1

2 e2t

(c) Graph is asymptotic to the line x1 = x2 in the third quadrant.
10. (a) x′′

1 + 3x′
1 + 2x1 = 0

(b) x1 = −7e−t + 6e−2t , x2 = −7e−t + 9e−2t

(c) Graph approaches the origin in the third quadrant tangent to the line x1 = x2.
11. (a) x′′

1 + 4x1 = 0
(b) x1 = 3 cos 2t + 4 sin 2t, x2 = −3 sin 2t + 4 cos 2t
(c) Graph is a circle, center at origin, radius 5, traversed clockwise.

12. (a) x′′
1 + x′

1 + 4.25x1 = 0
(b) x1 = −2e−t/2 cos 2t + 2e−t/2 sin 2t, x2 = 2e−t/2 cos 2t + 2e−t/2 sin 2t
(c) Graph is a clockwise spiral, approaching the origin.

13. LRCI ′′ + LI ′ + RI = 0
18. y′

1 = y3, y′
2 = y4, m1y′

3 = −(k1 + k2)y1 + k2y2 + F1(t),
m2y′

4 = k2y1 − (k2 + k3)y2 + F2(t)
22. (a) Q′

1 = 3
2 − 1

10 Q1 + 3
40 Q2, Q1(0) = 25

Q′
2 = 3 + 1

10 Q1 − 1
5 Q2, Q2(0) = 15

(b) QE
1 = 42, QE

2 = 36
(c) x′

1 = − 1
10 x1 + 3

40 x2, x1(0) = −17
x′

2 = 1
10 x1 − 1

5 x2, x2(0) = −21
23. (a) Q′

1 = 3q1 − 1
15 Q1 + 1

100 Q2, Q1(0) = Q0
1

Q′
2 = q2 + 1

30 Q1 − 3
100 Q2, Q2(0) = Q0

2

(b) QE
1 = 6(9q1 + q2), QE

2 = 20(3q1 + 2q2)

(c) No
(d) 10

9 ≤ QE
2 /QE

1 ≤ 20
3

Section 7.2, page 371

1. (a)

⎛
⎝6 −6 3

5 9 −2
2 3 8

⎞
⎠ (b)

⎛
⎝−15 6 −12

7 −18 −1
−26 −3 −5

⎞
⎠

(c)

⎛
⎝6 −12 3

4 3 7
9 12 0

⎞
⎠ (d)

⎛
⎝−8 −9 11

14 12 −5
5 −8 5

⎞
⎠

2. (a)
(

1 − i −7 + 2i
−1 + 2i 2 + 3i

)
(b)

(
3 + 4i 6i

11 + 6i 6 − 5i

)

(c)
(−3 + 5i 7 + 5i

2 + i 7 + 2i

)
(d)

(
8 + 7i 4 − 4i
6 − 4i − 4

)

3. (a)

⎛
⎝−2 1 2

1 0 −1
2 −3 1

⎞
⎠ (b)

⎛
⎝1 3 −2

2 −1 1
3 −1 0

⎞
⎠

(c), (d)

⎛
⎝−1 4 0

3 −1 0
5 −4 1

⎞
⎠
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4. (a)
(

3 − 2i 2 − i
1 + i −2 + 3i

)
(b)

(
3 + 2i 1 − i
2 + i −2 − 3i

)
(c)

(
3 + 2i 2 + i
1 − i −2 − 3i

)

5.

⎛
⎝10 6 −4

0 4 10
4 4 6

⎞
⎠

6. (a)

⎛
⎝ 7 −11 −3

11 20 17
−4 3 −12

⎞
⎠ (b)

⎛
⎝ 5 0 −1

2 7 4
−1 1 4

⎞
⎠

(c)

⎛
⎝ 6 −8 −11

9 15 6
−5 −1 5

⎞
⎠

8. (a) 4i (b) 12 − 8i (c) 2 + 2i (d) 16

10.

(
3
11 − 4

11
2
11

1
11

)
11.

(
1
6

1
12

− 1
2

1
4

)

12.

⎛
⎝ 1 −3 2

−3 3 −1
2 −1 0

⎞
⎠ 13.

⎛
⎜⎝

1
3

1
3 0

1
3 − 1

3
1
3

− 1
3 0 1

3

⎞
⎟⎠

14. Singular 15.

⎛
⎜⎝

1
2 − 1

4
1
8

0 1
2 − 1

4

0 0 1
2

⎞
⎟⎠

16.

⎛
⎜⎝

1
10

3
10

1
10

− 2
10

4
10 − 2

10

− 7
10 − 1

10
3

10

⎞
⎟⎠ 17. Singular

18.

⎛
⎜⎜⎝

1 1 0 1
1 0 1 1
1 1 1 1
0 1 0 1

⎞
⎟⎟⎠ 19.

⎛
⎜⎜⎜⎝

6 13
5 − 8

5
2
5

5 11
5 − 6

5
4
5

0 − 1
5

1
5

1
5

−2 − 4
5

4
5 − 1

5

⎞
⎟⎟⎟⎠

21. (a)

⎛
⎝ 7et 5e−t 10e2t

−et 7e−t 2e2t

8et 0 −e2t

⎞
⎠

(b)

⎛
⎝ 2e2t − 2 + 3e3t 1 + 4e−2t − et 3e3t + 2et − e4t

4e2t − 1 − 3e3t 2 + 2e−2t + et 6e3t + et + e4t

−2e2t − 3 + 6e3t −1 + 6e−2t − 2et −3e3t + 3et − 2e4t

⎞
⎠

(c)

⎛
⎝ et −2e−t 2e2t

2et −e−t −2e2t

−et −3e−t 4e2t

⎞
⎠ (d) (e − 1)

⎛
⎜⎝ 1 2e−1 1

2 (e + 1)

2 e−1 − 1
2 (e + 1)

−1 3e−1 e + 1

⎞
⎟⎠

Section 7.3, page 383

1. x1 = − 1
3 , x2 = 7

3 , x3 = − 1
3 2. No solution

3. x1 = −c, x2 = c + 1, x3 = c, where c is arbitrary
4. x1 = c, x2 = −c, x3 = −c, where c is arbitrary
5. x1 = 0, x2 = 0, x3 = 0 6. x1 = c1, x2 = c2, x3 = c1 + 2c2 + 2
7. Linearly independent 8. x(1) − 5x(2) + 2x(3) = 0
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9. 2x(1) − 3x(2) + 4x(3) − x(4) = 0 10. Linearly independent
11. x(1) + x(2) − x(4) = 0 13. 3x(1)(t) − 6x(2)(t) + x(3)(t) = 0

14. Linearly independent 16. λ1 = 2, x(1) =
(

1
3

)
; λ2 = 4, x(2) =

(
1
1

)

17. λ1 = 1 + 2i, x(1) =
(

1
1 − i

)
; λ2 = 1 − 2i, x(2) =

(
1

1 + i

)

18. λ1 = −3, x(1) =
(

1
−1

)
; λ2 = −1, x(2) =

(
1
1

)

19. λ1 = 0, x(1) =
(

1
i

)
; λ2 = 2, x(2) =

(
1

−i

)

20. λ1 = 2, x(1) =
(√

3
1

)
; λ2 = −2, x(2) =

(
1

−√
3

)

21. λ1 = −1/2, x(1) =
(

3
10

)
; λ2 = −3/2, x(2) =

(
1
2

)

22. λ1 = 1, x(1) =
⎛
⎝ 2

−3
2

⎞
⎠ ; λ2 = 1 + 2i, x(2) =

⎛
⎝ 0

1
−i

⎞
⎠ ; λ3 = 1 − 2i, x(3) =

⎛
⎝0

1
i

⎞
⎠

23. λ1 = 1, x(1) =
⎛
⎝ 1

0
−1

⎞
⎠ ; λ2 = 2, x(2) =

⎛
⎝−2

1
0

⎞
⎠ ; λ3 = 3, x(3) =

⎛
⎝ 0

1
−1

⎞
⎠

24. λ1 = 1, x(1) =
⎛
⎝ 2

−2
−1

⎞
⎠ ; λ2 = 2, x(2) =

⎛
⎝2

1
2

⎞
⎠ ; λ3 = −1, x(3) =

⎛
⎝ 1

2
−2

⎞
⎠

25. λ1 = −1, x(1) =
⎛
⎝ 1

−4
1

⎞
⎠ ; λ2 = −1, x(2) =

⎛
⎝ 1

0
−1

⎞
⎠ ; λ3 = 8, x(3) =

⎛
⎝2

1
2

⎞
⎠

Section 7.4, page 389

2. (c) W(t) = c exp
∫

[p11(t) + p22(t)] dt

6. (a) W(t) = t2

(b) x(1) and x(2) are linearly independent at each point except t = 0; they are linearly
independent on every interval.
(c) At least one coefficient must be discontinuous at t = 0.

(d) x′ =
(

0 1
−2t−2 2t−1

)
x

7. (a) W(t) = t(t − 2)et

(b) x(1) and x(2) are linearly independent at each point except t = 0 and t = 2; they are
linearly independent on every interval.
(c) There must be at least one discontinuous coefficient at t = 0 and t = 2.

(d) x′ =
⎛
⎝ 0 1

2 − 2t
t2 − 2t

t2 − 2
t2 − 2t

⎞
⎠ x
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Section 7.5, page 398

1. (a) x = c1

(
1
2

)
e−t + c2

(
2
1

)
e2t 2. (a) x = c1

(
1
1

)
e−t + c2

(
2
3

)
e−2t

3. (a) x = c1

(
1
1

)
et + c2

(
1
3

)
e−t 4. (a) x = c1

(
1

−4

)
e−3t + c2

(
1
1

)
e2t

5. (a) x = c1

(
1

−1

)
e−3t + c2

(
1
1

)
e−t 6. (a) x = c1

(
1

−1

)
et/2 + c2

(
1
1

)
e2t

7. (a) x = c1

(
3
4

)
+ c2

(
1
2

)
e−2t 8. (a) x = c1

(−2
1

)
+ c2

(−3
1

)
et

9. x = c1

(
1
i

)
+ c2

(
1

−i

)
e2t 10. x = c1

(
2 + i
−1

)
et + c2

(
1

−1

)
e−it

11. x = c1

⎛
⎝1

1
1

⎞
⎠ e4t + c2

⎛
⎝ 1

−2
1

⎞
⎠ et + c3

⎛
⎝ 1

0
−1

⎞
⎠ e−t

12. x = c1

⎛
⎝ 1

−4
1

⎞
⎠ e−t + c2

⎛
⎝ 1

0
−1

⎞
⎠ e−t + c3

⎛
⎝2

1
2

⎞
⎠ e8t

13. x = c1

⎛
⎝ 4

−5
−7

⎞
⎠ e−2t + c2

⎛
⎝ 3

−4
−2

⎞
⎠ e−t + c3

⎛
⎝ 0

1
−1

⎞
⎠ e2t

14. x = c1

⎛
⎝ 1

−4
−1

⎞
⎠ et + c2

⎛
⎝ 1

−1
−1

⎞
⎠ e−2t + c3

⎛
⎝1

2
1

⎞
⎠ e3t

15. x = −3
2

(
1
3

)
e2t + 7

2

(
1
1

)
e4t 16. x = 1

2

(
1
1

)
e−t + 1

2

(
1
5

)
e3t

17. x =
⎛
⎝ 0

−2
1

⎞
⎠ et + 2

⎛
⎝1

1
0

⎞
⎠ e2t 18. x = 6

⎛
⎝ 1

2
−1

⎞
⎠ et + 3

⎛
⎝ 1

−2
1

⎞
⎠ e−t −

⎛
⎝ 2

1
−8

⎞
⎠ e4t

20. x = c1

(
1
1

)
t + c2

(
1
3

)
t−1 21. x = c1

(
1
3

)
t2 + c2

(
1
1

)
t4

22. x = c1

(
3
4

)
+ c2

(
1
2

)
t−2 23. x = c1

(
1
2

)
t−1 + c2

(
2
1

)
t2

29. (a) x′
1 = x2, x′

2 = −(c/a)x1 − (b/a)x2

30. (a) x = −55
8

(
3
2

)
e−t/20 + 29

8

(
1

−2

)
e−t/4

(c) T ∼= 74.39

31. (a) x = c1

(−√
2
1

)
e(−2+√

2)t/2 + c2

(√
2
1

)
e(−2−√

2)t/2;

r1,2 = (−2 ± √
2)/2; node

(b) x = c1

(−1√
2

)
e(−1+√

2)t + c2

(
1√
2

)
e(−1−√

2)t ; r1,2 = −1 ± √
2; saddle point

(c) r1,2 = −1 ± √
α; α = 1
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32. (a)
(

I
V

)
= c1

(
1
3

)
e−2t + c2

(
1
1

)
e−t 33. (a)

(
1

CR2
− R1

L

)2

− 4
CL

> 0

Section 7.6, page 409

1. (a) x = c1et

(
cos 2t

cos 2t + sin 2t

)
+ c2et

(
sin 2t

− cos 2t + sin 2t

)

2. (a) x = c1e−t

(
2 cos 2t
sin 2t

)
+ c2e−t

(−2 sin 2t
cos 2t

)

3. (a) x = c1

(
5 cos t

2 cos t + sin t

)
+ c2

(
5 sin t

− cos t + 2 sin t

)

4. (a) x = c1et/2

(
5 cos 3

2 t
3(cos 3

2 t + sin 3
2 t)

)
+ c2et/2

(
5 sin 3

2 t
3(− cos 3

2 t + sin 3
2 t)

)

5. (a) x = c1e−t

(
cos t

2 cos t + sin t

)
+ c2e−t

(
sin t

− cos t + 2 sin t

)

6. (a) x = c1

( −2 cos 3t
cos 3t + 3 sin 3t

)
+ c2

( −2 sin 3t
sin 3t − 3 cos 3t

)

7. x = c1

⎛
⎝ 2

−3
2

⎞
⎠ et + c2et

⎛
⎝ 0

cos 2t
sin 2t

⎞
⎠ + c3et

⎛
⎝ 0

sin 2t
− cos 2t

⎞
⎠

8. x = c1

⎛
⎝ 2

−2
1

⎞
⎠ e−2t + c2e−t

⎛
⎝ −√

2 sin
√

2 t
cos

√
2 t

− cos
√

2 t − √
2 sin

√
2 t

⎞
⎠ + c3e−t

⎛
⎝

√
2 cos

√
2 t

sin
√

2 t√
2 cos

√
2 t − sin

√
2 t

⎞
⎠

9. x = e−t

(
cos t − 3 sin t
cos t − sin t

)
10. x = e−2t

(
cos t − 5 sin t

−2 cos t − 3 sin t

)

11. (a) r = − 1
4 ± i 12. (a) r = 1

5 ± i
13. (a) r = α ± i (b) α = 0
14. (a) r = (α ± √

α2 − 20)/2 (b) α = −√
20, 0,

√
20

15. (a) r = ±√
4 − 5α (b) α = 4/5 16. (a) r = 5

4 ± 1
2

√
3α (b) α = 0, 25/12

17. (a) r = −1 ± √−α (b) α = −1, 0
18. (a) r = − 1

2 ± 1
2

√
49 − 24α (b) α = 2, 49/24

19. (a) r = 1
2 α − 2 ± √

α2 + 8α − 24 (b) α = −4 − 2
√

10, −4 + 2
√

10, 5/2

20. (a) r = −1 ± √
25 + 8α (b) α = −25/8, −3

21. x = c1t−1

(
cos(

√
2 ln t)√

2 sin(
√

2 ln t)

)
+ c2t−1

(
sin(

√
2 ln t)

−√
2 cos(

√
2 ln t)

)

22. x = c1

(
5 cos(ln t)

2 cos(ln t) + sin(ln t)

)
+ c2

(
5 sin(ln t)

− cos(ln t) + 2 sin(ln t)

)
23. (a) r = − 1

4 ± i, − 1
4 24. (a) r = − 1

4 ± i, 1
10

25. (b)
(

I
V

)
= c1e−t/2

(
cos(t/2)

4 sin(t/2)

)
+ c2e−t/2

(
sin(t/2)

−4 cos(t/2)

)

(c) Use c1 = 2, c2 = − 3
4 in answer to part (b).

(d) lim
t→∞ I(t) = lim

t→∞ V(t) = 0; no
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26. (b)
(

I
V

)
= c1e−t

(
cos t

− cos t − sin t

)
+ c2e−t

(
sin t

− sin t + cos t

)

(c) Use c1 = 2 and c2 = 3 in answer to part (b).
(d) lim

t→∞ I(t) = lim
t→∞ V(t) = 0; no

28. (b) r = ±i
√

k/m (d) |r| is the natural frequency.

29. (c) r2
1 = −1, ξ (1) =

(
3
2

)
; r2

2 = −4, ξ (2) =
(

3
−4

)
(d) x1 = 3c1 cos t + 3c2 sin t + 3c3 cos 2t + 3c4 sin 2t,

x2 = 2c1 cos t + 2c2 sin t − 4c3 cos 2t − 4c4 sin 2t
(e) x′

1 = −3c1 sin t + 3c2 cos t − 6c3 sin 2t + 6c4 cos 2t,
x′

2 = −2c1 sin t + 2c2 cos t + 8c3 sin 2t − 8c4 cos 2t

30. (a) A =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−4 3 0 0
9/4 −13/4 0 0

⎞
⎟⎟⎠

(b) r1 = i, ξ (1) =

⎛
⎜⎜⎝

1
1
i
i

⎞
⎟⎟⎠ ; r2 = −i, ξ (2) =

⎛
⎜⎜⎝

1
1

−i
−i

⎞
⎟⎟⎠ ;

r3 = 5
2 i, ξ (3) =

⎛
⎜⎜⎝

4
−3
10i

− 15
2 i

⎞
⎟⎟⎠ ; r4 = − 5

2 i, ξ (4) =

⎛
⎜⎜⎝

4
−3

−10i
15
2 i

⎞
⎟⎟⎠

(c) y = c1

⎛
⎜⎜⎝

cos t
cos t

− sin t
− sin t

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

sin t
sin t
cos t
cos t

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎜⎜⎜⎝

4 cos 5
2 t

−3 cos 5
2 t

−10 sin 5
2 t

15
2 sin 5

2 t

⎞
⎟⎟⎟⎟⎟⎠ + c4

⎛
⎜⎜⎜⎜⎜⎝

4 sin 5
2 t

−3 sin 5
2 t

10 cos 5
2 t

− 15
2 cos 5

2 t

⎞
⎟⎟⎟⎟⎟⎠

(e) c1 = 10
7 , c2 = 0, c3 = 1

7 , c4 = 0. period = 4π .

31. (a) A =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−2 1 0 0
1 −2 0 0

⎞
⎟⎟⎠

(b) r1 = i, ξ (1) =

⎛
⎜⎜⎝

1
1
i
i

⎞
⎟⎟⎠ ; r2 = −i, ξ (2) =

⎛
⎜⎜⎝

1
1

−i
−i

⎞
⎟⎟⎠ ;

r3 = √
3i, ξ (3) =

⎛
⎜⎜⎝

1
−1√
3i

−√
3i

⎞
⎟⎟⎠ ; r4 = −√

3i, ξ (4) =

⎛
⎜⎜⎝

1
−1

−√
3i√
3i

⎞
⎟⎟⎠

(c) y = c1

⎛
⎜⎜⎝

cos t
cos t

− sin t
− sin t

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

sin t
sin t
cos t
cos t

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝

cos
√

3 t
− cos

√
3 t

−√
3 sin

√
3 t√

3 sin
√

3 t

⎞
⎟⎟⎠ + c4

⎛
⎜⎜⎝

sin
√

3 t
− sin

√
3 t√

3 cos
√

3 t
−√

3 cos
√

3 t

⎞
⎟⎟⎠

(e) c1 = 1, c2 = 0, c3 = −2, c4 = 0.
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Section 7.7, page 420

1. (b) �(t) =
(− 1

3 e−t + 4
3 e2t 2

3 e−t − 2
3 e2t

− 2
3 e−t + 2

3 e2t 4
3 e−t − 1

3 e2t

)

2. (b) �(t) =
(

1
2 e−t/2 + 1

2 e−t e−t/2 − e−t

1
4 e−t/2 − 1

4 e−t 1
2 e−t/2 + 1

2 e−t

)

3. (b) �(t) =
(

3
2 et − 1

2 e−t − 1
2 et + 1

2 e−t

3
2 et − 3

2 e−t − 1
2 et + 3

2 e−t

)

4. (b) �(t) =
(

1
5 e−3t + 4

5 e2t − 1
5 e−3t + 1

5 e2t

− 4
5 e−3t + 4

5 e2t 4
5 e−3t + 1

5 e2t

)

5. (b) �(t) =
(

cos t + 2 sin t −5 sin t
sin t cos t − 2 sin t

)

6. (b) �(t) =
(

e−t cos 2t −2e−t sin 2t
1
2 e−t sin 2t e−t cos 2t

)

7. (b) �(t) =
(− 1

2 e2t + 3
2 e4t 1

2 e2t − 1
2 e4t

− 3
2 e2t + 3

2 e4t 3
2 e2t − 1

2 e4t

)

8. (b) �(t) =
(

e−t cos t + 2e−t sin t e−t sin t

5e−t sin t e−t cos t − 2e−t sin t

)

9. (b) �(t) =
⎛
⎜⎝

−2e−2t + 3e−t −e−2t + e−t −e−2t + e−t

5
2 e−2t − 4e−t + 3

2 e2t 5
4 e−2t − 4

3 e−t + 13
12 e2t 5

4 e−2t − 4
3 e−t + 1

12 e2t

7
2 e−2t − 2e−t − 3

2 e2t 7
4 e−2t − 2

3 e−t − 13
12 e2t 7

4 e−2t − 2
3 e−t − 1

12 e2t

⎞
⎟⎠

10. (b) �(t) =
⎛
⎜⎝

1
6 et + 1

3 e−2t + 1
2 e3t − 1

3 et + 1
3 e−2t 1

2 et − e−2t + 1
2 e3t

− 2
3 et − 1

3 e−2t + e3t 4
3 et − 1

3 e−2t −2et + e−2t + e3t

− 1
6 et − 1

3 e−2t + 1
2 e3t 1

3 et − 1
3 e−2t − 1

2 et + e−2t + 1
2 e3t

⎞
⎟⎠

11. x = 7
2

(
1
1

)
et − 3

2

(
1
3

)
e−t 12. x =

(
3
1

)
e−t cos 2t +

(−2
3/2

)
e−t sin 2t

17. (c) x =
(

u0

v0

)
cos ωt +

(
v0

−ω2u0

)
sin ωt

ω

Section 7.8, page 428

1. (c) x = c1

(
2
1

)
et + c2

[(
2
1

)
tet +

(
1
0

)
et

]

2. (c) x = c1

(
1
2

)
+ c2

[(
1
2

)
t −

(
0
1
2

)]

3. (c) x = c1

(
2
1

)
e−t + c2

[(
2
1

)
te−t +

(
0
2

)
e−t

]

4. (c) x = c1

(
1
1

)
e−t/2 + c2

[(
1
1

)
te−t/2 +

(
0
2
5

)
e−t/2

]
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5. x = c1

⎛
⎝−3

4
2

⎞
⎠ e−t + c2

⎛
⎝ 0

1
−1

⎞
⎠ e2t + c3

⎡
⎣
⎛
⎝ 0

1
−1

⎞
⎠ te2t +

⎛
⎝1

0
1

⎞
⎠ e2t

⎤
⎦

6. x = c1

⎛
⎝1

1
1

⎞
⎠ e2t + c2

⎛
⎝ 1

0
−1

⎞
⎠ e−t + c3

⎛
⎝ 0

1
−1

⎞
⎠ e−t

7. (a) x =
(

3 + 4t
2 + 4t

)
e−3t 8. (a) x =

(
3

−1

)
e−t − 6

(
1
1

)
te−t

9. (a) x =
(

3
−2

)
et/2 + 3

2

(
1

−1

)
tet/2 10. (a) x = 2

(
1
2

)
+ 14

(
3

−1

)
t

11. (a) x =
⎛
⎝ −1

2
−33

⎞
⎠ et + 4

⎛
⎝ 0

1
−6

⎞
⎠ tet + 3

⎛
⎝0

0
1

⎞
⎠ e2t

12. (a) x = 4
3

⎛
⎝1

1
1

⎞
⎠ e−t/2 + 1

3

⎛
⎝ 2

5
−7

⎞
⎠ e−7t/2

13. x = c1

(
2
1

)
t + c2

[(
2
1

)
t ln t +

(
1
0

)
t
]

14. x = c1

(
1
1

)
t−3 + c2

[(
1
1

)
t−3 ln t −

(
0
1
4

)
t−3

]

16. (b)
(

I
V

)
= −

(
1

−2

)
e−t/2 +

[(
1

−2

)
te−t/2 +

(
2
0

)
e−t/2

]

17. (b) x(1)(t) =
⎛
⎝ 0

1
−1

⎞
⎠ e2t

(c) x(2)(t) =
⎛
⎝ 0

1
−1

⎞
⎠ te2t +

⎛
⎝1

1
0

⎞
⎠ e2t

(d) x(3)(t) =
⎛
⎝ 0

1
−1

⎞
⎠ (t2/2)e2t +

⎛
⎝1

1
0

⎞
⎠ te2t +

⎛
⎝2

0
3

⎞
⎠ e2t

(e) �(t) = e2t

⎛
⎜⎝

0 1 t + 2

1 t + 1 (t2/2) + t

−1 −t −(t2/2) + 3

⎞
⎟⎠

(f) T =
⎛
⎜⎝

0 1 2

1 1 0

−1 0 3

⎞
⎟⎠ , T−1 =

⎛
⎜⎝

−3 3 2

3 −2 −2

−1 1 1

⎞
⎟⎠ ,

J =
⎛
⎜⎝

2 1 0

0 2 1

0 0 2

⎞
⎟⎠

18. (a) x(1)(t) =
⎛
⎝1

0
2

⎞
⎠ et , x(2)(t) =

⎛
⎝ 0

2
−3

⎞
⎠ et
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(d) x(3)(t) =
⎛
⎝ 2

4
−2

⎞
⎠ tet +

⎛
⎝ 0

0
−1

⎞
⎠ et

(e) �(t) = et

⎛
⎝ 1 0 2t

0 2 4t
2 −3 −2t − 1

⎞
⎠ or et

⎛
⎝ 1 2 2t

0 4 4t
2 −2 −2t − 1

⎞
⎠

(f) T =
⎛
⎜⎝

1 2 0

0 4 0

2 −2 −1

⎞
⎟⎠ , T−1 =

⎛
⎜⎝

1 −1/2 0

0 1/4 0

2 −3/2 −1

⎞
⎟⎠ ,

J =
⎛
⎜⎝

1 0 0

0 1 1

0 0 1

⎞
⎟⎠

19. (a) J2 =
(

λ2 2λ

0 λ2

)
, J3 =

(
λ3 3λ2

0 λ3

)
, J4 =

(
λ4 4λ3

0 λ4

)

(c) exp(Jt) = eλt

(
1 t

0 1

)

(d) x = exp(Jt)x0

20. (c) exp(Jt) = eλt

⎛
⎜⎝

1 0 0

0 1 t

0 0 1

⎞
⎟⎠ 21. (c) exp(Jt) = eλt

⎛
⎜⎝

1 t t2/2

0 1 t

0 0 1

⎞
⎟⎠

Section 7.9, page 439

1. x = c1

(
1
1

)
et + c2

(
1
3

)
e−t + 3

2

(
1
1

)
tet − 1

4

(
1
3

)
et +

(
1
2

)
t −

(
0
1

)

2. x = c1

(√
3

1

)
e2t + c2

(
1

−√
3

)
e−2t −

(
2/3

1/
√

3

)
et +

( −1
2/

√
3

)
e−t

3. x = c1

(
5 cos t

2 cos t + sin t

)
+ c2

(
5 sin t

− cos t + 2 sin t

)
+

(
2
1

)
t cos t −

(
1
0

)
t sin t

−
(

1
1

)
cos t

4. x = c1

(
1

−4

)
e−3t + c2

(
1
1

)
e2t −

(
0
1

)
e−2t + 1

2

(
1
0

)
et

5. x = c1

(
1
2

)
+ c2

[(
1
2

)
t − 1

2

(
0
1

)]
− 2

(
1
2

)
ln t +

(
2
5

)
t−1 −

( 1
2
0

)
t−2

6. x = c1

(
1
2

)
+ c2

(−2
1

)
e−5t +

(
1
2

)
ln t + 8

5

(
1
2

)
t + 4

25

(−2
1

)

7. x = c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t + 1

4

(
1

−8

)
et

8. x = c1

(
1
1

)
et + c2

(
1
3

)
e−t +

(
1
0

)
et + 2

(
1
1

)
tet

9. x = c1

(
1
1

)
e−t/2 + c2

(
1

−1

)
e−2t +

(
5
2
3
2

)
t −

(
17
4
15
4

)
+

(
1
6
1
2

)
et



September 11, 2008 11:18 boyce-9e-bvp Sheet number 783 Page number 763 cyan black

Answers to Problems 763

10. x = c1

(
1√
2

)
e−t + c2

(−√
2

1

)
e−4t − 1

3

(√
2 − 1

2 − √
2

)
te−t + 1

9

(
2 + √

2
−1 − √

2

)
e−t

11. x = c1

(
5 cos t

2 cos t + sin t

)
+ c2

(
5 sin t

− cos t + 2 sin t

)
+

(
0

1/2

)
t cos t −

(
5/2
1

)
t sin t

−
(

5/2
1

)
cos t

12. x = [ 1
5 ln(sin t) − ln(− cos t) − 2

5 t + c1]
(

5 cos t
2 cos t + sin t

)

+ [ 2
5 ln(sin t) − 4

5 t + c2]
(

5 sin t
− cos t + 2 sin t

)

13. (a) �(t) =
(

e−t/2 cos 1
2 t e−t/2 sin 1

2 t

4e−t/2 sin 1
2 t −4e−t/2 cos 1

2 t

)
(b) x = e−t/2

(
sin 1

2 t

4 − 4 cos 1
2 t

)

14. x = c1

(
1
1

)
t + c2

(
1
3

)
t−1 −

(
2
3

)
+ 1

2

(
1
3

)
t −

(
1
1

)
t ln t − 1

3

(
4
3

)
t2

15. x = c1

(
2
1

)
t2 + c2

(
1
2

)
t−1 +

(
3
2

)
t + 1

10

(−2
1

)
t4 − 1

2

(
2
3

)

C H A P T E R 8 Section 8.1, page 451

1. (a) 1.1975, 1.38549, 1.56491, 1.73658
(b) 1.19631, 1.38335, 1.56200, 1.73308
(c) 1.19297, 1.37730, 1.55378, 1.72316
(d) 1.19405, 1.37925, 1.55644, 1.72638

2. (a) 1.59980, 1.29288, 1.07242, 0.930175
(b) 1.61124, 1.31361, 1.10012, 0.962552
(c) 1.64337, 1.37164, 1.17763, 1.05334
(d) 1.63301, 1.35295, 1.15267, 1.02407

3. (a) 1.2025, 1.41603, 1.64289, 1.88590
(b) 1.20388, 1.41936, 1.64896, 1.89572
(c) 1.20864, 1.43104, 1.67042, 1.93076
(d) 1.20693, 1.42683, 1.66265, 1.91802

4. (a) 1.10244, 1.21426, 1.33484, 1.46399
(b) 1.10365, 1.21656, 1.33817, 1.46832
(c) 1.10720, 1.22333, 1.34797, 1.48110
(d) 1.10603, 1.22110, 1.34473, 1.47688

5. (a) 0.509239, 0.522187, 0.539023, 0.559936
(b) 0.509701, 0.523155, 0.540550, 0.562089
(c) 0.511127, 0.526155, 0.545306, 0.568822
(d) 0.510645, 0.525138, 0.543690, 0.566529

6. (a) −0.920498, −0.857538, −0.808030, −0.770038
(b) −0.922575, −0.860923, −0.812300, −0.774965
(c) −0.928059, −0.870054, −0.824021, −0.788686
(d) −0.926341, −0.867163, −0.820279, −0.784275

7. (a) 2.90330, 7.53999, 19.4292, 50.5614
(b) 2.93506, 7.70957, 20.1081, 52.9779
(c) 3.03951, 8.28137, 22.4562, 61.5496
(d) 3.00306, 8.07933, 21.6163, 58.4462

8. (a) 0.891830, 1.25225, 2.37818, 4.07257
(b) 0.908902, 1.26872, 2.39336, 4.08799
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(c) 0.958565, 1.31786, 2.43924, 4.13474
(d) 0.942261, 1.30153, 2.42389, 4.11908

9. (a) 3.95713, 5.09853, 6.41548, 7.90174
(b) 3.95965, 5.10371, 6.42343, 7.91255
(c) 3.96727, 5.11932, 6.44737, 7.94512
(d) 3.96473, 5.11411, 6.43937, 7.93424

10. (a) 1.60729, 2.46830, 3.72167, 5.45963
(b) 1.60996, 2.47460, 3.73356, 5.47774
(c) 1.61792, 2.49356, 3.76940, 5.53223
(d) 1.61528, 2.48723, 3.75742, 5.51404

11. (a) −1.45865, −0.217545, 1.05715, 1.41487
(b) −1.45322, −0.180813, 1.05903, 1.41244
(c) −1.43600, −0.0681657, 1.06489, 1.40575
(d) −1.44190, −0.105737, 1.06290, 1.40789

12. (a) 0.587987, 0.791589, 1.14743, 1.70973
(b) 0.589440, 0.795758, 1.15693, 1.72955
(c) 0.593901, 0.808716, 1.18687, 1.79291
(d) 0.592396, 0.804319, 1.17664, 1.77111

15. 1.595, 2.4636
16. en+1 = [2φ(tn) − 1]h2, |en+1| ≤ [1 + 2 max0≤t≤1 |φ(t)|] h2,

en+1 = e2tn h2, |e1| ≤ 0.012, |e4| ≤ 0.022
17. en+1 = [2φ(tn) − tn]h2, |en+1| ≤ [1 + 2 max0≤t≤1 |φ(t)|] h2,

en+1 = 2e2tn h2, |e1| ≤ 0.024, |e4| ≤ 0.045
18. en+1 = [tn + t2

nφ(tn) + φ3(tn)]h2 19. en+1 = [19 − 15tnφ
−1/2(tn)]h2/4

20. en+1 = {1 + [tn + φ(tn)]−1/2}h2/4
21. en+1 = {2 − [φ(tn) + 2t2

n] exp[−tnφ(tn)] − tn exp[−2tnφ(tn)]}h2/2
22. (a) φ(t) = 1 + (1/5π) sin 5π t (b) 1.2, 1.0, 1.2

(c) 1.1, 1.1, 1.0, 1.0 (d) h < 1/
√

50π ∼= 0.08
24. en+1 = − 1

2 φ′′(tn)h2

25. (a) 1.55, 2.34, 3.46, 5.07
(b) 1.20, 1.39, 1.57, 1.74
(c) 1.20, 1.42, 1.65, 1.90

26. (a) 0 (b) 60 (c) −92.16 27. 0.224 �= 0.225

Section 8.2, page 458

1. (a) 1.19512, 1.38120, 1.55909, 1.72956
(b) 1.19515, 1.38125, 1.55916, 1.72965
(c) 1.19516, 1.38126, 1.55918, 1.72967

2. (a) 1.62283, 1.33460, 1.12820, 0.995445
(b) 1.62243, 1.33386, 1.12718, 0.994215
(c) 1.62234, 1.33368, 1.12693, 0.993921

3. (a) 1.20526, 1.42273, 1.65511, 1.90570
(b) 1.20533, 1.42290, 1.65542, 1.90621
(c) 1.20534, 1.42294, 1.65550, 1.90634

4. (a) 1.10483, 1.21882, 1.34146, 1.47263
(b) 1.10484, 1.21884, 1.34147, 1.47262
(c) 1.10484, 1.21884, 1.34147, 1.47262

5. (a) 0.510164, 0.524126, 0.542083, 0.564251
(b) 0.510168, 0.524135, 0.542100, 0.564277
(c) 0.510169, 0.524137, 0.542104, 0.564284

6. (a) −0.924650, −0.864338, −0.816642, −0.780008
(b) −0.924550, −0.864177, −0.816442, −0.779781
(c) −0.924525, −0.864138, −0.816393, −0.779725
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7. (a) 2.96719, 7.88313, 20.8114, 55.5106
(b) 2.96800, 7.88755, 20.8294, 55.5758

8. (a) 0.926139, 1.28558, 2.40898, 4.10386
(b) 0.925815, 1.28525, 2.40869, 4.10359

9. (a) 3.96217, 5.10887, 6.43134, 7.92332
(b) 3.96218, 5.10889, 6.43138, 7.92337

10. (a) 1.61263, 2.48097, 3.74556, 5.49595
(b) 1.61263, 2.48092, 3.74550, 5.49589

11. (a) −1.44768, −0.144478, 1.06004, 1.40960
(b) −1.44765, −0.143690, 1.06072, 1.40999

12. (a) 0.590897, 0.799950, 1.16653, 1.74969
(b) 0.590906, 0.799988, 1.16663, 1.74992

15. en+1 = (38h3/3) exp(4tn), |en+1| ≤ 37, 758.8h3 on 0 ≤ t ≤ 2, |e1| ≤ 0.00193389
16. en+1 = (2h3/3) exp(2tn), |en+1| ≤ 4.92604h3 on 0 ≤ t ≤ 1, |e1| ≤ 0.000814269
17. en+1 = (4h3/3) exp(2tn), |en+1| ≤ 9.85207h3 on 0 ≤ t ≤ 1, |e1| ≤ 0.00162854
18. h ∼= 0.071 19. h ∼= 0.023
20. h ∼= 0.081 21. h ∼= 0.117
23. 1.19512, 1.38120, 1.55909, 1.72956 24. 1.62268, 1.33435, 1.12789, 0.995130
25. 1.20526, 1.42273, 1.65511, 1.90570 26. 1.10485, 1.21886, 1.34149, 1.47264

Section 8.3, page 463

1. (a) 1.19516, 1.38127, 1.55918, 1.72968
(b) 1.19516, 1.38127, 1.55918, 1.72968

2. (a) 1.62231, 1.33362, 1.12686, 0.993839
(b) 1.62230, 1.33362, 1.12685, 0.993826

3. (a) 1.20535, 1.42295, 1.65553, 1.90638
(b) 1.20535, 1.42296, 1.65553, 1.90638

4. (a) 1.10484, 1.21884, 1.34147, 1.47262
(b) 1.10484, 1.21884, 1.34147, 1.47262

5. (a) 0.510170, 0.524138, 0.542105, 0.564286
(b) 0.520169, 0.524138, 0.542105, 0.564286

6. (a) −0.924517, −0.864125, −0.816377, −0.779706
(b) −0.924517, −0.864125, −0.816377, −0.779706

7. (a) 2.96825, 7.88889, 20.8349, 55.5957
(b) 2.96828, 7.88904, 20.8355, 55.5980

8. (a) 0.925725, 1.28516, 2.40860, 4.10350
(b) 0.925711, 1.28515, 2.40860, 4.10350

9. (a) 3.96219, 5.10890, 6.43139, 7.92338
(b) 3.96219, 5.10890, 6.43139, 7.92338

10. (a) 1.61262, 2.48091, 3.74548, 5.49587
(b) 1.61262, 2.48091, 3.74548, 5.49587

11. (a) −1.44764, −0.143543, 1.06089, 1.41008
(b) −1.44764, −0.143427, 1.06095, 1.41011

12. (a) 0.590909, 0.800000, 1.166667, 1.75000
(b) 0.590909, 0.800000, 1.166667, 1.75000

Section 8.4, page 469

1. (a) 1.7296801, 1.8934697
(b) 1.7296802, 1.8934698
(c) 1.7296805, 1.8934711
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2. (a) 0.993852, 0.925764
(b) 0.993846, 0.925746
(c) 0.993869, 0.925837

3. (a) 1.906382, 2.179567
(b) 1.906391, 2.179582
(c) 1.906395, 2.179611

4. (a) 1.4726173, 1.6126215
(b) 1.4726189, 1.6126231
(c) 1.4726199, 1.6126256

5. (a) 0.56428577, 0.59090918
(b) 0.56428581, 0.59090923
(c) 0.56428588, 0.59090952

6. (a) −0.779693, −0.753135
(b) −0.779692, −0.753137
(c) −0.779680, −0.753089

7. (a) 2.96828, 7.88907, 20.8356, 55.5984
(b) 2.96829, 7.88909, 20.8357, 55.5986
(c) 2.96831, 7.88926, 20.8364, 55.6015

8. (a) 0.9257133, 1.285148, 2.408595, 4.103495
(b) 0.9257124, 1.285148, 2.408595, 4.103495
(c) 0.9257248, 1.285158, 2.408594, 4.103493

9. (a) 3.962186, 5.108903, 6.431390, 7.923385
(b) 3.962186, 5.108903, 6.431390, 7.923385
(c) 3.962186, 5.108903, 6.431390, 7.923385

10. (a) 1.612622, 2.480909, 3.745479, 5.495872
(b) 1.612622, 2.480909, 3.745479, 5.495873
(c) 1.612623, 2.480905, 3.745473, 5.495869

11. (a) −1.447639, −0.1436281, 1.060946, 1.410122
(b) −1.447638, −0.1436762, 1.060913, 1.410103
(c) −1.447621, −0.1447219, 1.060717, 1.410027

12. (a) 0.5909091, 0.8000000, 1.166667, 1.750000
(b) 0.5909091, 0.8000000, 1.166667, 1.750000
(c) 0.5909092, 0.8000002, 1.166667, 1.750001

Section 8.5, page 479

1. (b) φ2(t) − φ1(t) = 0.001et → ∞ as t → ∞
2. (b) φ1(t) = ln[et/(2 − et)]; φ2(t) = ln[1/(1 − t)]
3. (a,b) h = 0.00025 is sufficient. (c) h = 0.005 is sufficient.
4. (a) y = 4e−10t + (t2/4) (c) Runge–Kutta is stable for h = 0.25 but unstable for h = 0.3.

(d) h = 5/13 ∼= 0.384615 is small enough.
5. (a) y = t 6. (a) y = t2

Section 8.6, page 483

1. (a) 1.26, 0.76; 1.7714, 1.4824; 2.58991, 2.3703; 3.82374, 3.60413;
5.64246, 5.38885
(b) 1.32493, 0.758933; 1.93679, 1.57919; 2.93414, 2.66099; 4.48318, 4.22639;
6.84236, 6.56452
(c) 1.32489, 0.759516; 1.9369, 1.57999; 2.93459, 2.66201; 4.48422, 4.22784;
6.8444, 6.56684

2. (a) 1.451, 1.232; 2.16133, 1.65988; 3.29292, 2.55559; 5.16361, 4.7916;
8.54951, 12.0464
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(b) 1.51844, 1.28089; 2.37684, 1.87711; 3.85039, 3.44859; 6.6956, 9.50309;
15.0987, 64.074
(c) 1.51855, 1.2809; 2.3773, 1.87729; 3.85247, 3.45126; 6.71282, 9.56846;
15.6384, 70.3792

3. (a) 0.582, 1.18; 0.117969, 1.27344; −0.336912, 1.27382; −0.730007, 1.18572;
−1.02134, 1.02371
(b) 0.568451, 1.15775; 0.109776, 1.22556; −0.32208, 1.20347;
−0.681296, 1.10162; −0.937852, 0.937852
(c) 0.56845, 1.15775; 0.109773, 1.22557; −0.322081, 1.20347;
−0.681291, 1.10161; −0.937841, 0.93784

4. (a) −0.198, 0.618; −0.378796, 0.28329; −0.51932, −0.0321025;
−0.594324, −0.326801; −0.588278, −0.57545
(b) −0.196904, 0.630936; −0.372643, 0.298888; −0.501302, −0.0111429;
−0.561270, −0.288943; −0.547053, −0.508303
(c) −0.196935, 0.630939; −0.372687, 0.298866; −0.501345, −0.0112184;
−0.561292, −0.28907; −0.547031, −0.508427

5. (a) 2.96225, 1.34538; 2.34119, 1.67121; 1.90236, 1.97158; 1.56602, 2.23895;
1.29768, 2.46732
(b) 3.06339, 1.34858; 2.44497, 1.68638; 1.9911, 2.00036; 1.63818, 2.27981;
1.3555, 2.5175
(c) 3.06314, 1.34899; 2.44465, 1.68699; 1.99075, 2.00107; 1.63781, 2.28057;
1.35514, 2.51827

6. (a) 1.42386, 2.18957; 1.82234, 2.36791; 2.21728, 2.53329; 2.61118, 2.68763;
2.9955, 2.83354
(b) 1.41513, 2.18699; 1.81208, 2.36233; 2.20635, 2.5258; 2.59826, 2.6794;
2.97806, 2.82487
(c) 1.41513, 2.18699; 1.81209, 2.36233; 2.20635, 2.52581; 2.59826, 2.67941;
2.97806, 2.82488

7. For h = 0.05 and 0.025: x = 10.227, y = −4.9294; these results agree with the exact solu-
tion to five digits.

8. 1.543, 0.0707503; 1.14743, −1.3885 9. 1.99521, −0.662442

C H A P T E R 9 Section 9.1, page 494

1. (a) r1 = −1, ξ (1) = (1, 2)T ; r2 = 2, ξ (2) = (2, 1)T (b) saddle point, unstable
2. (a) r1 = 2, ξ (1) = (1, 3)T ; r2 = 4, ξ (2) = (1, 1)T (b) node, unstable
3. (a) r1 = −1, ξ (1) = (1, 3)T ; r2 = 1, ξ (2) = (1, 1)T (b) saddle point, unstable
4. (a) r1 = r2 = −3, ξ (1) = (1, 1)T (b) improper node, asymptotically stable
5. (a) r1, r2 = −1 ± i; ξ (1), ξ (2) = (2 ± i, 1)T (b) spiral point, asymptotically stable
6. (a) r1, r2 = ±i; ξ (1), ξ (2) = (2 ± i, 1)T (b) center, stable
7. (a) r1, r2 = 1 ± 2i; ξ (1), ξ (2) = (1, 1 ∓ i)T (b) spiral point, unstable
8. (a) r1 = −1, ξ (1) = (1, 0)T ; r2 = −1/4, ξ (2) = (4, −3)T

(b) node, asymptotically stable
9. (a) r1 = r2 = 1, ξ (1) = (2, 1)T (b) improper node, unstable

10. (a) r1, r2 = ±3i; ξ (1), ξ (2) = (2, −1 ± 3i)T (b) center, stable
11. (a) r1 = r2 = −1; ξ (1) = (1, 0)T , ξ (2) = (0, 1)T

(b) proper node, asymptotically stable
12. (a) r1, r2 = (1 ± 3i)/2; ξ (1), ξ (2) = (5, 3 ∓ 3i)T (b) spiral point, unstable
13. x0 = 1, y0 = 1; r1 = √

2, r2 = −√
2; saddle point, unstable

14. x0 = −1, y0 = 0; r1 = −1, r2 = −3; node, asymptotically stable
15. x0 = −2, y0 = 1; r1, r2 = −1 ± √

2 i; spiral point, asymptotically stable
16. x0 = γ /δ, y0 = α/β; r1, r2 = ±√

βδ i; center, stable
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17. c2 > 4km, node, asymptotically stable; c2 = 4km, improper node, asymptotically stable;
c2 < 4km, spiral point, asymptotically stable

Section 9.2, page 506

1. x = 4e−t , y = 2e−2t , y = x2/8
2. x = 4e−t , y = 2e2t , y = 32x−2; x = 4e−t , y = 0
3. x = 4 cos t, y = 4 sin t, x2 + y2 = 16; x = −4 sin t, y = 4 cos t, x2 + y2 = 16
4. x = √

a cos
√

ab t, y = −√
b sin

√
ab t; (x2/a) + (y2/b) = 1

5. (a, c) (− 1
2 , 1), saddle point, unstable; (0, 0), (proper) node, unstable

6. (a, c) (−√
3/3, − 1

2 ), saddle point, unstable; (
√

3/3, − 1
2 ), center, stable

7. (a, c) (0, 0), node, unstable; (2, 0), node, asymptotically stable;
(0, 3

2 ), saddle point, unstable; (−1, 3), node, asymptotically stable
8. (a, c) (0, 0), node, asymptotically stable; (1, −1), saddle point, unstable;

(1, −2), spiral point, asymptotically stable
9. (a, c) (0, 0), spiral point, asymptotically stable;

(1 − √
2, 1 + √

2), saddle point, unstable; (1 + √
2, 1 − √

2), saddle point, unstable
10. (a, c) (0, 0), saddle point, unstable; (2, 2), spiral point, asymptotically stable;

(−1, −1), spiral point, asymptotically stable; (−2, 0), saddle point, unstable
11. (a, c) (0, 0), saddle point, unstable; (0, 1), saddle point, unstable;

( 1
2 , 1

2 ), center, stable; (− 1
2 , 1

2 ), center, stable

12. (a, c) (0, 0), saddle point, unstable; (
√

6, 0), spiral point, asymptotically stable;
(−√

6, 0), spiral point, asymptotically stable
13. (a, c) (0, 0), saddle point, unstable; (−2, 2), node, unstable;

(4, 4), spiral point, asymptotically stable
14. (a, c) (0, 0), saddle point, unstable; (2, 0), saddle point, unstable;

(1, 1), spiral point, asymptotically stable; (−2, −2), spiral point, asymptotically stable
15. (a,c) (0, 0), node, unstable; (1, 1), saddle point, unstable;

(3, −1), spiral point, asymptotically stable
16. (a,c) (0, 1), saddle point, unstable; (1, 1), node, asymptotically stable;

(−2, 4), spiral point, unstable
17. (a) 4x2 − y2 = c 18. (a) 4x2 + y2 = c
19. (a) (y − 2x)2(x + y) = c 20. (a) arctan(y/x) − ln

√
x2 + y2 = c

21. (a) 2x2y − 2xy + y2 = c 22. (a) x2y2 − 3x2y − 2y2 = c
23. (a) (y2/2) − cos x = c 24. (a) x2 + y2 − (x4/12) = c

Section 9.3, page 516

1. linear and nonlinear: saddle point, unstable
2. linear and nonlinear: spiral point, asymptotically stable
3. linear: center, stable; nonlinear: spiral point or center, indeterminate
4. linear: improper node, unstable; nonlinear: node or spiral point, unstable
5. (a, b, c) (0, 0); u′ = −2u + 2v, v′ = 4u + 4v; r = 1 ± √

17;
saddle point, unstable
(−2, 2); u′ = 4u, v′ = 6u + 6v; r = 4, 6; node, unstable
(4, 4); u′ = −6u + 6v, v′ = −8u; r = −3 ± √

39 i; spiral point, asymptotically
stable

6. (a, b, c) (0, 0); u′ = u, v′ = 3v; r = 1, 3; node, unstable
(1, 0); u′ = −u − v, v′ = 2v; r = −1, 2; saddle point, unstable
(0, 3

2 ); u′ = − 1
2 u, v′ = − 3

2 u − 3v; r = − 1
2 , −3; node, asymptotically stable

(−1, 2); u′ = u + v, v′ = −2u − 4v; r = (−3 ± √
17)/2; saddle point, unstable
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7. (a, b, c) (1, 1); u′ = −v, v′ = 2u − 2v; r = −1 ± i; spiral point, asymptotically
stable
(−1, 1); u′ = −v, v′ = −2u − 2v; r = −1 ± √

3; saddle point, unstable
8. (a, b, c) (0, 0); u′ = u, v′ = 1

2 v; r = 1, 1
2 ; node, unstable

(0, 2); u′ = −u, v′ = − 3
2 u − 1

2 v; r = −1, − 1
2 ; node, asymptotically stable

(1, 0); u′ = −u − v, v′ = − 1
4 v; r = −1, − 1

4 ; node, asymptotically stable

( 1
2 , 1

2 ); u′ = − 1
2 u − 1

2 v, v′ = − 3
8 u − 1

8 v; r = (−5 ± √
57)/16;

saddle point, unstable
9. (a, b, c) (0, 0); u′ = −u + 2v, v′ = u + 2v; r = (1 ± √

17/2; saddle point, unstable
(2, 1); u′ = − 3

2 u + 3v, v′ = −2u; r = (−3 ± √
87i)/4; spiral point, asymptotically

stable
(2, −2); u′ = −3v, v′ = u; r = ±√

3 i; center or spiral point, indeterminate
(4, −2); u′ = −4v, v′ = −u − 2v; r = −1 ± √

5; saddle point, unstable
10. (a, b, c) (0, 0); u′ = u, v′ = v; r = 1, 1; node or spiral point, unstable

(−1, 0); u′ = −u, v′ = 2v; r = −1, 2; saddle point, unstable
11. (a, b, c) (0, 0); u′ = 2u + v, v′ = u − 2v; r = ±√

5; saddle point, unstable
(−1.1935, −1.4797); u′ = −1.2399u − 6.8393v, v′ = 2.4797u − 0.80655v;
r = −1.0232 ± 4.1125i; spiral point, asymptotically stable

12. (a, b, c) (0, ±2nπ), n = 0, 1, 2, . . . ; u′ = v, v′ = −u;
r = ±i; center or spiral point, indeterminate
[2, ±(2n − 1)π ], n = 1, 2, 3, . . . ; u′ = −3v, v′ = −u; r = ±√

3;
saddle point, unstable

13. (a, b, c) (0, 0); u′ = u, v′ = v; r = 1, 1; node or spiral point, unstable
(1, 1); u′ = u − 2v, v′ = −2u + v; r = 3, −1; saddle point, unstable

14. (a, b, c) (1, 1); u′ = −u − v, v′ = u − 3v; r = −2, −2;
node or spiral point, asymptotically stable
(−1, −1); u′ = u + v, v′ = u − 3v; r = −1 ± √

5; saddle point, unstable
15. (a, b, c) (0, 0); u′ = −2u − v, v′ = u − v; r = (−3 ± √

3 i)/2;
spiral point, asymptotically stable
(−0.33076, 1.0924) and (0.33076, −1.0924); u′ = −3.5216u − 0.27735v,
v′ = 0.27735u + 2.6895v; r = −3.5092, 2.6771; saddle point, unstable

16. (a, b, c) (0, 0); u′ = u + v, v′ = −u + v; r = 1 ± i; spiral point, unstable
17. (a,b,c) (2, 2); u′ = −4v, v′ = − 7

2 u + 7
2 v; r = (7 ± √

273)/4; saddle point, unstable

(−2, −2); u′ = 4v, v′ = 1
2 u − 1

2 v; r = (−1 ± √
33)/4; saddle point, unstable

(− 3
2 , 2); u′ = −4v, v′ = 7

2 u; r = ±√
14 i; center or spiral point, indeterminate

(− 3
2 , −2); u′ = 4v, v′ = − 1

2 u; r = ±√
2 i; center or spiral point, indeterminate

18. (a, b, c) (0, 0); u′ = 2u − v, v′ = 2u − 4v; r = −1 ± √
7; saddle point, unstable

(2, 1); u′ = −3v, v′ = 4u − 8v; r = −2, −6; node, asymptotically stable
(−2, 1); u′ = 5v, v′ = −4u; r = ±2

√
5 i; center or spiral point, indeterminate

(−2, −4); u′ = 10u − 5v, v′ = 6u; r = 5 ± √
5 i; spiral point, unstable

21. (b, c) Refer to Table 9.3.1.
23. (a) R = A, T ∼= 3.17 (b) R = A, T ∼= 3.20, 3.35, 3.63, 4.17

(c) T → π as A → 0 (d) A = π

24. (b) vc
∼= 4.00

25. (b) vc
∼= 4.51

30. (a) dx/dt = y, dy/dt = −g(x) − c(x)y
(b) The linear system is dx/dt = y, dy/dt = −g′(0)x − c(0)y.
(c) The eigenvalues satisfy r2 + c(0)r + g′(0) = 0.
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Section 9.4, page 530

1. (b, c) (0, 0); u′ = 3
2 u, v′ = 2v; r = 3

2 , 2; node, unstable
(0, 2); u′ = 1

2 u, v′ = − 3
2 u − 2v; r = 1

2 , −2; saddle point, unstable
( 3

2 , 0); u′ = − 3
2 u − 3

4 v, v′ = 7
8 v; r = − 3

2 , 7
8 ; saddle point, unstable

( 4
5 , 7

5 ); u′ = − 4
5 u − 2

5 v, v′ = − 21
20 u − 7

5 v; r = (−22 ± √
204)/20;

node, asymptotically stable

2. (b, c) (0, 0); u′ = 3
2 u, v′ = 2v; r = 3

2 , 2; node, unstable
(0, 4); u′ = − 1

2 u, v′ = −6u − 2v; r = − 1
2 , −2; node, asymptotically stable

( 3
2 , 0); u′ = − 3

2 u − 3
4 v, v′ = − 1

4 v; r = − 1
4 , − 3

2 ; node, asymptotically stable

(1, 1); u′ = −u − 1
2 v, v′ = − 3

2 u − 1
2 v; r = (−3 ± √

13)/4;
saddle point, unstable

3. (b, c) (0, 0); u′ = 3
2 u, v′ = 2v; r = 3

2 , 2; node, unstable
(0, 2); u′ = − 1

2 u, v′ = − 9
4 u − 2v; r = − 1

2 , −2 ; node, asymptotically stable
(3, 0); u′ = − 3

2 u − 3v, v′ = − 11
8 v; r = − 3

2 , − 11
8 ; node, asymptotically stable

( 4
5 , 11

10 ); u′ = − 2
5 u − 4

5 v, v′ = − 99
80 u − 11

10 v; r = −1.80475, 0.30475;
saddle point, unstable

4. (b, c) (0, 0); u′ = 3
2 u, v′ = 3

4 v; r = 3
2 , 3

4 ; node, unstable
(0, 3

4 ); u′ = 3
4 u, v′ = − 3

4 v; r = ± 3
4 ; saddle point, unstable

(3, 0); u′ = − 3
2 u − 3v, v′ = 3

8 v; r = − 3
2 , 3

8 ; saddle point, unstable
(2, 1

2 ); u′ = −u − 2v, v′ = − 1
16 u − 1

2 v; r = −1.18301, −0.31699;
node, asymptotically stable

5. (b, c) (0, 0); u′ = u, v′ = 3
2 v; r = 1, 3

2 ; node, unstable
(0, 3

2 ); u′ = − 1
2 u, v′ = − 3

2 u − 3
2 v; r = − 1

2 , − 3
2 ; node, asymptotically stable

(1, 0); u′ = −u − v, v′ = 1
2 v; r = −1, 1

2 ; saddle point, unstable

6. (b, c) (0, 0); u′ = u, v′ = 5
2 v; r = 1, 5

2 ; node, unstable

(0, 5
3 ); u′ = 11

6 u, v′ = 5
12 u − 5

2 v; r = 11
6 , − 5

2 ; saddle point, unstable
(1, 0); u′ = −u + 1

2 v, v′ = 11
4 v; r = −1, 11

4 ; saddle point, unstable

(2, 2); u′ = −2u + v, v′ = 1
2 u − 3v; r = (−5 ± √

3)/2;
node, asymptotically stable

8. (a) Critical points are x = 0, y = 0; x = ε1/σ1, y = 0; x = 0, y = ε2/σ2.
x → 0, y → ε2/σ2 as t → ∞; the redear survive.
(b) Same as part (a) except x → ε1/σ1, y → 0 as t → ∞; the bluegill survive.

9. (a) X = (B − γ1R)/(1 − γ1γ2), Y = (R − γ2B)/(1 − γ1γ2)

(b) X is reduced, Y is increased; yes, if B becomes less than γ1R, then x → 0 and y → R
as t → ∞.

10. (a) σ1ε2 − α2ε1 �= 0: (0, 0), (0, ε2/σ2), (ε1/σ1, 0)

σ1ε2 − α2ε1 = 0: (0, 0), and all points on the line σ1x + α1y = ε1

(b) σ1ε2 − α2ε1 > 0: (0, 0) is unstable node; (ε1/σ1, 0) is saddle point;
(0, ε2/σ2) is asymptotically stable node.
σ1ε2 − α2ε1 < 0: (0, 0) is unstable node; (0, ε2/σ2) is saddle point;
(ε1/σ1, 0) is asymptotically stable node.
(c) (0, 0) is unstable node; points on the line σ1x + α1y = ε1 are stable, nonisolated critical
points.

12. (a) (0, 0), saddle point; (0.15, 0), spiral point if γ 2 < 1.11,node if γ 2 ≥ 1.11; (2, 0), saddle
point
(c) γ ∼= 1.20
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13. (b) (2 −
√

4 − 3
2 α, 3

2 α), (2 +
√

4 − 3
2 α, 3

2 α)

(c) (1, 3) is an asymptotically stable node; (3, 3) is a saddle point
(d) α0 = 8/3; critical point is (2, 4); λ = 0, −1

14. (b) (2 −
√

4 − 3
2 α, 3

2 α), (2 +
√

4 − 3
2 α, 3

2 α)

(c) 1, 3) is a saddle point; (3, 3) is an unstable spiral point
(d) α0 = 8/3; critical point is (2, 4); λ = 0, 1

15. (b) ([3 − √
9 − 4α]/2, [3 + 2α − √

9 − 4α]/2),
([3 + √

9 − 4α]/2, [3 + 2α + √
9 − 4α]/2)

(c) (1, 3) is a saddle point; (2, 4) is an unstable spiral point
(d) α0 = 9/4; critical point is (3/2, 15/4); λ = 0, 0

16. (b) ([3 − √
9 − 4α]/2, [3 + 2α − √

9 − 4α]/2),
([3 + √

9 − 4α]/2, [3 + 2α + √
9 − 4α]/2)

(c) (1, 3) is a center of the linear approximation and also of the nonlinear system; (2, 4) is
a saddle point
(d) α0 = 9/4; critical point is (3/2, 15/4); λ = 0, 0

17. (b) P1(0, 0), P2(1, 0), P3(0, α), P4(2 − 2α, −1 + 2α). P4 is in the first quadrant for
0.5 ≤ α ≤ 1.
(c) α = 0; P3 coincides with P1. α = 0.5; P4 coincides with P2. α = 1; P4 coincides
with P3.

(d) J =
(

1 − 2x − y −x
−0.5y α − 2y − 0.5x

)

(e) P1 is an unstable node for α > 0. P2 is an asymptotically stable node for 0 < α < 0.5
and a saddle point for α > 0.5. P3 is a saddle point for 0 < α < 1 and an asymptotically
stable node for α > 1. P4 is an asymptotically stable node for 0.5 < α < 1.

18. (b) P1(0, 0), P2(1, 0), P3(0, 0.75/α), P4[(4α − 3)/(4α − 2), 1/(4α − 2)]. P4 is in the
first quadrant for α ≥ 0.75.
(c) α = 0.75; P3 coincides with P4.

(d) J =
(

1 − 2x − y −x
−0.5y 0.75 − 2αy − 0.5x

)

(e) P1 is an unstable node. P2 is a saddle point. P3 is an asymptotically stable node for
0 < α < 0.75 and a saddle point for α > 0.75. P4 is an asymptotically stable node for
α > 0.75.

19. (b) P1(0, 0), P2(1, 0), P3(0, α), P4(0.5, 0.5). In addition, for α = 1 every point on the
line x + y = 1 is a critical point.
(c) α = 0; P3 coincides with P1. Also α = 1.

(d) J =
(

1 − 2x − y −x
−(2α − 1)y α − 2y − (2α − 1)x

)

(e) P1 is an unstable node for α > 0. P2 and P3 are saddle points for 0 < α < 1 and
asymptotically stable nodes for α > 1. P4 is an asymptotically stable spiral point for
0 < α < 0.5, an asymptotically stable node for 0.5 ≤ α < 1, and a saddle point for α > 1.

Section 9.5, page 540

1. (b, c) (0, 0); u′ = 3
2 u, v′ = − 1

2 v; r = 3
2 , − 1

2 ; saddle point, unstable

( 1
2 , 3); u′ = − 1

4 v, v′ = 3u; r = ±√
3 i/2; center or spiral point, indeterminate

2. (b, c) (0, 0); u′ = u, v′ = − 1
4 v; r = 1, − 1

4 ; saddle point, unstable
( 1

2 , 2); u′ = − 1
4 v, v′ = u; r = ± 1

2 i; center or spiral point, indeterminate
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3. (b, c) (0, 0); u′ = u, v′ = − 1
4 v; r = 1, − 1

4 ; saddle point, unstable
(2, 0); u′ = −u − v, v′ = 3

4 v; r = −1, 3
4 ; saddle point, unstable

( 1
2 , 3

2 ); u′ = − 1
4 u − 1

4 v, v′ = 3
4 u; r = (−1 ± √

11 i)/8; spiral point,
asymptotically stable

4. (b, c) (0, 0); u′ = 9
8 u, v′ = −v; r = 9

8 , −1; saddle point, unstable
( 9

8 , 0); u′ = − 9
8 u − 9

16 v, v′ = 1
8 v; r = − 9

8 , 1
8 ; saddle point, unstable

(1, 1
4 ); u′ = −u − 1

2 v, v′ = 1
4 u; r = (−1 ± √

0.5)/2; node, asymptotically stable
5. (b, c) (0, 0); u′ = −u, v′ = − 3

2 v; r = −1, − 3
2 ; node, asymptotically stable

( 1
2 , 0); u′ = 3

4 u − 3
20 v, v′ = −v; r = −1, 3

4 ; saddle point, unstable
(2, 0); u′ = −3u − 3

5 v, v′ = 1
2 v; r = −3, 1

2 ; saddle point, unstable

( 3
2 , 5

3 ); u′ = − 3
4 u − 9

20 v, v′ = 5
3 u; r = (−3 ± √

39 i)/8; spiral point,
asymptotically stable

6. (b,c) t = 0, T , 2T , . . . : H is a max., dP/dt is a max.

t = T/4, 5T/4, . . . : dH/dt is a min., P is a max.

t = T/2, 3T/2, . . . : H is a min., dP/dt is a min.

t = 3T/4, 7T/4, . . . : dH/dt is a max., P is a min.

7. (a)
√

c α/
√

a γ (b)
√

3
(d) The ratio of prey amplitude to predator amplitude increases very slowly as the initial
point moves away from the equilibrium point.

8. (a) 4π/
√

3 ∼= 7.2552
(c) The period increases slowly as the initial point moves away from the equilibrium point.

9. (a) T ∼= 6.5 (b) T ∼= 3.7, T ∼= 11.5 (c) T ∼= 3.8, T ∼= 11.1
11. (a) P1(0, 0), P2(1/σ , 0), P3(3, 2 − 6σ); P2 moves to the left and P3 moves down; they

coincide at (3, 0) when σ = 1/3.
(b) P1 is a saddle point. P2 is a saddle point for σ < 1/3 and an asymptotically stable
node for σ > 1/3. P3 is an asymptotically stable spiral point for σ < σ1 = (

√
7/3 − 1)/2 ∼=

0.2638, an asymptotically stable node for σ1 < σ < 1/3, and a saddle point for σ > 1/3.
12. (a) P1(0, 0), P2(a/σ , 0), P3[c/γ , (a/α) − (cσ/αγ )]; P2 moves to the left and P3 moves

down; they coincide at (c/γ , 0) when σ = aγ /c.
(b) P1 is a saddle point. P2 is a saddle point for σ < aγ /c and an asymptotically stable
node for σ > aγ /c. P3 is an asymptotically stable spiral point for sufficiently small values
of σ and becomes an asymptotically stable node at a certain value σ1 < aγ /c. P3 is a
saddle point for σ > aγ /c.

13. (a,b) P1(0, 0) is a saddle point; P2(5, 0) is a saddle point; P3(2, 2.4) is an asymptotically
stable spiral point.

14. (b) same prey, fewer predators (c) more prey, same predators
(d) more prey, fewer predators

15. (b) same prey, fewer predators (c) more prey, fewer predators
(d) more prey, even fewer predators

16. (b) same prey, fewer predators (c) more prey, same predators
(d) more prey, fewer predators

Section 9.7, page 563

1. r = 1, θ = t + t0, stable limit cycle 2. r = 1, θ = −t + t0, semistable limit cycle
3. r = 1, θ = t + t0, stable limit cycle; r = 3, θ = t + t0, unstable periodic solution
4. r = 1, θ = −t + t0, unstable periodic solution; r = 2, θ = −t + t0, stable limit cycle
5. r = 2n − 1, θ = t + t0, n = 1, 2, 3, . . . , stable limit cycle;

r = 2n, θ = t + t0, n = 1, 2, 3, . . . , unstable periodic solution
6. r = 2, θ = −t + t0, semistable limit cycle;

r = 3, θ = −t + t0, unstable periodic solution
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8. (a) Counterclockwise
(b) r = 1, θ = t + t0, stable limit cycle; r = 2, θ = t + t0, semistable limit cycle;
r = 3, θ = t + t0, unstable periodic solution

9. r = √
2, θ = −t + t0, unstable periodic solution

14. (a) μ = 0.2, T ∼= 6.29; μ = 1, T ∼= 6.66; μ = 5, T ∼= 11.60
15. (a) x′ = y, y′ = −x + μy − μy3/3

(b) 0 < μ < 2, unstable spiral point; μ ≥ 2, unstable node
(c) A ∼= 2.16, T ∼= 6.65
(d) μ = 0.2, A ∼= 1.99, T ∼= 6.31; μ = 0.5, A ∼= 2.03, T ∼= 6.39;

μ = 2, A ∼= 2.60, T ∼= 7.65; μ = 5, A ∼= 4.36, T ∼= 11.60
16. (b) x′ = μx + y, y′ = −x + μy; λ = μ ± i; the origin is an asymptotically stable

spiral point for μ < 0 and an unstable spiral point for μ > 0.
(c) r′ = r(μ − r2), θ ′ = −1

17. (a) The origin is an asymptotically stable node for μ < −2, an asymptotically stable spiral
point for −2 < μ < 0, an unstable spiral point for 0 < μ < 2, and an unstable node for
μ > 2.

18. (a, b) (0, 0) is a saddle point; (12, 0) is a saddle point; (2, 8) is an unstable spiral point.
19. (a) (0, 0), (5a, 0), (2, 4a − 1.6)

(b) r = −0.25 + 0.125a ± 0.25
√

220 − 400a + 25a2; a0 = 2

20. (b) λ =
[
−(5/4 − b) ± √

(5/4 − b)2 − 1
]
/2

(c) 0 < b < 1/4: asymptotically stable node; 1/4 < b < 5/4: asymptotically stable spi-
ral point; 5/4 < b < 9/4: unstable spiral point; 9/4 < b; unstable node
(d) b0 = 5/4

21. (b) k = 0, (1.1994, −0.62426); k = 0.5, (0.80485, −0.13106)

(c) k0
∼= 0.3465, (0.95450, −0.31813)

(d) k = 0.4, T ∼= 11.23; k = 0.5, T ∼= 10.37; k = 0.6, T ∼= 9.93
(e) k1

∼= 1.4035

Section 9.8, page 573

1. (b) λ = λ1, ξ (1) = (0, 0, 1)T ; λ = λ2, ξ (2) = (20, 9 − √
81 + 40r, 0)T ;

λ = λ3, ξ (3) = (20, 9 + √
81 + 40r, 0)T

(c) λ1
∼= −2.6667, ξ (1) = (0, 0, 1)T ; λ2

∼= −22.8277, ξ (2) ∼= (20, −25.6554, 0)T ;
λ3

∼= 11.8277, ξ (3) ∼= (20, 43.6554, 0)T

2. (c) λ1
∼= −13.8546; λ2, λ3

∼= 0.0939556 ± 10.1945i
5. (a) dV/dt = −2σ [rx2 + y2 + b(z − r)2 − br2]

11. (b) c = √
0.5 : P1(

√
2/4, −√

2,
√

2); λ = 0, −0.05178 ± 1.5242i
c = 1 : P1 = (0.8536, −3.4142, 3.4142); λ = 0.1612, −0.02882 ± 2.0943i
P2(0.1464, −0.5858, 0.5858); λ = −0.5303, −0.03665 ± 1.1542i

12. (a) P1(1.1954, −4.7817, 4.7817); λ = 0.1893, −0.02191 ± 2.4007i
P2(0.1046, −0.4183, 0.4183); λ = −0.9614, 0.007964 ± 1.0652i
(d) T1

∼= 5.9
13. (a,b,c) c1

∼= 1.243
14. (a) P1(2.9577, −11.8310, 11.8310); λ = 0.2273, −0.009796 ± 3.5812i

P2(0.04226, −0.1690, 0.1690); λ = −2.9053, 0.09877 ± 0.9969i
(c) T2

∼= 11.8
15. (a) P1(3.7668, −15.0673, 15.0673); λ = 0.2324, −0.007814 ± 4.0078i

P2(0.03318, −0.1327, 0.1327); λ = −3.7335, 0.1083 ± 0.9941i
(b) T4

∼= 23.6
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C H A P T E R 10 Section 10.1, page 583

1. y = − sin x 2. y = (cot
√

2π cos
√

2x + sin
√

2x)/
√

2
3. y = 0 for all L; y = c2 sin x if sin L = 0
4. y = − tan L cos x + sin x if cos L �= 0; no solution if cos L = 0
5. No solution 6. y = (−π sin

√
2x + x sin

√
2π)/2 sin

√
2π

7. No solution 8. y = c2 sin 2x + 1
3 sin x

9. y = c1 cos 2x + 1
3 cos x 10. y = 1

2 cos x
11. y = − 5

2 x + 3
2 x2 12. y = − 1

9 x−1 + 1
9 (1 − e3)x−1 ln x + 1

9 x2

13. No solution
14. λn = [(2n − 1)/2]2, yn(x) = sin[(2n − 1)x/2]; n = 1, 2, 3, . . .
15. λn = [(2n − 1)/2]2, yn(x) = cos[(2n − 1)x/2]; n = 1, 2, 3, . . .
16. λ0 = 0, y0(x) = 1; λn = n2, yn(x) = cos nx; n = 1, 2, 3, . . .
17. λn = [(2n − 1)π/2L]2, yn(x) = cos[(2n − 1)πx/2L]; n = 1, 2, 3, . . .
18. λ0 = 0, y0(x) = 1; λn = (nπ/L)2, yn(x) = cos(nπx/L); n = 1, 2, 3, . . .
19. λn = −[(2n − 1)π/2L]2, yn(x) = sin[(2n − 1)πx/2L]; n = 1, 2, 3, . . .
20. λn = 1 + (nπ/ ln L)2, yn(x) = x sin(nπ ln x/ ln L); n = 1, 2, 3, . . .
21. (a) w(r) = G(R2 − r2)/4μ (c) Q is reduced to 0.3164 of its original value.
22. (a) y = k(x4 − 2Lx3 + L3x)/24

(b) y = k(x4 − 2Lx3 + L2x2)/24
(c) y = k(x4 − 4Lx3 + 6L2x2)/24

Section 10.2, page 592

1. T = 2π/5 2. T = 1
3. Not periodic 4. T = 2L
5. T = 1 6. Not periodic
7. T = 2 8. T = 4
9. f (x) = 2L − x in L < x < 2L; f (x) = −2L − x in −3L < x < −2L

10. f (x) = x − 1 in 1 < x < 2; f (x) = x − 8 in 8 < x < 9
11. f (x) = −L − x in −L < x < 0

13. (b) f (x) = 2L
π

∞∑
n=1

(−1)n

n
sin

nπx
L

14. (b) f (x) = 1
2

− 2
π

∞∑
n=1

sin[(2n − 1)πx/L]
2n − 1

15. (b) f (x) = −π

4
+

∞∑
n=1

[
2 cos(2n − 1)x

π(2n − 1)2
+ (−1)n+1 sin nx

n

]

16. (b) f (x) = 1
2

+ 4
π2

∞∑
n=1

cos(2n − 1)πx
(2n − 1)2

17. (b) f (x) = 3L
4

+
∞∑

n=1

[
2L cos[(2n − 1)πx/L]

(2n − 1)2π2
+ (−1)n+1L sin(nπx/L)

nπ

]

18. (b) f (x) =
∞∑

n=1

[
− 2

nπ
cos

nπ

2
+

(
2

nπ

)2

sin
nπ

2

]
sin

nπx
2

19. (b) f (x) = 4
π

∞∑
n=1

sin[(2n − 1)πx/2]
2n − 1

20. (b) f (x) = 2
π

∞∑
n=1

(−1)n+1

n
sin nπx

21. (b) f (x) = 2
3

+ 8
π2

∞∑
n=1

(−1)n

n2
cos

nπx
2

22. (b) f (x) = 1
2

+ 12
π2

∞∑
n=1

cos[(2n − 1)πx/2]
(2n − 1)2

+ 2
π

∞∑
n=1

(−1)n

n
sin

nπx
2
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23. (b) f (x) = 11
12

+ 1
π2

∞∑
n=1

(−1)n − 5
n2

cos
nπx

2
+

∞∑
n=1

[
4[1 − (−1)n]

n3π3
− (−1)n

nπ

]
sin

nπx
2

24. (b) f (x) = 9
8

+
∞∑

n=1

[
162[(−1)n − 1]

n4π4
− 27(−1)n

n2π2

]
cos

nπx
3

−
∞∑

n=1

108(−1)n + 54
n3π3

sin
nπx

3

25. (b) m = 81 26. (b) m = 27

28.
∫ x

0
f (t) dt may not be periodic; for example, let f (t) = 1 + cos t.

Section 10.3, page 600

1. (a) f (x) = 4
π

∞∑
n=1

sin(2n − 1)πx
2n − 1

2. (a) f (x) = π

4
−

∞∑
n=1

[
2

(2n − 1)2π
cos(2n − 1)x + (−1)n

n
sin nx

]

3. (a) f (x) = L
2

+ 4L
π2

∞∑
n=1

cos[(2n − 1)πx/L]
(2n − 1)2

4. (a) f (x) = 2
3

+ 4
π2

∞∑
n=1

(−1)n+1

n2
cos nπx

5. (a) f (x) = 1
2

+ 2
π

∞∑
n=1

(−1)n−1

2n − 1
cos(2n − 1)x

6. (a) f (x) = a0

2
+

∞∑
n=1

(an cos nπx + bn sin nπx);

a0 = 1
3

, an = 2(−1)n

n2π2
, bn =

{ −1/nπ , n even
1/nπ − 4/n3π3, n odd

7. (a) f (x) = −π

4
+

∞∑
n=1

[
1 − cos nπ

πn2
cos nx − (−1)n

n
sin nx

]
(b) n = 10; max|e| = 1.6025 at x = ±π

n = 20; max|e| = 1.5867 at x = ±π

n = 40; max|e| = 1.5788 at x = ±π

(c) Not possible

8. (a) f (x) = 1
2

+ 2
π2

∞∑
n=1

1 − cos nπ

n2
cos nπx

(b) n = 10; max|e| = 0.02020 at x = 0, ±1
n = 20; max|e| = 0.01012 at x = 0, ±1
n = 40; max|e| = 0.005065 at x = 0, ±1

(c) n = 21

9. (a) f (x) = 2
π

∞∑
n=1

(−1)n+1

n
sin nπx

(b) n = 10, 20, 40; max|e| = 1 at x ± 1
(c) Not possible

10. (a) f (x) = 1
2

+
∞∑

n=1

[
6(1 − cos nπ)

n2π2
cos

nπx
2

+ 2 cos nπ

nπ
sin

nπx
2

]
(b) n = 10; lub|e| = 1.0606 as x → 2

n = 20; lub|e| = 1.0304 as x → 2
n = 40; lub|e| = 1.0152 as x → 2

(c) Not possible
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11. (a) f (x) = 1
6

+
∞∑

n=1

[
2 cos nπ

n2π2
cos nπx − 2 − 2 cos nπ + n2π2 cos nπ

n3π3
sin nπx

]
(b) n = 10; lub|e| = 0.5193 as x → 1

n = 20; lub|e| = 0.5099 as x → 1
n = 40; lub|e| = 0.5050 as x → 1

(c) Not possible

12. (a) f (x) = − 12
π3

∞∑
n=1

(−1)n

n3
sin nπx

(b) n = 10; max|e| = 0.001345 at x = ±0.9735
n = 20; max|e| = 0.0003534 at x = ±0.9864
n = 40; max|e| = 0.00009058 at x = ±0.9931

(c) n = 4
13. y = (ω sin nt − n sin ωt)/ω(ω2 − n2), ω2 �= n2

y = (sin nt − nt cos nt)/2n2, ω2 = n2

14. y =
∞∑

n=1

bn(ω sin nt − n sin ωt)/ω(ω2 − n2), ω �= 1, 2, 3, . . .

y =
∞∑

n=1
n�=m

bn(m sin nt − n sin mt)/m(m2 − n2) + bm(sin mt − mt cos mt)/2m2, ω = m

15. y = 4
π

∞∑
n=1

1
ω2 − (2n − 1)2

[
1

2n − 1
sin(2n − 1)t − 1

ω
sin ωt

]

16. y = cos ωt + 1
2ω2

(1 − cos ωt) + 4
π2

∞∑
n=1

cos(2n − 1)π t − cos ωt
(2n − 1)2[ω2 − (2n − 1)2π2]

Section 10.4, page 608

1. Odd 2. Neither
3. Odd 4. Even
5. Even 6. Neither

14. f (x) = 1
4

+ 4
π2

∞∑
n=1

1 − cos(nπ/2)

n2
cos

nπx
2

f (x) = 4
π2

∞∑
n=1

(nπ/2) − sin(nπ/2)

n2
sin

nπx
2

15. (a) f (x) = 1
2

+ 2
π

∞∑
n=1

(−1)n−1

2n − 1
cos

(2n − 1)πx
2

16. (a) f (x) =
∞∑

n=1

2
nπ

(
− cos nπ + 2

nπ
sin

nπ

2

)
sin

nπx
2

17. (a) f (x) = 1 18. (a) f (x) = 4
π

∞∑
n=1

sin(2n − 1)x
2n − 1

19. (a) f (x) =
∞∑

n=1

2
nπ

(
cos

nπ

3
+ cos

2nπ

3
− 2 cos nπ

)
sin

nx
3

20. (a) f (x) = 1
2

− 1
π

∞∑
n=1

sin 2nπx
n

21. (a) f (x) = L
2

+ 4L
π2

∞∑
n=1

cos[(2n − 1)πx/L]
(2n − 1)2

22. (a) f (x) = 2L
π

∞∑
n=1

sin(nπx/L)

n
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23. (a) f (x) = π

4
+ 1

π

∞∑
n=1

[
2π

n
sin

nπ

2
+ 4

n2

(
cos

nπ

2
− 1

)]
cos

nx
2

24. (a) f (x) = 2
∞∑

n=1

(−1)n

n
sin nx

25. (a) f (x) =
∞∑

n=1

[
4n2π2(1 + cos nπ)

n3π3
+ 16(1 − cos nπ)

n3π3

]
sin

nπx
2

26. (a) f (x) = 4
3

+ 16
π2

∞∑
n=1

1 + 3 cos nπ

n2
cos

nπx
4

27. (b) g(x) = 3
2

+ 6
π2

∞∑
n=1

1 − cos nπ

n2
cos

nπx
3

h(x) = 6
π

∞∑
n=1

1
n

sin
nπx

3

28. (b) g(x) = 1
4

+
∞∑

n=1

4 cos(nπ/2) + 2nπ sin(nπ/2) − 4
n2π2

cos
nπx

2

h(x) =
∞∑

n=1

4 sin(nπ/2) − 2nπ cos(nπ/2)

n2π2
sin

nπx
2

29. (b) g(x) = − 5
12

+
∞∑

n=1

12 cos nπ + 4
n2π2

cos
nπx

2

h(x) = −1
2

∞∑
n=1

n2π2(3 + 5 cos nπ) + 32(1 − cos nπ)

n3π3
sin

nπx
2

30. (b) g(x) = 1
4

+
∞∑

n=1

6n2π2(2 cos nπ − 5) + 324(1 − cos nπ)

n4π4
cos

nπx
3

h(x) =
∞∑

n=1

[
4 cos nπ + 2

nπ
+ 144 cos nπ + 180

n3π3

]
sin

nπx
3

40. (a) Extend f (x) antisymmetrically into (L, 2L]; that is, so that f (2L − x) = −f (x) for
0 ≤ x < L. Then extend this function as an even function into (−2L, 0).

Section 10.5, page 618

1. xX ′′ − λX = 0, T ′ + λT = 0 2. X ′′ − λxX = 0, T ′ + λtT = 0
3. X ′′ − λ(X ′ + X) = 0, T ′ + λT = 0 4. [p(x)X ′]′ + λr(x)X = 0, T ′′ + λT = 0
5. Not separable 6. X ′′ + (x + λ)X = 0, Y ′′ − λY = 0
7. u(x, t) = e−400π2 t sin 2πx − e−2500π2 t sin 5πx
8. u(x, t) = 2e−π2 t/16 sin(πx/2) − e−π2 t/4 sin πx + 4e−π2 t sin 2πx

9. u(x, t) = 100
π

∞∑
n=1

1 − cos nπ

n
e−n2π2 t/1600 sin

nπx
40

10. u(x, t) = 160
π2

∞∑
n=1

sin(nπ/2)

n2
e−n2π2 t/1600 sin

nπx
40

11. u(x, t) = 100
π

∞∑
n=1

cos(nπ/4) − cos(3nπ/4)

n
e−n2π2 t/1600 sin

nπx
40

12. u(x, t) = 80
π

∞∑
n=1

(−1)n+1

n
e−n2π2 t/1600 sin

nπx
40

13. t = 5, n = 16; t = 20, n = 8; t = 80, n = 4
14. (d) t = 673.35 15. (d) t = 451.60
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16. (d) t = 617.17
17. (b) t = 5, x = 33.20; t = 10, x = 31.13; t = 20, x = 28.62; t = 40, x = 25.73;

t = 100, x = 21.95; t = 200, x = 20.31
(e) t = 524.81

18. u(x, t) = 200
π

∞∑
n=1

1 − cos nπ

n
e−n2π2α2 t/400 sin

nπx
20

(a) 35.91◦C (b) 67.23◦C (c) 99.96◦C
19. (a) 76.73 s (b) 152.56 s (c) 1093.36 s
21. (a) awxx − bwt + (c − bδ)w = 0 (b) δ = c/b if b �= 0
22. X ′′ + μ2X = 0, Y ′′ + (λ2 − μ2)Y = 0, T ′ + α2λ2T = 0
23. r2R′′ + rR′ + (λ2r2 − μ2)R = 0, �′′ + μ2� = 0, T ′ + α2λ2T = 0

Section 10.6, page 627

1. u = 10 + 3
5 x 2. u = 30 − 5

4 x
3. u = 0 4. u = T
5. u = 0 6. u = T
7. u = T(1 + x)/(1 + L) 8. u = T(1 + L − x)/(1 + L)

9. (a) u(x, t) = 3x +
∞∑

n=1

70 cos nπ + 50
nπ

e−0.86n2π2 t/400 sin
nπx
20

(d) 160.29 s
10. (a) f (x) = 2x, 0 ≤ x ≤ 50; f (x) = 200 − 2x, 50 < x ≤ 100

(b) u(x, t) = 20 − x
5

+
∞∑

n=1

cne−1.14n2π2 t/(100)2
sin

nπx
100

,

cn = 800
n2π2

sin
nπ

2
− 40

nπ

(d) u(50, t) → 10 as t → ∞; 3754 s

11. (a) u(x, t) = 30 − x +
∞∑

n=1

cne−n2π2 t/900 sin
nπx
30

,

cn = 60
n3π3

[2(1 − cos nπ) − n2π2(1 + cos nπ)]

12. (a) u(x, t) = 2
π

+
∞∑

n=1

cne−n2π2α2 t/L2
cos

nπx
L

,

cn =
{

0, n odd;
−4/(n2 − 1)π , n even

(b) limt→∞ u(x, t) = 2/π

13. (a) u(x, t) = 200
9

+
∞∑

n=1

cne−n2π2 t/6400 cos
nπx
40

,

cn = − 160
3n2π2

(3 + cos nπ)

(c) 200/9

(d) 1543 s

14. (a) u(x, t) = 25
6

+
∞∑

n=1

cne−n2π2 t/900 cos
nπx
30

,

cn = 50
nπ

(
sin

nπ

3
− sin

nπ

6

)
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15. (b) u(x, t) =
∞∑

n=1

cne−(2n−1)2π2α2 t/4L2
sin

(2n − 1)πx
2L

,

cn = 2
L

∫ L

0
f (x) sin

(2n − 1)πx
2L

dx

16. (a) u(x, t) =
∞∑

n=1

cne−(2n−1)2π2 t/3600 sin
(2n − 1)πx

60
,

cn = 120
(2n − 1)2π2

[2 cos nπ + (2n − 1)π ]
(c) xm increases from x = 0 and reaches x = 30 when t = 104.4.

17. (a) u(x, t) = 40 +
∞∑

n=1

cne−(2n−1)2π2 t/3600 sin
(2n − 1)πx

60
,

cn = 40
(2n − 1)2π2

[6 cos nπ − (2n − 1)π ]

19. u(x) =

⎧⎪⎪⎨
⎪⎪⎩

T
x
a

[
ξ

ξ + (L/a) − 1

]
, 0 ≤ x ≤ a,

T
[

1 − L − x
a

1
ξ + (L/a) − 1

]
, a ≤ x ≤ L,

where ξ = κ2A2/κ1A1

20. (e) un(x, t) = e−μ2
nα2 t sin μnx

21. α2v′′ + s(x) = 0; v(0) = T1, v(L) = T2

wt = α2wxx; w(0, t) = 0, w(L, t) = 0, w(x, 0) = f (x) − v(x)

22. (a) v(x) = T1 + (T2 − T1)(x/L) + kLx/2 − kx2/2

(b) w(x, t) =
∞∑

n=1

cne−n2π2 t/400 sin
nπx
20

, cn = 160 (cos nπ − 1)

n3π3

23. (a) v(x) = T1 + (T2 − T1)x/L + kLx/6 − kx3/6L

(b) w(x, t) =
∞∑

n=1

cne−n2π2 t/400 sin
nπx
20

,

cn = 20
3

[
3m3π3(3 cos mπ − 1) + 60 cos mπ

m4π4

]

Section 10.7, page 640

1. (a) u(x, t) = 8
π2

∞∑
n=1

1
n2

sin
nπ

2
sin

nπx
L

cos
nπat

L

2. (a) u(x, t) = 8
π2

∞∑
n=1

1
n2

(
sin

nπ

4
+ sin

3nπ

4

)
sin

nπx
L

cos
nπat

L

3. (a) u(x, t) = 32
π3

∞∑
n=1

2 + cos nπ

n3
sin

nπx
L

cos
nπat

L

4. (a) u(x, t) = 4
π

∞∑
n=1

sin(nπ/2) sin(nπ/L)

n
sin

nπx
L

cos
nπat

L

5. (a) u(x, t) = 8L
aπ3

∞∑
n=1

1
n3

sin
nπ

2
sin

nπx
L

sin
nπat

L

6. (a) u(x, t) = 8L
aπ3

∞∑
n=1

sin(nπ/4) + sin(3nπ/4)

n3
sin

nπx
L

sin
nπat

L

7. (a) u(x, t) = 32L
aπ4

∞∑
n=1

cos nπ + 2
n4

sin
nπx

L
sin

nπat
L
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8. (a) u(x, t) = 4L
aπ2

∞∑
n=1

sin(nπ/2) sin(nπ/L)

n2
sin

nπx
L

sin
nπat

L

9. u(x, t) =
∞∑

n=1

cn sin
(2n − 1)πx

2L
cos

(2n − 1)πat
2L

,

cn = 2
L

∫ L

0
f (x) sin

(2n − 1)πx
2L

dx

10. (a) u(x, t) = 8
π

∞∑
n=1

1
2n − 1

sin
(2n − 1)π

4
sin

(2n − 1)π

2L
sin

(2n − 1)πx
2L

cos
(2n − 1)πat

2L

11. (a) u(x, t) = 512
π4

∞∑
n=1

(2n − 1)π + 3 cos nπ

(2n − 1)4
sin

(2n − 1)πx
2L

cos
(2n − 1)πat

2L

14. (b) φ(x + at) represents a wave moving in the negative x direction with speed a > 0.

15. (a) 248 ft/s (b) 49.6πn rad/s (c) Frequencies increase; modes are unchanged.
21. r2R′′ + rR′ + (λ2r2 − μ2)R = 0, �′′ + μ2� = 0, T ′′ + λ2a2T = 0
23. (b) an = a

√
1 + (γ 2L2/n2π2) (c) γ = 0

24. (a) cn = 20
n2π2

(
2 sin

nπ

2
− sin

2nπ

5
− sin

3nπ

5

)

Section 10.8, page 653

1. (a) u(x, y) =
∞∑

n=1

cn sin
nπx

a
sinh

nπy
a

, cn = 2/a
sinh(nπb/a)

∫ a

0
g(x) sin

nπx
a

dx

(b) u(x, y) = 4a
π2

∞∑
n=1

1
n2

sin(nπ/2)

sinh(nπb/a)
sin

nπx
a

sinh
nπy

a

2. u(x, y) =
∞∑

n=1

cn sin
nπx

a
sinh

nπ(b − y)

a
, cn = 2/a

sinh(nπb/a)

∫ a

0
h(x) sin

nπx
a

dx

3. (a) u(x, y) =
∞∑

n=1

c(1)
n sinh

nπx
b

sin
nπy

b
+

∞∑
n=1

c(2)
n sin

nπx
a

sinh
nπ(b − y)

a
,

c(1)
n = 2/b

sinh(nπa/b)

∫ b

0
f (y) sin

nπy
b

dy, c(2)
n = 2/a

sinh(nπb/a)

∫ a

0
h(x) sin

nπx
a

dx

(b) c(1)
n = 2

nπ sinh(nπa/b)
, c(2)

n = − 2
n3π3

(n2π2 − 2) cos nπ + 2
sinh(nπb/a)

5. u(r, θ) = c0

2
+

∞∑
n=1

r−n(cn cos nθ + kn sin nθ);

cn = an

π

∫ 2π

0
f (θ) cos nθ dθ , kn = an

π

∫ 2π

0
f (θ) sin nθ dθ

6. (a) u(r, θ) =
∞∑

n=1

cnrn sin nθ , cn = 2
πan

∫ π

0
f (θ) sin nθ dθ

(b) cn = 4
πan

1 − cos nπ

n3

7. u(r, θ) =
∞∑

n=1

cnrnπ/α sin
nπθ

α
, cn = (2/α)a−nπ/α

∫ α

0
f (θ) sin

nπθ

α
dθ

8. (a) u(x, y) =
∞∑

n=1

cne−nπy/a sin
nπx

a
, cn = 2

a

∫ a

0
f (x) sin

nπx
a

dx

(b) cn = 4a2

n3π3
(1 − cos nπ) (c) y0

∼= 6.6315
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10. (b) u(x, y) = c0 +
∞∑

n=1

cn cosh
nπx

b
cos

nπy
b

, cn = 2/nπ

sinh(nπa/b)

∫ b

0
f (y) cos

nπy
b

dy

11. u(r, θ) = c0 +
∞∑

n=1

rn(cn cos nθ + kn sin nθ),

cn = 1
nπan−1

∫ 2π

0
g(θ) cos nθ dθ , kn = 1

nπan−1

∫ 2π

0
g(θ) sin nθ dθ ;

necessary condition is
∫ 2π

0
g(θ) dθ = 0.

12. (a) u(x, y) =
∞∑

n=1

cn sin
nπx

a
cosh

nπy
a

, cn = 2/a
cosh(nπb/a)

∫ a

0
g(x) sin

nπx
a

dx

(b) cn = 4a sin(nπ/2)

n2π2 cosh(nπb/a)

13. (a) u(x, y) =
∞∑

n=1

cn sinh
(2n − 1)πx

2b
sin

(2n − 1)πy
2b

,

cn = 2/b
sinh[(2n − 1)πa/2b]

∫ b

0
f (y) sin

(2n − 1)πy
2b

dy

(b) cn = 32b2

(2n − 1)3π3 sinh[(2n − 1)πa/2b]
14. (a) u(x, y) = c0y

2
+

∞∑
n=1

cn cos
nπx

a
sinh

nπy
a

,

c0 = 2
ab

∫ a

0
g(x) dx, cn = 2/a

sinh(nπb/a)

∫ a

0
g(x) cos

nπx
a

dx

(b) c0 = 2
b

(
1 + a4

30

)
, cn = − 24a4(1 + cos nπ)

n4π4 sinh(nπb/a)

16. (a) u(x, z) = b + αa
2

− 4αa
π2

∞∑
n=1

cos[(2n − 1)πx/a] cosh[(2n − 1)πz/a]
(2n − 1)2 cosh[(2n − 1)πb/a]

C H A P T E R 11 Section 11.1, page 670

1. Homogeneous 2. Nonhomogeneous
3. Nonhomogeneous 4. Homogeneous
5. Nonhomogeneous 6. Homogeneous
7. (a) φn(x) = sin

√
λn x, where

√
λn satifies

√
λ = − tan

√
λ π ; (b) No

(c) λ1
∼= 0.6204, λ2

∼= 2.7943
(d) λn

∼= (2n − 1)2/4 for large n
8. (a) φn(x) = cos

√
λn x, where

√
λn satisfies

√
λ = cot

√
λ; (b) No

(c) λ1
∼= 0.7402, λ2

∼= 11.7349
(d) λn

∼= (n − 1)2π2 for large n
9. (a) φn(x) = sin

√
λn x + √

λn cos
√

λn x, where
√

λn satisfies
(λ − 1) sin

√
λ − 2

√
λ cos

√
λ = 0; (b) No

(c) λ1
∼= 1.7071, λ2

∼= 13.4924
(d) λn

∼= (n − 1)2π2 for large n
10. (a) For n = 1, 2, 3, . . . , φn(x) = sin μnx − μn cos μnx and λn = −μ2

n, where μn satisfies
μ = tan μ.

(b) Yes; λ0 = 0, φ0(x) = 1 − x
(c) λ1

∼= −20.1907, λ2
∼= −59.6795

(d) λn
∼= −(2n + 1)2π2/4 for large n

12. μ(x) = e−x2
13. μ(x) = 1/x

14. μ(x) = e−x 15. μ(x) = (1 − x2)−1/2
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16. X ′′ + λX = 0, T ′′ + cT ′ + (k + λa2)T = 0
17. (a) s(x) = ex (b) λn = n2π2, φn(x) = ex sin nπx; n = 1, 2, 3, . . .
18. Positive eigenvalues λ = λn, where

√
λn satisfies

√
λ = 2

3 tan 3
√

λL; corresponding eigen-
functions are φn(x) = e−2x sin 3

√
λn x. If L = 1

2 , λ0 = 0 is eigenvalue,φ0(x) = xe−2x is eigen-
function; if L �= 1

2 , λ = 0 is not eigenvalue. If L ≤ 1
2 , there are no negative eigenvalues;

if L > 1
2 , there is one negative eigenvalue λ = −μ2, where μ is a root of μ = 2

3 tanh 3μL;
corresponding eigenfunction is φ−1(x) = e−2x sinh 3μx.

19. No real eigenvalues.
20. Only eigenvalue is λ = 0; eigenfunction is φ(x) = x − 1.
21. (a) 2 sin

√
λ − √

λ cos
√

λ = 0
(c) λ1

∼= 18.2738, λ2
∼= 57.7075

(d) 2 sinh
√

μ − √
μ cosh

√
μ = 0, μ = −λ

(e) λ−1
∼= −3.6673

24. (a) λn = μ4
n, where μn is a root of sin μL sinh μL = 0, hence λn = (nπ/L)4;

λ1
∼= 97.409/L4, λ2

∼= 1558.5/L4, φn(x) = sin(nπx/L)

(b) λn = μ4
n, where μn is a root of sin μL cosh μL − cos μL sinh μL = 0;

λ1
∼= 237.72/L4, λ2

∼= 2496.5/L4, φn = sin μnx sinh μnL − sin μnL sinh μnx
sinh μnL

(c) λn = μ4
n, where μn is a root of 1 + cosh μL cos μL = 0; λ1

∼= 12.362/L4,
λ2

∼= 485.52/L4

φn(x) = [(sin μnx − sinh μnx)(cos μnL + cosh μnL) + (sin μnL + sinh μnL)(cosh μnx − cos μnx)]
cos μnL + cosh μnL

25. (c) φn(x) = sin
√

λn x, where λn satisfies cos
√

λn L − γ
√

λn L sin
√

λn L = 0
(d) λ1

∼= 1.1597/L2, λ2
∼= 13.276/L2

Section 11.2, page 683

1. φn(x) = √
2 sin(n − 1

2 )πx; n = 1, 2, . . . 2. φn(x) = √
2 cos(n − 1

2 )πx; n = 1, 2, . . .
3. φ0(x) = 1, φn(x) = √

2 cos nπx; n = 1, 2, . . .

4. φn(x) =
√

2 cos
√

λn x

(1 + sin2 √
λn)1/2

, where λn satisfies cos
√

λn − √
λn sin

√
λn = 0

5. φn(x) = √
2 ex sin nπx; n = 1, 2, . . . 6. an = 2

√
2

(2n − 1)π
; n = 1, 2, . . .

7. an = 4
√

2(−1)n−1

(2n − 1)2π2
; n = 1, 2, . . .

8. an = 2
√

2
(2n − 1)π

{1 − cos[(2n − 1)π/4]}; n = 1, 2, . . .

9. an = 2
√

2 sin(n − 1
2 )(π/2)

(n − 1
2 )2π2

; n = 1, 2, . . .

In Problems 10 through 13, αn = (1 + sin2 √
λn)

1/2 and cos
√

λn − √
λn sin

√
λn = 0.

10. an =
√

2 sin
√

λn√
λnαn

; n = 1, 2, . . . 11. an =
√

2(2 cos
√

λn − 1)

λnαn
; n = 1, 2, . . .

12. an =
√

2(1 − cos
√

λn)

λnαn
; n = 1, 2, . . . 13. an =

√
2 sin(

√
λn/2)√

λnαn
; n = 1, 2, . . .

14. Not self-adjoint 15. Self-adjoint
16. Not self-adjoint 17. Self-adjoint
18. Self-adjoint
21. (a) If a2 = 0 or b2 = 0, then the corresponding boundary term is missing.
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25. (a) λ1 = π2/L2; φ1(x) = sin(πx/L)

(b) λ1
∼= (4.4934)2/L2; φ1(x) = sin

√
λ1 x − √

λ1 x cos
√

λ1 L
(c) λ1 = (2π)2/L2; φ1(x) = 1 − cos(2πx/L)

26. λ1 = π2/4L2; φ1(x) = 1 − cos(πx/2L)

27. (a) X ′′ − (v/D)X ′ + λX = 0, X(0) = 0, X ′(L) = 0; T ′ + λDT = 0

(e) c(x, t) =
∞∑

n=1

ane−λnDtevx/2D sin μnx, where λn = μ2
n + (v2/4D2);

an =
4Dμ2

n

∫ L

0
e−vx/2Df (x) sin μnx dx

(2LDμ2
n + v sin2

μnL)

28. (a) ut + vux = Duxx, u(0, t) = 0, ux(L, t) = 0, u(x, 0) = −c0

(b) u(x, t) =
∞∑

n=1

bne−λnDtevx/2D sin μnx, where λn = μ2
n + (v2/4D2);

bn = 8c0D2μ2(2Dμne−vL/2D cos μnL + ve−vL/2D sin μnL − 2Dμn)

(v2 + 4D2μ2
n)(2LDμ2

n + v sin2
μnL)

Section 11.3, page 696

1. y = 2
∞∑

n=1

(−1)n+1 sin nπx
(n2π2 − 2)nπ

2. y = 2
∞∑

n=1

(−1)n+1 sin(n − 1
2 )πx

[(n − 1
2 )2π2 − 2](n − 1

2 )2π2

3. y = −1
4

− 4
∞∑

n=1

cos(2n − 1)πx
[(2n − 1)2π2 − 2](2n − 1)2π2

4. y = 2
∞∑

n=1

(2 cos
√

λn − 1) cos
√

λn x

λn(λn − 2)(1 + sin2 √
λn)

5. y = 8
∞∑

n=1

sin(nπ/2) sin nπx
(n2π2 − 2)n2π2

6–9. For each problem the solution is

y =
∞∑

n=1

cn

λn − μ
φn(x), cn =

∫ 1

0
f (x)φn(x) dx, μ �= λn,

where φn(x) is given in Problems 1–4, respectively, in Section 11.2, and λn is the corresponding
eigenvalue. In Problem 8 summation starts at n = 0.

10. a = −1
2

, y = 1
2π2

cos πx + 1
π2

(
x − 1

2

)
+ c sin πx

11. No solution 12. a is arbitrary, y = c cos πx + a/π2

13. a = 0, y = c sin πx − (x/2π) sin πx 17. v(x) = a + (b − a)x
18. v(x) = 1 − 3

2 x

19. u(x, t) = √
2
[
−4c1

π2
+

(
4c1

π2
+ 1√

2

)
e−π2 t/4

]
sin

πx
2

− √
2

∞∑
n=2

4cn

(2n − 1)2π2
[1 − e−(n−1/2)2π2 t] sin(n − 1

2 )πx,

cn = 4
√

2(−1)n+1

(2n − 1)2π2
, n = 1, 2, . . .
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20. u(x, t) = √
2

∞∑
n=1

[
cn

λn − 1
(e−t − e−λnt) + αne−λnt

]
cos

√
λn x

(1 + sin2 √
λn)1/2

,

cn =
√

2 sin
√

λn√
λn(1 + sin2 √

λn)1/2
, αn =

√
2(1 − cos

√
λn)

λn(1 + sin2 √
λn)1/2

,

and λn satisfies cos
√

λn − √
λn sin

√
λn = 0.

21. u(x, t) = 8
∞∑

n=1

sin(nπ/2)

n4π4
(1 − e−n2π2 t) sin nπx

22. u(x, t) = √
2

∞∑
n=1

cn(e−t − e−(n−1/2)2π2 t) sin(n − 1
2 )πx

(n − 1
2 )2π2 − 1

,

cn = 2
√

2(2n − 1)π + 4
√

2(−1)n

(2n − 1)2π2

23. (a) r(x)wt = [p(x)wx]x − q(x)w, w(0, t) = 0, w(1, t) = 0, w(x, 0) = f (x) − v(x)

24. u(x, t) = x2 − 2x + 1 + 4
π

∞∑
n=1

e−(2n−1)2π2 t sin(2n − 1)πx
2n − 1

25. u(x, t) = − cos πx + e−9π2 t/4 cos(3πx/2)

31–34. In all cases solution is y =
∫ 1

0
G(x, s)f (s) ds, where G(x, s) is given below.

31. G(x, s) =
{

1 − x, 0 ≤ s ≤ x
1 − s, x ≤ s ≤ 1

32. G(x, s) =
{

s(2 − x)/2, 0 ≤ s ≤ x
x(2 − s)/2, x ≤ s ≤ 1

33. G(x, s) =
{

cos s sin(1 − x)/ cos 1, 0 ≤ s ≤ x
sin(1 − s) cos x/ cos 1, x ≤ s ≤ 1

34. G(x, s) =
{

s, 0 ≤ s ≤ x
x, x ≤ s ≤ 1

Section 11.4, page 707

1. y =
∞∑

n=1

cn

λn − μ
J0(

√
λn x), cn =

∫ 1

0
f (x)J0(

√
λn x) dx

/∫ 1

0
xJ2

0 (
√

λn x) dx,

√
λn satisfies J0(

√
λ) = 0.

2. (c) y = −c0

μ
+

∞∑
n=1

cn

λn − μ
J0(

√
λn x);

c0 = 2
∫ 1

0
f (x) dx; cn =

∫ 1

0
f (x)J0(

√
λn x) dx

/∫ 1

0
xJ2

0 (
√

λn x) dx, n = 1, 2, . . . ;

√
λn satisfies J ′

0(
√

λ) = 0.

3. (d) an =
∫ 1

0
xJk(

√
λn x)f (x) dx

/∫ 1

0
xJ2

k(
√

λn x) dx

(e) y =
∞∑

n=1

cn

λn − μ
Jk(

√
λn x), cn =

∫ 1

0
f (x)Jk(

√
λn x) dx

/∫ 1

0
xJ2

k(
√

λn x) dx

4. (b) y =
∞∑

n=1

cn

λn − μ
P2n−1(x), cn =

∫ 1

0
f (x)P2n−1(x) dx

/∫ 1

0
P2

2n−1(x) dx
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Section 11.5, page 713

1. (b) u(ξ , 2) = f (ξ + 1), u(ξ , 0) = 0, 0 ≤ ξ ≤ 2
u(0, η) = u(2, η) = 0, 0 ≤ η ≤ 2

2. u(r, t) =
∞∑

n=1

knJ0(λnr) sin λnat, kn = 1
λna

∫ 1

0
rJ0(λnr)g(r) dr

/∫ 1

0
rJ2

0 (λnr) dr

3. Superpose the solution of Problem 2 and the solution [Eq. (21)] of the example in the
text.

6. u(r, z) =
∞∑

n=1

cne−λnzJ0(λnr), cn =
∫ 1

0
rJ0(λnr)f (r) dr

/∫ 1

0
rJ2

0 (λnr) dr,

and λn satisfies J0(λ) = 0.

7. (b) v(r, θ) = 1
2 c0J0(kr) +

∞∑
m=1

Jm(kr)(bm sin mθ + cm cos mθ),

bm = 1
πJm(kc)

∫ 2π

0
f (θ) sin mθ dθ ; m = 1, 2, . . .

cm = 1
πJm(kc)

∫ 2π

0
f (θ) cos mθ dθ ; m = 0, 1, 2, . . .

8. cn =
∫ 1

0
rf (r)J0(λnr) dr

/∫ 1

0
rJ2

0 (λnr) dr

10. u(ρ, s) =
∞∑

n=0

cnρ
nPn(s), where cn =

∫ 1

−1
f (arccos s)Pn(s) ds

/∫ 1

−1
P2

n(s) ds;

Pn is the nth Legendre polynomial and s = cos φ.

Section 11.6, page 722

1. n = 21 2. (a) bm = (−1)m+1
√

2/mπ (c) n = 20
3. (a) bm = 2

√
2(1 − cos mπ)/m3π3 (c) n = 1

7. (a) f0(x) = 1 (b) f1(x) = √
3(1 − 2x) (c) f2(x) = √

5(−1 + 6x − 6x2)

(d) g0(x) = 1, g1(x) = 2x − 1, g2(x) = 6x2 − 6x + 1
8. P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, P3(x) = (5x3 − 3x)/2
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I N D E X

A
Abel, Niels Henrik, 153, 228
Abel’s formula, 153, 172, 174,

225, 240
for systems of equations, 388

Acceleration of convergence,
602

Adams, John Couch, 464
Adams–Bashforth formula

fourth order, 465
second order, 465

Adams–Moulton formula
fourth order, 466
second order, 466

Adaptive numerical method,
451, 457, 462

Adjoint
differential equation, 156
matrix, 364

Advection, 686
Airy, George Biddell, 255
Airy equation, 157, 255–259,

264, 278, 303, 322
Amplitude modulation, 213
Amplitude,

of simple harmonic motion,
196

Analytic function, 246, 262
Angular momentum

principle of, 26, 500
Annihilators,

method of, 237–238

Aquifer
flow in, 656, 686

Asymptotic stability, see
Stability

Augmented matrix, 369, 374
Autonomous

equation, 78
system, 498

B
Backward differentiation

formulas, 468–469
Backward Euler formula,

446–448
Basin of attraction, 503, 515,

527, 549–551
Beat, 213, 337–339
Bendixson, Ivar Otto, 558
Bernoulli, Daniel, 27, 91, 92, 611,

631
Bernoulli, Jakob, 27, 67, 77, 352
Bernoulli, Johann, 27, 67, 268
Bernoulli equation, 77
Bessel, Friedrich Wilhelm, 292
Bessel equation of order:

k, 708
nu, 156, 157, 250, 276, 278, 292,

302, 671, 703
one, 283, 298–301, 303
one-half, 296–298, 302
zero, 283, 292–296, 302, 322,

656, 703, 711

Bessel functions, 27
J0(x), 283, 293, 296, 302, 321,

322, 704, 707, 708, 711,
715

asymptotic approximation
to, 296

Laplace transform of, 321
zeros of, 303, 704, 712

J1(x), 284, 299, 302
J−1/2(x), 298
J1/2(x), 298
Y0(x), 295, 296, 704, 711

asymptotic approximation
to, 296

Y1(x), 301
orthogonality of, 304, 707, 708

Bessel inequality, 724
Bessel series expansion, 707, 712
Bifurcation diagram, 93
Bifurcation point, 92–94, 127,

508, 532–533, 564–566, 568
Hopf, 564
pitchfork, 93
saddle-node, 93
transcritical, 94

Boltzmann, Ludwig, 62
Boundary conditions, 578

for elastic string, 632, 641
for heat conduction equation,

613, 621, 624, 659
for Laplace’s equation, 647
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nonhomogeneous, 621–623,
695

periodic, 683, 721
separated, 674

Boundary layer, 475
Boundary value problems:

heat conduction equation,
611–631, 657–660,
692–695

homogeneous, 578, 673–687
Laplace’s equation, 646–656
nonhomogeneous, 578,

687–702
self-adjoint, 681–682, 706
singular, 702–709
Sturm–Liouville, 673–681
two-point, 577–584, 667
wave equation, 631–646,

661–663, 698, 710–712
,see also Homogeneous

boundary value
problems,
Nonhomogeneous
boundary value problems

Brachistochrone, 27, 67
Brusselator, 565
Buckling of elastic column, 685

C
Capacitance, 201
Cardano, Girolamo, 228
Cauchy-Euler equation, 268
Cayley, Arthur, 364
Center, 403, 493, 508, 513, 519
Change of independent

variable, 164–166, 303
for Euler equation, 165, 271

Chaotic solution
of logistic difference

equation, 128, 132
of Lorenz equations, 571

Characteristic equation, 140,
226, 316

complex roots, 157, 228
repeated, 230

real and equal roots, 166, 230
real and unequal roots, 140,

227

Characteristic polynomial, 226,
316

Chebyshev, Pafnuty L., 265, 544
Chebyshev equation, 265, 283,

671, 709
Chebyshev polynomials, 265,

709
Chemical reactions, 94
Collocation

method of, 717
Competing species, 520–533
Complementary solution, 176
Complete set of functions, 719
Complex exponential function,

158–159
Compound interest, 54–56
Computer use in differential

equations, 23
Conjugate matrix, 364
Continuous spectrum, 706
Convergence

of an improper integral, 305
of a numerical

approximation, 448
of a power series, 244

Convergence in mean, 719
Converging solutions, 4, 13, 108
Convolution integral, 191,

345–353
Laplace transform of, 345–348

Cosine series, 604, 680
Cramer, Gabriel, 240
Cramer’s rule, 240
Critical amplitude, 86
Critical damping, 199
Critical point:

approached by trajectory, 493
center of linear system, 403,

493, 508, 519
definition of, 486, 498
for first order equation, 80
improper node of linear

system, 425, 490
isolated, 509
node of linear system, 395,

404, 487
nonisolated, 496

proper node of linear system,
488

saddle point of linear system,
393, 404, 488

spiral point of linear system,
403, 404, 491

stability of, see Stability of
critical point

Cycloid, 68, 353

D
D’Alembert, Jean, 166, 611, 631,

642
Dal Ferro, Scipione, 228
Damping force, 193, 500
Decay, radioactive, 17
Degenerate node, see Improper

node
Diagonalization

of homogeneous systems,
419–420

of matrices, 417–419
of nonhomogeneous systems,

432–434
Difference equation, 121–132

equilibrium solution of, 122
first order, 121–132
initial condition for, 121
iteration of, 122
linear, 121–124
logistic, 124–132

chaotic solutions of, 128,
132

nonlinear, 121, 124–132
solution of, 121

Differential operator, 145, 674
Diffusion equation

,see also Heat conduction
equation

Dimensionless variables, 619,
641

Dirac, Paul A. M., 340
Dirac delta function, 340, 687,

702
Laplace transform of, 340–341

Direction field,
for first order equations, 3, 5
for systems, 390
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Dirichlet, Peter Gustav Lejeune,
647, 678

Dirichlet problem
for circle, 651–654
for rectangle, 648–650,

653–654
for sector, 654
for semi-infinite strip, 654
for semicircle, 654

Discontinuous coefficients, 77
Discontinuous forcing function,

77, 331–339
Dispersion

mechanical, 686
Dispersive waves, 645
Divergence:

of an improper integral, 305
of a power series, 244

Diverging solutions, 6, 11, 109
Drag force, 2, 9
Duffing equation, 507
Duffing, Georg, 507

E
Eigenfunctions, 581, 667

normalized, 678
orthogonality of, 677, 706
series of, 680–681, 688,

706–707, 719
Eigenvalues

of linear homogeneous
boundary value
problems, 581, 667

of Sturm–Liouville problem
existence, 676
real, 582, 584, 676
simple, 677
when positive, 684

Eigenvalues of matrix, 379–383
algebraic multiplicity, 380
geometric multiplicity, 380
real, 382
simple, 380

Eigenvectors of matrix, 379–383
generalized, 426
linear independence of, 381
normalized, 380
orthogonality of, 382

Elastic bar
longitudinal vibrations of, 673,

699
transverse vibrations of, 672

Elastic column
buckling of, 685

Elastic membrane
vibrations of, 644, 710–712

Elastic string:
boundary value problems for,

631–646
derivation of wave equation,

661–663
free at one end, 641
general problem, 638–640
infinite length, 642–644
justification of solution,

637–638, 644
natural frequencies of, 635
natural modes of, 635
propagation of discontinuities

in initial data, 638
wavelength of, 635

Electrical networks, 18, 201–202,
319, 356, 361–362

Elliptic integral, 520
Environmental carrying

capacity, 81
Epidemics, 91–92
Equidimensional equation, 268
Equilibrium solution, 3, 6, 13, 80,

122, 486
,see also Critical point

Error:
for Adams–Bashforth

formula, 465
for Adams–Moulton formula,

466
effect of step size, 449,

470–472
for Euler method, 449–452
for Fourier series, 591–592,

599
global truncation, 448, 450,

470–472
for improved Euler method,

455, 458
local truncation, 448

mean square, 717
for modified Euler method,

459
round-off, 448, 453, 470–472
for Runge–Kutta method, 460

Escape velocity, 58–59
Euler, Leonhard, 102, 610, 611,

631, 646
Euler equation, 165, 174,

268–652
change of independent

variable, 165, 271
Euler formula for exp(it), 158,

231
Euler method, 101–111,

443–453, 481
convergence of, 111
global truncation error, 450,

452
local truncation error,

449–451
Euler, Leonhard, 27
Euler–Fourier formulas,

587–588
Euler–Máscheroni constant, 295
Even function, 603
Even periodic extension, 606
Exact equations, 94–98

necessary and sufficient
condition for existence of
solutions, 28, 96

for second order equations,
156

Exchange of stability, 94, 127
Existence and uniqueness

theorems, 23
for first order equations,

68–72, 111–121
proof of, 112–118

for nth order linear equations,
220

for second order linear
equations, 146

for series solution of second
order linear equations,
262, 289

for systems of first order
equations, 358
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Exponential growth, 78
Exponential matrix, 416–417,

421
Exponential order

functions of, 309
Exponents at the singularity,

280, 285

F
Falling object problem, 2–4,

13–15
Fehlberg, Erwin, 463
Feigenbaum, Mitchell, 132
Feigenbaum number, 132
Ferrari, Ludovico, 228
First order ordinary differential

equations:
applications of, 50–68, 78–94
Bernoulli, 77
direction field, 3, 5
exact, 94–98
existence and uniqueness

theorems, 68–72, 111–121
proof of, 112–118

general solution of, 12, 32, 36,
73

graphical construction of
integral curves, 74

homogeneous, 27, 49–50
implicit solutions, 74
integrating factor for, 32, 36,

98–99
interval of definition, 37, 45,

47, 72–73
linear, 27, 31–41
nonlinear, 68–77
numerical solution of, see

Numerical methods
separable, 42–50
series solution of, 266
systems of, see Systems

Fitzhugh, Richard, 566
Fitzhugh–Nagumo equations,

566
Fourier, Joseph, 584, 611
Fourier coefficients, 718

Fourier series, 584–611
acceleration of convergence,

602
choice of series, 606–607
convergence of, 596, 602
convergence of partial sums,

591, 598
cosine series, 604, 680
error, 591–592, 599
Euler–Fourier formulas,

587–588
Gibbs phenomenon, 599, 606
integration of, 587
orthogonality of sines and

cosines, 586–587
Parseval equation, 601, 610,

645, 724
periodicity of sines and

cosines, 585–586
sawtooth wave, 605, 610
sine series, 605, 679
specialized kinds, 610
square wave, 597, 609
triangular wave, 588, 591, 609

Fredholm, Erik Ivar, 690
Fredholm alternative theorem,

690
Frequency, natural

of simple harmonic motion,
195

of vibrating string, 635
Frobenius, Ferdinand Georg,

279, 364, 485
Frobenius

method of, 279
Fuchs, Immanuel Lazarus, 263,

485
Fundamental matrix, 413–422,

426
Fundamental modes of

vibration, 408
Fundamental set of solutions,

150, 151, 221, 387, 388
Fundamental solutions

of heat conduction equation,
615, 625

of Laplace’s equation, 649,
652

of wave equation, 634, 639
Fundamental theorem of

algebra, 226

G
Galois, Evariste, 228
Gamma function, 311
Gauss, Carl Friedrich, 226, 368
Gaussian elimination, 368
Gear, C. William, 468
General solution of linear

equations:
first order, 12, 32, 36, 73
nth order, 221
second order, 141, 150, 161,

168, 175
systems of first order

equations, 387
Generalized function, 340
Gibbs, Josiah Willard, 599
Gibbs phenomenon, 599, 606
Global asymptotic stability, 516
Gompertz, Benjamin, 89
Gompertz equation, 89
Graphical construction of

integral curves, 74
Gravity, 2, 58
Green, George, 699
Green’s function, 699–702

H
Half-life, 17, 61
Harvesting a renewable

resource, 90–91
Heat conduction equation, 19,

612, 658
bar with insulated ends,

623–627
boundary conditions, 613, 621,

624, 659
derivation of, 657–660
with external heat source, 630
fundamental solutions of, 615,

625
nonhomogeneous boundary

conditions, 621–623
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nonhomogeneous source
term, 660, 692–695

in polar coordinates, 620
smoothing of discontinuities

in initial conditions, 621
solution of fundamental

problem, 613–616
steady-state solution, 622
transient solution, 622

Heaviside, Oliver, 308
Heaviside function, 323
von Helmholtz, Hermann, 715
Helmholtz equation, 715
Hereditary systems, 346
Hermite, Charles, 260, 364
Hermite equation, 260, 278, 671
Hermite polynomials, 260
Hermitian matrix, 260, 382, 397,

417, 418, 423, 681, 699
Heun, Karl, 454
History of differential

equations, 26–29
Hodgkin, Alan L., 532
Hodgkin–Huxley equations,

532, 566
Homogeneous algebraic

equations, 374
Homogeneous boundary value

problems, 578, 667
eigenfunctions, 581, 667
eigenvalues, 581, 667
singular Sturm–Liouville,

702–709
Sturm–Liouville, 673–687

Homogeneous differential
equations,

with constant coefficients, 28,
137–145, 157–174,
226–234

systems, 390–432
definition of, 138, 359
general theory of, 145–157,

220–223, 385–390
Homogeneous first order

differential equations, 27,
49–50

Hooke, Robert, 192
Hooke’s law, 192

Hopf, Eberhard, 564
Hopf bifurcation, 564
Huxley, Andrew F., 532
Huygens, Christian, 352
Hypergeometric equation, 291

I
Identity matrix, 367
Implicit numerical method, 447,

466, 478
Implicit solutions, 74
Improper integrals, 305–307

comparison theorem for, 307
Improper node, 425, 490, 513
Improved Euler method,

454–459
Impulse functions, 339–345
Impulse of force, 339
Impulse response, 350
Indicial equation, 280, 285, 289
Inductance, 201
Initial conditions, 12, 75, 121,

138, 220, 358
propagation of discontinuities

for wave equation, 638
smoothing of discontinuities

for heat conduction
equation, 621

Initial value problem, 12, 138,
220, 358

Laplace transform of, 312–320
initial value problem, 44
Inner product:

for functions, 586, 675
for vectors, 367

Instability:
of critical point, 83, 122, 124,

494, 499, 501, 547
of numerical method, 473–478
of periodic orbit, 557
,see also Diverging solutions

Integral curves, 12, 74
Integral equation, 112

Volterra, 351
Laplace transform of, 351

Integral transform, 307
Integrating factor, 28, 32, 36,

98–99, 156

Integro-differential equation,
352

Laplace transform of, 352
Interval of convergence, 244
Inverse Laplace transform, 316

as linear operator, 318
uniqueness of, 316

Inverse matrix, 368–370
Invertible matrix, 368
Irregular singular point, 274,

291–292
Iteration

of difference equation, 122
method of, 113
,see also Successive

approximations

J
Jacobi, Carl Gustav Jacob, 511
Jacobian matrix, 511, 568
Jordan, Camille, 364, 427
Jordan form of matrix, 426–428,

430, 431
Jump discontinuity, 306, 597, 638

K
Kernel,

of convolution, 191
of integral transform, 308

Kirchhoff, Gustav, 201
Kirchhoff’s laws, 201, 361
Kronecker, Leopold, 678
Kronecker delta, 678
Kutta, M. Wilhelm, 460

L
Lagrange, Joseph-Louis, 28, 186,

584, 611, 631
Lagrange’s identity, 674, 705
Laguerre, Edmond Nicolas, 283
Laguerre equation, 283, 671
Laplace, Pierre-Simon de, 28,

308, 646
Laplace transform, 305–353

of convolution, 345–348
definition of, 308
of derivatives, 312–314
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of Dirac delta function,
340–341

existence of, 308
of initial value problems,

312–320
of integral equations, 351
of integro-differential

equations, 352
inverse of, 316
as linear operator, 310
of periodic functions, 330
of rectified sine wave, 331
of sawtooth wave, 331
of square wave, 330
for systems of equations,

438–439
table of, 318
translation formula, 325, 328
of unit step function, 325

Laplace’s equation, 28, 646–656,
713

boundary conditions, 647
in cylindrical coordinates, 656,

714
Dirichlet problem, 647

for circle, 651–654
for rectangle, 648–650,

653–654
for sector, 654
semi-infinite strip, 654
for semicircle, 654

fundamental solutions of, 649,
652

mixed problem, 655
Neumann problem, 647

for circle, 655
for rectangle, 655

in polar coordinates, 651
in spherical coordinates, 715

Legendre, Adrien Marie, 153,
266

Legendre equation of order
alpha, 156, 157, 250, 264,
266–268, 274, 278, 282, 322,
703, 709, 716

Legendre polynomials, 267, 709,
723

Leibniz, Gottfried Wilhelm, 26,
67, 77, 352, 609

Length, of a vector, 367
L’Hospital, Marquis de, 67
Liapunov, Alexandr M., 544
Liapunov function, 547
Liapunov theorems, 546
Liapunov’s second method,

543–554
Libby, Willard F., 61
Liénard, Alfred-Marie, 520
Liénard equation, 520, 552
Limit cycle, 557
Linear dependence and

independence,
of functions, 221, 226
of vector functions, 378
of vectors, 377–378

Linear operator, 238, 310, 318
Linear ordinary differential

equations:
adjoint equation, 156
change of independent

variable, 164–166, 271,
303

characteristic equation, 140,
226, 316

complex roots, 157, 228
complex roots, repeated,

230
real and equal roots, 166,

230
real and unequal roots, 140,

227
complementary solution, 176
definition of, 21, 137
Euler equation, 165, 174, 268
exact, 156
existence and uniqueness

theorems, 68, 146, 220,
262, 289, 359

first order, 27, 31–41
fundamental set of solutions,

150, 151, 221, 387, 388
general solution of, 12, 28, 32,

36, 73, 141, 150, 161, 168,
175, 221, 387

homogeneous equation with
constant coefficients, 28,
137–145, 157–174,
226–234

integrating factor, 28, 32, 36,
156

interval of definition, 37, 69
nonhomogeneous equation,

138, 174–191, 223,
234–242, 432–441

ordinary point, 250, 262, 266,
277

particular solution, 176, 224
reduction of order, 170–171,

224
self-adjoint, 157
series solution of, see Series

solution
singular point, 250, 262,

268–277
systems of, see Systems
undetermined coefficients, 16,

176–185, 234–238
variation of parameters, 28,

41, 185–191, 239–242
Linearization,

of a nonlinear equation, 22
of a nonlinear system, 511

Liouville, Joseph, 113, 674
Lipschitz, Rudolf, 120
Lipschitz condition, 120
Locally linear systems, 508–520
Logarithmic decrement, 203
Logistic difference equation,

124–129
Logistic differential equation,

79–83, 124, 521, 539
Logistic growth, 79–83, 86–88
Lorenz, Edward N., 567
Lorenz equations, 566–574
Lotka, Alfred J., 534
Lotka–Volterra equations, 20,

533–543

M
Magnitude, of a vector, 367
Malthus, Thomas, 78
Máscheroni, Lorenzo, 295
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Mathematical model, 2, 50–52
analysis of, 51
comparison with experiment,

51
construction of, 7, 15, 51

Matrices, 364–385
addition of, 365
adjoint, 364
augmented, 369, 374
conjugate, 364
diagonalizable, 417–419
eigenvalues of, 379–383, 580
eigenvectors of, 379–383, 580
equality of, 365
exponential, 416–417, 421
fundamental, 413–422, 426
Gaussian elimination, 368
Hermitian, 260, 382, 397, 417,

418, 423, 681, 699
identity, 367
inverse, 368–370
invertible, 368
Jordan form of, 426–428, 430,

431
multiplication by a number,

365
multiplication of, 365–366
noninvertible, 368
nonsingular, 368
row reduction of, 368
self-adjoint, 382
similar, 418
singular, 368
subtraction of, 365
transpose, 364
zero, 365

Matrix functions, 370–371
Mean convergence, 719
Mean square error, 717
Millikan, Robert A., 66
Mixing problems, 52–53, 56–58
Mode

natural (of vibrating string),
635

Modified Euler formula, 459
Moulton, Forest Ray, 465

Multiplicity of eigenvalue
algebraic, 380
geometric, 380

Multistep method, 464–470

N
Nagumo, Jin-Ichi, 566
Negative definite function, 546
Negative semidefinite function,

546
Neumann, Karl Gottfried, 647
Neumann problem, 647

for circle, 655
for rectangle, 655

Newton, Isaac, 67
Newton’s law:

of cooling, 8, 17, 62, 63
of motion, 2, 192, 360, 661

Newton, Isaac, 26
Node, 395, 405, 487, 509, 513

,see also Improper node,
Proper node

Nonhomogeneous algebraic
equations, 374

Nonhomogeneous boundary
value problems, 578,
687–702

Fredholm alternative, 690
solution

by eigenfunction
expansion, 687–699

by Green’s function,
699–702

Nonhomogeneous linear
differential equations, 138,
174–191, 223, 234–242,
349–350, 359, 432–441

Noninvertible matrix, 368
Nonlinear ordinary differential

equations:
autonomous systems, 497–574
definition of, 21, 138
existence and uniqueness

theorems, 69, 112, 358
first order, 68–75

methods of solving, 42–50,
94–101

linearization, 22, 511

periodic solutions of, 533–543,
554–566

y′′ = f (t, y′), 134
y′′ = f (y, y′), 134

Nonsingular matrix, 368
Normalization condition, 678
Nullcline, 528
Numerical dependence, 477
Numerical methods, 443–483

Adams–Bashforth formula,
465

Adams–Moulton formula, 466
adaptive, 451, 457, 463
backward differentiation

formulas, 468–469
backward Euler formula,

446–448
comparison of, 469
convergence of, 448
effect of step size, 449,

470–472
errors in, see Error
Euler, 101–111, 443–453, 481
Heun, 454
improved Euler, 454–459
modified Euler, 459
multistep, 464–470
one-step, 464
predictor–corrector, 466, 483
Runge–Kutta, 459–464, 481
stability of, 473–478
for stiff equations, 475–476
for systems of first order

equations, 480–483
vertical asymptotes, 472–473

Numerical stability, 473–478

O
Odd function, 603
Odd periodic extension, 607
One-step method, 464
Orbital stability, 557
Order of differential equation,

20
Ordinary differential equation

definition of, 19
Ordinary point, 250, 262, 266

at infinity, 277



September 11, 2008 11:18 boyce-9e-bvp Sheet number 813 Page number 793 cyan black

Index 793

Orthogonality
of Bessel functions, 304, 707,

708
of Chebyshev polynomials,

709
of eigenfunctions of

Sturm–Liouville
problems, 677, 706

of functions, 586
of Legendre polynomials, 267,

709, 723
of sine and cosine functions,

586–587
of vectors, 367

Orthonormal set, 678, 716
Overdamped motion, 199

P
Parseval, Marc-Antoine, 601
Parseval equation, 601, 610, 645,

724
Partial differential equation:

definition of, 19
,see also Heat conduction

equation, Laplace’s
equation, Wave equation

Partial fraction expansion, 315,
318, 319, 323

Particular solution, 176, 224
Pendulum equation:

generalized nonlinear
undamped, 552

linear undamped, 21
nonlinear damped, 499–501,

510, 512–516, 518
nonlinear undamped, 21, 25,

26, 507, 517–518, 544–545,
548–549, 552

period, 519
Period

of nonlinear undamped
pendulum, 519

of simple harmonic motion,
195

Periodic boundary conditions,
683, 721

Periodic forcing terms, 600
Periodic functions, 585

derivative of, 594
fundamental period, 585
integral of, 594
Laplace transform of, 330
linear combination of, 585
product of, 585
sine and cosine, 586

Periodic solutions of
autonomous systems,
533–543, 554–566

Periodicity of sine and cosine
functions, 585–586

Phase line, 80
Phase plane, 205, 390, 486
Phase plot, 205, 217
Phase portrait, 391, 486
Phase, of simple harmonic

motion, 196
Picard, Charles-Émile, 113
Picard

method of, 113
Piecewise continuous function,

306, 596
Pitchfork bifurcation, 93
Poincaré, Henri, 485, 558
Poincaré–Bendixson Theorem,

558
Poiseuille, Jean Louis Marie, 583
Poiseuille flow, 583
Population dynamics, 78–88
Positive definite function, 546
Positive semidefinite function,

546
Potential equation, 646–656

,see also Laplace’s equation
Power series, properties of,

243–247
Predator–prey equations, 20,

533–543
Predictor–corrector method,

466, 483
Proper node, 488, 513

Q
Quasi frequency, 198
Quasi period, 198

R
Rössler equations, 574
Rössler, Otto E., 574
Radioactive decay, 17, 61
Radiocarbon dating, 61
Radius of convergence, 244, 263
Ramp loading, 334
Rate function, 5
Rate of growth (decline), 5, 78

intrinsic, 79
Rayleigh, Lord, 564
Rayleigh equation, 564
Rectified sine wave, 331
Recurrence relation, 252, 279,

280, 285
Reduction of order, 170–171,

224
Reduction to systems of

equations, 356
Region of asymptotic stability,

503
,see also Basin of attraction

Regular singular point, 268–277
at infinity, 277

Resistance, electric, 201
,see also Damping force

Resonance, 209, 215, 337–339
Riccati, Jacopo Francesco, 133
Riccati equation, 133
Rodrigues, Olinde, 267
Rodrigues’ formula, 267
Rosenzweig-MacArthur

equations, 542, 565
Round-off error, 448, 453,

470–472
Row reduction, 368
Runge, Carl David, 460
Runge–Kutta method, 459–464,

481

S
Saddle point, 393, 405, 488, 513
Saddle-node bifurcation, 93
Saturation level, 81
Sawtooth wave, 331, 605, 610
Scalar product

,see Inner product
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Schaefer model for fish
population, 90

Schrödinger, Erwin, 340
Self-adjoint:

boundary value problem,
681–682, 706

equation, 157
matrix, 382

Separable equations, 27, 42–50
Separated boundary conditions,

674
Separation constant, 614, 624,

633, 648, 667, 711
Separation of variables, 611

further remarks, 709–716
for heat conduction equation,

614, 624
for Laplace’s equation, 648

in polar coordinates, 651
for wave equation, 633

in polar coordinates, 714
Separatrix, 503, 515, 527
Series of eigenfunctions,

680–681, 687, 688, 706–707,
719

Series solution:
existence theorem for, 262,

289
first order equations, 266
indicial equation, 280, 285, 289
near an ordinary point,

250–268
near a regular singular point,

278–292
recurrence relation, 252, 279,

280, 285
when roots of indicial

equation:
are equal, 282, 288, 290,

293–296
differ by integer, 282, 288,

290, 296–301
Shift of index of summation,

247–248
Similar matrices, 418
Similarity transformation, 418
Simple eigenvalues, 380
Simple harmonic motion, 195

Simply connected region, 95
Simpson, Thomas, 461
Simpson’s rule, 461
Sine series, 605, 679
Singular matrix, 368
Singular point, 250, 262, 268–277

irregular, 274, 291–292
regular, 268–277

at infinity, 277
Sink

nodal, 487
spiral, 491

Slope field, see Direction field
Solution of ordinary differential

equation, 22
general solution of linear

equations, 12, 32, 36, 73,
141, 150, 161, 168, 175,
221

of systems, 387
implicit, 74
of systems of equations, 358

Source
nodal, 487
spiral, 491

Spiral point, 403, 404, 491, 508,
513

Spring-mass system, 191–200,
202–217, 319, 412

three springs, two masses, 355,
360, 405–408, 412

two springs, two masses, 232
Square integrable function, 719
Square wave, 330, 597, 609
Stability:

asymptotic, 83, 122, 124, 494,
501, 547, 557

definition of, 499
,see also Converging

solutions
basin of attraction, 503, 515,

527, 549–551
of critical point, 494, 498–499,

508, 547
exchange of, 94, 127
global asymptotic stability,

516
Liapunov theorems, 546

for linear systems, 494, 508
for locally linear systems, 512
of numerical method, 473–478
orbital, 557
region of asymptotic stability,

503
semistable, 88, 557
stable, 494, 501, 547, 557

definition of, 498
unstable, 83, 122, 124, 494, 501,

547, 557
definition of, 499
,see also Diverging solutions

Stairstep diagram, 126
Star point, 488
Steady state solution, 63, 208,

622
Stefan, Jozef, 62
Stefan-Boltzmann radiation law,

62
Step functions, 323
Stiff equations, 475–476
Stokes, George Gabriel, 65
Stokes’ law, 65
Strange attractor, 571
Strutt, John William, see

Rayleigh, Lord
Sturm, Charles-François, 674
Sturm–Liouville boundary

value problems, 673–687
eigenfunctions orthogonal,

677
eigenvalues

real, 676
simple, 677

nonhomogeneous, 688–692
self-adjointness of, 682, 706
singular, 702–709

continuous spectrum, 706
Successive approximations

method of, 113, 421
Superposition principle, 147,

360, 386, 640, 710
Sylvester, James, 364
Systems:

of differential equations, 19
autonomous, 498



September 11, 2008 11:18 boyce-9e-bvp Sheet number 815 Page number 795 cyan black

Index 795

existence and uniqueness
theorem, 358

initial conditions, 358
linear, 358
nonlinear, 358
numerical solution of,

480–483
reduction to, 356
solution of, 358

of first order linear equations,
385–441, 485–496

definition of, 358
diagonalization, 419–420,

432–434
Euler, 399, 410, 429
existence and uniqueness

theorem, 359
fundamental matrix,

413–422, 426
fundamental set of

solutions, 387, 388
general solution of, 387
homogeneous, 359, 385–390
homogeneous with

constant coefficients,
390–432

homogeneous with
constant coefficients,
complex eigenvalues,
401–413, 490–493

homogeneous with
constant coefficients,
real and unequal
eigenvalues, 390–401,
486–488

homogeneous with
constant coefficients,
repeated eigenvalues,
422–432, 488–490

nonhomogeneous, 358,
432–441

nonhomogeneous, Laplace
transform of, 438–439

superposition of solutions,
386

undetermined coefficients,
434–435

variation of parameters,
436–438

of linear algebraic equations,
373–377, 578

T
Tangent line method, see Euler

method
Tautochrone, 352–353
Taylor, Brook, 246
Taylor series, 158, 246

for functions of two variables,
458, 510

Telegraph equation, 662, 671,
699

Thermal diffusivity, 612, 659
Threshold models, 84–88
Torricelli, Evangelista, 60
Torricelli’s principle, 60
Trajectories, 358, 391, 486, 493,

504–506
almost linear systems, 512
linear systems, 486–493
locally linear systems, 513

Transcritical bifurcation, 94
Transfer function, 349
Transfer matrix, 438
Transient solution, 63, 208, 622
Translation of a function, 325
Transpose of a matrix, 364
Triangular wave, 588, 591, 609
Truncation error

global, 448, 450, 470–472
local, 448

U
Undetermined coefficients, 16,

176–185, 234–238
for systems of equations,

434–435
Uniqueness theorems

,see Existence and uniqueness
theorems

Unit step function, 323
Laplace transform of, 325

V
van der Pol, Balthasar, 559
van der Pol equation, 559–562
Variation of parameters, 28, 41,

185–191, 239–242
for systems of equations,

436–438
Vectors, 365, 594

inner product, 367
length, 367
linear dependence and

independence of,
377–378

magnitude, 367
multiplication of, 366
orthogonality, 367

Verhulst, P. F., 79
Verhulst equation, 79
Vibrations:

of elastic bar, 672–673, 699
of elastic membrane, 644,

710–712
of elastic string, 631–646,

661–663
natural modes of, 635

of spring-mass system,
191–200, 202–217, 319,
412

of three spring, two mass
system, 355, 360, 405–408,
413

of two spring, two mass
system, 232

Volterra, Vito, 534
Volterra integral equation, 351

Laplace transform of, 351

W
Wave equation, 19, 631, 698,

710–712
boundary value problems for,

631–646
derivation of, 661–663
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dispersive waves, 645
fundamental solutions of, 634,

639
general problem, 638–640
in infinite medium, 642–644
justification of solution,

637–638, 644

in polar coordinates, 710, 714
,see also Elastic string

Wave velocity, 632, 642, 662
Wavelength

of vibrating string, 635
Wronski, Jósef Maria Hoëné-,

149

Wronskian, 149, 221
Abel’s formula for, 153, 225
for systems of equations, 386

Abel’s formula, 388

Y
Yield, maximum sustainable, 90
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